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ABSTRACT 

 

 

COMPUTATIONALLY ENHANCED TECHNIQUES FOR PRACTICAL 

OPTIMUM DESIGN OF STEEL STRUCTURES  

 

 

Kazemzadeh Azad, Saeid 

Ph. D., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Oğuzhan Hasançebi 

 

April 2014, 201 pages 

 

 

Practical optimum design of structural systems via modern metaheuristic algorithms 

suffers from enormously time-consuming structural analyses to locate a reasonable 

design. This study is an attempt to reduce the computational effort of optimization 

process involved in real-life applications through development of alternative 

techniques to the existing computationally expensive methods. Basically two main 

approaches are considered as (i) investigating the algorithmic structure of the existing 

metaheuristics and enhancing their performances in sizing optimization problems (ii) 

developing new design-driven optimization techniques based on the principles of 

structural mechanics.  

 

In the first approach enhanced reformulations of modern metaheuristics are developed 

and tested using real-life instances. Furthermore, an upper bound strategy is proposed 

wherein non-improving candidate designs are identified and excluded from the 

structural analysis stage, diminishing the total computational effort. 

 



vi 
 

In the second approach a guided stochastic search (GSS) technique is developed 

wherein the search direction is determined by the principle of virtual work and 

response computations of the generated designs. In the GSS, the information provided 

in the structural analysis and design check stages are utilized for handling strength 

constraints. Moreover, the principle of virtual work is used to detect the most effective 

structural members for satisfying displacement constraints. The optimum sizing of a 

structure is then performed where both strength and displacement criteria are taken 

into account for reduction of the member sizes along the way the aforementioned 

constraints are handled.  

 

The numerical results indicate the computational efficiency of the proposed 

techniques in sizing optimization of steel skeletal structures. 

 

Keywords: Structural Optimization, Discrete Sizing, Truss Structures, Frame 

Structures, Steel Design 
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ÖZ 

 

 

GELİŞTİRİLMİŞ HESAPSAL YÖNTEMLERLE ÇELİK YAPILARIN 

UYGULANABİLİR OPTİMUM TASARIMLARI 

 

 

Kazemzadeh Azad, Saeid 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Oğuzhan Hasançebi 

 

Nisan 2014, 201 sayfa 

 

 

Modern metabulgusal yöntemlerle yapı sistemlerinin optimum tasarımları, makul 

sayılabilecek bir çözümün ancak çok sayıda yapısal analiz gerçekleştirilerek 

ulaşılabilmesi açısından son derece zaman alıcı bir işlemdir. Bu çalışmada amaç, 

mevcut pahalı hesaplama yöntemlerine alternatif olarak, gerçek hayattaki yapıların 

optimum tasarımları için gereken hesap yükünü azaltacak yeni ve alternatif yöntemler 

geliştirmektir. Bu doğrultuda genel olarak şu iki temel yaklaşım takip edilmektedir: (i) 

mevcut metabulgusal yöntemlerin algoritmik yapılarının incelenerek bu tekniklerin 

optimum boyutlandırma problemlerindeki performanslarının geliştirilmesi, (ii) yapı 

mekaniği prensiplerini kullanarak çalışan tasarım odaklı yeni optimizasyon 

tekniklerinin geliştirilmesi. 

 

İlk yaklaşımda modern metabulgusal yöntemler yeniden formüle edilip gerçek hayat 

uygulamaları kullanılarak test edilmiştir. İlaveten, bu yöntemlerdeki toplam hesap 

yükünü azaltmak açısından; optimizasyon işlemi boyunca denenen kötü tasarımların 

tespit edilerek yapı analizi aşamasından hariç tutulmasını sağlayan “üst sınır stratejisi” 

isimli bir yaklaşım önerilmektedir.  
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İkinci yaklaşımda ise, arama yönünü virtüel iş prensipi ve optimizasyon boyunca 

oluşturulan tasarımların tepki hesaplamalarını kullanarak belirleyen GSS isimli bir 

rehberli stokastik arama tekniği geliştirilmiştir. GSS’de yapısal analiz ve tasarım 

kontrol aşamaları boyunca elde edilen bilgiler, oluşturulacak tasarımların mukavemet 

sınırlayıcılarını düzenlemek için kullanılmaktadır. Öte yandan, virtüel iş prensipi 

deplasman sınırlayıcılarının sağlanması açısından en etkin elemanların belirlenmesi 

için kullanılmaktadır. Buna göre, bir yapının optimum boyutlandırılması mukavement 

ve deplasman sınırlayıcılarının bahsi geçen yöntemler kapsamında ele alınarak yapı 

eleman kesitlerinin azaltılması suretiyle gerçekleştirilmektedir. 

 

Sayısal sonuçlar çelik iskelet yapılarının optimum boyutlandırma işleminde önerilen 

tekniklerle elde edilecek hesap verimliliğini ortaya koymaktadır. 

 

Anahtar Kelimeler: Yapısal Optimizasyon, Ayrık Boyutlandırma, Kafes Yapılar, 

Çerçeve Yapılar, Çelik Tasarım 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Basic Elements of Structural Optimization 

 

Due to limitations in natural resources, optimization has always been an inseparable 

component of structural design. This fact has resulted in development of a large 

number of optimization techniques in the past few decades to achieve robust and 

reliable design tools for dealing with complicated structural optimization problems. 

Typically, an optimal design problem is composed of three basic elements: (i) 

objective function, (ii) design variables, and (iii) constraints. In structural design 

optimization usually weight or cost of the structure is taken as the objective function 

of the problem. Here, the fundamental aim is to minimize the final weight or cost of 

the structure which is a function of the design variables. The design variables are 

those parameters which are to be determined by the designer in order to generate an 

optimal solution. Furthermore, in practical applications achieving an optimum design 

should be carried out with respect to a set of strength and serviceability limitations i.e. 

design constraints.  

 

In the literature, classifying the structural optimization problems is basically carried 

out regarding the type of design variables involved. It is worth mentioning that since 

optimum design of continuum structures is out of the scope of this study, the 

followings explicitly cover practical design optimization of skeletal structures (i.e. 

truss and frame structures). Generally, optimum design of skeletal structures is 

divided into three main categories as sizing, shape, and topology optimization. In 

sizing optimization the cross sectional areas of structural members are considered as 

design variables. This can further be divided into two subcategories in terms of the 
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nature of the design variables employed: continuous and discrete. In continuous sizing 

optimization any positive value can be assigned to cross sectional areas of elements. 

However, this is usually not the case in practical applications, where structural 

members should be adopted from a set of available sections. The latter is addressed to 

discrete sizing optimization. In shape optimization, the best positions of a selected 

group of joints in a structure are determined. Due to practical aspects this type of 

design optimization is usually involved in optimum design applications of truss 

structures rather than frames. In both the aforementioned optimization categories 

topology of a structure is assumed to be fixed. However, it is sometimes more 

expedient to search for the optimum topology of a structure, which entails considering 

the presence or absence of structural components, such as elements and nodes.  

 

Since in practical sizing optimization of skeletal structures usually the structural 

members are to be adopted from a set of available sections, the design problem turns 

into a discrete sizing optimization. Here the aim is to seek for the best set of ready 

sections which yield the optimum design. Although for a given structure in fact the 

number of candidate designs is numerically limited, however, in real world 

applications performing an exhaustive search is not possible in a reasonable 

computational time. Therefore, structural optimization techniques have been 

developed for locating the optimum or a reasonably good near optimum solution 

through investigating a portion of the design space in a reasonable computational 

time. These techniques and their applications in optimal design of structural systems 

are outlined in the following sections. 

 

1.2 Structural Optimization Techniques 

 

During the past decades, inherent complexity of practical structural optimization 

problems motivated the researchers to develop efficient and robust optimization 

techniques. Basically, structural optimization methods can be divided into two main 

categories: (i) traditional methods (ii) modern techniques. Two main categories of 

traditional structural optimization techniques include mathematical programming and 
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optimality criteria approaches, whereas heuristics or metaheuristic search techniques 

are referred to as the modern structural optimization methods. An overview of these 

techniques is provided in this section as follows. Mathematical programming 

techniques are amongst the well known classes of structural optimization techniques 

which work based on gradients of the objective function. The basic idea is to move in 

the negative direction of the gradient of the objective function to find a more 

promising candidate design. Many studies have been conducted on application of 

mathematical programming techniques in structural design optimization so far 

(Belegundu and Arora 1985, Rashedi and Moses 1986, Hall et al. 1989, Erbatur and 

Al-Hussainy 1992). However, it is generally conceived that mathematical 

programming techniques are not efficient for optimum design of structural systems 

having numerous design variables.  

 

Another class of traditional structural optimization techniques covers optimality 

criteria methods. Typically in optimality criteria methods first a set of necessary 

optimality criteria (such as Kuhn-Tucker conditions) are derived for the design. Next, 

in order to generate an optimum design a recursive algorithm is employed to update 

the structural members for satisfying the optimality criteria. Early works on optimality 

criteria methods are due to Prager et al. (1967), Prager (1968), Venkayya et al. (1973). 

Later, numerous variants of the optimality criteria methods are applied to optimum 

design of pin-jointed (Feury and Geradin 1978, Fleury 1980, Saka 1984) and frame 

structures (Tabak and Wright 1981, Khan 1984, Chan et al. 1995). It is worth 

mentioning that the well known fully stressed design (FSD) (Gallagher 1973, Patnaik 

et al. 1998) can be also considered as a simple stress-ratio optimality criteria 

technique which can only deal with stress constraints. An extension of FSD to handle 

both stress and displacement constraints is fully utilized design (FUD). The FUD 

includes two main steps (i) providing a FSD considering stress constrains (ii) 

prorating the FSD to obtain the FUD. The proportion parameter is computed with 

respect to the most violated displacement constraint. Although FUD is capable of 

generating a feasible solution through a small number of structural analyses, the 

obtained solution can be an overdesign. Patnaik et al. (1998) developed a modified 
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fully utilized design (MFUD) using advantage of the integrated force method (IFM) of 

structural analysis (Patnaik et al. 1991), however the study was limited to truss 

structures. 

 

Basically, traditional structural optimization techniques i.e. mathematical 

programming and optimality criteria are developed for handling continuous design 

variables, hence, they are not effective for tackling practical discrete optimization 

instances. Furthermore, gradient based formulations of such methods entail different 

types of approximations which sometimes are far from the reality. Therefore, due to 

the shortcomings of traditional techniques in handling real world design optimization 

instances, in the recent decades, stochastic search techniques or metaheuristics have 

received an increasing attention and found plenty of applications in structural 

optimization field.  

 

In general, metaheuristic techniques, such as genetic algorithms (GAs) (Goldberg and 

Samtani 1986), particle swarm optimization (PSO) (Kennedy and Eberhart 1995), ant 

colony optimization (ACO) (Dorigo 1992), etc., borrow their working principles from 

natural phenomena (Yang 2008); and follow non-deterministic search strategies in 

locating the optimum solutions. The rising popularity of these techniques arise from 

(i) the lack of dependency on gradient information; (ii) inherent capability to deal with 

both discrete and continuous design variables; and (iii) automated global search 

features to produce near-optimum solutions (if not the global optimum) for 

complicated problems. In addition, the simplicity in their coding makes it possible to 

avoid cumbersome formulations frequently encountered with traditional structural 

optimization technique, and renders them ideal and prevalent tools for structural 

optimization applications. The state-of-the-art reviews of metaheuristic techniques and 

their applications in structural design optimization problems are provided in Saka 

(2007a), Lamberti and Pappalettere (2011a), Saka and Geem (2013), and Hare et al. 

(2013).  

 



5 

 

1.3 Optimization of Skeletal Structures using Metaheuristics: A Survey of the 

State-of-the-Art 

 

Undoubtedly, in the recent years, most of the optimization algorithms developed for 

optimum design of truss and frame structures belong to the class of stochastic search 

algorithms or metaheuristics. Besides various inspiration resources reported in the 

literature for development of metaheuristic search techniques, in fact these techniques 

have similar characteristics. Basically, a metaheuristic structural optimization 

algorithm aims to locate the global optimum in the solution space through generating 

candidate solutions in an iterative way. Roughly speaking, the fundamental idea is to 

seek the vicinity of more promising candidate designs found so far to drive the search 

towards more reliable portions of the solution space. Since working principles of these 

techniques are somewhat identical, a general outline is provided here. Detailed 

descriptions of various types of metaheuristic algorithms can be found in (Yang 

2008).  

 

Typically, a metaheuristic structural optimization algorithm initiates with a population 

of randomly generated candidate designs. The initial population is mostly composed 

of infeasible solutions due to this random generation. Then in order to investigate the 

quality of generated designs, each candidate design is evaluated with respect to a 

merit function which can be the objective function of the problem. Once merit or 

fitness of each candidate design is computed, new candidate designs can be generated 

using the obtained information from the formerly generated designs. Generally, 

different mechanisms and operators are utilized for generating a new population of 

solutions to guide the search towards the optimum. In fact the key difference between 

the algorithms is in the way that they propose the next move in the solution space i.e. 

the new candidate design. In metaheuristics generation of new populations is 

iteratively performed until a predefined termination criterion, which is usually the 

maximum number of iterations, is met. The last iteration of a metaheuristic algorithm 

is expected to include the optimum or a reasonably good near optimum design. Many 

studies have been conducted on structural optimization using metaheuristics so far. 
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Some of the most recent applications of these algorithms in optimum design of truss 

and frame structures are outlined below. 

 

In fact GAs are the most well known metaheuristic algorithms frequently employed 

for structural optimization applications. Kameshki and Saka (2001a) studied the effect 

of bracing on the optimum design of planar steel frames using GAs. In their study, 

first, a 15 story frame was designed assuming rigid beam column connections and fix 

supports, as well as rigid frame with pin supports. Then the same frame, with pin 

supports, was designed assuming pin beam-column connections with four types of 

frequently used bracing systems. Through investigating X-bracing, X-bracing with 

outrigger truss, V-bracing and Z-bracing systems they presented a clear numerical 

comparison among the minimum weights obtained for all the aforementioned systems. 

According to the reported results X-bracing provided the minimum weight frame in 

comparison to the other considered structural systems. 

 

Kameshki and Saka (2001b) presented a GA for optimum design of steel frames with 

semi-rigid connections based on BS 5950 (1990) specifications. Considering the 

optimum design of two unbraced steel frames with end plate connection without 

column stiffeners, it was deducted that the semi-rigid connection modeling produces 

lighter designs. In their work the number of investigated semi-rigid connections was 

limited to one type. In a more comprehensive study, Kameshki and Saka (2003) 

evaluated the effect of connection flexibility and the geometric non-linearity of the 

frame members in the optimum design of planer steel frames. A GA based approach 

was employed for optimization of three unbraced steel frames with rigid and three 

different types of semi-rigid connections. It was demonstrated that considering the 

geometric nonlinearity, in the analysis stage, leads to lighter frames in case of rigid 

connections. 

 

Kaveh and Kalatjari (2002) employed the force method for structural analysis stage of 

a genetic algorithm based structural optimization technique. Considering optimum 

design of truss structures they demonstrate the computational efficiency of the 
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proposed method. Hayalioglu and Degertekin (2005) developed a genetic algorithm 

for cost efficient design of steel frames with semi-rigid connections and column bases. 

The optimization results of three planar steel frames using eight different types of 

semi-rigid connections and column bases was compared to those obtained using rigid 

connections. According to the presented numerical results, instead of using rigid 

connections, sometimes choosing specific types of semi-rigid connections could to be 

more economical. It should be noted that, since the study does not cover seismic 

loading, the conclusion cannot be generalized for the steel frames exposed to seismic 

loads. Later, Degertekin et al. (2008) investigated the efficiency of the tabu search 

(Glover 1989) and genetic algorithm in design optimization of geometrically 

nonlinear steel space frames based on the AISC-LRFD (1995) specifications. 

According to the investigated examples, tabu search algorithm resulted in lighter 

designs.  

 

Recently, Kazemzadeh Azad et al. (2012) developed a mutation based genetic 

algorithm for sizing and shape optimization of planar and spatial truss structures. An 

adaptive tournament selection mechanism in combination with adaptive Gaussian 

mutation operators were used to achieve an effective search in the design space. The 

efficiency of the proposed GA was demonstrated using design examples of truss 

structures with both discrete and continuous design variables. 

 

The PSO algorithm proposed by Kennedy and Eberhart (1995) is another popular 

metaheuristic search technique with extensive applications in the field of structural 

design optimization. Fourie and Groenwold (2002) applied the PSO algorithm to 

design optimization instances with sizing and shape variables and compared its 

performance to that of GA as well as three gradient based techniques. Considering 

optimum design of three truss structures and a torque arm the authors demonstrated 

the suitability of the PSO in tackling structural optimization problems. Perez and 

Behdinan (2007) investigated the effect of different parameter settings on the 

efficiency of the PSO algorithm through optimal design of classical truss optimization 

instances. Li et al. (2007, 2009) proposed improved variants of the PSO as heuristic 



8 

 

PSO algorithms for optimum design of truss structures. Further, Kaveh and Talatahari 

(2009a) developed a hybrid version of the PSO algorithm for discrete sizing 

optimization of truss structures and demonstrated its promising performance. Luh and 

Lin (2011) used a two stage PSO algorithm for minimum weight design of truss 

structures. In their approach first a topology optimization is performed using a ground 

structure and next sizing and shape optimizations are carried out to locate the 

minimum weight design. Recently, Gomes (2011) employed the PSO algorithm for 

sizing and shape optimization of truss structures with frequency constraints and 

reported promising performance of the technique. 

 

Geem et al. (2001) developed the harmony search (HS) algorithm as a new meta-

heuristic technique. Later, Lee and Geem (2004) used the algorithm for sizing 

optimization of truss structures and demonstrated its efficiency compared to 

conventional mathematical methods as well as genetic algorithm. They concluded that 

the algorithm can be also employed for optimum design of other types of structures 

such as frame, plate or shell structures. Saka (2007b) demonstrated the efficiency of 

the HS algorithm in optimum geometry design of single layer geodesic domes. In their 

approach the height of the dome crown was treated as a design variable along with the 

cross-sectional designations of dome members. Later, Carbas and Saka (2009) 

employed the algorithm for design optimization of single layer network domes. Saka 

(2009) used the HS algorithm for optimum design of steel sway frames. Recently, 

Hasancebi et al. (2010a) presented an adaptive harmony search algorithm for 

structural optimization and employed it for sizing optimization of a 162-member 

braced planar steel frame and a 744-member unbraced space steel frame. Unlike the 

standard HS algorithm where the control parameters are typically set to constant 

values, in their algorithm these parameters are adaptively tuned during the search to 

establish a tradeoff between the exploration and exploitation in the design space. They 

illustrated the efficiency of their adaptive approach through comparison of the 

obtained numerical results with those of four other metaheuristic algorithms.  
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Another novel metaheuristic algorithm is a nature-inspired method so called artificial 

bee colony (ABC) algorithm which is proposed by Karaboga (2005). One recent 

application of this algorithm in sizing optimization of planar and space truss structures 

is due to Hadidi et al. (2010). The authors proposed some modifications in the original 

algorithm and reported satisfactory results of optimum design of four truss structure 

examples. Sonmez (2011a) used a discrete ABC algorithm for optimum design of 

truss structures with up to 582 members and reported promising performance of the 

algorithm compared to the other well known metaheuristic techniques. Furthermore, 

Sonmez (2011b) employed the ABC algorithm with an adaptive penalty function 

approach for minimum weight design of truss structures with fixed geometries. 

Besides the available works in the literature on application of the ABC in optimum 

design of truss structures, further research is required to investigate the performance 

of the algorithm in optimum design of steel frames. 

 

Erol and Eksin (2006) introduced a new metaheuristic optimization method called Big 

Bang–Big Crunch (BB-BC) algorithm. Due to the simple algorithmic outline of the 

method as well as its efficiency in tackling practical optimization instances, it has 

become one of the popular metaheuristics of the recent years. The first application of 

the algorithm in optimum design of skeletal structures was carried out by Camp 

(2007). In his work the optimum design of planar and spatial truss structures was 

performed using a modified version of the algorithm. In order to increase the 

efficiency of the BB–BC algorithm, Camp (2007) introduced a weighting parameter to 

control the influence of both the center of mass and the current global best solution on 

new candidate solutions. Further, a multiphase search strategy was employed to 

increase the quality of final solution. The study demonstrated the efficiency of the 

BB–BC algorithm in comparison to the previously reported GA, PSO, and ACO based 

approaches. Later, Kaveh and Abbasgholiha (2011) adopted the Camp’s strategy of 

generating new candidate solutions for design optimization of planar steel sway 

frames. Lamberti and Pappalettere (2011b) proposed an improved version of the BB-

BC algorithm for weight minimization of truss structures and reported promising 

results using four benchmark truss optimization examples. Kaveh and Talatahari 
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(2009b,c , 2010a) developed hybrid versions of the BB-BC algorithm for optimum 

design of different types of skeletal structures. Recently, in Kazemzadeh Azad et al. 

(2011) the success of BB-BC algorithm in benchmark problems of engineering 

optimization is investigated. 

 

Charged system search (CSS) is a very recent meta-heuristic optimization algorithm 

proposed by Kaveh and Talatahari (2010b). The authors employed the algorithm for 

optimum design of skeletal structures including three truss and two frame structures 

(Kaveh and Talatahari 2010c). The study revealed the efficiency of the CSS in 

comparison to the other heuristic methods. In another study the authors applied a 

discrete version of the algorithm to sizing optimization of different types of truss 

structures with fixed configurations (Kaveh and Talatahari 2010d). Furthermore, an 

enhanced version of the CSS algorithm is used for configuration optimization of truss 

structures (Kaveh and Talatahari 2011). Additionally, the efficiency of the charged 

system search is demonstrated considering the optimum design of three benchmark 

examples of frame structures with up to 290 members in Kaveh and Talatahari (2012). 

Besides the above-mentioned algorithms, numerous metaheuristic search techniques 

have been also developed in the recent years to deal with challenging optimization 

problems (Yang 2010, Hasançebi and Kazemzadeh Azad 2012, Kaveh and 

Khayatazad 2012). Due to the variety of metaheuristic techniques available in the 

literature of structural optimization, adopting an appropriate method for practical 

applications may turn into a confusing task. Therefore, comparison and performance 

evaluation of optimization algorithms can lessen the burden of choosing an efficient 

algorithm to deal with a given design optimization problem. In this regard, Hasançebi 

et al. (2009) evaluated the performance of seven metaheuristic optimization 

algorithms in optimal design of truss structures. The investigated algorithms include 

GA, SA, ES, PSO, tabu search (TS), ant colony optimization (ACO) and HS. The 

algorithms were compared through design optimization of four real size truss 

structures according to the design limitations of AISC-ASD (1989). The study 

revealed the superiority of SA and ES to the other techniques in design optimization 

of truss structures. Later, Hasancebi et al. (2010b) investigated the performance of the 
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above mentioned algorithms in design optimization of steel frames with rigid 

connections. In the studied three steel frame examples, the two best performances 

were related to ES and SA algorithms amongst the other techniques. The study 

provides general guidelines for future practical applications of metaheuristics in 

design optimization of steel frames. 

 

1.4 Today's Dilemma in Practical Structural Optimization 

 

Despite many studies conducted on developing efficient optimization algorithms for 

structural optimization applications, no unique method is accepted to be the most 

successful approach for optimum design of skeletal structures so far. Basically, two 

main factors determine the efficiency of a design optimization algorithm. The first 

criterion is optimality of the obtained final design and the second measure is speed of 

the algorithm in finding the optimum solution. The latter is highly dependent on the 

number of structural analysis required in the optimization process to locate the 

optimum or a relatively good near optimum solution.  

 

In spite of many advantageous characteristics of modern structural optimization 

techniques namely metaheuristics, the slow rate of convergence towards the optimum 

as well as the need for a high number of structural analyses are conceived as the 

downside of the search features of these techniques in structural optimization 

applications. It is known that response computations of designs sampled during a 

search process usually occupies 85-95% workload of a metaheuristic technique 

(Hasançebi et al. 2011a), and thus large number of structural analyses substantially 

increases the total computing time. Here, one solution to this is to reduce the total 

computational time by taking advantage of high performance computing methods, 

such as parallel or distributed computing methods. The idea in this approach is to 

distribute the total workload of the algorithm amongst multiprocessors of a single 

computer or within a cluster of computers connected to each other via local area 

network. In Hasançebi et al. (2011) it is shown that a maximum speedup ratio between 
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12.2 and 16.8 can be achieved for three large-scale design examples solved using a 

cluster computing system consisting of 32 processors.  

 

Another approach, which is more straightforward and easier to apply, is to develop 

efficient strategies for diminishing the number of structural analyses required in the 

course of optimization. The latter, can be carried out by proposing efficient 

optimization techniques that are able to locate a reasonable solution using fewer 

numbers of structural analyses, i.e. less computational effort. 

 

It is worth mentioning that although numerous studies demonstrate the applicability of 

modern optimization techniques in structural design optimization, still optimization is 

not established well in typical design of skeletal structures basically due to the 

following reasons. On one hand enormously time consuming procedures of modern 

techniques make structural engineers reluctant to use them in real world applications. 

The computational inefficiency of modern techniques makes it almost impossible to 

use them for large scale applications without utilizing high performance computing 

techniques. As a result of this, structural engineers generally do not receive benefits of 

optimization in large scale applications wherein optimality of final designs are much 

more important in comparison to small size structures.  

 

On the other hand since in practical applications structural analysis and design check 

stages are generally carried out by commercial software such as SAP2000, 

optimization tools should be developed such that they can work integrated with the 

analyzer. In other words, automated design optimization platforms are needed for 

simultaneous modeling, analysis, and design optimization of structures. However, 

generally the existing design optimization software, capable of performing design 

optimization integrated with a structural analysis program, support only one design 

code specifications or one type of skeletal structures only. Hence, considering the 

above-mentioned issues, the new trend of structural design optimization is towards 

developing automated optimum design techniques capable of locating promising 

solutions in a reasonable computational time for practical applications. There is also a 



13 

 

great demand for robust and efficient algorithms capable of handling large scale 

systems without employing expensive high performance computing techniques. 

 

1.5 Aim and Scope of the Thesis 

 

The theoretical and practical objectives of the study are as follows: (i) developing an 

automated design optimization environment for practical applications; (ii) improving 

the performance of existing modern structural optimization algorithms through 

reformulations and modifications in their algorithmic structures; (iii) proposing 

efficient strategies for diminishing the total computational effort of the existing 

structural optimization techniques; (iv) developing computationally efficient structural 

design optimization techniques based on the principles of structural mechanics; (v) 

facilitating practical optimum design of large scale structural systems and removing 

the need for expensive high performance computing techniques such as parallel or 

distributed computing methods. The following chapters of the thesis are organized as 

follows. 

 

Chapter 2 provides a mathematical formulation of the considered discrete sizing 

optimization of steel truss and frame structures. Since AISC-ASD and AISC-LRDF 

specifications are both used in the investigated optimum design examples, for the sake 

of clarity, the corresponding criteria are outlined in this chapter for both the 

aforementioned design codes.  

 

Chapter 3 covers performance enhancement of a novel metaheuristic technique, i.e., 

the BB-BC algorithm for discrete sizing optimization. It is shown that the standard 

version of the algorithm is sometimes unable to produce reasonable solutions to 

problems from discrete design optimization of steel skeletal structures. Hence, 

through investigating the shortcomings of the BB-BC algorithm, it is aimed to 

reinforce the performance of the technique for this class of problems in particular. 

Reformulations of the BB-BC algorithm are proposed, where the formula used by the 

standard algorithm for generating new candidate solutions around the center of mass 
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is efficaciously reformulated, resulting in the so-called modified BB-BC (MBB-BC) 

and exponential BB-BC (EBB-BC) variants for truss and frame type structures, 

respectively. The performances of the proposed algorithms are compared to those of 

other well-known metaheuristic techniques using various practical design 

optimization instances.  

 

Chapter 4 proposes an upper bound strategy (UBS) for reducing the total 

computational effort in metaheuristic based structural optimization algorithms. The 

idea behind the UBS is to detect those candidate designs which have no chance to 

improve the search during the iterations of the algorithm. After identifying the non-

improving candidate designs, they are directly excluded from the structural analysis 

stage, resulting in diminishing the total computational effort. The well-known big 

bang-big crunch algorithm as well as its two enhanced variants, namely MBB-BC and 

EBB-BC algorithms, are selected as typical metaheuristic algorithms to investigate the 

effect of the UBS on computational efficiency of these techniques. The numerical 

results obtained from optimum design of steel truss and frame structures clearly reveal 

that the UBS can significantly lessen the total computational time in metaheuristic 

based design optimization of steel structures. 

