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Computer Engineering Department, METU

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: GÖKÇE YILDIRIM KALKAN

Signature :

iv



ABSTRACT

EFFICIENT RENDERING OF COMPLEX SCENES ON HETEROGENEOUS
PARALLEL ARCHITECTURES

Kalkan, Gökçe Yıldırım

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Veysi İşler

February 2014, 67 pages

In computer graphics, generating high-quality images at high frame rates for render-
ing complex scenes is a challenging task. A well-known approach to tackling this
important task is to utilize parallel processing through distributing rendering and sim-
ulation tasks to different processing units.

In this thesis, several methods of distributed rendering architectures are investigated,
and the bottlenecks in distributed rendering are analyzed. Based on this analysis,
guidelines for distributed rendering in a network of computers are proposed.

Moreover, in the thesis, an efficient load balancing strategy is proposed for distribut-
ing the rendering of individual frames to different processing units in a network. In
this distributed rendering heterogeneous system, there are computers equipped with
multiple Graphical Processing Units (GPUs) with different rendering performances
all in the same network with a server, which collects rendering performances of the
GPUs in the different Image Generators (IGs) based on an effective load balancing.
By means of the novel load balancing strategy, the thesis shows that such a system
can increase the rendering performance of slow computers with the help of the fast
ones.

Lastly, this model is extended to develop an adaptive hybrid model where (i) parts of
a frame or a scene can be distributed and (ii) GPU-GPU and GPU-CPU distributions
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can be considered. This model can adjust itself to the changing loads of the GPUs
and determine an efficient load balancing strategy for distributed rendering.

Keywords: Parallel Rendering, Scalable Visualization, Multiview Rendering, Hetero-
geneous Architectures
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ÖZ

KARMAŞIK SAHNELERİN HETEROJEN PARALEL MİMARİLERDE ETKİN
ÇİZİMİ

Kalkan, Gökçe Yıldırım

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Veysi İşler

Şubat 2014, 67 sayfa

Bilgisayar grafiğinde karmaşık sahnelerin çizilmesi sırasında yüksek kaliteye sahip
görüntülerin yüksek tazeleme hızında oluşturulması zor bir görevdir. Bu zor problem
için mevcut en yaygın yaklaşımlardan bir tanesi, grafik çizim ve benzetim görevlerini
farklı işlem ünitelerine dağıtarak paralel işlemektir.

Bu tez çalışmasında, öncelikli olarak, dağıtık çizim yöntemleri incelenmiştir, ve da-
ğıtık çizimdeki darboğazlar incelenmiştir. Bu neticede, bir bilgisayar ağında dağıtık
çizim yapmak için yönergeler önerilmiştir.

Ayrıca, bu tez çalışmasında, bir ağ içerisindeki farklı işlem ünitelerine birer birer çer-
çeveleri çizdirerek dağıtık çizim yapan, verimli bir yük dağılımı yöntemi önermiştir.
Bu heterojen dağıtık çizim yönteminde, çizim yetenekleri ve performansları birbirin-
den farklı, birden çok Grafik İşlem Ünitesi (GİÜ) içeren bilgisayarlardan oluşan bir
ağ bulunmaktadır ve bu ağda, GİÜ’lerin çizim performansını toplayan ve bunları he-
saba katarak verimli bir yük dağıtımı yapan bir sunucu yer almaktadır. Özgün yük
dağıtımı yöntemi sayesinde, tez çalışmasında, bu türden bir yöntemin, ağdaki hızlı
bilgisayarların yardımı ile, çizimi yavaş bilgisayarların çizim performansının artırıla-
bileceği gözterilmiştir.

Son olarak, bu yöntem genişletilmiş, melez ve adaptif bir model haline getirilmiştir,
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ki bu modelde, (i) bir sahnenin parçası veya tüm çerçeveler, ve (ii) GİÜ - işlemci
dağıtımları yapılabilmektedir. Bu model, GİÜ’lerin değişen yüklerine kendisini uyar-
layabilir ve dağıtık çizim için en uygun yük dağılımını belirleyebilir.

Anahtar Kelimeler: Paralel çizim, Ölçeklenebilir görselleştirme, Çok görüntülü çizim,
Heterojen mimariler
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CHAPTER 1

INTRODUCTION

With the desire to visualize huge data and to simulate complex events, or systems

that are composed of either natural or man-made entities, rendering and simulation

techniques and technologies have advanced rapidly in the last decade. Due to such

advances, nowadays, computer games or simulations can be run on mediocre end-user

personal computers with fidelity as high as expensive computer generated movies.

One important challenge is rendering high-resolution large-data composed of com-

plex objects at high frame rates and in real-time. Despite the advances in graphics

hardware, since the memory capacity on graphics hardware is limited so is the graph-

ics computational power, visualization of huge data is very difficult or impossible on a

single graphics system. For this purpose, many graphics systems that may or may not

have the same processing power should be used in fulfilling the simulation of huge

data. At this point, scalability of graphics systems and as such, parallel rendering

plays an important role in order to be able to improve the performance of computer

graphics software. By parallel rendering, what is meant is simply a concept to exploit

multiple processing units in order to obtain sufficiently high performance [7]. In this

thesis, heterogeneous systems [47] which include different types of processing units,

CPUs and GPUs are used for parallel rendering. Heterogeneity is also obtained by

means of load imbalances on computers during visualization of the scene which has

different loads at different timestamps and different Field-Of-Views (FOVs).
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Figure 1.1: Different distributed rendering types.

1.1 Distributed Rendering

When the power of a processing unit is not sufficient, distribution becomes a ne-

cessity. As outlined in Figure 1.1, for rendering, there are two main approaches:

inter-frame and intra-frame based distribution. In inter-frame rendering, individual

frames are generated by the processing units and the generated frames are combined

to a single display unit. On the other hand, in intra-frame rendering, parts of a frame

or a scene are distributed.

According to what is distributed, intra-frame rendering can be of three types: sort-

first, sort-middle and sort-last classes [49]. There are various APIs which utilize one

of these approaches. Some of these are WireGL [20], Chromium [21], Multi OpenGL

Multipipe SDK (MPK) [34] and Equalizer [10]. Among these APIs, Equalizer pro-

vides a much more scalable, flexible and compatible interface with less implementa-

tion overhead [17].
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1.2 The Goal of the Thesis

The goal of this thesis is to optimize the resource management capabilities of a dis-

tributed framework. This includes the research issues of finding advanced load bal-

ancing strategies for different task sharing strategies for distributed rendering of both

individual frames as well as parts of a single frame. For this purposed, the thesis

investigates the possibilities of distributed rendering in a network of computers with

single GPUs (computer-computer sharing) and in a network of computers with mul-

tiple GPUs (computer-computer sharing and GPU-GPU sharing).

1.3 Contributions of the Thesis

The following are the contributions of the thesis:

• Analysis of the bottlenecks in distributed rendering: The thesis investigates

the several options for distributed rendering of huge data. Rendering load can

be shared either between GPUs in a computer or among a set of computers

connected by a network. The thesis, with proof of concept implementations,

analyzes the bottlenecks in each case and proposes guidelines for developing

distributed rendering. This part of the thesis is submitted as an article to a

journal [24].

• Distributed rendering in a network of computers: The thesis proposes a

novel load balancing strategy for distributing the workload among a network

of computers. The load balancing is formalized as a matching problem and

solved efficiently using a simple mechanism. In this part, individual frames are

shared among the computers. The thesis shows that fast computers can help

slow computers increase their rendering performances.

