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ABSTRACT

DRBEM APPLICATIONS IN FLUID DYNAMICS PROBLEMS AND DQM
SOLUTIONS OF HYPERBOLIC EQUATIONS

Pekmen, Bengisen

Ph.D., Department of Scientific Computing

Supervisor : Prof. Dr. Münevver Tezer-Sezgin

2014,191pages

In this thesis, problems of fluid dynamics defined by the two-dimensional convection-
diffusion type partial differential equations (PDEs) are solved using the dual reci-
procity boundary element method (DRBEM). The terms other than the Laplacian are
treated as inhomogeneous terms in the DRBEM application. Once the both sides
are multiplied by the fundamental solution of Laplace equation, and then integrated
over the domain, all the domain integrals are transformed toboundary integrals us-
ing the Green’s identities. The inhomogeneous terms are approximated with radial
basis functions, and the space derivatives in convective terms are easily handled by
using the DRBEM coordinate matrix constructed from the radial basis functions. The
discretization of the boundary is achieved with linear elements. For the solution of un-
steady problems, first order Backward-Euler and third orderHoubolt time integration
schemes are used. The boundary only nature of DRBEM providesone to obtain the
results in a small computational cost compared to the domaindiscretization methods.
Incompressible fluid flow in cavities, natural and mixed convection flow in enclosures
are simulated when the medium is porous or non-porous, and with or without magnetic
effect. The numerical results are visualized for differentnon-dimensional physical pa-
rameters in terms of streamlines, isotherms, vorticity, induced magnetic field lines and
current density contours.

In the thesis, the differential quadrature method (DQM) is also used for solving es-
pecially problems defined by hyperbolic equations and nonlinear in nature. DQM is
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made use of discretizing both time and space domains, and thesolution is obtained at
one stroke or blockwise without the need of an iteration. Thenonlinearities are handled
using an iteration procedure. Accurate results are obtained using considerably small
number of Gauss-Chebyshev-Lobatto discretization pointsat very small expense. Test
problems include Klein-Gordon, sine-Gordon equations, hyperbolic telegraph equa-
tions, and viscous Burgers’ equation.

Keywords: DRBEM, Magnetohydrodynamics (MHD), DQM, natural and mixed con-
vection flow
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ÖZ

AKIŞKANLAR D İNAM İĞİ PROBLEMLEṘINDE KARŞILIKLI SINIR
ELEMANLARI METODUNUN UYGULAMALARI VE H İPERBOL̇IK

DENKLEMLERİN DİFERANṠIYEL KARELEME METODU İLE ÇÖZÜMLERİ

Pekmen, Bengisen

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Münevver Tezer-Sezgin

2014,191sayfa

Bu tezde, iki boyutlu konveksiyon-difüzyon tipi kısmi diferansiyel denklemler tarafın-
dan tanımlanan akışkanlar dinamiği problemleri karşılıklı sınır elemanları yöntemi ile
çözülmüştür. Laplace teriminin dışındaki terimler karşılıklı sınır elemanları yöntemi
uygulamasında homojen olmayan terimler olarak kabul edilir. Her iki taraf, Laplace
denkleminin temel çözümü ile çarpılır ve sonra tanım kümesi üzerinde integrali alınır.
Tüm tanım kümesi üzerindeki integraller Green eşitliklerini kullanarak sınır integraline
dönüştürülür. Homojen olmayan terimler, radyal temel fonksiyonları ile yaklaştırılır,
ve uzay türevleri için radyal temel fonksiyonlarından oluşturulan koordinat matrisi kul-
lanılır. Sınırın ayrıklaştırılması doğrusal elemanlarile elde edilir. Zamana bağlı prob-
lemlerin çözümünde birinci dereceden Geri-Euler ve üçüncü dereceden Houbolt zaman
yönünde ilerleme metotları kullanılmaktadır. Karşılıklı sınır elemanları metodunun
sadece sınırı ayrıklaştırması, tanım kümesini ayrıklas¸tıran metotlara göre küçük bir
maliyetle sonuçları elde etmeyi sağlar. Ortam gözenekli ya da gözeneksiz ve manyetik
etki varken ya da yokken, oyuklardaki sıkıştırılamayan sıvı akışı ve kapalı sistem-
lerde doğal ve karışık konveksiyon akış problemleri ç¨ozülerek profilleri sunulmuştur.
Sayısal sonuçlar, farklı fiziksel parametreler için sıvıakımı konturları, eş ısı eğrileri,
girdap konturlari, indüklenen manyetik alan doğruları ve akım yoğunluğu konturları
olarak görselleştirilmektedir.

Tezde, diferansiyel kareleme metodu da, özellikle, doğrusal olmayan hiperbolik den-
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klemlerle tanımlı problemleri çözmek icin kullanılmaktadır. Diferensiyel kareleme
metodu hem zaman hem uzay tanım kümelerini ayrıklaştırarak kullanılır, ve çözüm
ardışık yöntem gerek olmaksızın blok blok veya tek bir etapta elde edilir. Doğrusal
olmayan durumlar bir ardışık prosedürü kullanarak işlenir. Hassas sonuçlar oldukça az
sayıda Gauss-Chebyshev-Lobatto ayrıklaştırma noktalarını kullanarak küçük maliyetle
elde edilir. Test problemleri Klein-Gordon, sine-Gordon denklemleri, hiperbolik tele-
graf denklemleri ve viskoz Burgers denklemini içerir.

Anahtar Kelimeler: Karşılıklı Sınır Elemanları Metodu, Manyetohidrodinamik akış,
Diferansiyel Kareleme Metodu, doğal ve karışık konveksiyon akış
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CHAPTER 1

INTRODUCTION

A fluid is distinguished from a solid with its continuous deformation when it is exposed
to a force. The fluid dynamics deals with the motion of a fluid and energy exchange
in the fluid. Thus, the fundamental equations of fluid dynamics are based on the con-
tinuity equation, the momentum equations and the energy equation (the Navier-Stokes
equations plus the energy equation).

If the energy transfer is due to the temperature difference,then it is called heat transfer.
The diffusion of energy is referred to as conduction, and theconvection is the transfer
of energy due to the movement of the fluid.

Even though different types of regions (in which the fluid flows) such as cavities or
channels are considered in most of the studies, the fluid flow through a porous medium
has also taken a great deal of attention due to the applications arising in geophysics, in-
sulation for buildings, packed sphere beds and chemical catalytic reactors. In different
combinations of models (Darcy, Brinkman, Forchheimer), convective flows in porous
media are investigated extensively.

The effect of an externally applied magnetic field on the fluidflow and heat transfer
has also attracted a great deal of interest. When the fluid is electrically conducting,
fluid and the externally applied magnetic field interact witheach other, and generate
an electromotive force resulting with induced current density which causes the induced
magnetic field. The total magnetic field (external and induced) interacts with the in-
duced current density such that the Lorentz force emerges. The model equations are
the Maxwell’s equations from electrodynamics combined with the Navier-Stokes equa-
tions from fluid dynamics. In some cases, the induced magnetic field is neglected due
to the little impact of velocity field on the total magnetic field.

Some remarkable fluid properties which are mostly mentionedthroughout the thesis
may be summarized as follows.Viscosityof a fluid is the resistance of the fluid to
shear stresses. The kinematic viscosityν and the dynamic viscosityµ are related to
each other with the relationν = µ/ρ, whereρ is the fluid density. Ifρ is constant, then
the fluid is calledincompressible. Viscous flows are classified as laminar and turbulent
flows. If a fluid flows in a smooth or regular path, the flow is called aslaminar flow.
The converse is theturbulent flow. Viscous forces in laminar flow, and inertial forces
in turbulent flow are dominant, respectively.Newtonian fluid(air, water, gasoline) is a
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fluid that the viscous stresses are linearly related to the strain rate.

1.1 Fluid dynamics, Magnetohydrodynamics and heat transfer equations

1.1.1 Navier-Stokes equations

The fluid motion is characterized by the Navier-Stokes equations. In most of the engi-
neering problems such as modeling the turbulent hydrodynamic problems, flow around
an airfoil etc., Navier-Stokes equations are encountered.

These equations may be formed in different ways as the velocity-pressure, the stream
function only (fourth order), the velocity-vorticity and the stream function-vorticity
forms. Each of these forms has advantages and disadvantages. The difficulty in
velocity-pressure form is the absence of boundary conditions for the pressure field,
and the non-existence of pressure variable in the continuity equation. However, the
solution of Navier-Stokes equations will be in original variables as the velocity and
pressure. The disadvantage of the stream function only (fourth order) formulation
is the necessity of two boundary conditions at one boundary point. Although the
velocity-vorticity formulation eliminates the pressure term, an additional criterion is
examined to check the continuity condition. The stream function-vorticity formulation
is an efficient formulation due to the elimination of pressure together with automatic
satisfaction of continuity equation. This formulation is not suitable for three dimen-
sion due to the definition of stream function or computational complexity. On account
of the two-dimensional flow consideration, the stream function-vorticity form of the
Navier-Stokes equations has been adopted throughout the thesis.

Basic equations for unsteady, two-dimensional, laminar flow of an incompressible,
viscous fluid without body forces are given in terms of velocity and pressure of the
fluid

∇.u = 0 (continuity equation) (1.1a)

ν∇2u =
∂u

∂t
+ u.∇u+

1

ρ
∇p (momentum equations) (1.1b)

whereu = (u, v) is the velocity field of the fluid,ρ is the fluid density,ν is the
kinematic viscosity andp is the pressure. The flow is driven by means of a pressure
gradient∇p.

For obtaining dimensionless equations, the following non-dimensional variables are
defined as

x′ =
x

L
, y′ =

y

L
, u′ =

u

U
, v′ =

v

U
, t′ =

tU

L
, p′ =

p

ρU2
, (1.2)

whereL is the characteristic length,U is the characteristic velocity. Substituting
these variables into Eqs.(1.1a)-(1.1b), and then dropping the prime notations, the non-
dimensional governing Navier-Stokes equations in(u − v − p) form are expressed as
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∂u

∂x
+
∂v

∂y
= 0 (1.3a)

1

Re
∇2u =

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
(1.3b)

1

Re
∇2v =

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
, (1.3c)

whereRe = UL/ν is the Reynolds number which is the ratio of inertial forces to
viscous forces. In general, the laminar flow is characterized byRe < 2100.

In order to satisfy the continuity condition, stream function is defined as (u = ∇× ψ)

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (1.4)

By the definition of vorticity,w = ∇× u, and Eq.(1.4), the stream function equation
is derived as

w =
∂v

∂x
− ∂u

∂y
=

∂

∂x

(
−∂ψ
∂x

)
− ∂

∂y

(
∂ψ

∂y

)
= −∇2ψ. (1.5)

If Eq.(1.3c) and Eq.(1.3b) are differentiated with respect tox andy, respectively, and
then subtracted from each other, the vorticity transport equation is obtained as

1

Re
∇2w =

∂w

∂t
+
∂ψ

∂y

∂w

∂x
− ∂ψ

∂x

∂w

∂y
. (1.6)

Equations (1.5)-(1.6) constitute now the laminar, time dependent flow of an incom-
pressible, viscous fluid in a two-dimensional region. Sincethe boundary information
is usually given for the velocity of the fluid, stream function and/or its normal deriva-
tives are available on the boundary through the relation (1.4). But, the vorticity is
unknown and must be determined by some means on the boundary.This is another
drawback of stream function-vorticity formulation although the continuity equation is
automatically satisfied, and the number of equations is reduced.

1.1.2 Natural and mixed convection flows

The driving force for natural (free) convection in a fluid flowis the temperature varia-
tion of the fluid in the region considered. When the fluid is heated, density decreases
and the fluid rises. In a gravitational field, the net force between this movement and the
gravitational force emerges which is referred to asbuoyancy force. Thus, the Navier-
Stokes equations accompanied with the energy equation define the natural convection
flow.

Natural convection flow has many applications such as building insulation, solar col-
lectors, ovens and rooms etc. Further, free convection flowsmay occur in bounded or
unbounded regions.

3



When the fluid motion is generated by an external force such asa pump, fan or lid
as well as the temperature difference on the walls of the region, it is called forced
convection. The most encountered physical problems of forced convection are the
lid-driven cavity problems.

Mixed convection flow is associated with both natural and forced convection flows
according to the dominance of external force or temperaturedifference. The interaction
between natural and forced convection has numerous applications as in thermal energy
storage tanks, air-conditioned rooms, etc.

The fluid properties are assumed to be constant except density in the buoyancy term.
Buoyancy force is added toy-component of momentum equation (assuming+y-direction
of gravitational acceleration vector) according to Boussinesq approximation which is

ρ = ρ0[1− β(T − Tc)], (1.7)

whereρ is the fluid density,ρ0 is the density of the fluid at the reference temperature
T0 = Tc, β is the thermal expansion coefficient defined asβ = (−1/ρ) (∂ρ/∂T )p at
constant pressure,T is the temperature of the fluid,Tc is the cold wall temperature.

The two-dimensional mixed convection flow of an incompressible fluid is considered
neglecting viscous dissipation1 and thermal radiation2. Then, the governing equations
involving Navier-Stokes equations and energy equations are

∇.u = 0 (1.8a)

ν∇2u =
∂u

∂t
+ u.∇u+

1

ρ
∇p+ gβ(T − Tc) (1.8b)

α∇2T =
∂T

∂t
+ u.∇T, (1.8c)

whereα = kf/(ρcp) is the thermal diffusivity with thermal conductivitykf and specific
heat capacitycp, g is the gravitational acceleration vector.

In order to make these governing equations dimensionless, the following non-dimensional
parameters are defined as

x′ =
x

L
, y′ =

y

L
, u′ =

u

U
, v′ =

v

U
, t′ =

tU

L
, p′ =

p

ρU2
, T ′ =

T − Tc
Th − Tc

, (1.9)

whereTh is the heated wall temperature. Substituting Eq.(1.9) into Eqs.(1.8), and
then dropping the prime notation and eliminating the pressure terms using the defini-
tions of stream function and vorticity (Eqs.(1.4)-(1.5)) and then cross differentiating,
subtracting, the non-dimensional governing equations in terms of stream functionψ,

1 The irreversible conversion of work done against viscous forces into internal (thermal) energy.
2 Electromagnetic radiation emitted by accelerated chargedparticles (due to heat) in matter.
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temperatureT and vorticityw are written as

∇2ψ = −w (1.10a)
1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Gr

Re2
∂T

∂x
(1.10b)

1

PrRe
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
, (1.10c)

where the non-dimensional physical parameters are

Pr =
ν

α
, Ra =

gβ∆TL3

να
= GrPr (1.11)

with the gravitational accelerationg and the temperature difference∆T = Th − Tc
between hot and cold walls.

Prandtl numberPr is≃ 0.71 for air and gaseous helium,Pr ≃ 7 in water andPr ≃
0.015 for mercury. Liquid metals provide the flows withPr ≪ 1 such that heat diffuses
faster than the momentum diffusion.

Grashof numberGr is the ratio of buoyancy force to viscous force. The Richardson
numberRi = Gr/Re2 determines whether the flow is natural, forced or mixed con-
vection flow. The heat transfer is natural convection ifRi ≫ 1, forced convection if
Ri≪ 1 and mixed convection ifRi ≈ 1.

The ratio of convective heat transfer to conductive heat transfer is referred to asNusselt
number. Integrating the convective heat transfer coefficient and dividing it by surface
(enclosure) lengthL, the average Nusselt numberNu is utilized as [137]

Nu =

∫ L
0
hxdx

L
, where hx =

kf

(
∂T

∂y

)

y=L

Th − Tc
. (1.12)

1.1.3 Mixed convection flow through a porous medium

Porous medium is characterized by pores between at least twohomogeneous material
constituents.

Darcy (1856) investigated the ratio of the water volume passing through a sand layer
to the pressure drop across the length of the layer. This ratio is a relation for hydraulic
conductivityαh as [111]

αh =
UL

∆p
, (1.13)

whereU is the fluid velocity,L is the layer length of the porous medium, and∆P
hydrostatic pressure difference between the entrance and the exit of the porous medium
layer. Then, this relation is extended to

αh =
UL

∆p
=
κ

µ
⇒ ∆p

L
=
(µ
κ

)
U, (1.14)
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whereκ is the permeability of the porous medium, andµ is the dynamic viscosity of the
fluid. The latter equation is called as Darcy’s law, and it maybe written in differential
form as [111]

−∇p− µ

κ
u = 0, (1.15)

where the second term is mentioned as viscous or Darcy drag.

Brinkman (1949) generalized the Darcy’s law combining the fluid-fluid viscous shear
(µ∇2u) and the internal fluid-solid viscous drag ((µ/κ)u). Thus, Darcy-Brinkman
equation for flow through porous media was defined as

∇p = µe∇2u− µ

κ
u, (1.16)

whereµe is the effective viscosity of the porous medium, andµe = ǫpµ with ǫp =
Vf/Vc as the porosity of the porous medium with volume of the fluidVf and the control
volumeVc.

Later on, inertial terms are also added to Eq.(1.16). The generalized form of the mo-
mentum equation in a porous medium is given as [111, 159]

µe
ρ
∇2u =

1

ǫp

∂u

∂t
+

1

ǫ2p
u.∇u+

∇p
ρ

+
µ

ρκ
u+

cF√
κ
|u|u, (1.17)

where|u| =
√
u2 + v2, and

cF =
1.75(1− ǫp)

dp ǫ3p
and κ =

d2p ǫ
3
p

150(1− ǫp)2
, (1.18)

the form coefficient and the permeability of the porous medium, respectively, with
diameterdp of the particle of fibre. The last term in Eq.(1.17) is called as Forch-
heimer terms. In general, non-Darcy effect on the flow is considered with the Darcy-
Brinkman-Forchheimer model. That is, the quadratic drag terms (or Forchheimer
terms) gain importance when the fluid velocity is high (at higherRe numbers) [116].

In local thermal equilibrium situation (the negligible temperature difference between
the solid and fluid phases), energy equation for porous medium is stated as

ke ∇2T = (ρcp)e
∂T

∂t
+ (ρcp)fu.∇T, (1.19)

whereke(= ǫpkf + (1 − ǫp)ks) is the effective thermal conductivity,ks is the thermal
conductivity of the solid,cp is the specific heat at constant pressure,(ρcp)f is the
thermal capacity of the fluid,(ρcp)e(= ǫp(ρcp)f+(1−ǫp)(ρcp)s) is the effective thermal
capacity of the porous medium, and(ρcp)s is the thermal capacity of the solid.

Mixed convection flow through a porous medium has taken greatdeal of attention in
the last few years due to the large number of applications as geothermal energy sys-
tems, storage of nuclear waste, etc. Books by Pop and Ingham [125], Ingham and
Pop [70], Nield and Bejan [116], and Martynenko and Khramtsov [93] also have lots
of details and application examples on convective flows in porous media. In this thesis,
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the Brinkman-extended Darcy equations (and also Darcy-Brinkman model) are stud-
ied, i.e. Forchheimer terms (nonlinear inertial effects) in Eq.(1.17) are not considered.

Assuming the isotropic, homogeneous porous medium saturated with an incompress-
ible,viscous fluid, the continuity equation, equations of motion (settingǫp = 1) and the
energy equation for mixed convection flow are given as [67, 80]

∇.u = 0 (1.20a)

νe∇2u =
∂u

∂t
+ u.∇u+

1

ρ
∇p+ ν

κ
u+ gβ(T − Tc) (1.20b)

αe∇2T =
∂T

∂t
+ u.∇T, (1.20c)

whereνe = µe/ρ is the effective kinematic viscosity,αe = ke/(ρcp)f is the effective
thermal diffusivity with the effective thermal conductivity ke.

In a similar way, applying the cross-differentiation with the definitions of vorticity
w = ∂v/∂x−∂u/∂y and stream functionu = ∂ψ/∂y, v = −∂ψ/∂x to the Eqs.(1.20),
pressure terms are eliminated, and the vorticity transportequation is obtained.

For non-dimensionalization, the following dimensionlessvariables are defined as [80]

x′ =
x

L
, y′ =

y

L
, u′ =

u

U
, v′ =

v

U
,

t′ =
tU

L
, T ′ =

T − Tc
Th − Tc

, w′ =
wL

U
, ψ′ =

ψ

UL
, (1.21)

whereU is the characteristic velocity,L is the characteristic length,Tc is the cold wall
temperature, andTh is the heated wall temperature. The non-dimensional form ofthe
Brinkman-extended Darcy equations (1.20) in terms of stream function, vorticity and
temperature is derived as follows

∇2ψ = −w (1.22a)
1

PrRe
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
, (1.22b)

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Gr

Re2
∂T

∂x
+

w

DaRe
, (1.22c)

whereµe = µ, νe = ν are set whileǫp = 1 is fixed, Prandtl (Pr), Reynolds (Re),
Grashof (Gr) and Darcy (Da) numbers (dimensionless parameters) are given as

Pr =
ν

αe
, Re =

UL

ν
, Gr =

gβ∆TL3

ν2
, Da =

κ

L2
.

1.1.4 Mixed convection flow in a porous medium under the effect of a magnetic
field

When the porous medium is also exposed to an externally applied magnetic field, mo-
mentum equations contain the electromagnetic force effectin terms of the strengthB0
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of the applied magnetic field. Mixed convection flow in a porous medium under the
effect of a magnetic field has also taken the great interest, especially in the applications
as heat exchanger devices, MHD accelerators and generators, packed bed reactors, etc.

Neglecting the induced magnetic field in the fluid, the momentum equations, under the
effect of horizontally applied magnetic field, become

νe∇2u =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
+
ν

κ
u (1.23a)

νe∇2v =
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
+
ν

κ
v − gβ(T − Tc) +

σB2
0

ρ
v, (1.23b)

whereσ is the electrical conductivity of the fluid,B0 is the magnitude of the applied
magnetic field. They-momentum equation includes the last term with the effect of
horizontally applied magnetic field.

The non-dimensional governing equations in terms of streamfunctionψ, temperature
T , vorticity w using the same non-dimensional variables as in Eq.(1.21) are written as

∇2ψ = −w (1.24a)
1

PrRe
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
, (1.24b)

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Gr

Re2
∂T

∂x
+

w

DaRe
+
Ha2

Re

∂v

∂x
, (1.24c)

where the non-dimensional parameter Hartmann numberHa isB0

√
(κσ)/µ, which is

the ratio of Lorentz force to viscous (shear) force (νe∇2u).

1.1.5 Full Magnetohydrodynamic (MHD) flow equations

Magnetohydrodynamics (MHD) is a branch of science dealing with the magnetic field
in electrically conducting fluids. An externally applied magnetic field interacts with the
conducting fluid (e.g. plasma or liquid metal), and fluid motion changes. The external
magnetic field influences the fluid motion (this influence is expressed mathematically
by including the electromagnetic force in the equations of motion) and the fluid motion
changes in turn (through Ohm’s Law) the magnetic field. The interaction of the veloc-
ity and magnetic fields involving both hydrodynamic and electromagnetic phenomena
determines the simultaneous consideration of the fluid mechanics equations and the
electromagnetic field equations making most MHD problems difficult to study.

The great deal of interest on this subject is encountered dueto its crucial applications
in geophysics, plasma physics, MHD generators, MHD pumps, instruments measuring
blood pressure, hydromagnetic dynamos, cooling of nuclearreactors etc.

In physical and mathematical basis, MHD equations are comprised of the Navier-
Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetics. The
main difficulty for obtaining an analytical or numerical solution of these equations is
that the satisfaction of divergence-free conditions on velocity and magnetic field.
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Maxwell’s equations for neither magnetic nor dielectric materials are stated as [37]

∇×B = µm

(
J+ ǫ0

∂E

∂t

)
Ampere’s Law (1.25a)

∇×E = −∂B
∂t

Differential form of Faraday’s Law (1.25b)

∇.E =
q

ǫ0
Gauss’s Law (1.25c)

∇.B = 0 Solenoidal nature ofB, (1.25d)

whereµm is the magnetic permeability,q is the total charge density (free and bound
charges),ǫ0 is the permittivity of free space,J is the current density,E is the electric
field andB is the magnetic field.

The displacement currentǫ0∂E/∂t is neglected in Ampere’s law since the propagation
of electromagnetic waves is not considered [109, 141].

Ohm’s law characterizing the ability of materials to transport electric charge under an
applied magnetic field is expressed in reference of laboratory frame as [109, 141]

J = qu+ σ (E+ u×B) , (1.26)

whereσ is the electrical conductivity. The convection currentqu is neglected in the
electromagnetic approximation due to the dominance of conduction proportion toσ.

The total force per unit volume acting on the conducting fluidis demonstrated as

Fl = qE+ J×B, (1.27)

where the termqE is neglected since the speed of electrons in conducting fluidis less
than the speed of light [37, 141].

Thus, MHD equations are stated as

∇×B = µmJ Ampere’s Law (1.28a)

∇× E = −∂B
∂t

Faraday’s Law (1.28b)

J = σ (E+ u×B) Ohm’s Law (1.28c)
Fl = J×B Lorentz force, (1.28d)

with the conservation of charge∇.J = 0 and the solenoidal nature of magnetic field
∇.B = 0.

