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ABSTRACT 
 
 

METHOD OF MOMENTS ANALYSIS OF SLOTTED WAVEGUIDE 
 ANTENNA ARRAYS 

 
 

ALTUNTAŞ, Abdülkerim 
 
 

M.S., Department of Electrical and Electronics Engineering 
 Supervisor: Assoc. Prof. Dr. Lale ALATAN 

 
 

February 2014, 54 pages 
 
 
 

Slotted waveguide antenna arrays are used extensively in many applications because 

of their high power handling capability, planarity, low loss and reduced profile. After 

the synthesis of such an array, the design should be verified by analyzing the array 

with an efficient simulation tool which is accurate, fast and flexible. Although FEM 

(Finite Element Method) based commercial softwares are very accurate and flexible, 

they are not sufficiently fast especially when it comes to optimization and fine 

tuning. The aim of this study is to develop a MoM based simulation software to 

analyze slotted waveguide antenna arrays. The developed code is aimed to be a 

building block for a versatile software capable of analyzing different structures, so 

the code is designed to be open for future manipulations and improvements. A single 

slot on a waveguide is analyzed by using the developed code and the self admittance 

of the slot is calculated for different slot offset and length values. The results are 

compared with the experimental results found in the literature and a fair agreement is 

observed.  

 

Keywords: Slotted Waveguide Antenna Arrays, Method of Moments  
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ÖZ 
 
 

YARIKLI DALGA KILAVUZU DİZİ ANTENLERİNİN MOMENTLER 
YÖNTEMİYLE ANALİZİ 

 
 

ALTUNTAŞ, Abdülkerim 
 
 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 
  Tez Yöneticisi: Doç. Dr. Lale ALATAN 

 
 

Şubat 2014, 54 sayfa 
 
 
 

Yarıklı dalga kılavuzu anten dizileri yüksek güce dayanıklılığı, düzlemselliği, düşük 

araya girme kaybı ve küçük kesitleri gibi özelliklerinden ötürü sıklıkla birçok alanda 

kullanılmaktadır. Diziyi sentezledikten sonra, tasarım hassas, hızlı ve esnek bir 

benzetim programıyla incelenerek doğrulanmalıdır. FEM (Sonlu Eleman Yöntemi) 

temelli ticari benzetim programları oldukça hassas ve esnek olmalarına rağmen 

optimizasyon ve ince ayar yapmak için yeteri kadar hızlı değillerdir. Bu çalışmanın 

amacı yarıklı dalga kılavuzu anten dizilerini analiz eden MoM temelli bir benzetim 

yazılımı geliştirmektir. Geliştirilen kodun farklı yapıları analiz edebilen geniş 

kapsamlı bir yazılımın temel taşlarından biri olması hedeflendiği için yazılım ileriye 

yönelik kullanımlara ve geliştirmelere açık olacak şekilde tasarlanmıştır. Dalga 

kılavuzu üzerindeki tek bir yarık geliştirilen yazılım kullanılarak analiz edilmiş ve 

yarığın özadmitansı farklı merkeze uzaklık ve uzunluk değerleri için hesaplanmıştır. 

Sonuçlar literatürde bulunan ölçüm değerleri ile karşılaştırılmış ve makul bir uyum 

gözlenmiştir.  

 

Anahtar Kelimeler: Yarıklı Dalga Kılavuzu Dizisi Antenler, Momentler Yöntemi 
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CHAPTER 1 
 

1. INTRODUCTION 
 
 

 

Slotted waveguide antenna arrays are widely used in applications requiring high 

power handling capability, low insertion loss, planarity and low profile 

specifications such as radars, satellites and remote sensing. These antennas are 

basically formed by cutting narrow slots on the broad or narrow walls of the 

waveguide which are placed periodically. There are several radiating slot elements 

such as longitudinal, transversal or inclined slots cut on the broad wall of the 

waveguide as well as inclined I or C shaped slots cut on the narrow wall [1] as 

shown in Figure 1-1. There are two types of these antennas, namely travelling wave 

and standing wave antennas. In travelling wave antennas the end of the array is 

terminated with a matched load, whereas in the standing wave type the termination is 

a short circuit. In this work the focus is given on travelling wave arrays with 

longitudinal slots cut on the broad wall of the waveguide. 

 

The basic property of these slots is that they become resonant at nearly a half 

wavelength long and their radiation characteristics can be controlled by their 

mechanical parameters namely, the slot offset from the center line of the waveguide 

and the length. Such a controlling mechanism makes one able to design an array of 

specific center frequency, side lobe level, beam width and return loss. 
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   (a) Longitudinal slot on the broad wall            (b) Inclined slot on the broad wall 

 

 
(c) Inclined slot on the narrow wall 

 

Figure 1-1 Numerous types of radiating slots in a waveguide 

 

 

Slotted waveguide structures are being extensively used since late 1940’s. Watson, 

Stevenson and Booker conducted the first works about this topic. Stevenson brought 

theoretical meaning to Watson’s experimental work by formulating the electric field 

of the slot aperture. Booker was the one who solved the integral equation making use 

of the waveguide Green’s functions and the analogy between dipoles and slots based 

on Babinet’s principle [2]-[4]. Stegen conducted an experimental work on the 

admittance and resonant length of a longitudinal broad wall slot with respect to its 

offset. He was able to generate universal curves for the admittance of a slot as a 
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function of its length normalized to its resonant length [5]. This process is called the 

characterization of a single slot and must be carried out either experimentally or 

numerically before the design of a linear slotted waveguide array. Once this process 

has been gone through, characterization data of the single slot is gathered which is to 

be used in the design procedure.  

In 1979, Elliott published a paper in which he explains the design steps of a slotted 

waveguide array of travelling type [6]. This design procedure to synthesize such an 

array of slots is as follows: 

a) According to the frequency of operation and application dependent size, 

determine the waveguide to be used. For example, in an X-Band radar 

application, standard WR90 waveguide might be used; however, if there is 

some sort of limitation in the dimensions, one might also think of using 

ridged waveguide to reduce the dimensions. 

b) Either by experiments or by full wave simulation tools like the Finite 

Element Method based HFSS by Ansoft, perform the characterization of a 

single isolated slot. Characterization of a single slot corresponds to obtaining 

the admittance of this slot for several offset and length values. Generally 6-7 

different slot offset and 6-7 different slot length values are sufficient. Then 

slot admittance values for other offset and length values can be interpolated 

[1]. 

c) From these admittance values, the following four characterization 

polynomials are extracted: 

 푔(푥): Resonant conductance as a function of slot offset, 푥. 