• A hybrid framework for distributed rendering: The thesis extends the pre-

vious contribution by also taking into account the sharing between GPUs. The

sharing between GPUs is for the parts of frames whereas individual frames are

helped by other computers. This contribution is in preparation for a journal

submission [23], and submitted to an international conference [25].
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1.4 Outline of the Thesis

In Chapter 2, the literature about parallel architectures and APIs is surveyed. The

general approaches to parallel rendering are described in detailed and their advantages

and disadvantages are discussed.

In Chapter 3, the bottlenecks in parallel rendering architectures are described and

analyzed with a few implementations. Moreover, based on these analyses, guidelines

for implementing such systems are provided.

Then, in Chapter 4, a model for distributed rendering of a scene is proposed. In

the system, a network of computers shares the rendering by a novel load balancing

scheme performed by a server. The load balancing method is a novelty of this thesis.

In Chapter 5, a hybrid architecture for distributed rendering is proposed. In this archi-

tecture, there exist a network of computers with multiple GPUs, and load balancing

makes use of GPU-sharing as well as sharing between computers.

Finally, in Chapter 6, the thesis is concluded with a summary of the contributions,

a discussion and a limitation of the proposed architectures as well as an outline of

future research directions.
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CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

This chapter first gives a background on Computer Graphics and then reviews the

existing approaches on distributed rendering architectures. As outlined in Figure 1.1,

for rendering, there are two main approaches: inter-frame and intra-frame based dis-

tribution. In inter-frame rendering, individual frames are generated by the processing

units and the generated frames are combined to a single display unit. On the other

hand, in intra-frame rendering, parts of a frame or a scene are distributed.

2.1 Computer Graphics

Led by the computer gaming and movie industries, Computer Graphics is one of

the biggest fields in Computer Science. It dates back to 1950s when Douglas T.

Ross displayed a set of black-white pixels or lines, and later a cartoon character on

CRT displays in the Whirlwind computer [6]. In this sense, Douglas T. Ross can be

considered as the father of Computer Graphics, though the name is coined only later

by William Fetter in Boeing [12].

One of the earliest landmarks in Computer Graphics was the first video game, Space-

war!, developed by Steve Russell [38] in 1961 - see Figure 2.2 for a snapshot. The

other one was the first computer animated movie by Bell Telephone Laboratory for

visualizing the altitude of a satellite rotating around the Earth [33] in 1963 - see Fig-

ure 2.1. Not later than these achievements, major companies became interested in

Computer Graphics, and games were used for testing and benchmarking hardware.
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Figure 2.1: A snapshot from the first computer-animated movie on the altitude of a

satellite rotating around the Earth [33].

Figure 2.2: A snapshot from the first computer game - Spacewar! [38].

6



Figure 2.3: A snapshot from image generators [15].

With the advances in computer hardware especially in the 90s, Computer Graphics

advanced rapidly, leading to the first full-length 3D computer-animated movie, Toy

Story, and the first full-3D computer game, Quake. Since then, high fidelity, highly

realistic games and computer-animated movies have been developed, and they have

been leading the Computer Graphics techniques and hardware every since.

As well as animations and computer games, the need of training of some difficult

and expensive systems such as aircrafts resulted in the generation of flight simulators

including visual systems. One of the first visual systems as image generators to be

used in flight simulators were developed by Evans & Sutherland company which

is founded by Dr. David Evans and Dr. Ivan Sutherland in the campus of Utah

University [44]. Currently, CAE [15] and Rockwell Collins [16] image generators

are well known image generators which are used in flight simulators.

2.2 Visualization of Big Data

One of the most important applications of Computer Graphics is visualization. Even

the first Computer Graphics application was the visualization of positions of a pen on

a display.

With the ability to generate and store more data, visualization of huge data became

an important need. The requirements for the visualization of large area database of

the whole earth in flight simulators also supported the need for visualization of huge

data. The visual systems in such simulators also consist of multi channels thus re-
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quiring multiview rendering of huge data. It is claimed that humans have produced

five exabytes, i.e., five billion gigabytes, of information until 2003 since the earlier

records of any available information [45]. Strikingly, the same amount is nowadays

created every a few days [45]. To make sense of even subsets of such data, visualiza-

tion became a crucial tool for humanity [19, 31]. However, since processing power on

a single processing unit (whether CPU or GPU) is not sufficient for huge data, possi-

bilities of distributing the graphic processing load among several processing units.

In simulations and games, loops mainly include input, processing and rendering parts.

In input part, input from the user (trainee in training simulators or player in games)

is gathered. Processing part includes sub-parts such as Artifial Intelligence, Physics

Simulation and Networking. In modern systems, processing part can also be done on

GPUs as well as CPUs. GPUs can be seen as multicore multiprocessors on which

artificial intelligence or physics computations can be processed as General-Purpose

Computation on GPUs (GPGPU) [22, 50]. Rendering part is the visualization stage of

the scene to the user. This part is mainly done on GPUs. In this thesis, the rendering

part is done on GPUs and other processing part such as physics computations are

done on CPUs. GPUs help other GPUs in rendering the whole scene or part of the

scene such as particles.

2.3 Inter-frame Rendering

In inter-frame rendering, distribution is done for complete frames of the scene. Dif-

ferent from inter-frame techniques, the overheads in composition of different parts of

the frame or scene are prevented by means of inter-frame rendering [18].

2.4 Intra-frame Rendering

Intra-frame rendering is good for load balancing in the rendering of a scene on multi-

ple GPUs. However, it requires a composition overhead varying according to sorting

type. According to what is distributed, intra-frame rendering can be of three types:

sort-first, sort-last and sort-middle [37].
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2.4.1 Sort-first type rendering

In the sort-first approach, a camera view is divided into several subviews, or partitions,

and each subview is assign to a processing unit [32] - see also Figure 1.1. The outputs

of the processing units are easily tiled together by a server for a final display device

[2, 49]. Because of its geometry transformation phase, it is expensive for distributed

rendering. However, its network bandwidth usage is less than the others.

This approach is dependent on the size of the input dataset while it is irrespective of

image resolution. Therefore, it is best to use this approach for applications whose

final frame rate decreases with the increasing image resolution.

2.4.2 Sort-last type rendering

In the sort-last approach, the scene is partitioned into sets of objects or entities and

these sets are shared among the processing units [29, 32] - see also Figure 1.1. The

outputs of the processing units are only snapshots of only a part of the scene, and they

are combined by a server possibly with a post-processing stage, where the depths of

the individual objects are taken into account for a coherent snapshot of the scene [49].

The approach needs more bandwidth than the sort-first rendering approach, however,

it has a better control of load balance in terms of object-space primitives.

This approach is dependent on image resolution while it while it is irrespective of

input dataset. Therefore, this approach is well suited for applications whose final

frame rate decreases with the increasing 3D input database.

2.4.3 Sort-middle type rendering

In the sort-middle approach, a hybrid of sort-last and sort-first is performed, where

parts of the view as well as the objects in sub-views are distributed [32, 39].
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Figure 2.4: Major components of WireGL (adapted from [20]).

2.5 Parallel Rendering Software

In the literature, there are some parallel rendering systems designed for parallel ar-

chitectures as summarized in the following subsections. However, most of these ar-

chitectures, when used in distributed systems, are usually designed to work at high

performance on very fast network infrastructures such as Myrinet and Infiniband.