 

Chapter 5 describes the development of a guided stochastic search (GSS) technique 

for computationally efficient design optimization of steel trusses. The GSS offers a 

stochastic procedure where the optimization process is guided by the principle of 

virtual work and response computations of the generated designs, resulting in an 

efficient and rapid search. In the proposed method, the information provided through 

the structural analysis and design check stages are used for handling strength 

constraints. Furthermore, the well-known principle of virtual work is utilized to detect 

the most effective structural members for satisfying displacement constraints. The 

optimum sizing of a structure is then performed using an integrated approach wherein 

both strength and displacement criteria are taken into account for reduction of the 

member sizes along the way the aforementioned constraints are handled.  
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In chapter 5 first the performance of the proposed GSS technique is evaluated in 

discrete sizing optimization problems of truss structures having a single displacement 

constraint under a single load case. Next, the GSS is further improved for tackling a 

more general class of truss optimization problems subject to multiple displacement 

constraints and load cases. To this end, enhancements of the GSS are proposed in the 

form of two alternative approaches that enable the technique to deal with multiple 

displacement/load cases. The first approach implements a methodology in which the 

most critical displacement direction is considered only when guiding the search 

process. The second approach, however, takes into account the cumulative effect of all 

the critical displacement directions in the course of optimization. Here, advantage of 

the integrated force method of structural analysis is utilized for further reduction of 

the computational effort in these approaches. The performance of the proposed GSS 

technique is evaluated and compared with some selected techniques of metaheuristics 

through real-size trusses that are sized for minimum weight. The numerical results 

indicate the computational efficiency and robustness of the proposed technique 

compared to metaheuristic algorithms. 

 

Chapter 6 provides a GSS based computationally enhanced algorithm for frame 

optimization. In this chapter the GSS technique is refined and reformulated for 

tackling discrete sizing optimization problems of steel frames. In order to increase the 

efficiency of the method local search and move-back mechanisms are integrated with 

the original GSS. On the one hand, the proposed local search mechanism helps the 

GSS increase the quality of solutions found during the search process without 

deteriorating its global search features. On the other hand, the move-back mechanism 

is introduced to avoid additional iterations required for modifying probable highly 

overdesigned solutions in the course of optimization. The proposed refined and 

reformulated GSS is compared with some contemporary metaheuristics using three 

real-size steel frames. The numerical results obtained demonstrate the computational 

efficiency of the proposed approach in optimum design of steel frames.  
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Chapter 7 presents a brief conclusion of the thesis and highlights the most significant 

outcomes of the study. At last, some recommendations are provided for further 

research. 
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CHAPTER 2 

 

 

OPTIMUM DESIGN PROBLEM FORMULATION 

 

 

 

2.1 Discrete Sizing Optimization Problem to AISC-ASD 

 

Typically in practical design optimization of steel structures the aim is to find a 

minimum weight design by selecting cross-sectional areas of structural members from 

a table of available sections, such that the final design satisfies strength and 

serviceability requirements according to a chosen code of design practice. According 

to AISC-ASD (1989) specifications for a structure composed of mN  members that are 

collected in gN  groups, this problem can be formulated as follows. The objective is to 

find a vector of integer values I , Eq. (2.1), representing the sequence numbers of 

standard sections for 
gN  member groups in the section table 

 
 
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to minimize the weight (W ) of the structure 
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where 
iA  and 

i  
are the length and unit weight of a standard section adopted for 

member group i, respectively, sN  is the total number of members in group i, and mL  

is the length of the member m which belongs to group i. The design constraints, which 

are formulated separately for steel trusses and frames in the following subsections, 

consist of certain limitations imposed on overall structural response as well as 

individual members. 
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2.1.1 Design Constraints for Steel Trusses 

 

The constraints usually involved in the design of steel trusses consist of following 

inequalities:   
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where af
 
and aF

 
are the computed axial stress and its allowable value for a member, 

respectively;   and a  
are the slenderness ratio and its allowable value for a member, 

respectively; and d  and aD  are the displacement computed at a joint in a certain 

direction and its allowable value, respectively. 

  

In Eq. (2.3), the allowable axial stress in tension is taken as the smaller of 
yF60.0  and 

uF50.0  , where 
yF  and uF  stand for the yield and ultimate tensile strengths, 

respectively. On the other hand, the allowable stress in compression is calculated 

based on two possible failure modes known as elastic and inelastic buckling using 

Eqs.  (2.6) and (2.7) 
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buckling) elastic(,
)/(23

12
2

2

ca C
rKL

E
F  


                             (2.7) 

where E is the elasticity modulus, K is the effective length factor, r is the radius of 

gyration about buckling axis, and yc FEC /2 2  is the critical slenderness ratio. 

Finally, the maximum slenderness ratio a  in Eq. (2.4) is limited to 300 for tension 

members, whereas it is taken as 200 for compression members.  

 

2.1.2 Design Constraints for Steel Frames 

 

In steel frames the structural members that are subjected to a combination of axial 

compression and flexural stress must be sized to meet the following stress constraints: 

' '
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In case the flexural member is under tension, the following formula is employed: 
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In Eqs. (2.8-2.11), af  represents the computed stress due to axial compression force, 

and the computed flexural stresses due to bending of the member about its major (x) 
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and minor (y) principal axes are denoted by bxf  and byf , respectively. exF   and eyF   

denote the Euler stresses about principal axes of the member divided by a factory of 

safety of 23/12. aF  is the allowable compressive stress under axial compression force 

alone, and is calculated using Eq. (2.6) or (2.7) depending on elastic or inelastic 

bucking failure mode of the member. The allowable bending compressive stresses 

about major and minor axes are designated by bxF  and byF , which are computed 

using the Formulas 1.5-6a or 1.5-6b and 1.5-7 given in AISC-ASD (1989). It is 

important to note that while calculating allowable bending stresses, a newer 

formulation, Eq. (2.12), of moment gradient coefficient bC  given in ANSI/AISC 360-

05 (2005) is employed in the study to account for the effect of moment gradient on 

lateral torsional buckling resistance of the elements,   

0.3
3435.2

5.12

max

max 


 m

CBA

b R
MMMM

M
C                        (2.12) 

where maxM , AM , BM  and  CM  are the absolute values of maximum, quarter-point, 

midpoint, and three-quarter point moments along the unbraced length of the member, 

respectively, and mR  is a coefficient which is equal to 1.0 for doubly symmetric 

sections. mxC  and myC  are the reduction factors, introduced to counterbalance 

overestimation of the second-order moments by the amplification factor )/1( ea Ff  . 

For braced frame members without transverse loading between their ends, they are 

calculated from )/(4.06.0 21 MMCm  , where 21 / MM  is the ratio of smaller end 

moment to the larger end moment. For braced frame members having transverse 

loading between their ends, they are determined from the formula )/(1 eam FfC    

based on a rational approximate analysis outlined in AISC-ASD (1989) Commentary-

H1, where   is a parameter that considers maximum deflection and maximum 

moment in the member. 

 

For the computation of allowable compression and Euler stresses, the effective length 
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factors (K) are required. For beam and bracing members, K is taken equal to unity. For 

column members, alignment charts furnished in AISC-ASD (1989) can be utilized. In 

this study, however, the effective length factors of columns in braced steel frames are 

calculated from the following approximate formula developed by Dumonteil (1992), 

which are accurate to within about -1.0 and +2.0 % of the exact results (Hellesland 

1994): 

28.1)(0.23

64.0)(4.13






BABA

BABA

GGGG

GGGG
K                                (2.13) 

where AG  and BG  refer to stiffness ratio or relative stiffness of a column at its two 

ends.  

 

In addition to axial force and bending, the members must be sized to have sufficient 

strength against shear. Eq. (2.14) ensures that the calculated shear stresses ( vf ) in 

members are smaller than the allowable shear stresses vF( ) 

yvvv FCFf 40.0                                           (2.14) 

where vC  is referred to as web shear coefficient calculated from Formulas G2-3, G2-4 

and G2-5 in ANSI/AISC 360-05 (2005). Additionally the maximum slenderness ratio 

is limited to 300 and 200 for tension and compression members, respectively.  

 

2.2 Discrete Sizing Optimization to AISC-LRFD  

 

This section covers the design procedure based on the AISC-LRFD (1994) code. The 

design criteria for steel frame structures are described first; then in the next subsection 

the required amendments are given to employ the same procedure in case of truss 

structures. For steel frames, according to AISC-LRFD (1994) code of practice, the 

following design constraints (
i
IELC and

v
IELC ) must be satisfied for the strength 

requirements. 
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0)()(  IELnvIELJu

v
IEL VVC                        (2.17) 

 

In Eqs. (2.15) to (2.17), IEL=1, 2, …, NEL is the element number, NEL is the total 

number of elements, J=1, 2, …, N is the load combination number and N is the total 

number of design load combinations. JuP  is the required axial (tensile or 

compressive) strength, under J-th design load combination. JuxM  and JuyM  are the 

required flexural strengths for bending about x and y, under the J-th design load 

combination, respectively; where subscripts x and y are the relating symbols for strong 

and weak axes bending, respectively. On the other hand, nP , nxM and nyM  are the 

nominal axial (tensile or compressive) and flexural (for bending about x and y axes) 

strengths of the IEL-th member under consideration.    is the resistance factor for 

axial strength, which is 0.85 for compression and 0.9 for tension (based on yielding in 

the gross section) and b  is the resistance factor for flexure, which is equal to 0.9. 

Here, Eq. (2.17) is used for checking members’ shear capacity wherein JuV
 
is the 

required shear strength under J-th load combination and nV
 
is the nominal shear 

strength of the IEL-th member under consideration. In order to calculate the design 

shear strength the nominal shear strength is multiplied by a resistance factor v  of 0.9. 
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In addition to the strength requirements, the serviceability criteria should be 

considered in the design process. The serviceability constraints ( t
DC and d

FC ) 

considered in this research for frame structures are formulated as follows: 

    
0 a

MaxJMax
t
DC               (2.18) 

    
0][][  F

a
FJ

d
FC              (2.19) 

Eq. (2.18) compares the maximum lateral displacement of the structure in the D-th 

direction (D=1, …, ND) under J-th load combination JMax  with the maximum 

allowable lateral displacement a
Max . Similarly, Eq. (2.19) checks the interstory drift 

of the F-th story (F=1, 2, …, NF) under the J-th load combination FJ ][  against the 

related permitted value F
a ][ ; here NF is the total number of stories. 

 

2.2.1 Nominal Strengths 

 

Based on AISC-LRFD (1994) specification, the nominal tensile strength of a member, 

based on yielding in the gross cross section, is equal to: 

       gyn AFP                                           (2.20) 

where yF  is the member’s specified yield stress and gA  is the gross cross section of 

the member. 

 

The nominal compressive strength of a member is the smallest value obtained from 

the limit states of flexural buckling, torsional buckling, and flexural-torsional 

buckling. For members with compact and/or non-compact elements, the nominal 

compressive strength of the member for the limit state of flexural buckling is as 

follows: 

               
gcrn AFP                   (2.21) 
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where crF  is the critical stress based on flexural buckling of the member, calculated 

as: 
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In the above equations, l  is the laterally unbraced length of the member, K  is the 

effective length factor, r  is the governing radius of gyration about the axis of 

buckling and E  is the modulus of elasticity.  

 

The AISC-LRFD (1994) code addresses the nominal compressive strength based on 

the limit state of torsional and flexural-torsional buckling, for doubly symmetric 

members with compact and/or non-compact elements. For this limit state, Eq. (2.21) is 

still applicable with the following modifications: 
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where  

    eye FF                                   (2.26) 
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In Eq. (2.27), wC  is the warping constant, G  is the shear modulus, J  is the torsional 

constant, xI  and yI are moments of inertia about principal axes, zl  is the unbraced 
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length for torsional buckling, and zK  is the effective length factor for torsional 

buckling. In this study zK  is conservatively taken as unity.  

 

The nominal flexural strength of a member is the minimum value obtained according 

to the limit states of yielding, lateral-torsional buckling, flange local buckling, and 

web local buckling. The flexural capacity based on the limit state of yielding is as 

follows: 

         
yypn FSFZMM 5.1                        (2.28) 

where Z is the plastic modulus and S is the section modulus of the member for the axis 

of bending. For doubly symmetric sections, the flexural capacity considering the limit 

state of lateral-torsional buckling is as follows: 
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where bL
 
is the laterally unbraced length of the member, pL  is the limiting laterally 

unbraced length for full plastic bending capacity, rL
 
is the limiting laterally unbraced 

length for inelastic lateral-torsional buckling, rM
 
is the limiting buckling moment, 

and crM
 
is the critical elastic moment for the lateral-torsional buckling. The 

modification factor for non-uniform moment diagram, bC , is defined by Eq. (2.30), 
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where maxM , AM , BM , and CM  are absolute values of maximum moment, moment 

at quarter point, centerline, and three-quarter point of the unbraced segment, 

respectively.  
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The nominal flexural strength of members with doubly symmetric sections and non-

compact flanges, considering the limit state of flange local buckling, is given below: 
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where f  is the flange slenderness parameter, f
p  is the limiting value of f  for full 

plastic bending capacity, f
r  is the limiting value of f  for inelastic flange local 

buckling, f
rM  is the limiting moment for flange buckling, and f

crM  is the critical 

elastic moment for flange local buckling.  

 

The nominal flexural strength of members with doubly symmetric sections and non-

compact webs, considering the limit state of flange web buckling, is given below: 
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where w  is the web slenderness parameter, w
p  is the limiting value of w  for full 

plastic bending capacity, w
r  is the limiting value of f  for inelastic web local 

buckling, w
rM  is the limiting moment for web buckling, and w

crM  is the critical elastic 

moment for web local buckling.  

 

The nominal shear strength of unstiffened webs of doubly symmetric members, 

subjected to shear in the plane of the web, is as follows: 
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wywnyww AFVFthfor 6.0418             (2.33) 

)(/)418(6.0523418 wywwywnywwyw thFAFVFthFfor 
  
(2.34) 

2)(/132000260523 wwnwyw thAVthFfor                      (2.35) 

 

where h  is the clear distance between flanges less the fillet or corner radius for rolled 

shapes, wt  is the web thickness, wA  is the shear area, and ywF  is the yield stress of 

the web in ksi; also nV  in Eq. (2.35) is in ksi. Here, to keep the original formulation of 

the code, Eqs. (2.33) to (2.35) are presented in British units. For members subjected to 

shear perpendicular to the plane of the web, the nominal shear strength is calculated 

through Eq. (2.33) as well. 

 

2.2.2 Effective Length Factor K  

 

In order to calculate the nominal compressive strength, the effective length factor, K, 

should be determined for each member. This factor can be computed using the frame 

buckling monograph developed by Jackson and Moreland as cited in McGuire (1968). 

For sway frames, the effective length factor for columns is computed as follows: 
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where K  , i and j subscripts correspond to end-i and end-j of the compression 

member, and subscripts c and b, in building structures, refer to columns and beams 

connecting to the joint under consideration, respectively. Parameters I and l in the 
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above equations, represent the moment of inertia and unbraced length of the member, 

respectively. Here, K factor for beam, bracings and non-sway column elements is 

taken as 1. It is worth mentioning that in case of the examples solved before in the 

literature, calculation of the effective length factor, K, is performed using Eq. (2.13) 

for the sake of conformity. In case of the new instances Eqs. (2.36) and (2.37) are 

used. 

 

2.2.3 Considerations for Steel Trusses  

 

Since truss members carry only axial forces, the design criteria for truss structures can 

be considered as a simplified form of the aforementioned relations for frames. 

According to AISC-LRFD (1994) code, for each truss member, i, the following 

relation must be satisfied for the strength requirement. 
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 In Eq. (2.38), Pu and Pn are the required and nominal axial (tensile or compressive) 

strengths of the i-th member under consideration, respectively. Here,   is the 

resistance factor for axial strength, which is 0.85 for compression and 0.9 for tension.  

 

In addition to the strength requirements, the displacement criterion considered in this 

study for truss structures is formulated as follows: 
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where  j =1, 2, …, Nj is the joint number, Nj is the total number of joints, dj,k , and 

(dj,k)all, are the displacements computed in the k-th direction of the j-th joint and its 

allowable value, respectively. 
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CHAPTER 3 

 

 

REFORMULATIONS OF BIG BANG-BIG CRUNCH ALGORITHM  

 

 

 

3.1 Introduction 

 

Big bang–big crunch (BB-BC) algorithm (Erol and Eksin 2006) is a novel 

metaheuristic optimization method based on the BB-BC theory of the universe 

evolution. The algorithm has become one of the most popular metaheuristics of the 

recent years because of its simple algorithmic structure and efficiency in solving real 

world design optimization problems. Different applications of the BB-BC algorithm in 

engineering design optimization problems have been reported in the literature so far. 

Afshar and Motaei (2011) used the BB-BC algorithm to find the optimal solution of 

large-scale reservoir operation problems. Tang et al. (2010) utilized the algorithm for 

parameter estimation in structural systems. An early work on application of the BB-

BC algorithm in optimum design of skeletal structures was reported by Camp (2007). 

Later studies considering the use of the BB-BC algorithm in structural design 

optimization are due to Kaveh and Abbasgholiha (2011), Lamberti and Pappalettere 

(2011b), and Kaveh and Talatahari (2009b, 2009c, 2010a). Recently, Kazemzadeh 

Azad et al. (2011) evaluated the performance of the BB-BC algorithm in benchmark 

problems of engineering optimization and reported promising results.  

 

This chapter presents a thorough investigation on the efficiency of BB-BC algorithm 

in discrete size optimum design of steel truss and frame structures. It is shown that a 

standard formulation of the BB-BC algorithm may sometimes fail to provide 

acceptable solutions to discrete sizing problems in structural optimization. The 

observed deficiencies of the algorithm are attributed to ineffective manipulation of the 

two search parameters; namely, search dimensionality and step size. Reformulations 



30 

 

of the BB-BC algorithm are then proposed, where the formula used by the standard 

algorithm for generating new candidate solutions around the center of mass is 

simplistically yet efficaciously reformulated, resulting in the so-called modified BB-

BC (MBB-BC) and exponential BB-BC (EBB-BC) variants for truss and frame type 

structures, respectively. The performances of the proposed algorithms are 

experimented and compared to its standard version as well as some other 

metaheuristic techniques using several practical design examples. In these examples 

the steel trusses and frames are sized for minimum weight subject to stress, stability 

and displacement limitations according to the provisions of AISC-ASD (1989). The 

numerical results confirm the efficiency of the proposed approaches in practical 

design optimization of steel structures. In the following sections, the main steps 

involved in implementation of a standard BB-BC algorithm are outlined. The 

observed deficiencies of the standard BB-BC algorithm in discrete design 

optimization of steel structures are discussed and the proposed reformulations of BB-

BC algorithm (i.e., MBB-BC and EBB-BC) are described in details. Finally the 

performance evaluations of the proposed algorithms through numerical examples are 

presented. 

 

3.2 Standard BB-BC Algorithm 

 

The BB-BC optimization algorithm is based on continuous application of two successive 

stages, namely big bang and big crunch phases. During big bang phase, new solution 

candidates are randomly generated around a point called center of mass. This point is 

recalculated and updated every time in the big crunch phase with respect to the solution 

candidates generated. The main steps in the implementation of a standard BB-BC 

algorithm are outlined as follows. 

 

Step1. Initial Population: Form an initial population by randomly spreading 

individuals (solutions) over all the search space (first big bang) in a uniform manner. 

This step is applied once. 
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Step 2. Evaluation: The initial population is evaluated, where structural analyses of 

all individuals are performed with the set of steel sections selected for design 

variables, and force and deformation responses are obtained under the loads. The 

objective function values of the feasible individuals that satisfy all problem constraints 

are directly calculated from Eq. (2.1). However, infeasible individuals that violate 

some of the problem constraints are penalized using an external penalty function 

approach, and their objective function values are calculated according to Eq. (3.1). 
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In Eq. (3.1),   is the penalized weight, ic  is the i-th design constraint and p  is the 

penalty coefficient. The fitness scores of the individuals are then calculated by taking 

the inverse of their objective function values (i.e. fitness = 1/W or 1/  for feasible and 

infeasible solutions, respectively). The fitness scores are assigned as the mass values 

for the individuals.  

 

Step 3. Big Crunch Phase: Calculate the “center of mass” by taking the weighted 

average using the coordinates (design variables) and the mass values of every single 

individual or choose the fittest individual among all as their center of mass. In the 

numerical investigations performed it is seen that selecting the center of mass based 

on the weighted average may lead to some convergence problems, increasing the 

computational time of the optimization dramatically. Hence, the latter approach is 

adopted in the present study. 

 

Step 4. Big Bang Phase: Generate new individuals by using normal distribution (big 

bang phase). For a continuous variable optimization problem, Eq. (3.2) is used at each 

iteration to generate new solutions around the center of mass. 
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where  is the value of i-th continuous design variable in the fittest individual,  

and  are the lower and upper bounds on the value of i-th design variable, 

respectively, iN )1,0(  is a random number generated according to a standard normal 

distribution with mean () zero and standard deviation () equal to one, k is the 

iteration number, and α is a constant.  

 

In this research, however, a discrete list of ready sections is used for sizing members 

of a steel structure. Hence, Eq. (3.3) is employed instead to round off the real values 

to nearest integers representing the sequence number of ready sections in a given 

section list 
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where 
c

iI  is the value of i-th discrete design variable in the fittest individual, and 
min

iI  

and 
max

iI  are its lower and upper bounds, respectively. 

 

Step 5. Elitism: Keep the fittest individual found so far in a separate place or as a 

member of the population. 

 

Step 6. Termination: Go to Step 2 until a stopping criterion is satisfied, which can be 

imposed as a maximum number of iterations or no improvement of the best design 

over a certain number of iterations. 
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3.3 Search Dimensionality and Step Size 

 

Metaheuristic search techniques offer a general solution methodology for solving a 

wide range of optimization problems from different disciplines. On the other hand, 

each optimization problem has unique features of its own, and in most cases a 

problem-wise reformulation is necessary to achieve the best performance of the 

algorithm for a particular class of problems. In the following the observed deficiencies 

of the standard BB-BC algorithm in discrete design optimization of steel structures are 

discussed in detail. The poor performance of the standard algorithm is attributed to 

ineffective manipulations of the two search parameters; namely search dimensionality 

and step size. 

 

Search dimensionality (SD) is defined as the number of design variables that are 

perturbed to generate a new design through Eq. (3.3). Perhaps a more general term to 

quantify the degree of search dimensionality irrespective of problem size will be 

search dimensionality ratio (SDR), which is computed by proportioning the number of 

perturbed design variables ( pN ) to the total number of design variables ( dN ) used in 

a problem, Eq. (3.4).  

 

 
d

p

N

N
SDR                                                   (3.4) 

 

It may be expected that SDR will be different for each individual in the population, 

and the average search dimensionality ratio for a population, aveSDR)( , is obtained by 

averaging SDR values of all the individuals, Eq. (3.5), where (SDR)j is search 

dimensionality ratio for individual j and Npop is the population size referring to the 

total number of individuals in the population.  

 

 
pop

j

ave
N

SDR
SDR




)(
)(                                         (3.5) 



34 

 

 

For continuous optimization problems aveSDR)( will always have a value equal or 

close to 1.0, since all design variables -except those on the value bounds- are 

subjected to perturbation during generation of a new individual. That is to say an N-

dimensional search is performed by the algorithm at any time during the search 

process. However, for discrete optimization problems some design variables will 

remain unchanged owing to the fact that the second term on the right hand side of Eq. 

(3.3) is rounded off to zero when the random number  generated by normal 

distribution is too small, which implicitly drive aveSDR)( to low values especially 

when the iteration number k increases.  

 

On the other hand, the step size for a single design variable is equal to c

i

new

i II  . 

Hence at any iteration one can define an average step size for an individual and the 

entire population as formulated in Eqs. (3.6)  and (3.7) 
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where avejSS ,)(  and aveSS)(  denote the average step size for j-th individual and entire 

population, respectively. 

 

3.4 Numerical Investigations with BB-BC Algorithm 

 

While using the BB-BC algorithm for discrete optimization, it is noted that both the 

average search dimensionality ratio aveSDR)( and average step size aveSS)(  parameters 

will tend to approach zero after a certain number of iterations. Once this happens, no 

ir
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new solutions are generated; namely the subsequent solutions simply replicate the 

former one, i.e. center of mass. As a remedy to this situation, the routine given below 

is integrated into the algorithm to make sure that a newly generated solution will 

differ from the former one at least by one variable. 

 

 

Set  := 1.0; 

Quitloop:= False; 

Repeat 

     Generate I
new

 from I
c
 using Eq. (3.3) 

     If I
new

 ≠ I
c
 then Quitloop := true; 

                        else   :=  + 1.0; 

Until Quitloop; 

 

 

When applying this routine, if all the design variables in a newly generated solution 

remain unchanged after applying Eq. (3.3), the generation process is iterated in the 

same way by increasing the standard deviation of normal distribution  by one every 

time till a different design is produced. Apparently, the increased standard deviation 

facilitates occurrence of larger step sizes and increases probability of design variable 

change.  

 

Typical results obtained from numerical investigations with the BB-BC algorithm on 

discrete sizing optimization problem are reflected in Figure 3.1, which shows the 

variations of  aveSDR)(  and aveSS)(  parameters in the course of search process. It is 

noted that the average search dimensionality ratio is generally in the order of 0.9 in 

the first iterations, which results in extreme changes in the individuals. Although this 

helps provide a diverse population, this amount of diversity is more likely to result in 

convergence difficulties in case of discrete design optimization of truss structures. It is 

stated in Hasançebi (2008) that a useful starting value of aveSDR)(  will be in the range 



36 

 

of [0.25, 0.50] based on experiments with evolution strategies integrated search 

process. On the other hand, towards the later stages, only a single design variable is 

perturbed mostly to generate a new solution, implying that a unidirectional search is 

performed per design. Although a somewhat decreased search dimensionality towards 

the latest stage might be useful in the sense that it boosts more exploitative search in 

the design space, the search capability of the algorithm is significantly restricted when 

it is limited too much, as observed in the BB-BC algorithm.  

 

 

    (a)         (b) 

 

Figure 3.1: The variations of (a) aveSDR)(  and, (b) aveSS)(  in a typical run of BB-BC  

 

3.5 Reformulations of BB-BC Algorithm 

 

Noticing the drawbacks of the standard algorithm discussed above, Eq. (3.8) is 

proposed in lieu of Eq. (3.3) to improve the efficiency of the BB-BC algorithm in 

discrete structural design optimization. In the new formulation the use of n-th power 

(n ≥ 2) of a random number  is motivated using any appropriate statistical 

distribution.   
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The rationale behind Eq. (3.8) is to achieve a satisfactory trade-off or compromise 

between the following two conflicting requirements needed to eliminate the 

shortcomings of the standard formulation: (i) diminishing search dimensionality in the 

beginning of the search process and increasing it somewhat towards the latest stage 

and (ii) enabling large step size from time to time at later optimization stages to 

facilitate design transitions to new design regions and thereby preventing entrapment 

of the search in local optima. In fact, at times when the random number is sampled at 

values below 1, taking n-th power of  makes it even much smaller, which helps to 

fulfill the first requirement. On the other hand, at times when it is sampled at values 

above 1, it might be amplified to fairly large values by taking its n-th power, helping 

to satisfy the second requirement. It should be noted that for a general continuous 

optimization problem having a large dimensionality ratio is useful in the sense that it 

encourages exploration ability of an algorithm. However, a discrete structural 

optimization problem is the one such that even a small change in one design variable 

causes significant changes on the whole response of the structure and thus on the 

feasibility of a design generated. Accordingly, having a very large dimensionality 

ratio for such problems increases randomness of the search process, resulting in the 

slow convergence of the algorithm. It is important to limit the search dimensionality 

of the algorithm for these problems as far as the efficiency of the algorithm is 

concerned. By taking the n-th power of r in Eq. (3.8), the randomness of the algorithm 

is indeed diminished while higher step sizes are encouraged for large transitions 

individually at times when r is sampled above 1. 

 

Two instances of Eq. (3.8) are generated in Eqs. (3.9) and (3.10) by selecting the type 

of statistical distribution used to sample the random number, where the power of 

random number n is set to 3 based on extensive numerical experiments.  
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Eq. (3.9) refers to the third power reformulation of big crunch phase according to a 

normally distributed random number. This reformulation will be referred to as 

modified BB-BC (MBB-BC) hereafter, and is introduced in relation to discrete design 

optimization of truss structures (Hasançebi and Kazemzadeh Azad 2014). The second 

reformulation, Eq. (3.10), referred to as the exponential BB-BC (EBB-BC), where the 

use of an exponential distribution in conjunction with the third power of random 

number is favored particularly when tackling problems from discrete design 

optimization of steel frames (Hasançebi and Kazemzadeh Azad 2012). The probability 

density function for an exponential distribution is given as follows: 
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where  is a real, positive constant. The mean and variance of the exponential 

distribution are given as 1/ and 1/2
, respectively. For various values of , the shape 

of exponential distribution is plotted in Figure 3.2. In this study, a standard 

exponential distribution is used by setting  to one. It is important to note that unlike 

normal distribution which samples both positive and negative real numbers, 

exponential distribution only generates positive numbers. Hence, the rounded term on 

the right hand side of Eq. (3.10) should be added to or subtracted from 
c

iI  under equal 

probability to allow for both increase and decrease in the value of a design variable.  
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Figure 3.2: The exponential distribution for various values of   

 

When employing Eq. (3.10), the following routine is integrated into the EBB-BC 

algorithm to make sure that a new solution will differ from the former one at least by 

one variable. 

