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ABSTRACT 

 

 

VIBRATION ISOLATION MODULE FOR A TOWED ARRAY 

 

 

BATMAZ, Ömer 

                            M. Sc., Department of Mechanical Engineering 

    Supervisor       : Prof. Dr. Mehmet ÇALIŞKAN 

    Co-Supervisor : Assist. Prof. Gökhan O. ÖZGEN 

 

February 2014, 108 pages 

 

 

 

Today, towed arrays are widely utilized in both civilian and military applications 

such as oil/gas explorations or submarine/torpedo detections under the water. 

Hydrophones are linearly arranged in the acoustic section of a towed array. These 

hydrophones convert the reverberated acoustical signals from targets into electrical 

signals and send them to the data acquisition center on the tow vessel. Any kind of 

noise on hydrophones negatively affects the performance of the array during 

operation. Vibrations coming from the tow cable and drogue rope are important 

noise mechanisms; especially at low working frequencies and tow speeds. In order 

to suppress these vibrations from the hydrophone section and hence increase the 

signal-to-noise ratio of the array, vibration isolation modules (VIMs) are attached 

to forward and aft ends of the hydrophone section. During the design phase of the 

VIM, it is highly desirable to be able to predict the dynamic behavior of the 

module. Consequently, this study was undertaken in order to determine the modal 

characteristics of the VIM. Firstly, Myklestad’s Method for bending was used to 

build up mathematical model of the VIM. Since the VIM structure is not slender 
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and there is always considerable drag force on the VIM during operation, shear 

effects and variable tension force were implemented to the method. A vertically 

hung VIM was tested to provide both free-free boundary condition and variable 

tension. The study was concluded with a thorough comparison of the theoretical 

and experimental results in order to evaluate the effectiveness of the modified 

method. 

 

Keywords: Vibration Isolation Module (VIM), Myklestad’s Method, Towed 

Array  
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ÖZ 

 

 

ÇEKİLİ DİZİN İÇİN TİTREŞİM İZOLASYON MODÜLÜ TASARIMI 
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                           Yüksek Lisans, Makina Mühendisliği Bölümü 

   Tez Yöneticisi           : Prof. Dr. Mehmet ÇALIŞKAN 

   Ortak Tez Yöneticisi : Yrd. Doç. Gökhan O.ÖZGEN 

 

Şubat 2014, 108 Sayfa 

 

 

 

Günümüzde çekili dizinler, sualtı doğalgaz/petrol araştırmaları veya 

denizaltı/torpido tespiti gibi sivil ve askeri uygulamalarda yaygın bir şekilde 

kullanılmaktadır. Çekili dizinin akustik bölümünde doğrusal olarak dizilmiş 

hidrofonlar bulunmaktadır. Bu hidrofonların görevi hedeften yansıyan ses 

dalgalarını elektriksel sinyallere dönüştürmek ve bu sinyalleri çekici deniz aracı 

üzerinde bulunan veri işleme merkezine göndermektir. Operasyon sırasında 

hidrofonlar üzerinde oluşabilecek herhangi bir gürültü, dizin performansını 

olumsuz yönde etkileyecektir. Çekme kablosu ve kuyruk ipinden gelen titreşimler 

önemli gürültü mekanizmalarıdır. Titreşim kaynaklı gürültüler özellikle düşük 

çalışma frekansları ve çekme hızlarında etkili olmaktadır. Gürültü kaynağı olan bu 

titreşimleri hidrofonların olduğu bölümden uzak tutmak ve böylece sinyal-gürültü 

oranını arttırmak için akustik bölümün ön ve arka ucuna titreşim izolasyon 

modülleri (TİM) eklenmektedir. TİM’in dinamik davranışının tasarım aşamasında 

belirlenebiliyor olması gerekmektedir. Bu sebepten, TİM’in modal karakterinin 

belirlenmesi için bu çalışma ele alınmıştır. İlk olarak Myklestad metodu 
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kullanılarak TİM’in matematiksel modeli oluşturulmuştur. TİM ince-uzun bir 

yapıda olmadığından kesme etkileri metoda eklenmiştir. Operasyon boyunca TİM 

üzerinde sürükleme kuvveti oluşacağından, değişken çekme kuvveti de Myklestad 

metoduna ayrıca uygulanmıştır. Düşey olarak asılmış TİM ile testler yapılmıştır. 

Böylece hem serbest sınır koşulları hem de TİM üzerinde değişken gerilim kuvveti 

sağlanmıştır. Oluşturulan matematiksel modelin geçerliliğini değerlendirmek için 

bu çalışma sonunda teorik sonuçlar ile test sonuçları esaslı bir şekilde 

karşılaştırılmıştır. 

 

Anahtar Kelimeler: Titreşim İzolasyon Modülü, Myklestad Metodu, Çekili Dizin 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

This chapter of this thesis covers brief information about towed arrays and area of 

their usage. After that, negative effects of noise on towed array performance and 

some most important noise sources will be explained. Since the vibration is the 

main topic of the thesis, vibration-induced noise among the noise sources will be 

explained in a little more detail. Additionally, to be able to minimize negative 

effects of vibration on the array, importance of VIM (Vibration Isolation Module) 

will be mentioned. Finally, objective of the thesis and thesis organization will be 

given at the end of this chapter. 

 

1.1 What is the Towed Array? 

 

A towed array is a passive sonar system which is deployed as a line array and 

towed behind a surface ship or a submarine (Figure 1.1). Passive means that the 

towed array only gathers radiated or reflected acoustic signals from undersea 

objects or structures. 

 

Previously, the towed arrays were widely utilized for unmilitary applications 

which are oil/gas/valuable minerals explorations or geophysical studies on sea 

bottom. In this kind of applications, low-frequency acoustic waves are generated 

by a high pressure air gun and travel towards sea bottom. The characteristics of 

generated waves change according to acoustic impedance of the obstacles when 

the waves hit them. Reverberated waves then travel back and are collected by 

towed array. The acoustic data coming from towed array is converted into useful 

information about underwater natural resources or landscape of the sea bottom. 
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Generally, very low frequencies, lower than 120 Hz, are used in civilian 

applications [1]. 

 

 

 

 
 

Figure 1.1 A Simple illustration of surface ship and towed array [2] 

 

 

 

Towed arrays appeared in military applications in 1960s. They are intended for 

detection and identification of submarines and torpedoes. Although the working 

principles of all towed arrays are similar, there are some noticeable distinctions in 

design for naval applications. Working frequency range can be specified as the 

most significant differences. Upper frequency limit of military towed arrays goes 

up to tens of kHz.  

 

Today, the towed arrays are irrevocable equipments for both sea bottom 

explorations and threat detections. Abilities and properties of towed arrays have 

been advanced day by day with developing technology. 

 

A towed array is composed of many subsections, namely tow cable, forward VIM, 

non-acoustic module, hydrophone section (acoustic section), aft VIM and drogue 
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rope, in sequence. An illustration of a typical towed array is given in Figure 1.2. In 

some special case, extra sections can be integrated to array, as well. 

 

 

 

 
 

Figure 1.2 Components of a typical towed array [3] 

 

 

 

Tow cable is used to tow whole array assembly in the water. It is the only 

component which physically contacts with tow vessel or submarine. It contains 

steel wire mesh to be able to stand against drag force without any failure and both 

power and data cables inside. Also, it is the longest part of the array and the length 

of the tow cable is variable according to desired operation depth or tow vessel 

speed. 

 

Forward VIM is located just after the tow cable. Vibration and strumming noise 

coming from tow cable are aimed to be absorbed by this section. Likewise the 

forward VIM, function of the aft VIM is to attenuate vibration due to whip-like 

action of the drogue rope. Generally, physical properties of both VIMs are similar 

to hydrophone section but various VIMs have been designed so far to increase the 

extent of vibration isolation. 

 

Non-acoustic module does not contain any sensor. In many of applications, it is 

integrated into hydrophone section. Specialized electrical devices such as analog-

to-digital converters and amplifiers lie in here. 
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Hydrophone section is the most crucial component of the towed array. It is 

composed of hundreds of hydrophones which are set linearly inside a plastic hose. 

The hose is filled with low density oil to make the array neutrally buoyant. This 

section converts the acoustical signals into electrical signals and sends them to the 

data acquisition center on the tow vessel. Interested frequency range and desired 

directional resolution define the hydrophone section length. There might be more 

than one hydrophone arrangement in the plastic hose because each arrangement 

deals with distinctive frequency bands.  

 

Drogue rope is the last component that is connected to the end of the aft VIM. 

Being horizontal during operation strongly affects the performance of the 

hydrophone section. So that, drogue rope is added in order to increase drag force 

and straighten the array. 

 

Measurement precision of a towed array definitely depends on the noise coming 

out within the desired detection spectrum range. Sources of the unwanted noise on 

array could be environmental or operational factors during towing action. In the 

next section, noise sources one of which is, of course, vibration induced noise will 

be explained under the four main titles in short. 

 

1.2 Causes of Noise on Towed Array 

 

Any kind of noise on hydrophones deteriorates performance of the array during 

operation. Acoustic pressure signals received by hydrophones are not strong 

enough. Additionally, impedances of the hydrophones are also high as an inherent 

property. As a result of these conditions, hydrophones are able to generate the 

signal at low level only [4]. So, noise source should be carefully investigated in 

order to minimize noise effects on hydrophones and increase the signal to noise 

ratio. 

 

Prediction of the noise on array is not easy to handle theoretically. Empirical 

studies have always guided the researchers from past to present. So, all probable 
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factors, such as length of the tow cable, distance between hydrophones, propeller 

noise, depth of operation, etc., have been examined one by one and their effects on 

noise levels are approximately identified. 

 

Although many mechanisms different from each other induce noise on the towed 

array, they still can be classified into four groups, namely ambient noise, radiated 

noise, flow noise and vibration noise. Effects of these noise mechanisms highly 

depend on the towing speed and frequency. This means that while one of 

mechanisms is dominant at a specified towing speed and frequency, this 

mechanism disappears or can be suppressed by other mechanisms when the speed 

is changed. A related chart summarizing the dependency is given in Figure 1.3. 

 

 

 

 
 

Figure 1.3 Classification of the noise for a single hydrophone in the array 

according to towing speed and frequency [5] 
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One can interpret from the above chart that noise at low towing speeds is caused 

by sea ambient and vibration but flow noise becomes dominant as towing speed 

increases. 

 

1.2.1 Ambient Noise 

 

As stated before, sea ambient noise is effective at low towing speeds and has a 

wide frequency range. Many studies have been conducted to determine the sea 

ambient noise from 1Hz to 100 kHz, so far. As a result of these studies, sources of 

sea ambient noise and their frequency bands are discovered. Also, it should be 

noted that amplitude of the ambient noise depends on depth of the water. Noise 

levels in shallow-water are generally higher than in deep waters [6]. 

 

Surface waves are indicated as ambient noise sources. Magnitude of wind speed 

with the height of the surface waves are specified by using sea-state scale. 

Knudsen spectrum is a well-known method to understand the relation between sea-

states, directly surface waves, and ambient noise levels. As well as surface waves, 

rain is another noise source related with weather conditions. In case of extremely 

heavy rain, several tens of dB increase can be observed in noise levels. Because of 

that tides create pressure fluctuation in the sea, they are another ambient noise 

source. However, noise from tides contains very low frequency components which 

are far away from operation frequency most of the time. Instability of the seabed 

also generates undesired noise on the arrays. Moreover volcanic eruptions and 

earth quakes contribute to formation of this kind of noise. Since, these seismic 

noises appear at very low frequency region, they are generally suppressed by other 

noises. Turbulence due to gulf or vortex is accepted as a noise source for the sea 

ambient noise, as well. However, sea turbulence originating noise is dramatically 

attenuated with distance so that it is not a critical disturbance for array 

performance. Lastly, ship traffic vicinity of tow operation is an important noise 

source. Frequency characteristics of ship traffic noise lies from 50 Hz to 500 Hz 

but it is dominant at around 100 Hz. All these above noise are caricaturized in 

Figure 1.4. 
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Figure 1.4 Sources of sea ambient noise [7] 

 

 

 

As a result, noise from the surface waves and the ship traffic should be taken 

seriously among ambient noise sources because of that they mostly exist in the 

range of operation frequency. 

 

1.2.2 Radiated Noise 

 

Radiated noise phenomenon can be confused with ambient noise but noises 

propagating from surface ship or submarine to which the array is connected are 

investigated under this title. Machinery on hull, propeller and movement of surface 

ship or submarine are potential noise sources. According to noise source, 

frequency characteristics of the radiated noise can be in form of broadband or 

tonal. 

 

Vibrations of machines on hull create unwanted noise in the water. Internal 

combustion engines, gear assemblies, pumps, generators and all mechanical 

irregularities are the source of machinery noise. Machinery noise is a kind of low 

level broadband noise with powerful tonal components. Unlike machinery noise, 

propeller noise is transmitted into water directly. Three mechanisms which are 

blade rate, cavitation and blade singing take part in developing of propeller noise. 

While blade rate and blade singing effects are observed as tonal noise, cavitation 
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forms broadband noise at spectrum. The last element of radiated noise is 

hydrodynamic noise. Motion depended turbulent layer excites the hull and 

propeller so that structural born noise is induced. Nevertheless, hydrodynamic 

noise pales beside machinery and propeller noise.  

 

 

 

 
 

Figure 1.5 Radiated noise components of a surface ship [8] 

 

 

 

Radiated noise spectrum of a surface ship is shown in Figure 1.5. Broadband noise 

and tonal noises are assigned individually. It can be obviously seen from the graph 

that levels of some tonal noises lie under the broadband noise level and so they 

disappear. 

 

1.2.3 Flow Noise 

 

During the towing action, a turbulent boundary layer develops around of the array 

because of the relative motion Figure 1.6. Pressure fluctuations as a nature of 

turbulence are carried inside the array by some mechanisms and they are turned 

into unwanted noise at the output of the hydrophones. So, this sort of noise is 
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called as flow noise. Mostly, performances of the arrays are assigned according to 

flow noise because of the fact that high frequency components of flow noise are 

also significant when it is compared with other noise sources. They are effective in 

broad spectrum, especially at high towing speeds. 