2.5.1 WireGL

WireGL is a software compatible with OpenGL for distributed rendering in a network

of workstations [20]. For distributed rendering, it uses the sort-first approach. Major

components of WireGL are shown in Figure 2.4.

2.5.2 Chromium

Chromium is another software for distributed rendering in a network of workstations

[21]. Unlike WireGL, Chromium allows both sort-first and sort-last type rendering

architectures to be developed. Chromium also supports the use of stream processing

units. However, Chromium’s performance can be effected negatively because of the

orientation of its stream [37]. A simple Chromium configuration can be seen in Figure

2.5.
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Figure 2.6: OpenGL Multipipe SDK Application Structure (adapted from [34]).

2.5.3 OpenGL Multipipe SDK (MPK)

OpenGL Multipipe SDK is an API designed to create complex immersive environ-

ments. Run-time configurability and run-time scalability are the main features of

MPK [34]. Furthermore, it has integrated support for scalability graphics hardware,

stereo and immersive environments. Figure 2.6 shows MPK’s application structure.

2.5.4 Equalizer

Equalizer [9] is an OpenGL-based software which is flexible and capable. It can be

used for large-scale distributed rendering in a network of computers with multiple

CPUs and multiple GPUs as well as single CPU and single GPU desktop computers

[10, 17]. Figure 2.7 shows the execution flow of an Equalizer application.
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2.6 Bottlenecks of the Rendering Pipeline

In a distributed rendering system, there are many workstations with different CPUs

and GPUs connected together in a network. The overall performance of such a dis-

tributed system is severely affected by many factors, as shown in Figure 2.8. Below

are the most important factors that a distributed rendering system will face and that

will be investigated in Chapter 3:

• Cost of data transfer in a computer or between computers

• Discrepancies due to heterogeneous processing units, some of which are slower

than others

• Redundant computations in the different rendering units

• Redundant storage since same scene data is replicated on each processing unit

for faster access

2.7 Architecture of Graphical Processing Unit

Our aim in this thesis is to fully exploit the computing power available in current

heterogeneous architectures and thus increase the rendering capacity and efficiency

of the overall system performance.

To fully exploit the computing power available in especially modern GPUs, we have

analyzed the architecture of the GPU in detail. The general rasterization pipeline can

be seen in Figure 2.9 [36, 46]. In Geometry Processing Stage, geometry is trans-

formed, more geometry is generated and per-vertex attributes are computed. In the

rasterization stage, a primitive (e.g., a triangle) is set up and all samples inside the

primitive are found. In Pixel Processing Stage, vertex attributes are interpolated and

pixel color is computed.

Before the recent developments in GPU architecture, the pipeline had the following

stages (Figure 2.10): Input Assembler, Vertex Shader, Rasterization, Pixel Shader and

Output Merger.
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Figure 2.10: Old pipeline, before recent advanced in GPU architecture.

With the very new developments, the capabilities of shaders have increased and new

stages and capabilities have been introduced (Figure 2.11). One of the new stages is

the Geometry Shader which is especially used in generation of shadow volumes and

cubemaps. Hull Shader, Tesselator and Domain Shader are newer stages which go

between Vertex and Geometry Shaders.

A modern GPU itself can be seen as heterogeneous chip multi-processor especially

highly tuned for graphics [36] as exemplified in Figure 2.12.

The following are the key ideas that should be considered in such a model [36]:

• Think of scheduling the pipeline as mapping tasks onto cores

• Preallocate resources before launching a task: Preallocation helps ensure for-

ward progress and prevent deadlock

• Graphics is irregular: Dynamically generating, aggregating and redistributing

tasks at irregular amplification points regains coherence and load balance

• Order matters: Carefully structure task redistribution to maintain ordering
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2.8 Load Balancing Strategies

As examined in the previous sections, different methods exist for distributed parallel

rendering for both network of computers and multi processors in a local computer.

The heterogeneous systems which render from different views of the scene on dis-

tributed computers including different number and types of processors end up with

load imbalances. These load imbalances may occur because of the heterogeneous

state of the rendered scene with multi-view aspects and/or physical differences on

computer (and its processors’) powers and/or network communication loads.

Load balancing strategies make distributed parallel systems differ from each other in

terms of performance of interactive real-time applications. Load balancing algorithms

use different algorithms for partitioning of load on the processors. Some are static,

some are dynamic. Static load balancing algorithms usually partition processors or

load at the beginning of application, and are not affected by the load imbalances while

the application is running - see Figure 2.13(a) for an illustration. For this reason static

load balancing algorithms cannot respond to load imbalances at runtime.

On the other hand, dynamic load balancing algorithms make partition load on proces-

sors at runtime, for this reason they can easily respond to load imbalances at runtime

[1, 3, 5, 11, 13, 14, 26, 27, 28, 35, 40, 42, 48] - see Figure 2.13(b) for an illustration.

In load balancing algorithms, the design issues should consider factors such as net-

work bandwidth, computation loads and communication loads. Computation loads

vary based on the computations for pre-processing and post-processing in sorting

mechanisms to processing of network packets.

If we look at some of the methods in more detail; in Frederico et al., [13], a load

balancing algorithm based on rendering times of previous frames is proposed for sort-

first rendering systems including CPU-GPU-network components. In another study,

Cederman and Tsigas [5] compare four dynamic load balancing methods which de-

pend on the differences in processing strategy of tasks on multi-core GPUs. It is

shown that lock-free methods have higher performance than blocking methods. In

the work of Marchesin et al. [28], Level-Of-Detail (LOD) volume rendering is dy-

namically distributed on sort-last systems. Erol et al. [11] use a cross-segment load
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(a)

(b)

Figure 2.13: An illustration of static (a) and dynamic (b) load balancing (Source:

[11])

balancing strategy which is built on Equalizer. The method assigns available graphic

resources which are shared to output displays. In the work by Ahrens and Painter [1],

decreases the time of the compositing step in sort-last methods by using a compres-

sion algorithm based on a run-length encoding. Binotto et al. [3] propose a dynamic

load-balancing method working on CPU and GPU and applies their method on solvers

for Systems of Linear Equations in a Computational Fluid Dynamics application. A

load balancing approach for in-situ visualization is proposed by Binotto et al. [3].

The work applies the approach for multiple GPUs in one computer.

Comparisons of some of these methods with the contributions of the thesis are shown

in Table 2.1. As seen in the table, the hybrid method proposed in this thesis differs

from the others in the way it uses a dynamic load balancing strategy using a hybrid

approach of inter-frame and intra-frame rendering. This method also works both on a

network of computers and multi-GPU systems.
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Table 2.1: Comparison of the state of the art and this thesis.

Study Distributed Rendering Networked? Multi-GPU in One Node?
Type

[13] intra-frame (sort-first) yes no
[5] unknown no yes
[28] intra-frame (sort-last) yes no
[11] intra-frame (sort-first) yes yes
[3] unknown no yes
[18] inter-frame no yes
This thesis inter-frame and yes yes

intra-frame (sort-last)
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CHAPTER 3

BOTTLENECKS OF DISTRIBUTED RENDERING

In distributed simulation systems, hardware speed and latency in communication are

very crucial for the overall performance and design. In this chapter, these bottlenecks

are described and analyzed in detail. Moreover, based on these analyses, guidelines

for implementing such systems are provided. For this purpose, the chapter investi-

gates two methods: The first method distributes load among a network of comput-

ers while the second method distributes load on the same computer among different

GPUs.