 푣(푥): Resonant length as a function of slot offset, 푥. 

 ℎ (푦): Conductance of the slot normalized with respect to the resonant 

conductance. 푦 is the slot length normalized with respect to the resonant 

length corresponding to the specified offset. 
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 ℎ (푦): Susceptance of the slot normalized with respect to the resonant 

conductance. 푦 is the slot length normalized with respect to the resonant 

length corresponding to the specified offset. 

Resonant length is the length of the slot for which the imaginary part of the 

slot admittance is zero. The slot conductance corresponding to this length is 

called the resonant conductance. 

These four polynomials model the isolated slot admittance as a function of 

the slot offset and length. They are used in the design equations derived by 

Elliott [6]. 

d) According to the required side lobe level, beam width, main beam direction, 

directivity and input matching level, determine the number of elements to be 

used in the array, the inter element spacing of the array and the excitation 

coefficient of each slot (i.e. slot voltage). 

e) Make an initial guess for the slot lengths and offsets and compute the mutual 

coupling term for each slot. 

f) Since the design is a travelling wave type array, it is going to be terminated 

by a matched load. Make an initial guess on the slot offset for the last 

element, the element just before the matched load, since the whole array will 

be designed iteratively according to the last element. Furthermore, this offset 

is also important for the delivered power to the load. Practically, the array is 

designed such that 5-10% of the input power is delivered to the load. 

g) Using the design equations and beginning from the last slot, adjust the offset 

and length of every element such that it becomes resonant at the center 

frequency and satisfies the required slot voltage. 

h) With the new slot offset and length values compute the mutual coupling term 

for each element. 

i) Repeat step g and h until all new offset and lengths of the elements converge, 

i.e. the newly found offset and length values are negligibly different than the 

previous ones. 

j) At that point, check the followings: 
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 Input match: If the match is not good enough, change the distance 

between the slots. 

 Maximum slot offset in the array: If this slot offset is very large, the 

design equations based on the equivalent circuit that models the slot with 

a shunt admittance, becomes invalid. Hence, repeat the above procedure 

with a smaller offset for the last slot. 

 Power delivered to the termination: If the power absorbed by the load 

does not meet the design criterion, alter the offset of the last slot. 

After the synthesis is accomplished, the next step is to validate the design, i.e. to 

analyze it and check that the design criteria are satisfied. This is generally done using 

advanced simulation tools such as Ansoft HFSS [7] and WASP-NET [8]. HFSS 

solves the problem using FEM methods whereas WASP-NET utilizes MoM together 

with mode matching techniques. By using these tools, the whole array is analyzed 

including all effects like mutual coupling. With the obtained results, it is checked 

whether the array satisfies the design requirements such that the required beam 

width, side lobe level, input matching etc. If the design does not meet the 

requirements sufficiently, then fine tuning on the slots must be carried out and the 

array should be optimized. Fine tuning is done by perturbing the values for the slot 

offsets and/or lengths by a small amount, then running the simulation once again and 

checking whether the array performs better than the previous version. The fine 

tuning process might be especially time consuming if the array is very large. 

Therefore, it is desirable to have an accurate and efficient simulation tool to ease and 

accelerate the fine tuning process. 

Each of such simulation tools has its own advantage and disadvantages. FEM based 

solvers are the most accurate and flexible engines; however, in terms of 

computational efficiency they can be called moderate. They are very fast and 

efficient especially if the structure of interest has a small volume. However, when 

the volume gets larger, meshing implemented by the software increases dramatically 

and much more computational effort must be devoted. In addition, if the surface-
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volume ratio of the structure is small like a slotted waveguide array, then MoM 

based solvers are more efficient than FEM based softwares. As previously stated, in 

designs where fine tuning is unavoidable, it becomes apparent that the optimization 

process with FEM solvers gets more and more cumbersome. 

On the other hand, softwares like WASP-NET implementing MoM with mode 

matching techniques to solve the problem, work very well for standard waveguide 

structures. They are capable of solving several waveguide structures efficiently and 

accurately. Since they are much faster than a traditional FEM solver, they are 

preferable when it comes to fine tuning.  

The aim of this thesis is to develop a MATLAB [9] executable computer code to 

analyze a travelling type linear slotted waveguide array with the Method of 

Moments. The software will be able to analyze slotted waveguide arrays 

implemented on a standard waveguide, i.e. the waveguide could not be a ridged one 

and it should not include any kind of irises or insets in the waveguide. In addition, it 

will not account for wall thickness and it will assume to have square shaped slots 

rather than rounded slots. As depicted previously, this code will be a building block 

for a more versatile simulation tool, and it will be open for future modifications, add-

ons and improvements. 

In Chapter 2, the integral equation formulation to analyze longitudinal slots cut on 

the broad wall of a standard waveguide will be presented.  Then the MoM solution of 

this integral equation will be explained in detail and similar studies found in the 

literature will be summarized. In addition, explicit expressions used in the evaluation 

of the MoM matrix entries will be provided. 

In Chapter 3, numerical results obtained by the developed software will be presented. 

First, results obtained for some canonical problems will be presented to verify that 

the evaluation of the MoM matrix entries is implemented accurately. Next, the 

results for the self admittance of a single slot will be presented for different values of 
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slot offset and length. Finally, the self admittance results will be compared with the 

measurement results found in the literature. 

In Chapter 4, conclusions will be drawn and future works and possible 

improvements will be discussed. 
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CHAPTER 2 

 

2. MOM FORMULATION OF THE SLOTTED WAVEGUIDE 

 ANTENNA ARRAY 

 

 

2.1. Introduction 

 

Finite Element Method, Method of Moments and mode matching techniques are 

widely used in the numerical analysis of slotted waveguide antenna arrays. Among 

these techniques MoM is chosen to be studied in this thesis, because in standard 

geometries one can write relatively simple and explicit integral equations that can be 

solved numerically by applying Method of Moments. Effective utilization of MoM 

yields quite accurate and satisfactory results.  