 

 

 

 
 

Figure 1.6 Turbulent boundary layer around a tow cable [9] 

 

 

 

However, disturbance effects of flow noise on collected data could be filter out by 

taking statistical averages or mechanical precautions some like adjusting the 

distance of hydrophones or minimizing the contacts of the hydrophones to the 

outer hose. 

 

1.2.4 Vibration Noise 

 

As is seen in Figure 1.3, vibration noise cannot be disregarded at low frequency 

range because it has the highest noise level during low speed towing actions. 
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Anyhow hydrophones in the array are designed to sense pressure waves; they are 

inherently affected by vibration on their body, as well. So, any vibration source 

can be indicated as a vibration noise source directly.  

 

Turbulent boundary layer does not only cause flow noise mentioned before but 

also it is the one of main reasons of vibration on the array. Another crucial 

vibration source is vortex shedding of the tow cable. It is the case of boundary 

layer separation as known. After separation, vortices are developed and they ruin 

the stable pressure distribution over the tow cable so that unequal lifting force due 

to pressure instability makes the cable oscillate. Some portion of the vibration on 

the cable is attenuated; however, the rest stands themselves out as erroneous data 

at the output of the hydrophones. At the same time, connection of the tow cable to 

the deck is almost rigid so machine induced vibration becomes a vibration source 

for the array. That is, the hull vibration is conveyed up to the hydrophones along 

the cable and can corrupt their output data. Additionally, instabilities on both drag 

force and towing speed can be shown as another vibration source. Finally, 

fluttering of the drogue rope may causes oscillation of the components. 

 

The notable vibration noise source among above sources is admittedly vibration of 

the tow cable. Two types of vibration which are transverse vibration and 

longitudinal vibration come into existence on the cable and these are naturally 

transferred to the hydrophone section. According to occurrence plane, transverse 

vibration is examined as being in yaw and pitch directions Figure 1.7. Vortex 

shedding is especially the main reason of the transverse cable vibration. Although 

vortex frequencies cannot exceed 100 Hz, vibration noise must be taken into 

consideration in low frequency researches. 
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(a) 

 

 
 

(b) 

 

Figure 1.7 Vibration of the tow cable in (a) pitch and (b) yaw directions [10] 

 

 

 

In terms of longitudinal vibrations, instabilities in flow and some mechanisms 

related with transverse vibration can be accepted as their sources. These vibrations 

are quite responsive to damping factor of the system; that is, their attenuation rates 

increase sharply after 50 Hz when damping factor goes up [10]. 

 

1.3 Vibration Isolation Module (VIM) 

 

The negative effect of the all above vibrations can be diminished by cutting of the 

direct connection of the tow cable and drogue rope with hydrophone section. Thus, 

VIMs have been interposed between these components. By changing the 
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mechanical properties of VIM`s, optimum attenuation may be achieved at desired 

frequency ranges. 

 

Although many different VIM structures have been used in marine applications, 

classical VIMs comprising of elastic outer hose, inner fluid, rigid spacers, internal 

strength members and termination parts have common use because of their 

production costs. According to its location, VIM may contain power and data 

cables, as well. Figure 1.8 demonstrates the structure of a classical VIM.  

 

 

 

 
 

Figure 1.8 Structure of a classical VIM 

 

 

 

Elastic hose holds the all components together and protects them from external 

factors. It is generally produced from flexible materials like polyurethane. Hose is 

filled by internal fluid whose density is lower than water to achieve neutral 

buoyancy. Termination parts are attached to each end to conserve inner fluid inside 

the hose and provide connection interface. In case of any excessive tension, 

strength members lying from one to other prevent the damage of the VIM. Rigid 

spacers are put with spacing into the VIM to increase the bending stiffness for 

desired operation conditions. They also protect the power and data cable when 

excessive bending occurs.  

 

1.4 Objectives of the Thesis 

 

As mentioned before, it is very important to minimize vibration effects to be able 

to increase signal to noise ratio of the hydrophone section at low or moderate 
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towing speeds. Most of the vibrational disturbances arrive to hydrophones through 

the medium of tow cable and drogue rope. That’s why, vibration isolation modules 

(VIMs) are extensively placed to the both forward and aft ends of the hydrophone 

section. In the design stage, dynamic behavior of these additional components 

should be predictable to implement the optimum solution against to vibration 

problem. Therefore, providing a useful and simple theoretical method to guide 

design of the VIMs on towed arrays is the motivation of this study. 

 

The main objective of this thesis is to propose an analytical method for the 

multicomponent VIM structure in order to define its dynamic behavior, especially 

natural frequencies. Verification of the proposed method by performing 

experimental works is another goal of the study.  

 

1.5 Scope of the Thesis 

 

The outline of the thesis as follows: 

 

In Chapter 2, patented VIM applications from literature are presented. Their 

structural properties which are different than each other are mentioned briefly. 

Additionally, studies on dynamic behavior of slender structures inside water are 

given in this chapter. 

 

In Chapter 3, basic concepts about beam vibration and dynamic modulus of 

viscoelastic materials are given because hose of the VIM is a viscoelastic. 

Furthermore, it is stated here that Myklestad`s Method is utilized to define 

dynamic behavior of the VIM. After explain the simple form of this method, 

modified form which includes shear deformation and variable tension force in 

order to simulate real conditions of the VIM is introduced in detail. 

 

In Chapter 4, the modal test technique which is used during test of the VIM sample 

is explained. The test setup and procedure are also presented. Lastly, test results of 

the VIM conclude this chapter. 
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In Chapter 5, modified Myklestad`s Method is verified by applying seven different 

boundary conditions. Natural frequencies obtained from the new method are 

compared with the Finite Element Method (FEM) results. After verification 

procedure, a solution is performed to find the first three bending natural frequency 

of the tested VIM sample by using new method. Additionally, comparison between 

the theoretical results and the experimental results of the VIM sample are 

presented. Valuable comments on results are expressed. 

 

In Chapter 6, all study is summarized with remarkable conclusions and some 

suggestions about future works are stated under the summary and conclusions title. 
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CHAPTER 2  

 

 

LITERATURE SURVEY 

 

 

In this chapter, VIMs and VIM-like products which are used to attenuate vibration 

level on hydrophone side of the towed array will be examined under the first title. 

In addition, second part mentions various mathematical models used to define 

dynamics of cylindrical structures interacting with the water, such as hoses and 

cables. 

 

2.1  Patented VIMs in Marine Applications 

 

When the towed sonar arrays are investigated in detail, VIMs always exist as an 

irrevocable component of the systems. 

 

Miller et al. [11] invented a VIM composed of nylon cords, flexible outer and 

inner envelope, rubber filler material between envelopes, viscous jelly filler inside 

the inner sheath and centered braided rope which has high braking strength. 

Function of the nylon cords is to withstand the moderate drag force related with 

fluid-array interaction. Rubber filler material damps the vibration and noise which 

are transferred from towing cable to nylon cords. Centered braided rope becomes 

active when the length of the VIM reaches the certain limits. Main reason of length 

change is increasing in towing speed which means increasing in drag force. Under 

the high tow speed, tight centered braided rope could increase the transmission of 

the cable vibration. However, they stated that at high speed flow noise will 

suppress the strumming noise. (Figure 2.1) 
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Figure 2.1 Cross section view of the Miller`s invention [11] 

 

 

 

Using nylon ropes may expose negative effect on assembly of VIM and its 

vibration attenuation characteristic. It is difficult to fasten all nylon ropes one end 

to other with the same tension. Also, when nylon ropes reach their elastic limits, 

VIM will be work as an only connection element between tow cable and 

hydrophone section. By this way, elastic limit of nylon ropes determines the 

frequency range where VIM is effective. Appling [12] get these ropes out from his 

VIM design. This design includes only one braided aramid fiber rope with 

damping chambers at some intervals and polyurethane spacers. Length of the 

chambers, filler material inside them and space between spacers directly affect the 

vibration impedance of VIM. By changing these parameters, VIM for desired 

frequency range vibration isolation can be built up. Figure 2.2 

 

 

 

 
 

Figure 2.2 View of Appling`s invention [12] 
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Vibration attenuation mechanism of VIMs differs from each other. McGowan and 

McCulloch [13] redounded attenuation property of VIM by using spacers contact 

with outer hose. Outer hose is selected from polyurethane material and filled with 

neutral buoyancy fluid, too. Spacers are located on elastic main rope with special 

technique. At excessive tension situations, spacer can move on elastic main rope 

so that, unwanted stress concentration on rope would be eliminated. By touching 

to outer hose, spacers act as a bridge between outer hose and elastic main rope. In 

other words, vibration or strumming noise on main rope will be transferred to 

outer hose and vibration from out of the hose will conversely transferred to main 

rope by means of spacers. (Figure 2.3)  

 

 

 

 
 

Figure 2.3 VIM model of McGowan and McCulloch [13] 

 

 

 

Some inventors realized that ideas from automotive industry could be integrated to 

this filed. Carpenter and Adkins [14] applied a dash-pot type damper inside VIM. 

This damper is inserted into cylindrical masses. Movement on visco-elastic core 

which wraps an elastic strength member causes motion of the masses. Space 

between masses is filled up with open cell plastic foam. The rest of the inside VIM 

contains high viscosity fluid. Due to visco-elastic core, dash-pot damper and 
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masses, VIM provides three different features, namely spring mass isolation, 

viscous damping and visco-elastic damping (Figure 2.4). 

 

 

 

 
 

Figure 2.4 Dash-pot damper implementation for VIM [14] 

 

 

 

Cameron and Parsons [15] designed a simple VIM structure. Bulkheads and spacer 

form the skeleton of the VIM. Bulkheads nearly cover the whole cross-section and 

have high acoustic impedance. In contrast, in order to balance acoustic attenuation, 

low acoustic impedance spacers are used. They also emphasized on that optimum 

bulkhead space should be found out to control the desired vibration energy. 

 

Using loss material in VIM can be another alternative solution for vibration 

isolation. Reynier et al. [16] showed us several types of VIM in which loss 

materials were utilized. The characteristic of loss material is that there is a certain 

time difference between stress and strain on material. When a load is applied, 

deformation will lag with respect to stress. This delay processes adversely, also. 

When the load is removed, returning to its original shape of the loss material takes 

time. In the invention, the loss material with ellipsoidal shape is placed into woven 

sleeve at intervals. These crossly weaved sleeve is connected to both end of the 

VIM. After some vibrational loads come up on VIM, sleeve tends to become linear 

so that, loss material inside sleeve will be squeezed and deformed. As an example, 
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inventors stated a loss angle interval (0.2 < tanδ < 0.5) for loss material in case of 

using 10cm diameter VIM. Besides, they expressed that using dash-pot type 

devices are not suitable due to winding requirement onto winch under load. 

(Figure 2.5) 

 

 

 

 
 

Figure 2.5 One application of using loss material inside VIM [16] 

 

 

 

Instead of using elastic or damping properties of core element of VIM with the 

same direction of load, changing the type of strain might be different approach to 

vibration isolation solution for towed arrays. Andrews [17] put pitch reversal 

components onto core cord. Core cord has elastic and damped characteristics. 

Another cord which is non-extensible was wrapped around core cord helically and 

attached pitch reversals with the help of pitch reversal clamps. So, longitudinal 

motion and shocks are converted into torsional strain on elastic core cord due to 

pitch reversals. Naturally, damping property of VIM comes out as a result of 

nonlinear interaction between longitudinal and torsional strain. (Figure 2.6) 
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Figure 2.6 VIM design with pitch reversals [17] 

 

 

 

As constructed in past, one can produce a basic VIM by using a outer hose, 

internal fluid and a single elastic rope. However, this rope only resists up to some 

traction force level and then it will lose its elastic properties. In order to prevent 

this damaging situation, second elastic rope is added to system. Elastic limits of 

secondary rope is higher than primary but it is also helpless against excessive drag 

force. Lastly, third rope which is very strong and non-extensible is provided. First 

and second rope will work in desired elastic limits and third rope only overcome 

unexpected load. In the light of this idea, Morningstar and Gill [4] used extensible 

and non-extensible rope together. Yet, these ropes loop between inner part of 

transition units and connect the outer part of them instead of lying one end to other 

of VIM. By playing with the length of the extensible ropes or using different 

ropes, damping characteristic of VIM can be designated. (Figure 2.7) They 

patented another VIM design which was quite similar with this one, as well. 

 

 

 

 
 

Figure 2.7 VIM design with transition units [4] 
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VIMs might be become more compact. Harvey`s [18] invention is one of good 

example for compact VIM structure. Commonly, a core strength member is 

located at center and non-extensible cords are braided over it along VIM. These 

two members are enclosed by first inner hose and this hose is filled with gel. 

Electrical and data cables are placed onto first inner hose then the second inner 

hose is extruded. Lastly, outer hose is extruded in such a way that wrapping the 

whole assembly. This type of VIM construction is seemed compact and easy; 

however, extrusion step at each hosing process would necessitate more attention 

and be more expensive. (Figure 2.8) 

 

 

 

 
 

Figure 2.8 More compact VIM assembly [18] 

 

 

 

2.2 Studies on Cylindrical Structures Interacting with the Fluid 

 

Until today, many investigations were performed to understand the vibration 

behavior of cylindrical structures interacting with fluid internally or externally or 

both. Pipe lines conveying oil, heat exchangers channels and electronic systems 

towed by vessels inside the sea could be shown as concentrated fields. Why 

vibration on these structures becomes very important subject is that vibration 

causes either unexpected structural failures or disturbance on output of the 

systems. This challenging topic still conserves its topicality. By being utilized 

developing computer technologies, new methodologies have been improved to 

estimate the vibration characteristics of fluid coupled cylindrical structures. 
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In 60`s, it was known that high speed internal flow causes transverse vibration on 

flexible pipe lines. Paidoussis [19] stated that inertial force of fluid on account of 

lateral motion of slender structure is common in both axial external flows and 

internal flows. Because of this, external axial flows set off also vibrational 

instabilities on slender structures; similarly internal flows. His model for slender 

structures in axial flow includes classical beam theory modified with inertial force 

of around fluid due to lateral motion and viscous forces. He conducted an 

experiment on pinned ends rubber cylinder and compared the results with his 

model. The results were considerably close and he pointed out that magnitude of 

axial flow velocity which causes lateral vibrational instabilities is directly 

proportional with flexural rigidity of structure.  