Momentum equations in an incompressible flow consist of the velocity components
and pressure gradient. In full MHD, Lorentz force is added tomomentum equations
as a body force. Therefore, full MHD equations consist of momentum equations and
induction equations if there is no any other source in the system.

Taking the curl of both sides of the Eq.(1.28a) and Eq.(1.28c), the following equations
are written as

∇× (∇×B) = µm (∇× J) (1.29a)
∇× J = σ (∇×E) + σ (∇× (u×B)) . (1.29b)
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Substitution of Eq.(1.29b) into Eq.(1.29a) gives

∇× (∇×B) = µmσ(∇× E) + µmσ (∇× (u×B)) . (1.30)

Then, using the Faraday’s law Eq.(1.28b) and the identity∇× (∇×B) = ∇(∇.B)−
∇2B = −∇2B due to the solenoidal nature ofB, Eq.(1.30) is rewritten as

1

µmσ
∇2B =

∂B

∂t
−∇× (u×B). (1.31)

In the presence of heat transfer and induced magnetic field, momentum equations will
include buoyancy force as well as the Lorentz force. Assuming the constant fluid
properties (µm, σ, ν) except density variation following the Boussinesq approxima-
tion, and neglecting Hall effect3, Joule heating effect4 and the viscous dissipation in
energy equation, the two-dimensional full MHD equations with heat transfer for an
incompressible, viscous fluid are

∇.u = 0 (1.32a)

ν∇2u =
∂u

∂t
+ u.∇u+

1

ρ
∇p+ gβ(T − Tc)−

1

ρ
(J×B) (1.32b)

1

µmσ
∇2B =

∂B

∂t
−∇× (u×B) (1.32c)

α∇2T =
∂T

∂t
+ u.∇T, (1.32d)

whereu =< u, v, 0 > is the velocity field andB =< Bx, By, 0 > is the induced
magnetic field. These vector form of the equations may be rewritten explicitly as

∂u

∂x
+
∂v

∂y
= 0 (1.33a)

ν∇2u =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
+

By

ρµm

(
∂By

∂x
− ∂Bx

∂y

)
(1.33b)

ν∇2v =
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
− Bx

ρµm

(
∂By

∂x
− ∂Bx

∂y

)
− gβ(T − Tc) (1.33c)

1

σµm
∇2Bx =

∂Bx

∂t
+ u

∂Bx

∂x
+ v

∂Bx

∂y
−Bx

∂u

∂x
−By

∂u

∂y
(1.33d)

1

σµm
∇2By =

∂By

∂t
+ u

∂By

∂x
+ v

∂By

∂y
−Bx

∂v

∂x
− By

∂v

∂y
(1.33e)

α∇2T =
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
(1.33f)

The stream function-vorticity formulation is derived similarly as before (done for
Navier-Stokes equations) with the help of vorticityw = ∇ × u = (0, 0, w) as in
Eq.(1.5) andu = ∂ψ/∂y, −v = ∂ψ/∂x definitions.

3 This effect is important for ionized gases in the case of a strong magnetic field.
4 Heat generated by the current (emerging from an applied potential difference to a resistor) passing through a

resistor.
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Differentiating Eq.(1.33c) and Eq.(1.33b) with respect tox andy, respectively, and
then subtracting from each other, pressure terms are eliminated, and vorticity transport
equation is obtained as

ν∇2w =
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− gβ∂T

∂x

− 1

ρµm

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]
. (1.34)

For non-dimensionalization, the dimensionless variablesare defined as

x′ =
x

L
, y′ =

y

L
, u′ =

u

U
, v′ =

v

U
, t′ =

tU

L
, ψ′ =

ψ

UL

w′ =
wL

U
, T ′ =

T − Tc
Th − Tc

, B′
x =

Bx

B0
, B′

y =
By

B0
, (1.35)

whereB0 is the magnitude of the applied magnetic field. Hence, the non-dimensional
form of the Eqs.(1.33) is obtained as (AppendixA)

∇2ψ = −w (1.36a)
1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Ra

PrRe

∂T

∂x

− Ha2

ReRem

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]
(1.36b)

1

Rem
∇2Bx =

∂Bx

∂t
+ u

∂Bx

∂x
+ v

∂Bx

∂y
−Bx

∂u

∂x
−By

∂u

∂y
(1.36c)

1

Rem
∇2By =

∂By

∂t
+ u

∂By

∂x
+ v

∂By

∂y
− Bx

∂v

∂x
− By

∂v

∂y
(1.36d)

1

PrRe
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
, (1.36e)

where

Re =
UL

ν
, Rem = ULσµm, Ra =

gβ∆TL3

να
, Pr =

ν

α
, Ha = B0L

√
σ

νρ
. (1.37)

The magnetic Reynolds numberRem represents the ratio of advection (∇× (u×B))
to diffusion of B (∇2B/σµm). If Rem ≫ 1, advection dominates over diffusion
whereas diffusion dominates over advection ifRem ≪ 1. In other words,u has little
impact onB if Rem ≪ 1. In this case, induced magnetic field is neglected, and the
damping effect on fluid motion is only the applied magnetic field.

Notice that if the induced magnetic field is neglected in an enclosure under the in-
fluence of a horizontally applied magnetic field, the inducedmagnetic field will be
B = (B0, 0, 0). Garandet et al. [58] showed that the two equations Ohm’s Law
J = σ(−∇ϑ + u×B) (whereϑ is the electrical potential) and the conservation of
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current∇.J = 0 are reduced to∇2ϑ = 0 of which has a unique solution∇ϑ = 0 since
there is an electrically insulating boundary around the enclosure. Thus,J is reduced to
σ(u×B) whereu = (u, v, 0), and

u×B =



~i ~j ~k
u v 0
B0 0 0


 = −vB0

~k

J×B = σ(u×B)×B =



~i ~j ~k
0 0 −σvB0

B0 0 0


 = −σvB2

0
~j.

As a conclusion, the termσvB2
0 is seen in thev-component of momentum equation

Eq.(1.23b) as a last term.

Ampere’s Law (1.28a) enables us to write the current density equation, i.e.µmj =
∇×B wherej = (0, 0, j) in terms of induced magnetic field components

j =
1

µm

(
∂By

∂x
− ∂Bx

∂y

)
. (1.38)

A Poisson type equation for the current density may also be obtained by using Eq.(1.38).
Differentiating (1.33d) and (1.33e) with respect toy andx, respectively, then subtract-
ing from each other and using the divergence free conditions∇.u = 0 and∇.B = 0,
the current density equation is deduced as

1

σ
∇2j = µm

(
∂j

∂t
+ u

∂j

∂x
+ v

∂j

∂y

)
−
(
Bx

∂w

∂x
+By

∂w

∂y

)

− 2

[
∂Bx

∂x

(
∂v

∂x
+
∂u

∂y

)
+
∂v

∂y

(
∂Bx

∂y
+
∂By

∂x

)]
. (1.39)

Defining the non-dimensional variablej′ = j/(B0Uσ) (AppendixA), Eq.(1.39) in
non-dimensional form is expressed as (dropping the prime notation)

∇2j = Rem

(
∂j

∂t
+ u

∂j

∂x
+ v

∂j

∂y

)
−
(
Bx

∂w

∂x
+By

∂w

∂y

)

− 2

[
∂Bx

∂x

(
∂v

∂x
+
∂u

∂y

)
+
∂v

∂y

(
∂Bx

∂y
+
∂By

∂x

)]
. (1.40)

Using the similar idea of satisfying the continuity equation, the solenoidal nature ofB
is also satisfied defining a vector potentialA asB = ∇×A in whichA = (0, 0, A). In
this fashion,Bx = ∂A/∂y, By = −∂A/∂x. Employing either one of the Eqs.(1.33d)
or (1.33e), magnetic vector potential equation is rendered as

1

σµm
∇2A =

∂A

∂t
+ u

∂A

∂x
+ v

∂A

∂y
. (1.41)

The non-dimensional variableA′ = A/(B0L) (AppendixA) provides us to get the
non-dimensional form of the Eq.(1.41) as (dropping the prime notation again)

1

Rem
∇2A =

∂A

∂t
+ u

∂A

∂x
+ v

∂A

∂y
. (1.42)
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There is also a relation between magnetic potentialA and current densityj as

j=
1

µm

(
∂By

∂x
−∂Bx

∂y

)
=

1

µm

(
∂

∂x

(
−∂A
∂x

)
− ∂

∂y

(
∂A

∂y

))
⇒∇2A = −µmj (1.43)

which is similar to the relation∇2ψ = −w between stream function and vorticity.

1.1.6 MHD duct flow

The problem of MHD flow through channels is frequently encountered in nuclear reac-
tors, MHD flow meters, MHD generators, pumps and accelerator. The concerned fluid
is incompressible, viscous, electrically conducting and driven down the duct by means
of a constant pressure gradient.

The fluid is subjected to an applied magnetic field parallel tothex-axis, and the veloc-
ity and the induced magnetic field are in the z-direction which is the axis of the duct.
Thus, there is only one component of the velocity vectoru = (0, 0, V ), and the mag-
netic field vectorB = (B0, 0, B). Further, the pressure depends onz. The dimensional
governing equations are

µ∇2V +
B0

µm

∂B

∂x
=
∂p

∂z
+ ρ

∂V

∂t
, η∇2B +B0

∂V

∂x
=
∂B

∂t
. (1.44)

Once the non-dimensionalization is done following the explanations in [141], the di-
mensionless time-dependent governing equations are

∇2V +Ha
∂B

∂x
= −1 + ∂V

∂t
, ∇2B +Ha

∂V

∂x
=
∂B

∂t
, (1.45)

in Ω× [0,∞) with the initial conditions

V (x, y, 0) = B(x, y, 0) = 0, (x, y) ∈ Ω. (1.46)

and the boundary conditions

V (x, y, t) = B(x, y, t) = 0, (x, y) ∈ ∂Ω. (1.47)

V (x, y, t) andB(x, y, t) are the velocity and the induced magnetic fields in thez-
direction.Ha is the Hartmann number. The given no-slip boundary conditions ensure
that the duct walls are insulating.

Eq.(1.45) may be decoupled by the change of variables

Ψ = V +B, Φ = V −B, (1.48)

leading to the following two equations

∇2Ψ+Ha
∂Ψ

∂x
− ∂Ψ

∂t
= −1, (1.49a)

∇2Φ−Ha∂Φ
∂x
− ∂Φ

∂t
= −1, (1.49b)
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with the initial and boundary conditions

Ψ(x, y, 0) = Φ(x, y, 0) = 0, (x, y) ∈ Ω (1.50)
Ψ(x, y, t) = Φ(x, y, t) = 0, (x, y) ∈ ∂Ω. (1.51)

In this thesis, Eqs.(1.49) with Eqs.(1.50)-(1.51) are solved applying DQM both in time
and space directions. The solution procedure will be given in Chapter 4.

1.2 Literature survey

A rapid increase in computer technology brings together thenew solution ideas for
complex problems in fluid mechanics and heat transfer. This new research area has
become known as computational fluid dynamics (CFD) in which the governing partial
differential or integral equations are solved computationally (or numerically).

The first and the old numerical method for solving PDE is the finite difference method
(FDM). Taylor-series expansions are employed for obtaining different difference quo-
tients. In FDM, the domain is discretized by grid or mesh points [88]. The derivatives
in the governing equations are approximated at these grid points with any type of dif-
ference quotients. Then, a set of algebraic equations generated by block structured
matrices are obtained. Although FD schemes are easy to implement, they are not prac-
tical in problems of complex geometry.

For larger or complicated domains, finite element method (FEM) would be an alterna-
tive in numerical world. This method divides the domain intosubdomains which are
represented by finite elements [131]. Then, all sets of subdomain equations are assem-
bled in a global banded or block system matrix. As mesh is refined being the geometry
larger and larger, computational cost increases gradually. This reduces the practicality
of the method. Furthermore, FEM is not efficient in infinite regions.

Finite volume method (FVM) has also taken the great deal of attention in fluid dynam-
ics in the last few decades. FVM is useful on arbitrary geometries since the physical
domain is subdivided into control volumes surrounding eachgrid. Conservation prin-
ciples are automatically satisfied in this control volume [124]. Using the divergence
theorem, the volume integral representation of each volumeis converted to the surface
integrals which are evaluated as fluxes through the boundaries of the control volume.
Flux computations on irregular geometries require much effort.

Differential quadrature method (DQM) also discretizes thedomain. The derivatives in
PDE are approximated by a weighted linear summation of functional values at all grid
points [142]. The whole algebraic system of equations is solved at one time. Accuracy
of the method is very high using considerably small number ofgrids, particularly non-
uniform grids due to the stability. In complex geometries, the efficiency of the method
decreases due to the increase in computational cost.

Boundary element method (BEM) approximates the solution ofa partial differential
equation (PDE) through the boundary, and then computes interior solutions using this
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boundary solution. The domain integrals resulting from theweighted residuals are
transformed to boundary integrals with the help of fundamental solution and diver-
gence theorem. The mathematical basis and application of the method are found in
the inventor’s book [24]. The main drawback of the method is the existence of do-
main integrals due to the inhomogeneity in the equation. Thedual reciprocity BEM
(DRBEM) has been devised for handling this domain integral and also transforming
it to the boundary [122]. BEM has a strong advantage also in solving problems in
infinite or semi-infinite domains with respect to other domain discretization methods.
The basis of DRBEM is to keep the Laplace term on one side, and to treat the other
terms as inhomogeneity on the other side. Both sides are multiplied by the fundamen-
tal solution of Laplace equation, and then integrated over the domain. The key point
of the DRBEM is to convert all domain integrals to boundary integrals using Green’s
identities. The radial basis functions (RBFs) ease the approximation of inhomogeneity
and particular solutions.

As a basis to CFD, the Navier-Stokes equations (NS) are solved by almost all numerical
methods and some of them are summarized below.

The oldest and the most famous study utilizing the implicit multigrid method for solv-
ing the NS equations in a lid-driven cavity is given by Ghia etal. in [62]. They have
solved the model lid-driven cavity flow problem for high values of Reynolds number
(104) by using257 × 257 grid points. Gartling [59] solved the NS equations for 2D,
steady, incompressible flow using a Galerkin based FEM, and tested the flow over a
backward-facing step (BFS). A nine-node biquadratic Lagrange interpolation for the
velocity components, and a linear and discontinuous pressure approximation between
elements are taken in the computations up toRe = 800. Shu and Richard [144] ap-
plied the generalized DQM to the two-dimensional incompressible NS equations in
stream function-vorticity formulation for obtaining numerical results of flow past a
circular cylinder. Biswas et al. [18] used FVM with central difference scheme for the
convection-diffusion terms of NS equations, and a pressurecorrection equation for the
pressure. The laminar incompressible BFS flow for a wide range of Reynolds number
and aspect ratios (A.R.) is tested. Ramsak et al. [128] applied the multi domain BEM
to 2D, unsteady NS equations in stream function-vorticity formulation, and tested the
procedure in BFS flow and flow over a cylinder. The multi domainDRBEM provides
one to take into account the larger geometry in BFS or flow overa cylinder. NS equa-
tions in a lid-driven cavity are also solved using piecewiselinear finite elements in the
study [61] in terms of stream function-vorticity. In this study, the advective terms in
the vorticity equation are linearized and unknown vorticity boundary conditions are
handled by a technique uncoupling both variables. Choi et al. [31] solved the unsteady
NS equations using DRBEM with an algorithm based on fractional step method in
which a fully explicit second order Adams-Bashfort scheme is used for convection
terms. One of the model is chosen as lid-driven cavity, andRe is taken up to400.
The resulting systems of equations are solved by GMRES usingat most40× 40 linear
boundary elements. The Taylor-Green vortex and the lid-driven square cavity flows are
numerically depicted. Kalita and Gupta [73] developed a new, second order finite dif-
ference approximations both in time and space to solve NS equations, and applied this
methodology to lid-driven cavity, BFS flows and flow over a cylinder. Tsai et al. [152]
proposed robust and flexible localized DQM with a fourth order equation for boundary
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conditions of NS equations. In their study, BFS and lid-driven cavity flows are chosen
as test problems.

Not only one sided lid-driven cavity wall problems but also two-sided lid-driven cav-
ity wall problems are also reported. Nithiarasu et al. [117] solved NS equations in
the staggered double driven cavity with the explicit characteristic-based split (CBS)
scheme in view of steady and unsteady flows inside a non-rectangular double-driven
cavity. DQM and wavelet-based discrete singular method (DSC) are also used by Mer-
aji et al. [95] and Zhou et al. [166], respectively, in the same geometry.

Some numerical approaches are also performed on the incompressible flow through
the channel involving an obstacle (circular/rectangular). The channel flow around a
hindrance has become a prominent physical problem due to itsvarious applications in
engineering such as building aerodynamics, flow meters, electronic cooling, heat ex-
change systems. Yoshida et al. [162] solved the flow past a rectangular cylinder using
FEM adopting a unique direct time integration. Mukhopadhyay et al. [110] also inves-
tigated the confined wakes behind a square cylinder in a channel dividing the domain
into Cartesian cells and using staggered grids. Later, Breuer et al. [25] used two differ-
ent numerical schemes which are lattice-Boltzmann and finite volume method (FVM)
to ensure the reliability of the computations for the flow around a square cylinder.
Zhang et al. [165] used the numerical manifold method based on Galerkin-weighted
residuals method for the solution of the incompressible flowover a square cylinder
with low Reynolds numbers.

In the presence of temperature difference of the fluid, particularly in an enclosure, as a
benchmark problem, natural convection flow in a square cavity of which the side walls
are differentially heated is solved by G. de Vahl Davis in 1983 [38] using the central
FD scheme. In this study, Rayleigh number is used between103 and106 with uniform
mesh sizes ranging from11×11 to 81×81. In 1990, Lin et al. [89] examined the lam-
inar, buoyancy-assisting mixed convection flow in a BFS geometry with an expansion
ratio of 2 using250×70 grid points FD scheme based on SIMPLE algorithm. In 1992,
Moallemi and Jung [101] exhibit the importance of Prandtl number in laminar mixed
convection flow, and they found that the buoyancy effect on the flow becomes more
prominent for large values ofPr. In the following year, Iwatsu et al. [72] analyzed
the mixed convection flow of a viscous fluid in a lid-driven cavity using FDM. They
obtained results for the main flow characteristics usingRa = GrPr = 0 − 106 and
Re = 0 − 3000. Laminar natural convection flow in inclined cavities is studied by
El-Refaee et al. [57] in the stream function-vorticity formulation using the fast false
implicit transient scheme algorithm. Chang et al. [28] investigated the natural con-
vection flow using the alternating direction implicit (ADI)method with non-uniform
grids concerning a BFS type enclosure. They used80× 80 grids for Rayleigh number
values in a range103 − 108 andPr = 0.71. Shu and Wee [145] solved the natural
convection flow combining the SIMPLE idea with the generalized DQM. They en-
forced the continuity condition on the boundary, and proposed a boundary condition
for pressure correction equation. The characteristics of heat transfer in the fluid region
coupled with heat transfer in solid region is studied by Kanna et al. [74] using ADI
method. The unsteady mixed convection flow in a cavity with a horizontally oscillat-
ing lid is studied by using a Galerkin finite element scheme in[78]. The dimensionless
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parameters are taken in the rangeRe = 102 − 103, Gr = 102 − 105, P r = 0.71, and
the lid oscillation frequency ranging from0.1 to 5. Using the same method, Khanafer
concentrated on the laminar mixed convection pulsating flowpast a BFS in [77] using
a lid-oscillation frequency between 0.1 and 5. They found that the average wall fric-
tion coefficient increases with an increase in oscillation frequency. Kumar et al. [84]
examined the solutal and thermal buoyancy forces together in a BFS channel flow
using also the Galerkin method of weighted residuals to observe recirculatory flow
pattern and its effects on heat and mass transfer under varying buoyancy ratios and
Richardson number. 2D natural convection in a rectangular cavity is solved by Lo
et al. [92] in velocity-vorticity formulation using DQM. For vorticity boundary con-
ditions, higher order polynomial approximations are used.Aydin [10] utilized the
stabilized FEM to the natural convection flow in primitive variables formulation on
different type of geometries. The proposed method providesstable solution and avoids
oscillations (especially in pressure) and is more effective and convergent as compared
to the streamline-upwind/Petrov Galerkin (SUPG) stabilization.

The fluid flow and heat transfer characteristics with obstacles inside the cavity are also
investigated by some researchers. This configuration has important industrial appli-
cations in geophysical systems and convection in buildingswith natural cooling flow.
Most of the numerical studies concentrated on obstacles as acircular cylinder inside
an enclosure. Kim et al. [83] investigated the natural convection flow with a uniformly
heated circular cylinder immersed in a square enclosure using immersed boundary
method to describe the importance of the location of the hot circular cylinder. The
same problem is also analyzed by Hussain et al. [69] using the finite volume method
with Pr = 0.71 andRa = 103− 106. Different positions of inner cylinder are studied.
Using a commercial code FLUENT, mixed convection in a lid-driven enclosure with
a circular body is examined also taking into account the conduction equation inside
the cylinder in [118]. Three different temperature boundary conditions (isothermal,
conductive, adiabatic) for the inner cylinder, and two different orientations (+y or -y
directions) of the moving lid for simulation of aiding and opposing flows are presented.
Adding joule heating and magnetic field effects to the system, Rahman et al. [126] have
shown the significant effect of the cylinder obstacle on the fluid flow using Galerkin
finite element method with38229 nodes with5968 element grid system. The energy
equation in the solid region is coupled to momentum and energy equations for the fluid
in the cavity. They found that the increase in the intensity of the applied magnetic field
has a retarding effect on the fluid circulation causing the lower temperature gradients
(conductive heat transfer).

Natural and/or mixed convection flows in enclosures containing square shaped ob-
stacles are also encountered in some of the studies. Ha et al.[65] used the domain
decomposed Chebyshev spectral collocation method to observe the natural convection
with a square body located at the center of the computationaldomain for a range of
Rayleigh numbers. They have also taken into consideration varying thermal boundary
conditions on the square body as cold, neutral, hot isothermal, and adiabatic body con-
ditions. Bhave et al. [16] analyzed the optimal square body size and the corresponding
maximum heat transfer as a function of Rayleigh and Prandtl numbers. In their study,
non-dimensional parameters ranges areRa = 103−106, P r = 0.071, 0.71, 7.1. Finite
volume method with100× 100 mesh size has been used for solving mass, momentum
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and energy equations inside the enclosure when the square blockage was adiabatic.
Laminar mixed convection is studied in a square cavity with aheated square block-
age immersed using finite volume method in [71]. A CFD code ANSYS FLUENT is
used for calculations. The Nusselt number at the blockage surface for various values
of Richardson numberRi = 0.01 − 100 in different blockage sizes and locations is
investigated fixingRe = 100 andPr = 0.71.

In a porous medium, numerical studies for natural, forced and mixed convection flows
have also attracted the great deal of attention. Khanafer etal. [80] analyzed the mixed
convection flow in a lid-driven cavity filled with a Darcian fluid saturated porous
medium taking into account the internal heat generation. The numerical method was
the finite-volume approach along with the ADI procedure. Effect of the parameters
asRi,Da and internalRa on the mixed convection flow in the cavity is investigated.
Baytas and Pop [14] transformed Darcy and energy equations and solved the prob-
lem of natural convection in a porous parallelogram enclosure numerically using the
ADI finite difference method. In primitive variables formulation, Sarler et al. [157]
solved the Darcy model of natural convection (without convection-diffusion terms in
the momentum equation) in differentially heated rectangular cavities using DRBEM
with augmented scaled thin plate splines. Both constant andlinear elements are used
in a uniform and non-uniform mesh arrangements. Then, usingthe same method,
they [158] extended the Darcy model to Darcy-Brinkman porous media involving the
viscous term in the momentum equations. FEM with GMRES, which is a Krylov
subspace based solver, is applied to solve natural convection in trapezoidal porous
enclosures by Kumar and Kumar [85] using parallel computation. Saeid et al. [134]
studied the Darcy-Frochheimer model in a square porous cavity using the finite vol-
ume method and QUICK scheme for convection terms in energy equation. It is found
that the increase in inertial effects parameter suppressesthe heat transfer in the cav-
ity. Using the FVM based FD scheme in partially heated lid-driven porous enclosure,
Darcy-Brinkman-Forchheimer equations are solved by Oztopin [119]. The highest
heat transfer occurs with the heater located at the verticalwall. With the same numer-
ical approach, Oztop [120] also examined natural convection in partially cooled and
inclined rectangular enclosures filled with porous medium.Both studies [119, 120]
consider the porosity as0.9 and use48 × 48 grid points. In [120], it is found that
inclination angle of the enclosure has a strong influence on the flow and heat transfer
as well as aspect ratio. The problem of steady natural convection flow in a right-angle
triangular, inclined trapezoidal, and right-angle trapezoidal enclosures filled with a
porous medium are solved by the finite difference method using successive under re-
laxation for the solution of algebraic equations in [155, 153, 154] respectively. The
effects of inclination angle, aspect ratio andRa variation on the flow are examined.
Vishnuvardhanarao et al. [156] solved the laminar mixed convection flow in a parallel
two-sided lid-driven porous, differentially heated square cavity by using the finite vol-
ume approach with third order accurate upwind scheme. Theirstudy is conducted by
varying the key parameters using121 × 121 grid points. It is found that the average
Nusselt number approaches1 asGr reaches103. Basak et al. [13] solved the mixed
convection flow in a lid-driven square cavity with linearly heated side walls by penalty
finite element method using bi-quadratic elements. They applied the same method to
solve mixed convection in a porous square cavity neglectingForchheimer terms with
various thermal wall boundary conditions in [12]. Ramakrishna et al. [127] focuses on
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the effect of thermal aspect ratio and thermal boundary conditions in terms of Bejan’s
heatlines again by using penalty FEM with bi-quadratic elements. They found that the
dominance of lid-driven effect at lowDa = 10−5 while the dominance of buoyancy at
highDa = 10−4, 10−3 is pronounced.