 

 

Set  := 1.0; 

Quitloop:= False; 

Repeat 

     Generate I
new

 from I
c
 using Eq. (3.10) 

     If I
new

 ≠ I
c
 then Quitloop := true; 

                        else   := /2.0; 

Until Quitloop; 

 

 

Accordingly, if all the design variables in a new solution remain unchanged after 

applying Eq. (3.10), i.e. I
new

 = I
c
 , the generation process is iterated in the same way 

by decreasing the  parameter of the exponential distribution by half each time, and 

this is repeated until a different solution is produced, i.e. I
new

 ≠ I
c
. It is apparent from 

Figure 1 that the decreased value of  parameter leads to a flatter probability 

distribution curve facilitating occurrence of larger changes.  
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Figures 3.3 and 3.4 are displayed to demonstrate the influence of the proposed 

reformulation on a BB-BC integrated search process. They show typical variations of 

aveSDR)(  and aveSS)(  parameters during a search captured while performing 

numerical investigations with the MBB-BC and EBB-BC algorithms, respectively. 

Figures 3.3a and 3.4a indicate that the starting value of average search dimensionality 

ratio in both MBB-BC and EBB-BC algorithms is around 0.60-0.70. Although this is 

slightly more than the upper limit of the recommended range, it leads to a more 

appropriate diversity in the population as compared to the standard algorithm, and 

provides a more suitable search mechanism in the initial iterations. As the iterations 

increase, the aveSDR)(  parameter is dragged to smaller values, implying that an 

explorative search is progressively replaced and dominated by an exploitative one. 

However, unlike the standard algorithm where a rapid and linear reduction is observed 

in aveSDR)(  towards unfavorably too low values, the reduction happens to be slower 

and more gradual in both the MBB-BC and EBB-BC algorithms. Besides, it is 

observed that aveSDR)(  is always kept at sufficiently high values in both MBB-BC 

and EBB-BC algorithms, which in turn prevents the search from becoming inefficient 

or restricted. The EBB-BC algorithm usually provides greater aveSDR)( values in 

comparison to the MBB-BC. The rate of decrease of aveSDR)(  is slower and steadier 

in EBB-BC algorithm, whereas in the MBB-BC algorithm aveSDR)(  is brought down 

to its minimum value more rapidly and it is practically stabilized around this 

minimum value thereafter.    
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   (a)                 (b) 

Figure 3.3: The variations of (a) aveSDR)(  and, (b) aveSS)(  in a typical run of MBB-

BC  

 

 

                                      (a)                                                      (b) 

 

Figure 3.4: The variations of (a) aveSDR)(  and, (b) aveSS)(  in a typical run of EBB-BC 

 

Figures 3.3b and 3.4b show that both MBB-BC and EBB-BC algorithms 

accommodate fairly larger step sizes as compared to the standard algorithm. As the 

search process goes on, while aveSS)(  parameter is strictly reduced to one in the 

standard algorithm, it takes place in the range of [2, 8] for MBB-BC and of [2, 40] for 

EBB-BC even in the latest iterations of the optimization. These occasional large step 

sizes are quite useful for steering the search towards new design regions when the 

search gets stuck in local optima. This characteristic of the proposed reformulation 
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provide an efficient mechanism to avoid local optima while the standard algorithm is 

likely to get trapped in local optima.  

 

3.6 Numerical Examples 

 

This section covers performance evaluation of developed MBB-BC and EBB-BC 

design optimization algorithms in discrete sizing optimization of truss and frame 

structures. For the sake of clarity the numerical investigations of MBB-BC and EBB-

BC algorithms are provided in two distinct sections. 

 

3.6.1 Performance Evaluation of MBB-BC Algorithm  

 

This section analyzes the performance of the proposed MBB-BC algorithm that is 

applied to four different discrete truss optimization problems: (i) 160-bar space 

pyramid; (ii) 354-bar braced dome; (iii) 693-bar braced barrel vault; (iv) 960-bar 

double layer grid. In these test problems, the structures are optimized for minimum 

weight by selecting members either from the whole or a certain portion of a profile list 

consisting of 37 pipe (circular hollow) sections issued in AISC-ASD (1989) standard 

section tables, which is reproduced in Table 3.1 for convenience. The test problems, 

which are challenging real-size optimization problems with the number of sizing 

design variables ranging between 7 and 251, are all selected from earlier studies 

available in the literature (Hasançebi et al. 2009, Hasançebi et al. 2011b). The idea 

here is to eliminate any kind of factor, such as the starting point of optimization, the 

number of independent runs performed, the way of constraint handling, additional 

strategies for reducing the design space, etc., that may have an impact on the 

performance of an algorithm in terms of both convergence velocity and accuracy. The 

results obtained to these problems using the proposed methodology are compared to 

those of the standard BB-BC and other metaheuristic methods, such as simulated 

annealing (SA), evolution strategies (ESs), particle swarm optimization (PSO), ant 

colony optimization (ACO), tabu search (TS), harmony search (HS) and simple 

genetic algorithms (SGA) using the algorithms developed for them in Hasançebi et al. 
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(2009). It is important to mention that verifications of these algorithms are conducted 

using benchmark problems of engineering and structural optimization in Kazemzadeh 

Azad et al. (2011), and Hasançebi et al. (2009). All these algorithms share the same 

integrated programming unit for defining optimum design problem (i.e., objective 

function, design variables, design set, constraints, penalization, etc.), which in turn 

provides an ideal and unbiased platform for comparison of different techniques.  

 

For a fair comparison of results, the maximum number of structural analyses in each 

example is limited to the values formerly reported in the literature, which are 50,000 

for the examples 1, 2 and 3, and 100,000 for the example 4. However, in cases where 

no progress in the best feasible design is recorded over a certain number of successive 

iterations, the search process is terminated before the maximum number of structural 

analyses is reached. For each example the actual number of structural analyses 

performed to attain the optimum design by the proposed MBB-BC algorithm is 

reported in Table 3.2, including the ratio of design points searched during the 

optimization process to the total size of the design space.   

 

For all test problems the parameter α in Eqs. (3.3) and (3.9) is taken as 0.5 and a 

population size of 50 is used for both the MBB-BC and BB-BC algorithms. It is worth 

mentioning that large values of parameter α results in larger (SDR)ave and (SS)ave 

values which consequently increases the exploration properties of algorithms. 

Conversely, low values of α limit the (SDR)ave and (SS)ave to lower values which 

results in more exploitation of algorithms. As mentioned before in this study the value 

of parameter α is determined based on numerous numerical investigations. The 

material properties of steel used for all test problems are as follows: modulus of 

elasticity (E) = 29,000 ksi (199,948 MPa) and yield stress (Fy) = 36 ksi (248.2 MPa).  

 

3.6.1.1 Example 1: 160-Bar Space Pyramid 

 

The first test problem considered is a 160-bar space steel pyramid (Figure 3.5) with a 

square base diameter of 16 m (52.5 ft) along both the x and y axes and a total height 
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of 8 m (26.25 ft). This problem was studied in Hasançebi et al. (2011b) using PSO and 

HS techniques as well as the three variants of ACO method referred to as sACO, 

rACO and eACO therein. The structure is composed of 55 joints and 160 members 

that are grouped into 7 independent sizing design variables. The grouping of members 

is shown in Figure 3.5a. The sizing variables are selected from the entire database of 

37 standard pipe (circular hollow) sections in Table 3.1. The stress and stability 

limitations of the members are computed according to the specifications of AISC-

ASD (1989). The displacements of all nodes are limited to 4.45 cm (1.75 in) in all the 

x, y, and z directions. For design purpose, a single load case is considered such that it 

consists of a vertical load of –8.53 kN (–1.92 kips) applied in the z-direction at all 

nodes of the pyramid.   

 

Sizing optimization of 160-bar space pyramid is carried out using both the BB-BC and 

MBB-BC algorithms and the results obtained are compared to the previously reported 

solutions by Hasançebi et al. (2011b) in Table 3.3. It should be noted that all the 

solutions reported in Table 3.3 as well as in the similar tables of the following 

examples correspond to only the best feasible designs attained by the techniques, and 

hence any kind of constraint violation is not expected in these solutions. Similar to the 

results of sACO, PSO and HS techniques, the MBB-BC algorithm yields an identical 

design weight of 2788.84kg (6148.35 lb) for the truss, which is the best known 

solution of the problem so far. The final designs attained using BB-BC, rACO, and 

eACO techniques are slightly heavier; namely 2821.27 kg (6219.83 lb), 2817.56 

(6211.65 lb) and 2875.01 kg (6338.31 lb), respectively.  

 

The variations of the best feasible design obtained thus far in the search processes 

with BB-BC and MBB-BC algorithms are plotted in Figure 3.6. Figure 3.7 shows 

variations of  aveSDR)(  and aveSS)(  parameters in the implementations of the two 

algorithms. This figure clearly indicates how the aforementioned problems associated 

with implementation of these two parameters in the BB-BC algorithm are surmounted 

with the MBB-BC algorithm.  
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        (a) 3-D view 

 

 

 

 

             (b) Front view 

 

        Figure 3.5: 160-bar pyramid; (a) 3-D view, (b) Front view, (c) Plan view 

             (Hasançebi et al. 2011b) 
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       (c) Plan view 

 

          Figure 3.5 (continued) 

 

 
 

Figure 3.6: Optimization histories for 160-bar space pyramid 
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       (a)             (b) 

 

Figure 3.7: 160-bar pyramid test problem; variations of (a) aveSDR)(  and, (b) aveSS)(  

 

 

Table 3.1. Cross sectional properties of the ready sections 

 

Section 

number 
Ready section Area , cm

2
 (in

2
) 

Section 

number 
Ready section Area , cm

2
 (in

2
) 

1 P1 3.187 (0.494) 20 PX5 39.419 (6.11) 

2 P2 6.903 (1.07) 21 PX6 54.193 (8.4) 

3 P3 14.387 (2.23) 22 PX8 82.581 (12.8) 

4 P4 20.452 (3.17) 23 PX10 103.871 (16.1) 

5 P5 27.472 (4.3) 24 PX12 123.871 (19.2) 

6 P6 36 (5.58) 25 PX1.5 6.903 (1.07) 

7 P8 54.193 (8.4) 26 PX2.5 14.516 (2.25) 

8 P10 76.774 (11.9) 27 PX3.5 23.742 (3.68) 

9 P12 94.193 (14.6) 28 PX1.25 5.684 (0.881) 

10 P1.5 5.155 (0.799) 29 PX.5 2.065 (0.32) 

11 P2.5 10.968 (1.7) 30 PX.75 2.794 (0.433) 

12 P3.5 17.290 (2.68) 31 PXX2 17.161 (2.66) 

13 P1.25 4.3161 (0.669) 32 PXX3 35.290 (5.47) 

14 P.5 1.613 (0.25) 33 PXX4 52.258 (8.1) 

15 P.75 2.148 (0.333) 34 PXX5 72.903 (11.3) 
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16 PX1 4.123 (0.639) 35 PXX6 100.645 (15.6) 

17 PX2 9.548 (1.48) 36 PXX8 137.419 (21.3) 

18 PX3 19.484 (3.02) 37 PXX2.5 26 (4.03) 

19 PX4 28.452 (4.41)    

 

 

Table 3.2. Number of analyses and size of the design space for the test problems 

 

Test problem Number of analyses  
Design  

space size 

Portion of the design  space 

searched 

160-bar space pyramid  5000 37
7 

5.27× 10
-8 

354-bar braced dome  16350 37
22 

5.17× 10
-31

 

693-bar braced barrel vault  27150 37
23 

2.32× 10
-32

 

960-bar double layer grid 100000 28
251 

100000/28
251

 

 

 

Table 3.3. Comparison of optimization results for 160-bar space pyramid  

 

Sizing 

variables 

Optimal cross sectional areas (in
2
) 

sACO* rACO * eACO * PSO * HS * 
BB-BC 

(n=1) 

MBB-BC 

(n=2,3,4,5) 

1 1.07 1.07 1.07 1.07 1.07 1.07 1.07 

2 0.669 0.669 0.669 0.669 0.669    0.669 0.669 

3 1.07 1.07 1.07 1.07 1.07 1.07 1.07 

4 0.669 0.669 0.799 0.669 0.669    0.669 0.669 

5 1.07 1.07 1.07 1.07 1.07 1.07 1.07 

6 0.669 0.669 0.799 0.669 0.669 1.07 0.669 

7 1.07 1.48 1.7 1.07 1.07 1.07 1.07 

Weight, lb 

(kg) 

6148.35 

(2788.84) 

6211.65 

(2817.56) 

6338.31 

(2875.01) 

6148.35 

(2788.84) 

6148.35 

(2788.84) 

6219.83 

(2821.27) 

6148.35 

(2788.84) 

* The algorithms are provided in Hasançebi et al. (2011b). 

 

 

 

Table 3.1. (continued) 
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3.6.1.2 Example 2: 354-Bar Braced Dome Truss 

 

The second test problem is a 354-bar braced dome truss shown in Figure 3.8 

(Hasançebi et al. 2009). The structural members are grouped into 22 discrete sizing 

variables (Figure 3.8), which are selected from the entire set of 37 standard sections 

presented in Table 3.1. The dome is subjected to the following three load cases 

considering various combinations of dead (D), snow (S) and wind (W) loads 

computed according to the specifications of ASCE (1998): (i)   D + S, (ii)  D + S +W 

(with negative internal pressure), and (iii) D + S +W (with positive internal pressure). 

Figure 3.9 presents the considered three load cases. The complete details of load 

calculations and others for this instance can be found in Hasançebi et al. (2009, 

2010c). The stress and stability constraints of the members are computed regarding 

the specifications of AISC-ASD (1989). The displacements of nodes are restricted to 

11.1 cm in any direction. It is worth mentioning that an overall structural stability 

check or constraint is not explicitly implemented in this example. There are two main 

reasons for this. Firstly, even though the overall structural stability check is not 

explicitly implemented, the displacement constraints induced at every joint of the 

structure implicitly prevent the occurrences of large displacements and hence the 

possibility of a failure such as a snap-through buckling. In fact, when the final 

optimum design is analyzed it can be seen that the displacement constraints are all 

inactive; in fact the actual displacements are limited to much smaller values than even 

the limits imposed by codes. One can see that a related failure such as a snap-through 

buckling cannot occur under such small displacements. Secondly, a detailed analysis 

of snap-through buckling requires a detailed finite element analysis that accounts for 

geometric non-linearity, which is out of the scope of this study. 

 

In Table 3.4 the minimum weight designs of 354-bar braced dome obtained by the 

BB-BC and MBB-BC algorithms are compared to the previously reported results by 

Hasançebi et al. (2009) with different metaheuristic techniques. It is noted that the 

results published formerly by Hasançebi et al. (2009) are corrected here due to mis-

grouping of one bracing member in the previous work. 
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The MBB-BC algorithm with n=3, 4, and 5 powers produces a design weight of 

14775.7 kg (32574.9 lb) for the dome, which is the best solution of the problem 

reported so far and which has been attained using SA, ESs and PSO methods as well. 

Relatively higher design weights have been attained for the structure with other 

metaheuristic algorithms: respectively, 15221.4 kg (33557.5 lb) by ACO, 15251.16 kg 

(33623.06 lb) by MBB-BC with a power of n=2, 16043.6 kg (35370.1 lb) by TS, 

15850.5 kg (34944.3 lb) by HS and 16485 kg (36343.3 lb) by SGA. The BB-BC 

algorithm shows a very poor performance and produces a final design weight of 

18784.8 kg (41413.5 lb). Such a significant difference between the results clearly 

indicates usefulness of the proposed reformulation on the performance of the BB-BC 

algorithm.  

 

The variations of the best feasible design obtained so far in the search processes with 

BB-BC and MBB-BC algorithms are plotted in Figure 3.10. Considering the design 

weights as well as the convergence histories attained for 354-bar braced dome and 

160-Bar space pyramid examples using five different values of power n (i.e. n=1, 2, 3, 

4, and 5), it is observed that adopting the value of n=3 can be reasonable. Hence, the 

next design examples are investigated using the third power formulation. 

 

 
 

   Figure 3.8: 354-bar braced truss dome; (a) 3D view, (b) top view and (c) side view 

(Hasançebi et al. 2009) 
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   Figure 3.8 (continued) 
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Figure 3.9: The three load cases considered for 354-bar braced truss dome  

(Hasançebi et al. 2009) 
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            Figure 3.10: Optimization histories for 354-bar braced dome 

 

 

Table 3.4. Comparison of optimization results for 354-bar braced dome 

 

Sizing 

variables 

Optimal cross sectional areas (in
2
) 

SA * ESs * PSO * ACO * TS * HS * SGA* 
BB-BC 

(n=1) 

MBB-BC 

(n=2) 

MBB-BC 

(n=3,4,5) 

1 1.07 1.07 1.07 1.07 1.07 1.07 1.48 1.07   1.07 1.07 

2 3.17 3.17 3.17 3.17 3.17 3.17 2.68 3.17   3.17 3.17 

3 2.23 2.23 2.23 2.23 2.68 2.23 4.3 2.68   2.68 2.23 

4 2.68 2.68 2.68 2.68 2.68 2.68 2.68 4.3   2.68 2.68 

5 2.23 2.23 2.23 2.23 2.68 2.23 2.23 2.23   2.23 2.23 

6 2.23 2.23 2.23 2.23 2.23 2.25 2.23 2.68   2.23 2.23 

7 2.23 2.23 2.23 2.23 2.68 2.23 2.23 2.68   2.23 2.23 

8 2.23 2.23 2.23 2.23 2.68 2.68 2.23 4.3   2.23 2.23 

9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7   1.7 1.7 

10 2.23 2.23 2.23 2.23 2.23 2.25 2.25 2.68   2.23 2.23 

11 1.7 1.7 1.7 2.66 1.7 2.25 2.66 1.7   1.7 1.7 

12 1.7 1.7 1.7 2.23 1.7 1.7 2.23 2.68   1.7 1.7 

13 1.7 1.7 1.7 1.7 1.7 1.7 2.23 2.68   1.7 1.7 

14 1.7 1.7 1.7 1.7 1.7 2.23 1.7 1.7   1.7 1.7 

15 1.7 1.7 1.7 1.7 1.7 1.7 2.25 1.7   1.7 1.7 
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16 1.7 1.7 1.7 1.7 2.68 1.7 1.7 2.68   2.68 1.7 

17 1.48 1.48 1.48 1.48 1.7 2.66 1.7 1.48   1.48 1.48 

18 1.48 1.48 1.48 2.68 1.48 3.02 3.17 1.48   1.48 1.48 

19 1.07 1.07 1.07 1.07 1.07 1.7 1.48 2.68   1.07 1.07 

20 1.07 1.07 1.07 1.07 1.07 1.7 1.48 2.68   1.07 1.07 

21 1.07 1.07 1.07 1.07 1.07 1.7 1.48 1.48   1.07 1.07 

22 1.07 1.07 1.07 1.48 1.07 1.07 1.7 1.48   1.07 1.07 

Weight, lb 

(kg) 

32574.9 

(14775.7) 

32574.9 

(14775.7) 

32574.9 

(14775.7) 

33557.5 

(15221.4) 

35370.1 

(16043.6) 

34944.3 

(15850.5) 

36343.3 

(16485) 

41413.5 

(18784.8) 

33623.06 

(15251.16) 

  32574.9 

(14775.7) 

     * The algorithms are provided in Hasançebi et al. (2009). 

 

3.6.1.3 Example 3: 693-Bar Braced Barrel Vault 

 

The third test problem depicted in Figure 3.11 is a spatial braced barrel vault 

(Ramaswamy et al. 2002) composed of 259 joints and 693 members which are 

grouped into 23 discrete sizing variables due to the symmetry of the structure about 

the centerline. The member grouping scheme is outlined in Figure 3.11a and the main 

geometric dimensions of the structure are shown in Figures 3.11b and 3.11c. The 

structure is subjected to a uniform dead load (DL) pressure of 35 kg/m
2
, a positive 

wind load (WL) pressure of 160 kg/m
2
 (32.77 lb/ft

2
) and a negative wind load (WL) 

pressure of 240 kg/m
2
 (49.16 lb/ft

2
). Here, these loads are combined under two 

separate load cases as follows: (i) 1.5DL1.5WL, and (ii) 1.5DL–1.5WL. The 

displacements of joints in all the x, y, and z directions are restricted to a maximum 

value of 0.254 cm. Further details about this design optimization instance can be 

found in Hasançebi et al. (2011b). 

 

In Table 3.5 the design optimization results of 693-bar barrel vault obtained using the 

MBB-BC and BB-BC algorithms are compared to the previously reported results by 

Hasançebi et al. (2011b) with different metaheuristic techniques. According to these 

results, the best solution is attained by the MBB-BC algorithm, which is 4805.96 kg 

(10595.33 lb). In this example, the BB-BC algorithm shows a more promising 

performance compared to the other metaheuristic techniques and yields the second 

Table 3.4. (continued) 
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best solution, which is 4925.75 kg (10859.42 lb). It is noted that unlike the first two 

design examples, displacement constraints are active in this example. Amongst the 

other solutions are 4989.15 kg (10999.20 lb) by sACO, 5095.07 kg (11232.71 lb) by 

HS, 5456.48 kg (12029.49 lb) by SGA, 5503.65 kg (12133.47 lb) by rACO and 

6068.69 kg (13379.19 lb) by eACO.  

 

The variations of the best feasible design obtained so far in the search processes with 

BB-BC and MBB-BC algorithms are plotted in Figure 3.12. Figure 3.13 shows the 

variations of  aveSDR)(  and aveSS)(  parameters in the implementations of the two 

algorithms.  

 

 

 
a) 3-D view 

 

 Figure 3.11: 693-bar braced barrel vault; a) 3-D view, b) Front view, c) Plan view 

(Hasançebi et al. 2011b) 
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b) Front view 

 

 

 

 

c) Plan view 

 

Figure 3.11 (continued) 
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Figure 3.12: Optimization histories for 693-bar braced barrel vault 

 

 

 
             (a)                                     (b) 

 

Figure 3.13: 693-bar barrel vault test problem; variations of (a) aveSDR)(  and, (b)

aveSS)(  
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Table 3.5. Comparison of optimization results for 693-bar braced barrel vault 

 

Sizing 

variables 

Optimal cross sectional areas (in
2
) 

sACO *  rACO * eACO * HS * GA * 
BB-BC 

(n=1) 

MBB-BC 

(n=3) 

1 4.03 3.17 2.23 3.68 3.02 4.03 3.68 

2 0.494 0.494 1.07 0.433 0.669 0.494 0.494 

3 0.494 0.669 0.494 0.494 0.639 0.333 0.333 

4 0.494 0.881 0.881 0.494 0.494 0.669 0.494 

5 0.494 0.333 0.669 0.433 0.333 0.333 0.333 

6 0.333 4.3 4.41 3.17 4.41 3.68 3.68 

7 0.639 0.494 0.669 0.669 0.639 0.494 0.494 

8 0.333 0.639 1.07 0.333 0.333 0.494 0.494 

9 2.68 2.23 2.66 2.68 2.66 0.494 0.494 

10 4.03 0.494 0.881 0.494 0.639 0.333 0.333 

11 0.494 0.669 0.494 0.669 0.669 2.25 2.23 

12 0.639 0.799 0.639 0.881 0.799 0.799 0.799 

13 0.881 0.799 0.881 1.07 1.07 1.07 1.07 

14 0.639 0.494 1.48 0.881 0.799 0.494 0.494 

15 0.333 0.433 0.333 0.333 0.494 0.333 0.333 

16 0.639 0.799 0.799 0.881 0.669 1.07 0.881 

17 0.881 1.48 1.7 0.881 1.07 0.669 0.669 

18 0.494 0.669 0.669 0.669 0.799 1.7 2.23 

19 0.669 0.494 0.799 0.639 0.669 0.669 0.494 

20 0.333 0.333 1.07 0.333 0.333 0.333 0.333 

21 1.7 2.25 3.17 1.7 2.23 0.494 0.494 

22 0.669 0.799 0.494 0.494 0.669 0.494 0.333 

23 0.494 0.333 0.433 0.639 0.433 0.333 0.333 

Weight, lb 

(kg) 

10999.20 

(4989.15) 

12133.47  

 (5503.65) 

13379.19  

 (6068.69) 

11232.71  

 (5095.07) 

12029.49  

(5456.48) 

10859.42 

(4925.75) 

10595.33  

(4805.96) 

 * The algorithms are provided in Hasançebi et al. (2011b). 

 

3.6.1.4 Example 4: 960-Bar Double Layer Grid 

 

Figure 3.14 illustrates the last test problem which regards a double layer grid 
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consisting of 263 joints and 960 members (Hasançebi et al. 2009). The symmetry of 

the structure around x and y axes is used to group the 960 members into 251 

independent sizing variables. They are selected from a list of 28 standard sections 

with cross-sectional areas between 1.07 in.
2
 (6.90 cm

2
) and 21.3 in.

2
 (137.42 cm

2
) in 

Table 3.1. The structure is subjected to a single load case resulting from snow load. 

This load case is considered based on a design snow pressure of 0.754 kN/m
2 

(15.75 

lb/ft
2
) calculated per ASCE (1998) manual. The stress and stability limitations of the 

members are computed in accordance with the specifications of AISC-ASD (1989). 

Further, the displacements of all nodes are limited to a maximum value of 4.16 in 

(10.57 cm) in any direction. 

 

The considered 960-bar double layer grid is a challenging design example due to the 

large number of design variables considered. It is noted that only the stress and 

slenderness ratio constraints are active for this example. The lightest design for the 

double layer grid system is attained by MBB-BC algorithm, which is 24266.7 kg 

(53498.8 lb).The other designs are 24388.3 kg (53656.7 lb) by SA, 24780.2 kg 

(54631.0 lb) by ESs, 24973.5 kg (55057.1 lb) by PSO, 25320.0 kg (55821.1 lb) by TS, 

29556.6 kg (65161.2 lb) by ACO, 32338.5 kg (71294.2 lb) by SGA and 40133.8 kg 

(88479.9 lb) by HS according to Hasançebi et al. (2009). No feasible solution is 

obtained with the BB-BC algorithm when the initial population is generated 

randomly. To facilitate design transitions to feasible regions during the search, the 

algorithm is started from one feasible design point such that all the member groups are 

assigned to the strongest section of the discrete set in one individual, while all other 

individuals in the initial population are created randomly in a usual manner. The BB-

BC algorithm employed under this case produces a final design weight of 31119.8 kg 

(68607.4 lb).  The variations of the best feasible design obtained so far in the search 

processes with BB-BC and MBB-BC algorithms are plotted in Figure 3.15.  
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Figure 3.14: 960-bar double layer grid; a) 3D view, b) Top view 

(Hasançebi et al. 2009) 
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Figure 3.15: Optimization histories for 960-bar double layer grid 

 

 

3.6.2 Performance Evaluation of EBB-BC Algorithm  

 

In order to experiment and quantify the performance of EBB-BC algorithm in 

optimum design of steel frames, two numerical examples are investigated in this 

section. The design examples include a 132-member unbraced steel frame and a 209-

member industrial factory building and are selected regarding their practical 

characteristics. The optimum solutions produced for these frames with EBB-BC 

algorithm are compared to those achieved using the standard version (BB-BC 

algorithm) as well as other metaheuristic techniques. In addition, the effects of new 

reformulation on the variations of average search dimensionality ratio and average 

step size parameters are presented in each design example. For a fair comparison of 

results, the maximum number of structural analyses is limited to the previously 

reported values in the literature, which is 50,000 for both examples. For numerical 

applications, the value of parameter α in Eqs. (3.3) and (3.10) is taken as 0.25 and a 
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population size of 50 is used for all the algorithms. The material properties of steel 

used for all test problems are as follows: modulus of elasticity (E) = 29,000 ksi 

(199,948 MPa) and yield stress (Fy) = 36 ksi (248.2 MPa). 

 

3.6.2.1 Example 1: 132-Member Unbraced Space Steel Structure 

 

The first example depicted in Figure 3.16 is a three dimensional unbraced (swaying) 

steel frame composed of 70 joints and 132 members that are grouped into 30 

independent sizing variables to satisfy practical fabrication requirements (Hasançebi 

et al. 2010). The columns are adopted from the complete W-shape profile list 

consisting of 297 ready sections, whereas a discrete set of 171 economical sections 

selected from W-shape profile list based on area and inertia properties is used to size 

beam members. Here, both gravity and lateral loads are considered in designing the 

structure. Gravity loads (G) consisting dead, live and snow loads are calculated 

according to ASCE 7-05 (2005) based on the following design values: a design dead 

load of 60.13 lb/ft
2
 (2.88 kN/m

2
), a design live load of 50 lb/ft

2
 (2.39 kN/m

2
), and a 

ground snow load of 25 lb/ft
2
 (1.20 kN/m

2
). This yields the uniformly distributed 

loads on the outer and inner beams of the roof and floors given in Table 3.6.  As for 

the lateral forces, earthquake loads (E) are considered. These loads are calculated 

based on the equivalent lateral force procedure outlined in ASCE 7-05 (2005), 

resulting in the values given in Table 3.6 that are applied at the center of gravity of 

each story as joint loads. Gravity (G) and earthquake (E) loads are combined under 

two loading conditions for the frame: (i) 1.0G + 1.0E (in x-direction), and (ii) 1.0G + 

1.0E (in y-direction). The joint displacements in x and y directions are limited to 1.53 

in (3.59 cm) which is obtained as height of frame/400. Additionally, story drift 

constraints are applied to each story of the frame which is equal to height of each 

story/400. 