 

Paidoussis sustained his studies on towed cylinders dynamics and improved 

stability equations by modifying the frictional force terms [20]. He explained that 

flexible towed cylinder shows rigid body and flexural instabilities according to 

towing speeds. He created a different theory for rigid cylinders which possess two 

degrees of freedom and compared the results with flexible model. For the same 

shape and boundary conditions, flexural theory and rigid theory give the quite 

close results for the first two mode frequency. 

 

More comprehensive studies were made on the basis of Paidoussis` works. 

Experiments, linear and nonlinear dynamic models and comparison of 

experimental and theoretical results regarding to slender cantilevered cylinder in 

axial flow were examined in a three-part study. In the first part prepared by 

Paidoussis et al. [21], new experiments were performed on elastic cylinder in order 

to clarify dynamic behavior. As stated at previous studies above, it was observed 

that flow damped the free motion of cylinder at low flow velocities and high flow 

velocities were required for instabilities. These experiments give also substantially 

useful information about effects of some geometrical parameters, such as free-end 

shape, on dynamic behavior. Additionally, energy transfer mechanisms were 

utilized to predict the physic of instabilities within this study. Lopes et al. [22] 

stated in the second part of the study that linear model was insufficient to predict 
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most of the dynamic behaviors. For cantilevered cylinder in axial flow, therefore, 

they derived nonlinear equation of motion and boundary conditions by means of 

Hamilton`s principle. Finally, three-part study was concluded by Semler et al. [23]. 

They utilized finite difference method to solve nonlinear equation derived in the 

second part and compared theoretical results with experiments performed in the 

first part. The nonlinear equation of motion was not exact definition of dynamic 

behavior because nonlinearities of fluid mechanics were not included. However, 

theoretical results and experiments showed pretty good matches in terms of critical 

flow velocities, amplitudes and frequencies of instabilities. 

 

Above three-part study might be used to model dynamic behavior of short 

cylinders in axial flow but solution procedure is defective in solving long cylinders 

problems. Langre et al. [24] applied another dimensionless analysis for existing 

linear equation of motion and solved them by using Galerkin method. They 

focused on flutter problem of cantilever long cylinder, especially effect of length 

on stability. It was obviously revealed that instabilities occur not through whole 

structure; they only appears at definite region where is nearby free end. The reason 

of this situation is decreasing in flow induced tension and it becomes negligible 

against bending stiffness. Moreover, they evaluated the string model for this kind 

of case but this model is not acceptable.  

 

Finite element method is one of the solution techniques in stability analysis of 

towed arrays. Bhattacharyya et al. [25] implemented finite element approximation 

by using Hamilton`s principle. They verify their approach with some validation 

and convergence problem. After they showed the reliability of this method, they 

utilized it to define stability conditions of neutrally buoyant acoustic array with 

negatively buoyant tow cable at its upstream end. 

 

Acoustic streamer towed behind ships` back is one of the sophisticated examples 

for fluid-structure interaction problems. Transverse motion of neutrally buoyant 

section of acoustic array and negatively buoyant section of it were investigated in 

two-part study by Dowling [2], [26]. She considered the all sections of streamer as 
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a thin and flexible cylinder. She specified that transverse displacement form of 

neutral section has not a simple form due to critical point after which tension by 

fluid drag is ineffective. By using method of match asymptotic expansion and 

forth-order equation of motion, general solution was formulated. With this study 

also, forced vibration was examined and attenuation characteristics of flexible 

cylinder was predicted depending on frequency levels. Furthermore, she reviewed 

the transverse displacement of cylinder when it was coupled with aft drogue rope. 

It can be said that using drogue rope is not effective in order to increase 

attenuation level, especially at high frequencies. The second part of the study 

concentrated on towing cable which is negatively buoyant and inclined form. 

Transverse motion of cable was evaluated for horizontal and vertical plane 

separately. Boundary condition at the downstream of cable was derived from 

works handled in the first part for neutrally buoyant cylinder. It was stated that 

towing cable shows distinct attenuation capability for each plane vibrations. This 

distinction was explained by low-high frequency analytical solution. 

 

Ketchman [10] analyzed the towing cable dynamic vibration problem in order to 

diminish vibration transmission to the acoustic arrays. Basic string equation with 

fluid forces was utilized for yaw and pitch transverse vibration. Besides single 

point excitation, distributed vortex excitation was solved. Also, it was pointed out 

that, there exist two different longitudinal vibration formations which are direct 

axial excitations and indirect axial excitations due to transverse vibration. 

Analytical solutions were performed for longitudinal vibration, as well. 
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CHAPTER 3  

 

 

THEORY AND MODELING 

 

 

In this chapter, some basic concepts which are related with modeling of the VIM 

structure will be mentioned. Firstly, Timoshenko Beam Theory will be given in 

shortly. Then, dynamic modulus definition for viscoelastic materials will be 

explained by utilizing complex number. After that, the most important title, 

Myklestad-Prohl Method (Myklestad`s Method), is going to be come up. This 

method is one of the subtitles under the transfer matrix method (TMM) field. 

Afterwards, modeling of inertial effects within the Myklestad`s Method will be 

referenced from previous studies. Then, conditions which have to be considered 

while modeling the VIM will be explained. Finally, Myklestad`s Method will be 

modified according to these conditions to find out bending natural frequencies of 

the VIM. 

 

3.1 Theory 

 

3.1.1 Timoshenko Beam Theory 

 

In classical beam theory (Euler-Bernoulli Beam Theory), rotational inertia and 

angular distortion due to shear are neglected. This theory gives reliable results for 

only slender beams. However, the situation is a little bit complicated for short and 

thick beams. Rotation of cross section and deformation due to shear have an 

importance while defining the short and thick beam`s response. So, addition of 

rotary inertia and shear effect to classical beam theory was firstly concluded by 

Timoshenko in 1921 [27]. Timoshenko beam theory gives more accurate results 
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for beam`s response than Euler-Bernoulli theory when they are compared with 

results from the exact elasticity equations and experiments [28]. 

 

Unlike Euler-Bernoulli beam theory, deflection in y is caused by not only bending 

but also shear at Timoshenko theory. For very small linear and angular deflections, 

slope at any x can be written as, 
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Slope ψ(x, t) is related with bending while β(x, t) is related with shear. So, 

expressions of moment and shear force becomes, 
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Take out the β(x, t) term from equation (3.1) and substitute it into equation (3.3). 
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According to Figure 3.1, equation of motion of beam element for rotation and 

transition in y direction can be easily extracted. 
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Figure 3.1 Free body diagram of beam element 

 

 

 

For transitional motion, 
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Put the equation (3.4) into equation (3.5). New equation becomes, 

 

( ) ( ) ( )2

2

, ,
,

⎡ ⎤⎡ ⎤∂ ∂∂
− =⎢ ⎥⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦⎣ ⎦

y x t y x t
GA x t A

x x t
κ ψ ρ   (3.6) 

 

For rotational motion, 
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Substitute the equation (3.2) and (3.4) into (3.7). Final equation about rotational 

motion is, 
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Timoshenko beam theory can be represented by equations (3.6) and (3.8). 

However, eliminating the ψ(x, t) term by using these two equations and writing 

Timoshenko equation as a single equation are also possible. After some 

rearrangements, Timoshenko beam equation in equation form is expressed as, 
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3.1.2 Viscoelasticity and Dynamic Modulus of Viscoelastic Materials 

 

Usage of viscoelastic materials as engineering materials started long before. 

Rubbers, foams, thermoplastics and polymers are commonly known viscoelastic 

materials. Characteristics of this type of materials are to behave like both viscous 

fluid and elastic solid. Also, behavior of viscoelastic material is defined with three 

important phenomena which are stress relaxation, creep and hysteresis. Stress 

relaxation can be explained as decreasing in stress with time when a constant strain 

is applied to viscoelastic material. Creep has the same analogy with stress 

relaxation but this property shows change of increasing strain under constant 

stress. Lastly, dissipation of energy as heat under cyclic load is called hysteresis 

[29]. 

 

Linear viscoelastic theory proposes that there is always a linear proportionality 

between stress and strain history on viscoelastic material. It must be noted that this 
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theory is valid only for small deformations and linear materials. Within the 

boundary of linear viscoelasticity, linear springs and dashpot elements are used in 

order to compose mathematical models [30]. 

 

Maxwell model, Kelvin-Voigt model and standard linear solid (SLS) model are 

well-known simple rheological models for linear viscoelastic materials. Linear 

spring and dashpot elements are used for these models. Arrangement of linear 

spring and dashpot element change model to model. The Maxwell model is 

represented by a purely elastic spring and a damper in series which is shown in 

Figure 3.2a. Composition of an elastic spring and a damper in parallel is called as 

Kelvin-Voigt model in Figure 3.2b. The third model, SLS model, is a little bit 

enhanced model than other models. As illustrated in Figure 3.2c, Maxwell model 

with a purely elastic spring in parallel constitute the standard linear solid model. 

 

 

 

 
 

 

Figure 3.2 Simple rheological models (a) Maxwell Model, (b) Kelvin-Voigt 

Model, (c) Standard Linear Solid Model (k and μ are elastic and viscous constants) 

 

 

 

(a) (b) (c) 
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When the dynamic behavior of viscoelastic materials is examined under cyclic 

deformation, it is realized that there will be phase difference between strain and 

stress due to viscoelastic effects. Assume sinusoidal strain which is, 

 

( ) ( )0 sin=t tε ε ω     (3.10)  

 

where ε0 and ω are amplitude and angular frequency, respectively. If this strain is 

applied to pure elastic material, stress will be proportional to strain with the same 

angular frequency. 

 

( ) ( ) ( )0 0sin sin= =t k t tσ ε ω σ ω    (3.11) 

 

Thus, stress is in phase with strain (Figure 3.3a). On the other hand, for purely 

viscous material, stress can be expressed as, 
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Final form of stress due to sinusoidal strain for pure viscous material can be 

calculated by substituting equation (3.10) into equation (3.12). 
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From equation (3.13), it is obvious that there is a π/2 phase difference between 

strain and stress for pure viscous materials (Figure 3.3b). As mentioned before, 

viscoelastic materials possess both viscous fluid and elastic solid properties. Thus 

there will be always phase differences, δ, between strain and stress and this value 

will exist in (0, π/2) interval (Figure 3.3c). 

 

( ) ( )0 sin 0
2

= + < <t t πσ σ ω δ δ   (3.14)
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(a) 

 

 
(b) 

 

 
 

(c) 

 

Figure 3.3 Under cyclic load, stress-strain relation for (a) pure elastic material, (b) 

pure viscous material and (c) viscoelastic material. 
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Expression of harmonic functions in complex form is quite convenient for 

engineering problems. Under cyclic loading, therefore, stress, strain and their 

relation which is known as complex dynamic modulus are expressed in complex 

for viscoelastic materials. Complex strain and stress of equations (3.10) and (3.14) 

become, 

 

( ) 0= i tt e ωε ε      (3.15) 

 

and 

 

( ) ( )
0

+= i tt e ω δσ σ     (3.16) 

 

Ratio of the stress to strain gives the complex dynamic modulus, E*. 

 

( )
( )

* 0 0 0

0 00

cos sin
+

= = = = +
i t

i
i t

e
E e i

e

ω δ
δ

ω

σ σ σσ δ δ
ε ε εε

 (3.17) 

 

Real part of the dynamic modulus is called as storage modulus showing stored and 

recovered energy during periodic load whereas imaginary part is called as loss 

modulus showing dissipated energy due to internal damping. Generally, dynamic 

modulus is written as, 

 
*

1 2= +E E iE  

 

where 

 

0 0
1 2

0 0

cos sin= =E and E
σ σ

δ δ
ε ε
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The ratio of imaginary part to real part of dynamic modulus is also important to 

determine the mechanical properties of viscoelastic materials. This is called as loss 

factor. In other words, loss factor states ratio of lost energy to stored energy. 

Moreover, loss factor magnitude gives an idea about viscoleastic effect of material. 

That is, the higher loss factor a material has, the more viscoelastic effect it shows 

[29]. 

 

2

1

tan= =
E

loss factor
E

δ     (3.18) 

 

Frequency response of dynamic modulus which is extracted by using a simple 

rheological model varies one model to other. However, these models cannot 

properly describe the actual dynamic modulus of viscoelastic material. As 

illustrated in Figure 3.4a, Maxwell model fails at low frequencies due to static 

stiffness is zero while Kelvin-Voigt model moves away from reality due to infinite 

loss factor at high frequencies shown in Figure 3.4b. At the same time, standard 

linear solid model can be used as the basic approach to figure complex modulus 

out in frequency domain [31]. 

 

All of above simple rheological models are effective and quick ways to understand 

the trend of complex modulus in frequency domain. However, most of the time, 

they are poor in modeling of viscoelastic properties. That`s why, more complex 

models were introduced. Generally, these models are in form of combination of 

basic models. Generalized Maxwell method and generalized Kelvin model can be 

shown as improved methods. 
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(a) 

 

 
 

(b) 

 

Figure 3.4 (a) Storage Modulus vs. frequency and (b) loss factor vs. frequency of 

simple rheological models 
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3.1.3 Myklestad’s - Prohl Method for Bending Vibration 

 

Basically, this method was used to find out the natural frequencies of uncoupled 

bending vibration of beams which are uniform and have variable stiffness. 

Although method was developed by Myklestad and Prohl independently, 

“Myklestad’s Method” is the most common name for this method. The origin point 

of Myklestad’s Method is Holzer Method whose field is to solve torsional 

vibration problems. [32]  

 

Concept of the Myklestad’s method is to divide continuous structure, like beam, 

into segments. The first component of the segment is span; other is called as point 

mass (Figure 3.5). Span is massless and carry the flexural properties of segment 

while point mass describe the inertial effects. [33] By constituting field transfer 

matrixes from spans and point transfer matrixes from point masses, relations 

between segments are provided. By using these transfer matrixes, overall transfer 

matrix is written to define one end parameters of structure in terms of other end’s. 