3.1 Rendering with a network of computers (Network Sharing Method - NSM)

In this method, load is distributed among distributed computers. The distributed envi-

ronment consists of the Central Control Computer and a number of Image Generators

(IGs). An IG is an image generator computer which renders the scene. The Central

Control Computer is the master computer which listens to the states of IG’s in terms

of refresh rate and decides to give commands IGs to help other IGs rendering their

frames if their refresh rate is under a threshold. The flow is processed as shown in

Figure 3.1. The Central Control Computer commands IG1 to render the frame for

IG2. When IG1 completes IG2’s frame, it sends the frame over fast network to IG2.

IG2 receives the frame and renders. The decision for distributing load among IG’s is

given by central computing computer according to the current refresh rates of IGs.
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Figure 3.1: Flowchart of the scenario of Network Sharing Method.

3.2 Rendering locally among GPUs (GPU Sharing Method - GSM)

In this method, the load is distributed on the same computer among different Graph-

ical Processing Units (GPUs). The IG application is responsible for rendering the

scene. In this method, the flow is processed as shown in Figure 3.2. The IG ap-

plication commands helper GPU (GPU2) to render the frame which includes post-

processing effects such as particles for the main GPU (GPU1). GPU1 is the GPU

which is responsible for rendering the all scene. When GPU2 completes the frame, it

shares the frame with GPU1 via memory of the IG. In the meantime, GPU1 renders

the main scene and blends the frame which includes post-processing effects such as

particles rendered by GPU2. In this method, the decision for load balancing is made

locally in the IG by the IG application according to the state of GPU1 in terms of

refresh rate. When the refresh rate is under a threshold, IG application decides for

main GPU to distribute its load to the helper GPU. The output of the main GPU is

used as the IG output. The output of the helper GPU is only used as in input for the

main GPU.

3.3 Results

The experiments were performed on a network of computers each of which contains

two GTX 680 graphic cards (2GB RAM, 256 Bit), Intel i7 2700K processors and
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16GB main memory - see Figure 3.3 for an outline of the experimental environment.

The scene was selected as a large terrain in which some dust is scattered as particles in

some regions of the terrain (see Figure 3.4 for a detailed snapshot). Each IG controls

a window which has a camera view from the same viewpoint with contiguous field of

views so that we can have a large field of view for the scene.

3.3.1 Network Sharing Method

In the network, there is significant latency due to transmission of a packet, which can

lead to incoherence in displayed frames. Two solutions to this problem are: (i) Block

the IG receiving help until the next frame in sequence arrives. (ii) Send the frames to

the slow IG latest at t − ∆tN , where ∆tN is the delay due to network transmission

and the related processing. In this section, we will have a look at both. In any case,

for load distribution to be worth the effort for an IG (IG1) that needs help, the time

for rendering one frame should be costing at least the time for a packet to travel on

network and the rendering time for the helper IG (IG2):

∆tIG1 > ∆tIG2 + ∆tN , (3.1)

where ∆tIG1 and ∆tIG2 are frame rendering times for IG1 and IG2, respectively. The

decision for the Central Control Computer should be based on the frame rendering

times of IG1 and IG2 according to the criteria in Equation 3.1.
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In addition, for an application that needs to achieve 25 fps, the time for the helper

IG (IG2) to render one frame for the other IG should be smaller than the time for

rendering its own frame (40ms in the case of 25 fps) minus the time it takes helper IG

to render the other IG’s frame:

∆tIG + ∆tOF < 40ms, (3.2)

where ∆tIG shows the time of rendering its own frame for a helper IG, and ∆tOF is

the time it takes a helper IG to render the other IG’s frame. Based on this result, we

can conclude that the decision for the Central Control Computer should also be based

on the frame render times of helper IGs according to the criteria in Equation 3.2.

In Figure 3.5, we analyze the effect of the received help on the refresh rate of the IG
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Figure 3.4: A few snapshots from the rendering system.
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receiving help. In these results, the helping GPU sends a frame every 50ms. In the

blocking case, we see that, if the IG is fast enough, the received help cannot increase

its refresh rate because getting help means waiting for a packet from the network,

which costs more than rendering the frame itself. In the non-blocking case, however,

whatever how fast the IG is, receiving help increases its refresh rate. However, the

amount of increase decreases when the speed increases.

In Figure 3.6, we see the effect of the Network Sharing Method on the refresh rate of

the helping IG. We see that the helping IG is only slightly affected. This is due to the

fact that the IG prepares and sends frames over the network in a separate thread than

the one rendering the scene.

3.3.2 GPU Sharing Method

In Figure 3.7, we analyze the effect of the received help on the refresh rate of the

GPU receiving help. The helping GPU sends every frame to the helpee GPU. We

observe that, whatever the slow GPU’s frame rate is, the help from the fast GPU

leads to approximately similar frame rates, both in the blocking and the non-blocking

cases. This is due to the fact that shared memory allows very fast transfer of frame

to the helpee GPU and the helpee GPU does not get much chance to render a frame

itself. Therefore, Figure 3.7 shows us that GPU-GPU sharing has a limit, no matter

the original speed of the helpee GPU.

In Figure 3.8, we see the effect of the GPU Sharing Method on the refresh rate of the

helping GPU. We see that the helping GPU is very much affected. This is due to the

fact that the time spent for the helping GPU to copy the rendered data to the shared

memory is roughly three times than rendering a scenes.

3.3.3 Guidelines

Based on the results provided in this section, we provide the following guidelines:

1. Although the distributed rendering literature has mostly focused on intra-frame

load distribution strategies, inter-frame rendering is still plausible despite the
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Figure 3.5: The effect of Network Sharing Method on the IG receiving help. (a) With

blocking the IG receiving help, (b) Non-blocking the IG receiving help.
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Figure 3.6: The effect of Network Sharing Method on the IG giving help.

network latency.

2. For overcoming the network latency problem, several strategies can be adopted

based on the demands of the rendering problem. One is blocking the rendering

node while waiting for the frame from another IG, and the other approach is

non-blocking the IG receiving help, and taking care of the frame coherence

issue by making sure that the frames are sent at least ∆tN before the IG finishes

rendering its own frame.

3. GPU-GPU sharing is much faster than IG-IG sharing. The latency problem,

though less severe, exists for GPU-GPU communication as well. The same

solutions proposed for IG-IG communication apply to GPU-GPU latency.

4. For enhanced distributed rendering, IG-IG and GPU-GPU distributed rendering

should both be utilized.

3.4 Conclusion

The chapter has investigated the bottlenecks in parallel and distributed rendering sys-

tems with simulations. It has shown that in a locally distributed rendering system, the
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Figure 3.8: The effect of GPU Sharing Method on the GPU giving help.

transfer from one GPU to the other needs to go over the CPU and the memory, which

is a limiting factor.

Moreover, for distributed rendering using a network of computers, the network speed

is a bottleneck. We argue that, under these bottlenecks, rendering can be distributed

provided that the rendering speed of a processing unit is slow enough to compensate

for the time delay for the data transfer, either in the computer or in the network.
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CHAPTER 4

DISTRIBUTED RENDERING USING A NETWORK OF

COMPUTERS

In this chapter, a method for distributed rendering of huge data among a network of

computers is described. In the network, there are computers with different rendering

performances all in the same network with a server, which collects rendering per-

formances and performs load balancing. The chapter shows that such a system can

increase the rendering performance of slow computers with the help of the fast ones.

The proposed solution in this chapter depend on the inter-frame rendering approach.