In the presence of a magnetic field, the natural, forced or mixed convection flows have
also been studied. At most of these studies, induced magnetic field inside the fluid is
neglected due to the assumption of small magnetic Reynolds number which is the case
in industrial applications.

In a non-porous medium, Al-Najem et al. [5] investigated the influence of the mag-
netic field on the heat transfer process inside tilted enclosures for a wide range of
inclination angles at moderate and high Grashof numbers by using the ADI scheme.
It is found that the strong magnetic field suppresses the convection current, and the
magnetic field has negligible effect on the heat transfer forsmall inclination angles.
Chamkha [27] examined the unsteady, laminar, mixed convection flow in the presence
of heat generation (or absorption) and an applied magnetic field using the finite vol-
ume approach along with ADI method. Ece and Büyük [56] solved natural convection
flow of a viscous and incompressible fluid in an inclined enclosure in the presence of
a magnetic field by using differential quadrature method discretizing the whole enclo-
sure by using rectangles. It is found that magnetic field suppresses the convective flow
and the heat transfer rate. Sathiyamoorthy and Chamkha [136] presented the penalty
FEM with bi-quadratic rectangular elements to solve the natural convection flow of
electrically conducting liquid gallium. They showed that average Nusselt number de-
creases non-linearly by increasing Hartmann number for anyinclined angle. Lo [91]
employed the DQM in a unit square cavity as well as the cavities with aspect ratios 2
and 3 to observe the MHD free convection in an enclosure usingvelocity-vorticity for-
mulation. The system of equations is solved by bi-conjugategradient iterative solver
technique with the parametersGr = 104 − 105, Ha = 0 − 100, P r = 0.01 − 10
andA.R. = 1 − 3. They conclude that the heat transfer is maximum for higherPr
(for a fixedGr andHa = 0), and it decreases with the increase in the intensity of the
magnetic field.

In an inclined porous layer, Bian et al. [17] investigated the effect of an electromag-
netic field on natural convection flow using control volume finite difference method.
It is found that the temperature and velocity fields are significantly modified under
the effect of an applied magnetic field. Using a control volume algorithm, Khanafer
and Chamkha [79] obtained the numerical results to simulate the hydromagnetic nat-
ural convection flow in an inclined porous enclosure in the Brinkman-extended Darcy
model. The control volume method is used to solve the governing equations for
Ha = 0 − 150, Da = 10−4 − 0, and inclination angle ranging from0◦ to 90◦ fix-
ing Pr = 7 andRa = 64 × 105. The effects of both magnetic field and porous
medium were found to reduce the heat transfer and fluid circulation within the cavity.
Grosan et al. [64] presented the influence of both the strength and inclination angle of
the magnetic field on convective modes of unsteady free convection flow in a porous
square cavity. A central FD scheme is used for discretization with the parameters
Ha = 0 − 50, Ra = 10 − 105, A.R. = 0.01 − 1 and the inclination angle of mag-
netic field ranging in0, π/6, π/4, π/2. They also studied a similar problem in [132] in
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the case of unsteady free convection flow within a square cavity filled with a porous
medium taking into account the internal heat generation parameter. ADI method is em-
ployed with87× 87 grid field with a non-uniform grid distribution near the walls. The
effect of a magnetic field on steady convection in a trapezoidal enclosure filled with
a fluid-saturated porous medium is figured out using central finite difference method
by Saleh et al. [135]. Costa et al. [35] applied a two-dimensional equal-order control
volume based finite element method with sensitive relaxation parameters to solve natu-
ral convection flow in differentially heated square enclosures filled with fluid-saturated
porous media under the effect of a magnetic field induced by two electric currents.
It is found that the natural convection inside the enclosuredecreases under the influ-
ence of the induced magnetic field, and thus, the heat transfer is reduced. Hasanpour et
al. [66] used the lattice Boltzmann method to depict the Prandtl number effect on MHD
mixed convection flow in a porous (the Brinkman-Forchheimermodel) lid-driven cav-
ity. They showed that the reduction of fluid movement inside the enclosure with the
increase in Hartmann and the decrease in the Darcy numbers. The magnetic field
effect on steady free convection in different types of porous enclosures is presented
using DRBEM by Pekmen and Tezer-Sezgin [123]. It is observed that the increase in
the strength of the magnetic field causes the suppression on the motion of the fluid and
the conductive heat transfer using considerably small number boundary points.

MHD flow, in terms of the velocity and induced magnetic field ofthe fluid, through
rectangular or circular ducts (pipes) are solved with several numerical approaches. In
MHD duct (pipe) flows there are only one component of velocityand induced magnetic
current in the direction of the axis of the pipe. Tezer-Sezgin and Aydin [149] solved
MHD duct problem by using DRBEM with different form of the radial basis functions,
and constant elements. The inhomogeneity is approximated by osculating radial basis
functions which uses derivative information also. Tezer-Sezgin [148] applied the poly-
nomial and Fourier based DQM to the MHD equations in a rectangular duct under a
transverse external oblique magnetic field for moderate values of Hartmann number.
Neslitürk and Tezer-Sezgin [115] proposed a stabilized FEM using the residual-free
bubble functions for solving steady MHD duct flow. By means ofthis stabilization,
the results at very high Hartmann (Ha) numbers are obtained. Implementing BEM
with constant elements in [150] for different geometries of the duct cross-section, the
well-known characteristics of MHD flow which are the boundary layer formation near
the walls and the flattening tendency in both the velocity andinduced magnetic field
are observed with the increase inHa. Bozkaya et al. [19] solved the unsteady MHD
duct flow in a rectangular duct with insulating walls combining the DRBEM in space
with DQM in time. The resulting overdetermined system of algebraic equations are
handled by the least-squares method. Zhang et al. [164] proposed the two-level ele-
ment free Galerkin (TLEFG) method for solving the steady MHDduct flow equations.
It is found that the TLEFG captures the results at very largeHa numbers. Finite vol-
ume spectral element method is carried out for solving unsteady MHD flow through
a rectangular pipe by Shakeri et al. [140]. Hosseinzadeh et al. [68] solved the rect-
angular and circular cross-sectioned MHD duct flow by BEM with the constant and
linear elements modifying the fundamental solution to be able to represent the results
for large values ofHa.

Incompressible MHD flows are also considered when induced magnetic field lies in the
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plane where the 2D motion occurs. In this case, both the velocity and induced current
will have two components (inx- andy-directions). The electric current density and
electric field are normal to this plane. Armero et al. [9] applied the Galerkin mixed
FEM to the incompressible MHD equations examining the time integration algorithms
which are long-term dissipative and unconditionally stable. They have solved plane
Hartmann flow and MHD flow past a circular cylinder. FEM with some new stabiliza-
tion techniques is used for solving incompressible MHD equations in [11, 33, 60]. In
all these studies, the MHD flow in backward facing step is solved. In order to simulate
the 2D incompressible MHD flow, Peaceman and Rachford alternating-direction im-
plicit (ADI) scheme is performed at low magnetic Reynolds number by Navarro et al.
in [113]. Plane Hartmann flow and MHD lid-driven cavity flow problemsare solved
in stream function-vorticity-current density-induced magnetic current and vector po-
tential. Bozkaya and Tezer-Sezgin [20] have solved the full MHD problem in terms
of stream function, vorticity, magnetic induction components and current density us-
ing DRBEM. The lid-driven cavity and backward-facing step flows are chosen as test
problems.

MHD flow with heat transfer is also a prominent problem from the physical point of
view. Abbassi and Nasrallah [3] investigated the MHD flow with heat transfer in a
backward-facing step using a modified control volume FEM using standard staggered
grid. The applied magnetic field is normal to the plane. The SIMPLER algorithm
has been used in terms of velocity-pressure unknowns, and ADI scheme is performed
for the time evolution. Sentürk et al. [138] presented a Lax-Wendroff type matrix
distribution scheme combining a dual-time stepping technique with multi-stage Runge-
Kutta algorithm to solve the steady/unsteady magnetized/neutral convection problems
with the effect of heat transfer. MHD lid-driven cavity flow,natural convection flow in
thermally driven cavity and MHD flow past a circular cylinderproblems are solved.

In this thesis, DQM applications on linear or nonlinear hyperbolic type of PDEs are
also studied. Therefore, the related numerical studies aregiven from now on.

The hyperbolic partial differential equations are described as initial value problems
due to the time variation. The space domain of dependence fora finite time interval is
considered to be finite for the equations considered in the thesis. Further, the hyper-
bolic telegraph equation is encountered in atomic physics and in signal analysis, and
the hyperbolic telegraph, Klein-Gordon, sine-Gordon and 2D Burgers’ equations are a
few examples of hyperbolic type PDEs considered in the thesis.

For one-dimensional hyperbolic telegraph equation there are several studies which give
numerical solutions. Mohebbi and Dehghan [107] give a high-order compact finite
difference approximation of fourth order in space, and use collocation method for the
time direction. In [51], a scheme similar to finite difference method is proposed using
collocation points and approximating the solution with thin plate splines radial basis
functions. Dehghan et al. [44] and Saadatmandi et al. [133] make use of Chebyshev
cardinal functions and shifted Chebyshev polynomials, respectively, for expanding the
approximate solution of one-dimensional hyperbolic telegraph equation. In [133], the
advantage is to obtain the closed form of the approximate solution. Dehghan and Ghes-
mati [42] have applied dual reciprocity boundary element method (DRBEM) for solv-
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ing second-order one-dimensional hyperbolic telegraph equation, and Crank-Nicolson
finite difference has been used for the time discretization.

Dehghan and Mohebbi [47] have used the same idea given in [107] for solving the
two-dimensional linear hyperbolic telegraph equation which is the combination of fi-
nite difference in space and collocation in time directions. In [104], Mohanty and Jain
introduced a new unconditionally stable alternating direction implicit (ADI) scheme
of second order accurate for two-dimensional telegraph equation. The solution is pro-
gressed in time direction by splitting the systems inx- andy- directions, and solving
two systems for each time level. Mohanty [102] and Mohanty et al. [106] extended
their studies for linear hyperbolic equations with variable coefficients in two-space di-
mensions. Mohanty [103] and Mohanty et al. [105] also extended solution procedure
by ADI method to two- and three-space dimensional hyperbolic telegraph equations.
Ding and Zhang [54] proposed a three level compact difference scheme of fourthorder
for the solution of two-dimensional, second-order, inhomogeneous linear hyperbolic
equation for positive coefficients. Meshless method has also been used by Dehghan et
al. [40, 52] for solving two-dimensional telegraph equation. The conventional moving
least squares approximation is exploited in order to interpolate the solution by using
monomials from the Pascal triangle in [40], and thin plate splines radial basis functions
are used for the approximation of the solution in [52]. In both of these studies, another
time integration scheme has been used (finite difference) for the time derivatives, and
the solutions are obtained iteratively.

The Klein-Gordon equation (KGE) arises in many scientific areas such as nonlinear
optics, solid state physics and quantum field theory [161]. This equation has a great
importance in relativistic quantum mechanics, which is used to describe spinless parti-
cles. Furthermore, soliton-like structures have gained a great deal of interest in the last
years. Soliton waves do not create any deformation due to dispersion while progress-
ing. Soliton solutions are encountered in various nonlinear differential equations such
as Korteweg & de Vries equation, the Schrödinger equation,the sine-Gordon equa-
tion. The two-dimensional sine-Gordon equation (SGE) arises in quantum tunnelling
related with Josephson junction.

Several solution procedures have been developed for solving KGE numerically. In
[48], a fourth order compact method in space and fourth order A-stable diagonally
implicit RK-Nyström method in time are used resulting withnonlinear second order
system of ODEs. Rashidinia et al. [129] developed a numerical solution by using cubic
B-spline collocation method on the uniform mesh points. Moreover, a method based
on the tension spline function and finite difference approximations is used in [130].
Dehghan and Ghesmati [39] obtained numerical solutions of the KGE by BEM and
DRBEM. To improve the results, a predictor-corrector (PC) scheme for nonlinearity
is used. Lakestani and Dehghan [86] presented two numerical techniques based on
the finite difference and collocation methods. As a meshlessapproach, Dehghan and
Shokri [53] used collocation points and thin plate splines radial basis functions. For
a generalized nonlinear KGE, a finite element collocation approach using cubic B-
splines is employed by Khuri and Sayfy in [82].

Differential Transform Method is used to solve KGE by Kanth and Anura in [75]. Ab-
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basabandy [2] and Shakeri et al. [139] considered the series expansion of solution in
He’s variational iteration method. Bratsos [23] investigated a PC scheme using rational
approximants of second order of matrix exponential term in athree time level recur-
rence relation. Wazwaz used tanh method for analytical treatment of KGE in [160].
The extended tanh method, the rational hyperbolic functions method, and the ratio-
nal exponential functions method to generate new solutionsare also used by Wazwaz
[161].

One-dimensional sine-Gordon equation (SGE) is studied with different numerical meth-
ods as collocation [49], boundary integral approach [45], and finite difference method
with DIRKN methods [108]. For the two-dimensional SGE (for damped and un-
damped cases), Christiansen and Lomdahl have used both the method of lines and
leap-frog scheme to two spatial dimensions in [32]. Argyris [8] presented a semidis-
crete Galerkin approach using four-noded bilinear finite elements in combination with
a generalized Newmark integration scheme. Djidjeli et al. [55] applied a two-step, one
parameter method for the reduced form of sine-Gordon equation into second-order or-
dinary differential equations, and global extrapolation in both time and space is used to
improve the accuracy. Finite difference scheme in space is employed with fourth order
rational approximants of the matrix exponential term in a three time level recurrence
relation, and a new method based on a predictor-corrector scheme to avoid nonlinear-
ity in [21]. With the similar approach, Bratsos transformed sine-Gordon equation to a
second order initial value problem using the method of linesin [22]. Two-dimensional
SGE has been solved using the dual reciprocity boundary element method converting
the domain integrals of nonlinear and inhomogenous terms toboundary integrals, and
a PC scheme is used to overcome nonlinearity in the resultingODE’s [96]. Dehghan
and Ghesmati proposes the meshless local radial point interpolation method (LRPIM)
where the shape functions are constructed using radial basis functions and a time step-
ping method is used for the time derivatives employing PC scheme to eliminate nonlin-
earity in [41]. The meshless local Petrov-Galerkin (MLPG) method is alsodeveloped
by Mirzaei and Dehghan [97]. A numerical scheme based on collocation and the thin
plate spline (TPS) radial basis function is proposed in [50]. The study in [46] presents
DRBEM using linear radial basis functions for the solution of sine-Gordon equation.

The other prominent PDE as a basic example is the system of nonlinear 2D Burgers’
equations considered as a prerequisite to the study of Navier-Stokes equations with-
out pressure term and continuity equation. In Khater et al. [81], a spectral collocation
method based on Chebyshev polynomials is proposed to solve 1D, 2D and systems of
2D Burgers’ equations, and the nonlinearity is elaborated by reducing the system to
ordinary differential equations which are solved by Runge-Kutta method of order four.
In [43], numerical results of coupled viscous Burger equations are given by using the
Adomian-Padé technique (combination of Adomian decomposition method and Padé
approximation ADM-PAD́E). They showed that ADM-PAD́E gives faster convergence
and higher accuracy than ADM. In [167], the discrete Adomian decomposition method
is proposed to numerically solve the two-dimensional Burgers’ nonlinear difference
equations obtained by using fully implicit finite difference scheme. The quasi-linear
two-dimensional unsteady Burgers’ equations are converted to the characteristic dif-
fusion equations, and the meshless method (method of fundamental solutions) is used
in [163]. Liu and Shi [90] illustrated the Lattice Boltzmann Method which is based
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on Boltzmann transport equation for the time rate of change of the particle distribution
function in a particular state.

Some analytical solution techniques for solving nonlinear2D Burgers’ equations may
be mentioned as follows. One-dimensional Burgers and coupled Burgers equations are
solved by He’s variational iteration method in [4]. They compared the obtained solu-
tions with the ADM solutions showing the difficulty in calculating ADM polynomials.
Moreover, a semi numerical analytical technique, the differential transform method
(DTM) [1] gives highly accurate results or approximate solutions for the Burgers
and coupled Burgers equations. Mittal and Arora [98] presented a numerical scheme
for solving coupled viscous Burgers’ equations in one-space using Crank-Nicolson
method for the time integration, and cubic B-spline functions for space discretization.
The cubic B-spline method is simple and straight forward. Asthe authors indicated,
the accuracy of solution reduces as time increases due to thetruncation errors in FDM,
although they have used very small time step.

The use of DQM both in space and time directions is encountered in [146]. The authors
proposed to solve time dependent problems (including only first order time derivatives
as in Navier-Stokes equations) by a block-marching methodology in the time direction.
In each time block, DQM is applied both in space and time directions. The novelty of
this approach is in the higher order of accuracy and less computational effort compared
to 4-stage Runge-Kutta method. In this thesis, DQM is used both in space and time
directions in solving Klein-Gordon, sine-Gordon, Burgers’ and MHD duct flow time
dependent equations. In the time direction, solutions are improved blockwise to certain
time levels as well as considering the time as a whole level.

1.3 Plan of the thesis

In the thesis, Chapter 1 introduces the governing equationsof the problems considered
together with their physical importance. The equations of atwo-dimensional, laminar,
unsteady flow of an incompressible, Newtonian fluid in the presence of heat transfer or
an applied magnetic field or both are introduced. Non-dimensionalizations of the gov-
erning equations for each problem are also carried introducing dimensionless problem
parameters either in the first Chapter or in the Appendices.

In Chapter 2, the dual reciprocity boundary element method (DRBEM) is explained on
mathematical basis. Linear elements for boundary discretization are adopted.

In Chapter 3, the DRBEM applications to some fluid dynamics problems either in
porous or non-porous enclosures under the effect of an externally applied magnetic
field are presented. Lid-driven square cavity, staggered double lid-driven cavity MHD
flow, MHD flow in a cavity containing a centered non-conducting square blockage,
backward-facing step MHD flow and MHD flow over a cylinder are given as test prob-
lems.

Chapter 4 consists of the DQM applications to hyperbolic PDEs (hyperbolic telegraph
equation, Klein-Gordon and sine-Gordon equations) in one and two-space variables,
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parabolic PDEs (Burgers’ equations) and MHD duct flow.

In the Conclusion chapter, overall important numerical andphysical results, and the
future works are mentioned.

1.4 Originality of the thesis

In this thesis, the DRBEM is employed in solving mixed and natural convection flow
problems in porous enclosures with or without the effect of an applied magnetic field
for the first time. Also, the full MHD equations (the induced magnetic field is taken
into consideration) together with energy equation are solved numerically using DRBEM.
The different geometries of cavities or channels are chosenas test problems. In all
numerical results, the variation of dimensionless parameters is analyzed in terms of
streamlines, isotherms, vorticity, induced magnetic fieldlines (or magnetic potential or
current density lines). Boundary-only nature of DRBEM utilizing the linear boundary
elements with polynomial radial basis functions proved itsstrength in the chosen prob-
lems using considerably less number of grid points than the other domain discretization
methods.

The other original part of the thesis is the application of differential quadrature method
both in time and space domains solving especially hyperbolic PDEs. This enables one
to reach to the required time level either at one stroke or blockwise without the need of
an iterative procedure.
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CHAPTER 2

DRBEM SOLUTION OF FREE/MIXED CONVECTION FLOWS
WITHOUT OR WITH MAGNETIC EFFECT

The boundary element method (BEM) is a boundary-only numerical method for solv-
ing partial differential equations (PDEs). The solution isobtained in terms of boundary
values only which provides less computational cost and the reduction in the dimension-
ality of the problem. The residual obtained by substitutingapproximate solution to the
differential equation is weighted in the domain by multiplying with the fundamental
solution of the differential equation. Then the application of divergence theorem trans-
forms domain integrals to boundary integrals. However, theapplication of BEM to a
non-homogeneous PDE results in a domain integral. In this case, the problem dimen-
sion is not reduced and the method becomes unattractive.

In order to alleviate this drawback of BEM, new methodologies trying to convert all
domain integrals into boundary integrals are developed. One of the most outstand-
ing method is the dual reciprocity boundary element method (DRBEM). Keeping the
Laplace term of the differential equation on one side, DRBEMtreats the terms on the
other side as inhomogeneous terms. Inhomogeneity is expressed as a linear combina-
tion of coordinate functions based on distances of two points in the closed problem
domain, which are related to Laplacian of corresponding particular solutions. The
multiplication of both sides by the fundamental solution ofLaplace equation, and then
the integration over the domain gives the domain integrals.These domain integrals on
both sides are transformed into boundary integrals using the Green’s identities. Coor-
dinate functions are usually the radial basis functions which use distances of fixed and
free points.

DRBEM has many applications in scientific area such as elastodynamics, fluid dynam-
ics, electrodynamics, heat transfer, etc. In this chapter,DRBEM is introduced adopting
linear boundary elements, and then some applications of DRBEM to specific fluid dy-
namics problems are presented.

2.1 The dual reciprocity boundary element method

In this section, the boundary integral equation for Poisson’s equation is derived as
in [24, 122], and then the DRBEM is introduced for transforming domain integral due
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to the right hand side function to the boundary integral.

Consider the Poisson’s equation in 2D

∇2u = b(x, y), (x, y) ∈ Ω, (2.1)

with the boundary conditions

u(x, y) = ū(x, y), (x, y) ∈ Γ1 (Dirichlet type), (2.2)

q(x, y) =
∂u

∂n
= q̄(x, y), (x, y) ∈ Γ2 (Neumann type), (2.3)

where∇2 is the Laplace operator,̄u, q̄ are given functions,n is the outward normal to
the boundaryΓ = Γ1∪Γ2 is the boundary ofΩ, andb(x, y) is a known function. Also,
note that (Figure2.1)

u(x, y) =

{
ū(x, y), (x, y) ∈ Γ1

ũ(x, y), (x, y) ∈ Γ2

, q(x, y) =

{
q̃(x, y), (x, y) ∈ Γ1

q̄(x, y), (x, y) ∈ Γ2,
(2.4)

whereũ andq̃ are unknowns on the boundaryΓ2 andΓ1, respectively.

Γ1

Γ2

u = ūq = q̄
Ω

Figure 2.1: Configuration of the region and the boundary conditions.

DRBEM uses the fundamental solutionu∗ = 1
2π

ln
(
1
r

)
of Laplace equation, which

satisfies∇2u∗ = −δ(x−xi) = −δi with the Dirac delta function having the properties

δi =

{
∞ if x = xi
0 if x 6= xi

,

∫

Ω

δi(x)dΩ = 1 (2.5)

∫

Ω

h(x)δidΩ =

{
h(xi) if xi ∈ Ω

0 if xi /∈ Ω,
(2.6)

for a continuous functionh(x) atxi.

Multiplying both side of Eq.(2.1) by the fundamental solutionu∗, and integrating over
the domain, the weighted residual statement is obtained

∫

Ω

(
∇2u− b

)
u∗dΩ = 0. (2.7)
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By means of Green’s identity1, and insertion of the boundary conditions (2.2)-(2.3)
using Eq.(2.4), Eq.(2.7) is rearranged as
∫

Ω

(
u∇2u∗ − bu∗

)
dΩ+

∫

Γ

∂u

∂n
u∗dΓ−

∫

Γ

∂u∗

∂n
udΓ = 0 (2.8)

∫

Ω

u∇2u∗dΩ−
∫

Ω

bu∗dΩ =−
∫

Γ2

q̄u∗dΓ2−
∫

Γ1

q̃u∗dΓ1+

∫

Γ2

ũq∗dΓ2+

∫

Γ1

ūq∗dΓ1,

(2.9)

whereq∗ = ∂u∗/∂n (normal derivative ofu∗).

Using the property (2.6) in the first term of the left hand side in Eq.(2.9),
∫

Ω

u∇2u∗dΩ =

∫

Ω

u(−δi)dΩ = −ciui, (2.10)

where the constantci is

ci =





θi
2π
, if i ∈ Γ,

1, if i ∈ Ω \ Γ,
(2.11)

with the internal angleθi atxi (Figure2.2), Eq.(2.9) becomes

ciui +

∫

Ω

bu∗dΩ+

∫

Γ

uq∗dΓ =

∫

Γ

qu∗dΓ. (2.12)

•
i

ǫ θi

Figure 2.2: Internal angle at the nodei.