Finally, boundary conditions are put inside the matrix equation and natural 

frequencies are obtained. However, number of the natural frequencies is limited by 

number of point masses. 

 

 

 

 
 

 

Figure 3.5 (a) Segment, (b) span and (c) point mass section of beam element. [33] 
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Due to bending of a beam is fourth order, four equations must be written for span 

and point mass in terms of displacement (y), slope (ψ), shear force (V) and moment 

(M). Also, these four variables constitutes state vector. 

 

Before writing the transfer equations, it is better to define sign convention of four 

variables. Positive directions can be seen in Figure 3.6. 

 

 

 

 
 

Figure 3.6 Positive sign convention for four variables 

 

 

 

In this method, since span is assumed as Euler beam, shear deformations and 

rotary inertias are not taken into consideration. So, slope at any point of beam is 

only due to bending. The transfer relation of displacement and slope between ends 

of the span can be calculated by using general beam deflection formulas. 

 

According to free body diagram in Figure 3.7a, transfer equation of span in terms 

of shear force and moment are, 

 

1−=L R
i iV V      (3.19) 

 

1−= −L R L
i i i iM M l V     (3.20) 

 

ψ M y V 
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Figure 3.7 Free body diagrams of (a) span and (b) point mass 

 

 

 

Superscripts on variables denote the right and left side of ith point mass. Span is 

considered as a cantilever beam fixed at the left end whereas defining the right end 

variables. Effects of the slope and displacement at the left end are added to 

equations. Cantilever beam relations for slope and displacement under both 

bending moment and shear are [34], 

 
2

2
= +

Ml Vl
EI EI

ψ     (3.21) 

 
2 3

2 3
= +

Ml Vly
EI EI

    (3.22) 

 

Slope and deflection equations on span are, 

 
2

1 2−= + +
L L

L R i i i i
i i

i i i i

M l V l
E I E I

ψ ψ     (3.23) 

 
2 3

1 1 2 3− −= + + +
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Let’s write down the right end variables as the combination of the left end 

variables. Firstly, put the equation (3.19) into (3.20). So, 

 

1 1− −= −L R R
i i i iM M l V     (3.25) 

 

Write the equations (3.19) and (3.25) into equation (3.23), 

 

( ) 2
1 1 1

1 2
− − −

−

−
= + +

R R R
i i i iL R i i

i i
i i i i

M l V l V l
E I E I

ψ ψ    (3.26) 

 

Rearrange above equation, 

 
2

1 1
1 2

− −
−= + −

R R
L R i i i i
i i

i i i i

M l V l
E I E I

ψ ψ     (3.27) 

 

This time, put the equations (3.19) and (3.25) into equation (3.24) 

 

( ) 2 3
1 1 1

1 1 2 3
− − −

− −

−
= + + +

R R R
i i i iL R R i i

i i i i
i i i i

M l V l V l
y y l

E I E I
ψ   (3.28) 

 

Equation finally becomes, 

 
2 3

1 1
1 1 2 6

− −
− −= + + −

R R
L R R i i i i
i i i i

i i i i

M l V l
y y l

E I E I
ψ    (3.29) 
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By using equations (3.19), (3.25), (3.27) and (3.29), field transfer matrix will be, 

 
2 3

2

1

1
2 6

0 1
2

0 0 1
0 0 0 1

−

⎡ ⎤
−⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

L R

i i

i

l lly yEI EI
l l

M MEI EI
lV V

ψ ψ
  (3.30) 

 

In closed form, field transfer matrix equation is, 

 

[ ] [ ] [ ] 1−
=L R

i i i
S F S     (3.31) 

 

where [S] is state vector and [F] is field transfer matrix. 

 

According to free body diagram shown in Figure 3.7b, equations of state vector 

variables are calculated as fallows. 

 

=R L
i iy y      (3.32) 

 

=R L
i iψ ψ      (3.33) 

 

=R L
i iM M      (3.34) 

 

From dynamic equilibrium 

 

= +
ii

R L
i i i iV V m y     (3.35) 

 

Since it is a free vibration problem, yi is assumed as harmonic, ( )−= i t
i iy A e ω φ . Thus 

acceleration can be expressed as 2= −
ii

iiy yω . After put the new form of 

acceleration into equation (3.35), we get, 
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2= −R L
i i i iV V m yω     (3.36) 

 

Point transfer matrix can be written as, 

 

2

1 0 0 0
0 1 0 0
0 0 1 0

0 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R L

i i i

y y

M M
V m V

ψ ψ

ω

   (3.37) 

 

In shortly, 

 

[ ] [ ] [ ]=R L

i i i
S P S     (3.38) 

 

where [P] is the point transfer matrix. After substituting the equation (3.31) into 

equation (3.38), we have, 

 

[ ] [ ] [ ] [ ] 1−
=R R

i i i i
S P F S     (3.39) 

 

If we rewrite the above equation in a simple form 

 

[ ] [ ] [ ] 1−
=R R

i i i
S T S     (3.40) 

 

[T] can be called as transfer matrix for segment. 

 

As a result, relations between segments can be found by using equations (3.31) and 

(3.38) basically. Multiplication of related field transfer matrixes and point transfer 

matrixes make up the overall transfer matrix. This overall matrix indicated by [U] 

can be seen in following example. 

 

[ ] [ ][ ]0=R R

n
S U S     (3.41) 
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Way of the finding natural frequencies is to apply boundary conditions in equation 

(3.41). Boundary conditions of both ends are implemented in state vectors. The ω 

value or values which are meet the all boundary conditions at the ends are 

calculated with basic matrix operations. 

 

3.2 Equivalent Point Mass and Rotary Inertia for Segments 

 

Generally, lumped masses are located at the middle of the each division in 

discretization process. Total value of this mass is calculated by summing the half 

value of adjacent spans. Wu and Chen [35] discretized mass and rotary inertia of 

the Timoshenko beam on which concentrated elements with eccentricity are exist 

by using this approach. Also, in the solution of solid prismatic bar free vibration 

by Sule [36], lumped masses are calculated from half values of near spans. Some 

methods used to determine normal modes and natural frequencies of torsional and 

flexural vibrations were collected in Minhinnick`s [37] study. He also indicated 

using concentrated mass at the gravity center of span in Myklestad`s method. To 

be able to solve eigenvalues of rotor-bearing systems faster, Al-Bahkali and 

ElMadany [38] developed a code based on transfer matrix. All inertial effects of 

span are turned into point mass properties at the end of the span. In case of 

interested beam or shaft is not uniform cross section, again point mass inertial 

properties constitute of half of next spans. Darlow et al. [39] calculated each half 

span property for conical shaft individually instead of writing the all span inertial 

property as a lumped mass. However, apart from general approach, new method to 

define point mass inertial effects was implemented by Nakano [40]. Total 

properties were separated into two parts and located at the each end of span. 

Magnitudes of these parts are proportional to distances which are from end to mass 

center of span. 

 

In this thesis, general approach which is proved at previous works above will be 

utilized. Inertial properties of span will be described by using neighbor spans and 

put the mass center of the span. Even though Darlow et al. and Nakano proposed 
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new techniques on calculating equivalent mass and equivalent rotary inertia, they 

give the same results with general approach for uniform beams or shafts. 

 

3.3 Mathematical Model of the VIM 

 

Thinking of drag force in the sea water, the hung VIM model will be more 

reasonable approach for modeling. Because of the fact that tension on VIM 

structure as a result of drag shows horizontal distance dependency. In short, 

tension magnitude at any section is directly proportional to length of the structure 

which remains behind that section. So, gravitational force has the same 

characteristic with drag force. Tension increases while being moved upward. 

However, since this model is the introduction step to figure VIM dynamic out, 

damping effect or other effects of sea water around structure during tow action are 

not taken into consideration in this study. 

 

Spacers are placed inside the hose with a nominal gap value. Since the outer 

surfaces of the spacers tightly contact with the inner surface of the hose, they 

divide the VIM into many identical and repeating sub-structures. Physical 

properties of them are almost the same. From this perspective, it was considered 

that each portion between spacers behaves as a span and each spacer behaves as a 

point mass. Thus, Myklestad`s Method seems a convenient way to understand the 

dynamics of the VIM structure. However, basic equation of this method in section 

3.1.3 does not describe the hung VIM properly. First of all, all formulations were 

derived from Euler beam theory in classical Myklestad`s Method. In other words, 

shear deformation was neglected and only slope due to rotation was taken into 

consideration. Moreover, rotary inertias are also neglected. But in the VIM 

structure, length to thickness ratio of span is very small to use Euler beam theory 

so; shear deformation will have an important influence on our system dynamic. 

 

Since the hung VIM is subjected to gravity, tension on spans and point masses 

exists, as in Figure 3.8. It is required that adding this variable tension to the system 

modeling. 
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Figure 3.8 Discretized model of the hung VIM 

 

 

 

In modeling, elastic properties such as elastic modulus and shear modulus would 

be in complex form resulting from hose of the VIM, i.e., span because the hose is 

g 
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made of viscoelastic material. Chen and Ding [41], in their study, investigated how 

properties of viscoelastic beam affect the steady state response of beam under 

transverse load. While writing the axial stress distribution, they utilized the Kelvin 

model to state the relation between stress and strain. If stress and strain is assumed 

as harmonic in this formula, elastic modulus will concluded as complex quantity. 

For lateral vibration again, West [42] also included viscoelastic properties of beam 

by using both complex elastic modulus and shear modulus. Viscoelastic materials 

shows phase difference between input and output response according to Ikegami 

[43]. He explained that complex elastic properties can be used to define 

viscoelastic effects. 

 

The VIM is filled with an incompressible fluid, izopar that is petroleum extended 

oil. Due to this fluid is filled under pressure, there is no void inside. By draining 

the excessive amount of liquid, inside pressure of VIM is balanced with 

atmospheric pressure. That’s why fluid would not move inside hose relatively. So, 

it is assumed that fluid inside the VIM does not create viscous damping effect for 

dynamic of system. In defining response of a fluid conveying pipe under vertical 

earthquake excitation, internal damping effects of fluid are neglected by Petkova 

and Kisliakov [44]. If the fluid velocity exists, some momentum terms and only 

mass are added to solution in terms of fluid side. Wiggert and Tijsseling [45] 

investigated on fluid-structure interaction in piping system. Three vibration types; 

axial, lateral and torsional, are considered uncoupled each other. Used model for 

piping system lateral vibration includes fluid as added mass. As a result, thinking 

the effect of izopar inside VIM as added mass becomes convenient approach. 

 

To sum up, extended Myklestad`s Method which would be modified according to 

Timoshenko beam theory concepts will be utilized for the hung VIM model. Shear 

deformation and rotary inertia with axial load would have been implemented into 

classical Myklestad`s Method at the same time. Viscoelastic characteristic of the 

VIM hose will be handled with complex elastic modulus. Lastly, other than added 

mass and rotary inertia effect, all effects of the internal fluid (izopar) would be 

neglected. 
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3.4 Modified Myklestad`s Method for the Hung VIM 

 

There are two new parameters effecting the equations for field transfer matrix. The 

first one is axial force due to gravity, other one is shear deformation. Related with 

first one, Wei et al. [46] add the gravitational force on each span as axial force 

while analyzing the natural frequencies of wind turbine tower. Spans which are at 

bottom are exposed to more axial force than upper spans. Due to spans are 

assumed massless, axial force through span is constant thus, coupled moment 

occurs.  

 

Shear deformation rotary inertia was included in Myklestad`s Method before. Wu 

and Chen [35] attained a satisfactory model for multi-step Timoshenko beam 

carrying eccentric lumped masses. This extended method gives substantially 

consistent results with conventional methods like FEM. Moreover, Myklestad`s 

Method strongly stands out in rotor dynamic field. As a special case, conical 

section beams was investigated with this method by Darlow et al. [39]. Shear 

deformation effect can be noticed inside the field matrix obviously. 

 

Free body diagrams of span and point mass including axial force can be seen in 

Figure 3.9. Axial force is assumed acting only x-axis so that shear force equation 

of modified model would be the same with Equation (3.19). 

 

 

 

 
 

Figure 3.9 Free body diagram with axial force of (a) span and (b) point mass 
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Tensions occurred on segment ends were due to weight of the spans. Axial force 

through each span is taken as constant in modified method because segment is 

assumed as massless. Tension on any segment may be equal to zero, only its 

weight or sum of many segment weights. For instance, this tension force is zero at 

the bottom end of the VIM and magnitude of this force is calculated at any 

segment by summing the weight of other segments which stands under interested 

point. Thus, variable tension force on the VIM is expressed with many constant 

tension forces on segments. The number of these discrete tension forces is as much 

as the number of segments. 

 

1− = =R L
i i iP P P      (3.42) 

 

=

= ∑
N

i k
k i

P m g      (3.43) 

 

where N denotes total number of masses. As mentioned before, equal axial force 

creates couple moment and forces at ends cancel each other. Moment equation on 

span becomes, 

 

1 1(y y )− −= − + −L R L L R
i i i i i i iM M l V P    (3.44) 

 

It must be noted while writing slope equation that only slope from bending 

(rotation) should be taken into consideration. Basic equation is, 

 

=
d M
dx EI
ψ

     (3.45) 

 

As shown in Figure 3.10, total bending moment at any section on beam results as, 

 

( ) ( )0= − − + −total lM M P y y V l x    (3.46) 
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Figure 3.10 Moment equation at any section 

 

 

 

Substitute the equation (3.46) into equation (3.45) and take integral, 

 

( ) ( )0
1
⎡ ⎤= − − + −⎣ ⎦ld M P y y V l x dx

EI
ψ     

 

( ) ( )0
1

⎡ ⎤= − − + −⎣ ⎦∫ ∫ ld M P y y V l x dx
EI

ψ     

 

( ) ( ) ( )0
1

2
2

− −
= + − +lVx l x P y yMxx C

EI EI EI
ψ      (3.47) 

 

By applying boundary conditions at x=0, constant C1 will be equal to slope of left 

end. Final slope equation depending on x becomes, 

 

( ) 1 00 0= = =C at xψ ψ     

 

( ) ( ) ( )0
0

2
2

− −
= + + − lVx l x Px y yMxx

EI EI EI
ψ ψ     (3.48) 

ψ0 

y0 
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For field matrix, slope equation of span seen in Figure 3.9a can be arranged 

according to above equation. 