In inter-frame rendering, distribution among computers is done for complete frames

of the scene. The load balancing strategy proposed is dynamic and adaptive to new

conditions which result from load imbalances at run-time.

4.1 Formulation

In our problem, we have a set of image generators (IGs), I = {IG1, . . . , IGn} which

are connected to each other and a server over a network (Figure 4.1). The server

functions as the load balancer for the IGs. Each IGi has an estimated frame rate fi

and the goal is to redistribute the load between the IGs such that frame rate for each

IG is higher than a predefined minimum value, i.e.,

fi > τ, i = 1, ..., n. (4.1)

Among the IGs, some has frame rates lower than τ and some higher than τ ; in other

31



Server 

N
etw

o
rk 

1IG

1f

2IG

2f

nIG

nf

Figure 4.1: The overview of the setup.

words, we can partition I into slow IGs (S) and fast IGs (F ), i.e.,

I = S ∪ F, (4.2)

where S and F are defined as:

S = {IGi|IGi ∈ I, fi < τ} , (4.3)

and

F = {IGi|IGi ∈ I, fi > τ} . (4.4)

4.2 A Distributed Solution

The solution presented in this chapter can be summarized as follows:

1. Sort S based on the IG frame rates in increasing order. Let Ssorted denote the

sorted slow IGs.

2. Sort F based on the IG frame rates in decreasing order. Let Fsorted denote the

sorted fast IGs.
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3. Let IGs be the top IG in Ssorted. Determine k IGs from Fsorted that will help

IGs. Repeat this step for each IG in Ssorted:

for all IGs ∈ Ssorted do

- choose k IGs fromFsorted to help, and add them toH(IGs) = {IGi, ..., IGh}

- remove the k IGs from Fsorted

end for

4. For each IG in Ssorted, calculate the frequency with which the IGs in H(IGs)

will help.

4.2.1 Determining k

Let us say that IGs has frame rate fs < τ , and its deficiency from the minimum

number of frames per second, i.e., τ − fs, is going to be helped by IGs from Fsorted.

For determining k, we can employ Algorithm 1.

4.2.1.1 Deriving number of frames an IG can help

In Algorithm 1, cf , the number of frames that IGf can help, is calculated from its

frame rate (ff ), the frame rate threshold (τ ) and the (time) cost of sending a frame

to the network (∆tf ). The main idea is that the fast IG can only discard frames

(in a second) provided that its updated frame rate is above threshold. Below is the

derivation of cf .

{ff} − { # frames that I can send (cf )} × { Time loss for sending data} ≥ { Threshold (τ)} (4.5)

→ ff − cf ×
{ Time for sending a single frame (∆tf )}
{ Time for a single frame }(1/ff )

≥ τ (4.6)

→ ff − cf ×
∆tf
1/ff

> τ → cf ≤
ff − τ

∆tf × ff
(4.7)

⇒ cf =

⌊
ff − τ

∆tf × ff

⌋
. (4.8)
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Algorithm 1 The algorithm for determining the number of helping IGs for a slow IG.

Input Fsorted, Ssorted : The list of fast and slow IGs

Output H(IGs), lsf : Helping IGs and helping frequencies

1: for all IGf ∈ Fsorted do

2: ff ← frame rate for IGf

3: cf ←
⌊

ff−τ
1+∆tfff

⌋
/* Number of frames IGf can give away */

4: end for

5: for all IGs ∈ Ssorted do

6: H(IGs)← ∅
7: fs ← frame rate for IGs

8: k ← 0

9: gs ←
⌈

τ−fs
1−fs∆ts

⌉
10: for all IGf ∈ Fsorted do

11: if cf < 0 then

12: /* This IG is not fast enough, skip it */

13: continue

14: end if

15: k ← k + 1

16: H(IGs)← H(IGs) + IGf

17: if gs > cf /* Take this IG and look for more helpers */ then

18: gs ← gs − cf
19: lsf ←

ff
cf

20: cf ← 0

21: else

22: /* With this IG, I have got all the help I need. */

23: cf ← cf − gs
24: lsf ←

ff
gs

25: gs ← 0

26: break

27: end if

28: end for

29: end for
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4.2.1.2 Deriving number of frames an IG needs

In Algorithm 1, the minimum number of frames (gs) that an IG needs is calculated

from is calculated from its frame rate (fs), the frame rate threshold (τ ) and the (time)

cost of receiving a frame from the network (∆ts). gs can be derived from the follow-

ing two constraints:

• First constraint: The only way a slow IG can spare time for getting help from

other IGs and displaying those frames is not rendering a number of frames:

{ # frames that IG will stop rendering (x)} × { Time for rendering a frame (1/fs)} (4.9)

≥ { # received frames} × { cost of the received frame} (4.10)

→ x
1

fs
≥ gs ×∆ts (4.11)

→ x
1

fs
− gs ×∆ts ≥ 0. (4.12)

• Second constraint: The remaining frames that the slow IG renders and the

ones that it receives from others should be above the threshold:

{ # frames that I continue rendering (fs − x)} × { Received frames (gs)} ≥ τ (4.13)

→ fs − x+ gs ≥ τ (4.14)

→ fs − x+ gs + T ≥ 0 (4.15)

Constraints 1 and 2 in Equations 4.12 and 4.15 can be combined as follows:

• Multiply Equation 4.15 by 1/fs to get gs:

gs ≥
τ − fs

1− fs ×∆ts
(4.16)

⇒ minimum possible gs =

⌈
τ − fs

1− fs ×∆ts

⌉
. (4.17)

• Multiple Equation 4.12 by ∆ts to get x:

x ≥ fs∆ts
τ − fs

1− fs ×∆ts
(4.18)

⇒ x ≈ fs∆tsgs. (4.19)
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4.2.2 Determining help frequencies

We are given the helping IGs H(IGs) = {IGs1 , . . . , IGsm}, which have frame rates

fs1 , . . . , fsm higher than τ , for a slow IG IGs with frame rate fs < τ .

Assume that IGf with ff ≥ τ helps a slow IG, IGs, with fs < τ . Also assume that

IGf helps IGs with csf number of frames per second. IGs needs a frame from IGf

regularly, i.e., every lth frame, which can be calculated easily by:

l =

⌊
ff
csf

⌋
, (4.20)

where csf < cmaxf is the number of frames that IGf gives away to IGs.

4.3 Consideration of Other Factors

In our proposed algorithm, the frame rate is considered as a load balancing crite-

ria. Along with frame rate, other criteria such as network bandwidth and rendered

triangles per second can be used in determining helping and helpee IGs and help

frequencies.

4.3.1 Network Bandwidth

In the application of algorithm, when the frequencies of sent images over network

increase, the network bandwidth may not be sufficient for handling the transmission.

In a 1-Gb network, it is possible to send at most 30 colored images at 1024 × 1024

resolution. However, the number of images sent depends on the switch capacity and

load. In our algorithm, in determining the helping frequencies, the following criteria

should be considered:
ff
l
< 30, (4.21)

where l is the frequency at which a fast IG helps a slow IG, and ff is the frame rate

of the fast IG. In case the fast IG helps more than one IG, on the other hand, the total

number of frames that the fast IG can help should be limited by 30.
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The highest number of images that can be sent over network can be increased by de-

creasing the size of images using compression algorithms. There are various lossless

compression algorithms [4, 30, 41, 43] such as JPG, TGA (using RLE compression),

TIF (using LZW compression which is an extension of LZ77 and LZ78 algorithms

[51, 52]) and PNG. Variances of these algorithms exist. JPG gives very good results

in compression up to compression ratios of 5:1. This results in the increase of max-

imum number of frames that can be sent over network, which means 30 × 5 = 150

frames in the case of a compression ratio of 5:1. Actually, while the compression

ratio is decreased, the time for compression and decompression times are introduced

as overheads which increase ∆tf and ∆ts in our algorithm. And this ends up in re-

ducing the frame rates and so requiring higher helping frequencies. This trade-off can

be considered as a criteria in determining help frequencies.