As explained in the previous chapter, Elliott’s design methodology of a slotted 

waveguide antenna array includes the slot characterization conducted either 

experimentally or numerically, and obtaining the characterization polynomials from 

the resultant data. In addition, since the remaining design steps are based on the 

characterization data, the quality and accuracy of these data is of utmost importance. 

For example, if the resonant length data of the slot has a 2% error, then such an error 

would cause the array to perform satisfactorily at a different frequency than the 

design frequency. Furthermore, the array will have a degraded side lobe level as well 

as a deteriorated input match [10]. 

To characterize the slot cut on a waveguide, there are two possible ways to do it: 

a) Experiments: By manufacturing test waveguides each of which contain a slot 

of different offset and/or length, and conducting several S-parameter 

measurements with a vector network analyzer, one can obtain the slot 
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characterization data. Although this method is also accurate, it is a very 

expensive and time consuming work. It should be noted that accuracy of this 

method not only relies on the experiment setup but also on the precision of 

the manufacturing process. 

b) Numerical Analysis: Today, this technique is preferred quite commonly since 

it gives a fast and accurate way to gather the required data. In the literature, 

Method of Moments was generally used to obtain these data. Although it 

brings some restrictions on the problem, it can be said that it is faster, more 

efficient and less expensive than the previous method. In addition, FEM 

based tools, are very accurate, flexible and fast especially in solving small 

structures like the slot cut on a waveguide. By the aid of these sophisticated 

softwares, obtaining the characterization data in the most accurate and fastest 

way is possible. 

This study will make use of the Method of Moments technique to analyze an array of 

longitudinal slots cut on the broad wall of the waveguide. In the next subsection the 

integral equation that models this problem will be presented and the formulation for 

the MoM solution of this integral equation will be provided. 
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2.2. Integral Equations and Related Formulations 

 

In this section, the integral equation of slots cut on the broad wall of a waveguide 

shown in Figure 2-1 will be derived. 

 

 
 

Figure 2-1 Problem geometry for the slot cut on the broad wall of a waveguide. 

 

 

The integral equation is derived from the boundary condition at the surface of the 

slot, 

  

퐻 (휉, 휁) =  퐻 (휉, 휁) +  퐻 (휉, 휁) (2-1 ) 

 

(2-1) shows that the externally scattered 퐻 -field is equal to the sum of the incident 

and internally scattered 퐻 -field. Note that the boundary condition on the other 

tangential magnetic field (퐻 ) component could also be taken into account; however, 

from the study of Elliott and Stern [10], it is understood that this component of the 
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magnetic field is negligibly small. Therefore, the 퐻 -field component is discarded 

throughout the formulation. Consequently, the only tangential component of the 

electric field will be in x-direction and z-directed electric field will also be neglected 

at the slot surface. Hence the slot can be modeled with a z-directed magnetic current 

(푀 = 퐸 ) and this magnetic current gives rise to scattered magnetic fields both 

inside (퐻 ) and outside (퐻 ) the waveguide. To compute the fields outside the 

waveguide, the slot will be assumed to be placed on an infinite ground plane. 

 

The incident field is considered to be the dominant mode of the waveguide and the 

scattered fields can be written in terms of the associated Green’s functions. As a 

result, (2-1) takes the following form: 

 

 퐻 (휉, 휁) =  푗퐴 cos
휋
푎 (푥 + 휉) 푒

= 퐻 (휉, 휁) −  퐻 (휉, 휁)

= 퐸 (휉 , 휁 )퐺(휉, 휁; 휉 , 휁 ) 푑휉 푑휁

/

/

 

(2-2 ) 

 

where 퐴  and 훽  are the amplitude and the propagation constant of the dominant 

푇퐸  mode, respectively. The Green’s function for the combined computation of 

external and internal fields is 

 

퐺(휉, 휁; 휉 , 휁 ) =

+  k + ∑ ∑ cos 푥 + 휉  � cos (푥 +

휉 ) � +  k 푒 | |  

 

In (2-3), ϵ = 1/4, ϵ = ϵ = 1/2, ϵ = 1 otherwise. Also k = 휔 µ ε  and 

 

 (2-3 ) 
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γ =
푚휋

푎 +
푛휋
푏 − k  ,

푅 =  (휉 −  휉 ) +  (휁 −  휁 )   

(2-4 ) 

 

The first part of the summation in (2-3) is the half-space Green’s function for the 

external fields whereas the second part is the Green’s function for the fields inside 

waveguide derived by Stevenson [4]. When examining this equation, it is understood 

that for the related MoM formulation it is logical to separate it into two parts, 

namely: 

퐺(휉, 휁; 휉 , 휁 ) = 퐺 (휉, 휁; 휉 , 휁 ) + 퐺 (휉, 휁; 휉 , 휁 ) (2-5 ) 

퐺 (휉, 휁; 휉 , 휁 ) =
∂

∂휁 +  k
푒

2휋푗휔µ 푅  (2-6 ) 

 

퐺 (휉, 휁; 휉 , 휁 )

=
2

푗휔µ 푎푏
ϵ
γ cos

푚휋
푎 (푥 + 휉) �  cos

푚휋
푎 (푥

+ 휉 ) � ∂
∂휁 +  k 푒 | |  

(2-7 ) 

 

The unknown of the integral equation given in (2-2) is the x-directed electric field 퐸  

and as the first step of the MoM procedure it is expanded in terms of piecewise 

sinusoidal basis functions as: 

 

 
퐸 (휉, 휁) = 푉 퐹 (휁) (2-8 ) 
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where 퐹 (휁) 

 

퐹 (휁) =
sin 푘 (ℎ − |푧 − 휁|)

sin(푘 ℎ )    (2-9) 

 

In (2-9) 푘  is the free space wave number and 푧  is the center point of the 푖  basis 

function and ℎ  is the half length of the subdomain for 푖  basis function as shown in 

Figure 2-2. 