 

The BB-BC and EBB-BC algorithms are employed to minimize the weight of the 132-

member steel frame. In Table 3.7 the minimum weight designs of the frame obtained 

by these algorithms are compared to the previously reported results by Hasançebi et 
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al. (2010) using different metaheuristic techniques; namely improved simulated 

annealing (iSA), tabu search (TS) and harmony search (HS). The EBB-BC algorithm 

produces a design weight of 60804.31 kg (134050.55 lb) for the frame which is the 

best solution of this problem reported so far. Relatively higher design weights have 

been obtained for the frame with other metaheuristic algorithms; namely 62993.55 kg 

(138874.67 lb) by iSA, 64733.69 kg (142710.96) by TS, 64926.17 kg (143135.29) by 

HS. The BB-BC algorithm exhibits a very poor performance and produces a final 

design weight of 87468.21 kg (192834.39 lb). Such a significant difference between 

the results clearly demonstrates the usefulness of the proposed refinement on the 

performance of the standard algorithm. The variations of the aveSDR)(  and aveSS)(  

parameters in the implementations of the BB-BC and EBB-BC algorithms are shown 

in Figures 3.17 and 3.18, respectively. 

 

 

 

 

 
 

a) 3D view 

 

    Figure 3.16: 132-member space steel frame a) 3D view, b) Front view, c) Top view 
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 b) Front view 
 
 

 
 

c) Top view 

 

Figure 3.16 (continued) 
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          (a)                               (b) 

 

Figure 3.17: aveSDR)(  variations for 132-member space steel frame example; (a) BB-

BC, and (b) EBB-BC variants 

 

 

                                       (a)                                                         (b) 

 

Figure 3.18: aveSS)(  variations for 132-member space steel frame example; (a) BB-

BC, and (b) EBB-BC variants 

 

Table 3.6. The gravity and lateral loading on 132-member space steel frame 

 

Gravity Loads 

Beam Type 

Uniformly Distributed Load  

Outer Span Beams Inner Span Beams 

(lb/ft) (kN/m) (lb/ft) (kN/m) 

Roof Beams  

(Dead + Snow Loads) 1011.74 14.77 1193.84 17.42 

Floor Beams  

(Dead + Live Loads) 
1468.40 21.49 1732.70 25.29 
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Table 3.6. (continued) 

 

Lateral Loads 

Floor Number 
Earthquake Design Load 

(kips) (kN) 

1 6.57 29.23 

2 12.43 55.28 

3 18.52 82.35 

4 24.76 110.15 

 

Table 3.7. Comparison of results for 132-member space steel frame 

 

Sizing 

variables 
iSA TS HS BB-BC EBB-BC 

1 W8X35 W8X31 W14X53 W24X176 W10X33 

2 W18X86 W12X65 W12X120 W21X132 W12X79 

3 W12X79 W27X129 W30X48 W27X336 W40X167 

4 W18X65 W8X58 W16X77 W24X279 W12X65 

5 W12X65 W12X79 W18X119 W14X193 W14X120 

6 W27X161 W12X106 W24X104 W14X109 W14X109 

7 W24X117 W18X97 W30X148 W12X87 W14X99 

8 W10X54 W8X58 W10X68 W27X94 W14X90 

9 W18X86 W12X72 W18X158 W30X292 W10X100 

10 W12X96 W14X90 W12X120 W18X283 W12X106 

11 W10X60 W36X135 W36X150 W10X49 W33X152 

12 W10X49 W10X49 W16X67 W21X62 W12X53 

13 W12X87 W12X96 W10X112 W18X311 W14X90 

14 W12X50 W10X49 W24X117 W33X141 W36X160 

15 W24X55 W24X55 W18X40 W18X40 W18X40 

16 W24X55 W10X33 W14X61 W12X210 W12X53 

17 W12X58 W18X76 W12X65 W16X67 W21X111 

18 W12X67 W21X83 W18X119 W12X65 W12X65 

19 W12X40 W8X40 W14X82 W14X211 W14X43 

20 W10X49 W14X61 W18X86 W14X211 W10X60 

21 W12X72 W18X76 W14X90 W40X277 W12X106 

22 W12X79 W12X72 W18X97 W33X141 W10X88 

23 W8X48 W12X40 W21X73 W12X65 W8X48 



67 

 

 
   

  

24 W24X68 W24X76 W12X87 W30X326 W27X84 

25 W14X61 W10X77 W18X71 W12X72 W14X61 

26 W21X50 W16X50 W27X102 W8X28 W10X39 

27 W8X40 W10X49 W8X48 W30X124 W12X40 

28 W8X67 W14X61 W24X117 W24X94 W18X76 

29 W10X39 W18X97 W18X97 W16X89 W24X68 

30 W21X44 W16X45 W16X40 W21X44 W18X40 

Weight, lb 

(kg) 

138874.67 

(62993.55) 

142710.96  

(64733.69) 

143135.29 

(64926.17) 

192834.39 

(87468.21) 

134050.55 

(60804.31) 

 

3.6.2.2 Example 2: 209-Member Industrial Factory Building   

 

In this example, sizing optimization of a factory structure (Figure 3.19) composed of 

100 joints and 209 members is considered (Saka and Hasançebi 2009). The main 

structural system includes five similar frameworks lying 6.1 m (20ft) apart from each 

other. As shown in Figure 3.19b, each framework includes two side frames and a 

gable roof truss in between them. The lateral stability of the structure against wind 

loads in x-z plane is provided through columns fixed at the base as well as the rigid 

connections of the side frames. Hence, the beams and columns of the side frames are 

considered as axial-flexural structural elements. On the other hand, the gable roof 

truss transmits axial forces only using pin-jointed connections. The member grouping 

is carried out considering the symmetry of building, resulting in 14 different member 

groups. Table 3.8 and Figure 3.19e give the member grouping details. 

 

In order to design the industrial building three different types of loads namely dead, 

crane and wind loads are considered. Here, uniformly distributed loads of 14.63 kN/m 

(1004.55 lb/ft) and 7.32 kN/m (502.27 lb/ft) on the interior and exterior beams of the 

side frames are considered as dead loads. As shown in Figure 3.19d, the crane load is 

modeled as two pairs of moving live loads where each pair consists of a concentrated 

load of 280 kN (62.9 kip) and a couple moment of 75 kN.m (5532 kip.ft). In the 

Table 3.7. (continued) 
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present study the crane load is shown by two different load cases namely CL1 and 

CL2. As shown in Figure 3.19d, in CL1 the crane is positioned at points A and A′ 

whereas in CL2 it is positioned at points B and B′. 

 

For design purpose, the wind in the x-direction is considered only and the resulting 

wind loads are computed based on a basic wind speed of V = 46.94 m/s (105 mph) per 

ASCE 7-05 (2005). Here, WL1 and WL2 load cases are generated considering the 

sign of the internal wind pressure exerted on the external faces of the structure.  

Further details about this design example can be found in Saka and Hasançebi (2009). 

Regarding all the load cases, 6 load combinations are considered as follows: 

 

(i)  1.0DL + 1.0CL1 

 

(ii)  1.0DL + 1.0CL1 + 1.0WL1 

 

(iii)  1.0DL + 1.0CL1 + 1.0WL2 

 

(iv) 1.0DL + 1.0CL2 

 

(v)  1.0DL + 1.0CL2 + 1.0WL1 

 

(vi)  1.0DL + 1.0CL2 + 1.0WL2 

 

In this design optimization example, the combined stress, stability and geometric 

constraints are imposed with respect to AISC-ASD (1989) specifications. Further, 

displacements of all the joints in x and y directions are limited to 3.43 cm, and the 

maximum allowable value for inter-story drifts is taken as 1.52 cm. 

 

The BB-BC and EBB-BC algorithms are employed to minimize the weight of the 

industrial factory building. In Table 3.9 the minimum weight designs of the structure 

obtained by these algorithms are compared to the previously reported results by Saka 

and Hasançebi (2009) using harmony search (HS) and its adaptive variant (AHS) 
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techniques. Again the EBB-BC algorithm performs very well and produces the best 

known solution of the problem, which is 42924.07 kg (94631.38 lb). The final designs 

attained for this problem with AHS and HS techniques were 44053.45 kg (97121.3 lb) 

and 46685.83 kg (102924.73 lb), respectively. On the other hand, a substandard 

performance is exhibited by BB-BC algorithm, in which the structural weight could 

only be decreased to 73375.37 kg (161764.99 lb).  

 

The variations of aveSDR)(  and aveSS)(  parameters in the implementations of these 

algorithms are shown in Figures 3.20 and 3.21, respectively. It is seen from these 

figures that the BB-BC algorithm quickly drops the average step size to one, and tends 

to search only the very near neighborhood of the solutions found during the former 

iterations. This exploiter characteristic of the algorithm makes it difficult to explore 

the solution space effectively, resulting in a premature convergence to a local 

minimum.  

 

On the other hand, the EBB-BC algorithm follows a more successful strategy in 

searching the optimum solution in the design space by adjusting an optimal balance 

between exploration and exploitation features of the algorithm. In comparison to the 

BB-BC, the EBB-BC makes greater changes in the aveSS)( values while decreasing the 

aveSDR)(  parameter in a gradual way, resulting in the minimum weight design of the 

industrial building. 

 

It is expedient to highlight that performance enhancement of the existing 

metaheuristic algorithms for tackling specific optimization problems has become one 

of the most frequent strategies in the recent years. The key issue in creating a new 

metaheuristic optimization technique as well as modification of an existing algorithm 

is how to adjust a balance between the exploration and exploitation characteristics of 

the technique. In this regard, the main concern is to investigate the effect of changes in 

the formulation of the algorithm on the quality of final solutions.  
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a) 3D view 

 

 

 

 

b) Front view 

 

Figure 3.19: 209-member industrial factory building 
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c) Side view 

 

 

d) First floor plan view 

 

Figure 3.19 (continued) 
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e) Member grouping 

 

Figure 3.19 (continued) 

 

 

        (a)                (b) 

 

Figure 3.20: aveSDR)(  variations for 209-member industrial factory building example; 

(a) BB-BC, and (b) EBB-BC variants 
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                    (a)                              (b) 

 

Figure 3.21: aveSS)(  variations for 209-member industrial factory building example; 

(a) BB-BC, and (b) EBB-BC variants 

 

Table 3.8. Member grouping details for 209-member industrial factory building 

 

Member Group Name Member Group Name 

1 1st floor external columns 8 Truss top chord 

2 1st floor internal columns 9 Truss web diagonals 

3 2nd floor external columns 10 Truss web verticals 

4 2nd floor internal columns 11 1st floor wall braces 

5 1st floor beams 12 2nd floor wall braces 

6 2nd floor beams 13 Floor frames braces 

7 Truss bottom chord 14 Floor truss braces 

 

Table 3.9. Comparison of results for 209-member industrial factory building 

 

Sizing 

variables 

HS  AHS  BB-BC EBB-BC 

1 W8X31 W8X31 W16X57 W10X33 

2 W12X40 W10X39 W16X57 W10X33 

3 W8X31 W12X26 W8X28 W8X24 

4 W8X40 W8X40 W21X68 W10X33 

5 W24X62 W24X62 W24X62 W24X62 

6 W12X26 W10X26 W21X44 W12X26 
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7 2L2.5X2X3/16 2L2X2X1/8 2L5X5X5/8 2L2X2X1/8 

8 2L2X2X1/8 2L2X2X1/8 2L2X2X1/8 2L2X2X1/8 

9 2L3X3X3/16 2L3X3X3/16 2L4X4X5/8 2L3X3X3/16 

10 2L3X2.5X5/16 2L2X2X1/8 2L2.5X2.5X3/16 2L2X2X1/8 

11 2L6X6X7/16 2L6X6X5/16 2L6X6X3/4 2L6X6X5/16 

12 2L6X6X3/8 2L6X6X5/16 2L8X8X3/4 2L6X6X5/16 

13 2L6X6X5/16 2L6X6X5/16 2L6X6X5/8 2L6X6X5/16 

14 2L6X6X5/16 2L5X5X5/16 2L5X5X7/16 2L5X5X5/16 

Weight, lb 

(kg) 

102924.73 

(46685.83) 

97121.3 

(44053.45) 

161764.99 

(73375.37) 

94631.38 

(42924.07) 

 

3.7 Summary 

 

In this chapter efficient structural design optimization algorithms based on a big bang-

big crunch algorithm are implemented for discrete sizing optimization of steel 

structures. Through modifications of the standard algorithm (BB-BC) two enhanced 

variants namely MBB-BC and EBB-BC algorithms are introduced for design 

optimization of steel trusses and frames, respectively. The numerical efficiencies of 

the proposed algorithms are quantified using different optimum design instances. In 

all the examples, the steel structures are designed for minimum weight subject to 

strength and serviceability limitations of AISC-ASD (1989). Based on the results 

obtained in the investigated examples it is shown that the performance of the BB-BC 

algorithm can be improved to a great extent with the proposed reformulations. 

Furthermore, in comparison to the previously reported results with various meta-

heuristic techniques, the MBB-BC and EBB-BC algorithms obtained promising 

designs, demonstrating the robustness of the optimization process with the latter. The 

success of the proposed algorithms are basically due to their abilities to provide more 

advantageous mechanism for adjusting search dimensionality ratio when dealing with 

discrete design optimization problems as well as making it possible to have occasional 

increments in the step size values throughout the optimization process.  

Table 3.9. (continued) 
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CHAPTER 4 

 

 

UPPER BOUND STRATEGY  

 

 

 

4.1 Introduction 

 

Optimum design of structural systems using metaheuristic algorithms suffers from 

enormously time-consuming structural analyses to locate a reasonable design. 

Basically there are three different types of remedies for this problem. One approach is 

to reduce the total computational effort through employing computationally more 

efficient structural analysis techniques such as taking advantages of the force method 

of structural analysis (Kaveh and Kalatjari 2002) or employing approximate structural 

analysis techniques (Salajegheh 1997). Alternatively, a relatively expensive approach 

can be employing high performance computing techniques, such as parallel or 

distributed computing methods (Hasançebi et al. 2011a). Another approach, which is 

more straightforward and easier to apply, is to develop efficient strategies for reducing 

the total number of structural analyses required in the course of optimization. The 

latter, can be performed by investigating the algorithmic structure of the existing 

metaheuristics and proposing new strategies capable of diminishing their total 

computational effort without affecting their performances in locating the global 

optima. 

 

In this chapter an upper bound strategy (UBS) is proposed for reducing the total 

number of structural analyses in metaheuristic based design optimization of steel 

structures. The idea behind the UBS is to detect those candidate designs which have 

no chance to improve the search during the iterations of the optimization algorithm. 

After identifying the non-improving candidate designs, they are directly excluded 

from the structural analysis stage, resulting in diminishing the total computational 
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effort. The well-known big bang-big crunch algorithm as well as its two enhanced 

variants, namely MBB-BC and EBB-BC algorithms, are adopted as typical 

metaheuristic techniques to evaluate the effect of the UBS on computational 

efficiency of these algorithms. The numerical results clearly reveal that the UBS can 

significantly lessen the total computational cost in metaheuristic based design 

optimization of steel structures. 

 

4.2 The UBS in Metaheuristic Based Design Optimization    

 

The UBS can be used in conjunction with all metaheuristic algorithms that employ a 

   selection scheme in their algorithmic models (Kazemzadeh Azad et al. 2013a, 

b). This selection scheme is first characterized by the well-known variant of evolution 

strategies (ES) technique referred to as ES)(   in the literature (Schwefel 1981). 

Typically, at each generation of the ES)(  , µ parents generate λ offspring; and 

then a deterministic selection is performed by selecting the  best individuals out of  

parents and  offspring in reference to the individuals’ fitness scores (Michalewicz 

1996). This way, the number of individuals to produce the next generation is reduced 

back to  every time. It should be noted that the evolutionary scheme employed in the 

BB-BC algorithm works on the basis of the same principle. At each iteration of the 

BB-BC algorithm 1  parent generates λ candidate solutions (λ=50 in this research), 

and only one individual survives out of 1  solutions after implementing the 

selection and elitism schemes.  

 

In the BB-BC, MBB-BC, and EBB-BC algorithms discussed in the previous chapter, 

the current best design found during the optimization process is used to generate new 

candidate solutions for the next iteration. Then, every candidate solution generated is 

subjected to evaluation such that a conventional structural analysis is first carried out 

per design and then its penalized weight (which is the base of comparison between the 

solutions) is computed through the application of Eq. (3.1). The idea behind the UBS 

is to impose the current best design as the upper bound for the forthcoming candidates 
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to eliminate unnecessary structural analysis and associated fitness computations for 

those candidates that have no chance of surpassing the best solution. The pseudo-code 

for the UBS integrated algorithms is outlined below, where ite_cnt and ite_max stand 

for the current and maximum iteration numbers, respectively.     

 

Repeat  

Generate iI (i:=1,..) from bestI  using Eqs. (3.3), (3.9) or (3.10) 

For i:=1 to   do  

begin 

Calculate )( iW I
 
 

If )()( besti fW II   

then 

Perform structural analysis of iI  

Compute )( iP I  and )( if I  

else 

Activate UBS 

Eliminate iI  

end    

Set new bestI  

ite_cnt:=ite_cnt+1; 

until ite_cnt>ite_max  

 

In the proposed strategy,   number of candidate solutions iI are first generated from 

the current best design in a usual manner, i.e. through application of Eqs. (3.3), (3.9) 

or (3.10). Then, in the first step the net weight )( iW I  of each candidate solution is 

calculated only; not the penalized weight. This computation is straightforward and can 

be done with a trivial computational effort. If a candidate solution has a net weight 

)( iW I  smaller than or equal to the penalized weight of the current best design )( bestf I , 
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the structural analysis of the candidate solution is processed and its penalized weight 

is computed. In the opposite case, i.e. )()( besti fW II  , however, the UBS is activated 

and the candidate solution is automatically removed from the population without 

undergoing structural analysis phase for response computations, since such a 

candidate is unlikely to improve the current best design bestI . 

 

Basically, the key factor in this approach is to define the penalized weight of the 

current best solution found during the previous iterations as an upper bound for the net 

weight of the newly generated candidate solutions. Thus, any new candidate solution 

with a net weight greater than this upper bound will not be analyzed and this will 

lessen the computational burden of the optimization algorithm. It is worthwhile to 

mention that the UBS is applicable to all other instances of    selection scheme in 

which   is greater than one. For such cases, the upper bound for the net weight of the 

newly generated candidate solutions would be the penalized weight of the worst 

design among the µ parents.  

 

It should be noted that the UBS does not affect exploration and exploitation 

characteristics of the employed algorithms; however, using this strategy it is possible 

to perform a computationally more efficient design optimization. Basically, at each 

iteration of the utilized optimization algorithms, a portion of the whole design space is 

investigated through the newly generated individuals. Once the algorithm is integrated 

with UBS, the same portion of design space is investigated; but mostly only few 

individuals undergo a structural analysis and non-improving individuals, which are 

not analyzed, contribute in the search process only with their net weights.  

 

The main question here is the amount of saving in structural analyses through the 

proposed strategy. This is answered in the next section through numerical examples of 

real size steel structures. 
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4.3 Numerical Examples  

 

In this section the efficiency of the UBS in reducing the number of structural analyses 

is investigated through design optimization examples of steel skeletal structures. To 

this end, the optimization algorithms are coded in MATLAB and employed in 

conjunction with SAP2000 v14.1 structural analysis package using application 

programming interface (API) for analysis and design of structural systems sampled 

during the course of optimization process. The optimization runs are performed using 

a regular PC with AMD Athlon II X4 620, 2.60 GHz CPU and 2 GB RAM. It should 

be noted that in the investigated examples the shear deformations as well as second 

order effects are neglected. 

 

The population size of the algorithms is set to 50 and the value of parameter α in Eqs. 

(3.3), (3.9) and (3.10) is selected as 0.5. The value of penalty constant p is taken as 1. 

Further, the maximum number of iterations (ite_max) is considered as the termination 

criterion. Here, the wide-flange (W) profile list composed of 268 ready sections is 

used to size the frame members; and the material properties of steel are taken as 

follows: modulus of elasticity (E)  200 GPa, yield stress ( )  248.2 MPa, and unit 

weight of the steel (  )  7.85 ton/m
3
.   

 

In the following examples the notations UBB-BC, UMBB-BC and UEBB-BC are 

used to refer to the UBS integrated versions of the BB-BC, MBB-BC, and EBB-BC 

algorithms, respectively. It should be underlined that an improvement of the 

algorithms in terms of quality of the optimum solution located is not intended in this 

study. Instead, the objective of the study is to accelerate computational efficiency of 

the algorithms by reducing their computing time through a smaller number of 

structural analyses performed in the course of optimization. It is worth mentioning 

that the reported optimum solutions refer to the feasible best solutions attained by the 

algorithms, rather than the final solutions. In this research, when the algorithms are 

implemented, the feasible best solutions located by the algorithms are stored in a 

yF
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separate data file and updated when a better feasible solution is generated. Hence, all 

the reported solutions are completely feasible and have zero violation of constraints. 

 

4.3.1 Example 1: 135-Member Steel Frame 

 

The 3-story steel frame shown in Figure 4.1 is adopted as the first example. The frame 

is composed of 135 structural members including 66 beam, 45 column and 24 bracing 

elements. The stability of structure is provided using moment resisting connections as 

well as inverted V-type bracing systems along the x direction. For practical fabrication 

requirements, the 135 members of the frame are collected under 10 member groups. 

As depicted in Figure 4.2, the columns are grouped into four sizing variables in a plan 

level as corner, inner, side x-z and side y-z columns, and they are assumed to have the 

same cross-section over the three stories of the frame. On the other hand, all the 

beams in each story are grouped into one sizing variable, resulting in three beam-

sizing design variables for the frame. Similarly, all the bracings in each story are 

grouped into one sizing variable, resulting in three bracing-sizing design variables for 

the frame. It is worth mentioning that floor slabs shown in Figure 4.1(a) are just for 

better illustration of the structure; and are not modeled in the analysis stage. For 

design purpose, the frame is subjected to the following 10 load combinations per 

ASCE 7-98 (2000): 

 

(1) 1.4D 

(2) 1.2D + 1.6L 

(3) 1.2D + 1.0Ex + 0.5L 

(4) 1.2D + 1.0Eex + 0.5L 

(5) 1.2D + 1.0Ey + 0.5L 

(6) 1.2D + 1.0Eey + 0.5L 

(7) 0.9D + 1.0Ex 

(8) 0.9D + 1.0Eex 

(9) 0.9D + 1.0Ey 

(10) 0.9D + 1.0Eey 
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where D and L denote the dead and live loads, respectively; Ex and Ey are the 

earthquake loads applied to the center of mass in x and y directions, respectively; Eex 

and Eey are the earthquake loads applied considering the effect of accidental 

eccentricity of the center of mass in x and y directions, respectively. Based on ASCE 

7-98 (2000) the amount of eccentricity is set to 5% of the dimension of the structure 

perpendicular to the direction of the applied earthquake load. 

 

The live loads acting on the floor and roof beams are 12 and 7 kN/m, respectively.  In 

the case of dead loads, besides the uniformly distributed loads of 20 and 15 kN/m 

applied on floor and roof beams, respectively, the self-weight of the structure is also 

considered.  

 

The earthquake loads, are calculated based on the equivalent lateral force procedure 

outlined in ASCE 7-98 (2000). Here, the resulting seismic base shear (V) is taken as V 

= 0.15Ws where Ws is the total dead load of the building. The computed base shear is 

distributed to each floor based on the following equation:  
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                          (4.1) 

  

where is the induced lateral seismic force at level x; w is portion of the total gravity 

load assigned to the related level (i.e. level i or x); and  is the height from base to the 

related level. Here, k is determined based on the structure period. It is equal to 1 for 

structures with a period of 0.5 sec or less; and 2 for structures with a period of 2.5 sec 

or more.  For structures with a period in range of 0.5 to 2.5 sec, k is calculated through 

linear interpolation per ASCE 7-98 (2000). It is worth mentioning that the 

approximate fundamental period of the structure is calculated using the following 

equation given in ASCE 7-98 (2000). 

                                                                                                  (4.2)         
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where is taken as 0.0853 and  is the height of the building; namely 12 m for this 

example. Hence, the period of the structure, T, is approximately taken as 0.55 sec. It is 

worth mentioning that modal analysis can be also carried out in order to obtain a more 

accurate value for T. Here, based on the above-mentioned period, the value of 

parameter k in Eq. (4.1) is set to 1.025 for this example. It should be noticed that since 

the self-weight of the structure changes during the course of optimization, apparently, 

the values of dead and earthquake loads change accordingly. 

 

The beam elements are continuously braced along their lengths by the floor system; 

and columns and bracings are assumed to be unbraced along their lengths. The 

effective length factor, K, is taken as 1 for all beams and bracings. The K factor is 

conservatively taken as 1.0 for buckling of columns about their minor (weak) 

direction, since the frame is assumed to be non-swaying in that direction owing to 

inverted V-type bracing systems. However, for buckling of columns about their major 

direction the K factor is calculated according to section 2.2. 

 

The maximum lateral displacement of the top story is limited to 0.03 m and the upper 

limit of interstory drift is taken as h/400, where h is the story height. The interstory 

drifts are calculated based on the displacement of center of mass of each story. The 

maximum lateral displacement of the top story is calculated with respect to the 

maximum displacements of the ends of the structure. Here, horizontal displacements 

of all joints of each story are constrained to each other based on a rigid diaphragm 

assumption. 

 

Optimum desing of the frame is performed using the UBB-BC, UMBB-BC and 

UEBB-BC algorithms and the results obtained are tabulated in Table 4.1. The 

algorithms are executed until the termination condition, which is the maximum 

number of iterations, i.e. 350, is met. The optimization histories of the algorithms are 

presented in Figure 4.3, which shows the variation of the penalized weight of the 

current best design obtained so far in the search process.  

TC nh
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Since each UBS integrated algorithm (e.g. UMBB-BC) and its corresponding original 

algorithm (e.g. MBB-BC) utilizes the same formulation for the search procedure, the 

optimum designs reported with each UBS integrated algorithm is also valid for the 

corresponding original algorithm. However, the number of structural analyses to reach 

the optimum design will be different as a result of the UBS employed in the former. 

Here, the number of structural analyses performed in the UBS integrated algorithms is 

calculated by counting candidate solutions that undergo structural analysis. For the 

original algorithms (i.e. BB-BC, MBB-BC, and EBB-BC) this can be simply obtained 

through multiplying the total number of iterations (ite_cnt) by the population size . It 

should be noted that comparing the performances of the employed algorithms is not 

the aim of this study. The main concern is to demonstrate the effect of UBS on 

performance of each algorithm.  

 

Figures 4.4 to 4.6 depict the amount of saving in structural analyses at each iteration 

of the UBB-BC, UMBB-BC, and UEBB-BC algorithms, respectively. The markers on 

the graphs show the amount of structural analyses saved out of a total number of 50 

analyses at each iteration. For instance a saving of 80% at an iteration of a UBS 

integrated algorithm means that only 10 candidate solutions are analyzed and the 

remaining 40 candidate solutions are removed from the population (without 

performing an structural analysis) at that iteration due to their violation of the upper 

bound limit. Further, as shown in Figure 4.4 since all the individuals of the initial 

population are analyzed, there is no saving in the first iteration of the UBS integrated 

algorithms.  

 

Bearing in mind that a population size of  =50 is employed over a maximum number 

of 350 iterations (ite_max = 350), the number of structural analyses performed by the 

BB-BC, MBB-BC and EBB-BC algorithms is equal to 17500. However, when UBB-

BC, UMBB-BC, and UEBB-BC algorithms are employed, it is found that a total of 

880, 1794, and 1235 structural analyses are performed, respectively. This implies that 

using UBB-BC, UMBB-BC, and UEBB-BC algorithms, the amount of saving in the 

number of structural analyses is 94.97%, 89.75%, and 92.94%, respectively. As 
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presented in Table 4.2, using the BB-BC algorithm without UBS the total 

computational time is 24.31 hrs; whereas UBS integrated algorithms, namely UBB-

BC, UMBB-BC, and UEBB-BC, perform the design optimization of the frame only in 

1.22, 2.49, and 1.72 hrs, respectively. It should be noted that since the MBB-BC and 

EBB-BC algorithms also perform 17500 structural analyses during the optimization, 

the CPU time of these algorithms is similar to that of reported for the BB-BC 

algorithm and is not repeated here.  

 

It is observed that in the optimum design located by the UEBB-BC algorithm the 

maximum interstory drift is 99.80% of the allowable limit value; the maximum lateral 

displacement of the top story is 91.09% of the allowable displacement; and the load to 

capacity ratio for the most critical frame member is 0.93. 