The transformation of the domain integral in Eq.(2.12) due to the functionb(x, y) into
the boundary integral is the key point of the DRBEM. The righthand side functionb
is approximated as [122]

bi =

N+K∑

j=1

fijαj, (2.13)

whereαj ’s are sets of initially unknown coefficients,N is the number of boundary
nodes,K is the number of interior points,f ’s are approximating functions. Eq.(2.13)
may also be expressed in matrix-vector form as

b = Fα, (2.14)
1 Green’s First Identity ∫

Ω

u∗

∇
2u dΩ =

∫
Γ

u∗ ∂u

∂n
dΓ−

∫
Ω

∇u∇u∗dΩ,

∫
Ω

∇u∇u∗ dΩ =

∫
Γ

u
∂u∗

∂n
dΓ−

∫
Ω

u∇2u∗dΩ
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wherei = 1, 2, . . . , N+K, b = {bi} = {b1, b2, . . . , bN+K}, the symmetric coordinate
matrixF constructed byfj ’s columnwise is of size(N+K)×(N+K). Different types
of f ’s have been proposed so far. At most of the studies, polynomial form of the RBFs
(f = 1 + r + . . . + rn) as a function of distancer (rij =

√
(xi − xj)2 + (yi − yj)2,

distance between the fixedi and fieldj points) is encountered. In 1994, Golberg et
al. [63] introduced the augmented thin plate splines [76]. These type of RBFs are also
efficiently employed in most of the applications as in [26]. Partridge [121] discussed
whichf function will be suitable in which type of problem.

The particular solutionŝuij ’s are related tofij ’s with the relation∇2ûij = fij . So,
Eq.(2.13) is written as

bi =
N+K∑

j=1

αj∇2ûij , i = 1, 2, . . . , N +K. (2.15)

Substitution of Eq.(2.15) into Eq.(2.12) yields

ciui +

∫

Γ

uq∗dΓ−
∫

Γ

qu∗dΓ = −
N+K∑

j=1

αj

∫

Ω

∇2ûiju
∗dΩ. (2.16)

Applying integration by parts and Green’s theorem to the right hand side of Eq.(2.16),
a boundary integral equation for each source nodei is occurred as

ciui +

∫

Γ

uq∗dΓ−
∫

Γ

qu∗dΓ =

N+K∑

j=1

αj

(
ciûij +

∫

Γ

q∗ûijdΓ−
∫

Γ

u∗q̂ijdΓ

)
, (2.17)

whereq̂ij = ∂ûij/∂n with the outward unit normaln to Γ.

The boundary of the regionΩ may be discretized in different forms of the elements
such as constant, linear, quadratic or cubic. In this thesis, linear element discretization
of boundary is adopted.

2.1.1 Boundary discretization with linear elements

Once the boundary is discretized intoNe number of linear elements (Fig.2.3), Eq.(2.17)
may be written as

ciui +

Ne∑

e=1

∫

Γk

(
2∑

k=1

ukNk

)
q∗dΓk −

Ne∑

e=1

∫

Γk

(
2∑

k=1

qkNk

)
u∗dΓk (2.18)

=

N+K∑

j=1

αj

[
ciûij +

Ne∑

e=1

∫

Γk

(
2∑

k=1

ûjkNk

)
q∗dΓk −

Ne∑

e=1

∫

Γk

(
2∑

k=1

q̂jkNk

)
u∗dΓk

]
,

whereN1 andN2 are interpolating functions, andNe = N with linear elements. It is
not possible to takeu andq outside of the integrals due to the linear variation of them
over each element. Therefore, the integrals are to be evaluated numerically.
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•

•

•

•

•

•

•

•

Nodes

Linear Element

Figure 2.3: Configuration for linear elements.

In local coordinate system,ξ ∈ [−1, 1], with the help of interpolating functions, the
values ofu andq at any point on the element are given as [24, 122]

u(ξ) = N1u1 +N2u2 (2.19a)
q(ξ) = N1q1 +N2q2, (2.19b)

whereN1 =
1− ξ
2

, N2 =
1 + ξ

2
. The first and second integrals on the left hand side

of Eq.(2.19a) is transformed to the local coordinate system as
∫

Γk

uq∗dΓk =

∫ 1

−1

u(ξ)q∗
ℓe
2
dξ = h1iku1 + h2iku2 (2.20a)

∫

Γk

qu∗dΓk =

∫ 1

−1

q(ξ)u∗
ℓe
2
dξ = g1iku1 + g2iku2 (2.20b)

whereℓe is the length of the linear boundary element, and for each elementk,

h1ik =
1

2π

∫ 1

−1

(rk − ri).n

|rk − ri|2
N1

ℓe
2
dξ, h2ik =

1

2π

∫ 1

−1

(rk − ri).n

|rk − ri|2
N2

ℓe
2
dξ (2.21a)

g1ik =
1

2π

∫ 1

−1

ln
1

|rk − ri|
N1

ℓe
2
dξ, g2ik =

1

2π

∫ 1

−1

ln
1

|rk − ri|
N2

ℓe
2
dξ, (2.21b)

where superscripts1, 2 refer to the starting and the end points of an element. The
integrals in Eq.(2.21) are evaluated by Gaussian quadrature. BEM matrices are formed
with the assembly ofhik’s andgik’s at the nodes shared by two elements.

Smoothness of linear boundary elements causes the internalangleθi atxi to beπ such
thatci becomes1/2. DefiningHik = H ik +

1
2
δik with Kronecker delta functionδik (if

i = k, δik = 1; elseδik = 0), Eq.(2.19a) may be rewritten as

N∑

k=1

Hikuk −
N∑

k=1

Gikqk =

N+K∑

j=1

αj

(
N∑

k=1

Hikûkj −
N∑

k=1

Gikq̂kj

)
. (2.22)

Note that since the node2 of elementk − 1 is the same point as node1 of elementk,
entries of the matrixH ik will be the summation ofh1ik andh2i,k−1.
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If i = k1 or i = k2, the diagonal entries are [24, 122]

Hii = −
N∑

k=1,i 6=k

Hik (2.23a)

Gii =
ℓe
2

(
1

2
− ln ℓe

)
, if i = k1, (2.23b)

Gii =
ℓe
2

(
3

2
− ln ℓe

)
, if i = k2, (2.23c)

wherek1 andk2 are the first and second nodes of elementk, respectively.

Eq.(2.22) is stated in matrix-vector form as

Hbub −Gbqb =
(
HbÛb −GbQ̂b

)
α, (2.24)

where subscript ‘b’ denotes ‘boundary’, and the matricesHb, Gb, Ûb, Q̂b are of size
N×N, N×N, N×(N+K), N×(N+K), respectively, and the vectorsub, qb, α
are of lengthN, N, N +K, respectively.

Once the boundary-only system Eq.(2.24) is solved, then the interior solution is ob-
tained with the relation

ciui = −
N∑

k=1

Hikuk+
N∑

k=1

Gikqk+
N+K∑

j=1

αj

(
ûij +

N∑

k=1

Hikûkj −
N∑

k=1

Gikq̂kj

)
, (2.25)

whereci = 1 for the interior points. This expression may also be demonstrated in
matrix-vector form as

Iui = −Hiub +Giqb +
(
IÛi +HiÛb −GiQ̂b

)
α, (2.26)

where subscript ‘i’ refers to interior (i = 1, 2, . . . , K), and the matricesHi, Gi, Ûi

are of sizesK × N, K × N, K × (K + N), respectively,I is theK × K identity
matrix.

Combining the Eqs.(2.24) and (2.26), the whole system may be illustrated as
[
Hb 0

Hi I

]{
ub

ui

}
−
[
Gb 0

Gi 0

]{
qb

0

}
=

([
Hb 0

Hi I

] [
Ûb

Ûi

]
−
[
Gb 0

Gi 0

] [
Q̂b

0

])
α. (2.27)

Going back to Eq.(2.14), and writingα = F−1b instead of the vectorα, Eq.(2.27)
may be formed in a compact form as

Hu−Gq = (HÛ−GQ̂)F−1b. (2.28)

By takingS = (HÛ−GQ̂)F−1, Eq.(2.28) is simplified as

Hu−Gq = Sb. (2.29)
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By means of the relation between the particular solution andthe polynomial RBFf ,
û and q̂ are extracted as follows. Using the relation in polar coordinates (for axi-
symmetic case)

∇2û =
1

r

∂

∂r

(
r
∂û

∂r

)
= 1 + r + . . .+ rn = f, (2.30)

the corresponding particular solutionû is derived as

û =
r2

4
+
r3

9
+ . . .+

rn+2

(n+ 2)2
. (2.31)

Then,

q̂ =
∂û

∂n
=
∂û

∂r

∂r

∂n
=
∂û

∂r

(
∂r

∂x

∂x

∂n
+
∂r

∂y

∂y

∂n

)

=

(
rx
∂x

∂n
+ ry

∂y

∂n

)(
1

2
+
r

3
+ . . .+

rn

n+ 2

)
, (2.32)

wherer = (rx, ry) , r = |r|, and
∂r

∂x
=
rx
r
,
∂r

∂y
=
ry
r

. Thus, the entries of matrices

Û andQ̂ are computed by putting columnwiseûij andq̂kj , respectively, wherei, j =
1, 2, . . . , N +K andk = 1, 2, . . . , N .

Eq.(2.29) is reduced to the system of equations of the formCx = d shuffling the
known and unknown boundary information.x is the(N+K)×1 vector ofN unknown
boundary values ofu or q, K unknown interior values ofu, and the vectord consists
of all N +K known values after shuffling.

In the next two sections, DRBEM application is employed for time dependent PDEs
and diffusion-convection type equations.

2.1.2 DRBEM for time-dependent equations :∇2u = b(x, y, t, u̇)

Consider the simplest unsteady diffusion equation

∇2u =
∂u

∂t
. (2.33)

The application of DRBEM to Eq.(2.33) results in matrix-vector as

Hu−Gq = Sb, (2.34)

whereb = {bi} = {∂ui/∂t}, i = 1, 2, . . . , N +K.

Using a proper time integration scheme and shuffling with therelated known and un-
known boundary information, the system solution is obtained atN +K points at tran-
sient time levels.
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2.1.3 DRBEM for nonlinear convection-diffusion equations: ∇2u = b(x, y, t, u, u̇, ux, uy)

If the inhomogeneity includes the time derivative of the unknown as well as convection
terms, i.e.

∇2u =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y︸ ︷︷ ︸
b=Fα

, (2.35)

the application of DRBEM gives, matrix-vector form of Eq.(2.35) as

Hu−Gq = S

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
. (2.36)

The expressionb = Fα can also be used for the solution as

u = Fβ, β 6= α. (2.37)

Differentiation of both sides of Eq.(2.37) with respect tox andy gives

∂u

∂x
=
∂F

∂x
β and

∂u

∂y
=
∂F

∂y
β, (2.38)

where the matrices∂F/∂x and∂F/∂y are skew-symmetric (i.e.A = −AT ). From the
relation Eq.(2.37), replacingβ = F−1u into the Eq.(2.38) gives

∂u

∂x
=
∂F

∂x
F−1u and

∂u

∂y
=
∂F

∂y
F−1u. (2.39)

In order to handle the multiplication of a vector with a matrix in nonlinear terms, the
diagonal matrices[u]d and[v]d are formed as

[u]d =




u1 0 . . . 0
0 u2 . . . 0
...

...
.. .

...
0 0 . . . uN+K


 , [v]d =




v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...
0 0 . . . vN+K


 . (2.40)

Now, Eq.(2.36) is rearranged as

Hu−Gq = S

(
u̇+ [u]d

∂F

∂x
F−1u+ [v]d

∂F

∂y
F−1u

)
. (2.41)

LetM = S

(
[u]d

∂F

∂x
F−1 + [v]d

∂F

∂y
F−1

)
. Then, Eq.(2.41) will be

(H−M)u−Gq = Su̇. (2.42)

The system of Eq.(2.42) is iteratively solved for increasing time levels using anytime
integration scheme (stable ones are preferred to be able to use large time increments).
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2.1.4 Computation of second order space derivatives using coordinate matrix

In the previous section, the convection terms containing the first order derivatives are
computed by DRBEM with the help of coordinate matrixF. If there are terms con-
taining second order derivatives in addition to convectionterms, computation of these
second order derivatives are achieved again with the coordinate matrix.

Second order space derivatives may be expressed in two ways.The first one is

∂2u

∂x2
=
∂2F

∂x2
F−1u and

∂2u

∂y2
=
∂2F

∂y2
F−1u. (2.43)

It is worth to mention here that polynomial radial basis functions containing linear
termr are not suitable if the second derivatives are to be treated by Eq.(2.43). This is
due to the singularity atr = 0. As an example, letf = 1 + r be taken. Then,

∂f

∂x
=
∂f

∂r

∂r

∂x
=
rx
r

(2.44)

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
=

∂

∂x

(rx
r

)
=
r2 − r2x
r3

, (2.45)

whererx = xi − xk. Note that the term(r2− r2x)/r3 goes to∞ asr goes to zero since
r3 goes to zero faster thanr2.

The second way is to use the first order derivative representation given in Eq.(2.39) [112].
With the same idea for obtaining Eq.(2.39), let

∂u

∂x
= Fγ, γ 6= β 6= α. (2.46)

Differentiating both sides of this expression with respectto x (or y), and replacingγ
from Eq.(2.46) and using Eq.(2.39) yields

∂2u

∂x2
=
∂F

∂x
γ =

∂F

∂x
F−1∂u

∂x
=
∂F

∂x
F−1

(
∂F

∂x
F−1u

)
. (2.47)

2.1.5 Time integration schemes

In this section, two types of finite difference schemes derived from Taylor series expan-
sion are introduced. These time integration schemes are going to be used throughout
the thesis.

2.1.5.1 Backward-Euler method

Backward-Euler method is a first order, implicit method, andeases the formation of
iterative systems between more than two PDE equations.
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Notationally, consideru(x, y, tm) = um. Expanding the Taylor series abouttm =
tm+1 −∆t, the first order derivative is extracted as

um = um+1 −∆t
∂u

∂t

∣∣∣∣
m+1

+
∆t2

2!

∂2u

∂t2

∣∣∣∣
m+1

− . . .

∂u

∂t

∣∣∣∣
m+1

=
um+1 − um

∆t
+O(∆t). (2.48)

2.1.5.2 Houbolt method

A third order, implicit time integration scheme which is called Houbolt method [7], is
derived by Taylor expansions written abouttm+1 by taking astm = tm+1−∆t, tm−1 =
tm+1 − 2∆t, tm−2 = tm+1 − 3∆t, respectively. Therefore,

−18
/
um = um+1 −∆t

∂u

∂t

∣∣∣∣
m+1

+
∆t2

2!

∂2u

∂t2

∣∣∣∣
m+1

− ∆t3

3!

∂3u

∂t3

∣∣∣∣
m+1

+
∆t4

4!

∂4u

∂t4

∣∣∣∣
m+1

− . . .

+9

/
um−1 = um+1 − 2∆t

∂u

∂t

∣∣∣∣
m+1

+
4∆t2

2!

∂2u

∂t2

∣∣∣∣
m+1

− 8∆t3

3!

∂3u

∂t3

∣∣∣∣
m+1

+
16∆t4

4!

∂4u

∂t4

∣∣∣∣
m+1

− . . .

−2
/
um−2 = um+1 − 3∆t

∂u

∂t

∣∣∣∣
m+1

+
9∆t2

2!

∂2u

∂t2

∣∣∣∣
m+1

− 27∆t3

3!

∂3u

∂t3

∣∣∣∣
m+1

+
81∆t4

4!

∂4u

∂t4

∣∣∣∣
m+1

− . . .

11um+1 = 11um+1

Multiplying with the indicated numbers of both sides of the first three equations, and
adding the four equations, Houbolt method for the first ordertime derivative is obtained
as

11um+1 − 18um + 9um−1 − 2um−2 = 6∆t
∂u

∂t

∣∣∣∣
m+1

−O(∆t4)

∂u

∂t

∣∣∣∣
m+1

=
1

6∆t

(
11um+1 − 18um + 9um−1 − 2um−2

)
+O(∆t3), (2.49)

which is order of∆t3.

2.2 DRBEM application to free or mixed convection flows

In this section, natural or mixed convection flows either under the effect of an applied
magnetic field or without magnetic effect in porous enclosures are simulated using
DRBEM. An isotropic, homogeneous porous medium saturated with an incompress-
ible fluid is considered. The thermal and physical properties of the fluid are assumed to
be constant except for the density variation according to Boussinessq approximation.
The fluid and the solid particles are also assumed to be in local thermal equilibrium.
The viscous dissipation is neglected. The Forchheimer terms (quadratic drag terms)
are also neglected in the momentum equations. In the cases ofthe effect of an applied
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magnetic field, induced magnetic field is also neglected together with Joule heating
effects. The governing equations are introduced, and then the application of DRBEM
to these equations is presented. The solution procedure is summarized, and the results
are visualized in terms of eitherψ − T or ψ − T − w.

2.2.1 Numerical solution of mixed convection flow in a porousmedium by DRBEM

Initially, DRBEM is applied to solve the steady, two-dimensional mixed convection
flow in a porous square cavity with differentially heated andmoving side walls. The
problem geometry consisting of the cross-section of a unit square cavity which has the
moving lids on the left and right walls is depicted in Figure2.4. The velocityv = 1
on the vertical walls withu = ψ = 0; andu = v = ψ = 0 on the horizontal walls.
The right wall is the hot (Th = 1), and the left wall is the cold (Tc = 0) wall while the
top and bottom walls are adiabatic (∂T/∂n = 0). Vorticity boundary conditions are
unknown, and are going to be derived with the help of DRBEM coordinate matrixF
during the iterative solution procedure.

x

y
∂T/∂n = 0

∂T/∂n = 0

Tc Th
v

u

u = v = ψ = 0

u = v = ψ = 0

g

v
=

1

v
=

1

Figure 2.4: Problem 2.2.1 configuration.

The non-dimensional governing equations for the two-dimensional, steady, laminar
mixed convection flow in an incompressible fluid-saturated porous medium in terms of
stream functionψ-temperatureT -vorticity w are [36]

∇2ψ = −w (2.50a)

1

ǫpRe
∇2w =

1

ǫ2p

(
u
∂w

∂x
+ v

∂w

∂y

)
− Gr

Re2
∂T

∂x
+

1

Da Re
w (2.50b)

1

Pr Re
∇2T = u

∂T

∂x
+ v

∂T

∂y
(2.50c)

whereǫp is the porosity of the porous medium,u = ∂ψ/∂y, v = −∂ψ/∂x, w =
∂v/∂x− ∂u/∂y. Non-dimensional physical parameters are Reynolds, Grashof, Darcy
and Prandtl numbers, respectively, given as

Re =
UL

νe
, Gr =

gβ∆TL3

ν2e
, Da =

κ

L2
, P r =

νe
αe
, (2.51)
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with characteristic velocityU , characteristic lengthL, gravitational accelerationg, ef-
fective kinematic viscosityνe, permeability of the porous mediumκ, thermal expan-
sion coefficientβ, temperature difference∆T = Th − Tc, effective thermal diffusivity
αe of the porous medium. The steady equations (2.50) are constructed keeping the
porosityǫp in Eq.(1.17) of Chapter 1, and applying the same non-dimensional vari-
ables.

Once the linear boundary elements are used for the discretization of the boundary,
matrix-vector form for Eqs.(2.50) are written as

Hψm+1 −Gψm+1
q = −Swm (2.52a)

(H− PrReSM) Tm+1 −GTm+1
q = 0 (2.52b)(

H− Re

ǫp
SM− ǫp

Da
S

)
wm+1 −Gwm+1

q = −ǫp
Gr

Re
S
∂F

∂x
F−1Tm+1 (2.52c)

whereS = (HÛ−GQ̂)F−1, M =

(
[u]d

∂F

∂x
F−1 + [v]d

∂F

∂y
F−1

)
, the diagonal ma-

trices[u]d, [v]d are formed by the vectorsum+1 = (∂F/∂y)F−1ψm+1, vm+1 = −(∂F/∂x)F−1ψm+1,
respectively, andm is the iteration level.

Unknown vorticity boundary conditions are obtained from the definition ofw as

w =
∂v

∂x
− ∂u

∂y
=
∂F

∂x
F−1v − ∂F

∂y
F−1u, (2.53)

with the help of coordinate matrixF. Also, all the space derivatives on the right hand
sides in Eqs.(2.50) are computed by using DRBEM coordinate matrixF, i.e.

∂T

∂x
=
∂F

∂x
F−1T,

∂w

∂y
=
∂F

∂y
F−1w. (2.54)

Systems of equations (2.52a)-(2.52c) are solved iteratively for the unknownsψ, T, w,
and normal derivativesψq, Tq, wq with initial w andT values, and the iterations con-
tinue until the criterion

‖ψm+1 − ψm‖∞
‖ψm+1‖∞

+
‖Tm+1 − Tm‖∞
‖Tm+1‖∞

+
‖wm+1 − wm‖∞
‖wm+1‖∞

< ǫ (2.55)

is satisfied whereǫ = 10−5 is the tolerance for stopping the iterations.

In order to accelerate the convergence for large values of problem parameters a relax-
ation parameter0 < γ ≤ 1 determined by trial and error is used for the vorticity as
wm+1 ← γwm+1 + (1 − γ)wm. Further, average Nusselt number through the heated
wall is computed byNu =

∫ 1

0
(∂T/∂x)|x=1 dy utilizing the composite Simpson’s rule

(AppendixB).

In the numerical computations of stream function, vorticity and temperature in a square
cavity with heated and upwards moving vertical walls, radial basis functionf = 1+ r,
and8-point Gaussian quadrature are used for the construction ofBEM matricesF,H
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andG. N = 96, K = 625 are taken, andRe = 100 is fixed. Cavity contains a
fluid saturated porous medium withǫp ≤ 1. Mixed convection flow behavior in this
porous medium is depicted in terms of streamlines, isotherms, and vorticity contours
for various values ofDa,Gr andPr.

As Da decreases (Figure2.5), permeability decreases and causes a force opposite to
the flow direction which tends to resist the flow. This means that the fluid flows slowly.
While the center of streamlines is in the direction of movinglids, they cluster along
the left and right boundaries forming boundary layers, and the effects of moving walls
almost disappear. Isotherms become almost perpendicular to the top and bottom walls
pointing to the increase in conduction dominated effect. Circulation in the vortic-
ity through the upper corners due to the effect of moving lidsdiminishes, and strong
boundary layers are formed through the right and left walls leaving a stagnant region
at the center.

AsGr increases, the left counter-clockwise secondary cell starts to be squeezed through
the left wall, and the clockwise primary cell is centered. Buoyancy effect is pronounced
due to the increase inRi = Gr/Re2. That is, natural convection is high. Actually, this
can be seen in isotherms atGr = 105. While the isotherms pronounce the forced con-
vection withGr = 103, Da = 0.01(Ri = 0.1) in Figure2.5, they cluster through the
left and right walls forming strong temperature gradients for Gr = 105 (Figure2.6).
Even though there is a Darcy effect with strengthDa = 0.01, we are able to observe
the characteristics of mixed convection flow in a non-porousmedium in the cavity [72].
Vorticity almost covers the cavity with new cells through the left and right walls, and
spreads also along the top and bottom walls.

The increase inPr only affects the isotherms (as is seen in Figure2.7) due to the
dominance of convection terms in the temperature equation.

The decrease in the velocity of the fluid with the decrease inDa number is shown in
Figure2.8awith the u-velocity profile throughx = 0.5. The dominance of natural
convection with highGr is depicted in Figure2.8b. WhenGr is increased,Nu values
also increase. Average Nusselt number is almost the same forall values of Grashof
number withDa ≤ 10−4 due to the dominance of conduction. However,Nu increases
asDa increases showing the increase in the heat transfer.

Finally, we show how the heat transfer is affected by different values of porosity. As is
seen in Figure2.9a,Nu increases at allǫp values asDa increases. HighNu values are
obtained by smallǫp values which yield the increase in convective heat transfer. Here,
forced convection is dominant (Ri < 1). As the natural convective effect increases
Ri > 1 (Figure2.9b), it is found thatNu takes larger values withǫp = 0.8 than the
other ones. Namely, the natural convection is pronounced with the increase inǫp.
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2.2.2 DRBEM solution of free convection in porous enclosures under the effect
of a magnetic field

In different cross sections as square, isosceles trapezoidal and right-angle trapezoidal
enclosures depicted in Figure2.10, Darcy-Brinkman model is considered. In the con-
figurations,B is the applied magnetic field with an inclination angleϕ, g is the gravi-
tational acceleration vector, the jagged walls are adiabatic (∂T/∂n = 0), andq

′′′

0 is the
internal heat generation.
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Figure 2.10: Problem 2.2.2 configurations.