4.3.2 Rendered Triangles per Second

The load which is introduced during visualization depends on different factors. One

of these is the rendered triangles per second. Rendered triangles per second de-

pends on various parameters such as the camera position, camera orientation, ren-

dered LODs and the number of objects. When the number of rendered triangles per

second needs to be increased, this causes a decrease in the frame rate. For this reason,

trying to decrease the number of rendered triangles by some methods such as using

LOD is a load balancing scheme in its way. There is a relation of frame rate with ren-

dered triangles per second. However, frame rate is not only affected by the number of

rendered triangles per second, but also other processes such as physical and network

computations. Thus, the number rendered triangles per second may not be considered

as a unique constraint, but it can be used complimentary to and together with other

constraints.

4.4 Results

The experiments were performed on the same cluster used for the experiments in the

chapter 3. The network on which the computers are connected to each other is a 1-
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Figure 4.2: Effect of load balancing in the case of three fast IGs and one slow IG.

Gb Ethernet, i.e., not a very fast network. The heterogeneous system was obtained

adding extra different amounts of artificial scene load to different IGs. The IGs are

commanded by the Central Control Computer to load the scene including terrain,

models and other effects. The results below were obtained including the loading

phase and after loading phase which also includes states when load balancing strategy

is on/off.

According to the results in (Figure 4.2), there are three fast IGs (IG2, IG3 and IG4)

which have higher frame rates than threshold and one slow IG (IG6) which has lower

frame rate than threshold. After applying our load balancing algorithm described

above, IG2, which is the fastest one, helps the slow IG (IG6). It can be seen that the

help frequencies supplied by IG2 are enough for IG6 so that IG6 becomes a faster

IG, which does not need any extra help from other IGs (IG3 and IG4).

The results in (Figure 4.3) show that there is one fast IG (IG2) which has higher frame

rates than threshold and three slow IGs (IG5, IG6 and IG7) which have lower frame

rates than threshold. After applying our load balancing algorithm described above,

IG2, which is the fastest one, helps two slow IGs (IG6 and IG7) so that these two

slow IGs become faster. However, for the fast IG, IG2, it is not possible to help IG5
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Figure 4.3: Effect of load balancing in the case of one fast IG and three slow IGs.

otherwise its threshold becomes lower than the threshold.

The results in (Figure 4.4) show that there are two fast IGs (IG1 and IG2) which have

higher frame rates than threshold and two slow IGs (IG5 and IG8) which have lower

frame rates than threshold. After applying our load balancing algorithm described

above, IG1, which is the fastest one, first helps the slowest IG (IG8) so that IG8

becomes faster. The second slower IG, IG5, gets help also from the fastest IG1, how-

ever, help from IG1 is not enough for IG5 to achieve frame rate higher than threshold

after IG1 has started helping IG8. To achieve frame rate higher than threshold, IG5

gets help from IG2 which is one of the fastest IGs.

Moreover, the results show that the network bandwidth criteria does not create a bot-

tleneck since the number of frames needed to be sent calculated according to the help

frequencies do not exceed the maximum number of frames that can be sent according

to the network bandwidth limit. However, in cases of distributed systems including

many more number of computers over wide area networks, network bandwidth cri-

teria becomes important and should be considered regarding the trade-off between

compression ratio and compression and decompression process durations.

By the results, it is shown that a fast IG can help more than one slow IG, unless the
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Figure 4.4: Effect of load balancing in the case of two fast IGs and two slow IGs.

frame rate of the fast IG does not decrease under the threshold. On the other hand, a

slow IG can get help from more than one fast IG to achieve a high frame rate than the

threshold.

4.5 Conclusion

The distribution solution depends on the principle of fast IGs helping slow IGs to help

them increase their frame rates over the threshold. To achieve this goal, it is possible

for more than one fast IGs to help more than one slow IGs. The results show that such

our distribution solution can increase the rendering performance of slow IGs with the

help of the fast ones, meeting the goal.

Our distribution rendering solution depends on inter-frame approaches. It works on

a network of connected computers and a server. Different from other works which

require advanced very fast network, an ordinary fast network infrastructure which

can be obtained at low prices is enough for our algorithm to succeed.

The solution also differs from other works in the way that it is adapted to new condi-

tions. New conditions here mean variance in load during the rendering of the scene,
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variance in load of each computer or variance on network delays. Server, which works

as a centralized load balancer, provides this adaptation using the periodic statistical

values gathered from each computer.
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CHAPTER 5

A HYBRID SYSTEM FOR DISTRIBUTED RENDERING

In this chapter, a hybrid method for distributed rendering of huge data is proposed.

In the distributed rendering system, there is a network of computers with multiple

GPUs. In this system, a GPU can either help another GPU in the same IG or another

IG in the network. Moreover, both inter-frame type of distributed rendering as well as

sort-last type intra-frame distributed rendering are considered. In other words, there

are two aspects of hybridity: (i) locally and network-wide distributed rendering, and

(ii) inter-frame and intra-frame distributed rendering.

In the network, there are computers equipped with multiple GPUs with different ren-

dering performances all in the same network with a server, which collects rendering

performances of the GPUs in the different IGs and performs load balancing. The

chapter shows that such a system can increase the rendering performance of slow

computers with the help of the fast ones.

5.1 Formulation

Similar to the problem formulation in Section 4.1, in the hybrid problem, there is a

set of image generators (IGs), I = {IG1, . . . , IGn} with multiple GPUs which are

connected to each other and a server over a network (Figure 5.1). The server functions

as the load balancer for the IGs. Each GPUji, where j denotes that the GPU is on IGj ,

has an estimated frame rate fji and the goal is to redistribute the load between the IGs

and the GPUs such that frame rate for each IG is higher than a predefined minimum
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Figure 5.1: The overview of the hybrid setup.

value, i.e.,

fji > τ, j = 1, ..., n, and i = 1, ...,m. (5.1)

In our case, m is two due to the setup used for the experiments; however, the algo-

rithms are applicable for m > 2 too. For an IGj , GPUj1 is called the primary GPU

whereas GPUj2 is called the secondary GPU.

There are different rendering tasks {T1, ..., To} (such as multitexturing, occlusion

culling, particles, fog simulation, illumination, vegetation) that a GPU can take care

of, and for each task, the frame rate is different. Let fTji denote the frame rate of

GPUji for performing task T . One can easily estimate the frame rate, call it f̂ji for

GPUji as the minimum for the tasks:

f̂ji = min
({
fTji
}T=o

T=1

)
. (5.2)

Then, considering the minimum f̂ji for l = 1, ..., o for primary GPUs, we can partition

the set of IGs I into slow IGs (S) and fast IGs (F ), i.e.,

I = S ∪ F, (5.3)
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where S and F are defined as:

S =
{
GPUi1 | IGi ∈ I, f̂i1 < τ

}
, (5.4)

and

F =
{
G | IGi ∈ I,G ∈ {GPUi1, GPUi2}, f̂G > τ

}
. (5.5)

In other words, the primary GPUs which are slow can receive help from all the GPUs

(primary or secondary) that are fast. For the sake of simplicity and in order to be

able to use the same way of thinking and derivations in Chapter 4, each GPU will be

considered as an IG in the rest of the chapter without loss of generality.