 

 

 

 

(a) 

 

Figure 4.1: 135-member steel frame, (a) 3-D view (b) side view of frames 1 and 3 (c) 

side view of  frame 2 (d) side view of frames A, B, C, D,  and E (e) plan view 
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         (b) 

 

                    

         (c)             (d) 

 

 

         (e) 

 

Figure 4.1 (continued) 
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Figure 4.2: Columns grouping of 135-member steel frame in plan level 

 

 
 

Figure 4.3: Optimization histories of the 135-member steel frame example 

 

 

 
 

Figure 4.4: Saving in structural analyses using the UBB-BC algorithm in the 135-

member steel frame example 
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Figure 4.5: Saving in structural analyses using the UMBB-BC algorithm in the 135-

member steel frame example 

 

 
 

Figure 4.6: Saving in structural analyses using the UEBB-BC algorithm in the 135-

member steel frame example 

 

Table 4.1. Optimum designs obtained for 135-member steel frame  

 

Groups UBB-BC UMBB-BC UEBB-BC 

CG1* W10X39 W30X90 W21X62 

CG2 W27X84 W14X48 W14X48 

CG3 W40X149 W40X215 W36X150 

CG4 W18X65 W27X84 W21X68 

B1* W21X44 W14X34 W18X40 

B2 W16X40 W12X35 W18X35 

B3 W10X22 W18X35 W16X26 

BR1* W27X84 W21X44 W8X24 

BR2 W16X26 W10X22 W16X26 

BR3 W21X44 W6X15 W6X15 

Weight (ton)   47.3 45.67   38.91 

 *CG denotes column group with respect to Figure 4.2, Bi: beams and BRi: bracings of the i-th story 
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Table 4.2. Computational details for 135-member steel frame  

 

Computational Details BB-BC UBB-BC UMBB-BC UEBB-BC 

Generated Individuals 17500 17500 17500 17500 

Analyzed Individuals 17500 880 1794 1235 

CPU Time (hrs.) 24.31 1.22 2.49 1.72 

Saving in Structural 

Analyses (%) 
0 94.97 89.75 92.94 

  

4.3.2 Example 2: 1026-Member Steel Frame 

 

The 10-story steel frame shown in Figure 4.7 is selected as the second example. The 

frame is composed of 1026 structural members, including 580 beam, 350 column and 

96 bracing elements. The stability of structure is provided through moment resisting 

connections as well as X-type bracing systems along the x direction. Considering 

practical fabrication requirements, the 1026 members of the frame are collected under 

32 member groups. The member grouping is carried out in both plan and elevation 

levels. In elevation level the structural members are grouped in every three stories 

except the first story. In plan level, columns are considered in 5 different groups as 

depicted in Figure 4.8; beams are divided into two groups as outer and inner beams; 

and bracings are assumed to be in one group. Therefore, based on both elevation and 

plan level groupings, there are totally 20 column groups, 8 beam groups, and 4 

bracing groups considered as 32 sizing design variables in this example. It is worth 

mentioning that floor slabs shown in Figure 4.7(a) are just for better illustration of the 

structure; and are not modeled in the analysis stage. 

 

For design purpose, the frame is subjected to the same 10 load combinations described 

in the first example. The live loads acting on the floor and roof beams are 12 and 7 

kN/m, respectively.  In the case of dead loads, besides the uniformly distributed loads 

of 20 and 15 kN/m applied on floor and roof beams, respectively, the self-weight of 

the structure is also considered. The earthquake loads, are calculated based on the 
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same procedure described in the first example. Here, the resulting seismic base shear 

(V) is taken as V = 0.1Ws where Ws is the total dead load of the building. Further, in 

Eq. (34),  is taken as 0.0853 and 
 
is 36.5 m. Hence, the period of the structure, T, 

is approximately computed as 1.267 sec. Based on the obtained period the value of 

parameter k in Eq. (33) is taken as 1.38 for this example.  

 

The unbraced lengths of all beam elements are set to the one fifth of their lengths; and 

columns and bracings are assumed to be unbraced along their lengths. The effective 

length factor, K, for buckling of columns about their minor direction as well as beams 

and bracings is taken as 1. For buckling of columns about their major direction the K 

factor is calculated according to relations given in chapter 2. The maximum lateral 

displacement of the top story is limited to 0.1 m and the upper limit of interstory drift 

is taken as h/400, where h is the story height.  

 

Although typically the algorithms initiate with an initial population composed of 

randomly generated individuals, it was observed during the numerical investigations 

that a randomly generated initial population mostly is composed of highly infeasible 

and poor designs. On the other hand, it is more likely to generate some feasible 

individuals to initiate the optimization process simply by using strong sections of the 

available profile list. Hence, in this example the initial population is generated more 

deterministically to utilize candidate solutions some of which are expected to be 

feasible. The initial population is generated with respect to a profile list sorted based 

on sections’ depth. The first individual which is expected to be feasible is one with the 

deepest section for all design variables (structural members). Accordingly, next 

individuals are generated using shallower sections of the list with 5 section intervals. 

For instance, since the structural members are to be selected from a list of 268 ready 

sections, the first individual of initial population is a candidate design with section 

number 268 (deepest section) for all structural members; the second individual will be 

composed of section number 263; and others will be generated similarly. The rationale 

behind this approach is to start the optimization process from a more promising point.  

TC nh
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Optimum desing of the frame is carrid out using the UBB-BC, UMBB-BC and 

UEBB-BC algorithms and the results obtained are tabulated in Table 4.3. The 

optimization histories of the algorithms are presented in Figure 4.9. Figures 4.10 to 

4.12 depict the amount of saving in structural analyses at each iteration of the UBB-

BC, UMBB-BC, and UEBB-BC algorithms, respectively.  

 

Bearing in mind that a population size of  =50 is employed over a maximum number 

of 500 iterations (ite_max = 500), the number of structural analyses performed by the 

BB-BC, MBB-BC and EBB-BC algorithms is equal to 25000. However, when UBB-

BC, UMBB-BC, and EBB-BC algorithms are employed, it is found that a total of 

1069, 1476, and 724 structural analyses are performed, respectively. This implies that 

using UBB-BC, UMBB-BC, and UEBB-BC algorithms, the amount of saving in the 

number of structural analyses is 95.72% and 94.1%, and 97.1%, respectively. As 

presented in Table 4.4, using the BB-BC algorithm without UBS the total 

computational time is 194.44 hrs; whereas UBS integrated algorithms, namely UBB-

BC, UMBB-BC, and UEBB-BC, perform the design optimization of the frame only in 

8.31, 11.48, and 5.63 hrs, respectively. It should be noted that since the MBB-BC and 

EBB-BC algorithms also perform 25000 structural analyses during the optimization, 

the CPU time of these algorithms is similar to that of reported for the BB-BC 

algorithm and is not repeated here. Considering the examples with 6 loads (i.e. D, L, 

Ex, Eex, Ey, and Eey), and 10 load combinations, the computational times obtained 

using the UBS are promising. 

 

Here, it is observed that in the optimum design located by the UEBB-BC algorithm 

the maximum interstory drift is 97.58% of the allowable limit value; the maximum 

lateral displacement of the top story is 68.35% of the allowable displacement; and the 

load to capacity ratio for the most critical frame member is 0.97. 
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(a)  

 

 

              (b)       (c)                 (d) 

   

Figure 4.7: 1026-member steel frame, (a) 3-D view (b) side view of frames 2, 3, and 4 

(c) side view of  frames 1 and 5 (d) side view of frames A, B, C, D, E, F, and G (e) 

plan view 
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             (e) 
 

Figure 4.7 (continued) 

 

 
 

Figure 4.8: Columns grouping of 1026-member steel frame in plan level 

 

 

Figure 4.9: Optimization histories of the 1026-member steel frame example 
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Figure 4.10: Saving in structural analyses using the UBB-BC algorithm in the 1026-

member steel frame example 

 

 
 

Figure 4.11: Saving in structural analyses using the UMBB-BC algorithm in the 1026-

member steel frame example 

 

 
 

Figure 4.12: Saving in structural analyses using the UEBB-BC algorithm in the 1026-

member steel frame example 

 



94 

 

Table 4.3. Optimum designs obtained for 1026-member steel frame  

 

Stories Groups UBB-BC UMBB-BC UEBB-BC 

   1 

CG1* W27X258 W24X492 W33X201 

CG2 W27X161 W27X146 W24X146 

CG3 W27X102 W21X101 W24X104 

CG4 W27X146 W27X161 W40X174 

CG5 W27X146 W27X258 W40X321 

IB* W27X84 

 

W21X44 

 

W27X84 

 
OB* W27X84 W27X84 W27X84 

 
BR* W27X94 

 

W30X90 

 

W18X76 

 

2-4 

CG1 W27X258 W21X201 W36X328 

CG2 W27X146 W24X162 W36X245 

CG3 W27X84 W24X131 W36X135 

CG4 W27X102 W40X174 W33X118 

CG5 W27X114 W27X102 W44X262 

IB W27X84 

 

W27X84 

 

W16X26 

 
OB W27X84 

 

W30X90 

 

W36X135 

 
BR W27X84 

 

W40X149 

 

W21X62 

 

5-7 

CG1 W27X161 W40X235 W27X258 

CG2 W27X114 W24X131 W18X106 

CG3 W27X84 W30X90 W33X130 

CG4 W27X84 W18X86 W27X94 

CG5 W30X99 W14X90 W24X192 

IB W27X84 

 

W21X44 

 

W21X44 

 
OB W27X84 

 

W30X108 

 

W21X73 

 
BR W27X94 

 

W33X118 

 

W30X90 

 

8-10 

CG1 W27X84 W36X194 W18X86 

CG2 W27X146 W27X146 W21X50 

CG3 W27X84 W40X174 W36X135 

CG4 W27X84 W21X62 W33X201 

CG5 W27X84 W24X76 W30X108 

IB W27X84 

 

W14X30 

 

W21X57 

 
OB W27X84 

 

W16X31 

 

W16X26 

 
BR W27X84 

 

W33X118 

 

W18X76 

 
Weight (ton) 634.12 612.05 584.93 

*CG denotes column group with respect to Figure 4.8, IB: inner beams, OB: outer beams, BR: bracings  
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Table 4.4. Computational details for 1026-member steel frame  

 

Computational Details BB-BC UBB-BC UMBB-BC UEBB-BC 

Generated Individuals 25000 25000 25000 25000 

Analyzed Individuals 25000 1069 1476 724 

CPU Time (hrs.) 194.44 8.31 11.48 5.63 

Saving in Structural 

Analyses (%) 
0 95.72 94.1 97.1 

 

In order to visualize the performance of the UBS, especially in iterations with high 

savings of structural analyses, the current best design of the 35th iteration of UMBB-

BC algorithm located for the 1026-member frame during the numerical investigations 

is selected as a typical current best solution. The penalized weight of the design 

namely 829.86 ton determines the upper bound. Here, using the UBB-BC, UMBB-BC 

and UEBB-BC algorithms, a new population of size 50 is generated for each 

algorithm. Next, the net weights of generated individuals are computed and compared 

with the upper bound value to detect the non improving individuals. As shown in 

Figure 4.13 , all the 50 individuals generated using the UBB-BC algorithm have net 

weights greater than the upper bound value. Hence, none of the individuals will be 

analyzed; and a saving of 50 structural analyses is obtained.  

 

In case of the UMBB-BC algorithm, it is seen from Figure 4.14 that only one 

individual with a net weight of 827.49 ton remains below the upper bound limit.  

Similarly, as Figure 4.15 depicts, considering the UEBB-BC algorithm, only two 

individuals with net weights of 822.50 and 819.08 will be considered in the structural 

analysis stage. Therefore, the number of savings in the structural analyses for UMBB-

BC and UEBB-BC algorithms are 49 and 48, respectively.  
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Figure 4.13:  Net weights of individuals generated using the UBB-BC algorithm  

 

 

 

 
 

Figure 4.14:  Net weights of individuals generated using the UMBB-BC algorithm 
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Figure 4.15:  Net weights of individuals generated using the UEBB-BC algorithm 

 

4.3.3 Example 3: 10-Bar Truss Structure 

 

In order to investigate the efficiency of the UBS in optimal design of truss structures, 

sizing optimization of the benchmark 10-bar truss (Figure 4.16) is considered here. A 

total of 10 design variables are used corresponding to cross-sectional areas of the truss 

members. The members are subjected to the stress limits of  25 ksi (172.369 MPa) 

and the displacements of all nodes in both lateral and vertical directions are limited to 

 2.0 in (5.08 cm). For the design purpose, two different load cases are considered 

(Figure 4.16) in two separate test cases: case-1: P1 = 100 kips (444.82 kN) and P2 = 0, 

and case-2: P1 =150 kips (667.23 kN) and P2=50 kips (222.41 kN). The minimum 

allowable cross-sectional area of each member is limited to 0.1 in
2 

(0.6452 cm
2
). The 

density of the material is 0.1 lb/in
3 

(2767.99 kg/m
3
) and the modulus of elasticity is 

10,000 ksi (68,947.6 MPa).  

 

The optimum designs found by the UBB-BC algorithm are presented in Tables 4.5 

and 4.6 in comparison to the previously obtained designs using ARCGA (Koohestani 

and Kazemzadeh Azad 2009), ABC and MABC (Hadidi et al. 2010) algorithms. It is 

accentuated that producing a solution for the problem which is better than the 

previously reported ones is not a matter of interest here. This could be achieved by 
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implementing the algorithm for a large number of iterations. Instead, the purpose is to 

demonstrate that the proposed upper bound strategy integrated optimization algorithm 

is able to locate an acceptable solution that has some level of comparability with the 

formerly reported ones by implementing a reasonable (fewer) number of structural 

analyses. In addition, it is intended to investigate the effectiveness of the proposed 

strategy in reducing the computational burden by comparing the number of structural 

analyses required by the UBB-BC algorithm and the standard version, i.e. BB-BC 

algorithm. To this end the UBB-BC algorithm is executed until the termination 

condition is met, which is the maximum number of iterations. Since both the UBB-BC 

and BB-BC algorithms implement the same formulations for the search procedure, the 

optimum designs reported with the UBB-BC algorithm are also valid for the BB-BC 

algorithm. However, the number of structural analyses to reach the optimum designs 

will be different as a result of the upper bound strategy employed in the former. The 

number of structural analyses performed in UBB-BC algorithm is calculated by 

counting candidate solutions that undergo structural analysis. For the BB-BC 

algorithm, this is simply obtained by multiplying the total number of iterations 

(ite_cnt) by the population size.  

 

Figure 4.17 shows the amount of saving in structural analyses at each iteration of the 

UBB-BC algorithm in both test cases. The markers on the graphs show the number of 

structural analyses saved out of a total number of 50 analyses at each iteration. For 

example a saving of 40 at an iteration of the UBB-BC algorithm means that only 10 

candidate solutions are analyzed and the remaining 40 candidate solutions are 

removed from the population (without performing a structural analysis) at that 

iteration due to their violation of the upper bound limit. The cumulative number of 

structural analyses performed with UBB-BC and BB-BC algorithms up to each 

iteration number is displaced in curves given in Figure 4.18. The iteration histories for 

the algorithms are reproduced in Figure 4.19 which shows the variation of the 

penalized weight of the current best design obtained thus far in the search process 

versus the number of structural analyses performed. Bearing in mind that a population 

size of =50 is employed over a maximum number of 100 iterations (ite_max = 100), 
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the number of structural analyses performed by the BB-BC algorithm is equal to 5000 

in the both test cases. However, when UBB-BC algorithm is employed, it is found that 

a total of 2000 and 1957 structural analyses are performed in case-1 and case-2, 

respectively. This implies that the amount of saving in the number of structural 

analyses is 60% and 61% for case-1 and case-2, respectively.  

 

 
 

Figure 4.16:  10-bar truss structure, a = 360 in.(914.4cm) 

 

 

 

   (a)                           (b) 

Figure 4.17: 10-bar truss example; saving in structural analyses using the UBB-BC 

algorithm (a) case-1 (b) case-2 
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              (a)                 (b) 

Figure 4.18: 10-bar truss example; variations of the total number of structural analyses 

using the UBB-BC and BB-BC algorithms (a) case-1 (b) case-2 

 

 

 

                (a)               (b) 

Figure 4.19: 10-bar truss example; optimization histories of the UBB-BC and BB-BC 

algorithms (a) case-1 (b) case-2 
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Table 4.5. Optimal cross sectional areas (in.
2
) for 10-bar truss structure (case-1)  

 

Design Variables  ARCGA  ABC  MABC UBB-BC 

A1 30.5984 34.3057 30.6573 28.5580 

A2 0.1002 0.1 0.1 0.1 

A3 23.1714 20.6728 23.0429 24.7442 

A4 15.1958 14.5074 15.2821 15.7132 

A5 0.1 0.1 0.1 0.1 

A6 0.5409 0.6609 0.5626 0.6015 

A7 7.4625 7.8696 7.4721 7.2635 

A8 21.0346 20.3461 21.0084 20.8941 

A9 21.5182 22.0232 21.5094 22.0193 

A10 0.1 0.1 0.1 0.1 

Weight (lb) 5060.9 5095.33 5060.97 5073.1 

Structural Analyses 10000 20000 20000 2000 

 

Table 4.6.  Optimal cross sectional areas (in.
2
) for 10-bar truss structure (case-2) 

 

Design Variables  ARCGA  ABC MABC  UBB-BC 

A1 23.5986 24.8143 23.6383 26.812 

A2 0.1009 0.1 0.1 0.1 

A3 25.1175 26.0480 25.3237 26.9013 

A4 14.5383 14.8772 14.4108 18.0765 

A5 0.1001 0.1 0.1001 0.1 

A6 1.9713 2.0055 1.9707 1.995 

A7 12.3923 12.4467 12.3781 11.7854 

A8 12.7439 12.6835 12.7739 10.9272 

A9 20.3697 18.8669 20.2678 18.2826 

A10 0.1 0.1 0.1 0.1 

Weight (lb) 4677.24 4691.07 4677.06 4755.7 

Structural Analyses 10000 20000 20000 1957 
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4.3.4 Example 4: 45-Bar Truss Bridge 

 

In this example sizing optimization of the 45-bar truss bridge shown in Figure 4.20 is 

carried out. Here, nine vertical loads of 10 kips (44.48 kN) are applied at nodes 3, 5, 7, 

9, 11, 13, 15, 17 and 19. The stress limit is 30 ksi (206.843 MPa) in both tension and 

compression for all the members of the structure. The displacements of all nodes in 

both lateral and vertical directions are limited to  2.0 in (5.08 cm). The material 

density is 0.283 lb/in
3 

(7833.41 kg/m
3
) and the modulus of elasticity is 30,000 ksi 

(206,842.8 MPa). For design purpose, the members of the structure are linked into 23 

groups (sizing design variables) taking into account the symmetry of the structure. 

The lower bound of all sizing variables is 0.1 in
2 

(0.6452 cm
2
).  

 

The optimum design located by the UBB-BC algorithm is given in Table 4.7 in 

comparison to the formerly reported result based on the MABC algorithm (Hadidi et 

al. 2010). Figure 4.21 presents the amount of saving in the number of structural 

analyses at each iteration of the UBB-BC algorithm. The cumulative number of 

structural analyses performed with UBB-BC and BB-BC algorithms up to each 

iteration number is displaced in curves given in Figure 4.22. The iteration histories for 

the algorithms are reproduced and compared in Figure 4.23. According to these 

results, a total of 15000 structural analyses required by the BB-BC algorithm is 

reduced to 6169, when the UBB-BC algorithm is employed, leading to a saving in the 

number of structural analyses as much as 59%. 

 

 
 

Figure 4.20: 45-bar truss bridge, a = 200 in. (508 cm) 
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Figure 4.21: 45-bar truss bridge example; saving in structural analyses using the UBB-

BC algorithm 

 

 

Figure 4.22: 45-bar truss bridge example; variations of the total number of structural 

analyses using the UBB-BC and BB-BC algorithms  
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Figure 4.23: 45-bar truss example; optimization histories of the UBB-BC and BB-BC 

algorithms  

 

Table 4.7.  Optimal cross sectional areas (in.
2
) for 45-bar truss bridge 

 
Design 

Variables  
Members MABC  UBB-BC 

 

Design 

Variables 
Members MABC  UBB-BC 

G1 1, 44 4.5996 4.6243 G13 13, 33 0.1008 0.1 

G2 2, 45 3.7966 4.1520  G14 14, 29 9.5360 9.4787 

G3 3, 43 3.0497 2.0432  G15 15, 31 1.2173 1.2004 

G4 4, 39 3.2841 4.6309  G16 16, 30 1.4190 1.4504 

G5 5, 41 0.1069 1.5864  G17 17, 32 2.5513 2.4293 

G6 6, 40 3.9279 2.1517  G18 18, 28 0.1 0.1 

G7 7, 42 0.9649 2.4574  G19 19, 24 11.5439 11.6481 

G8 8, 38 1.2133 0.1033  G20 20, 26 1.2807 1.4056 

G9 9, 34 7.6553 7.3455  G21 21, 25 0.101 0.1 

G10 10,36 2.1993 2.0886  G22 22, 27 3.7598 3.4959 

G11 11, 35 1.1929 1.2330  G23 23 0.1017 0.7221 

G12 12, 37 0.1001 0.1      

Weight 

(lb) 
      7968.95 8019.86 

Structural 

Analyses 
      40000 6169 
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4.3.5 Example 5: 120-Bar Truss Dome 

 

Design optimization of the 120-bar truss dome shown in Figure 4.24 is carried out in 

Soh and Yang (1996) using both shape and sizing design variables. Here, only the 

sizing optimization of the structure is performed. The dome is subjected to vertical 

loading at all unsupported nodes. The loads are taken as -13.49 kips (-60 kN) at node 

1, -6.744 kips (-30 kN) at nodes 2 to 13, and -2.248 kips (-10 kN) in the rest of the 

nodes. The minimum allowable cross sectional area of each member is limited to 

0.775 in
2 

(5 cm
2
).  For design purpose the allowable tensile stress is taken as 0.6 yF

and the compressive stress constraint b

i of the i-th member is computed as follows 

(AISC-ASD 1989): 
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where yF is the yield stress of steel, E is the modulus of elasticity, i  is the 

slenderness ratio ( iii rkL / ), k is the effective length factor, iL is the length of the i-

th member, ir is the radius of gyration, and yc FEC /2 2 . Here, the material 

density is 0.288 lb/in
3 

(7971.81 kg/m
3
), yF = 58 ksi (400 MPa), E = 30,450 ksi 

(210,000 MPa). In this example, two different displacement constraints are considered 

in two separate test cases: case-1: no displacement constraints are imposed; and case- 

2: the displacements of all nodes in directions x, y and z directions are limited to 

0.1969 in (  0.5 cm). 

 

The optimum designs found by the UBB-BC algorithm are given in Tables 4.8 and 4.9 

together with the previously reported solutions based on the FA (Kazemzadeh Azad 

and Kazemzadeh Azad 2011), ABC and MABC (Hadidi et al. 2010) techniques. 
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Figure 4.25 presents the amount of saving in structural analyses at each iteration of the 

UBB-BC algorithm in both test cases. The cumulative number of structural analyses 

performed with UBB-BC and BB-BC algorithms up to each iteration number is 

displaced in curves given in Figure 4.26. The iteration histories for the algorithms are 

reproduced and compared in Figure 4.27. Noting that a population size of  = 50 is 

employed over a maximum number of 300 iterations (ite_max = 300), the number of 

structural analyses performed by the BB-BC algorithm is equal to 15000 in both test 

cases. However, when UBB-BC algorithm is employed, a total of 7739 and 7802 

structural analyses are performed in case-1 and case-2, respectively. Hence the 

amount of saving in the number of structural analyses is 48% for the both cases.  

 

 

 

Figure 4.24: 120-bar truss dome 
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                                     (a)                                                               (b) 

Figure 4.25: 120-bar truss dome example; saving in structural analyses using the 

UBB-BC algorithm (a) case-1 (b) case-2 

 

 

 

    (a)                                                                   (b) 

Figure 4.26: 120-bar truss dome example; variations of the total number of structural 

analyses using the UBB-BC and BB-BC algorithms (a) case-1 (b) case-2 
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    (a)                (b) 

Figure 4.27: 120-bar truss example; optimization histories of the UBB-BC and BB-

BC algorithms (a) case-1 (b) case-2 

 

Table 4.8.  Optimal cross sectional areas (in.
2
) for 120-bar truss dome (case-1) 

 

Design Variables FA  ABC  MABC  UBB-BC 

A1 3.3293 3.2977 3.2976 3.3072 

A2 2.4384 2.3964 2.3964 2.5319 

A3 4.0168 3.8737 3.8736 3.9035 

A4 2.5918 2.5710 2.5710 2.5863 

A5 1.1823 1.1514 1.1513 1.1554 

A6 3.4513 3.3324 3.3323 3.8227 

A7 2.7854 2.7850 2.7848 2.7746 

Weight (lb) 20016.67 19707.19 19706.62 20122.71 

Structural Analyses 15000 20000 20000 7739 

 

It is worth mentioning that, traditionally, metaheuristic algorithms tend to perform a 

local search in the last iterations to increase the quality of final solutions. Although 

this entails numerous iterations, generally, the improvements in the solutions are not 

significant with respect to the large number of structural analyses performed. The 

UBS removes this burden and makes it possible to perform a computationally efficient 

local search through avoiding unnecessary analyses. This can be considered as one of 
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the beneficial features of the UBS, which enables the optimization algorithms to 

perform a fine tuning in the last iterations with considerably less number of structural 

analyses. Although, here, only BB-BC algorithm based approaches are employed for 

demonstrating the usefulness of the UBS, recently other UBS integrated 

metaheuristics are also implemented and successfully applied to structural design 

optimization problems (Hasançebi et al. 2013, Kazemzadeh Azad and Hasançebi 

2014).  

 

Table 4.9.  Optimal cross sectional areas (in.
2
) for 120-bar truss dome (case-2) 

 

Design Variables FA  ABC MABC  UBB-BC 

A1 3.3005 3.2984 3.2985 3.3318 

A2 2.7481 2.7894 2.7928 2.7983 

A3 3.9036 3.8743 3.8748 3.8947 

A4 2.5713 2.5719 2.5719 2.5719 

A5 1.2889 1.1549 1.1501 1.1680 

A6 3.4089 3.3341 3.3328 3.3498 

A7 2.8150 2.7860 2.7838 2.7861 

Weight (lb) 20125.35 19908.03 19901.42 19982.91 

Structural Analyses 15000 20000 20000 7802 

 

4.4 Summary 

 

 In this chapter the UBS is proposed as a novel strategy to reduce the number of 

structural analyses in all metaheuristic techniques that employ a    selection 

scheme in their algorithmic models. The BB-BC algorithm as well as its two enhanced 

variants are integrated with the UBS for optimum design of steel structures. Based on 

the UBS the penalized weight of the current best solution is considered as the upper 

bound limit for the net weights of the newly generated candidate solutions. 

Accordingly, the new candidate solutions with net weights greater than this limit are 

excluded from the structural analysis stage.  



110 

 

 

The numerical results obtained through design optimization instances of skeletal 

structures, clearly reveal that the UBS is capable of reducing the computational effort 

required to approach a reasonable design. The significant reduction in computational 

effort achieved via this strategy can pave the way for practical optimum design of 

large scale steel structures using regular computers.  
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CHAPTER 5 

 

 

GUIDED STOCHASTIC SEARCH TECHNIQUE FOR DISCRETE SIZING 

OPTIMIZATION OF STEEL TRUSSES 

 

 

 

In the present chapter a guided stochastic search (GSS) technique is proposed for code 

based design optimization of steel trusses. The GSS offers a stochastic procedure 

where the optimization process is guided by the principle of virtual work and response 

computations of the generated designs, resulting in an efficient and rapid search. Here, 

first the proposed technique is implemented for handling discrete sizing optimization 

problems of truss structures having a single displacement constraint under a single 

load case. Next, the GSS is further improved for tackling a more general class of truss 

optimization problems subject to multiple displacement constraints and load cases. 

 

5.1 GSS for Single Displacement Constraint and Single Load Case  

 

5.1.1 Introduction 

 

In general common stochastic search techniques perform random moves in the design 

space using strategies borrowed from nature to locate the optimum solution using a 

single or a population of candidate designs. The basic difference between these 

techniques lies in the way that they decide on the next move in the design space. This 

can significantly affect both the quality of final solution as well as the computational 

time of the optimization process. Therefore, it becomes vital to make an effective 

search in a timely manner by developing some robust strategies as a guide to 

stochastic moves in the design space. Since response computations are performed for 

generated designs at each iteration of a stochastic optimization algorithm, it is possible 
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to utilize such valuable information collected during response computations to guide 

the optimization process. 

 

In this chapter a design-driven optimization technique named GSS is proposed for 

discrete sizing optimization of steel truss structures (Kazemzadeh Azad et al. 2014a). 

Here, the information provided through the structural analysis and design check stages 

are utilized for handling strength constraints. Besides, the well-known principle of 

virtual work is employed to detect the most effective structural members for satisfying 

displacement constraints. The weight minimization of a structure is then performed 

using an integrated approach wherein both strength and displacement criteria are taken 

into account for reduction of the member sizes along the way the aforementioned 

constraints are handled. The performance of the proposed method is investigated 

using four real-size steel truss structures with 25, 130, 392 and 354 sizing variables 

designed for minimum weight according to AISC-LRFD (1994) specifications. The 

comparison of numerical results obtained using the GSS to those of different 

metaheuristic algorithms indicates that the proposed technique is able to locate 

promising solutions using lesser computational effort.  

 

5.1.2 Application of the Principle of Virtual Work 

 

In order to guide the design optimization process, member wise information should be 

computed and utilized for determining a useful direction of search. In the case of 

strength criteria this information can be provided from the load capacity of members. 