The governing equations in(u− v − p− T ) form is

∂u

∂x
+
∂v

∂y
= 0 (2.56a)

u = −κ
µ

∂p

∂x
− σκB2

0

µ

(
v sinϕ cosϕ− u sin2 ϕ

)
(2.56b)

v = −κ
µ

∂p

∂y
− σκB2

0

µ

(
u sinϕ cosϕ− v cos2 ϕ

)
+
κβg

ν
(T − Tc) (2.56c)
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u
∂T

∂x
+ v

∂T

∂y
= αe

(
∂2T

∂x2
+
∂2T

∂y2

)
+

q
′′′

0

ρ0cp
, (2.56d)

whereκ is the permeability of the porous medium,µ is the dynamic viscosity,B0 is
the magnitude ofB, σ is the electrical conductivity of the fluid,ν is the kinematic
viscosity,β is the thermal expansion coefficient,cp is the specific heat at constant
pressure,ρ0 is the reference density andαe is the effective thermal diffusivity.

Using dimensionless variables

x′ =
x

L
, y′ =

y

L
, u′ =

L

αe
u, v′ =

L

αe
v, T ′ =

T − Tc
Td

, (2.57)

whereTd = Th − Tc in trapezoidal enclosures,Td =
(
q
′′′

0 l
2/k
)

in square cavity, and
then, applying the vorticity definition to eliminate the pressure terms, non-dimensional
form of the Eq.(2.56) in terms ofψ − T may be written as

∂2ψ

∂x2
+
∂2ψ

∂y2
=−Ra∂T

∂x
−Ha2

(
∂2ψ

∂y2
sin2 ϕ+

∂2ψ

∂x∂y
sin(2ϕ)+

∂2ψ

∂x2
cos2 ϕ

)
(2.58a)

∂2T

∂x2
+
∂2T

∂y2
=
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
−Q (2.58b)

whereQ = 1 which is the heat generation parameter for the square cavitywhileQ = 0
for trapezoidal cavities, and RayleighRa and HartmannHa numbers for the porous
medium, respectively, are

Ra =
gκβLTd
αeν

, Ha2 =
σκB2

0

µ
. (2.59)

The second order space derivatives in Eq.(2.58a) are handled by Eq.(2.43), and radial
basis functions are taken as̃f = 1 + r2 + r3 for the stream function equation and
f̄ = 1 + r or f̄ = 1 + r + r2 for the temperature equation. Hence, the entries of
coordinate matrices and̂U, Q̂ will be different for coupled equations (2.58a)-(2.58b).

DRBEM application to this coupled Eqs.(2.58) with an iteration to eliminate nonlin-
earity results in the following matrix-vector form of the equations

(H+ S̃R)ψm+1 −Gψq
m+1 = −RaS̃

∂F̃

∂x
F̃−1Tm (2.60a)

(H− SM)Tm+1 −GTm+1
q = −SQ (2.60b)

whereS,R,M are the matrices

S̃ =
(
H

˜̂
U−G

˜̂
Q
)
F̃−1, S =

(
H

¯̂
U−G

¯̂
Q
)
F̄−1 (2.61)

R = Ha2
(
sin2ϕ

∂2F̃

∂y2
F̃−1 + sin(2ϕ)

∂2F̃

∂x∂y
F̃−1 + cos2ϕ

∂2F̃

∂x2
F̃−1

)
(2.62)
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M =
∂F̄

∂y
F̄−1[ψ]d

∂F̄

∂x
F̄−1 − ∂F̄

∂x
F̄−1[ψ]d

∂F̄

∂y
F̄−1 (2.63)

andQ is a constant vector,m is the iteration number,[ψ]d is the diagonal matrix
constructed by the vectorψm+1 at each iteration. Shuffling the known and unknown
boundary information and rearranging the Eqs.(2.60) in the formCx = d, the Gaus-
sian elimination with partial pivoting is used for the solution.

Step by step, iterative procedure works as

1. T 0 is taken as zero everywhere except on the boundary. Then, stream function is
obtained from Eq.(2.60a).

2. Due to the presence of dimensionless physical parametersRa andHa in the
stream function equation, a relaxation parameter0 < γ ≤ 1 for ψ is employed
as

ψm+1 ← (1− γ)ψm+1 + γψm (2.64)

for accelerating convergence.

3. Stopping criteria is

‖ψm+1 − ψm‖∞
‖ψm+1‖∞

< ǫ or
‖Tm+1 − Tm‖∞
‖Tm+1‖∞

< ǫ, (2.65)

whereǫ = 1e− 7 is the tolerance.

2.2.2.1 Square cavity case

The results are obtained using̃f = 1+ r2+ r3 for ψ andf̄ = 1+ r for T , and8-points
Gaussian quadrature is used for boundary integrations.

Computations are carried for103 ≤ Ra ≤ 107, Ha ≤ 200 and for magnetic field
inclination angleϕ = 0, π/6, π/4, π/2. The number of linear boundary elementsN
is kept around 144, and results are obtained at 289 interior points. For smallHa, we
need to take more elements since the convection due to temperature becomes dominant
especially for large values ofRa.

Figure2.11showsHa variation for a fixedRa = 105 and inclination angle of magnetic
field ϕ = π/6. AsHa increases, maximum value of streamlines drops implying flat-
tening tendency of velocity profile for increasing Hartmannnumber. Boundary layers
(intensification of stream function lines having equal values of streamline contours),
and stagnant cores close to the side walls in streamlines tend to move through the
center of the cavity forming also an intensive layer betweenthem in the direction of
the applied magnetic field. Isotherms become parallel to theleft and right walls for
Ha = 100 due to the dominance of pure conduction.

AsRa is increased, maximum value of stream function increases asis shown in Figure
2.12. This means that the fluid gains acceleration. For highRa, relaxation parameter
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γ is needed and the number of boundary elements is increased tocapture reasonable
physical behavior. Thermal boundary layer formation starts for increasingRa and the
cores become close to the side walls. Isotherms are distorted from being parallel to the
side walls for highRa, covering almost all parts of the cavity. Thus, decreasingRa for
a fixedHa, and increasingHa for a fixedRa have the same effects on isotherms.

When the inclination angleϕ of magnetic field is changed (see Figure2.13), an inten-
sive layer formation forψ is observed in the direction of the external magnetic field.
By the reportedψmax values, it can be said that the motion of a fluid inside the cavity
accelerates when the direction of the magnetic field is changed from the horizontal
(ϕ = 0) to the vertical direction (ϕ = π/2). Isotherms are not affected much with the
change inϕ.

These behaviors of flow and heat transfer due to the variations ofRa,Ha and inclina-
tion angleϕ are expected results for natural convection flow. When the fluid is heated,
the fluid particles become less dense and raise, then the heated hot fluid particles trans-
fer energy to the cooler fluid particles and the process continues. So, a convective flow
emerges inside the cavity. Flattening tendency in the flow and the retarding effect of
the Lorentz force are observed as the drop inψmax for increasing values ofHa.

Average Nusselt number is the ratio of convective heat transfer to conductive heat
transfer. Table2.1presents the average Nusselt number (computed by compositeSimp-
son’s rule on the left wall) variation with respect to varyingHa andRa values. AsHa
becomes larger than50, the strength of the heat transfer is progressively withheld and
Nu attempts to the conductive heat transfer mode. Therefore,Nu remains almost the
same afterHa = 50 in Table2.1awhich means that the convection and conduction
change in the same proportion. This is also investigated with theNu values in Ta-
ble 2.1b until Ra = 105. The stronger magnetic field is needed for large values of
Ra > 105 in order to keep on the valueNu = 0.4905.
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Figure 2.11: Problem 2.2.2.1:Ra = 105, ϕ = π/6
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Figure 2.12: Problem 2.2.2.1:Ha = 50, ϕ = π/6
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Figure 2.13: Problem 2.2.2.1:Ha = 50, Ra = 105, N = 168, K = 400

2.2.2.2 Isosceles trapezoidal cavity case

For the computations of isosceles trapezoidal enclosure, only 3-points Gaussian quadra-
ture is used for boundary integrals, andf̃ = 1 + r2 + r3, f̄ = 1 + r + r2 are taken for
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Table 2.1: Problem 2.2.2.1: Average Nusselt number in square cavity.

(a)Ra = 10
4, ϕ = π/6

Ha Nu γ
0 0.4314 0.75
10 0.4903 0.4
50 0.4920 0
100 0.4919 0
200 0.4919 0

(b)Ha = 50, ϕ = π/6

Ra Nu γ
103 0.4905 0
104 0.4906 0
105 0.4904 0
106 0.4807 0.5
107 0.4518 0.65

the radial functions unless otherwise declared. The inclination angle of the wallθs is
taken as720 at all test problems. In the figures, minus sign refers to the direction of the
flow circulation due to the convection in this trapezoidal cavity problem. Inclination
angle of the applied magnetic field is zero. 148 linear boundary elements and 1127
interior points are used.

As Ha increases, as can be seen from Figure2.14, boundary layer formation on the top
wall is strongly observed since applied magnetic field is parallel to the top and bottom
walls. Bottom wall boundary layer is also formed forHa ≥ 20. Isotherms become
almost perpendicular to the top and bottom walls due to pure conduction whenHa is
large. Further, the minimum value of stream function decreases. This means that the
convective motion weakens. WhenHa is small, convection is from the left hot wall
through the cold right wall.

As Ra is increased, a relaxation parameter is needed for smoothing the streamlines due
to the dominance ofRa∂T/∂x for Ha = 5, ϕ = 0. The minimum value of stream
function increases. Isotherms are nearly parallel to the top and bottom walls asRa
reaches to104, and thermal boundary layers are formed at the side walls. Again, the
convection is from the left to the right wall (Figure2.15c).

When the inclination angle of the magnetic field changes, theflow circulation is also
observed in the direction of the magnetic field (ϕ = π/6, π/4) as is depicted in Figure
2.16.

In Table 2.2, Nu values along the left hot wall are obtained by usingf̄ = 1 + r
and composite Simpson’s Rule, and the inclination angleϕ = 0 is fixed. For a fixed
Ra = 103, Nu decreases asHa increases and remains in the conduction dominated
situation for a largeHa value as can be seen in Table2.2a. On the other hand,Nu
increases asRa increases for a fixedHa = 5. Morever, for a large value ofHa = 50,
Nu settles down at a constant value which means that the pure conduction is dominated
(see Table2.2b). The same discussion may be illustrated in Figure2.2 which is also
observed in [135].

49



−3.2

−2.8

−2.4

−2

−1.6

−1.2
−0.8

−0.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)Ha = 5, Ψmin = −3.2413

−0.3

−0.27

−0.24

−0.21

−0.18

−0.15

−0.12

−0.09

−0.06

−0.03

0.1

0.2

0.3

0.4

0.5

0.60.7

0.8

0.9

(b)Ha = 20, Ψmin = −0.3152

−0.012

−0.0108

−0.0096

−0.0084

−0.0072

−0.006

−0.0048

−0.0036
−0.0024

−0.0012

0.1

0.2

0.3

0.4

0.50.6

0.7

0.8

0.9

(c)Ha = 100, Ψmin = −0.0132

Figure 2.14: Problem 2.2.2.2:Ra = 103, ϕ = 0, N = 148, K = 1127
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Figure 2.15: Problem 2.2.2.2:Ha = 5, θs = 720, ϕ = 0
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Figure 2.16: Problem 2.2.2.2:Ra = 103, Ha = 5
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Table 2.2: Problem 2.2.2.2: Average Nusselt number in isosceles trapezoidal cavity.

(a) Ha varies

Ha Nu
5 2.5485
20 1.5712
50 1.5659
100 1.5668

(b) Ra varies

Ha=5 Ha=50
Ra Nu γ Nu γ
102 1.5852 0 1.5670 0
103 2.5485 0 1.5659 0
104 8.8427 0.4 1.5825 0

2.2.2.3 Right-angle trapezoidal cavity case

The behaviors of the flow and the temperature in a right-angletrapezoidal cavity are
investigated by using̃f = 1+ r2+ r3, f̄ = 1+ r, respectively, and8−points Gaussian
quadrature is used for computing the boundary integrals. Minus sign in streamlines
refers to clockwise direction of the flow. Inclination angleof the magnetic fieldϕ and
the angle in the top wallθw are fixed as0 and600, respectively. The right wall has a
partially cooled wall.

As Ha varies as is shown in Figure2.17, boundary layer occurs on the bottom wall
and partially cooled wall. For increasingHa ≥ 20 numbers, isotherms are almost per-
pendicular to the top and bottom walls due to pure conduction. Furthermore, minimum
values of stream function decreases. In other words, fluid flows slowly. The numerical
results shown in Figure2.17are obtained by using122 number of boundary elements
and858 interior points. For smallHa number, a cell emerges through the top wall in
streamlines while it is dispersed and forms a boundary layeron the top wall for a large
Ha number as50. Isotherms tend to move from the hot left wall to the cold portion of
the inclined wall but still being perpendicular to the adiabatic parts of the right wall.

WhenRa increases for a fixed numberHa = 10, a cell emerges in streamlines as
can be seen in Figure2.18c. Besides, boundary layer formation on the top of new cell
and bottom wall together with partially cooled wall is well observed. Isotherms show
almost parallel distribution to the horizontal walls with increasing values ofRa due to
the increase in dominance of convective heat transfer. Isotherms try to be perpendicular
to the adiabatic parts of the inclined wall, and then form thermal boundary layers when
Ra is increased.
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(a)Ha = 5, Ψmin = −3.1370

(b)Ha = 10, Ψmin = −1.0020

(c)Ha = 50, Ψmin = −0.0422

Figure 2.17: Problem 2.2.2.3: Streamlines and isotherms inright-angle trapezoidal
cavity,Ra = 103.
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(a)Ra = 10
2, Ψmin = −0.1002

(b)Ra = 10
3, Ψmin = −1.0020

(c)Ra = 10
4, γ = 0.2, Ψmin = −6.0093

Figure 2.18: Problem 2.2.2.3: Streamlines and isotherms inright-angle trapezoidal
cavity,Ha = 10.
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2.2.3 DRBEM solution of unsteady MHD free convection in a square cavity

The problem in the previous section is concerned once again.The differences are
time derivative of the temperature and internal heat generation parameter in the energy
equation, and the boundary conditions of temperature. The problem is configured as
in Fig. 2.19.

x

y

Th Tc

∂T/∂y = 0

∂T/∂y = 0

B
ϕ

v

u
g

⋆q′′′0

Figure 2.19: Problem 2.2.3: Square porous enclosure.

The non-dimensional governing equations are written as

∇2ψ = −Ra∂T
∂x
−Ha2

(
∂2ψ

∂y2
sin2 ϕ+

∂2ψ

∂x∂y
sin(2ϕ) +

∂2ψ

∂x2
cos2 ϕ

)
(2.66a)

∇2T =
∂T

∂t
+
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
−Q (2.66b)

with the initial and boundary conditions

ψ = T = 0, at t = 0

ψ = 0, T = 1/2, atx = 0

ψ = 0, T = −1/2, atx = 1 (2.67)

ψ = 0,
∂T

∂y
= 0, aty = 0 andy = 1.

Ra = gκβ(Th − Tc)L/(αeν) is the Rayleigh number for a porous medium,Ha =
σκB2

0/µ is the Hartmann number for the porous medium,Q = RaI/Ra with RaI =
q
′′′

0 L
2/(k(Th − Tc)) (internal Rayleigh number) is the heat generation parameter, Th

andTc denote hot right and cold left walls,k is the thermal conductivity.

Employing the Backward-Euler finite difference scheme for the time derivative, the
system of equations in matrix-vector form resulting with DRBEM application are given
as

(H+ SR)ψm+1 −Gψm+1
q = −RaS

∂F

∂x
F−1Tm (2.68a)

(H− S̃M− S̃

∆t
)Tm+1 −GTm+1

q = − S̃

∆t
Tm − S̃Q (2.68b)
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wherem refers the time level, and the matrices are

S =
(
HÛ−GQ̂

)
F−1, S̃ =

(
H

˜̂
U−G

˜̂
Q
)
F̃−1 (2.69)

R = Ha2
(
sin2ϕ

∂2F

∂y2
F−1 + sin(2ϕ)

∂2F

∂x∂y
F−1 + cos2ϕ

∂2F

∂x2
F−1

)
(2.70)

M =
∂F̃

∂y
F̃−1[ψ]d

∂F̃

∂x
F̃−1 − ∂F̃

∂x
F̃−1[ψ]d

∂F̃

∂y
F̃−1, (2.71)

where the diagonal matrix[ψ]d are constructed by the vectorψm+1 at each iteration.
In this way, time-integration scheme may be considered as a semi-implicit iterative
procedure. The reduced form of both of these equations in theform of Cx = d is
solved by Gaussian elimination with partial pivoting. Stopping criteria in the iteration
is the same as before.

Table2.3reports average Nusselt number (computed at the left hot wall by−
∫ 1

0
(∂T/∂x)|x=0 dy

using the composite Simpson’s3/8 rule (AppendixB)) values at steady-state for a fixed
Ra = 103 with Ha = 1, 10, respectively. The time iteration occurs with∆t = 0.01.
These results are in good agreement with the results in [132]. 168 boundary element,
1681 interior points are used to obtain the results forHa = 1 with a relaxation param-
eterγ = 0.5, andf = f̃ = 1 + r + r2. On the other hand, the results forHa = 10 are
obtained by 192 boundary elements and 529 interior points without using a relaxation
parameter, andf = 1 + r3, f̃ = 1 + r. It can be deduced that the number of bound-
ary elements and interior points affect the results. Furthermore, the sharp decrease in
average Nusselt number with the increase in Hartmann numberpoints to the inhibitive
effect of magnetic field on heat transfer.

Figure2.20describes the variation ofHa at a fixed Rayleigh numberRa = 103 and
two different inclination angle of magnetic fieldϕ. For a small value ofHa = 1, the
behavior of the fluid does not change much with the inclination angleϕ. Side layers
are formed for isotherms, and streamlines, and a core regionfor streamlines at the
center of the cavity is observed. However, for increasing values ofHa, fluid flows in
the direction of applied magnetic field, and strong boundarylayer formation occurs at
vertical walls withϕ = π/2.

When the Rayleigh number is increased with a fixedHa = 25 (Figure 2.21), the
isotherms which are nearly perpendicular to horizontal walls become nearly parallel
to them. This demonstrates the increase in convection dominated effect. Tempera-
ture gradient is pronounced at the left bottom and right up corners. Boundary layer
formation is also observed on vertical walls for highRa value.

As the heat generation parameterQ is increased or decreased (internal Rayleigh num-
ber varies), the primary cell in streamlines reflected with respect to the direction of the
inclination angle asQ = −1 without changing the velocity of the fluid.
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Table 2.3: Problem 2.2.3: The average Nusselt numbersNu for Ra = 1000 with
Q = 1.

Ha = 1 Ha = 10

ϕ Nu [132] Nu [132]
0 9.1782 9.1489 0.7637 0.7952
π/6 9.8091 9.7976 0.8551 0.8796
π/4 10.4477 10.4437 0.9340 0.9620
π/2 11.8925 11.9196 0.7873 0.8065

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)Ha = 1, ϕ = π/2
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(b)Ha = 10, ϕ = π/2

Figure 2.20: Problem 2.2.3: Isotherms and streamlines at steady-state with different
Ha values fixingRa = 103.
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Figure 2.21: Problem 2.2.3: Steady-state isotherms and streamlines w.r.t varyingRa
fixing Ha = 25, ϕ = π/6, ∆t = 0.01
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(a)Q = 10, ψmin = −2.2964, ψmax = 0.6192
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Figure 2.22: Problem 2.2.3: Heat generation and absorptionfixing Ha = 10, Ra =
103, ϕ = π/6, ∆t = 0.1.
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2.2.4 Unsteady mixed convection in a porous lid-driven enclosure under a mag-
netic field

The two-dimensional, unsteady, laminar, incompressible mixed convection flow in a
porous lid-driven cavity is considered under the effect of an horizontally applied mag-
netic field.

The governing non-dimensional equations (settingǫp = 1) in terms of stream function
ψ-temperatureT -vorticity w are presented as

∇2ψ = −w (2.72a)

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Gr

Re2
∂T

∂x
+

w

DaRe
+
Ha2

Re

∂v

∂x
(2.72b)

1

PrRe
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
− RaI
RaE

1

PrRe
(2.72c)

where the dimensionless parametersDa, Gr, Re, Ha, Pr, RaI , RaE are Darcy,
Grashof, Reynolds, Hartmann, Prandtl, internal Rayleigh and external Rayleigh num-
bers are

Re =
UL

ν
, Gr =

gβ∆TL3

ν2
, Da =

κ

L2
, Ha2 =

B2
0κσ

µ

Pr =
ν

αe
, RaI =

gβq
′′′

L5

ναeke
, RaE =

gβ∆TL3

ναe
= Gr.Pr (2.73)

The problem is configured in Figure2.23where the left and right walls are adiabatic,
top wall is the heated wall while the bottom is the cold wall,u = v = ψ are all zero on
all boundaries except the moving top wall with velocityu = 1, B is the horizontally
applied magnetic field with magnitudeB0 andg is the gravitational acceleration vector.
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Figure 2.23: Problem 2.2.4 configuration.

By means of coordinate matrixF and the third order backward difference time integra-
tion scheme, Houbolt method (Eq.(2.49)), the iteration with respect to time is carried
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between the system of equations forψ,w andT as

Hψm+1 −Gψm+1
q = −Swm (2.74a)

um+1 =
∂F

∂y
F−1ψm+1, vm+1 = −∂F

∂x
F−1ψm+1 (2.74b)

Hwm+1 −Gwm+1
q = ReS

[
∂w

∂t

∣∣∣∣
m+1

+Mwm+1

]
(2.74c)

− Gr

Re
S
∂F

∂x
F−1Tm+1 + S

wm+1

Da
+Ha2S

∂F

∂x
F−1vm+1

HTm+1 −GTm+1
q = PrReS

[
∂T

∂t

∣∣∣∣
m+1

+MTm+1

]
− S

RaI
RaE

(2.74d)

whereS = (HÛ−GQ̂)F−1, M =

(
[u]d

∂F

∂x
F−1 + [v]d

∂F

∂y
F−1

)
,m shows the time

iteration, the diagonal matrices[u]d and [v]d of size(N + K) × (N + K) are con-
structed by the vectorsum+1, vm+1, respectively.RaI/RaE is a constant vector of size
N +K.

Once the time derivatives are replaced with Eq.(2.49) and the known and unknown
information are shuffled, the system of equations (2.74a)-(2.74d) is solved by direct
Gaussian elimination with partial pivoting.

The iterative solution procedure is as follows

1. w0 andT 0 are taken as zero everywhere except on the boundary.

2. ψm+1 is solved in (2.74a) using the values ofw from mth iteration. Then, the
velocitiesum+1, vm+1 are computed usingψm+1 in Eq.(2.74b).

3. Boundary conditions foru, v are inserted in equations (2.74b).

4. The energy equation is solved forTm+1 from Eq.(2.74d) with the temperature
boundary conditions.

5. Vorticity boundary conditions are employed by using the definition of vorticity
and the coordinate matrixF

w =
∂v

∂x
− ∂u

∂y
=
∂F

∂x
F−1vm+1 − ∂F

∂y
F−1um+1. (2.75)

6. Vorticity wm+1 is obtained from Eq.(2.74c).

7. Iterations continues until the criterion [79]

‖ψm+1 − ψm‖∞
‖ψm+1‖∞

+
‖Tm+1 − Tm‖∞
‖Tm+1‖∞

+
‖wm+1 − wm‖∞
‖wm+1‖∞

< ǫ (2.76)

is satisfied, whereǫ = 1e− 05.
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8. Average Nusselt number on hot top wall is computed as

Nu =

∫ 1

0

∂T

∂y

∣∣∣∣
y=1

dx (2.77)

by using the composite Simpson’s rule.

The results are obtained by usingf = 1+ r radial basis functions in coordinate matrix
F. Further,8−point Gaussian quadrature is used for the integrals inH andG matrices.
In general,120 linear boundary elements and841 interior points, andPr = 0.71 are
taken in all computations. Once the vorticity is computed, for large values ofHa, a
relaxation parameter0 < γ < 1 is utilized as

wm+1 ← γwm+1 + (1− γ)wm. (2.78)

AsDa decreases (Figure2.24), fluid flows slowly due to the decrease in permeability
[80], and the effect of moving lid disappears. Isotherms tend tobecome parallel to the
horizontal walls which indicates the conductive heat transfer. Vorticity is concentrated
to the top wall being stagnant at the center.

With the increase inHa (Figure2.25), heat transfer is suppressed on isotherms vanish-
ing the forced convection by moving lid. The cells in the upper mid part of the cavity
in both streamlines and vorticity become prominent while the lower mid part becomes
stagnant in the cavity. The fluid velocity through the bottommid part nearly becomes
zero as can be seen from the midv velocity profiles (Figure2.29), and the fluid mo-
tion is enforced through the top by increasing the intensityof the horizontally applied
magnetic field as is seen from the midu velocity.

As Re increases (Figure2.26), a second counter-rotating cell emerges in streamlines
while the effect of the moving lid increases on the top cell forming strong boundary
layer from left to right on the top wall. Isotherms circulateinside the cavity forming
the strong temperature gradient through the bottom wall. Similarly, the increase in
buoyancy parameter, Richardson numberRi = Gr/Re2 (Figure 2.27), divides the
streamlines into secondary and tertiary counter clockwisecells while the isotherms
show the conduction dominated behavior, and vorticity forms new cell resembling the
streamlines.