 

( )2
1

1 2
−

−

−
= + + −

L RL L
i i i iL R i i i i

i i
i i i i i i

Pl y yM l V l
E I E I E I

ψ ψ      (3.49) 

 

Displacement relation between ends shows difference than classical equations 

because shear deformation increases the lateral deflection as well. With Euler 

beam theory this effect is neglected but Timoshenko beam theory is not. 

 

= +
dy
dx

ψ β      (3.50) 

 

=
V
AG

β
κ

     (3.51) 

 

where β is slope due to distortion and κ is shear coefficient. In order to extract 

displacement relation, put the equations (3.48) and (3.51) into (3.50) and take 

integral. 

 

( ) ( )0
0

2
2

⎡ ⎤⎡ ⎤− −
= + + − +⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

lVx l x Px y yMx Vdy dx
EI EI EI AG

ψ
κ

    

 

( ) ( )0
0

2
2

⎡ ⎤− −
= + + − +⎢ ⎥

⎣ ⎦
∫ ∫ lVx l x Px y yMx Vdy dx

EI EI EI AG
ψ

κ
    

 

( ) ( )2 22
0

0 2

3
(x)

2 6 2
− −

= + + − + +lVx l x Px y yMx Vxy x C
EI EI EI AG

ψ
κ

    (3.52) 
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Again using boundary condition at x=0, constant C2 and displacement equation 

are, 

 

( ) 2 00 0= = =y C y at x     

 

( ) ( )2 22
0

0 0

3
(x)

2 6 2
− −

= + + + + − lVx l x Px y yVx Mxy y x
AG EI EI EI

ψ
κ

    (3.53) 

 

Modified displacement equation for span with shear displacement and axial force 

can be found clearly from equation (3.53) 

 

( )22 3
1

1 1 2 3 2
−

− −

−
= + + + + −

L RL L L
i i i iL R R i i i i i i

i i i i
i i i i i i i i

Pl y yV l M l V l
y y l

A G E I E I E I
ψ

κ
 (3.54) 

 

Transfer matrix is generally composes between right state variables and left state 

variables. Thus, all variables right span end should be written in terms of left span 

end variables. Substitute the equations (3.19) and (3.44) into (3.49) and arrange, 

 

( ) ( )2
1 1 1

1

(y y )

2
− − −

−

− + − −
= + + −

R L L R L RL
i i i i i i i i i i iL R i i

i i
i i i i i i

M l V P l Pl y yV l
E I E I E I

ψ ψ   

 
2

1 1
1 2

− −
−= + −

R R
L R i i i i
i i

i i i i

M l V l
E I E I

ψ ψ     (3.55) 

 

Finding displacement equation is quite similar with slope equation. As a result of 

combination of equations (3.19), (3.44) and (3.54), 

 

( ) ( )2 23
1 1 11

1 1

(y y )

2 3 2
− − −−

− −

− + − −
= + + + + −

R L L R L RR L
i i i i i i i i i i iL R R i i i i
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3 2
1

1 1 16 2
−

− − −

⎛ ⎞
= + + − +⎜ ⎟

⎝ ⎠

R
L R R Ri i i i
i i i i i

i i i i i i

l l M l
y y l V

A G E I E I
ψ

κ
  (3.56) 

 

Now, put the equation (3.56) adversely into (3.44) 

 
2 3

1 1 1
1 1( )

2 6
− − −

− −= − + + + −
R R R

L R L R i i i i i i
i i i i i i i

i i i i i i

V l M l V l
M M l V P l

AG E I E I
ψ

κ
   

 
2 3

1 1 11
2 6− − −

⎛ ⎞ ⎛ ⎞
= + + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

L R R Ri i i i i i
i i i i i i i

i i i i i i

Pl Pl Pl
M M l V l P

E I A G E I
ψ

κ
   (3.57) 

 

All equations required for transfer matrix field of the VIM span is extracted. There 

has been no change in shear force equation. Moment equation includes axial force 

component intensely. Slope equation have not been affected neither shear 

deformation nor axial force. Lastly, shear deformation term is added into 

deformation equation as being outcome of Timoshenko beam assumption. 

 

Let’s write down the field transfer matrix of VIM model. 

 
2 3
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1

1
2 6

0 1
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0 1
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⎡ ⎤⎛ ⎞
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⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥
⎣ ⎦
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i
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EI AG EI

y y
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  (3.58) 

 

Compact form of above equation can be defined similarly with equation (3.31). 

Adding rotary inertia is another modification on basic method. From Figure 3.9b, 

moment equilibrium including rotary inertia is, 
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= +
ii

R L
ii i iM M J ψ        (3.59) 

 

For free vibration case, harmonic motion expression can be appropriately used for 

slope. Final state of above equation is arranged as, 

 
( )−= Ψ i t

i e ω δψ        

 

2= −
ii

i iψ ω ψ        

 
2= −R L

i i i iM M Jω ψ        (3.60) 

 

By using the equations from section 3.1.3, point transfer matrix can be written as 

follow. 

 

2
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ω
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  (3.61) 

 

Modifications can be easily seen from field transfer matrix and point transfer 

matrix of hanged VIM model. At the beginning, shear deformation effects and 

rotary inertia in point transfer matrix exist inherently as a result of Timoshenko 

beam theory. Additionally, gravitational force is considered only acting on x-axis, 

taken into account as coupled moment on span. 
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CHAPTER 4  

 

 

EXPERIMENTAL STUDIES 

 

 

In this chapter, experimental work on a VIM sample will be described. Modal 

impact testing technique has been applied during experiment. Firstly, general 

information about this technique will be given. Then, test setup will be explained. 

Finally, test results of the VIM sample will be given. 

 

4.1 Modal Impact Test 

 

Modal test is a common method of determining modal parameters which are 

resonance frequencies, mode shapes and damping values of the structure. In this 

method, test structure is excited with a force whose frequency content is known 

and response of the structure is measured. Then, transfer function which is called 

frequency response function (FRF) is obtained by using both force spectra and 

response spectra. This function actually defines response per unit force. According 

to type of response, FRF is represented in different ways. Well-known FRF types 

are accelerance, mobility and compliance respectively. The ratio of the 

acceleration response spectrum to force spectrum gives accelerance. Mobility 

represents the ratio of the velocity response spectrum to force spectrum. Lastly, the 

ratio of the displacement response spectrum to force spectrum defines receptance. 

Although these functions are apart from each other, they provide the same 

information about modal parameters. The FRF is generally expressed in curve 

fitted form and modal parameters can be easily extracted.  

 

During evaluation of the test results, three important assumptions related with test 

structure must be made. The first one is that the structure is assumed to show 
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linear behavior. The second is that parameters of the structure are assumed to not 

vary with time, namely, time-invariant. The last one is that the structure is 

assumed to obey Maxwell`s reciprocity. Without these assumptions, modal test 

and analysis will be meaningless.  

 

Today, modal test can be performed in many ways. Modal impact test is the 

popular one. The history of the impact test began at 1970`s with the developing 

FFT (Fast Fourier Transform) analyzers [47]. Advantages of the modal impact test 

are to be fast, convenient and inexpensive but this test method is not appropriate 

for nonlinear structures. Typical equipments of the modal impact test are an impact 

hammer, accelerometer, minimum 2 or 4 channel (depending on axes of 

accelerometer) FFT analyzer and post-processor center (Figure 4.1). Impact 

hammer is used to excite the structure in a broadband. Input force is measured by 

means of a load cell which is attached to tip of the hammer. To be able to supply 

sufficient energy to the structure, size of the hammer should be selected properly. 

Additionally, tip hardness of the hammer should be defined according to frequency 

of interest. Hard tips create short pulse and cover the wide frequency range 

whereas soft tips create long pulse and cover narrow frequency range. 

Accelerometer measures the response in terms of acceleration. FFT analyzer 

computes the FRFs and modal parameters are identified by post-processing center. 

 

Modal impact test steps can be given in following order. Firstly, the structure is 

exited by impact hammer and force data is sent to FFT analyzer. Then, response of 

the structure is measured by accelerometer and the output is sent to FFT analyzer 

as well as force data. After that, FRF is computed from these force and response 

data by FFT analyzer. Finally, post- processing center defines the modal 

parameters and makes them visual. 
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Figure 4.1 Typical setup for modal impact test 

 

 

 

It must be noted that only global parameters which are resonance frequencies and 

damping values can be acquired from a single FRF. This means that, one 

accelerometer and one impact hammer are sufficient for determination of the 

global properties. However, more than one FRF are needed to estimate the mode 

shapes accurately. One should be extremely careful while determining the number 

of FRFs not to miss out mode shapes. FRFs are expressed in matrix form and both 

response and input force in vector form. Thus, at least one column or one row of 

the FRF matrix must be known for mode shape identification. To be able to find 

out either all row elements or column elements of FRF matrix, there exist three 

different modal impact test implementation. These are single input multiple output 

(SIMO) modal impact test, multiple input single output (MISO) modal impact test 

and multiple input multiple output (MIMO) modal impact test. Following sections 

will mention about these implementations in brief. 
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4.1.1 Single Input Multiple Output (SIMO) Impact Test 

 

The input force is applied to a single point on the structure. Response data are 

collected from many locations. As a result, a full column of FRF matrix has been 

obtained. Demonstration of the SIMO impact test and resultant FRF matrix are 

given in Figure 4.2 and Figure 4.3 respectively. The remarkable point about 

multiple output impact tests is that they make data consistency optimization 

possible. 

 

 

 

 
 

Figure 4.2 Single input multiple output (SIMO) impact test 

 

 

 

 
 

Figure 4.3 FRF matrix of single input multiple output impact test 
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4.1.2 Multiple Input Single Output (MISO) Impact Test 

 

In this method, input force is applied to many different points and response is only 

measured from a single reference point. So, one row of the FRF matrix is defined. 

Because of FRF matrix is symmetric, a column can be extracted by utilizing 

defined row so that mode shapes can be easily determined. Multiple input single 

output impact test is shown in Figure 4.4 and related FRF matrix is given in Figure 

4.5. 

 

 

 

 
 

Figure 4.4 Multiple input single output (MISO) impact test 

 

 

 

 
 

Figure 4.5 FRF matrix of multiple input single output impact test 
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4.1.3 Multiple Input Multiple Output (MIMO) Impact Test 

 

Test is performed by exciting the system at more than one location and collecting 

the response data from again many points on the structure. At the end, more than 

one column or row of FRF matrix can be calculated as depending on number of 

output and input. Figure 4.6 and Figure 4.7 show the test technique and FRF 

matrix respectively. 

 

 

 

 
 

Figure 4.6 Multiple input multiple output (MIMO) impact test 

 

 

 

 
 

Figure 4.7 FRF matrix of multiple input multiple output impact test 
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In some cases, single row or column FRFs cannot be adequate to get all modal 

information about the structure. One of them is having repeated roots, i.e., 

identical modes will occur at different planes when the structure is symmetric. So, 

both excitation number and response number must be at least two. Other situation 

necessitating more column or row is having local modes. This means that, number 

available force inputs fall short to excite all modes. It should be noted that it is also 

possible to complete full FRF matrix with this test method. 

 

4.2 Experimental Setup 

 

Experimental studies were performed on a VIM to verify modified Myklestad`s 

Method. A SIMO modal impact tests were performed for the VIM. As mentioned 

before, VIMs work in the water and a variable drag force on them occur during 

towing action. That’s why; the method in Chapter 3 was expanded by inserting 

variable tension force. It was thought that the hung VIM would be a proper 

implementation to simulate this drag force. Sample VIM was hanged to the 

overhead winch frame with a slim rope (Figure 4.8). Thus, free-free boundary 

conditions were almost satisfied. 

 

 

 

 
 

Figure 4.8 Application of hanged VIM 

Slim rope 

VIM
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First of all, the VIM sample was prepared to check the reliability of developed 

method. The sample was classical type VIM. It had a length of 2.79m and spacers 

were placed with a distance of 22cm.  

 

VIM hoses are thermoplastic polyurethane base materials. Because of their nature, 

they show viscoelastic behavior. This means that effects of the structural damping 

cannot be ignored. Unlike metals, modulus of elasticity value would be in complex 

form designating storage and loss modulus together. Moreover, elastic properties 

highly depend on temperature and frequency. Any small changes in these 

parameters may cause big differences in storage and loss modulus. The common 

way to specify complex modulus is to perform a dynamic mechanical analysis 

(DMA). In this technique, oscillating load is applied to viscoelastic material 

sample and response is measured. The correlation between oscillating stress and 

out of phase strain gives complex modulus of the material. Temperature and 

frequency sweep is also applied during analysis. Elastic characteristics of the hoses 

were not known before modal tests thus a DMA was required for them. In the 

scope of this thesis, hose samples are analyzed at a constant frequency with 

variable temperature and a constant temperature with variable frequency. These all 

results are given in Appendix A. Oscillating tension load was applied to hose 

specimen during DMA hence tensile modulus was acquired. Proper value for 

complex tensile modulus was selected according to temperature of the test VIM 

and foreseen middle value of the interested frequency range. The VIM temperature 

was about 23°C during test and 2 Hz frequency was taken into consideration as 

mid-value. However, only tensile modulus was not adequate to complete 

theoretical calculations. Complex shear modulus also had to be known because 

shear effects was included into the modified method. Thus, complex shear 

modulus was calculated by using basic relation between tensile modulus and shear 

modulus which is G=E/2(1+ν). Since the hose material was always in the rubbery 

region at stated temperature above, Poisson’s value was assumed as 0.499. 

Required mechanical properties of the hose are listed in Table 4.1. 
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Table 4.1 Mechanical properties of the hose 

 

E* 33.4+4.43i MPa 
ρ 1120 kg/m3

ν 0.499 
 

 

 

Stainless steel termination parts were attached to each end of the VIMs. 