However, in the case of displacement criteria one requires a measure to identify 

contribution of each structural member to the total displacement for each considered 

direction, referred to as displacement participation factor (DPF) (Charney 1991). In 

the present study a procedure based on the principle of virtual work is used to 

determine the DPF of each member in a truss structure. In order to compute the DPF 

of a truss member in the k-th direction of the j-th joint, in addition to a common 

structural analysis performed under the applied real loads, the truss structure should be 

analyzed under a unit load (virtual load) applied at the same joint and in the same 
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direction as well. Next, the DPF of the i-th member in the k-th direction, kiDPF , , can 

be calculated as follows. 

 

               i
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DPF ,                                     (5.1) 

 

In Eq. (5.1), r
iP and u

iP are the internal axial forces in the i-th member under the real 

and unit load, respectively; and Ei, Ai, and Li are the modulus of elasticity, cross-

sectional area, and length of the i-th truss member, respectively. Accordingly, the total 

displacement of the structure in the k-th direction, kTotal, , can be computed by 

summing the DPF values as follows. 
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Park and Park (1997) considered the DPF for optimum design of high-rise buildings. 

However, a more general approach can be achieved by taking into account the volume 

of structural members. The concept of sensitivity index (SI) (Charney 1993) given in 

Eq. (5.3) provides a more rational measure for identifying the effectiveness of 

members in satisfying the displacement constraints, 
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 where SIi,k and Vi are the sensitivity index in the k-th direction, and volume of the i-th 

member, respectively. Once the SI value of each member is calculated, these values 

can be employed to decide on the structural members that should be increased in size 

to satisfy the required displacement limits using the approach provided in the next 

section. 
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5.1.3 The GSS Algorithm 

 

The GSS works on the basis of guiding the optimization process using DPF as well as 

the information collected during the structural analysis and design stages. To this end, 

first the critical truss elements that have the highest impact on the response of a given 

structure should be detected; and next their sizes should be changed appropriately. 

The whole process should be guided such that the final minimum weight design leads 

to an optimum or reasonable near-optimum solution, satisfying all the predefined 

design constraints. The following steps outline the main procedure in the 

implementation of the GSS. 

 

Step 1. Initialization: The optimization process with the GSS initiates with a 

randomly generated design. This type of initialization, which is similar to the 

initialization of metaheuristic techniques with a population size of one, indicates the 

independency of the algorithm on the starting point of the design optimization 

process. It is worth mentioning that, since the members are to be adopted from a 

predefined list of sections, while generating a new candidate design, the design 

variables created outside of the allowable range are moved back to their lower/upper 

limits. 

 

Step 2. Evaluation under real loading: The generated design is evaluated next under 

the applied real loads, where structural analysis of the design is carried out with the 

set of steel sections adopted for the design variables, and the force and deformation 

responses are obtained. Once the internal forces and nodal displacements are known, 

the structure undergoes a design check where the amounts of strength and 

displacement violations are calculated. Evaluation stage reveals the quality of the 

generated design at each iteration. 

 

Step 3. Evaluation under virtual loading: In addition to the abovementioned 

evaluation of the design under the real loads, an additional analysis is carried out at 

this step to capture structural response of the design under the virtual loading. This 
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step is required in order to compute the SI values using Eq. (5.3). 

 

Step 4. Detection of critical members: In the GSS both increase and decrease in 

member sizes are carried out simultaneously. Hence, it is required to identify two 

main groups of members. The first group includes those members which should be 

increased in size for eliminating strength and/or displacement violations. Oppositely, 

the second group contains the members which should be decreased in size in line with 

the weight minimization objective of the optimization process. These critical member 

groups are detected in this step as follows. 

 

Step 4.1. Increase-group for constraint satisfaction: The increase-group (IG) 

contains members that are to be increased in size in an effort to eliminate constraint 

violations. This group can further be divided into two subgroups as IGs and IGd based 

on the type of constraint violations, where the former is used for satisfying the 

strength constraints while the latter is adopted to handle the displacement criteria. All 

the members violating the strength constraints are directly included in the IGs 

subgroup. These members can simply be detected based on their load to capacity 

ratios (LCRs), Eq. (5.4), which exceeds 1.0 for under designed members. 
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On the other hand, in order to detect the IGd members SI values described through Eq. 

(5.3) should be computed. Once SI values are calculated, the most critical members 

for reducing the displacement violations, i.e. members with higher SI values, are 

identified. Here, the number of IGd members is determined using an adaptive ratio 

parameter Rd (see step 6) based on the total number of design variables. For instance, 

for a truss structure with 100 sizing design variables if Rd is set to 0.1 in an arbitrary 

iteration of the GSS, then the number of IGd members will be equal to 10. This 

implies that only 10 members with highest SI values are to be increased in size to 
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satisfy the displacement criteria. 

 

Step 4.2. Decrease-group for weight reduction: The decrease-group (DGw) contains 

the elements that are to be decreased in size with the purpose of achieving a certain 

weight reduction. Selection of DGw members is carried out to identify those members 

which seem to be overdesigned under the applied loads. For this purpose, first the 

most overdesigned members considering the strength criteria are detected using LCR 

values. Next, these members are further evaluated based on their SI values in order to 

select those that have the least impact on the displacement criteria. Similar to IGd 

members, the number of DGw members is also determined in conjunction with an 

adaptive ratio parameter Rw (see step 6) based on the total number of design variables. 

The Rw ratio determines the number of most overdesigned members having the least 

effect on the displacement constraints. In case the most overdesigned members 

detected are also amongst the least effective members on the displacement constraint, 

they are chosen as DGw members. Hence, the selected DGw members will be those 

overdesigned members for which the size reduction will have the least effect on the 

displacement of the structure in the direction of interest. For instance, for a truss 

structure with 100 sizing design variables if Rw is set to 0.1 in an arbitrary iteration of 

the GSS, then at most the number of DGw members will be equal to 10. Here, by 

decreasing the size of DGw members it is expected to have no or minimum violation 

in the displacement constraints while reducing the total weight of the truss structure. 

 

Step 5. Stochastic member resizing: The resizing strategy used in this study is based 

on a simple stochastic approach, where the IGs and IGd members are stochastically 

increased in size based on a predefined maximum incremental step size, which is 

taken as 5 for most practical problems. A random move towards larger sections is then 

performed for each IG member using Eq. (5.5), 
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where pre

iI
 
is the value of a design variable in the previous iteration; new

iI is the new 

value of the design variable, representing the sequence number of the new section 

adopted for an IG member in the current iteration; and IGRand is an integer random 

number selected between 1 and 5 according to a uniform distribution. It follows that in 

the new design each IG member is replaced stochastically by any of the five stronger 

sections next to its previous value in a profile list. 

 

On the other hand, the DGw members are stochastically decreased in size based on a 

predefined bound for the reduction step size, which is taken as 3 for most practical 

problems. A random move towards smaller sections is then performed for each of the 

DGw members as follows: 

 

     wDGpre
i

new
i RandII                          (5.6) 

 

where wDG
Rand  is an integer random number selected between 1 and 3 according to a 

uniform distribution. 

 

The resizing strategy followed in this study provides stochastic yet guided moves in 

the design space to approach the optimum. It is worth mentioning that the boundary 

values adopted for increase and decrease in the size of members are determined based 

on extensive numerical experiments. Here, it is attempted to avoid large changes in 

the structure of candidate designs specially when decreasing the size of members to 

prevent intensive constraint violations. 

 

Step 6. Updating the rate of member resizing: This step is implemented to 

determine the number of structural members considered for resizing at each iteration. 

In this regard an adaptive approach is employed based on the feasibility of the 

generated design at each iteration using some rules. The first rule is that IGs members, 

those violating strength constraints, are all increased in size due to the high 

importance of strength criteria for producing acceptable designs. Secondly, as 
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mentioned before, not all but rather a certain percentage of structural members are 

selected as DGw and IGd members for section change based on the associated Rw, and 

Rd ratios. Both of these parameters are initially set to a minimum value of 0.1, 

implying that only 10% of the members (design variables) are subjected to a section 

decrease due to overdesigned strength capacity, and another 10% of the members will 

be considered for a section increase due to violation of displacement criteria. 

 

During the numerical investigations it was seen that some of the DGw members 

eventually reach their critical sizes (i.e. the lower bounds on profile sizes) when the 

iterations continue, and no further improvement in the solution becomes possible 

using only 10% of the design variables. To avoid this problem and hence to ensure an 

effective weight reduction process in the following iterations, the Rw ratio is increased 

by ΔR at each iteration provided that no constraint violation takes place in the 

generated design. It is apparent that, increasing the value of Rw results in contribution 

of more structural elements in weight reduction. However, in case any kind of 

constraint violation (either displacement or strength criteria violation) takes place in 

the generated design, the value of Rw is set back to its initial value to expedite the 

repair of the infeasible design.  

 

In the case of IGd members the design optimization of investigated examples has 

revealed that the initial value of Rd =0.1 can be kept constant throughout the 

optimization process, and no increment of this parameter is indeed necessary. 

However, in case no improvement is provided for reducing the displacement 

violations, the same adaptive approach used for Rw can be employed for Rd as well to 

increase the number of structural members contributing to satisfy the displacement 

criteria. It is worth mentioning that an upper bound value of Rmax = 0.7 is used for 

both Rw and Rd ratios in the present study. 

 

Step 7. Termination: The aforementioned procedure is iteratively carried out, 

starting from the last generated design at the end of each iteration, until a stopping 

criterion is satisfied. The termination criterion can be imposed as a maximum number 
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of iterations or no improvement of the best design over a certain number of iterations. 

For the sake of clarity the flowchart of truss optimization procedure using the 

proposed GSS is outlined in Figure 5.1. 

 

It should be noted that in case there are no displacement constraints present, the 

proposed algorithm will employ the LCR values only to guide the search and will use 

a similar logic to that of the classical fully stressed design (FSD) (Gallagher 1973) 

which is a simple yet efficient stress-ratio technique for handling such cases in 

practical applications. However, in these cases there will be some differences between 

the proposed technique and the FSD as follows. Firstly, in the GSS only a portion of 

elements are resized based on an adaptive approach which takes into account the 

feasibility of the generated solution as well. Secondly, the GSS follows a stochastic 

procedure which increases the global search capacity of the technique and helps the 

algorithm avoid local minima. Finally, in the GSS only the direction of the search is 

determined (i.e. increase or decrease) and the amount of resizing is carried out 

stochastically within a limited boundary. Since using the FSD is well established in 

the literature for handling problems with no displacement constraint, the main focus of 

this study is on developing a computationally efficient technique especially for 

dealing with problems having displacement constraint together with strength 

limitations. Although problems having no displacement constraint can be also handled 

by the GSS, such problems are not covered in this study.  

 

In general, parameters of the GSS include resizing ratios (i.e. Rd, and Rw), 

corresponding step size and upper bound (i.e. ΔR and Rmax), as well as boundary 

values for stochastic resizing of members (i.e. boundary values for 
IGRand  and 

wDG
Rand ). Basically, since an adaptive procedure is employed in the GSS which 

takes into account the feasibility of the generated design, the algorithm is able to 

adjust the resizing ratios Rd, and Rw during the search process. Hence initial values of 

these parameters do not have significant effects on the performance of the algorithm. 

For step size of these ratios, ΔR, using larger values than those adopted in this study 
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could impose abrupt changes in the structure of a generated design at each iteration 

resulting in an inefficient search in the solution space. Similarly taking larger values 

of Rmax than that of used in this study could result in a similar problem by allowing 

simulations resizing of a large number of members. Furthermore, in order to set the 

boundary values for 
IGRand  and wDG

Rand  typically square root of the number of 

available sections in a profile list can provide an approximate idea. Accordingly since 

a list of 37 pipe sections (AISC-LRFD 1994) is used in this study, in order not to 

disturb the generated solutions to a great extent, smaller boundary values of 5 and 3 

(compared to 37 which gives an approximation of 6) are used for 
IGRand  and 

wDG
Rand based on numerical experiments by which increasing the size of members to 

repair an infeasible design can be carried out faster than decreasing the member sizes 

for weight reduction. Indeed, further studies are required for evaluating the effect of 

different parameter settings on the general performance of the GSS. Additionally, 

since parameter setting is somehow a problem dependent issue, in case of new 

instances, the speed of the proposed technique makes it possible to perform numerous 

runs in a reasonable time for setting its parameters to some appropriate values. 

  

In addition, it should be noted that there is no limitation for application of the GSS to 

the instances having member grouping. In such cases the same procedure described 

for the GSS can be employed wherein for each group of members LCR and SI values 

are assigned. For instance, in a group of members the most critical member’s LCR can 

be considered as the LCR of the group. Furthermore, in order to determine the SI 

value of a group, in light of Eq. (5.3) sum of the DPFs of group members should be 

divided by the total volume of the group members. Once LCR and SI values are 

obtained for member groups, these values can be used by the GSS to determine the 

resizing scheme. 
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Figure 5.1: Flowchart of truss optimization process using GSS 
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5.1.4 Numerical Examples 

 

This section covers performance evaluation of the GSS through four sizing 

optimization examples. The investigated instances consist of a 117-member cantilever 

truss, a 130-member transmission tower, a 392-member double layer grid, and a 354-

member truss dome, which are challenging real-size optimization problems with 25, 

130, 392 and 354 sizing design variables, respectively. The optimum designs 

produced for these examples using the GSS are compared to those obtained using 

some metaheuristics. It should be highlighted that there are a large number of 

metaheuristic techniques available in the literature nowadays, and the ones used for 

comparison purposes here are particle swarm optimization (PSO), the big-bang big-

crunch (BB-BC) algorithm and two enhanced variants of the latter, namely modified 

(Hasançebi and Kazemzadeh Azad 2014) and exponential BB-BC (Hasançebi and 

Kazemzadeh Azad 2012). These algorithms are particularly selected based on their 

successful performances on discrete truss optimization problems. In the present study 

the BB-BC algorithm and its two enhanced variants are employed based on the 

formulations provided in chapter 3. On the other hand, PSO is implemented with a 

slight modification in its formulations in Hasançebi et al. (2009), such that the 

additional velocity term utilized therein is adopted here with a probability of 0.01 for 

both positive and negative changes in the velocities of particles. Due to the stochastic 

nature of the techniques, each design example is independently solved ten times with 

each technique and the computational results collected are used to carry out a 

performance evaluation of the techniques for comparison purposes. The value of 

parameter ΔR is set to 0.1 for the first and second examples, and 0.2 for the last 

example. Here, the maximum number of iterations is adopted as the termination 

criterion of the optimization process. For all the examples, the sizing variables are to 

be selected from a database of 37 pipe sections, and the material properties of steel are 

taken as follows: modulus of elasticity (E)  200 GPa, yield stress (Fy)  248.2  MPa, 

and unit weight of the steel (  )  7.85 ton/m
3
.   
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5.1.4.1 Example 1: 117-Member Cantilever Truss 

 

The steel cantilever truss depicted in Figure 5.2 is considered as the first design 

example. The structure is composed of 117 members and 30 joints. The truss members 

are linked into 25 groups, so that a design optimization problem with 25 design 

variables is generated. For design purpose, downward loads of 15 kN are applied at all 

the unsupported nodes. The vertical displacement of the truss tip is limited to 2 cm 

and the maximum number of iterations for the GSS is set to 200. For the PSO and BB-

BC algorithms a population size of 50 individuals and a maximum number of 200 

iterations are used. 

 

Design optimization of the cantilever truss is performed, and the results obtained are 

presented in Table 5.1. In this example, the GSS gives a promising design weight of 

5026.4 kg. The other design weights are 5026.4 kg by PSO, 5025.2 kg by standard 

BB-BC, 5025.2 kg by modified BB-BC, and 5026.4 kg by exponential BB-BC 

algorithm. Here, the GSS locates a good near optimum solution over 200 iterations by 

performing only 400 structural analyses. On the other hand, the abovementioned 

design weights are obtained by other algorithms through 10000 analyses, which is 

simply calculated by multiplying the population size (i.e. 50) by the maximum 

number of iterations (i.e. 200). The performance of the GSS can also be observed 

from Table 2 in terms of the worst, mean, and standard deviation of the design 

weights attained using a particular technique. The convergence history showing the 

variation of the best feasible generated design throughout the optimization process in 

the best run of GSS is depicted in Figure 5.3. The convergence histories of the best 

runs of the other algorithms are shown in Figure 5.4. 
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Figure 5.2: 117-member cantilever truss 

 

 

 

 
 

Figure 5.3: Convergence history of the best feasible generated design for 117-member 

cantilever truss using GSS 
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 Figure 5.4: Convergence histories for 117-member cantilever truss using some 

metaheuristics 

 

Table 5.1. Comparison of optimum designs for 117-member cantilever truss 

 

Computational details PSO 

BB-BC 

GSS 

Standard Modified Exponential 

Population size 50 50 50 50 1 

Maximum no. iterations 200 200 200 200 200 

Maximum no. 

structural analyses 
10000 10000 10000 10000 400 

Optimum weight (kg) 5026.4 5025.2 5025.2 5026.4 5026.4 

Worst weight 5132.8 5169.5 5030.2 5033.6 5042.5 

Mean weight 5040.1 5050.9 5027 5027.9 5037 

Standard deviation 32.8 46.6 2.31 2.33 5.7 
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5.1.4.2 Example 2: 130-Member Transmission Tower 

 

The steel transmission tower depicted in Figure 5.5 is selected as the second design 

example. The structure is composed of 130 members and 33 joints. To keep the size of 

design space as large as possible, no member grouping is performed. Hence, a 

challenging design optimization problem with 130 design variables is investigated. 

The applied loads on the tower are given in Table 5.2 (see Figure 5.6 as well). In this 

example, the displacement at the tip of the tower in x-direction is limited to 3 cm, and 

the maximum number of iterations for GSS is set to 200. For the PSO, and BB-BC 

algorithms a population size of 50 individuals and a maximum number of 1000 

iterations are used. 

 

Sizing optimization of the transmission tower is carried out, and the results obtained 

are tabulated in Table 5.3. In this example, the GSS gives the least weight, which is 

5801.3 kg. The other design weights are 6059.6 kg by PSO, 6427.8 kg by standard 

BB-BC, 5973.5 kg by modified BB-BC, and 5853.9 kg by exponential BB-BC 

algorithm. The GSS locates the minimum weight design over 200 iterations by 

performing only 400 structural analyses. On the other hand, the above-mentioned 

heavier design weights are obtained by other algorithms through 50000 analyses, 

which is simply calculated by multiplying the population size (i.e. 50) by the 

maximum number of iterations (i.e. 1000). The performance of the GSS can also be 

observed from Table 5.3 in terms of the worst, mean and standard deviation of the 

design weights attained using a particular technique. The convergence history 

showing the variation of the best feasible generated design throughout the 

optimization process in the best run of GSS is depicted in Figure 5.7. The 

convergence histories of the best runs of the other algorithms are depicted in Figure 

5.8. 
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Figure 5.5: 130-member transmission tower 

 

 

Figure 5.6: Loaded nodes of 130-member transmission tower 
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Figure 5.7: Convergence history of the best feasible generated design for 130-member 

transmission tower using GSS 

 

 
 

Figure 5.8: Convergence histories for 130-member transmission tower using some 

metaheuristics 
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Table 5.2. Loading of 130-member transmission tower 

 

Node x-direction (kN) 
y-direction 

(kN) 
z-direction (kN) 

29 100 0 0 

30 100 0 0 

31 0 25 0 

32 0 25 0 

33 0 0 -50 

 

 

Table 5.3. Comparison of optimum designs for 130-member transmission tower 

 

Computational details PSO 

BB-BC 

GSS 

Standard Modified Exponential 

Population size 50 50 50 50 1 

Maximum no. 

iterations 1000 1000 1000 1000 200 

Maximum no. 

structural analyses 
50000 50000 50000 50000 400 

Optimum weight (kg) 6059.6 6427.8  5973.5 5853.9 5801.3 

Worst weight  6611.4  7172.6 6434.7 6526.4  6118.5 

Mean weight  6364.3  6742.9  6144.5  6059.5  6004.4 

Standard deviation   227.3  303.8  188.9  240.4  87.6 

 

 

5.1.4.3 Example 3: 392-Member Double Layer Grid 

 

The steel double layer grid shown in Figure 5.9 is chosen as the third design 

optimization instance. The structure is composed of 392 members and 113 joints. 

Similar to the first example no member grouping is performed to create a challenging 

design optimization problem with 392 sizing design variables. For design purpose, 

downward loads of 15 kN are applied at all nodes of the top grid. In this example, the 
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vertical displacement at the center of the bottom grid is limited to 1 cm and the 

maximum number of iterations for GSS is set to 200. For the PSO and BB-BC 

algorithms a population size of 50 individuals and a maximum number of 2000 

iterations are used. 

 

Design optimization of the 392-member double layer grid is performed and the results 

attained using different techniques are presented in Table 5.4. In this example, the 

GSS gives the least weight again, which is 2113.8 kg. The other design weights are 

3272.7 kg by PSO, 3645.1 kg by standard BB-BC, 2574.4 kg by modified BB-BC, 

and 2116.3 kg by exponential BB-BC algorithm. The GSS locates the minimum 

weight design through only 400 structural analyses; while the other algorithms need 

100000 analyses to locate the abovementioned heavier design weights. The 

performance of the GSS in terms of the worst, mean, and standard deviation of 

attained design weights can be seen from Table 5.4 as well. The convergence history 

in the best run of GSS is depicted in Figure 5.10. The convergence histories of the 

best runs of the other algorithms are shown in Figure 5.11. 

 

 

 

(a) 3-D view 

                  Figure 5.9: 392-member double layer grid (a) 3-D view (b) top view 
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(b) top view 

 

Figure 5.9 (continued) 

 

 
 

 Figure 5.10: Convergence history of the best feasible generated design for 392-

member double layer grid using GSS 
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Figure 5.11: Convergence histories for 392-member double layer grid using some 

metaheuristics 

 

Table 5.4. Comparison of the optimum designs for 392-member double layer grid 

 

Computational 

details 
PSO 

BB-BC 

GSS 

Standard Modified Exponential 

Population size 50 50 50 50 1 

Maximum no. 

iterations 2000 2000 2000 2000 200 

Maximum no. 

structural analyses 
100000 100000 100000 100000 400 

Optimum weight 

(kg) 
3272.7  3645.1 2574.4 2116.3 2113.8 

Worst weight   3603.1 4501.2 2775.9 2290.3  2146.9 

Mean weight  3406.3  4013.1  2669.1  2169.6  2127.5 

Standard deviation   159.7  376.5  83.3  81.5  9.6 
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5.1.4.4 Example 4: 354-Member Truss Dome 

 

The steel truss dome shown in Figure 5.12 is adopted as the last design optimization 

example. The dome is composed of 354 members and 127 joints. Similar to the 

former examples no member grouping is performed and a challenging design 

optimization problem including 354 sizing design variables is considered. For design 

purpose, downward loads of 15 kN are applied at all the unsupported nodes. In 

addition to these loads, a single downward load of 100 kN is also acting at the tip of 

the dome. The vertical displacement of the dome tip is limited to 2 cm and the 

maximum number of iterations for GSS is set to 250. For the PSO and BB-BC 

algorithms a population size of 50 individuals and a maximum number of 4000 

iterations are used. 

 

Design optimization of the dome is carried out and the results obtained using different 

techniques are given in Table 5.5. Once again the GSS yields the least weight for this 

example, which is 14252.5 kg. The other design weights are 21822.3 kg by PSO, 

15786.2 kg by modified BB-BC, and 14312.4 kg by exponential BB-BC algorithm. 

The GSS locates the minimum weight design through only 500 structural analyses; 

while the other algorithms need 200000 analyses to locate the above-mentioned 

heavier design weights.  

 

For this example, no feasible design is located with the standard BB-BC algorithm 

when the initial population is generated randomly. To facilitate design transitions to 

feasible regions during the search, the standard BB-BC algorithm is initiated from one 

feasible design point such that the strongest section of the discrete profile set is 

assigned to all the truss members in one individual, while all other individuals in the 

initial population are created randomly in a usual manner. This way it is ensured that 

the search process is performed in more promising regions of the design space 

throughout the optimization process. The BB-BC algorithm employed under this case 

locates a final design weight of 16320.9 kg. The performance of the GSS in terms of 

the worst, mean, and standard deviation of attained design weights can be seen from 
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Table 5.5. The convergence history in the best run of GSS is depicted in Figure 5.13. 

The convergence histories of the best runs of the other algorithms are depicted in 

Figure 5.14   

 

 

 

     (a) 3-D view 

 

         (b) top view 

        Figure 5.12: 354-member truss dome (a) 3-D view (b) top view (c) side view 
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(c) side view 

 
Figure 5.12 (continued) 

 

 

 
 

Figure 5.13: Convergence history of the best feasible generated design for 354-

member truss dome using GSS 
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Figure 5.14: Convergence histories for 354-member truss dome using some 

metaheuristics 

 

 

Table 5.5. Comparison of the optimum designs for 354-member truss dome 

 

Computational 

details 
PSO 

BB-BC 
GSS 

Standard Modified Exponential 

Population size 50 50 50 50 1 

Maximum no. 

iterations 4000 4000 4000 4000 250 

Maximum no. 

structural analyses 
200000 200000 200000 200000 500 

Optimum weight 

(kg) 
21822.3  16320.9  15786.2 14312.4 14252.5 

Worst weight  24253.7 17442.5 17217.9 14895.8 14711.4 

Mean weight  23456.9  16704.1  16344.5  14533.2  14515.4 

Standard deviation   972.3  519.1  600.3  236.8  142.6 
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5.1.5 Summary 

 

In this section a novel guided stochastic technique named GSS is developed for 

discrete sizing optimization of steel truss structures. For design optimization, first 

those members which should be resized are detected using the well-known principle 

of virtual work together with the load to capacity ratios of structural members. Next, 

the resizing of members is carried out in a stochastic way. Basically, two critical 

groups of truss members (IG, and DGw) are detected such that IG members are 

increased in size to satisfy strength and/or displacement constraints, and meanwhile 

DGw members are decreased in size to minimize the structural weight in the course of 

optimization. The performance evaluation of the proposed GSS is carried out based on 

a comparison with robust representatives of metaheuristic approaches using four real-

size truss structures, namely a 117-member cantilever truss, a 130-member 

transmission tower, a 392-member double layer grid, and a 354-member truss dome. 

The results obtained in these examples clearly documented the efficiency of the 

proposed technique in discrete sizing optimization of truss structures. Besides the 

promising performance of the GSS in design optimization, its performance is not 

affected by random initiation. Furthermore, no penalty function or gradient 

information is needed to guide the optimization process.  

 

It should be noted that, in comparison to the general purpose metaheuristic techniques, 

the computational efficiency of the GSS in discrete sizing optimization of truss 

structures is basically due to the use of domain knowledge (knowledge obtained using 

the principle of virtual work as well as the information collected during the structural 

analysis and design stages) in the course of optimization. The low computational 

effort required for design optimization using the GSS can pave the way for 

development of a new class of stochastic design techniques guided by principles of 

structural mechanics.  

 

 

 



138 

 

5.2. GSS for Multiple Load Cases and Displacement Criteria  

 

5.2.1 Introduction 

 

The GSS developed in the previous section is basically suitable for handling optimal 

sizing problems of steel truss structures with a single displacement constraint under a 

single load case. Nevertheless, practical designs of structures usually come up with 

numerous displacement criteria in several load cases, and it is crucial that an 

optimization algorithm can address such practical requirements of design problems in 

reality. The present section aims to investigate the GSS in a more general class of 

truss sizing optimization problems subject to multiple displacement constraints and 

load cases. To this end, enhancements of the GSS are proposed in the form of two 

alternative approaches that enable the technique to deal with multiple 

displacement/load cases. The first approach implements a methodology in which the 

most critical displacement direction is considered only when guiding the search 

process. The second approach, however, takes into account the cumulative effect of all 

the critical displacement directions in the course of optimization. Advantage of the 

integrated force method of structural analysis is utilized for further reduction of the 

computational effort in these approaches. The proposed enhancements of GSS are 

investigated and compared with some selected techniques of metaheuristics through 

three real-size trusses that are sized for minimum weight per AISC-LRFD (1994) 

specifications. The numerical results reveal that both enhancements generally provide 

better solutions than do metaheuristics using lesser computational effort. 

 

5.2.2 Enhancement of GSS  

 

The original GSS is developed for discrete size optimization of steel truss structures 

with single displacement constraint under a single load case. However, as stated 

before, a practical design problem usually incorporates numerous displacement 

criteria under several load cases. Hence, enhancements of the GSS are carried out in 

this section to address a more general class of truss optimization problems using the 
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algorithm. Apparently, the two main inputs used for decision making in the GSS are 

the LCR and SI values of structural members. When multiple load cases are present, 

the LCR values are first calculated for all the members under each load case. The 

maximum LCR value of a member amongst all the load cases is selected as the critical 

LCR of this member. The critical LCR values of the members determined this way are 

then used to select the IGs and DGw members in the optimization process as described 

in the previous section. 

 

Unlike a single displacement constraint, where computing the SI values of members is 

rather straightforward, an appropriate method should be adopted to generate a suitable 

SI value for each member while dealing with multiple displacement criteria. To this 

end, the following two approaches are proposed and evaluated in the present study. 