5.2 A Hybrid Solution

The solution presented in this chapter can be summarized as follows:

1. Sort S based on their gain in increasing order. Let Ssorted denote the sorted slow

GPUs. The gain of a GPUi is equal to its frame rate (f̂i) minus a factor of the

cost of helping the slow GPU. Note that the cost of a secondary GPU helping a

primary one is much less than that of helping another IG in the network.

2. Sort F based on their gain in decreasing order. Let Fsorted denote the sorted

fast GPUs.

3. Let GPUs be the top GPU in Ssorted. For each task T , determine kT IGs from

Fsorted that will help IGs. Repeat this step for each IG in Ssorted:

for all IGs ∈ Ssorted do

for all task T do

- choose kT IGs from Fsorted to help, and add them to HT (IGs) =

{IGi, ..., IGh}
- update the gain values of the kT IGs from Fsorted

end for

end for

4. For each IG in Ssorted, calculate the frequency with which the IGs in HT (IGs)

will help.
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5.2.1 Determining kT

Let us say that the primary GPU of IGs has frame rate f̂s1 < τ , and its deficiency

from the minimum number of frames per second, i.e., τ − f̂s1, is going to be helped

by IGs from Fsorted. For determining kT for a task T , we can employ Algorithm 2,

which is a slight modification of Algorithm 1.

5.2.1.1 Deriving number of frames an IG can help

In Algorithm 2, cf , the number of frames that IGf can help, is calculated from its

frame rate (ff ), the frame rate threshold (τ ) and the (time) cost of sending a frame to

the network (∆tf ) as follows:

cf =

⌊
ff − τ

∆tf × ff

⌋
. (5.6)

The derivation of cf is the same as presented in Section 4.2.1.1.

5.2.1.2 Deriving number of frames an IG needs

In Algorithm 2, the minimum number of frames (gTs ) that an IG needs is calculated

from its frame rate (fTs ) for task T , the frame rate threshold (τ ) and the (time) cost

of receiving a frame for task T (∆ts). gTs can be derived from the following two

constraints:

• First constraint: The only way a slow IG can spare time for getting help from

other IGs and displaying those frames is not rendering a number of frames:

{ # frames that IG will stop rendering (x)} × { Time for rendering a frame (1/fs)} (5.7)

≥ { # received frames} × { cost of the received frame} (5.8)

→ x
1

fs
≥ gTs ×∆ts (5.9)

→ x
1

fs
− gTs ×∆ts ≥ 0. (5.10)
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Algorithm 2 The algorithm for determining the number of helping IGs for a slow IG

for a task in the hybrid case - this is a slight modification of Algorithm 1.

Input Fsorted, Ssorted : The list of fast and slow IGs

Output HT (IGs), lTf→s : Helping IGs and helping frequencies

1: for all GPUf ∈ Fsorted do

2: ff ← frame rate for GPUf as estimated in Equation 5.2

3: cf ←
⌊

ff−τ
1+∆tfff

⌋
/* Number of frames GPUf can give away */

4: end for

5: for all IGs ∈ Ssorted do

6: HT (IGs)← ∅
7: fTs ← frame rate for IGs

8: kT ← 0

9: gTs ←
⌈

τ−fTs
1−fTs ∆ts

⌉
10: for all GPUf ∈ Fsorted do

11: if cf < 0 then

12: /* This GPU is not fast enough, skip it */

13: continue

14: end if

15: kT ← kT + 1

16: HT (IGs)← HT (IGs) +GPUf

17: if gTs > cf /* Take this GPU and look for more helpers */ then

18: gTs ← gTs − cf
19: lTf→s ←

ff
cf

20: cf ← 0

21: else

22: /* With this GPU, I have got all the help I need. */

23: cf ← cf − gTs
24: lTf→s ←

ff
gTs

25: gTs ← 0

26: break

27: end if

28: end for

29: end for
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• Second constraint: The remaining frames that the slow IG renders and the

ones that it receives from others should be above the threshold:

{ # frames that I continue rendering (fs − x)} × { Received frames (gTs )} ≥ τ (5.11)

→ fs − x+ gTs ≥ τ (5.12)

→ fs − x+ gTs + τ ≥ 0 (5.13)

Constraints 1 and 2 in Equations 5.10 and 5.13 can be combined as follows:

• Multiply Equation 5.13 by 1/fs to get gTs :

gs ≥
τ − fs

1− fs ×∆ts
(5.14)

⇒ gTs =

⌈
τ − fs

1− fs ×∆ts

⌉
. (5.15)

• Multiple Equation 5.10 by ∆ts to get x:

x ≥ fs∆ts
τ − fs

1− fs ×∆ts
(5.16)

⇒ x ≈ fs∆tsg
T
s . (5.17)

5.2.2 Determining help frequencies

We are given the helping IGs HT (IGs) = {GPUs1 , . . . , GPUsm} for task T , which

have frame rates f̂s1 , . . . , f̂sm higher than τ , for a slow IG IGs with frame rate fTs < τ

for task T .

Assume that GPUf with ff ≥ τ helps a slow IG, IGs, with fTs < τ . Also assume

that GPUf helps IGs with cf→s number of frames per second. IGs needs a frame

from GPUf regularly, i.e., every lthf→s frame, which can be calculated easily by:

lf→s =

⌊
ff
cf→s

⌋
, (5.18)

where cf→s < cf is the number of frames that GPUf gives away to IGs.
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Figure 5.2: The effect of load balancing analyzed in different combinations of slow

and fast IGs. The case with one slow IG and three fast IGs, where the second GPU of

IG2 helps IG6, i.e., H(IG6) = {IG22}.

0 

50 

100 

150 

200 

250 

300 

350 

400 

0
 

2
0

 
4

0
 

6
0

 
8

0
 

1
0

0
 

1
2

0
 

1
4

0
 

1
6

0
 

1
8

0
 

2
0

0
 

2
2

0
 

2
3

9
 

2
5

9
 

2
7

9
 

2
9

9
 

3
1

9
 

3
3

9
 

3
5

9
 

3
7

9
 

3
9

9
 

Fr
am

e
 R

at
e

 
(f

p
s)

 

time (sec) 

IG1 

IG2 

IG5 

IG8 

Before Load 
Balancing 

After Load 
Balancing 

Figure 5.3: The effect of load balancing analyzed in different combinations of slow

and fast IGs. The case with two fast IGs and two slow IGs, where H(IG8) = {IG11}
and H(IG5) = {IG11, IG22}.
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Figure 5.4: The effect of load balancing analyzed in different combinations of slow

and fast IGs. The case with one fast IG and three slow IGs, whereH(IG7) = {IG22},
H(IG6) = {IG22, IG52} and H(IG5) = {IG52}.

5.3 Results

The experiments were performed on the same cluster used for the experiments in

the Chapter 3. The network on which the computers are connected to each other

is a 1-Gb Ethernet, i.e., not a very fast network. Like in the previous chapter, the

heterogeneous system was obtained adding extra different amounts of artificial scene

load to different IGs. The IGs are commanded by the Central Control Computer to

load the scene including terrain, models and other effects. The results below were

obtained including the loading phase and after loading phase which also includes

states when load balancing strategy is on/off.