 

 

 

 

 

Figure 2-2 The geometry showing the subdomains of 푖  and 푗  basis functions 

 

 

 

As the next step of the MoM procedure, Galerkin’s testing scheme is applied with 

piecewise sinusoidal weighting functions. The remaining part of the formulation will 

be presented for the internal and external scattering parts separately in the coming 

two subsections. 
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2.2.1. External Scattering Formulations 

 

To simplify the formulation, an external mutual admittance is defined as the inner 

product integral between the 푖  basis function and the 푗  testing function as 

follows: 

 

 푌 =< 퐺 푓 , 푤 >;  푖 ∈ [1, N] and 푗 ∈ [1, N] (2-10) 

    

N is the number of basis functions. For 푖 ≠ 푗, (2-10) is explicitly written in [11], i.e. 

 

푌 =
푗60푤

sin (푘 ℎ )sin (푘 ℎ )
푒

푅 + 
푒

푅

− 2 cos 푘 ℎ
푒

푅 sin 푘 ℎ − |푧 − 휁| 푑휁 

(2-11) 

    

Where, 

 

푅 = (휉 −  휉 ) + 휁 − 푧  (2-12) 

푅 = (휉 −  휉 ) +  휁 − (푧 − ℎ )  (2-13) 

푅 = (휉 −  휉 ) +  휁 − (푧 + ℎ )  (2-14) 

 

Equation (2-11) is used to numerically calculate 푌  in MATLAB environment. 

Gaussian quadrature is utilized as the numerical integration method.  
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During the evaluation of the mutual impedance for the self terms, i.e. 푖 = 푗, special 

care must be taken since the integral involves singularities. Since a center fed dipole 

antenna and a slot antenna are dual structures, same kind of integrals appear in the 

formulation of a dipole. Therefore a modified version of the self impedance 

expression for the center-fed dipole derived by the induced EMF method [11] is 

utilized for the analytical evaluation of the singular integrals in (2-11) for 푖 = 푗 and 

the external admittance is expressed as: 

 

푌 =
푗120푤

(sin(푘 ℎ ) 휂)
{4 cos(푘 ℎ ) 푆(푘 ℎ ) − cos(2푘 ℎ ) 푆(2푘 ℎ )

− sin (2푘 ℎ )[2퐶(푘 ℎ ) − 퐶(2푘 ℎ )]} 
(2-15) 

 

in which 

 

퐶(푘 푦) = 푙푛
2푦
푤 −

1
2 퐶푖푛(2푘 푦) −

푗
2 푆푖(2푘 푦) (2-16 ) 

푆(푘 푦) =
1
2 푆푖(2푘 푦) −

푗
2 퐶푖푛(2푘 푦) − 푘 푤  (2-17 ) 

 

In (2-16) and (2-17), 푤  is the slot width, 퐶푖푛(푥) is the modified cosine integral and 

푆푖(푥) is the sine integral. 휂 is the free space wave impedance. Both 푆푖(푥) and 

퐶푖푛(푥) are tabulated functions and they are also available in MATLAB. 
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2.2.2. Internal Scattering Formulations 
 

2.2.2.1. Internal Scattering Mutual Term Formulation 

 

The internal scattering Green’s function given in (2-7) contains derivatives with 

respect to position. By making use of the properties given in (2-18) for a general 

Green’s function 퐺(푧; 푧 ), the integral of the sinusoidal basis function and the 

Green’s function with derivatives can be written in the form given in 2-19. 

 

∂G
∂푧 =  −

∂G
∂z  and 

∂ G
∂푧 =  

∂ G
∂푧  (2-18) 

 

1
sin (푘 ℎ)

∂
∂푧 +  k 퐺(푧; 푧 )

( )

( )

sin 푘 (ℎ − |푧 − 푧|) 푑푧

=
푘

sin (푘 ℎ) 퐺 (푧 − ℎ); 푧 + 퐺 (푧 + ℎ); 푧

− 2 cos(푘 ℎ) 퐺(푧 ; 푧 )  

(2-19) 

  

 

    

(2-19) is used to further manipulate (2-7) and obtain the mutual admittance due to 

the internal coupling 푌  expression as follows: 

 

푌 =  < 퐺 푓 , 푤 > ;  푖 ∈ [1, N]and j ∈ [1, N], 푖 ≠ 푗 (2-20) 
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푌 =
2푘

푗휔µ 푎푏sin(푘 ℎ )sin(푘 ℎ )
ϵ
γ 퐼 (푚) 퐺(휁; (푧

− ℎ )) + 퐺(휁; (푧 + ℎ ))

− 2 cos(푘 ℎ ) 퐺 휁; 푧 sin 푘 ℎ − |푧 − 휁| 푑휁  

(2-21) 

퐼 (푚) = 푐표푠
푚휋

푎 (푥 + 휉) 푐표푠
푚휋

푎 (푥 + 휉 ) 푑휉푑 휉  (2-22) 

퐼 (푚) =
푎

푚휋 sin
푚휋

푎 푥 + 푤
2

− sin
푚휋

푎 푥 − 푤
2 sin

푚휋
푎 푥 + 푤

2

− sin
푚휋

푎 푥 − 푤
2 , for 푚 ≠ 0 

(2-23 ) 

퐼 (0) = 푤 , for 푚 = 0 (2-24 ) 

 

in which 퐼 (∗) denotes the double integral with respect to the (휉; 휉 ) variables and 

 

퐺(휁; 휁 ) = 푒 | | (2-25 ) 

 

Again Gaussian quadrature method, as done for the external scattering calculation, is 

performed to find 푌  given in expression (2-21). 
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2.2.2.2. Internal Scattering Self Term Formulation 

 

For the self term calculation, i.e. 푖 = 푗 one cannot use the equation given in (2-21) 

because of the discontinuity in the derivative of the Green’s function in (2-25). 

Actually, this statement has been verified by comparing the results obtained by the 

numerical integration of the integral in the left hand side of (2-19) and the analytical 

evaluation of the right hand side of (2-19). The parameters in Table 2-1 are used 

during the computations. 