The increase in the internal Rayleigh number only alters theisotherms as can be seen
from Figure2.28. The boundary layer formation on the top and bottom walls is pro-
nounced pointing to the increase in temperature variation due to the increase in internal
heat.

When the average Nusselt numberNu is taken into consideration (Figures2.30a-
2.30b) on the top lid, one can see thatNu is almost the same for all values ofDa
whenRi > 1 (Re ≤ 10) fixing Gr = 102, RaI = 0, Ha = 0. On the other hand,
Nu increases asDa increases forRi ≤ 1 due to the increase in inertial forces as
Re (Re > 10) increases (Figure2.30a) which demonstrates the increase in convective
heat transfer. WhenGr = 102, Re = 102, RaI = 0 are fixed,Nu decreases and
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becomes almost the same for allDa values asHa increases (Figure2.30b). As Ha
decreases, the increase inNu is well observed, and the values ofNu is larger for large
values ofDa which points to the increase in convection.
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Figure 2.24: Problem 2.2.4: Darcy variation withGr = Re = 100, Ha = RaI =
0, ∆t = 0.25.
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Figure 2.25: Problem 2.2.4: Hartmann variation withDa = 0.1, Gr = Re =
100, RaI = 0, ∆t = 0.5(Ha = 10);∆t = 0.1(γ = 0.1, Ha = 100).
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Figure 2.26: Problem 2.2.4: Reynolds variation withDa = 0.1, Gr = 104, Ha =
RaI = 0, ∆t = 0.5(Re = 50);∆t = 0.1(Re = 500).
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Figure 2.27: Problem 2.2.4: Grashof variation withDa = 0.1, Re = 100, Ha =
RaI = 0, ∆t = 0.5(Gr = 103);∆t = 0.1(Gr = 105).
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Figure 2.28: Problem 2.2.4: Internal Rayleigh number variation with Da =
0.01, Gr = 100, Re = 1000, Ha = 0, ∆t = 0.5
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Figure 2.29: Problem 2.2.4: Mid-velocity profiles asHa varies fixingDa = 0.1, Gr =
Re = 100, RaI = 0.
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Figure 2.30: Problem 2.2.4: Average Nusselt number.
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In this chapter, the natural or mixed convection flow problems in porous enclosures
have been solved utilizing the dual reciprocity boundary element method. DRBEM
provides one to obtain the expected behavior of the solutionin a cheap computational
expense due to the boundary-only nature of the method. The numerical modeling have
been done in terms of stream function, temperature and vorticity. The time derivatives
in unsteady problems are handled by implicit finite difference methods while the spatial
discretization is achieved by DRBEM.

The heat transfer under the non-magnetic or magnetic effectin porous enclosures have
been investigated. In both cases, the decrease in permeability of porous medium (the
decrease inDa number) suppresses the heat transfer as well as slowing the fluid move-
ment. Also, the same behavior is observed in the strength of an externally applied
magnetic field due to the retarding effect of Lorentz force. The vertical direction of the
magnetic field has an accelerating effect on the fluid motion in the square cavity case.

The other physical dimensionless parameters show the main characteristics of the natu-
ral or mixed convection flow. Buoyancy has a stabilizing effect on the fluid flow. When
the Richardson number (Ri = Gr/Re2) is increased, the buoyancy effect outweigh the
effect of the moving lids if they exist. In that case, the buoyancy-driven flow is referred
to as natural convection flow. Isotherms are clustered through the heated corner and
cross cold corner almost becoming parallel to the other sides of the enclosure in a two-
sided lid-driven cavity case. The thin thermal boundary layers along the side walls are
developed with the convective heat transfer. The higher porosity provides the higher
heat transfer and fluid velocity ifRi≫ 1. In the top lid movement only, circulation in
the isotherms restricted to the sliding lid, and the conductive heat transfer in the mid-
dle and bottom parts of the cavity is observed. In the case ofRi ≈ 1, the two driving
mechanisms, either lid or buoyancy, balance each other forming the symmetric eddies
in counter-clockwise direction. For small values of Prandtl number, the conductive
heat transfer is pronounced while the convection increaseswith the increase in Prandtl
number. A strong circulation is observed in isotherms as Prandtl number increases,
and the core of the cavity becomes stagnant, and the significance of buoyancy is seen
through the side walls.

65



66



CHAPTER 3

DRBEM APPLICATIONS TO FULL MHD EQUATIONS

In this chapter, MHD flow with or without heat transfer is considered in enclosures.
These are the lid-driven porous or non-porous cavity, the lid-driven cavity containing a
square blockage at the center, and the staggered double lid-driven cavity. Also, MHD
flow in a channel containing a backward facing step, and MHD flow over a square
cylinder placed in a channel are considered and numerical solutions are presented for
several problem parameters. In all these problems, inducedmagnetic field is taken into
account, and it contributes to the equations as magnetic potential, current density or
induced magnetic field components.

The interaction between the conducting fluid and an applied magnetic field causes an
electromotive force resulting with induced currents of order σ(u × B). According to
Ampère’s Law, an induced magnetic field is generated by induced currents. This in-
duced magnetic fieldB and the induced current densityJ develop the Lorentz force
B × J. In most of the studies, induced magnetic field is neglected due to the small
magnetic Reynolds number. In consideration of the induced magnetic field as an un-
known, the governing equations consisting of the combination of Navier-Stokes and
Maxwell’s equations will also contain the induction equations, and so they are referred
as full MHD equations. These are already given in Chapter1 (1.1.5) in detail. In di-
mensional form, the full MHD equations in the presence of temperature difference for
an incompressible, viscous fluid are expressed as

∂u

∂x
+
∂v

∂y
= 0 (3.1a)

ν∇2u =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
+

By

ρµm

(
∂By

∂x
− ∂Bx

∂y

)
(3.1b)

ν∇2v =
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
− Bx

ρµm

(
∂By

∂x
− ∂Bx

∂y

)
− gβ(T − Tc) (3.1c)

1

σµm
∇2Bx =

∂Bx

∂t
+ u

∂Bx

∂x
+ v

∂Bx

∂y
− Bx

∂u

∂x
− By

∂u

∂y
(3.1d)

1

σµm
∇2By =

∂By

∂t
+ u

∂By

∂x
+ v

∂By

∂y
− Bx

∂v

∂x
− By

∂v

∂y
(3.1e)

α∇2T =
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
. (3.1f)
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This chapter presents the DRBEM solution of the different forms of the non-dimensional
full MHD equations with or without heat transfer, and the numerical simulation of
these equations in different geometries. Nondimensionalization of these full MHD
equations are given in AppendixA. Once the dimensionless governing equations are
derived, DRBEM is applied to all equations leaving only Laplacian terms on the
left hand side, and treating all the other terms as inhomogeneity (b as mentioned in
Eq.(2.14) which is approximated by radial basis functions). In the DRBEM formula-
tion of the full MHD equations given in the following sections, the same BEM matrices
H,G, Û, Q̂ constructed as in Eq.(2.27), and the coordinate matrixF as in Eq.(2.14)
are utilized.

Further, at all application problems in this chapter, the two-dimensional, unsteady,
laminar flow of an incompressible, viscous, electrically conducting fluid is considered
under the effect of an externally applied magnetic field neglecting the Joule heating,
viscous dissipation and Hall effects. Also, induced magnetic field equations are con-
sidered due to the large values of magnetic Reynolds number (Rem ≥ 1).

3.1 MHD flow and heat transfer with magnetic potential in a porous medium
(ψ − A− T − w)

This problem is an extension of the problem given in section2.2.4in the sense that in-
duced magnetic field is present in the fluid. Thus, the relatedequations for induced
magnetic field are included, and are combined to give magnetic potentialA using
the definitionsBx = ∂A/∂y, By = −∂A/∂x in either one of the induction equa-
tions (1.36c)-(1.36d). Magnetic potentialA is considered as unknown in the governing
equations.

The two-dimensional, laminar flow in a unit lid-driven square cavity filled with an
incompressible, electrically conducting fluid-saturatedporous medium is considered.
The fluid is permeated by a uniform externally applied (in thevertical direction) mag-
netic field of strengthB0 (Figure3.1). The physical properties of the fluid, which is
in local thermal equilibrium with the porous medium, are constant except the density
variation in the buoyant term of the momentum equation according to Boussinessq ap-
proximation. The physical problem is referred as Brinkman-extended Darcy model due
to the absence of quadratic drag terms (Forchheimer terms) in the momentum equa-
tion. The porous medium is assumed to be hydrodynamically, thermally, electrically
isotropic (neutral) and homogeneous.

The non-dimensional governing equations in terms of streamfunctionψ-vorticity w-
temperatureT -magnetic potentialA are given in non-dimensional form as (Chapter1,
section1.1.5, AppendixA)

∇2ψ = −w (3.2a)
1

PrRe
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
(3.2b)
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Figure 3.1: Problem 3.1 configuration.
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∇2A =

∂A

∂t
+ u

∂A

∂x
+ v

∂A

∂y
(3.2c)

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Gr

Re2
∂T

∂x
+

w

DaRe
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− Ha2

Re Rem

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]

in which the Reynolds numberRe, Prandtl numberPr, Grashof numberGr = Ra/Pr,
Hartmann numberHa, and magnetic Reynolds numberRem are

Re =
UL

ν
, Gr =

gβ∆TL3

ν2
, Ra =

gβ∆TL3

αeν
, Da =

κ

L2
,

P r =
ν

αe
, Ha =

√
B2

0κσ

µ
, Rem = µmσUL,

and the termw/(DaRe) in Eq.(3.2d) exists due to presence of the porous medium.
In Eq.(3.2), the continuity condition of velocity field and the divergence-free con-
dition of induced magnetic field are satisfied with the relationsu = ∂ψ/∂y, v =
−∂ψ/∂x, Bx = ∂A/∂y, By = −∂A/∂x, respectively.

The third order backward difference formula (Houbolt time integration scheme given
in Eq.(2.49)) for the time derivatives is utilized. Then, the iterationwith respect to time
is settled between the DRBEM formulation of the governing Eqs.(3.2) in the form of

Hψm+1 −Gψm+1
q = −Swm (3.3a)

um+1 = Dyψ
m+1, vm+1 = −Dxψ

m+1 (3.3b)

HTm+1 −GTm+1
q = PrReS

[
∂T

∂t

∣∣∣∣
m+1

+MTm+1

]
(3.3c)

HAm+1 −GAm+1
q = RemS

[
∂A

∂t

∣∣∣∣
m+1

+MAm+1

]
(3.3d)
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Bm+1
x = DyA

m+1, Bm+1
y = −DxA

m+1 (3.3e)

Hwm+1 −Gwm+1
q = ReS

[
∂w

∂t

∣∣∣∣
m+1

+Mwm+1

]
− Gr

Re
SDxT

m+1 +
1

Da
Swm+1

− Ha2

Rem
S
(
[Bx]dDxz

m+1 + [By]dDyz
m+1

)
, (3.3f)

where

S = (HÛ−GQ̂)F−1, Dx =
∂F

∂x
F−1, Dy =

∂F

∂y
F−1,

M = ([u]dDx + [v]dDy) , zm+1 = DxB
m+1
y −DyB

m+1
x .

Second order derivatives appearing in the vorticity equation (3.3f) are calculated using
the products ofDx andDy with the coordinate matrixF as explained in Eq.(2.47). Di-
agonal matrices[u]d, [v]d, [Bx]d, [By]d, formed by the vectorsum+1, vm+1, Bm+1

x , Bm+1
y

diagonally, are all of size(N + K) × (N + K) whereN is the number of boundary
elements andK is the number of interior points, andm shows the iteration step with
respect to time.

After the replacement of time derivatives and shuffling for known and unknown bound-
ary information, the system of equations (3.3a), (3.3c), (3.3d) and (3.3f) is solved by
direct Gaussian elimination with partial pivoting.

The solution procedure advances in the following steps. Initially (at t = 0), T,A
andw are all taken as zero (except on the boundary). First two timeiterations are
carried with Backward-Euler scheme. Then the iteration continues with Houbolt time
integration scheme.ψm+1 is solved in (3.3a) using the values ofw frommth iteration.
Then, the velocitiesum+1, vm+1 are computed usingψm+1 from Eq.(3.3b) inserting
the boundary conditions foru andv. The energy equation is solved forTm+1 from
Eq.(3.3c). The boundary conditions for magnetic potentialA are derived from the
definitions ofBx andBy in terms ofA such thatA = −x + C ′ is found if the applied
magnetic field is in +y-direction, i.e.Bx = 0, By = 1. The constantC ′ is taken as
zero similar to the idea in the boundary conditions of streamfunctionψ. The magnetic
potential equation, Eq.(3.3d), is solved forAm+1. Induced magnetic field components
Bm+1
x , Bm+1

y are computed usingAm+1 from Eq.(3.3e) insertingB = (0, B0, 0) =
(0, 1, 0) on the boundary.

Vorticity boundary conditions are found by using the definition of vorticity with the
help of coordinate matrixF

w =
∂v

∂x
− ∂u

∂y
= Dxv

m+1 −Dyu
m+1. (3.4)

Then, vorticitywm+1 is obtained from Eq.(3.3f).

Iterations continues until the criterion [79]

‖ψm+1 − ψm‖∞
‖ψm+1‖∞

+
‖Tm+1 − Tm‖∞
‖Tm+1‖∞

+
‖Am+1 − Am‖∞
‖Am+1‖∞

+
‖wm+1 − wm‖∞
‖wm+1‖∞

< ǫ (3.5)
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is satisfied withǫ = 1e− 05, and the solution is obtained at steady-state.

Once the whole system is solved, average Nusselt number on the heated top wall is
computed using Eq.(2.77). Drag Coefficient through the moving wall is also achieved
by [30]

cD = − 2

Re

∂u

∂y

∣∣∣∣
y=1

. (3.6)

As a validation case for the proposed numerical scheme basedon DRBEM, the average
Nusselt numbers are computed whenHa = 0, Da = ∞ are taken to reduce the
problem to the mixed convection flow in a lid-driven cavity [72]. It can be seen from
Table3.1that good agreement is obtained in spite of using small number of boundary
elements (at mostN = 96, K = 961) compared to the study [72] (in which at least
128× 128 mesh size is utilized).

Table 3.1: Problem 3.1: Comparison ofNu at the top wall,Pr = 0.71.

Gr = 102 Gr = 104

Re [72] Present [72] Present
100 1.94 1.94 1.34 1.33
400 3.84 3.84 3.62 3.61
1000 6.33 6.32 6.29 6.29

The numerical results are performed using quadratic (f = 1 + r + r2) radial basis
functions in forming coordinate matrixF. Further,16-point Gaussian quadrature is
used for evaluating the integrals inH andG matrices. In all the computations,Pr = 1
is fixed (corresponding to ionized gases [6]). The numbers of boundary elementsN
and arbitrarily taken interior pointsK are needed to be increased when the problem
parameters take large values, especially with high Hartmann number, due to the domi-
nance of reaction terms in the vorticity equation. This is verified in Table3.2 in terms
of average Nusselt number for increasing values of Hartmannnumber. As can be seen,
not much of a significant variation in the mean Nusselt numberon the hot top wall is
observed afterN = 120 up toHa = 100. Therefore, in general,120 linear boundary
elements and841 interior points are adopted in the computations. Only forHa = 100
andHa = 300,N = 160 andN = 176 are used in the computations, respectively.

Table 3.2: Problem 3.1: Grid analysis withDa=0.1, P r=1, Gr=Re=Rem=100.

Nu
N K Ha=25 Ha=50 Ha=100 Ha=300
80 361 1.7789 1.4001 1.1318 1.0164
120 841 1.8227 1.4709 1.2079 1.0261
160 1521 1.8177 1.4747 1.2292 1.0479
176 1849 1.8122 1.4702 1.2305 1.0540
192 2209 1.8062 1.4645 1.2297 1.0541

AsDa decreases (Figure3.2), fluid flows slowly due to the decrease in permeability of
porous medium. The effect of moving lid diminishes and the center of the streamlines
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clusters through the top wall. Isotherms become nearly perpendicular to the vertical
walls referring to the conductive heat transfer. Magnetic potential lines parallel to ver-
tical walls occur showing the increase in diffusive terms inmagnetic potential equation.
Vorticity forms strong boundary layers due to the dominanceof reaction term with the
decrease inDa.

For large values ofRem (Figure3.3), the expected variation is observed in magnetic
potential due to the increase in dominance of convection terms in magnetic potential
equation. Magnetic potential lines try to circulate through the center of the cavity
and obey the movement of the lid. For a further increase inRem (Rem = 100),
circulation enlarges and clusters near the left wall. Not much of a change is observed
in streamlines, isotherms, and vorticity.

Since the applied magnetic field is in+y−direction, boundary layer (Hartmann layers)
formation in the flow through the vertical walls as well as thehorizontal walls (side
layers) are well observed with the increase inHa in Figure3.4. Even secondary flows
appear close to the vertical walls with the increasing intensity of external magnetic
field as approached to 100 and then 300. Isotherms become parallel to horizontal
walls. This indicates that the increase in the intensity of the applied magnetic field has
an inhibitive effect on the heat transfer. Vorticity is alsoconcentrated close to the walls
asHa increases (action takes place near the walls). The intensified magnetic field
makes the magnetic potential lines perpendicular to the topand bottom walls which
points to the decrease in the effect of the induced magnetic field. That is, external
magnetic field in+y-direction is more powerful forcing magnetic potential inside the
cavity to be in its direction. Instead of decreasing time increment∆t for large values
of Ha, once the vorticity transport equation (which containsHa2 in reaction terms)
is solved, a relaxation parameter0 < γ < 1 is used for accelerating convergence of
vorticity aswm+1 ← γwm+1 + (1− γ)wm.

When the direction of the external magnetic field is changed to thex-direction, the
same effect is observed in terms of Hartmann and side layers.That is, firstly the
external magnetic field forces to separate the flow, and then the lid effect diminishes
leaving the center region almost stagnant. Boundary layersnow obey the rule that
Hartmann layers are formed on the horizontal sides of the cavity, and side layers are on
the top and bottom walls as can be seen from Figure3.5. If the external magnetic field
is inclined with an angle from thex-axis, the behavior of the flow takes the direction of
the magnetic field forming the loops and the boundary layers.Magnetic potential lines
inside the cavity also show the direction of the externally applied inclined magnetic
field.

With the increase of Reynolds number value (Figure3.6), clockwise rotating (primary)
cell adjacent to the upper moving wall becomes larger while the counter-rotating cell
(secondary cell) shrunks into two small bottom corner eddies. This is due to the buoy-
ancy parameterRi = Gr/Re2 decrease which results in a decrease in the intensity of
the inertia term. Both isotherms and vorticity circulate inthe cavity asRe increases
due to the dominance of the convection terms. Similarly, theincrease inGr causes
three cells to emerge in the flow (ψ andw), and the center of the primary cell moves
in the direction of moving lid remarkably as can be seen from Figure3.7. Conduction
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dominated effect reveals in isotherms due to the increase inbuoyancy effect. On the
moving lid of the cavity, perturbation is pronounced in magnetic potential lines.

As expected, the decrease in the heat transfer with the increase inHa number may
also be visualized by average Nusselt number variation on the hot top wall as shown in
Figure3.8a. The decrease inNu is seen asHa increases due to the retarding effect of
Lorentz force. For large values ofDa, magnetic Reynolds number enhances convective
heat transfer as can be seen from the increase inNu in Figure3.8b. However, heat
transfer turns into the conductive heat transfer asDa decreases even thoughRem
increases. Overall, not much of an effect ofRem on the heat transfer is revealed.

In Figure3.9a, the increase in drag coefficient through the moving wall with the in-
crease inHa points to the increase in shear stress (−µ∂u/∂y). The variation inRem
has no effect on drag coefficient as can be seen from Figure3.9b.
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Figure 3.2: Problem 3.1:Gr = Re = Rem = 100, P r = 1, Ha = 5, ∆t = 0.25.
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Figure 3.3: Problem 3.1:Da = 0.1, P r = 1, Gr = Re = 100, Ha = 5, ∆t = 0.25.
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Figure 3.4: Problem 3.1:Da = 0.1, P r = 1, Gr = Re = Rem = 100; ∆t =
0.25(Ha = 5, 25);∆t = 0.2, γ = 0.5(Ha = 50); ∆t = 0.1, γ = 0.1(Ha =
100);∆t = 0.01, γ = 0.1(Ha = 300).
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Figure 3.5: Problem 3.1:x-direction external magnetic field withDa = 0.1, P r =
1, Gr = Re = Rem = 100; ∆t = 0.25(Ha = 5, 25);∆t = 0.2, γ = 0.5(Ha =
50); ∆t = 0.1, γ = 0.1(Ha = 100).
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Figure 3.6: Problem 3.1:Da = 0.1, P r = 1, Gr = 104, Ha = 5, Rem = 100,∆t =
0.25.
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Figure 3.7: Problem 3.1:Da = 0.1, P r = 1, Re = Rem = 100, Ha = 5; ∆t =
0.25(Gr = 103, 104); ∆t = 0.1(Gr = 105); ∆t = 0.1, γ = 0.1(Gr = 106).
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Figure 3.8: Problem 3.1: Average Nusselt number variation with Gr = Re =
100, P r = 1.
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3.2 MHD flow and heat transfer with magnetic induction (ψ−T −Bx−By−w)

In this problem, induced magnetic field is computed in its original componentsBx and
By instead of magnetic potentialA, and the medium is considered as non-porous.

The governing non-dimensional equations in terms of streamfunctionψ, temperature
T , induced magnetic field componentsBx, By, and vorticityw are

∇2ψ = −w (3.7a)
1

PrRe
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
(3.7b)

1

Rem
∇2Bx =

∂Bx

∂t
+ u

∂Bx

∂x
+ v

∂Bx

∂y
− Bx

∂u

∂x
− By

∂u

∂y
(3.7c)

1

Rem
∇2By =

∂By

∂t
+ u

∂By

∂x
+ v

∂By

∂y
− Bx

∂v

∂x
− By

∂v

∂y
(3.7d)

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Ra

PrRe2
∂T

∂x
(3.7e)

− Ha2

ReRem

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]
,

where the dimensionless parameters are ReynoldsRe, PrandtlPr, HartmannHa, mag-
netic ReynoldsRem, and RayleighRa numbers.

Being used the space derivatives in vectorb by the coordinate matrixF, and discretized
the time derivatives with Backward-Euler finite differenceformula, the iteration with
respect to time forψ, T, Bx, By, andw is given as

Hψm+1 −Gψm+1
q = −Swm (3.8a)

um+1 = Dyψ
m+1, vm+1 = −Dxψ

m+1 (3.8b)(
H− PrRe

∆t
S− PrReSM

)
Tm+1 −GTm+1

q = −PrRe
∆t

STm (3.8c)
(
H− Rem

∆t
S− RemSM+RemSDx[u]

m+1
d

)
Bm+1
x −GBm+1

xq = (3.8d)

− Rem

∆t
SBm

x −RemS[By]
m
d
Dyu

m+1

(
H− Rem

∆t
S− RemSM+RemSDy[v]

m+1
d

)
Bm+1
y −GBm+1

yq = (3.8e)

− Rem

∆t
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y −RemS[Bx]
m
d Dxv
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(
H− Re
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S−ReSM

)
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q = −Re
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− Ha2

Rem
S
(
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m+1
d Dx{ζ}+ [By]
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)
− Ra

PrRe
SDxT
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where

S =
(
HÛ−GQ̂

)
F−1, Dx =

∂F

∂x
F−1, Dy =

∂F

∂y
F−1

M = [u]m+1
d Dx + [v]m+1

d Dy, {ζ} = DxB
m+1
y −DyB

m+1
x ,

[Bx]
m+1
d , [By]

m+1
d

, [u]m+1
d , [v]m+1

d enter into the system as diagonal matrices of size
(N + K) × (N + K), andm shows the iteration step. The arranged form of the
equations (with the known and unknown information on the boundary) is solved by
Gaussian elimination with partial pivoting.

Initially, w0, B0
x, B

0
y , T

0 are taken as zero everywhere (except on the boundary). Once
the stream function is computed from Eq.(3.8a), velocity components are determined
by using Eq.(3.8b) inserting the boundary conditions. Then, temperature equation
(3.8c) and induction equations (3.8d)-(3.8e) are solved with the insertion of their bound-
ary conditions. Vorticity boundary conditions are computed by using Eq.(3.4). Then,
the vorticity transport equation (3.8f) is solved by using these vorticity boundary con-
ditions. The solution process continues in this way until the criterion

5∑

k=1

∥∥φm+1
k − φmk

∥∥
∞∥∥φm+1

k

∥∥
∞

< ǫ = 1e− 4 (3.9)

is satisfied whereφk stands forψ, T, Bx, By andw values at the boundary and interior
points, respectively.

Once the vorticity equation Eq.(3.8f) is solved, in order to accelerate the convergence
of vorticity to steady-state which is rather difficult to converge than the other un-
knowns, a relaxation parameter0 < γ < 1 is used aswm+1 ← γwm+1 + (1 − γ)wm
for large values of parameters in reaction terms.