 

5.2.2.1 First Approach (GSSA) 

 

In the first approach the problem is turned into as a single displacement constraint 

problem by focusing solely on the most critical displacement direction even though 

there are several constraint violations regarding displacements. If there is any 

displacement constraint violation, the critical displacement direction refers to the one 

that violates the constraint with the largest value. Otherwise, for a feasible design, it is 

the one for which the amount of nodal displacement is closest to the corresponding 

allowable limit. Once the critical displacement direction is determined, calculation of 

SI values for truss members can be carried out in the same way described in the 

previous chapter. The computed SI values are then employed for determining the IGd 

and DGw members in the course of design optimization as outlined in chapter 5. 

 

5.2.2.2 Second Approach (GSSB) 

 

Alternatively, in the second approach multiple displacement constraints are taken into 

account on a cumulative basis. In this approach SI values of members are calculated at 

all the critical directions where displacement violations occur, and they are added to 
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each other in a cumulative manner as formulated in Eq. (5.7). 

         i

Ncr

k

ki

cui
V

DPF

SI


 1

,

,                                      (5.7) 

In Eq. (5.7), SIi,cu and Vi are the cumulative sensitivity index, and volume of the i-th 

member, respectively; and Ncr is the total number of critical directions (i.e., 

displacement directions with constraint violation) used for calculation of the DPF 

values. It is worth mentioning that for a generated design with no constraint violation, 

similarly the critical direction is taken as the one for which the amount of nodal 

displacement is closest to the corresponding allowable limit. Once the SI values for 

truss members are computed using Eq. (5.7), these values can be used for determining 

the IGd and DGw members. 

 

5.2.3 Integrated Force Method 

 

As mentioned before, the GSS requires that structural response of a generated 

candidate design is performed under both real and virtual loads. Because the GSSA 

focuses on most critical displacement direction only, two response computations are 

required at each iteration of this algorithm, if a displacement based structural analysis 

is used. On the other hand, multiple constraint violations are simultaneously 

accounted for in the GSSB and thus numerous response computations maybe needed at 

an arbitrary iteration of the algorithm to calculate internal forces under virtual loads 

for each critical direction. To this end, the use of integrated force method (IFM) 

(Patnaik et al. 1991) of structural analysis is adopted here for further reduction of 

computational effort in both approaches. 

 

In the commonly used displacement method of structural analyses the force-

displacement relationship for the structure is given as follows, 
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             }{}]{[ PUK                                        (5.8) 

 

where [K] is the stiffness matrix of the structure, and }{U and }{P are the nodal 

displacement and applied load vectors, respectively. Once nodal displacements are 

determined the internal forces are then calculated based on the obtained 

displacements. Alternatively, the IFM employs the relation below for a structure with 

m members and n displacement degrees of freedom. 

 

               *}{}]{[ PFS                                                  (5.9) 

 

where [S] is the IFM governing unsymmetrical square matrix of dimension m, }{F  is 

the vector of internal forces and *}{P  is defined as, 
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where }{P  is the applied load vector and }0{ denotes a zero vector of dimension r, 

which is equal to the degree of indeterminacy of a structure. Using the IFM 

formulation, once internal forces }{F  are determined, the nodal displacements can 

then be calculated using the computed forces. 

 

Accordingly, at each iteration of the GSS, based on Eq. (5.9) the internal forces }{F  

are first computed under real loads using the following relation: 

 

             *}{][}{ 1 rPSF                                    (5.11) 

 

where rP denotes the applied real loading on the structure. It is important to note that 

each column in matrix 
1][ S contains internal member forces caused by a unit load in 

the direction of a particular degree of freedom (DOF). By definition, this is identical 
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to virtual internal forces in members developed under an applied virtual load. Hence, 

when the structure is analyzed under the applied real loads at each iteration, the virtual 

internal forces can directly be extracted from 1][ S  matrix without a need for 

additional analyses. It is worth mentioning that in this approach if a virtual load is 

applied in a negative direction with respect to the corresponding DOF, the attained 

virtual internal forces using ][ 1S  should be multiplied by -1 to account for 

coordinates sign convection. It should be noted that a comparison of displacement 

method versus IFM in terms of computational efficiency is out of the scope of this 

study. The IFM is employed here since it removes the need for additional response 

computations in case of virtual loading. 

5.2.4 Numerical Examples 

This section carries out performance evaluation of the GSS in discrete sizing 

optimization of truss structures subject to multiple displacement constraints and load 

cases. In the investigated examples the notations GSSA, and GSSB are used to refer to 

the first and second approaches proposed for enhancements of the GSS, respectively. 

The investigated examples consist of a 117-member cantilever truss, a 130-member 

transmission tower, and a 368-member truss dome, which are challenging real-size 

optimization problems with 117, 130, and 368 sizing design variables, respectively. 

The optimum designs obtained for these examples using the GSSA and GSSB are 

compared to those located using some metaheuristics. Due to the stochastic nature of 

the techniques, each problem is independently solved ten times with each technique 

and the numerical results collected are used for comparisons.  

 

Here, the value of parameter ΔR is set to 0.1 and the maximum number of iterations is 

taken as the termination criterion of the optimization process. For all the investigated 

examples, the sizing variables are selected from a database of 37 pipe sections, and 

the material properties of steel are taken as follows: modulus of elasticity (E)  200 

GPa, yield stress (Fy)  248.2 MPa, and unit weight of the steel (  )  7.85 ton/m
3
.  
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5.2.4.1 Example 1: 117-Member Cantilever Truss 

The steel cantilever truss shown in Figure 5.2 is studied in the previous section with a 

single displacement constraint under a single load case. For design purpose the 

structural members were linked into 25 member groups in the previous section. 

However, in order to keep the size of design space as large as possible, no member 

grouping is performed here so that a challenging design optimization problem with 

117 design variables is generated. The structure is sized under three independent load 

cases, where the loads are applied at all unsupported nodes of the truss in the 

following cases: (i) horizontal loads of 15 kN applied in positive x-direction, (ii) 

horizontal loads of 15 kN applied in positive y-direction, (iii) vertical loads of 15 kN 

applied in negative z-direction. The displacements of all nodes in x, y, and z directions 

are limited to a maximum value of 4 cm.  

 

The maximum number of iterations for GSSA and GSSB is set to 200, whereas a 

population size of 50 individuals and a maximum number of 500 iterations are used 

for PSO and BB-BC algorithms. The results obtained for sizing optimization of the 

117-member cantilever truss are tabulated in Table 5.6. As seen from this table, the 

least design weight of the cantilever truss is attained by GSSB, which is 3072.2 kg. 

The second best design is located by GSSA, which is 3100.9 kg. The other design 

weights are 3123.6 kg by exponential BB-BC algorithm, 3125.4 kg by modified BB-

BC, 3476 kg by PSO, and 3586.5 kg by standard BB-BC. The GSSB locates the 

minimum weight design through only 317 structural analyses, of which 200 analyses 

are performed at the iterations of the GSS, while 117 analyses are performed during a 

local search around the best feasible design following the last iteration. On the other 

hand, the abovementioned heavier design weights are obtained by metaheuristic 

algorithms through 25000 analyses, calculated by multiplying the population size (i.e. 

50) with the maximum number of iterations (i.e. 500). The promising performance of 

the GSSB can also be observed from Table 6.1 in terms of the worst, mean and 

standard deviation of the attained design weights. The convergence histories showing 

the variation of the feasible generated design throughout the optimization process in 



144 

 

the best runs of the GSSA and GSSB are depicted in Figure 5.15. The convergence 

histories of the best runs of the metaheuristic algorithms are depicted in Figure 5.16.  

 

 

                                         (a)                  (b) 

 

Figure 5.15: Convergence history of the best feasible generated design for 117-

member cantilever truss using (a) GSSA, (b) GSSB 

 

 

 

Figure 5.16: Convergence histories for 117-member transmission tower using some 

metaheuristics 
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Table 5.6. Comparison of optimum designs for 117-member cantilever truss 

 

Computational details PSO 

BB-BC 

GSSA GSSB 
Standard Modified Exponential 

Population size 50 50 50 50 1 1 

Maximum no. iterations 500 500 500 500 200 200 

No. analyzed designs 25000 25000 25000 25000 317 317 

Optimum weight (kg) 3476 3586.5 3125.4 3123.6 3100.9 3072.2 

Worst weight 3828.2 4265.5 3253.5 3277.3 3133.5 3085.9 

Mean weight 3600.7 3855.9 3205.8 3209.9 3112.3 3078.3 

Standard deviation 141.1 249.8 60.7 66.8 12.6 6.6 

Optimum weight rank 5 6 4 3 2 1 

 
 

5.2.4.2 Example 2: 130-Member Transmission Tower 

 

The steel transmission tower shown in Figure 5.5 is studied in the previous section 

under a single load case and a single displacement constraint. Here, the truss tower is 

sized under three independent load cases given in Table 5.7 (see Figure 5.6 as well). 

Further, the displacements of all nodes in x, y, and z directions are limited to a 

maximum value of 3 cm. 

 

The maximum number of iterations for GSSA and GSSB is set to 200, whereas a 

population size of 50 individuals and a maximum number of 1000 iterations are used 

for PSO and BB-BC algorithms. The results obtained for sizing optimization of the 

transmission tower are tabulated in Table 5.8. In this example the least weight of the 

truss tower, which is 6448.1 kg, is again produced by GSSB. The second best design is 

located by GSSA, which is 6485.6 kg. The other design weights are 7060.7 kg by 
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exponential BB-BC algorithm, 7011.1 kg by modified BB-BC, 7344.9 kg by PSO, and 

8686.1 kg by standard BB-BC. The GSSB locates the minimum weight design by 

performing only 330 structural analyses. On the other hand, the above-mentioned 

heavier design weights are obtained by metaheuristic algorithms through 50000 

analyses. The promising performance of the GSSB can also be observed from Table 

5.8 in terms of the worst, mean and standard deviation of the attained design weights. 

The convergence histories showing the variation of the feasible generated design 

throughout the optimization process in the best runs of the GSSA and GSSB are 

depicted in Figure 5.17. The convergence histories of the best runs of the 

metaheuristic algorithms are depicted in Figure 5.18. 

 
 

 

 

    (a)                                 (b) 

 

Figure 5.17: Convergence history of the best feasible generated design for 130-

member transmission tower using (a) GSSA, (b) GSSB 

 

 



147 

 

 

 

Figure 5.18: Convergence histories for 130-member transmission tower using some 

metaheuristics 

 

 

Table 5.7. Loading of 130-member transmission tower 

 

Node 

x-direction (kN) y-direction (kN) z-direction (kN) 

Load Case Load Case Load Case 

(1) (2) (3) (1) (2) (3) (1) (2) (3) 

29 100 0 0 0 100 85 0 0 0 

30 100 0 0 0 0 0 0 0 0 

31 0 0 0 25 100 0 0 0 0 

32 0 0 0 25 0 0 0 0 0 

33 0 0 50 0 0 100 -50 -100 0 
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Table 5.8. Comparison of optimum designs for 130-member transmission tower 

 

Computational details PSO 

BB-BC 

GSSA GSSB 
Standard Modified Exponential 

Population size 50 50 50 50 1 1 

Maximum no. iterations 1000 1000 1000 1000 200 200 

No. analyzed designs 50000 50000 50000 50000 330 330 

Optimum weight (kg) 7344.9 8686.1 7011.1 7060.7 6485.6 6448.1 

Worst weight 8869 9492.4 7808.2 7706.6 6706.2 6557.6 

Mean weight 7749.4 9127.1 7280.2 7307.2 6573.6 6509.9 

Standard deviation 633.3 377.4 368.1 247.8 83.7 44.9 

Optimum weight rank 5 6 3 4 2 1 

 

5.2.4.3 Example 3: 368-Member Truss Dome 

 

The steel truss dome shown in Figure 5.19 is composed of 368 members and 129 

joints. Similar to the former examples, no member grouping is performed to generate 

a challenging design optimization problem with 368 sizing design variables. The 

dome is sized under three independent load cases, where the loads are applied at all 

unsupported nodes of the truss in the following cases: (i) horizontal loads of 15 kN 

applied in positive x-direction, (ii) horizontal loads of 15 kN applied in positive y-

direction, (iii) vertical loads of 15 kN applied in negative z-direction. The 

displacements of all nodes in x, y, and z directions are limited to a maximum value of 

1.5 cm.  

 

The maximum number of iterations for GSS is set to 400, whereas a population size of 

50 individuals and a maximum number of 2000 iterations are used for PSO and BB-

BC algorithms. The results obtained for sizing optimization of the dome are given in 
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Table 5.9. Once again the least weight of the dome is attained by GSSB, which is 

4850.1 kg. The GSSA gets to find a design weight of 4917.1 kg for the dome, which is 

comparatively heavier than the design weight of 4856.2 kg located by the exponential 

BB-BC algorithm. This reveals that sometimes modern metaheuristics can provide 

solutions better than those of GSSA at the expense of enormously increased 

computation time. The other design weights are 5462.2 kg by modified BB-BC, and 

8998.3 kg by PSO. The GSSB locates the minimum weight design by performing only 

768 structural analyses. However, the above-mentioned design weights are obtained 

by metaheuristic algorithms through 100000 structural analyses.  

 

For this example, no feasible design is located with the standard BB-BC algorithm 

when the initial population is generated randomly. To facilitate design transitions to 

feasible regions during the search, the standard BB-BC algorithm is initiated from one 

feasible design point such that the strongest section of the discrete profile set is 

assigned to all the truss members in one individual, while all other individuals in the 

initial population are created randomly in a usual manner. This way it is ensured that 

the search process is performed in more promising regions of the design space 

throughout the optimization process.  

 

The BB-BC algorithm employed under the above-mentioned case locates a final 

design weight of 8186.7 kg. The convergence histories showing the variation of the 

feasible generated design throughout the optimization process in the best runs of the 

GSSA and GSSB are presented in Figure 5.20. The convergence histories of the best 

runs of the metaheuristic algorithms are shown in Figure 5.21. 
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(a) 3-D view 

 

 

(b) top view 

 

Figure 5.19: 368-member truss dome (a) 3-D view (b) top view (c) side view 
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(c) side view 

 

Figure 5.19 (continued) 

 

 

 

     (a)      (b) 

 

Figure 5.20: Convergence history of the best feasible generated design for 368-

member truss dome using (a) GSSA, (b) GSSB 
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Figure 5.21: Convergence histories for 368-member truss dome using some 

metaheuristics 

 

 

Table 5.9. Comparison of optimum designs for 368-member truss dome 

 

Computational details PSO 

BB-BC 

GSSA GSSB 
Standard Modified Exponential 

Population size 50 50 50 50 1 1 

Maximum no. iterations 2000 2000 2000 2000 400 400 

No. analyzed designs 100000 100000 100000 100000 768 768 

Optimum weight (kg) 8998.3 8186.7 5462.2 4856.2 4917.1 4850.1 

Worst weight 9961.4 8995.3 6113.7 4968.3 5043.5 5021.6 

Mean weight 9514.9 8604.4 5785.2 4924.5 4967.6 4918.7 

Standard deviation 397.4 404.9 305.7 42.7 53.5 69.1 

Optimum weight rank 6 5 4 2 3 1 
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5.2.5 Summary 

 

The GSS is a new design optimization algorithm for sizing optimization of steel 

trusses with a single displacement constraint under a single load case. The attributes 

of the GSS, which in fact makes it very attractive for practical applications, are that it 

can be applied to problems with discrete size variables, plus it produces comparable 

and often  better solutions to challenging design optimization problems using lesser 

computational effort compared to today’s popular global optimization techniques 

referred to as metaheuristics.  

 

This section investigated the application and performance of the GSS in a more 

general class of truss sizing optimization problems subject to multiple displacement 

constraints and multiple load cases. Here, enhancements of the GSS are achieved in 

the form of two alternative approaches referred to as GSSA and GSSB. The GSSA turns 

a multi displacement constraint problem into as a single one by focusing solely on the 

most critical displacement direction at an iteration. On the other hand, all the critical 

directions where displacement constraint violations occur are simultaneously 

accounted for by GSSB using a formulation on the basis of cumulative effect. Both 

approaches are implemented in conjunction with the integrated force method (IFM) of 

structural analysis to further accelerate the computational efficiency of the algorithms. 

In fact, the use of IFM in GSSA is useful but not mandatory because it gets to reduce 

the number of structural optional to half by eliminating the response analysis due to 

the virtual load at the most critical direction. On the other hand, the use of IFM in 

GSSB is of much significance as far as computational efficiency of the technique is 

concerned, because response computations may be excessive due to a need for 

calculating internal forces under virtual loads for every critical direction where a 

displacement constraint violation occurs. 

 

The efficiency of the proposed enhancements of the GSS is numerically experimented 

and quantified using three real-size trusses that are sized for minimum weight 

according to AISC-LRFD (1994) specifications. The solutions produced to these 
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problems using GSSA and GSSB are compared to those obtained using some selected 

methods of metaheuristics to achieve some level of comparability for the numerical 

accuracy and computational efficiency of the GSS with metaheuristics. The numerical 

results reveal that both enhancements generally provide better solutions than do 

metaheuristics using significantly lesser computational effort. The GSSB produces 

slightly improved solutions compared to the GSSA, although the difference may not be 

of much consequence. On the other hand, the latter comes up with an advantage of 

also being employed with a displacement based structural analysis at no significant 

increase in computational cost, unlike GSSB. 
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CHAPTER 6 

 

 

GUIDED STOCHASTIC SEARCH TECHNIQUE FOR DISCRETE SIZING 

OPTIMIZATION OF STEEL FRAMES 

 

 

 

6.1 Introduction 

 

The GSS technique is proposed for computationally efficient optimum design of steel 

trusses in chapter 5. Regarding the promising performance of the GSS in sizing 

optimization of truss structures, in the present chapter it is extended and reformulated 

for discrete sizing optimization of steel frames subject to design provisions of AISC-

LRFD (1994). As described in the previous chapter, the GSS offers a stochastic 

procedure where the optimization process is guided by the principle of virtual work as 

well as response computations of the generated designs, resulting in an efficient and 

rapid search in the design space. In this context, the information provided through the 

structural analysis and design check stages are utilized for handling strength 

constraints. On the other side, the well-known principle of virtual work is employed to 

detect the most effective structural members for satisfying displacement criteria. The 

performance of the proposed technique is numerically evaluated through optimum 

design of three real-size steel frame structures with 135, 3860, and 11540 structural 

members. The numerical results reveal the success of the GSS in locating promising 

solutions for this kind of problems through a reasonable computational effort.  

 

6.2 Sensitivity Index of Frame Members 

  

An efficient design optimization of steel frames entails that members are sized in a 

candidate design in an effort to improve strength and displacement criteria of the 

current design. To achieve this, one needs to figure out how the selection of members 
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will affect the strength and displacement criteria of the resulting structure. In the case 

of strength criteria this information is readily available through the load to capacity 

ratios of members given in Eqs. (2.15-2.17), which provide direct information 

regarding whether the members are oversized or undersized. However, in the case of 

displacement criteria DPF of members is employed to identify the contribution of 

each structural member to the total displacement for each considered direction. In the 

present chapter a procedure based on the principal of virtual work is employed to 

determine the DPF of each member in a structure (Charney 1991). In order to compute 

the DPF of a frame member in the k-th direction, in addition to performing a usual 

structural analysis under the applied real loads, the structure should be first analyzed 

under a unit load (virtual load) applied in the k-th direction. Then, the DPF of the i-th 

member in the k-th direction, kiDPF , , can be computed as follows. 
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In Eq. (6.1),
r

iP , 
r

iM , 
r

iV , and 
r

iT are the axial, flexural, shear and torsional forces in 

the i-th member under the real loads, respectively, and the notational counterparts of 

these quantities with superscript u refer to the corresponding member forces under the 

unit load. Ei, iI , iG , iJ , Ai, iwA , and Li are the modulus of elasticity, moment of inertia, 

shear modulus, polar moment of inertia, cross-sectional area, shear area and length of 

the i-th frame member, respectively. A problem associated with the formulation of 

DPF in Eq. (6.1) is that it is greatly influenced by the current selection of members at 

a time. As mentioned before, a more general approach to DPF has been introduced by 

the SI (Charney 1993), Eq. (5.3), which normalizes DPF by the volume of each 

structural member to provide a more rational measure for identifying effectiveness of 

members in satisfying the displacement constraint. Once the SI values for frame 

members are computed, these values can be used to determine the resizing scheme as 

described in the following section. 
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6.3 The GSS for Discrete Sizing Optimization of Steel Frames  

The GSS works on the basis of guiding the optimization process for candidate designs 

using the information collected on strength and displacement criteria of the current 

design, i.e, DPF values and load to capacity ratios. To this end, first the critical 

elements that have the highest impact on the response of a given structure should be 

detected; and next their sizes should be changed appropriately. The whole process 

should be guided such that the final minimum weight design leads to an optimum or 

reasonable near-optimum solution, satisfying all the predefined design constraints. 

The following steps outline the main procedure in the implementation of the GSS for 

frame optimization. 

 

Step 1. Initialization: The optimization process with GSS initiates with a randomly 

generated design. This type of initialization, which is similar to initialization of 

metaheuristic techniques with a population size of one, indicates independency of the 

algorithm on the starting point of design optimization process. It is worth mentioning 

that, since the members are to be selected from a predefined list of sections, while 

generating a new candidate design, the design variables created outside the predefined 

ranges are moved back to their lower/upper limits. 

 

Step 2. Evaluation under real loading: The generated design is evaluated next under 

the applied real loads, where structural analysis of the design is carried out with the 

set of steel sections adopted for the design variables, and the force and deformation 

responses are obtained. Once the values of forces and displacements are known, the 

structure undergoes a design check where the amounts of strength and serviceability 

violations are calculated through Eqs. (2.15-2.21). Evaluation stage reveals the quality 

of the generated design at each iteration. 

 

Step 3. Evaluation under virtual loading: In addition to the abovementioned 

evaluation of the design under the real loads, an additional analysis is carried out at 

this step to capture structural response of the design under the virtual loading. This 



158 

 

step is required in order to compute the SI values using Eq. (5.3). It is worth 

mentioning that in case of a single displacement constraint, computing the SI values 

of members is straightforward since there is a single direction of interest. However, 

while dealing with multiple displacement criteria, an appropriate method can be 

selected depending on whether all or only the critical displacement are to be 

considered in guiding the search process. The critical displacement direction refers to 

the one that violates Eqs. (2.18) and (2.19) with the largest value, in case a 

displacement constraint violation takes place. Otherwise, it is the one for which the 

amount of displacement is closest to the corresponding allowable limit. Once the 

critical displacement direction is determined, calculation of SI values for the members 

can be carried out for that particular displacement direction only using Eq. (5.3). In 

chapter 5 both methods are examined in detail and it is shown that the critical 

displacement approach works almost as well as the other without a need for an 

increase in computational effort with a displacement based finite element analysis. 

Hence this approach is adopted here for handling multiple displacement criteria.  

 

Step 4. Detection of critical members: At each iteration of GSS, two main groups of 

member should be identified for simultaneous member resizing. The first group 

includes members which are to be increased in size for eliminating strength and/or 

displacement violations. Oppositely, the second group consists of members which are 

to be decreased in size in line with the weight minimization objective of the 

optimization process. The selection of members for these two groups is carried out as 

follows.  

 

Step 4.1. Increase-group for constraint satisfaction: Members that are to be 

increased in size in an effort to eliminate constraint violations are included in the first 

group referred to as increase-group (IG). This group can further be divided into two 

subgroups as IGs and IGd depending on whether an increase in member size is 

required due to strength criteria (IGs) or displacement criteria (IGd). All the members 

violating the strength constraints are directly included in the IGs subgroup. These 

members can simply be detected based on their load to capacity ratios (LCRs), which 
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exceeds 1.0 for under designed members in the light of Eqs. (2.15-2.17). 

 

On the other hand, IGd members are selected on the basis of SI values described 

through Eq. (5.3). In principle, members with highest SI values are identified as the 

most critical members for reducing or eliminating a displacement violation. The 

number of IGd members is determined using an adaptive ratio parameter Rd (see step 

6) employed as a percentage of the total number of design variables.  

  

Step 4.2. Decrease-group for weight reduction: Members that are to be decreased in 

size with the purpose of achieving a certain weight reduction are included in the 

second group referred to as decrease-group (DG). This group can further be divided 

into two subgroups as DGw and DGr depending on whether the selection is carried out 

amongst most overdesigned members (DGw) or others (DGr). The DGw members are 

selected such that the most overdesigned members are first identified using LCR 

values. Next, these members are further evaluated based on their SI values, and those 

that have the least impact on the displacement criteria are selected as DGw members. 

It follows that the DGw group consists of overdesigned members for which the size 

reduction will have the least effect on displacement of a structure in a direction of 

interest. Similar to IGd members, the number of DGw members is also determined in 

conjunction with an adaptive ratio parameter Rw (see step 5) based on the total number 

of design variables. By reducing Rw (and thus decreasing the number of DGw 

members), it is expected to have no or minimum violation in the displacement 

constraints while reducing the total weight of the frame structure. 

  

During the numerical experiments it is observed that if only DGw members are used 

for weight reduction, some members rarely (if not at all) find a chance for size 

reduction during the iterations of the GSS, even though they might have LCR values 

well below 1.0. These members do not violate strength criteria (LCR<1.0), yet they 

are not amongst the most overdesigned members having the least effect on the 

displacement constraint; nor are amongst the most critical members for handling the 

displacement criteria. It follows that these members do not belong to any of the 
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aforementioned IGs , IGd or DGw groups, and  remain unchanged while generating a 

new candidate solution. In this regard a selected number of such members, named as 

DGr members, are also allowed to reduce their sizes in conjunction with an adaptive 

ratio of Rr. It should be emphasized that only members that have LCR values below 

0.95 are involved in DGr group because size reduction of members having LCR 

values between 0.95 and 1.0 is more likely to yield an infeasible solution.  

 

Step 5. Stochastic member resizing: A resizing strategy is used in the GSS based on 

a simple stochastic approach, where the IGs and IGd members are stochastically 

increased in size using a maximum incremental step size, which is initially set to 

sN  for most practical problems, where sN is the number of discrete sections used to 

size the frame members. Assuming that the members are selected from a wide-flange 

(W) profile list consisting of 268 discrete sections, the maximum incremental step size 

is set to 16 in the first iteration, and it is linearly decreased to 3 during the 

optimization process. For each IG member a random move towards larger sections is 

then performed using Eq. (5.5) where IGRand in this equation is an integer random 

number selected between 1 and the maximum incremental step size (i.e. 16 to 3) 

according to a uniform distribution. It follows that in the new design each IG member 

is replaced stochastically by any of the stronger sections next to its previous value in a 

profile list. On the other hand, a size increase for a member can be carried out 

according to different cross-sectional properties, such as cross sectional area, gA , 

moments of inertia about principal axes, xI  and yI , or the governing radius of 

gyration about the axis of buckling, r . To this end, in this study four section lists are 

generated where the available steel sections are ordered according to only one of the 

aforementioned sectional properties in each list. Then for each IG member one of 

these four lists is selected randomly, and the member adopts a stronger section in the 

selected list in terms of the corresponding cross-sectional property.  

 

On the other hand, the DG members are stochastically decreased in size based on a 

predefined maximum decremental step size, which is defined in the same way as the 
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maximum incremental step size in this study. A random move towards smaller 

sections is then performed for each of the DG members through Eq. (5.6) where 

DGRand in this equation is an integer random number selected between 1 and the 

maximum decremental step size (i.e. 16 to 3) according to a uniform distribution. The 

resizing strategy followed in the GSS provides stochastic yet guided moves in the 

design space to approach the optimum. 

 

Step 6. Updating the rate of member resizing: This step is implemented to 

determine the number of structural members considered for resizing at each iteration. 

In this regard an adaptive approach is employed based on the feasibility of the 

generated design at each iteration using some rules. The first rule is that IGs members, 

those violating strength constraints, are all increased in size due to the high 

importance of strength criteria for producing acceptable designs. Secondly, as 

mentioned before, not all but rather a certain percentage of structural members are 

selected as DGw, DGr, and IGd members for size change based on the associated Rw , 

Rr, and Rd ratios. For weight reduction Rw and Rr are initially set to a minimum value 

of 0.05, implying that only 5% of the members (design variables) are subjected to a 

section decrease due to excessive strength capacity. For handling the displacement 

criteria Rd is taken as 0.1, implying that 10% of the members will be increased in size 

due to violation of displacement criteria.  

  

In the GSS, to ensure an effective weight reduction process, the Rw and Rr ratios are 

increased by ΔR at each iteration provided that no constraint violation takes place in 

the generated design. It is apparent that, increasing the value of these ratios results in 

contribution of more structural elements in weight reduction. However, in case any 

kind of constraint violation (either displacement or strength criteria violation) takes 

place in the generated design, the values of Rw and Rr  are gradually reduced towards 

their initial values twice faster (i.e. reduced by 2ΔR) to expedite repair of the 

infeasible design.  