 

 

 

Table 2-1 Parameters used for computing (2-19) 

 

Parameters Value 

퐺(푧; 푧 )

= 푒 | | 

푇퐸  Mode 

γ = 푗140.36 푟푎푑/푚 

푓 9.375퐺퐻푧 

푘  196.43 푟푎푑/푚 

2ℎ 0.0140푚 

푧  0.0070푚 

푧  [−0.04, 0.04]푚 201 푝표푖푛푡푠 
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Figure 2-3 Plot of the imaginary parts of (2-19/Analytical) and (2-19/Numerical). 

 

 

The imaginary parts of the numerical and analytical results are plotted in Figure 2-3. 

It is clearly seen that the results do not match in 푧 ∈ (푧 − ℎ, 푧 + ℎ) region. Thus 

it is evident that the formulation in (2-21) cannot be used in the internal scattering 

self term calculation.  

On the other hand, if one attempts to implement (2-7) directly in the MoM 

formulation instead of using (2-19), s/he will end up with the convergence problems 

associated with the summation of the modes. Next, the convergence problems 

encountered during this direct evaluation of (2-7) will be summarized. First of all, 

substituting (2-7) in the MoM equation, one gets the following: 

 

푌 = < 퐺 푓 , 푤 >;  푖, 푗 ∈ [1, 푁], 푖 = 푗 (2-26) 
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푌

=
2

푗휔µ 푎푏sin(푘 ℎ )
ϵ (γ + k )

γ 퐼 (푚) sin 푘 ℎ

− 푧 − 휁 sin 푘 ℎ − 푧 − 휁 푒 | |푑휁푑휁′  

(2-27) 

퐼 (푚) =
푎

푚휋 sin
푚휋

푎 푥 + 푤
2

− sin
푚휋

푎 푥 − 푤
2 , 푓표푟 푚 ≠ 0 

(2-28) 

퐼 (0) = 푤 , 푓표푟 푚 = 0 (2-29) 

 

 

(2-27) is implemented in MATLAB with the parameters in Table 2-2 and plotted the 

imaginary parts of 푌  internal scattering for each 푇퐸  mode in Figures 2-4 and 2-5. 

Both the numerical and analytical integration methods have been used to implement 

(2-27) and the two methods resulted in exactly the same results. 
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Table 2-2 Parameters used for implementing (2-27) 

 

Parameters Value 

푓 9.375퐺퐻푧 

푘  196.43 푟푎푑/푚 

푎 0.0229푚 

푏 0.0102푚 

2ℎ 0.0140푚 

푧  0.0070푚 

푚 [1, 50] 

푛 [1, 50] 

 

 

 

 

 

Figure 2-4 Imag(푌  ) vs 푇퐸  Modes computed using (2-27). 
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Figure 2-5 Imag(푌  ) vs 푇퐸  Modes computed using (2-27).(XY View) 

 

 

 

From the Figures 2-4 and 2-5 it is clearly observed that along the N-modes 푌  does 

not decay. This means, if all the 푌   terms corresponding to each 푇퐸  mode are 

summed up, the summation will diverge. Another interesting feature that is seen 

from Figure 2-5, is that along the M-modes the decay is not exactly exponential, 

indeed the maximum of 푌  occurs at 푇퐸  and this is due to the effect of the 

퐼 integral shown in (2-28). In fact, this shows that the reactive power contribution 

of 푇퐸  is higher than that of for instance 푇퐸  modes. 
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To overcome the convergence problem, the integral given in (2-7) needs to be 

computed with a different approach. While exploring a new approach, it is realized 

that the derivatives acting on the Green’s function could be transferred on the basis 

and testing functions by using the following relations:  

 

휕 퐺(푧; 푧 )
휕푧 푓(푧)푔(푧′) 푑푧 푑푧′

( )

( )

= − 퐺(푧; 푧′)
푑푓(푧)

푑푧
푑푔(푧′)

푑푧′ 푑푧 푑푧′

( )

( )

 

(2-30) 

푓(푧 − ℎ) = 푓(푧 + ℎ) = 푔(푧 − ℎ) = 푔(푧 + ℎ) = 0 (2-31) 

 

When the integrals are transferred on the basis and testing functions, the integration 

domain needs to be segmented into four regions as shown in Figure 2-6, due to the 

absolute value appearing in the argument of piecewise sinusoidal functions.  In 

Figure 2-6, horizontal axis represents the position along the basis function and the 

vertical axis represents the position along the testing function. In regions (a) and (d) 

the derivatives of the basis function involves a negative sign due to the absolute 

value whereas the sign is positive in regions (b) and (c) for the derivatives on the 

basis function. Similar discussions are valid for the testing function such that 

positive derivative for regions (c) and (d) and negative for (a) and (b). Hence the 

overall result will be different in these four different regions. 
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Figure 2-6 Problem geometry for the self term calculation 

 

 

 

Using (2-30), the second order derivative applying onto 푒 | | is removed and 

transported to the basis and the testing functions via integration by parts for each 

region as shown in (2-32) thru (2-36). 

 

푌 ( )

=
−2

푗휔µ 푎푏sin(푘 ℎ )
ϵ k

γ 퐼 (푚) cos 푘 ℎ

− (푧 − 휁)) cos 푘 ℎ − (푧 − 휁 ) 푒 | |푑휁푑휁′  

(2-32) 
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푌 ( )

=
+2

푗휔µ 푎푏sin(푘 ℎ )
ϵ k

γ 퐼 (푚) cos 푘 ℎ

− (푧 − 휁)) cos 푘 ℎ + (푧 − 휁 ) 푒 | |푑휁푑휁′  

(2-33) 

푌 ( )

=
−2

푗휔µ 푎푏sin(푘 ℎ )
ϵ k

γ 퐼 (푚) cos 푘 ℎ

+ (푧 − 휁)) cos 푘 ℎ + (푧 − 휁 ) 푒 | |푑휁푑휁′  

(2-34) 

푌 ( )

=
+2

푗휔µ 푎푏sin(푘 ℎ )
ϵ k

γ 퐼 (푚) cos 푘 ℎ

+ (푧 − 휁)) cos 푘 ℎ − (푧 − 휁 ) 푒 | |푑휁푑휁′  

(2-35) 

푌 = 푌 ( ) + 푌 ( ) + 푌 ( ) + 푌 ( ) (2-36) 

 

 

The preceding formulations are implemented in MATLAB with the parameters given 

in Table 2-2. The results are plotted in Figures 2-7 and 2-8. 
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Figure 2-7 Imag(푌  ) vs 푇퐸  Modes computed using (2-36). 