The depicted contours from left to right are streamlines, isotherms, vorticity lines, and
induced magnetic field vector(Bx, By) at steady-state.

3.2.1 Lid-driven cavity MHD flow

The electrically conducting fluid is moving down the channelwith a pressure gradient
and an imposed magnetic field is in the+y-direction which is also perpendicular to the
axis of the channel (z-axis). The flow is fully developed, thus the cross-section of the
channel is taken as the domain of the problem (lid-driven cavity).

The two-dimensional, unsteady, laminar, incompressible MHD flow and heat transfer
in lid-driven cavity is considered. The problem configuration with boundary conditions
is depicted as in Figure3.10.

The computed results are obtained using the radial basis function f = 1 + r, and16-
point Gaussian quadrature for the integrals in the BEM matricesH andG. In general,
N = 120 boundary elements,K = 840 interior points are used.
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Figure 3.10: Problem 3.2.1 configuration.

Table 3.3: Problem 3.2.1: CPU times andNu on the heated wall withRe = 1, P r =
0.71, Gr = 104, ∆t = 0.01.

Present Study [34]
15× 15 25× 25 15× 15

Ha Nu CPU Nu CPU Nu CPU
0 2.17 2.59 2.08 37.92 2.02 50.60
10 1.82 3.15 1.74 95.43 1.70 34.03
25 1.20 4.52 1.18 61.51 1.17 42.59
50 1.01 4.76 1.01 59.55 0.97 25.53

The presented numerical procedure is validated neglectingthe induced magnetic field
as in the case of [34] (in which the top and bottom walls are adiabatic while the left wall
is hot and the right wall is cold, and no-slip boundary conditions are imposed on the
walls). The average Nusselt numbers (Nu = −

∫ 1

0
(∂T/∂x)dy computed by composite

Simpson’s rule (AppendixB)) are in good agreement with the ones computed in [34].
The computational cost (CPU time in seconds) of the present study is naturally less
than the one in the domain discretization methods due to the use of boundary elements
only as can be seen in Table3.3(e.g.15× 15 grid, 56 boundary elements only).

AsRe increases (Figure3.11), the center of the streamlines in the direction of moving
lid shifts through the center of the cavity forming new secondary eddies at the bottom
corners. The dominance of convection is observed in isotherms forming the strong
temperature gradients clustered at the top left and bottom right corners. Vorticity is
transported inside the cavity forming boundary layers on the top moving lid and right
wall close to the upper corner. This shows the concentrationof flow through upper
right corner. Induced magnetic field is not affected much with the increase inRe.

With an increase inHa (Figure3.12), fluid flows slowly due to the retarding effect
of Lorentz force. Two new cells on the right and left parts of cavity are observed in
streamlines. Heat is transferred by conduction as can be seen from isotherms. Induced
magnetic field lines become perpendicular to horizontal walls due to the decrease in
the dominance of convection terms in the induction equations. Also, this points to the
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dominance of external magnetic field which is in the +y-direction. Vorticity concen-
trates completely near on the wall with the moving lid being stagnant at the center as
the intensity of magnetic field increases (i.e.Ha increases).

An increase in magnetic Reynolds numberRem has a great influence on the induced
magnetic field only. It shows circulation at the center of thecavity due to the domi-
nance of convection terms in the induction equations, and the effect of external mag-
netic field diminishes (Figure3.13).

AsRa increases (Figure3.14), the isotherms indicate the conduction dominated effect
due to the dominance of the buoyancy force. Small counter-clockwise eddy in stream-
lines withRa = 103 occupies the mid-part of the cavity withRa = 104, and one more
clockwise cell emerges through the bottom part of the cavityasRa reaches to the value
Ra = 105.
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Figure 3.11: Problem 3.2.1:Rem = 100, Ra = Ha = 10, P r = 0.1, ∆t = 0.25.
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Figure 3.12: Problem 3.2.1:Rem = 40, Re = 400, Ra = 1000, P r = 0.1, ∆t =
0.5 (Ha = 5), ∆t = 0.2 (Ha = 50), ∆t = 0.1 with γ = 0.1 (Ha = 100).
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Figure 3.13: Problem 3.2.1:Re = 400, Ha = 10, Ra = 1000, P r = 0.1, ∆t = 0.25.
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Figure 3.14: Problem 3.2.1:Re = 400, Rem = Ha = 10, P r = 0.1, ∆t = 0.25.

3.2.2 MHD flow in a lid-driven cavity with a centered square blockage

The MHD flow problem has taken much interest due to the heat transfer alterations in
the presence of obstructions in enclosures. The domain of this problem is described in
Figure3.15. The stream function is set to zero on outer boundaries and itis unknown
but a constant on the inner square boundary [87]. This constant value of boundary
streamline on the square cylinder is determined considering the streamline values when
the square blockage is absent. Outer walls are coldTc = 0 while the wall around the
square obstacle is heatedTs = 1. Heat transfer inside the blockage is neglected due to
the small value of thermal diffusivity of the solid and its isothermal structure.

The blockage is assumed to be non-conducting producing negligible induced magnetic
field (Rem is assumed to be very small in the blockage). On both the cavity and
solid blockage wallsx-component of magnetic field is taken as zero,y-component as
one since external magnetic field is applied in they-direction. The vorticity boundary
conditions are not known. They are going to be obtained during the solution procedure
by using the definition of vorticity and DRBEM coordinate matrix F.

The numerical results are obtained with the same process as explained in the previous
section. In the computations,Ls = 0.25 is fixed usingN = 208 linear boundary
elements withK = 880 interior points.ψ = −0.05 is taken on the blockage walls by
looking at the averageψ value at the center of the cavity in the absence of blockage
and heat transfer.
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Figure 3.15: Problem 3.2.2: Configuration of square obstacle in a square cavity.

Figure3.16shows that the results using DRBEM in solving the mixed convection flow
in a lid-driven cavity with a square blockage, are consistent with the results given in
[71] (in terms ofRi = Ra/(PrRe2)).

In this problem, forRa = 103, the center of the primary cell is seen through the moving
lid and a secondary flow is observed at the left bottom corner of the cavity. With
Ra = 104, the primary cell is shrunk through the right mid part while the secondary
flow occupies the left part of the cavity. A symmetric behavior in streamlines starts to
be pronounced vanishing the effect of moving lid withRa = 105 and106. Vorticity
shows a similar behavior to streamlines asRa increases. This is the common effect of
largeRa values on the flow. Furthermore, isotherms also start to be circulated from
hot blockage to the cold walls forming strong temperature gradient through the moving
top wall due to the increase in natural convection (buoyancy). Induced magnetic field
lines are also affected with the increase inRa, and small perturbation from bottom to
the top wall is observed. Here,Rem = 1 is purposely taken to observe the effect of
the solid blockage for largeRa (Figure3.17).

Blockage causes the secondary flow to develop at a lower valueof Re compared to
cavity without blockage. With the increase inRe, the center of the streamlines which
is close to the moving lid again moves to the center of the cavity but to the right of
the blockage (Figure3.18). Meantime, secondary flow becomes prominent close to
the left wall of the cavity. Isotherms are not altered much. But, for large values ofRe,
a boundary layer is pronounced on the left and bottom walls ofthe square blockage
due to the secondary flow on the left wall of the cavity. Vorticity is transported inside
the cavity asRe increases. Induced magnetic field vector tending to the direction of
moving lid is not affected much.

As expected, the variation ofRem has the influence only on the induced magnetic
field lines as can also be seen in Figure3.19. Induced magnetic field lines obey the
direction of moving lid with the increase inRem while the square blockage squeezes
them between the blockage and the right wall of the cavity.

As Ha increases (Figure3.20), due to the+y-directed applied magnetic field, the
center of the primary cell in streamlines shift through the center of the cavity nearly
conflicting with the square blockage. Further, the secondary flow at the left wall of
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the cavity becomes smaller, and a tertiary flow emerges at thetop wall. Not much
effect ofHa on isotherms is observed. This may be due to the small number of Pr.
Strongly applied magnetic field (largeHa) directs the induced magnetic field lines in
its direction. This is whyRem = 100 has been taken to start with a turbulence at the
right upper corner with smallHa.

The aim of this example is to examine the effects of both external magnetic field and
the blockage in the cavity. Therefore, the streamline valueon the blockage walls is
exposed to the change asHa increases. This is depicted in Figure3.21. In the absence
of a square obstacle (Figure3.21a), clockwise directed primary cell is divided into
two parts and squeezed through the left and right walls, and acounter-rotating cell is
intensified covering the center of the cavity asHa increases. As can be seen, the value
of stream function changes, especially at the center of the cavity. Due to this change
in the flow, the stream function value which is denoted byψc on the square obstacle
is taken accordingly with the values shown in Figure3.21a. Then, the effects of both
applied magnetic field and blockage placed in the center of the cavity, on the flow are
shown in Figure3.21b. It is observed that secondary flow developed withHa = 5
through the left wall becomes larger, and the center of the primary cell shifts through
the right wall. Further, the primary cell is pronounced between the right wall of the
obstacle and the right wall of the cavity while a counter-rotating cell emerges from
the top wall of the cavity to the top wall of the square blockage. Retarding effect of
Lorentz force starts much earlier (even withHa = 5) and gives symmetric secondary
flow cells on the left and right of the blockage whenHa = 50. Further, the increase in
Ha (Ha = 100) squeezes all the flow cells to the boundaries of the cavity. This is the
well known boundary layer formation in the flow for largeHa.

Ri=0.1 Ri=1 Ri=10

ψ

T

Figure 3.16: Problem 3.2.2: Streamlines and isotherms in terms of Richardson varia-
tion,Pr = 0.71, Re = 100, Ls = 0.25.
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Figure 3.17: Problem 3.2.2:Re = 100, Rem = 1, Ha = 10, P r = 0.1, ∆t =
0.25 (Ra = 103, Ra = 104), ∆t = 0.1 (Ra = 105), ∆t = 0.01 with γ = 0.1 (Ra =
106).
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Figure 3.18: Problem 3.2.2:Rem = 100, Ha = 10, P r = 0.1, Ra = 103, ∆t =
0.25 (Re = 100, 400, 1000), ∆t = 0.1 (Re = 2500).
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Figure 3.19: Problem 3.2.2:Re = 100, Ha = 10, P r = 0.1, Ra = 103, ∆t = 0.25.
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Figure 3.20: Problem 3.2.2:Re = Rem = 100, Ra = 103, P r = 0.1, ∆t =
0.25 (Ha = 5, Ha = 25), ∆t = 0.25 with γ = 0.5 (Ha = 50), ∆t = 0.1 with γ =
0.1 (Ha = 100).
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Figure 3.21: Problem 3.2.2: Observation on streamlines,Re = Rem = 100, Ra =
103, P r = 0.1.
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3.3 Buoyancy MHD flow with magnetic potential (ψ − T −A− j − w)

In this section, both the magnetic potential and current density are utilized as unknowns
in the full MHD equations with the relations

J =
1

µm
(∇×B) , j =

1

µm

(
∂By

∂x
− ∂Bx

∂y

)
= − 1

µm
∇2A, (3.10)

instead of induced magnetic field components. Also, heat transfer mechanism is taken
into account.

The governing non-dimensional equations in terms of streamfunctionψ, temperature
T , magnetic potentialA, current densityj and vorticityw are ((AppendixA)) given as

∇2ψ = −w (3.11a)
1

PrRe
∇2T =
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∂t
+ u
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(3.11b)

∇2A = −Rem j (3.11c)

1

Rem
∇2j =

∂j

∂t
+ u

∂j

∂x
+ v

∂j

∂y
− 1

Rem

(
Bx

∂w

∂x
+By

∂w

∂y

)
(3.11d)

− 2

Rem

[
∂Bx

∂x

(
∂v

∂x
+
∂u

∂y

)
+
∂v

∂y

(
∂Bx

∂y
+
∂By

∂x

)]

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
−Ha

2

Re

(
Bx

∂j

∂x
+By

∂j

∂y

)
− Ra

PrRe2
∂T

∂x
(3.11e)

Again, the space derivatives in the inhomogeneous source terms are achieved with the
help of coordinate matrixF, and the time derivative are discretized by Backward-Euler
formula finite difference scheme. The iterative system withthe iteration with respect
to time occurs as

Hψm+1 −Gψm+1
q = −Swm (3.12a)

(
H− PrRe

∆t
S− PrReSM

)
Tm+1 −GTm+1

q = −PrRe
∆t

STm (3.12b)

HAm+1 −GAm+1
q = −RemSjm (3.12c)

(
H−Rem

∆t
S−RemSM

)
jm+1−Gjm+1

q =−Rem
∆t

Sjm−S
(
[Bx]dDx+[By]dDy

)
wm

−2S
(
Dx[Bx]d

(
Dxv

m+1+Dyu
m+1
)
−Dy[v]d

(
DyB

m+1
x +DxB

m+1
y

))
(3.12d)

(
H− Re

∆t
S−ReSM

)
wm+1 −Gwm+1

q = −Re
∆t

Swm

−Ha2S ([Bx]dDx+[By]dDy) j
m+1 − Ra

PrRe
SDxT

m+1 (3.12e)

whereDx=
∂F

∂x
F−1, Dy=

∂F

∂y
F−1, S=

(
HÛ−GQ̂

)
F−1, M=[u]

d
Dx+[v]

d
Dy,
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and the matrices[u]d, [v]d, [Bx]d, [By]d are diagonal having the diagonal entries from
the vectorsum+1, vm+1, Bm+1

x , Bm+1
y , respectively, and are of size(N+K)×(N+K).

Initially, T 0, A0, j0 andw0 are taken accordingly with the given boundary values and
as zero at all interior points. The rearranged systems of equations (reducing to the form
Cx = b) (3.12) are solved iteratively with respect to time in the given order. Once the
stream function equation (3.12a) and magnetic potential equation (3.12c) are solved,
velocity components and induced magnetic field components are computed using their
definitions

um+1 = Dyψ
m+1, vm+1 = −Dxψ

m+1, (3.13)

Bm+1
x = DyA

m+1, Bm+1
y = −DxA

m+1, (3.14)

and the coordinate matrixF gives rise toDx andDy. Then, boundary conditions
for the velocity and the induced magnetic field components are inserted. Unknown
boundary conditions for current densityj and vorticityw are found again by using
DRBEM coordinate matrixF in their definitions as

j =
1

Rem

(
DxB

m+1
y −DyB

m+1
x

)
(3.15a)

w = Dxv
m+1 −Dyu

m+1. (3.15b)

The iterative solution process continues up to the steady-state solution with the crite-
rion

5∑

l=1

∥∥φm+1
l − φml

∥∥
∞∥∥φm+1

l

∥∥
∞

< ǫ (3.16)

satisfied with a toleranceǫ = 1e− 4 whereφl stands forψ, T, j, A andw values at the
boundary and interior points, respectively.

In order to validate the presented numerical procedure, theproblem is reduced to the
form (takingRe = 1/Pr) of the study [38] (in which horizontal walls are adiabatic,
left wall is the hot wall, right wall is the cold wall, and the velocity is zero on the walls)
and solved by DRBEM. Table3.4 shows the good agreement of the presented results
(obtained by at mostN = 112, K = 961) with the study [38] (in which the given
results in this table are obtained by41× 41 mesh size).

Table 3.4: Average Nusselt number through the heated left wall.

Ra Present [38]
103 1.114 1.116
104 2.241 2.242
105 4.556 4.564

Numerical results are depicted as streamlines, isotherms,magnetic potential (induced
magnetic field) lines, current density, and vorticity contours. Two types of geome-
try are used which are staggered double lid-driven cavity and backward-facing step in
order to observe the flow separation which occurs with a sudden change in the chan-
nel. For approximating functionf , 1 + r is fixed together with the20-point Gaussian
quadrature for the integrals in BEM matricesH andG.

92



Table 3.5: Problem 3.3.1: Analyzing the grid independence.

Nu
N K Ha=25 Ha=50 Ha=100
84 328 1.8483 2.1466 2.3070
112 601 1.9037 2.2094 2.3878
140 956 1.9272 2.2326 2.4263
168 1393 1.9370 2.2390 2.4438

3.3.1 Case 1. Staggered double lid-driven cavity MHD flow

The flow is driven down the channel by means of a pressure gradient∇p, and the fluid
action is maintained with the movements of the top and bottomwalls of the cavity in the
opposite directions. Externally applied magnetic field influences the flow in the cavity
by means of Lorentz force in the momentum equations, and electrically conducting
fluid in turn produces induced magnetic field inside of the cavity. Heat transfer in the
fluid due to the cold and hot walls is coupled to the momentum equations with the
buoyancy force. Thus, the flow is visualized in terms of stream function and vorticity,
heat exchange with the temperature of the fluid, and the induced magnetic field with
the magnetic potential and current density, respectively.

The problem configuration is illustrated in Figure3.22[95]. Stream function and ve-
locity componentv are all zero on the walls.u = 1 on the top wall andu = −1 on
the bottom wall. The jagged walls are adiabatic (∂T/∂n = 0), the top wall is the hot
wall Th = 0.5 and the bottom wall is the cold wallTc = −0.5. Magnetic potential is
A = −x on the walls due to they-component of external magnetic fieldB = (0, B0, 0)
with B0 = 1, hz = 0.4.

g

x

y

hz

hz

hz

hz

u = 1

u = −1

Th = 0.5

Tc = −0.5

B0

(0, 0)

(0, 1.4)

(1.4, 0)

Figure 3.22: Problem 3.3.1: Staggered double lid-driven cavity.

As can be seen from Table3.5, average Nusselt number does not change much for
N > 140. Therefore,N = 140 boundary elements withK = 956 interior nodes are
used in all computations of this case. In order to acceleratethe convergence for large
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values of parameters, once the vorticity equation Eq.(3.12e) is solved, a relaxation
parameter0 < γ < 1 is used aswm+1 ← γwm+1 + (1− γ)wm. Moreover, the average

Nusselt number at the hot top wall is computed fromNut =
∫ 1.4

0.4

∂T

∂y

∣∣∣∣
y=1.4

dx using

composite Trapezoidal rule (AppendixB).

As Re increases (Figure3.23), twin primary eddies in the flow pattern turn out to be
one main circulation at the center of cavity. Temperature gradient increases through the
top and bottom walls pointing to the increase in convection in isotherms. Symmetric
behavior in magnetic potential lines in staggered channelsis combined to a uniform
behavior. Strong boundary layer formation in the vorticityand current density through
the moving walls is seen with an increase inRe.

With the increase in Rem (Figure3.24), the main alteration is observed in magnetic po-
tential lines and current density. Since the effect of diffusion terms weakened in these
equations, new cells at the lower left and upper right corners emerge. Not much of
a variation in vorticity occurs while counter-clockwise symmetric cells in streamlines
start to be formed.

AsHa increases up to100 (Figure3.25), the center of the streamlines rotate in counter-
clockwise direction trying to form Hartmann and boundary layers. The formation of
the strong temperature gradient shows the increase in convective heat transfer. Current
density and vorticity contours have the similar behavior which is the clustering through
the moving walls and stagnancy at the center. Magnetic potential stays the same since
Rem is not changed.

Since the MHD flow in the cavity is mostly influenced with the electrical conductivity
and magnetic permeability of the fluid, the flow and magnetic potential behaviors de-
pend on the variations ofHa andRem values. In figures3.26-3.27the variations of
Rem andHa are investigated together on streamlines and magnetic potential lines. For
a small value ofHa (Ha = 5), although four symmetric cells are formed in stream-
lines, these cells are diminished and become one main primary cell from one inner
corner to the other inner corner asRem increases (Figure3.26). Boundary layer for-
mation through the moving walls and corner walls is observedasHa increases. This
may be due to the increase in velocity up toHa = 100. While the symmetric cells
in magnetic potential lines become prominent as increasingRem with Ha = 5 (Fig-
ure3.27), the increase inHa suppresses this symmetric circulative nature of magnetic
potential lines and force them to be directed in its direction. In other words, magnetic
potential obeys the direction of external magnetic field asHa increases.

Counter-rotating cells (counter clockwise center cell andclockwise top and bottom
cells), and the motion of moving lids become prominent in streamlines asRa in-
creases (Figure3.28). This is an increase in buoyancy which results in a stronger
primary eddy, and upper and lower secondary eddies near the moving lids balancing
the effect of shear force due to the movement of the lids. Isotherms become perpen-
dicular to the vertical walls due to the increase in buoyancyeffect. The circulation of
vorticity through the moving lids is shrunk and intensified through the top and bottom
walls being stagnant at the center. The top and bottom small cells of current density
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Figure 3.23: Problem 3.3.1:Rem = 100, Ha = 10, Ra = 10, P r = 0.1, ∆t = 0.2.

with Ra = 103 are expanded with the increase inRa while inner corner cells almost
disappear.

The average Nusselt number at the hot top wall is analyzed in Figure 3.29. As Ha
increases, convection dominated effect inNut is pronounced up toHa ≤ 100 in
Fig.3.29a(Rem = 10, Re = 400, P r = 0.1, Ra = 103). This may be due to the
opposite motions of top and bottom lids. The increase inRem (Ha = 10, Re =
400, P r = 0.1, Ra = 103) points to the decrease in mean Nusselt number through the
hot top wall (Fig.3.29b) which means that the convection decreases with the increase in
magnetic Reynolds number. This is due to the increase in intensity of induced magnetic
field weakening the fluid motion.
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Figure 3.24: Problem 3.3.1:Re = 400, Ha = 10, Ra = 103, P r = 0.1, ∆t =
0.01, 0.1, 0.1.
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Figure 3.25: Problem 3.3.1:Re = 400, Rem = 10, Ra = 103, P r = 0.1, ∆t =
0.1(Ha = 5, 50), ∆t = 0.1 with γ = 0.5(Ha = 100).
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Figure 3.26: Problem 3.3.1: StreamlinesRe = 100, P r = 0.1, Ra = 103.
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Figure 3.27: Problem 3.3.1: Magnetic potentialRe = 100, P r = 0.1, Ra = 103
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Figure 3.28: Problem 3.3.1:Re = 400, Rem = Ha = 10, P r = 0.1,∆t = 0.1.
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Figure 3.29: Problem 3.3.1:Nut at the hot top wall is observed w.r.tHa andRem.
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3.3.2 Case 2. Backward facing step MHD flow

MHD flow in a channel with a backward-facing step is considered as depicted in Fig-
ure 3.30. The flow is inx-direction prescribed with a parabolic profile at the inlet.
Applied magnetic field is through +y-direction (B0 = 1), thusA = −x everywhere on
the boundary. A heater is placed on the step, and temperaturedistribution decreases
linearly through the walls. The top and bottom walls of the channel are cold. Exit
condition (∂/∂n = 0) is applied for unknownsψ, T, j andw.

In general,N = 200 linear boundary elements withK = 1421 interior points, and
∆t = 0.1 are used in the computations. In order to accelerate the convergence for
large values ofHa orRem, a relaxation parameter0 < γ < 1 is employed in vorticity
aswm+1 ← γwm+1 + (1 − γ)wm or current density asjm+1 ← γjm+1 + (1 − γ)jm,
respectively. The length of the channel is taken asℓ = 10. Furthermore, the vorticity
boundary condition at the inlet of BFS is computed fromw = −∇2ψ while Eq.(3.15b)
is made use of on the other boundaries, and the current density boundary conditions
are computed from Eq.(3.15a) except at the exit of the channel.

Numerical results are validated with the incompressible fluid flow and the natural con-
vection MHD flow in terms of streamlines. Reattachment length after the step increases
asRe increases and the formation of secondary vortex at the upperwall is seen from
Re = 500 onwards (Figure3.31) which is consistent with the study [73]. For increas-
ing values ofRa (102−105) with Pr = 0.71 andℓ = 4 (Figure3.32), the recirculation
region expands with the increase inRa, and new vortexes are formed above the heater
as in [10].

ψ = 0, Tc = 0

ψ = 1/3, Tc = 0

0.5

1

0
ℓ1

u = 16(y − 0.5)(1 − y)

ψ = −
16

3
y3 + 12y2 − 8y + 5

3

T = 2(1 − y)

T
=

2
y

ψ
=

0ψ = 0

B0

Figure 3.30: Problem 3.3.2: Backward facing step MHD flow configuration.

As Re increases (Figure3.33), reattachment length (the distance from the step to the
reattachment point) increases. Isotherms cover almost allthe cavity due to the domi-
nance of convection terms in energy equation. Magnetic potential lines is not affected
much. Current density spreads along the channel forming boundary layers on the top
and bottom walls. Vorticity shows similar behavior with streamlines.

With the increase inHa (Figure3.34), reattachment length decreases, and almost dis-
appears withHa = 50. This is due to retarding effect of Lorentz force. Since the top
and bottom walls are cold walls, not much variation is seen onisotherms whileHa
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varies. The increasing strength of the applied magnetic field directs the magnetic po-
tential lines to its direction, and make them nearly perpendicular to the top and bottom
walls. Current density and vorticity form the strong boundary layers (Hartmann layers)
through the top and bottom walls, and they are stagnant at thecenter.