Geometrical and inertial properties of them were obtained by means of CAD 

software. Mechanical properties of the stainless steel given in Table 4.2 were 

obtained from manufacturer. 

 

Spacers were manufactured from polyacetal material. They were cylindrical in 

shape and outer surface of them always contacted with the inner face of the hose. 

Table 4.3 presents mechanical properties of the spacers. Likewise termination 

parts, properties of the spacers were provided by the row material manufacturer. 

 

 

 

Table 4.2 Mechanical properties of the termination parts 

 

E 193 GPa 
ρ 8000 kg/m3

ν 0.275 
 

 

 

Table 4.3 Mechanical properties of the spacers 

 

E 2.86 GPa 
ρ 1420 kg/m3

ν 0.35 
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Last component was the inner fluid which was filled until no air gap left inside the 

hose. Since the aim of using inner fluid was to provide neutral buoyancy, it had to 

have lower density than water. So, oil-based fluid whose density is given in 

following Table 4.4 was preferred. This value was taken from catalogue of 

supplier. 

 

 

 

Table 4.4 Density of the inner fluid 

 

ρ 784 kg/m3

 

 

 

 
 

Figure 4.9 (a) Data acquisition system, (b) triaxial accelerometer, (c) impact 

hammer, (d) post-processing software 

(a) (b) 

(c) (d) 
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In the modal impact tests, PCB 356A16 model triaxial accelerometers were 

utilized to measure response. Sensitivities of these accelerometers are 

10.2mV/(m/s2) with a tolerance of ±10% and frequency range of them is between 

0.5Hz and 5000Hz. Structures were excited by impact hammer with PCB 086C04 

model load cell at its tip. Sensitivities of the load cell is 1.1mV/N with a tolerance 

of ±15%. Both input force and output acceleration information were sent to totally 

60 channel LMS SCADAS data acquisition system. Cut-off frequency of the A/C 

coupling high pass filter is 0.5Hz. Collected data were sampled at the frequency of 

512Hz and FRFs were generated by this acquisition system. Lastly, all FRFs were 

evaluated in the post processor software which is LMS Test Lab and desired modal 

parameters were calculated. All these test equipments are demonstrated in Figure 

4.9, respectively. 

 

Ten accelerometers were attached to the VIM, especially onto the termination 

parts and spacers. Numbers of the accelerometers began from one at the bottom 

end and increased at upward direction. It was endeavored that all accelerometers 

were align. Afterwards, impact was applied to a single point which located at the 

opposite side of the first accelerometer on the bottom termination part. Impact 

action was repeated in fifteen times to increase the accuracy of the collected data. 

In case of double hit or overload, the hit was rejected automatically and extra hit 

was performed instead. Although triaxial accelerometers were used, only 

accelerations in one direction were measured during test. After that, data 

acquisition system applied data windows to the acquired impulse and response 

signals after sampling. Force window was use to eliminate noise on impulse signal 

whereas exponential window was for response signal to minimize the leakage at 

frequency domain. FRFs were generated with curve-fitting methods transferred to 

LMS Test Lab software. At the end, resonance frequencies with damping ratios 

were defined and mode shapes were visualized in this software. Simple drawings 

of the VIM, VIM setup and whole test setup are represented in Figure 4.10 and 

Figure 4.11 below, respectively. 
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(a) 

 

 
 

 

 

(b) 

 

 

 
 

(c) 

 

Figure 4.10 (a) LMS Test Lab VIM model, (b) simple drawing of the VIM and (c) 

modal test setup of the VIM 
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Figure 4.11 Modal impact test of the hanged VIM 

 

 

 

4.3 Results of the VIM Test 

 

Developed theoretical model works to find out only bending natural frequencies of 

the structures. Accordingly, test results are evaluated in this perspective. Whether 

the resonance frequency is bending or not is designated by checking the relevant 

mode shape. The first three resonance frequencies out of test are given in the 

following Table 4.5.  

 

 

 

Table 4.5 Resonance frequencies of the VIM sample 

 

 ω1 ω2 ω3 
Resonance 

Frequency (Hz) 2.736 4.216 7.802 

PC 

FFT Analyzer Accelerometers 

Impact Hammer

VIM
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Mode shapes are displayed at Figure 4.12 where the first three bending mode of 

the VIM are in sequence. It is obvious from mode shapes that the hung VIM 

carries the characteristic of a beam with a free-free boundary condition. Locations 

of the accelerometers are designated as point. 

 

 

 

 
 

Figure 4.12 The first three bending mode of VIM sample 
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On the other hand, examination of the FRF and coherence graphics is required to 

evaluate results in a correct manner. 

 

 

 

 
(a) 

 

 
(b) 

 

Figure 4.13 (a) FRF and (b) Coherence graphics according to the first 

accelerometer 
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(a) 

 

 
(b) 

 

Figure 4.14 (a) FRF and (b) Coherence graphics according to the fifth 

accelerometer 
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(a) 

 

 
(b) 

 

Figure 4.15 (a) FRF and (b) Coherence graphics according to the tenth 

accelerometer 

 

 

 



70 

Due to the single input and ten outputs, there exist ten FRFs. However, it is 

adequate to represent three of them which belong to the first, fifth and tenth 

accelerometers. Figure 4.13a, Figure 4.14a and Figure 4.15a show the graphics of 

these three FRFs. The FRF graphics are quite clear and peaks at resonance are 

apparent. Interested resonance frequencies are stated between red dashed lines. 

Certain resonance frequencies are picked up after some stabilization algorithm on 

FRFs by LMS Test Lab software. Apart from bending modes, suspension modes 

occurred at low frequencies for hung systems. These modes most probably 

appeared at around 0.5 Hz or lower. Hence, they could not be identified from FRFs 

because of the high-pass filter cut-off frequency and the minimum measurement 

capacity of the accelerometers. 

 

Only FRFs are not sufficient to draw conclusion. Coherences must be checked to 

see quality of the measurements. Simply, coherence gives an idea about quality of 

input-output relation. For instance, existence of noise or another unwanted 

excitation sources can be realized. Coherence values vary between 0 and 1. For 

modal test, coherence under the value of 0.7 is not acceptable. In this VIM test, 

coherence values which are indicated in Figure 4.13b, Figure 4.14b and Figure 

4.15b are considerably satisfactory at interested frequency band. In common with 

FRFs, coherences between the input and three outputs will be shown above but 

general trend is the same for all outputs. 

 

Experimental studies and results were told in this chapter. Comparison between 

theoretical results and test results will be handled in the next chapter. Moreover, 

differences will be discussed and interpreted on the bases of ANSYS model. 
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CHAPTER 5  

 

 

THEORETICAL RESULTS AND MODEL VALIDATION 

 

 

In this chapter, firstly, validation of the mathematical model in Chapter 3 will be 

examined. Reliability of the model will be shown by applying various boundary 

conditions and determining optimum number of segment. Results will be 

compared with FEM solution by means of ANSYS software. After that, natural 

frequencies of the hung VIM will be calculated by using the modified model. 

 

5.1 Verification of Modified Myklestad`s Method 

 

For the verification of the modified Myklestad`s Method mentioned in Chapter 3, a 

steel tube having length of 2.8m, outer diameter of 0.09 m and inner diameter of 

0.08 m (Figure 5.1) will be handled. Seven different boundary conditions will be 

applied this tube and the first four natural frequencies in bending will be obtained. 

Seven boundary conditions are indicated at Figure 5.1 as follows. 

 

 

 

 
 

Figure 5.1 A steel tube sample 
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Figure 5.2. (a) Free – Free Condition, (b) Clamped – Free Condition, (c) Clamped 

– Clamped Condition, (d) Clamped – Simply Supported Condition, (e) Simply 

Supported – Simply Supported Condition, (f) Clamped – Free Under Constant 

Tension Condition, (g) Clamped – Free Under Gravity 

 

 

 

The reason why these geometric dimensions for sample are selected is to liken the 

sample to the tested VIM model. Mechanical properties of steel are provided in 

Table 5.1. 

 

 

 

Table 5.1 Mechanical properties of steel 

 

Density 7850 kg/m3 

Modulus of Elasticity 200 GPa 

Poisson`s Ratio 0.3 
 

 

 

Approximate shear coefficient for hollow cylinders can be calculated by using 

below equation [45] 

 

2(1 )
(4 3 )

+
=

+
νκ
ν

     (5.1) 

 

(a) (b) (c) 

(d) (e) (f) (g) 
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Additionally, during verification stage, various segment numbers will be tried and 

minimum segment number for adequate accuracy will be defined by controlling 

the difference. 

 

5.1.1 Free – Free Boundary Conditions 

 

At free – free boundary condition state, both shear force and moment are zero at 

the each end. So, the relation between the contrary ends can be written in matrix 

form as; 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( )0 0

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u u uy y
u u u u
u u u u
u u u u

ω ω ω ω
ω ω ω ωψ ψ
ω ω ω ω
ω ω ω ω

  (5.2) 

 

The ω values which satisfy all boundary conditions above are calculated from 

determinant of 2x2 matrix. 

 

31 32

41 42 0

( ) ( )0
( ) ( )0

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u y
u u

ω ω
ω ω ψ

   (5.3) 

 

31 32

41 42

( ) ( )
det 0

( ) ( )
⎡ ⎤
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⎣ ⎦

u u
u u

ω ω
ω ω

    (5.4) 

 

It must be noted that, number of the available natural frequencies is directly 

proportional to number of segments.  

 

The first four natural frequencies in bending were calculated for free – free 

boundary conditions by changing in number of segments and results were 

compared with FEM results. Computations were performed by aid of MATLAB 

software. Comparisons of natural frequencies and differences are presented in 

Table 5.2, Table 5.3, Table 5.4 and Table 5.5. 
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Table 5.2 The first four natural frequencies for free - free boundary conditions. 

Number of Segments=10 

 

Natural 

Frequency 

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 69.639 68.525 1.626 

ω2 191.318 186.44 2.616 

ω3 370.452 358.68 3.282 

ω4 598.272 578.82 3.361 
 

 

 

Table 5.3 The first four natural frequencies for free - free boundary conditions. 

Number of Segments=100 

 

Natural 

Frequency 

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 68.592 68.525 0.098 

ω2 186.731 186.44 0.156 

ω3 359.522 358.68 0.235 

ω4 580.717 578.82 0.328 
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Table 5.4 The first four natural frequencies for free - free boundary conditions. 

Number of Segments=500 

 

Natural 

Frequency

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 68.582 68.525 0.083 
ω2 186.688 186.44 0.133 
ω3 359.416 358.68 0.205 
ω4 580.529 578.82 0.295 

 

 

 

Table 5.5 The first four natural frequencies for free - free boundary conditions. 

Number of Segments=1000 

 

Natural 

Frequency

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 68.582 68.525 0.083 
ω2 186.686 186.44 0.132 
ω3 359.413 358.68 0.204 
ω4 580.523 578.82 0.294 

 

 

 

In the light of above calculations, there are quite small differences between natural 

frequencies when the numbers of segments are taken as 500 and 1000. Thus, it can 

be stated that natural frequency values converge at about 500 segments. This 

number of segment is going to be taken into consideration for all other boundary 

conditions and real VIM structures. 
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5.1.2 Clamped – Free Boundary Conditions 

 

Boundary conditions at the clamped end can be described as both displacement 

and slope are zero. As mentioned above, moment and shear force are zero for free 

end boundary conditions. The following matrix relation connects two opposite 

ends  

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 0

( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( )0
( ) ( ) ( ) ( )0

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u u uy
u u u u
u u u u M
u u u u V

ω ω ω ω
ω ω ω ωψ
ω ω ω ω
ω ω ω ω

  (5.5) 

 

Natural frequencies which satisfy above boundary conditions can be found out by 

extracting 2x2 matrix and taking determinant of it. 

 

33 34

43 44 0

( ) ( )0
( ) ( )0

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u M
u u V

ω ω
ω ω

   (5.6) 

 

33 34

43 44

( ) ( )
det 0

( ) ( )
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⎣ ⎦

u u
u u

ω ω
ω ω

    (5.7) 

 

Results about to steel tube which is fixed at left and free at right end are given in 

the following Table 5.6. 
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Table 5.6 The first four natural frequencies for clamped - free boundary 

conditions. Number of Segments=500 

 

Natural 

Frequency

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 10.807 10.821 0.129 

ω2 67.098 67.154 0.083 

ω3 185.149 185.18 0.017 

ω4 355.459 355.2 0.073 
 

 

 

5.1.3. Clamped – Clamped Boundary Conditions 
 

It is known from previous sections that displacement and slope are both zero for 

clamped ends. Overall transfer matrix along tube and state vectors at each end are 

given by the equation below. 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 0

( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u u u
u u u u
u u u uM M
u u u uV V

ω ω ω ω
ω ω ω ω
ω ω ω ω
ω ω ω ω

  (5.8) 

 

The part of the overall transfer matrix in order to calculate natural frequencies is; 

 

13 14

23 24 0

( ) ( )0
( ) ( )0

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u M
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    (5.9) 
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Determinant of above 2x2 matrix gives desired results. 

 

13 14

23 24

u ( ) u ( )
det 0

u ( ) u ( )
ω ω⎡ ⎤

=⎢ ⎥ω ω⎣ ⎦
    (5.10) 

 

Natural frequencies for clamped - clamped boundary conditions found by using 

Modified Myklestad`s Method and FEM are compared at Table 5.7. 

 

 

 

Table 5.7 The first four natural frequencies for clamped - clamped boundary 

conditions. Number of Segments=500 

 

Natural 

Frequency 

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 68.021 67.926 0.14 

ω2 184.182 183.77 0.224 

ω3 352.947 351.81 0.323 

ω4 567.771 565.32 0.434 
 

 

 

5.1.4 Clamped – Simply Supported Boundary Conditions 
 

This time, unlike clamped and free boundary conditions, simply supported 

boundary condition becomes involved in solution period. Displacement and 

moment are always zero for simply supported boundary condition. So, state vector 

owing simply supported end and over all transfer matrix can be expressed as; 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 0

( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( )0
( ) ( ) ( ) ( )

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u u u
u u u u
u u u u M
u u u uV V

ω ω ω ω
ω ω ω ωψ
ω ω ω ω
ω ω ω ω

  (5.11) 

 

The first and third rows element intersecting with the third and fourth columns 

constitute solution matrix. Again taking determinant, natural frequencies will be 

obtained. 