 

 

 

 

 

Figure 2-8 Imag(푌  ) vs 푇퐸  Modes computed using (2-36).(XY View) 
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From Figures 2-7 and 2-8, it is clearly seen that the convergence problem observed 

in Figures 2-4 and 2-5 is solved. Both in the M and N-modes the decaying behavior 

is apparently observed which means that the infinite mode summation has become 

now a convergent series. Therefore, the internal scattering self term can be computed 

using (2-32) thru (2-36). 

 

 

2.2.3. Computation of the Excitation Vector in the MoM Formulation 

 

In the preceding subsections the expressions for the computation of the MoM matrix 

entries are presented. In this subsection the computation of the excitation vector will 

be provided. The excitation vector can be found from the inner product integral of 

the incident field and the testing functions. Hence the 푖  entry of the excitation 

vector denoted by 퐼 can be written as: 

 

퐼 = 푗퐴
푎
휋 sin

휋
푎 푥 + 푤

2 − sin
휋
푎 푥 − 푤

2 ∗ 

푒 ( ) sin 푘 ℎ − |푧 − 휁| 푑휁 

 

(2-37 ) 

 

The overall MoM matrix will be the summation of internal and external admittance 

matrices       

(푌 = 푌 +  푌 ) and the matrix equation to be solved for the unknown slot 

voltages (i.e. 푉 ’s) can be written as:   

 

푰 = 풀 ∗ 푽 (2-38) 
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2.3. Conclusion 

 

In this chapter, the integral equations for the MoM solution are presented. Both the 

internal and external scattering admittance calculations are performed in MATLAB 

environment. In the cases where numerical integration is needed, Gaussian 

quadrature has been used as the numerical integration method. The major difficulty 

is encountered in the internal scattering self term computation. As described earlier, 

the infinite mode series in (2-27) inherently does not converge because of the second 

order derivative; therefore, one needs to transfer this derivative to the basis and 

testing functions to obtain a convergent summation.  
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CHAPTER 3 

 

3. NUMERICAL RESULTS 

 

 

3.1. Introduction 

 

In the previous chapter, the related integral equations to be used in the MoM solution 

have been developed. In this chapter, the solver will be verified by analyzing a single 

slot and comparing the self admittance results with the experimental results obtained 

by Stegen [5]. 

 

3.2. External Scattering Impedance Calculation 

 

3.2.1. External Scattering Self Impedance Calculation 

 

In Elliott’s book the self impedance of a center-fed dipole is investigated thoroughly 

with different approaches such as the induced EMF method and Storer’s variational 

solution [11]. The self impedance results for a dipole can be used to test the self term 

of the external admittance matrix in our formulation since dipole and slot are dual 

structures and the dipole impedance is related to slot admittance through Booker’s 

relation [2]. The self impedance of a center-fed dipole with respect to the dipole 

length is plotted for 5 different dipole radii in Figure 3-1 (Taken from [11]). We 

converted this problem to the complementary case of the dipole, i.e. a slot with 

different slot width values. In Figure 3-2 the susceptance of a slot, due to the external 

scattering, for different slot width cases can be observed and they are in agreement 

with the ones seen in Figure 3-1. Furthermore, the conductance of this slot for 
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different slot widths is shown in Figure 3-3. As seen from both Figures 3-1 and 3-3, 

the conductance of a slot is independent of its width like the resistance of a center-

fed dipole is independent of the dipole radius. The agreement between Figure 3-1 

and Figures 3-2 and 3-3 verifies that the computation of the self term for the external 

admittance matrix is performed accurately. In the next subsection, the verification 

for the accurate implementation of the external admittance matrix for the entries 

other than the self term will be studied. 

 

 

 

 

Figure 3-1 Self impedance graphs in Elliott’s book [11]. Plotted for five different 

dipole radii. 
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Figure 3-2 Self susceptance graphs for different slot widths obtained from the code. 

 

 

 

 

 

Figure 3-3 Self conductance graphs for different slot widths obtained from the code. 
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3.2.2. External Scattering Mutual Impedance Calculation 

 

In Elliott’s book the problem of finding the mutual impedance of two dipoles shown 

in Figure 3-4 is again very similar to the mutual impedance of two slots due to 

external scattering. Therefore, we adopted the equations with small modifications 

and converted it to the problem of the external mutual admittance of two slots. In 

Figure 3-5, Figure 3-7 and Figure 3-9, the variation of 푅  and 푋  (real and 

imaginary parts of the mutual impedance) with the separation distance is plotted for 

three different dipole lengths (Taken from [11]). To verify our approach, the external 

admittance for two slots with the same parameters as the dipoles are calculated and 

Figure 3-6, Figure 3-8 and Figure 3-10 show us how 퐺  and 퐵  varies with respect 

to separation distance for three different slot lengths. Figures 3-5 and 3-6 show the 

results for the side by side configuration of the dipoles and the slots, respectively. 

The results are repeated for a cross configuration and the dipole and slot results are 

presented in Figures 3-7 and 3-8, respectively. Finally, the computations are carried 

out for an end to end configuration and the dipole and slot results are presented in 

Figures 3-9 and 3-10, respectively. 

  

 

 

Figure 3-4 Two parallel dipoles for which mutual impedance will be calculated [11]. 
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Figure 3-5 The mutual impedance between two dipoles for the side by side 

configuration [11]. 

 

 

 

 

 

Figure 3-6 The mutual external admittance between two slots for the side by side 

configuration.  
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Figure 3-7 The mutual impedance between two dipoles for the cross configuration 

[11]. 

 

 

 

 

 

Figure 3-8 The mutual external admittance between two slots for the cross 

configuration.  
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Figure 3-9 The mutual impedance between two dipoles for the end to end 

configuration [11]. 