In this section, the performance of the IGs before and after load balancing for the

following combinations of slow and fast IGs are investigated, as shown in Figures

5.2, 5.3 and 5.4 - the cases are presented in increasing order of ‘complexity’:

• Figure 5.2 shows a case where there is one slow IG and three fast IGs. In this

case, the second GPU of IG2 helps IG6, i.e., H(IG6) = {IG22}. Through
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load balancing, with the help of IG6, the frame rate of IG2 increases. Other

IGs are unaffected by this load balancing process.

Although the second GPU of IG2 is the helper, the frame rate of IG2 decreases.

The reason for this decrease is that, while sending frames of the second GPU

over the network, the CPU becomes less available for the main GPU, effectively

decreasing the frame rate.

• Figure 5.3 depicts a case of two fast IGs and two slow IGs, in which case the

following assignments are performed:

H(IG8) = {IG11}, and (5.19)

H(IG5) = {IG11, IG22}. (5.20)

In this assignment, a fast IG helps two slow IGs.

• In Figure 5.4, we have a case with one fast IG and three slow IGs. With load

balancing, the proposed algorithm makes the following assignments:

H(IG7) = {IG22}, (5.21)

H(IG6) = {IG22, IG52}, and (5.22)

H(IG5) = {IG52}. (5.23)

In this case, one of the IGs, IG5, helps both itself (i.e., the second GPU helps

the main GPU) and another IG in the network. Moreover, IG6 receives help

from two IGs, and IG2 helps two IGs.

In the preceding explanations, the results from inter-frame load balancing in both

networked and local systems are shown. In Figure 5.5, load balancing effects are

shown in a scene which includes extra load using smoke particles. In this case, IG8

is helped by IG51 for the main scene part of the frame, and is helped by IG82, i.e. by

its second GPU, for the smoke particles part of the frame. Here, in the case where the

rendering of the smoke particles is too expensive, the positive effect of intra-frame

rendering is seen as the increase of frame rate. Although the composition of main

scene (coming from IG51) and particles (coming from IG82) is expensive, since the
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Figure 5.5: The effect of load balancing analyzed in different combinations of slow

and fast IGs in the case of a smoky scene. The case with three fast IGs and one slow

IG, where H(IG8) = {IG51, IG82} in a smoky scene.

rendering of particles and the main scene is much more expensive, it is the optimized

configuration which our load balancing strategy decides on.

These results in this section show that, for different slow and fast IG combinations in

a network of computers with multiple GPUs, the proposed load balancing algorithm

can determine suitable assignment of fast-slow IGs and GPUs.

5.3.1 Making the Solution Dynamic and Adaptive

The solution proposed in this thesis is dynamic and adaptive, i.e. it uses the dynamic

statistics coming from IGs. By means of this behavior, the solution can be easily

adapted to the changes in the load of the scene and/or physical changes in network

speed, etc. This is achieved by executing the algorithm every p seconds. However,

in order to prevent the unnecessary computation load, the execution period p of the

algorithm is incremented by one second if the load balancing assignments do not

change, or decremented if there is a change. As seen in the graph in Figure 5.6, the

execution period is incremented monotonously when there is no change in load or
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Figure 5.6: The effect of load changes on the execution period of the algorithm.

other physical states, however, it is decremented suddenly if there is a sudden change

in the load to be adapted to the changes. In the decision of execution period, different

techniques can be used such as proposed in [22].

5.4 Conclusion

In this chapter, a hybrid system is proposed. In this system, there is both an inter-

frame-based distributed rendering as well as an intra-frame rendering used. For intra-

frame rendering, smoke simulation particles are shared among the computers, which

makes it a sort-last rendering system. In addition, in the hybrid system, a computer

receives help either locally from its secondary GPU or from other computers in the

network. Therefore, there are two aspects of hybridity: (i) inter-frame and intra-

frame rendering, (ii) local (GPU-GPU) and network based rendering. By means of

this efficient load balancing strategy, rendering performance of slow computers are

increased with the help of the fast ones, so that the slow computers are no longer

bottlenecks in heterogeneous systems.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

With the desire to visualize huge data or simulate complex scenes in high resolution,

it has become a necessity to use parallel and distributed rendering techniques or ar-

chitectures for fast, real-time, interactive simulation systems. Existing approaches

either share individual frames (inter-frame methods) or parts of a single frame (sort-

first, sort-last and sort-middle methods), and generally, they use advanced hardware

connected together in very expensive ultra fast networks.

In this thesis, an inter-frame-based method (Chapter 4) is proposed. It is shown in

Chapter 4 that, in a network of heterogeneous computers some which are fast and

some of which are slow, the fast computers can help the slow ones improve the ren-

dering speed. Moreover, in Chapter 5, a hybrid system is proposed. In this system,

there is both an inter-frame-based distributed rendering as well as an intra-frame ren-

dering used. For intra-frame rendering, smoke simulation particles are shared among

the computers, which makes it a sort-last rendering system. In addition, in the hybrid

system, a computer receives help either locally from its secondary GPU or from other

computers in the network. Therefore, there are two aspects of hybridity: (i) inter-

frame and intra-frame rendering, (ii) local (GPU-GPU) and network based rendering.

In addition, the thesis has investigated the bottlenecks in parallel and distributed ren-

dering systems with simulations in Chapter 3. It is shown that in a locally distributed

rendering system, the transfer from one GPU to the other needs to go over the CPU

and the memory, which is a limiting factor. Moreover, for distributed rendering us-

ing a network of computers, the network speed is a bottleneck. Chapter 3 discussed

that, under these bottlenecks, rendering can be distributed provided that the rendering
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Table 6.1: List of tasks that a full-fledged distributed rendering system should con-
sider.

Task Type Task descriptions

Rendering Tasks multitexturing, occlusion culling, particles,
fog simulation, illumination, vegetation,
anti-aliasing ...

Artificial Intelligence Tasks crowd simulation, behavior simulation,
traffic simulation ...

Physics and Animation Tasks vehicle dynamics, collision detection,
cloud motion, character animation ...

Simulation Management Tasks replay, simulation logic
Preprocessing Tasks paging

speed of a processing unit is slow enough to compensate for the time delay for the

data transfer, either in the computer or in the network.

By means of our proposed efficient load balancing strategy, rendering performance of

slow computers are increased with the help of the fast ones, so that the slow computers

are no longer bottlenecks in heterogeneous systems.

6.1 Limitations and Future Work

The current work relies on the assumption that the packets sent by a helper travel

uniformly in the network. In other words, they can be received and read at regular

intervals by the help computer. The effects of this assumption can be relaxed by:

(i) using faster yet more expensive computer networks, and (ii) by a mechanism to

synchronize precisely the clocks on each computer and label time for each frame.

However, this may impose unnecessary waiting times for fast processing units, de-

creasing the overall performance of the system.

In a full-fledged distributed rendering system, the things that can be distributed should

not be limited to frames or particles. In general, the tasks listed in Table 6.1, i.e.,

rendering tasks, artificial intelligence tasks, physics and animation tasks, simulation

management tasks and preprocessing tasks should all be considered. Note that these

tasks are very different in nature and require designing such a system from scratch
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with distributed rendering in mind.

Moreover, in cases of distributed systems including many more number of computers

over wide area networks, network bandwidth criteria should be considered regard-

ing the trade-off between compression ratio and compression/decompression process

durations as discussed in 4.3.1.
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