 

13 14

33 34 0

( ) ( )0
( ) ( )0

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u M
u u V

ω ω
ω ω

   (5.12) 

 

13 14

33 34

( ) ( )
det 0

( ) ( )
⎡ ⎤

=⎢ ⎥
⎣ ⎦

u u
u u

ω ω
ω ω

    (5.13) 

 

From the Table 5.8, it can be easily seen that differences between two methods are 

quite small. 

 

 

 

Table 5.8 The first four natural frequencies for clamped – simply supported 

boundary conditions. Number of Segments=500 

 

Natural 

Frequency

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 47.167 47.117 0.106 

ω2 150.76 150.51 0.166 

ω3 308.481 307.7 0.254 

ω4 514.815 513 0.354 
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5.1.5 Simply Supported – Simply Supported Boundary Conditions 

 

By applying the simply supported boundary condition to the left end, equation 

(5.11) can be rearranged for simply supported – simply supported end conditions. 

Rearranged matrix equation one end to other form is given below. 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 0

( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )0 0
( ) ( ) ( ) ( )

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

R R

n n

u u u u
u u u u
u u u u
u u u uV V

ω ω ω ω
ω ω ω ωψ ψ
ω ω ω ω
ω ω ω ω

  (5.14) 

 

Sub-matrix require to figure out natural frequencies can be extracted from the first 

and the third rows. 

 

12 14

32 34 0
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( ) ( )0
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u u
u u V

ω ω ψ
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12 14

32 34

( ) ( )
det 0

( ) ( )
⎡ ⎤
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u u
u u

ω ω
ω ω

    (5.16) 

 

Calculated natural frequencies and FEM results are available in Table 5.9. 
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Table 5.9 The first four natural frequencies for simply supported – simply 

supported boundary conditions. Number of Segments=500 

 

Natural 

Frequency 

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 30.343 30.318 0.082 

ω2 120.177 120.03 0.122 

ω3 266.121 265.61 0.192 

ω4 463.133 461.83 0.282 
 

 

 

5.1.6 Clamped – Free Boundary Conditions Under Constant Tension 
 

Modified Myklestad`s Method in Chapter 3 takes account of tension force in 

calculations. In order to verify above boundary conditions, tension force has been 

taken as zero value from section 5.1.1 to 5.1.5. However, to demonstrate 

adaptability of the method for all conditions, theoretical and FEM natural 

frequencies of steel tube under tension will be examined in this section. Three 

tension loads which are 10000N, 30000N and 50000N will be applied and results 

will be given in Table 5.10, Table 5.11 and Table 5.12, respectively. 

 

The steel tube is modeled as lying horizontally. Left hand side is clamped and right 

hand side free but pulled with a constant force (Figure 5.2f). Since boundary 

conditions are the same with section 5.1.2 condition, the same state vectors and 

overall transfer matrix can be utilized fully for this condition. Related results are as 

follows; 
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Table 5.10 The first four natural frequencies for clamped - free boundary 

conditions under 10000N tension. Number of Segments=500 

 

Natural 

Frequency 

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 11.441 11.457 0.14 

ω2 67.821 67.885 0.094 

ω3 185.758 185.81 0.028 

ω4 356.023 355.8 0.063 
 
 

 

Table 5.11 The first four natural frequencies for clamped - free boundary 

conditions under 30000N tension. Number of Segments=500 

 

Natural 

Frequency 

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 12.587 12.606 0.151 

ω2 69.241 69.321 0.115 

ω3 186.969 187.06 0.049 

ω4 357.147 356.99 0.044 
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Table 5.12 The first four natural frequencies for clamped - free boundary 

conditions under 50000N tension. Number of Segments=500 

 

Natural 

Frequency

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 13.606 13.629 0.169 

ω2 70.628 70.723 0.134 

ω3 188.172 188.3 0.068 

ω4 358.269 358.18 0.025 
 

 

 

As it is seen, tension increases the stiffness of the structure. Naturally, any 

improvement on stiffness enhances the natural frequency. Such in previous 

boundary condition states, differences between results are quite satisfactory for 

tension condition as well. 

 

5.1.7 Clamped – Free Boundary Conditions Under the Gravitational Force 

 

In section 5.1.6, constant force on steel tube was studied. In other words, the 

tension was always a constant value at any point on tube. However, this tension 

force cannot be constant for all times. Hanged and sufficiently long structures can 

be indicated as examples of varying tension force through structures owing to 

gravitation. 

 

Here, steel tube is going to be hanged at its upper end and below end will be free. 

This time, gravitation will not be neglected as before, so that tension on tube 

begins from zero value at below end and increases gradually towards upper end. 

Magnitude of the tension force at any point on tube will be equal to weight of the 

portion between selected point and below end. Thus, while maximum tension 

occurs at upper and minimum tension appears on below end having zero value. 
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As shown in Figure 5.2g, clamped boundary condition for upper end and free 

boundary condition for below end are valid. Hence, again state vectors and overall 

transfer matrix in section 5.1.2 are appropriate for hanged steel tube. 

 

During calculation, tension force for each segment is varying. The tension 

difference between two consecutive segments is equal to weight of the segment. 

Results from Modified Myklestad`s Method and FEM are compared at following 

Table 5.13. 

 

 

 

Table 5.13 The first four natural frequencies for clamped - free boundary 

conditions under gravitational force. Number of Segments=500 

 

Natural 

Frequency 

Modified 

Myklestad`s 

Method (Hz)

FEM 

(Hz) 

Difference 

(%) 

ω1 10.813 10.827 0.129 

ω2 67.103 67.16 0.085 

ω3 185.154 185.19 0.019 

ω4 355.465 355.21 0.072 
 

 

 

Differences are again considerably small when two methodologies are compared. 

As a consequences of above seven different boundary condition states, the 

Modified Myklestad`s Method has been verified for natural frequencies of 

transverse vibration. After above verification procedures from section 5.1.1, the 

method can be confidently utilized to determine bending natural frequencies of 

VIM structures. 
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5.2 Natural Frequencies of the Hung VIM 

 

As stated in Chapter 4, the VIM was hanged to the overhead winch frame in the 

laboratory with a slim rope from its upper end whereas the below end was free. 

The VIM lies vertically and tension forces along structures vary due to gravitation. 

So, conditions of the VIM resemble to verification problem in section 5.1.7 in 

terms of tension force distribution but boundary conditions are distinct. The upper 

ends were not exactly free but these ends can be assumed as free because of the 

slim rope. On the basis of this assumption, state vectors and overall transfer matrix 

in section 5.1.1 are appropriate for the VIMs by inserting the variable tension 

forces in calculations. 

 

Stainless steel termination parts, thermoplastic hose, POM spacers and filling oil 

are components of the VIM. Related geometrical and mechanical properties of all 

components were given in Chapter 4. In the VIM, spacers were placed with 22cm 

intervals. Distances from termination part to spacer and from spacer to spacer are 

almost the same.  

 

In calculations, only inertial properties of the internal fluid will be taken into 

consideration. Also, although the internal fluid fills every void through the hose, 

fluid inside the center holes of spacers and termination parts will be neglected. 

 

Steel termination parts and POM spacers can be assumed as pure elastic materials. 

Hose, however, is a viscoelastic material so that it shows both elastic and viscous 

characteristics naturally. That`s why, dynamic modulus describes the elastic 

properties of the hose more accurate than modulus of elasticity. In fact, using 

dynamic modulus means that structural damping will be taken into account. Roots 

from the equation of motion of damped structures will also become complex 

values as follows. 

 
2 2 (1 )= +n iλ ω η     (5.17) 
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where λ2 is eigenvalue, ωn is natural frequency and η is loss factor. At resonance 

frequency, equation (5.18) expresses the relation between loss factor and damping 

ratio. 

 

2
=
ηζ      (5.18) 

 

The VIM is 2.79 m in length. VIM will be divided into 558 segments thus the 

length of each segment will be 0.005m. It can be obviously seen from verification 

problems throughout section 5.1 that 500 or higher number of segments gives 

considerably good results. Segments on the VIM structure are demonstrated in 

Figure 5.3 below. 

 

 

 

 
 

 

 

 

Figure 5.3.Number of segments for each element in the first VIM 

 

 

 

Calculation procedure will be the same as previous verification problems. Firstly, 

state vectors and overall transfer matrix will be generated. According to free – free 

boundary condition state, 2x2 matrix will be extracted to be able to find out natural 

frequencies of the structure. However, roots from determinant of this 2by 2 matrix 

would have complex value due to dynamic modulus of the hose. Square of the 

roots which was stated in equation (5.17) would give all information about natural 

Number of segments for 

termination parts = 14 

Number of segments 

for hose intervals = 44

Number of segments  

for spacers = 10 
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frequencies and damping ratios. As a result of calculations, the first three bending 

natural frequencies belonging to the first VIM structure are represented in Table 

5.14. 

 

 

 

Table 5.14 The first three bending natural frequencies of the first VIM 

 

Theoretical Results 

 λn λn
2=ωn

2+iηnωn
2 ωn (Hz) ηn 

1 1.744 + 0.0454i 3.0409 + 0.158i 1.744 0.052 

2 3.774 + 0.1703i 14.216 + 1.286i 3.77 0.09 

3 6.903 + 0.3772i 47.508 + 5.208i 6.892 0.11 
 

 

 

Table 5.15 Comparison of the experimental and theoretical results 

 

 Theoretical 
Results (Hz)

Experimental 
Results (Hz)

Error 
 % 

ω1 1.744 2.736 57 

ω2 3.77 4.216 12 

ω3 6.892 7.802 13 
 

 

 

When the theoretical results are compared with the experimental results (Table 

5.15), one can consider that modified mathematical model is not acceptable 

solution. The errors are substantially high. However, it was observed that some 

conditions or parameters which were excluded in the analysis affect the results 

significantly. Next section will explain these conditions and parameters in order 

and show the validation of the mathematical model for the VIM. 
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5.3 Assessment of the Theory and the Test 

 

There must be reasonable explanations about differences between theoretical and 

experimental results, so there are. When the test conditions and test structure were 

examined in detail, sources of the differences were revealed.  

 

First of all, free-free boundary conditions were taken into consideration while 

calculating the bending natural frequencies of the VIM theoretically. However, 

exact provision of these boundary conditions during test is not possible. The 

structure must be attached to anywhere with some supporting elements. Common 

method to simulate free-free boundary conditions during tests is to hang the test 

structure with considerably long and flexible ropes. One should be careful while 

defining the rope because properties of the rope may affect the dynamic behavior 

of the system.  

 

As stated in the Chapter 4, the VIM was hung to the overhead winch frame with a 

rope. Due to the dimensions of the winch and the VIM, rope with 650mm length 

was used at maximum. Diameter and elastic modulus of the rope is 4mm and 120 

GPa, respectively. In order to understand the effects of the used rope, two different 

analyses were run by means of a finite element software ANSYS. Firstly, the VIM 

was modeled as suspended with a very long spring to ideally simulate free-free 

conditions and apply the gravity (Figure 5.4a). After that, another model was built 

up with a spring which is 650mm in length in order to simulate the test conditions 

(Figure 5.4b). Moreover, longitudinal stiffness of this spring was determined by 

using properties of the rope. From the formula of EA/L, average longitudinal 

stiffness was calculated as 2320N/mm. Results of these two analyses in terms of 

the first three bending natural frequencies are given in Table 5.16. 
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Figure 5.4 (a) VIM model with a long spring, (b) VIM model with a spring with 

650mm long and 2320N/mm longitudinal stiffness 

 

 

 

Table 5.16 The first three bending natural frequencies of VIM models 

 

 VIM with long 
spring 

VIM with 650mm 
long spring 

Difference 
% 

ω1 1.669 Hz 1.93 Hz 15.64 

ω2 3.594 Hz 3.682 Hz 2.45 

ω3 6.633 Hz 6.665 Hz 0.48 
 

 

(a) (b) 



90 

Since the VIM is symmetric, natural frequencies occur in pairs and mode shapes 

are identical but occur at perpendicular planes. Thus, one of the double frequencies 

for each mode shape was stated in Table 5.16. It can be easily noticed from above 

table that boundary with a short rope is quite influential on the first bending 

natural frequency in which 15.64% difference exists. However, the second and the 

third bending natural frequencies are not affected from this boundary condition too 

much. While the difference in the second frequency is about 2.5%, this ratio 

becomes 0.48% for the third frequency.  

 

Another interpretation about the effect of the test rope can be made over the mode 

shape. As a result of the ANSYS solution for 650mm long spring, upper tip of the 

VIM which is attached to the rope deflects more than the below tip. This deflection 

can be seen in the right hand side of the Figure 5.5. The same effect was observed 

in test, as well. Point 10 of the first mode shape in Figure 4.12 deflected more than 

Point 1. Hence, these analyses explain the rope effect clearly.  

 

 

 

 
 

Figure 5.5 The first bending mode of VIM with 650mm long spring 
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Throughout the theoretical calculations, the VIM was assumed as being straight. 

However, the test specimen which is shown in Figure 5.6 was in curved form 

because of stocking on tambour. Being curved was not covered by the 

mathematical model which was presented in the Chapter 3. So, two different 

analyses were conducted with ANSYS to determine the effects of being curved on 

natural frequencies. Initially, a straight VIM was modeled in ANSYS. After 

calculating the natural frequencies of this model, a curved beam was generated and 

analyzed (Figure 5.7). Curvature dimension of the ANSYS model was almost 

similar to the test VIM. During analyses, gravity was not applied because some 

errors were encountered when the curved model was suspended with spring. Thus, 

only inertial properties were taken into consideration. At the end of the analyses 

some interesting results occurred. It was expected that natural frequencies of the 

curved model would not be double because the structure was not symmetric 

anymore. Nevertheless, it was observed that only the first bending modes on 

perpendicular planes were distinct and other modes were again double. Analysis 

results are given in Table 5.17.  