 

 

 

 

 

Figure 3-10 The mutual external admittance between two slots for the end to end 

configuration.  
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Comparing Figure 3-5, Figure 3-7 and Figure 3-9 with Figure 3-6, Figure 3-8 and 

Figure 3-10, it can be observed that the results are in very good agreement. This 

comparison verifies that the external admittance formulation is accurately 

implemented for the entries of the admittance matrix other than the self term as well. 

 

 

3.2.3. Self Admittance of a Single Slot on a Waveguide 

 

In this section, we will analyze a single isolated slot with the developed software and 

obtain the admittance characteristics of the slot for several slot offsets and compare 

the results with the ones gathered experimentally by Stegen [5]. The initial analysis 

is performed with a single basis function on the slot, then it is extended to consider 

several basis functions. The related code built on the MoM formulations explained in 

the previous chapter runs as indicated in the following steps: 

 

a) Set the relevant parameters like frequency(ω), waveguide dimensions(푎, 푏), 

slot offset(푥 ), slot length(2ℎ) etc. 

 

b) Given the parameters find 푌  using (2-15), 푌  utilizing (2-36) and 푌   

solving (2-37). Afterwards applying (2-38) one finds 푉 , the coefficient of the 

basis function, i.e. the electric field represented by the piecewise sinusoid 

given in (2-9). 

 

c) Having found the electric field in the slot, compute the backscattered field 

퐵  of the dominant mode 푇퐸  using: 

 

퐵 =
2푉

푗휔휇 푎푏
(cos 훽 ℎ −  cos 푘 ℎ) cos

휋푥
푎  (3-1 ) 
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d) From 퐵 , 푌/퐺  can readily be calculated using (3-2) as follows: 

 

푌
퐺 = −

2퐵
퐴 + 퐵  (3-2 ) 

 

e) In (3-2), 퐴  can be set to 1 for simplicity and without loss in generality. 

 

f) The resonant length of the slot is defined when 푌 퐺  is purely real. So sweep 

the slot length within a predefined interval and at each slot length calculate 

the 푌 퐺  ratio. Check whether 푌 퐺  is purely real, i.e. the imaginary part is 

nearly zero. 

 

The above described procedure has been followed with the parameters given in 

Table 3-1 and the results have been compared with the ones obtained by Stegen [5]. 

 

Table 3-1 Parameters used to obtain the Stegen’s Curves 

 

Parameters Value 

푓 9.375퐺퐻푧 

푘  196.43 푟푎푑/푚 

푎 0.0229푚 

푏 0.0102푚 

푥  [0.05, 0.10, 0.15, 0.20, 0.25]푖푛푐ℎ 

푧  0푚 

2ℎ [0.0070, 0.0180]푚 & 201푝표푖푛푡푠 
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Table 3-1 (Continued) 

 

푚 [5, 10, 20, 40] 

푛 [5, 10, 20, 40] 

Total Number of 

Modes: 

(푚 + 1) ∗ (푛 + 1)

− 1 

[35, 120, 440, 1680] 

 

 

 

In Figure 3-11 퐺 /퐺  is plotted, i.e. the normalized resonant conductance with 

respect to several slot offsets. Note that the internal Green’s function involves an 

infinite series summation over the waveguide modes. 

In order to investigate the effects of truncating this series at a certain number of 

modes, the calculations are repeated for different number of modes  

(푚 and 푛). The results are plotted in Figure 3-11. In Figure 3-12 the curve obtained 

by Stegen’s experiments can be seen. The results seem to be consistent. 
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                   Figure 3-11 퐺 /퐺  obtained from the software for different slot offsets.  
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Figure 3-12 퐺 /퐺  obtained from Stegen’s experimental data. 

 

 

In Figure 3-11, it is seen that as the number of internal waveguide modes is 

increased, the resonant conductance does not change at all. This is an expected 

behavior because the real power present in the slot is mainly due to the internally 

scattered 푇퐸  mode and the externally scattered field. Furthermore, comparing 

Figures 3-11 and 3-12, it is observed that the two curves track each other very well. 
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In Figure 3-13 푘 푙  is plotted, i.e. the resonant length with respect to several slot 

offsets. In Figure 3-14 the curve obtained by Stegen’s experiments can be seen. 

 

 

 

Figure 3-13Variation of  푘 푙  with slot offset, calculated for different number of 

internal scattering modes. 
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Figure 3-14 푘 푙  obtained from Stegen’s experimental data. 

 

 

 

In Figure 3-13, the resonant length does not change very much as the mode number 

that is taken into account increases. In fact, the resonant length calculated for 440 

and 1680 number of modes is nearly the same. Although the internal scattering 

waveguide modes -except the TE  mode- involved in the resonant length 

calculation are evanescent modes, they have an important contribution to the reactive 

power present in the slot. Therefore, even though the real part of the slot admittance 

is barely affected from these evanescent modes, the imaginary part of the slot 

admittance changes which results in the change of the resonant length.  

From the preceding figures, it is understood that the resonant length behavior 

converges when 440 number of internal waveguide modes are taken into account. 



 

 

45 

 

Therefore, it is decided to proceed the analysis with the 440 number of internal 

waveguide modes. In Figures 3-15 and 3-16 the conductance and susceptance 

normalized with respect to the conductance at the resonant length is plotted against 

the slot length normalized with respect to the resonant length. In Figure 3-19 the 

curve obtained by Stegen’s experiments is present.  

 

 

 

 

 

Figure 3-15 Normalized conductance(퐺/퐺 ) vs normalized slot length(푙/푙 ) for 

different slot offsets. Internal waveguide modes summed up to 푇퐸  (Total 

Number of Modes = 440). 

 

0.9 0.95 1 1.05 1.1

0.5

0.6

0.7

0.8

0.9

1
G/Gr vs Normalized Slot Length For Several Slot Offsets(440 Modes)

Normalized Slot Length (l/lr)

 

 

0.05inch
0.05inch
0.10inch
0.10inch
0.15inch
0.15inch



 

 

46 

 

 

 

Figure 3-16 Normalized susceptance(퐵/퐺 ) vs normalized slot length(푙/푙 ) for 

different slot offsets. Internal waveguide modes summed up to 푇퐸  (Total 

Number of Modes = 440). 
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Figure 3-17 Normalized admittance(퐺/퐺 , 퐵/퐺 ) vs normalized slot length(푙/푙 ) for 

different slot offsets. Obtained from Stegen’s experimental data [11]. 