 

In the case of IGd members the initial value of Rd = 0.1 can be kept constant 
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throughout the optimization process, and no increment of this parameter is indeed 

necessary. However, in case no improvement is provided for reducing the 

displacement violations, the same adaptive approach used for Rw and Rr  can be 

employed for Rd as well to increase the number of structural members contributing to 

satisfy the displacement criteria. It is worth mentioning that an upper bound value of 

Rmax = 0.7 is taken for both Rw and Rd ratios, and an upper bound of 0.5Rmax is taken 

for Rr in this study. 

 

Step 8. Termination: The aforementioned procedure is iteratively carried out, 

starting from the last generated design at the end of each iteration, until a stopping 

criterion is satisfied. The termination criterion can be imposed as a maximum number 

of iterations or no improvement of the best design over a certain number of iterations. 

  

6.4 Local Search and Move-Back Mechanisms in GSS   

 

Local search capability of an optimization method plays an important role in the 

quality of final solutions generated. Here, a local search mechanism is integrated with 

the GSS to enhance its search performance. The local search mechanism is planned to 

work complementarily and parallel to the GSS procedure, such that at the end of each 

iteration cycle the vicinity of the best design found so far by GSS is investigated by 

decreasing a small fraction of frame members in size. The fraction of design variables 

to be changed during local search is limited to %5 of the total variables in the first 

iteration and it is linearly decreased to %1 in the last iteration. Further, the maximum 

decrement step size during local search is set to 82/ sN  in the first iteration and it 

is linearly decreased towards a final value of 3 during the iterations of design 

optimization procedure. To avoid duplicated solutions, a simple mechanism is 

employed where if the newly generated design is same as the original solution, the 

local search is forced to choose and update one design variable randomly. 

 

Care should be taken not to deteriorate the global search features of the GSS 
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technique by local search. To this end, in case a better design is located during the 

local search, the current design is updated in the GSS only if the amount of 

improvement in the objective function value is more than a predefined limit named as 

transfer criteria (TC). For instance setting TC=0.05 means that if the solution found by 

the local search mechanism is 5% better than the best solution found by the GSS so 

far, the better solution can be transferred to the GSS, otherwise GSS continues its 

search process in the solution space regardless of the solution found by the local 

search mechanism. In this study the value of TC is set to 0.05 in the first iteration and 

it is reduced linearly to 0.01 in the last iteration. This gradual reduction makes it 

possible to perform a more efficient local search in the last iterations since the 

probability of feeding the GSS by local search increases by decreasing the value of 

TC. It should be noted that the local search’s best solution is always updated when a 

better solution is located by the GSS. However, local search cannot always update the 

GSS unless its solution meets the TC criterion. This strategy makes it possible to 

perform a parallel local search along with the GSS technique without degenerating its 

global search features. 

 

The GSS inherently moves between the feasible and infeasible regions of the design 

space when searching for the optimum. While repairing an infeasible solution, 

sometimes it generates some overdesigned solutions that are feasible yet have a high 

design weight. Even though carried on from such a solution, GSS will eventually 

locate a good design in the next iterations. However, this may take some additional 

iterations, resulting in slower convergence of the algorithm especially if the search is 

continued from a highly overdesigned solution. In order to overcome this problem, a 

move-back mechanism is incorporated into the GSS in conjunction with an overdesign 

criterion parameter (OC=0.15). Accordingly, in GSS the objective function value of 

the best design obtained thus far from the beginning of the optimization process is 

continuously stored and updated. If any time GSS locates a solution with a structural 

(net) weight which is 15% greater than the best objective function value, this solution 

is automatically replaced by the-so-far-best solution, and the search is carried on from 

this point over again.  
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In the GSS, infeasible designs that violate some of the problem constraints are 

penalized using an external penalty function approach, and their objective function 

values are computed according to Eq. (3.1). Furthermore, in case of member grouping 

the cumulative effect of all the group members should be taken into account to 

determine the SI value of a group. In such cases, in light of Eq. (5.3) sum of the DPFs 

of group members can be divided by the total volume of the group members. Once 

LCR and SI values are obtained, these values are used by the GSS to determine the 

resizing scheme. For the sake of clarity, the overall flowchart of frame optimization 

procedure via the GSS is depicted in Figure 6.1. 

 

6.5 Numerical Examples 

 

This section covers performance evaluation of the proposed GSS in discrete sizing 

optimization of steel frames. The investigated examples consist of three real-size steel 

frame structures with 135, 3860, and 11540 structural members. The optimum designs 

to these frames with the GSS are sought by implementing the algorithm over a 

predefined number of iterations. In order to evaluate the accuracy of the final 

solutions obtained with the GSS, the optimum solutions are also attained using some 

robust metaheuristic algorithms, and the results are compared. The value of parameter 

ΔR is set to 0.1 for the first example, and 0.05 for the last two examples. For all the 

investigated instances the upper limit of interstory drift is taken as h/400, where h is 

the story height. The material properties of steel are taken as follows: modulus of 

elasticity (E)  200 GPa, yield stress ( )  248.2 MPa, and unit weight of the steel (

 )  7.85 ton/m
3
.   

yF
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Figure 6.1: Flowchart of frame optimization process using GSS 
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6.5.1 Example 1: 135-Member Steel Frame 

 

The 135-member steel frame shown in Figure 4.1 is studied in chapter 4 using the 

proposed computationally enhanced variants of the BB-BC algorithm (i.e. UBB-BC, 

UMBB-BC, and UEBB-BC). Here, the same example is used for performance 

evaluation of the GSS in discrete sizing optimization of frame structures. Furthermore, 

the optimization results obtained using a UBS integrated particle swarm optimization 

algorithm (UPSO) (Kazemzadeh Azad and Hasançebi 2013) is also considered for 

comparison purpose. All the above-mentioned metaheuristic algorithms are executed 

over a predefined number of maximum iterations, which is set to 350 for this example.   

 

A comparison of optimal solutions attained using different algorithms is carried out in 

Table 6.1. As shown in this table, the GSS yields the least design weight for this 

example, which is only 37.12 ton. Other solutions obtained are 38.91 ton by 

UEBBBC, 45.67 ton by UMBB-BC, 47.3 ton by UBB-BC, and 55.66 ton by UPSO. 

Totally 750 structural analyses are performed by the GSS over 250 iterations, in 

which at each iteration of the algorithm the generated design is analyzed three times 

(two analyses for real and virtual loading plus one analysis for local search). On the 

other hand, the abovementioned heavier design weights are obtained using 1235 

analyses by UEBBBC, 1794 analyses by UMBB-BC, 880 analyses by UBB-BC, and 

1574 analyses by UPSO. Here, for the optimum design located by the GSS the 

maximum interstory drift is 99.41% of the allowable limit value; the maximum lateral 

displacement of the top story is 96.67% of the allowable displacement; and the load to 

capacity ratio for the most critical frame member is 0.999. 

 

The variation of the best feasible design located in the optimization process with GSS 

is depicted in Figure 6.2. Figure 6.3 shows the convergence curves obtained with the 

metaheuristic algorithms, where the variation of penalized weight of the best design 

located is plotted against the iterations for each technique.   
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Table 6.1. Optimum designs obtained for 135-member steel frame  

 
Groups UPSO UBB-BC UMBB-BC UEBB-BC GSS 

CG1* W8X28 

 

W10X39 W30X90 W21X62 W16X36 

CG2 W33X118 

 

W27X84 W14X48 W14X48 W18X60 

CG3 W40X167 

 

W40X14

9 

W40X215 W36X150 W12X40 

CG4 W14X53 

 

W18X65 W27X84 W21X68 W30X10

8 B1* W14X30 

 

W21X44 W14X34 W18X40 W24X55 

B2 W24X55 

 

W16X40 W12X35 W18X35 W18X35 

B3 W16X26 

 

W10X22 W18X35 W16X26 W12X19 

BR1* W14X30 

 

W27X84 W21X44 W8X24 W8X24 

BR2 W40X149 

 

W16X26 W10X22 W16X26 W6X15 

BR3 W27X84 

 

W21X44 W6X15 W6X15 W4X13 

Weight (ton) 55.66  47.3 45.67 38.91 37.12 

 No. Analyses 1574 880 1794 1235 750 

*CG denotes column group with respect to Figure 4.2, Bi: beams and BRi: bracings of the i-th story 

 

 
 

Figure 6.2: Optimization history of 135-member steel frame using GSS 
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  Figure 6.3: Optimization histories of 135-member steel frame using some 

metaheuristics 

 

6.5.2 Example 2: 3860-Member Steel Frame 

 

The second design example refers to a 20-story steel frame shown in Figure 6.4, 

consisting of 3860 structural members, including 1836 beam, 1064 column and 960 

bracing elements. The stability of structure is provided through moment resisting 

connections as well as X-type bracing systems along the x and y directions. The 3860 

members of the frame are collected under 73 member groups owing to practical 

fabrication requirements. The member grouping is performed in both plan and 

elevation levels. In elevation level the structural members are grouped in every two 

stories. In plan level columns are collected in 5 different column groups (CG1 through 

CG5) as depicted in Figure 6.5; beams are divided into two groups as outer and inner 

beams; and bracings are assumed to be in one group. Therefore, based on both 

elevation and plan level groupings, there are totally 43 column groups, 20 beam 

groups, and 10 bracing groups, resulting in 73 sizing design variables in all for this 

example.  
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For design purpose, the frame is subjected to the same 10 load combinations used for 

the first example. The live loads acting on the floor and roof beams are 10 and 7 

kN/m, respectively. The dead loads consist of the self-weight of the structure in 

addition to the uniformly distributed loads of 14 and 12 kN/m applied on floor and 

roof beams, respectively.  

  

The earthquake loads, are calculated based on the same procedure used for the first 

example. Here, the resulting seismic base shear (V) is taken as V = 0.1Ws where Ws is 

the total dead load of the building. Further, in Eq. (4.2), TC  is taken as 0.0488 and nh  

is 70 m. Hence, the period of the structure, T, is approximately 1.181 sec. Based on 

the period obtained the value of parameter k in Eq. (4.1) is taken as 1.341 for this 

example.  

 

The beam elements are continuously braced along their lengths by the floor system; 

and columns and bracings are assumed to be unbraced along their lengths. The 

effective length factor, K, for buckling of columns as well as beams and bracings is 

taken as 1. For this design instance the maximum lateral displacement of the top story 

is limited to 0.18 m.  

 

Optimum desing of the frame is carried out using the GSS algorithm. In Table 6.2, the 

minimum weight design obtained with GSS is tabulated and compared with the 

solution obtained using the UEBB-BC algorithm (Kazemzadeh Azad et al. 2014b). In 

this example, the GSS produces the least weight of 3539.83 ton for the frame. The 

design weight attained by UEBB-BC is 4117.43 ton which is much heavier than the 

solution located by the GSS. The GSS locates the minimum weight design over 300 

iterations by performing only 900 structural analyses, whereas, the above-mentioned 

heavier design is obtained by UEBB-BC using 9979 structural analyses. The 

optimization histories of the algorithms are presented in Figures 6.6 and 6.7.  
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Table 6.2. Optimum designs obtained for 3860-member steel frame  

 

Stories Groups UEBB-BC GSS Stories Groups UEBB-BC GSS 

1-2 

CG1* W27X146 W24X94 

11-12 

CG1 N.A. N.A. 

CG2 W12X210 W27X368 CG2 W30X99 W21X182 

CG3 W36X359 W30X477 CG3 W12X305 W12X210 

CG4 W40X593 W40X199 CG4 W30X261 W24X192 

CG5 W8X67 W30X191 CG5 W44X230 W24X162 

IB* W40X183 W12X152 IB W44X230 W40X149 

OB* W14X22 W10X30 OB W40X149 W10X54 

BR* W40X167 W14X82 BR W16X77 W16X67 

3-4 

CG1 W40X167 W18X65 

13-14 

CG1 N.A. N.A. 

CG2 W12X230 W36X439 CG2 W16X89 W14X159 

CG3 W36X650 W44X335 CG3 W40X174 W40X264 

CG4 W24X335 W36X170 CG4 W16X100 W27X102 

CG5 W14X68 W30X191 CG5 W10X100 W27X129 

IB W16X26 W14X176 IB W14X43 W10X77 

OB W40X235 W12X40 OB W36X135 W33X318 

BR W12X53 W18X119 BR W33X152 W16X67 

5-6 

CG1 W24X335 W18X71 

15-16 

CG1 N.A. N.A. 

CG2 W27X178 W44X335 CG2 W12X79 W18X86 

CG3 W27X539 W40X297 CG3 W44X262 W36X232 

CG4 W36X439 W36X160 CG4 W24X250 W14X90 

CG5 W30X99 W27X161 CG5 W33X263 W12X79 

IB W44X230 W18X71 IB W30X132 W27X129 

OB W14X26 W27X114 OB W14X68 W10X26 

BR W12X72 W33X152 BR W21X62 W21X83 

7-8 

CG1 N.A. N.A. 

17-18 

CG1 N.A. N.A. 

CG2 W27X368 W40X235 CG2 W24X117 W21X83 

CG3 W18X234 W24X207 CG3 W40X167 W18X119 

CG4 W33X221 W14X159 CG4 W36X245 W16X67 

CG5 W40X321 W12X210 CG5 W30X292 W18X65 

IB W12X72 W30X99 IB W40X149 W18X35 

OB W33X130 W8X35 OB W33X141 W18X35 

BR W12X72 W12X53 BR W14X48 W10X45 

9-10 

CG1 N.A. N.A. 

19-20 

CG1 N.A. N.A. 

CG2 W30X326 W36X194 CG2 W36X300 W10X30 

CG3 W14X455 W24X250 CG3 W18X60 W10X33 

CG4 W12X120 W40X183 CG4 W44X230 W36X210 

CG5 W18X86 W21X147 CG5 W10X54 W10X100 

IB W27X94 W40X211 IB W21X50 W36X150 

OB W44X230 W30X124 OB W30X116 W16X45 

BR W24X84 W18X76 BR W24X62 W16X45 

Weight (ton) 4117.43 3539.83 

 No. Analyses 9979 900 

 *CG denotes column group with respect to Figure 6.5, IB: inner beams, OB: outer beams, BR: bracings 
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(a) 

 

      (b)                            (c) 

Figure 6.4: 3860-member steel frame, (a) 3-D view (b) side view of frames B, D, F, 

and H (c) side view of frames C, E, and G (d) side view of frames A, and I (e) side 

view of frames 1, 3, 5, and 7 (f) side view of frames 2, 4, and 6 (g) plan view 
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                (d) 

 

 

            (e)               (f) 

               Figure 6.4 (continued) 
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(g) 

Figure 6.4 (continued) 

 

 

Figure 6.5: Column grouping in plan level for 3860-member steel frame 
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Figure 6.6: Optimization history of 3860-member steel frame using GSS 

 

 
 

     Figure 6.7: Optimization history of 3860-member steel frame using UEBB-BC  
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6.5.3 Example 3: 11540-Member Steel Frame 

 

The third design example refers to a 20-story steel frame shown in Figure 6.8. The 

frame, which is one of the largest steel frame instances investigated so far in the 

literature, is composed of 11540 structural members, including 6240 beam, 3380 

column and 1920 bracing elements. The stability of structure is provided through 

moment resisting connections as well as X-type bracing systems along the x and y 

directions. The 11540 members of the frame are collected under 100 member groups 

owing to practical fabrication requirements. The member grouping is performed in 

both plan and elevation levels. In elevation level the structural members are grouped 

in every two stories. In plan level, columns are collected in 7 different column groups 

(CG1 through CG7) as depicted in Figure 6.10 (where all columns located on each 

square are treated as one column group); beams are divided into two groups as outer 

and inner beams; and bracings are assumed to be in one group. Therefore, based on 

both elevation and plan level groupings, there are totally 70 column groups, 20 beam 

groups, and 10 bracing groups, resulting in 100 sizing design variables in all for this 

example. For the sake of clarity, columns’ orientations of the frame are shown in 

Figure 6.9. 

  

For design purpose the frame is subjected to the same 10 load combinations described 

in the first example. The live loads acting on the floor and roof beams are 12 and 7 

kN/m, respectively.  The dead loads consist of the self-weight of the structure in 

addition to the uniformly distributed loads of 15 and 12 kN/m applied on floor and 

roof beams, respectively.  

 

The earthquake loads, are calculated based on the same procedure employed in the 

previous two examples. Here, the resulting seismic base shear (V) is taken as V = 

0.1Ws where Ws is the total dead load of the building. Further, in Eq. (4.2),  is 

taken as 0.0488 and 
 
is 70 m. Hence, the period of the structure, T, is approximately 

TC

nh
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computed as 1.181 sec. Based on the obtained period the value of parameter k in Eq. 

(4.1) is taken as 1.341 for this example.  

 

The beam elements are continuously braced along their lengths by the floor system; 

and columns and bracings are assumed to be unbraced along their lengths. The 

effective length factor, K, for buckling of columns as well as beams and bracings is 

taken as 1. In this example the maximum lateral displacement of the top story is 

limited to 0.18 m. 

  

It is worth mentioning that optimum sizing of the frame is formerly studied in 

Kazemzadeh Azad et al. (2014b) using a wide-flange (W) profile list consisting of 162 

ready sections between W16 and W44. A more challenging case including all the 268 

ready sections is investigated here using the GSS.  

 

In Table 6.3, the minimum weight design obtained with GSS is tabulated and 

compared with the solution obtained using UEBB-BC algorithm (Kazemzadeh Azad 

et al. 2014b). In this example, the GSS produces the least weight of 10707.53 ton 

while a heavier design weight of 10756.63 ton is achieved by UEBB-BC algorithm. 

The GSS locates the minimum weight design over 700 iterations by performing only 

2100 structural analyses, whereas, the above-mentioned heavier design is attained by 

UEBBBC using 7616 structural analyses. The optimization histories of the algorithms 

are presented in Figures 6.11 and 6.12.  
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Table 6.3. Optimum designs obtained for 11540-member steel frame  
 

Stories Groups UEBB-BC GSS Stories Groups UEBB-BC GSS 

1-2 

CG1* W36X393 W40X431 

11-12 

CG1 W24X408 W14X176 

CG2 W40X249 W33X291 CG2 W33X118 W12X106 

CG3 W36X393 W36X300 CG3 W18X234 W30X235 

CG4 W40X297 W12X190 CG4 W36X328 W40X431 

CG5 W44X335 W36X393 CG5 W30X235 W36X256 

CG6 W18X258 W12X279 CG6 W36X170 W33X221 

CG7 W40X431 W40X264 CG7 W27X146 W36X170 

IB* W18X40 W18X35 IB W40X199 W40X183 

OB* W21X57 

 

W27X146 OB W33X291 W8X28 

BR* W18X211 

 

W18X130 BR W21X62 W30X124 

3-4 

CG1 W24X250 W30X477 

13-14 

CG1 W24X250 W27X307 

CG2 W40X372 W40X199 CG2 W33X118 W24X131 

CG3 W44X262 W30X261 CG3 W30X191 W33X118 

CG4 W36X256 W40X174 CG4 W40X264 W33X118 

CG5 W40X277 W33X263 CG5 W21X93 W36X170 

CG6 W27X258 W27X178 CG6 W33X241 W36X280 

CG7 W33X291 W12X190 CG7 W16X89 W21X132 

IB W16X26 W24X84 IB W27X84 W24X55 

OB W18X40 W36X182 OB W33X291 W27X235 

BR W33X130 

 

W30X211 BR W27X129 W21X62 

5-6 

CG1 W44X290 W24X335 

15-16 

CG1 W24X117 W30X211 

CG2 W18X234 W40X211 CG2 W24X84 W14X68 

CG3 W44X335 W18X283 CG3 W36X256 W12X96 

CG4 W36X245 W27X307 CG4 W36X232 W14X159 

CG5 W33X241 W36X280 CG5 W16X89 W14X74 

CG6 W18X258 W40X199 CG6 W33X130 W14X74 

CG7 W44X290 W36X170 CG7 W40X167 W12X58 

IB W40X174 W40X235 IB W24X62 W18X35 

OB W40X199 W12X26 OB W18X60 W16X36 

BR W27X94 W12X72 BR W21X68 W14X61 

7-8 

CG1 W21X182 W36X359 

17-18 

CG1 W18X192 W33X318 

CG2 W33X152 W24X117 CG2 W24X117 W12X96 

CG3 W18X175 W44X262 CG3 W33X118 W40X167 

CG4 W33X291 W40X215 CG4 W44X262 W30X90 

CG5 W27X178 W14X283 CG5 W44X335 W21X62 

CG6 W40X199 W27X194 CG6 W40X297 W18X65 

CG7 W24X250 W30X173 CG7 W36X160 W14X48 

IB W36X135 W10X22 IB W36X150 W14X22 

OB W24X68 W36X280 OB W24X62 W40X321 

BR W40X174 W36X135 BR W21X62 W12X58 

9-10 

CG1 W40X372 W40X297 

19-20 

CG1 W18X119 W30X132 

CG2 W33X169 W36X135 CG2 W33X152 W27X102 

CG3 W24X250 W12X152 CG3 W24X76 W24X131 

CG4 W30X261 W33X291 CG4 W16X36 W30X124 

CG5 W24X335 W30X191 CG5 W16X36 W12X53 

CG6 W27X178 W36X280 CG6 W18X143 W8X28 

CG7 W27X448 W18X119 CG7 W30X108 W6X15 

IB W24X55 W33X130 IB W24X55 W40X278 

OB W40X277 W10X30 OB W40X167 W12X26 

BR W27X94 W24X94 BR W18X40 W8X31 

  Weight (ton) 10756.63 10707.53 

  No. Analyses 7616 2100 

*CG denotes column group with respect to Figure 6.10, IB: inner beams, OB: outer beams, BR: bracings  
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(a) 

 

 

           (b)             (c) 

 

Figure 6.8: 11540-member steel frame, (a) 3-D view (b) side view of frames 2, 3, 4, 6, 

7, 8, 10, 11, 12, B, C, D, F, G, H, J, K and L (c) side view of  frames 1, 5, 9, 13, A, E, 

I, and M (d) plan view 
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           (d) 

Figure 6.8 (continued) 

 

 

Figure 6.9: Columns’ orientations of 11540-member steel frame 
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Figure 6.10: Outline of column grouping in plan level for 11540-member steel frame  

 

 

     Figure 6.11: Optimization history of 11540-member steel frame using GSS 
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Figure 6.12: Optimization history of 11540-member steel frame using UEBB-BC 

 

6.6 Summary 

 

In this chapter the GSS technique is refined and reformulated for discrete sizing 

optimization of steel frame structures under practical design considerations. The 

method works on the basis of first identifying the members to resize using the well-

known principal of virtual work and load to capacity ratios of structural members. The 

resizing of members is then carried out in a stochastic way. Basically, two critical 

groups of frame members (IG, and DG) are detected at each iteration such that IG 

members are increased in size to satisfy strength and/or displacement constraints, and 

meanwhile DG members are decreased in size to minimize the structural weight in the 

course of optimization.  

 

Furthermore, local search and move-back mechanisms are incorporated into the GSS 

in order to enhance its efficiency in discrete sizing optimization problems. The 

performance evaluation of the GSS is performed based on a comparison with some 

contemporary metaheuristic approaches using three real-size steel frame structures, 

namely 135, 3860, and 11540-member frames that are designed according to AISC-

LRFD (1994) specifications. The results obtained in these examples indicate the 

efficiency of the proposed GSS technique in discrete sizing optimization of frame 
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structures. Aside from the promising performance of the GSS, the fact that its 

performance is not affected by random initiation, and no gradient information is 

needed to guide the optimization process makes it very favorable for design 

optimization of steel frames. Besides, it requires considerably low computational 

effort, which in turn shows how domain knowledge can be utilized to achieve robust 

and computationally efficient design optimization of steel frames in practical 

applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



183 

 

CHAPTER 7 

 

 

CONCLUSION 

 

 

 

7.1 Summary and Concluding Remarks 

 

The thesis covers developing computationally efficient discrete sizing optimization 

techniques for optimal design of steel truss and frame structures subject to strength 

and serviceability constraints imposed by well known standard design codes. 

Basically two main strategies are followed in the study as (i) investigating the 

algorithmic structure of the existing metaheuristic techniques and enhancing their 

performances in discrete sizing optimization problems (ii) developing new design-

driven optimization techniques. As outlined below, chapters 3 and 4 focus on the first 

approach whereas chapters 5 and 6 cover the latter.   

 

In chapter 3 through investigating the shortcomings of the well known BB-BC 

algorithm, it is shown that the standard version of the algorithm is sometimes unable 

to locate reasonable solutions to problems from discrete sizing optimization problems. 

Accordingly, improved variants of the BB-BC algorithm for this class of problems are 

proposed, where the formula used by the standard algorithm for generating new 

candidate solutions around the center of mass is efficiently reformulated, resulting in 

the so called MBB-BC and EBB-BC algorithms. The performance evaluation of the 

proposed algorithms using discrete sizing optimization instances of steel skeletal 

structures demonstrated their efficiency and robustness in locating promising 

solutions.   

 

Although, in locating reasonable solutions, the MBB-BC and EBB-BC algorithms 

have shown superior performances compared to the standard BB-BC algorithm as 
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well as other metaheuristic techniques, the number of structural analysis required still 

is not ideal, especially for large scale applications. Hence, an upper bound strategy 

(UBS) for reducing the total number of structural analysis in metaheuristic based 

design optimization algorithms is proposed in chapter 4.  

 

The basic idea behind the UBS is to detect those candidate designs which have no 

chance to improve the search during the iterations of the optimization algorithm. After 

identifying the non-improving candidate designs, they are directly excluded from the 

structural analysis stage, diminishing the total computational effort. The numerical 

results obtained from optimum design of two real size steel frames using the UBS 

integrated optimization algorithms clearly demonstrated the usefulness of this strategy 

in reducing the total computational time of the design optimization. 

    

In chapter 5 a guided stochastic search (GSS) technique is developed for 

computationally efficient optimum design of steel trusses. In the GSS a stochastic 

procedure is employed wherein the search direction is determined by the principle of 

virtual work and response computations of the generated designs, resulting in an 

efficient and rapid search. In the proposed method, the information provided in the 

structural analysis and design check stages are utilized for handling strength 

constraints. Moreover, the well-known principle of virtual work is used to detect the 

most effective structural members for satisfying displacement constraints. The 

optimum sizing of a structure is then performed using an integrated approach wherein 

both strength and displacement criteria are taken into account for reduction of the 

member sizes along the way the aforementioned constraints are handled.  

 

The GSS technique developed is first evaluated through optimal sizing problems of 

steel truss structures with a single displacement constraint under a single load case. 

Nevertheless, practical designs of structures usually come up with numerous 

displacement criteria in several load cases, and it is crucial that an optimization 

algorithm can address such practical requirements of design problems in reality. 

Therefore, the GSS technique is further improved for handling a more general class of 
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truss optimization problems subject to multiple displacement constraints and load 

cases. For this purpose, enhancements of the GSS are proposed in the form of two 

alternative approaches that enable the technique to deal with multiple 

displacement/load cases. The first approach implements a methodology in which the 

most critical displacement direction is considered only when guiding the search 

process. The second approach, however, takes into account the cumulative effect of all 

the critical displacement directions in the course of optimization. Furthermore, 

advantage of the integrated force method of structural analysis is utilized for further 

reduction of the computational effort in the aforementioned approaches. The 

performance of the proposed GSS technique is evaluated through challenging 

optimum design instances of steel truss structures. The comparison of numerical 

results obtained using the GSS to those of different metaheuristic techniques revealed 

its computational efficiency in practical discrete sizing optimization problems.  

 

Refinement and reformulation of the GSS technique is carried out in chapter 6 to 

make the algorithm suitable for handling sizing optimization problems of steel frame 

structures. On the one hand, a local search mechanism is proposed to increase the 

quality of solutions found during the search process without deteriorating the global 

search features of the GSS. On the other hand, a move-back mechanism is employed 

to avoid additional iterations required for modifying probable highly overdesigned 

solutions in the course of optimization. The developed refined and reformulated GSS 

technique is compared with some modern metaheuristics using three practical 

instances of steel frames. The attained numerical results demonstrated the 

computational efficiency of the proposed method in discrete sizing of steel frames.  

 

7.2 Recommendations for Future Research 

 

When dealing with optimum design of structural systems, besides the size of the 

considered structure, another important criterion is the dimension of the solution space 

which significantly affects the difficulty of the optimum design problem. Basically, by 

increasing the number of design variables consequently the dimension of solution 
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space increases drastically such that locating the optimum or even a good near 

optimum solution in a timely manner becomes a cumbersome task. This type of 

difficulty that arises when dealing with high dimensional problems is referred to as the 

“curse of dimensionality” introduced by Bellman (1957, 1961). Fortunately, by 

emergence of modern computing technologies, indeed there is no lack of optimization 

algorithms capable of handling small size structures having a few design variables 

(say 10 or 25). However, the optimum design problem of large scale structural 

systems including numerous design variables (say more than 1000 variables) is not 

properly addressed in the literature of structural optimization. Therefore, in order to 

overcome the curse of dimensionality in large scale structural optimization, 

investigating the performance of the developed techniques (in particular the GSS) as 

well as adapting design-driven optimization methods for handling high dimensional 

problems can be a good research topic.  

 

Finally, since this research covers discrete sizing optimization instances only, 

investigating the applicability of the proposed techniques to the other types of 

structural optimization instances such as problems including frequency constraints, 

geometrical or material nonlinearities as well as shape or topology variables can be 

fruitful.  
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