 

 

 

 
 

Figure 5.6 Curvature of the VIM and accelerometers locations 

Accelerometers
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Figure 5.7 (a) Straight and (b) curved VIM models 

 

 

 

Table 5.17 Results of straight and curved VIM models 

 

  Straight 
VIM Model 

Curved 
VIM Model 

Difference 
% 

ω1 
x-z plane 1.027 Hz 1.022 Hz 0.49 

y-z plane 1.028 Hz 1.487 Hz 44.65 

ω2 
x-z plane 3.007 Hz 2.998 Hz 0.3 

y-z plane 3.01 Hz 2.989 Hz 0.7 

ω3 
x-z plane 6.07 Hz 6.06 Hz 0.16 

y-z plane 6.08 Hz 6.07 Hz 0.16 
 

(b) (a) 
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Bending frequencies for each plane are specified in above table to explain the 

effects of the curvature clearly. It can be seen from Figure 5.7b that curvature on 

the VIM exists on the x-z plane. So, natural frequencies belonging to modes on 

this plane are denoted with the x-z plane in the table. Modes on the y-z plane 

which are perpendicular to curvature of the VIM are indicated with the name of 

the y-z plane. It is obvious that curvature contributed to the first mode only. It 

increased the first natural frequency on the y-z plane by a magnitude of 44.65%. 

On the other hand, the curved VIM and the straight beam showed the same 

behavior for the second and the third modes. When the test setup was considered 

again, it was easily seen that accelerometers were located on plane which is 

perpendicular to the curvature plane (Figure 5.6). Therefore, curvature is the major 

source of the 57% difference in the first natural frequency between theory and 

experiment. If the effects of the 650mm long rope and curvature which were not 

covered by theory are considered together, explanation of the deviation in the first 

natural frequency is quite clear. 

 

The differences between the theory and the test results in terms of the second and 

the third natural frequencies cannot be explained with above two factors. It is 

obvious that their effects on these natural frequency values are infinitesimal. 

Geometric properties were checked again and an important point was realized. All 

distances between spacers in the test were assumed as constant 22cm and 

theoretical calculation was performed over this assumption. However, providing 

constant spacer distance during assembly of the VIM is not possible in reality. 

Assembly steps which are used to form the VIM will not be given here in detail 

because of the confidentiality. Only thing which should be known is that spacers 

are connected to each other and the distances between spacers are sustained by 

elastic cords. Due to the nature of the elastic cords, there is always a tolerance on 

spacer distances. These cords are installed and the distances are adjusted before 

putting the spacers into the hose. They are fastened to spacers with a pre-tension. 

That`s why, the tolerance on spacer distance may not exceed the value of ± 3cm. 

In order to understand the effect of the spacer distances, four new calculations 

were performed by using the modified method in Chapter 3. The first calculation 
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was conducted with 19cm spacer distance and then the calculation was repeated 

with 20.5cm, 23.5cm and 25cm spacer distances, respectively. Results of these two 

calculations are given in Table 5.18. 

 

 

 

Table 5.18 VIMs with different spacer distances 

 

 
19cm 

Spacer 
Distance 

20.5cm 
Spacer 

Distance 

22cm 
Spacer 

Distance 
(Nominal 

Value) 

23.5cm 
Spacer 

Distance 

25cm 
Spacer 

Distance 

ω1 1.993 Hz 1.857 Hz 1.744 Hz 1.621 Hz 1.564 Hz 

ω2 4.543 Hz 4.119 Hz 3.77 Hz 3.465 Hz 3.229 Hz 

ω3 8.491 Hz 7.615 Hz 6.892 Hz 6.296 Hz 5.765 Hz 
 

 

 

Although the spacer distance affects all bending natural frequencies, rates of 

increase in the frequency values are a little bit more for the second and the third 

than the first. Natural frequencies increase with decreasing spacer distance or vice 

versa. If the spacer distances are assumed as 20.5cm, the difference between the 

second and the third natural frequencies of the theory and experiment will be 

considerably low. Therefore, incoherencies in the second and the third frequencies 

can be explained with the uncertainties in the spacer distances. 

 

In the light of the above analyses and calculations, questions about why the error 

ratios between theory and real structure are high have been answered with logical 

reasons. Rope boundary condition and the curved form of the VIM highly 

increased the first natural frequency whereas they did not influence the second and 

the third. On the other hand, dimensional instabilities of the distances between 

spacers could be shown as the main reason of the differences in the both second 

and third bending natural frequencies.  
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CHAPTER 6  

 

 

SUMMARY AND CONCLUSIONS 

 

 

In this thesis, a new theoretical method was tried to find out bending natural 

frequencies of the vibration isolation module (VIM) of the towed array. 

Viscoelastic material behavior was studied due to outer hose of the VIM. By 

performing a modal test on actual VIM structure, validity of the method was 

investigated. Additionally, effects of the boundary conditions and geometrical 

properties on bending natural frequencies were studied. 

 

Towed array is generally utilized for explorations on seabed and detection of 

enemy threats such as torpedo or submarine. It is towed by a surface ship or a 

submarine and works in the water. Towed array can be several hundreds of meters 

and composes of mechanical and electro-mechanical components. The most 

important part of the towed array is the acoustic (hydrophone) section. Many 

hydrophones are set linearly within this section. Working principle of the array is 

to collect the reverberated acoustical signals from objects by means of 

hydrophones. Due to inherent properties of the hydrophones, any noise around 

them during operation diminishes the performance of the array. One of the noise 

sources is transverse vibrations coming over tow cable and drogue rope. So that, a 

component called vibration isolation module (VIM) is placed to both forward and 

aft ends of the acoustic section. Using indiscriminate design for the VIM may 

make the performance of the array worse instead of enhancing. Therefore, 

prediction of the dynamic behavior of the VIM before manufacture is critical to be 

able to define appropriate VIM structure for working frequency range. With this 

study, it was primarily aimed to introduce an easy and quick solution to find out 

bending natural frequencies of the VIM to exploit as a design tool. 
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Firstly, all noise mechanisms that affect the performance of the hydrophones were 

investigated in short. They are classified into four main groups which are ambient, 

radiated, flow and vibration noise. These classifications are carried out according 

to characteristics of the noise sources. Flow noise and vibration noise out of the 

four main groups have importance. Flow noise is dominant at high tow speeds 

within the high frequency band whereas vibration noise suppresses all kinds of 

noise at low tow speeds within the low frequency band. By using some statistical 

methods over collected data from hydrophones, flow noise can be considerably 

filtered out. However, this method is not applicable for vibration noise because 

vibration noise data can be disparate at the end of each operation condition. When 

the vibration noise is examined in detailed, tow cable and drogue rope vibrations 

are admittedly main sources of the vibration noise. Thus, only way to eliminate or 

minimize the vibration induced noise is to cut direct connections of the both tow 

cable and drogue rope with the hydrophone section. For this reason, VIMs are 

highly required for towed arrays. 

 

Wide range of VIM design has been handled. Although there exists some 

distinctive VIM design, the general concept is usually the same. Viscoelastic outer 

hose, termination parts at each end, filling material, strength members and inner 

rigid elements are the components of the VIM. Differences between VIMs in most 

cases are based on either fill material or connection of inner rigid elements. For 

instance, some designers used solid materials, such as foam, to fill the void inside 

the hose while the some utilized oil-based fluids or gels instead. The widely used 

VIMs are composed of viscoelastic outer hose, metal termination parts, strength 

members, cylindrical solid spacers and oil-based inner fluid. These classical type 

VIMs are preferred in the towed array systems because of their low costs and 

easier installations. 

 

A classical type of VIM was investigated in this study. In order to find out bending 

natural frequencies of the VIM, the well-known Myklestad`s Method was 

exploited. This method is one of the transfer matrix method used in vibration 

analysis. Original form of the method did not meet all requirements of the VIM so 
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that some modifications were made on the formulations. First of all, Myklestad`s 

Method bases on `Euler Beam Theory` and so the structure is always assumed as 

being slender. However, length to diameter ratio of the VIMs cannot be 

sufficiently high in some cases. It means that the structure obeys `Timoshenko 

Beam Theory`. Hence, shear deformation effects and rotational inertia must be 

taken into consideration during calculations. All equations were rearranged with 

regard to `Timoshenko Beam Theory`, again. Another interference to the method 

was to implement a variable axial force into the equations. This is essential 

because the VIM is subjected to drag force while towing in the water. With the 

above modifications, new transfer matrices were obtained to calculate bending 

natural frequencies of the VIM.  

 

Whether the modified method works properly was verified before applying it on 

the real VIM structure. The first four bending natural frequencies of a steel tube 

were separately calculated for seven different boundary conditions. Besides, FEM 

solutions of each boundary condition were performed by using ANSYS software 

and results from modified method were compared with these FEM results. 

Differences between the results of two methods were extremely small therefore; 

the reliability of the modified method in calculating bending natural frequencies 

was proven smoothly. The only point to be noted about the modified method is 

that convergence analysis on the number of division, i.e. number of segments, 

should be always performed to minimize the error in results. By 

increasing/decreasing the number of segments, natural frequencies should be 

compared with previous calculation. Results are not going to be change anymore 

after a certain segment number. Either this number or higher must be used in 

calculations. 

 

In order to observe performance of the modified Myklestad`s Method on real 

structures, a modal impact test was performed and test results were compared with 

modified Myklestad`s Method results. A classical VIM was prepared and hung to 

the overhead winch frame with a slim rope vertically. By this way, both free-free 

boundary conditions were satisfied and variable tension occurs on the test 
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specimen due to gravity. Peaks on FRF, coherence values and mode shapes 

obtained by impact test were checked for the validity of the test. Mode shapes 

showed the same characteristics with mode shapes of free-free beam as expected. 

 

Before theoretical calculations, required mechanical properties of the VIM 

components must be known. Properties of the steel termination parts, Delrin® 

(polyacetal) solid spacers and inner fluid are easily attainable. However, the 

situation is a little bit complicated for the viscoelastic hose material. Viscoelastic 

materials do not have a constant and real elastic modulus as other materials. This 

mechanical property exists in complex form and it intensely depends on 

temperature and frequency. So, another test which is dynamic mechanical analysis 

(DMA) was performed and complex elastic modulus (dynamic modulus) of the 

hose was defined for desired temperatures and frequencies. 

 

After all essential data were acquired, modified Myklestad`s Method was run for 

the test specimen. Boundary conditions were taken as free – free and only inertial 

properties of the inner fluid were taken into consideration. When the theoretical 

results and the test results for the first three bending natural frequencies were 

compared, the errors between results were surprisingly high. Whereas the errors 

between the second and the third natural frequencies were around the order of 

10%, the first natural frequencies were considerably distinct from each other 

where the error is about 60%.  

 

Above situation was abnormal thus; causes of the errors were investigated. Some 

FEM analyses were concluded with ANSYS software and three important 

outcomes were attained. Firstly, effect of the slim rope was studied. In order to 

simulate free – free boundary conditions, one must suspend the test specimen with 

a slim rope as long as possible. However, this cannot be possible in some cases. 

The rope which was used in the VIM test is 650mm in length. So, two kind of rope 

were modeled in ANSYS as longitudinal springs and modal analyses were done. 

The first rope model was very long and the second one had the exactly same length 

with the test rope. Axial stiffness’s of the both springs were assigned as the axial 
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stiffness of the test rope. As a result of the analyses, it was observed that short rope 

increases the first natural frequency about magnitude of 16%. Its effects to the 

second and the third frequencies were about 2.5% and 0.4% respectively. 

Secondly, effect of the geometrical shape of the whole VIM structure was studied. 

Because of the storage condition of the hose, there was a noticeable curvature on 

the VIM. In order to simplify the analyses and see only the curvature effects on 

natural frequencies, a straight and a curved tube were modeled in ANSYS. After 

the modal analyses, the answer of why the first natural frequencies of the test and 

the modified Myklestad`s method are so different came up. It was realized that 

structure becomes stiffer for only the first natural frequency in perpendicular plane 

to curvature plane. The difference between the first frequencies of the straight 

beam and curved beam was about 44%. However, other natural frequencies were 

affected by curvature in negligible amount. During the VIM test, accelerometers 

were placed on the stiffer plane side. Therefore, the hanging rope and the curvature 

analyses clearly explain the differences in the first natural frequency when the 

theoretical and the test results were compared. The last investigation was focused 

on the spacer distance in the hose. Before the assembly of the VIM, spacer 

distance was defined as 22cm and all solid spacers were aligned according to this 

value. However, solid spacer can slip in a tolerance of ±3cm during the assembly. 

The first theoretical calculations were handled according to 22cm spacer distance 

therefore; new calculations were repeated with smaller and larger spacer distances. 

It was observed that 1.5 cm deviation in spacer distances causes big error between 

theory and the real structure. In case of the 20.5cm spacer distance, error of the 

modified method in both the second and the third natural frequencies becomes 

only 2.5%. 

 

In conclusion, modified Myklestad`s method gives pretty good results in bending 

natural frequencies of the VIM structure if the boundary and geometric conditions 

are well-defined. Additionally, effects of the suspension rope and the curvature on 

the structure were investigated properly. It was obtained that short rope and 

curvature increase only the first natural frequency considerably. Also, spacer 
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distances are important parameters which affect the modal parameters of the 

classical VIM, directly.  

 

This form of the modified Myklestad`s method is not adequate to identified the 

natural frequencies of the VIM in special cases above. However, this method can 

be utilized to parametric studies to perceive how the natural frequencies will 

change. In the future, suspension rope can be added into the method as a boundary 

condition. Additionally, stiffness effect of the curvature in one direction can be 

modeled with virtual torsional springs. In order to simulate the sea conditions, both 

real lift and drag forces can be also added to equations. After the above extra 

modifications, test should be performed on the VIM either as hung or being towed 

in water. 
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APPENDIX 

 

 

DYNAMIC MODULUS GRAPHS 

 

 

 
 

Figure A1 Storage (E1) and Loss modulus (E2) of the hose vs. temperature at 

constant frequency of 1Hz 
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Figure A2 Storage (E1) and Loss modulus (E2) of the hose vs. frequency at 

constant temperature of 23 °C 
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