 

 

 

Comparing Figures 3-15 and 3-16 with Figure 3-17, a fair agreement can be 

observed. The discrepancy between these curves is due to the fact that the analysis is 

conducted with a single basis function. Therefore, this difference present in the 

preceding analysis is acceptable. 
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Lastly, for the single slot, the number of basis functions has been increased to five 

and the electric field has been computed with the parameters given in Table 3-2. The 

result is plotted in Figure 3-18 for 푁 = 1 and 푁 = 5.  

 

 

Table 3-2 Parameters used to compute the 퐸 -field along the slot 

 

Parameters Value 

푓 9.375퐺퐻푧 

푘  196.43 푟푎푑/푚 

푎 0.0229푚 

푏 0.0102푚 

푥   0.15푖푛푐ℎ 

푧  0푚 

2ℎ 0.0156푚 

푚  25 

푛  25 

푁 

(Number of Basis 

Functions) 

[1, 5] 
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Figure 3-18 Computed 퐸 -field along the slot for N = 1 and N = 5. 

 

 

From Figure 3-18, it is observed that the electric field across the slot has a piecewise 

sinusoidal behavior as expected for both 푁 = 1 and 푁 = 5. Nevertheless, for the 

푁 = 5 case, the peak value of the electric field across the slot decreases to the one-

third of the 푁 = 1 case. The main cause of this error is possibly due to some 

mistakes present in the developed code. 
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3.3. Conclusion 

 

In this chapter the numerical results obtained from the MoM solution of a slot cut on 

the broad wall of a waveguide has been presented. Firstly, the external scattering 

equations obtained in Chapter 2 have been implemented in MATLAB. Since a slot 

cut on an infinite ground plane and a center-fed dipole are dual structures, the 

external mutual and self admittance characteristics of a slot should be similar to the 

mutual and self impedance characteristics of a dipole. Indeed, this statement has 

been verified by comparing the external admittance characteristics of a slot which 

was computed using the developed software with the impedance characteristics of a 

center-fed dipole found in the literature. 

 

As the next step, using a single basis function, the admittance characteristics of a 

single isolated slot have been obtained and the results have been judged against the 

Stegen’s experimental data. It is seen that with a single basis function, although the 

results are not exactly the same as the experimental data, a fair agreement can be 

achieved. There are several reasons behind this discrepancy. For instance, the wall 

thickness of the waveguide and the rounded edge slots are some of the reasons why 

the theoretical results do not match the experimental ones. Another factor is that the 

analysis has been carried out using a single basis function. In fact, if one increases 

the number of basis functions, s/he would expect to obtain better results. However, 

in this study most probably due to some mistakes in the developed code, the desired 

result could not be achieved when the number of basis functions was increased. 
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CHAPTER 4 

 

4. CONCLUSION 

 

 

In this study, the aim was to develop the core software of a MoM based solver which 

is to be a building block for a versatile software capable of solving an array of slots 

cut on a waveguide. A single slot on a waveguide is analyzed by using the developed 

code and the self admittance of the slot is calculated for different slot offset and 

length values. The results are compared with the experimental results found in the 

literature and a fair agreement is observed. 

  

The integral equations required for the MoM solution have been presented in the 

second chapter. MATLAB has been used to calculate the internal and external 

scattering admittance entries of the MoM matrix. Because of its accuracy and speed, 

Gaussian quadrature has been preferred whenever numerical integration was needed. 

The major difficulty is encountered in the internal scattering self term computation. 

As described in Chapter 2, the infinite mode series in the internal scattering Green’s 

function inherently does not converge because of the second order derivative; 

therefore, one needs to transfer this derivative to the basis and testing functions to 

obtain a convergent summation. The convergence problem of the internal Green’s 

function is due to the fact that a singularity in the spatial domain results in a slowly 

convergent behavior in the spectral domain and the summation over the waveguide 

modes is a spectral domain summation.  

 

In the third chapter the numerical results obtained from the MoM solution of a slot 

cut on the broad wall of a waveguide have been presented. Firstly, the external 

scattering equations obtained in Chapter 2 have been implemented in MATLAB. 
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Since a slot cut on an infinite ground plane and a center-fed dipole are dual 

structures, the external mutual and self admittance characteristics of a slot should 

resemble to the mutual and self impedance characteristics of a dipole. Indeed, this 

has been verified by comparing the external admittance characteristics of a slot 

which was computed using the developed software with the impedance 

characteristics of a center-fed dipole found in the literature. Afterwards, using a 

single basis function, the admittance characteristics of a single isolated slot have 

been computed and the results have been compared with the Stegen’s experimental 

data. Although the results are not exactly the same as the experimental data, it is seen 

that with a single basis function, a fair agreement can be achieved. Because the 

developed software does not account for the wall thickness and the rounded edges, it 

is natural to have a difference between the Stegen’s experimental data and the results 

obtained using the software. Another source of error is that the analysis has been 

carried out using a single basis function. In fact, if one increases the number of basis 

functions, s/he would obtain better results decreasing the error. To improve the 

accuracy the number of basis functions is increased; however reliable results could 

not be obtained most probably due to some mistakes in the developed code. 

Therefore as a first future work, the developed code will be improved to obtain 

reliable results with increased number of basis functions. Then the developed code 

will be used to analyze an array of slots instead of a single slot. 

 

As another future work, the convergence problem encountered in the internal 

scattering in Chapter 2 should be further investigated. Instead of moving the 

derivatives onto the basis and testing functions, one can transform the internal 

scattering Green’s function, which is indeed a spectral series, into a spatial series. 

Then the spatial series will be in a similar form like the free space Green’s function, 

hence the methods which are used to calculate the external scattering Green’s 

function can be utilized to evaluate the internal scattering. After resolving this 

convergence issue, one can generalize the single slot solution to the slot array case 

and compare the electric field results with the ones obtained from HFSS. 
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