As expected, the variation ofRem (Figure3.35) affects the magnetic potential lines
(induced magnetic field lines) and current density lines. While magnetic potential lines
are almost perpendicular to the top and bottom walls, perturbation on them increases
with large values ofRem. Similar perturbed movement on the current density through
the center of the region is observed. The strong boundary layer formations on the
top and bottom walls are also seen in current density. These developments are due to
the decrease in the effect of diffusion terms in magnetic potential and current density
equations. For large values ofHa andRem, one needs to use relaxation parameters
especially for vorticity and current density due to the great alterations in their behav-
iors.

The vortex after the step is expanded, and a new secondary cell emerges close to this
vortex asRa gets larger (Figure3.36). Since the buoyancy effect increases with the
increase inRa, fluid velocity also increases. The terms with Rayleigh number are
reaction terms in vorticity equation, and thus an effect on vorticity is also seen for
large values ofRa, so is in current density. Magnetic potential lines tend to form
new circulated cells after the step with the increase inRa. This may be due to the
dominance of buoyancy effect on vorticity, and so on currentdensity and magnetic
potential. This points that the increase in buoyancy force affects the magnetic potential
lines.
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Figure 3.31: Problem 3.3.2: Streamlines in BFS for incompressible fluid flow for
varyingRe.
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Figure 3.32: Problem 3.3.2: Streamlines in natural convection flow varyingRa.
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3.4 Incompressible MHD flow with magnetic potential(ψ −A− w)

In this case, the temperature difference does not exist. Therefore, the momentum equa-
tions do not contain the buoyant term. Further, the magneticpotentialA is taken into
account instead of induced magnetic field components.

The two-dimensional, laminar MHD flow of an incompressible,viscous and electri-
cally conducting fluid is considered adopting magnetic potential. The non-dimensional
governing equations in terms of stream functionψ, vorticityw, and magnetic potential
A are (Chapter1, section1.1.5, AppendixA)

∇2ψ = −w (3.17a)
1

Rem
∇2A =

∂A

∂t
+ u

∂A

∂x
+ v

∂A

∂y
(3.17b)

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
(3.17c)

− Ha2

ReRem

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]
,

where the dimensionless parameters are the Reynolds numberRe = UL/ν, the mag-
netic Reynolds numberRem = ULσµm, and the Hartmann numberHa = B0L

√
σ/µ.

By using coordinate matrixF for evaluating the space derivatives in non-homogeneous
termsb and the Backward-Euler formula for the time derivatives, the iteration with
respect to time is carried between the system of equations for ψ,A andw as

Hψm+1 −Gψm+1
q = −Swm (3.18a)

um+1 = Dyψ
m+1, vm+1 = −Dxψ

m+1 (3.18b)(
H− Rem

∆t
S− RemSM

)
Am+1 −GAm+1

q = −Rem
∆t

SAm (3.18c)

Bm+1
x = DyA

m+1, Bm+1
y = −DxA

m+1 (3.18d)
(
H− Re

∆t
S−ReSM

)
wm+1 −Gwm+1

q = −Re
∆t

Swm (3.18e)

− Ha2

Rem
S
(
[Bx]dDxξ + [By]dDyξ

)

where

S =
(
HÛ−GQ̂

)
F−1, Dx =

∂F

∂x
F−1, Dy =

∂F

∂y
F−1

M = [u]dDx + [v]dDy, ξ =
(
DxB

m+1
y −DyB

m+1
x

)
,

and the diagonal matrices[u]d, [v]d, [Bx]d,[By]d are formed using the vectorsum+1, vm+1,
Bm+1
x , Bm+1

y . Once the shuffling of known and unknown nodal values is done,the re-
duced systems of the formCx = b are solved by Gaussian elimination with partial
pivoting.
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Initially, w0 andA0 are taken as zero everywhere except on the boundary. Stream
function Eq.(3.18a) is solved usingmth time level values of vorticityw. The velocity
components are computed by using Eq.(3.18b), and then their boundary conditions are
inserted. The magnetic potential at(m + 1)th time level is found using Eq.(3.18c).
Then, the induced magnetic field components are obtained from Eq.(3.18d), and the
insertion of their boundary conditions is carried out. Vorticity boundary conditions are
found by using the definition of vorticity with the help of coordinate matrixF

w = ∇× u = Dxv −Dyu =
∂F

∂x
F−1v − ∂F

∂y
F−1u. (3.19)

Using these boundary conditions forw, vorticity equation (3.18e) is solved at the(m+
1)th time level. Iteration continues in this way until the criterion

‖ψm+1 − ψm‖∞
‖ψm+1‖∞

+
‖Am+1 −Am‖∞
‖Am+1‖∞

+
‖wm+1 − wm‖∞
‖wm+1‖∞

< ǫ (3.20)

is satisfied whereǫ = 1e − 4 is the tolerance for the steady-state solutionψ, A and
w, respectively. Transient level solutions can also be obtained at any time valuetm =
m∆t.

In the numerical computations, the radial basis functions are chosen asf = 1 + r.
Further,16-point Gaussian quadrature is used for the integrals inH andG matrices.
In order to validate the present method, the|ψmin| values for an incompressible flow in
a lid-driven cavity are given in Table3.6. As can be seen, the results using considerably
small number of grid points are in good agreement with the results given in [62].

Table 3.6: Problem 3.4:|ψmin| values of streamlines of Navier-Stokes flow in a lid-
driven cavity.

Present [62]
Re Mesh pts. |ψmin| Mesh pts. |ψmin|
100 17× 17 0.1034 129× 129 0.1034
400 41× 41 0.1135 257× 257 0.1139
1000 55× 55 0.1140 129× 129 0.1179

3.4.1 Case 1. Lid-driven cavity MHD flow

The problem geometry is given in Figure3.37. Stream function and velocity compo-
nentv are all zero on the walls, and the top wall is moving with a velocity u = 1.
Magnetic potential isA = −x + C ′ on the walls due to they-component of external
magnetic fieldB0=(0, B0, 0)=(0, 1, 0), and the constantC ′ is taken as zero similar to
the stream function on the boundary. In general,120 linear boundary elements and841
interior points are used for this case. Since implicit time integration scheme is used,
time increment∆t can be taken not too small.

The center of streamlines which is in the direction of movinglid for smallRe numbers
shifts through the center of the cavity forming new eddies atthe lower corners of the
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Figure 3.37: Problem 3.4.1: Configuration of the lid-drivencavity MHD flow.

cavity asRe increases. The circulation of vorticity is pronounced for large values of
Re. These are the expected behaviors for a lid-driven cavity MHD flow for fixedRem
andHa as can be seen from Figure3.38. Magnetic potential lines are not affected
much with the variation ofRe.

The variation in magnetic Reynolds number causes the magnetic potential lines to cir-
culate inside the cavity due to the dominance of convection terms in magnetic potential
equation asRem gets larger. Not much alteration occurs in streamlines and vorticity
(Figure3.39) to steady-state.

Vorticity becomes stagnant at the center clustering through the walls asHa increases
(Figure3.40). Thin boundary layers (side layers) and Hartmann layers, respectively,
on perpendicular and parallel walls to the direction ofB0, are well observed with an
increase inHa in streamlines. Magnetic potential lines become perpendicular to the
top and bottom walls pointing to the decrease in convection terms of magnetic potential
equation due to the decrease in velocities, and also, they obey the direction of the
externally applied magnetic field asHa increases. Since the reaction term dominates
in vorticity transport equation for large value ofHa = 100, a relaxation parameter
0 < γ = 0.1 < 1 is used aswm+1 = γwm+1+(1−γ)wm to accelerate the convergence
of vorticity.

The magnitude of the velocity of the fluid decreases due to theretarding effect of
Lorentz force in the presence of high magnetic field intensity B0. This is confirmed
by the centerline velocity components asHa increases in Figure3.41. This is the
well-known flattening tendency of the MHD flow [141].
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Figure 3.38: Problem 3.4.1:Rem = 100, Ha = 10, ∆t = 0.25.
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Figure 3.39: Problem 3.4.1:Re = 100, Ha = 10, ∆t = 0.1.
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Figure 3.40: Problem 3.4.1:Re = Rem = 100, ∆t = 0.5, 0.2, 0.1, for Ha =
5, 50, 100.
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Figure 3.41: Problem 3.4.1: Velocity profiles at mid-sections of the cavity with various
Ha.
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3.4.2 Case 2. MHD flow over a square cylinder

In this case, the MHD flow around a square cylinder confined in achannel between
parallel walls is considered. The inlet velocity profile is uniform, and the flow in the
far field is also assumed to be a uniform flow (u = 1). The behaviors of the flow and
magnetic potential are investigated around the square cylinder under the influence of
an externally applied magnetic field which is in+y-direction.

The problem configuration is given in Figure3.42. The boundary conditions which
are also seen on the figure may be written as follows. At the inletψ = y − 0.5, w =
0, u = 1, v = 0, A = 0; at the exit∂ψ/∂n = 0, ∂w/∂n = 0, A = −4; on the
square cylinderu = v = ψ = 0, A = −x, the distance of the left bottom corner of
the square cylinder to both the inlet and the bottom wall is0.25, andls = 0.5. In the
computations,N = 280 boundary elements withK = 1380 interior points are used.

y

x

B0

∂ψ
∂n

= −1, ψ = −0.5, A = −x

∂ψ
∂n

= 1, ψ = 0.5, A = −x

ls

0
•

4
•

1•

Figure 3.42: Problem 3.4.2: Configuration of the MHD flow pasta square cylinder.

In Figures3.43, 3.44and3.45, streamline variations with respect to Reynolds and Hart-
mann numbers, and magnetic potential variation with respect to magnetic Reynolds
number are illustrated, respectively. With the increase inRe (Figure3.43), symmet-
ric vortices emerge behind the cylinder, and they elongate through +x-direction. The
increase in Hartmann number suppress this elongation of vortices behind the cylin-
der as is seen in Figure3.44. As expected, magnetic potential lines are perturbed in
+x-direction asRem is increased since external magnetic field is perpendicularto the
channel walls where the boundary layers start to develop (Figure3.45).

In Figures3.46-3.47, the vortex changes in the streamlines behind the square cylinder
at transient levels are reported. As can be seen, the symmetric vortices are shrunk and
a periodic behavior of the flow is observed as time passes. As the fluid move away
behind the square cylinder, the periodic behavior diminishes and the flow becomes
uniform at the exit of the channel. This may be due to the uniform flow field on the
channel walls.
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Figure 3.43: Problem 3.4.2: Streamlines at steady-state,Rem = 10, Ha = 5.
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Figure 3.44: Problem 3.4.2: Streamlines at steady-state,Re = 100, Rem = 10.
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Figure 3.45: Problem 3.4.2: Magnetic potential lines at steady-state,Re = 100, Ha =
5.
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Figure 3.46: Problem 3.4.2: Streamlines at transient levels, Re = 300, Rem =
10, Ha = 5.

The remarkable observations throughout this chapter may besummarized as follows.
In a porous medium, the decrease in Darcy number slows the fluid motion due to the
decrease in permeability of the porous medium, and directs the magnetic potential lines
in the direction of applied magnetic field diminishing the lid effect.

Both in a porous or non-porous medium, the increase in the intensity of the externally
applied magnetic field causes the fluid to flow slowly due to theretarding effect of
Lorentz force. The alteration in the magnetic Reynolds number affects the induced
magnetic field or magnetic potential due to the dominance of convection terms either in
the induction equations or in the magnetic potential equation. Magnetic potential lines
(or induced magnetic field lines) obey the direction of externally applied magnetic field
as the strength of the applied magnetic field increases.

The exceptional case is seen on the staggered double driven cavity where the effect of
fluid movement seems to be decreased with the increase inRem. Also, in the same
problem, the opposite movement of lids dominate over the applied magnetic field, and
thus, the fluid velocity still increases a little bit asHa increases up to100.

Heat transfer is retarded under the effect of an intense applied magnetic field, and the
weak permeability of a porous medium. The change in magneticReynolds number
does not affect much the heat transfer except in the case of staggered double lid-driven
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Figure 3.47: Problem 3.4.2: Streamlines at transient levels, Re = 300, Rem =
10, Ha = 5.

cavity.

The increase in buoyancy force (the increase in Grashof or Rayleigh number) sup-
presses the induced magnetic field effect from the mid-part to the bottom of the cav-
ity making them parallel to side walls. The other physical dimensionless parameter,
Reynolds number, demonstrates the expected behavior of an incompressible flow in
channels.
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CHAPTER 4

DQM TIME-DQM SPACE APPLICATIONS TO HYPERBOLIC
and COUPLED PARABOLIC EQUATIONS

Differential Quadrature Method (DQM) is a global discretization method. DQM ex-
presses a partial derivative of a function as a linear weighted sum of all the functional
values at the grid points in the interval for that variable. The method is inspired from
the integral quadrature. Initially, Bellman et al. [15] proposed DQM. Then, the method
is improved by Shu et al. [144] for computation of weighting coefficients.

The main idea of DQM is to compute the weighting coefficients for any order of deriva-
tive. Bellman et al. [15] employed two approaches. However, the algebraic system of
equations in one of these approaches results in ill-conditioned matrix as the system
size increases. In order to overcome this difficulty, Shu [142] developed a way of
computing the weighting coefficients of first order derivatives in a simple, explicit for-
mulation, and then second and higher order derivatives by a recurrence relation. In
this improvement, as base functions, Lagrange interpolation polynomials are used due
to the unlimited characteristic on the choice of the grid points. Further, these formu-
lations are based on the linear vector space analysis and theanalysis of a high order
polynomial approximation.

DQM is capable of yielding highly accurate solutions using considerably small number
of grid points resulting with less computational cost. Although equally spaced grid
distribution is preferred at most of the studies, unequallyspaced grid points (e.g. the
roots of Chebyshev polynomials) have been proved to be more reliable and efficient
than equally spaced points.

In this chapter, the application of either polynomial-based or Fourier expansion-based
DQM both in space and time directions is presented. Thus, thesolution can be obtained
at once (also in blocks) without the need of an iterative procedure in the time domain.
The iteration is only used to eliminate the nonlinearities in the equations. These are
the main reasons of treating the time dependent problems considered in this Chapter by
DQM. Applications include some prominent physical problems defined by hyperbolic
type telegraph equation, Klein and sine-Gordon equations,Burgers’ equations, and
parabolic type MHD duct flow equations.
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4.1 Differential quadrature method

DQM is based on the derivative approximation of a function ata grid point using all
the functional values of the domain.

The first and second derivatives of a functionf(x) atxi are approximated by

fx(xi) =
N∑

j=1

aijf(xj) (4.1a)

fxx(xi) =

N∑

j=1

bijf(xj), (4.1b)

whereN is the number of grid points,i = 1, 2, . . . , N , andaij , bij are the weighting
coefficients. These weighting coefficients can be determined by polynomials or Fourier
series expansion.

4.1.1 Polynomial-based differential quadrature (PDQ) method

PDQ approximates the functionf(x) as

f(x) =

N∑

k=1

f(xk)rk(x) , (4.2)

wheref(xk) is a constant known value,k = 1, 2, . . . , N , and the Lagrange interpola-
tion polynomialsrk(x) are

rk(x) =
Q(x)

(x− xk)Q(1)(xk)
, (4.3)

with

Q(x) =
N∏

i=1

(x− xi) and Q(1)(xk) =
N∏

j=1
j 6=k

(xk − xj). (4.4)

SettingN(xi, xj) = Q(1)(xi)δij with the Kronecker operatorδij , rk(x) is shortly writ-
ten as

rk(x) =
N(x, xk)

Q(1)(xk)
, k = 1, 2, . . . , N. (4.5)

Substitution of the last form ofrk(x) into the Eq.(4.2), and then the derivation with
respect tox yields

f(x) =

N∑

k=1

f(xk)
N(x, xk)

Q(1)(xk)
=⇒ fx(x) =

N∑

k=1

f(xk)
N (1)(x, xk)

Q(1)(xk)
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which gives

fx(xi) =

N∑

j=1

f(xj)
N (1)(xi, xj)

Q(1)(xj)︸ ︷︷ ︸
aij

.

For evaluation ofN (1)(xi, xj), Q(x) is successively differentiated with respect tox as
follows

Q(x) = N(x, xk)(x− xk)
Q(1)(x) = N (1)(x, xk)(x− xk) +N(x, xk)

Q(2)(x) = N (2)(x, xk)(x− xk) + 2N (1)(x, xk) (4.6)
...

Q(n)(x) = N (n)(x, xk)(x− xk) + nN (n−1)(x, xk),

wheren = 1, 2, . . . , N − 1; k = 1, 2, . . . , N . So,

N (1)(xi, xj) =
Q(1)(xi)

xi − xj
if i 6= j, (4.7a)

N (1)(xi, xi) =
Q(2)(xi)

2
(4.7b)

Eq.(4.7b) is not convenient to findaii due to the difficulty in computation ofQ(2)(xi).
Since a linear operator is satisfied at all sets of base polynomials in linear vector anal-
ysis, utilizing the base polynomialxk−1 whenk = 1, the following implication eases
to expressaii

f(x) =

N∑

k=1

f(xk)x
k−1 k=1

=⇒ fx(xi) = 0 =

N∑

j=1

aij . (4.8)

Eq.(4.7b) is simplified, and thus the weighting coefficients for the first order derivative
is written as

aij =
Q(1)(xi)

(xi − xj)Q(1)(xj)
if i 6= j, (4.9a)

aii = −
N∑

j=1
j 6=i

aij (4.9b)

Continuing with the same idea for obtaining the weighting coefficient for the first
derivatives, the weighting coefficients for the second and higher order derivatives in
a recursive relationship may be derived as [142]

wnij = n

(
aijw

n−1
ii −

wn−1
ij

xi − xj

)
if i 6= j, (4.10a)
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wnii = −
N∑

j=1
j 6=i

wnij, (4.10b)

wheren = 2, . . . , N − 1, i, j = 1, 2, . . . , N , andw1
ij = aij.

4.1.2 Fourier expansion-based differential quadrature (FDQ) method

FDQ approximates the functionf(x) by a Fourier series expansion in the form

f(x) = c0 +

N/2∑

k=1

(ck cos(kx) + dk sin(kx)) , (4.11)

whereck anddk are constants. Also, the Lagrange interpolated trigonometric polyno-
mials are taken as [143]

rk(x) =
Q(x)

sin
x− xk

2
P (xk)

, (4.12)

where

Q(x) =
N∏

k=0

sin
x− xk

2
= N(x, xk) sin

x− xk
2

,

P (xk) = N(xk, xk) =

N∏

j=0,
j 6=k

sin
xk − xj

2
and N(xi, xj) = N(xi, xi)δij .

With the same idea in PDQ, the weighting coefficients are obtained in FDQ. The details
are given in the book [142]. The weighting coefficients for the first and second order
derivatives are found as

aij =
1

2

αP (τi)

sin
τi−τj

2
P (τj)

if i 6= j (4.13a)

aii = −
N∑

j=1
j 6=i

aij (4.13b)

bij = aij

[
2aii − α cot

τi − τj
2

]
if i 6= j (4.13c)

bii = −
N∑

j=1
j 6=i

bij , (4.13d)

whereτ andα are specified as

τ = 2π
x− a
b− a , α =

2π

b− a, for periodic problems (4.14a)
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τ = π
x− a
b− a , α =

π

b− a, for non-periodic problems. (4.14b)

Note that by Eqs.(4.14), any interval[a, b] is transformed to[0, π] (non-periodic prob-
lems) or[0, 2π] (periodic problems), respectively.

4.1.3 Grid points distribution

Equally spaced (ES) grid points

In this grid distribution, the distance between each grid point is equal to each other.
Let the physical domain of the problem (inR × R) is given as[a, b] × [a, b], and let
the region be divided intoN × M meshes. The mesh size in bothx- andy-spaces
will be hx = (b − a)/(N − 1) andhy = (b − a)/(M − 1), respectively, such that
xi = x1 + (i− 1)hx, yj = y1 + (j − 1)hy, i = 1, 2, . . . , N ; j = 1, 2, . . . ,M .

Chebyshev and Gauss-Chebyshev-Lobatto(GCL) grid points

Chebyshev polynomials defined in[−1, 1] for N th degree polynomial are given by

TN (x) = cos(Nθ), 0 ≤ θ ≤ π, θ = arccos(x). (4.15)

The roots of Chebyshev polynomials are

TN(xi) = 0 =⇒ xi = cos
(2i− 1)π

2N
, i = 1, 2, . . . , N. (4.16)

Chebyshev points in a physical domain[a, b] are obtained by the transformation

x̃i =
b+ a

2
− b− a

2
cos

(2i− 1)π

2N
, i = 2, . . . , N − 1. (4.17)

GCL grid points are the pointsxi satisfying|TN(xi)| = 1 = | cos(Nθi)| in which

θi = i
π

N
, i = 1, 2, . . . , N . Thus,xi = cos

iπ

N
andxi ∈ [−1, 1]. For nodes over an

arbitrary interval[a, b], the following transformation gives GCL grid points as

x̃i =
b+ a

2
− b− a

2
cos

(
i− 1

N − 1
π

)
, i = 1, 2, . . . , N. (4.18)

As an example, let the physical domain be[0, 1] andN = 17 is the number of division
on bothx andy axes. The node distributions for Chebyshev and GCL grid points is
illustrated in Figure4.1.

In this Chapter, DQM is applied for both space and time derivatives either using the
equally spaced or non-uniform grid distributions. Test problems are 1D and 2D hyper-
bolic Telegraph equations, Klein and sine-Gordon equations, Burgers’ equations, and
MHD duct flow equations.
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Figure 4.1: Non-uniform grid distribution examples.

4.2 One- and two-dimensional hyperbolic telegraph equations

The hyperbolic differential equations are the basis for fundamental equations of atomic
physics. They are commonly used in signal analysis for transmission and propagation
of electrical signals.

Hyperbolic telegraph equations are encountered in the study of pulsate blood flow
in arteries, the acoustic waves in Darcy-type porous media,parallel flow of viscous
Maxwell fluids. These equations also model the vibrations ofstructures (e.g. buildings,
beams).

In this section, DQM in both time and space directions is applied to obtain numerical
solutions of one- and two-dimensional linear hyperbolic telegraph equations which
contain second order time derivatives.

The use of DQM in both space and time direction, which also discretizes the initial con-
ditionut, automatically results with an overdetermined system. Thenumerical scheme
then provides the solution at any time level without an iteration. This makes the main
difference from the conventional time integration methods. The solution is obtained di-
rectly at all required time levels by solving one overdetermined system which contains
the solution at the grid points in space and time directions.The Gauss-Chebyshev-
Lobatto (GCL) points are used in space direction while either equally spaced or GCL
grid points are taken in time direction. The numerical procedure requires very small
number of grid points in space directions and appropriate number of time grid points
for reaching a certain time level.

Consider the second-order linear hyperbolic telegraph equation in one-dimensional
space inΩ1,

utt(x, t) + 2αut(x, t) + β2u(x, t) = uxx(x, t) + f(x, t), (4.19)

and the second-order two-dimensional hyperbolic telegraph equation inΩ2,

utt(x, y, t)+2αut(x, y, t)+β
2u(x, y, t)−g(x, y, t)=uxx(x, y, t)+uyy(x, y, t), (4.20)
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whereΩ1 = [a < x < b] × [t > 0] andΩ2 = [0 < x, y < 1] × [t > 0]. Eqs.(4.19-
4.20) are damped wave equations forα > 0, β = 0 of which the solution is of great
importance in wave phenomena, and telegraph equation forα ≥ β > 0. For Eq.(4.19),
the initial conditions are assumed to be

u(x, 0) = v1(x), ut(x, 0) = v2(x), a < x < b (4.21)

with Dirichlet
u(a, t) = h1(t), u(b, t) = h2(t), t ≥ 0, (4.22)

or Neumann type boundary conditions

ux(a, t) = k1(t), ux(b, t) = k2(t), t ≥ 0, (4.23)

and for Eq.(4.20)

u(x, y, 0) = φ1(x, y), ut(x, y, 0) = φ2(x, y), 0 < x, y < 1 (4.24)

with Dirichlet
u(x, y, t) = p1(x, y, t) atx, y = ±1, t ≥ 0, (4.25)

or Neumann boundary conditions

ux(x, y, t) = p2(x, y, t) atx = ±1, t ≥ 0 (4.26)
uy(x, y, t) = p3(x, y, t) aty = ±1, t ≥ 0. (4.27)

The functionsf(x, t), h1(t), h2(t), v1(x), v2(x), k1(t), k2(t) are continuous functions
defined onΩ1, and similarlyg(x, y, t), φ1(x, y), φ2(x, y), p1(x, y, t), p2(x, y, t), p3(x, y, t)
are defined and continuous onΩ2.

In the following two sections, polynomial based DQM application to 1D and 2D hyper-
bolic equations is explained. Fourier expansion based DQM application is also done in
a similar way with a difference in weighting coefficients. Some test problems, which
have analytical solution, for differentα andβ values to observe the accuracy and effi-
ciency of the DQ method is presented. Thus, the accuracy of the proposed method is
measured by the following errors defined as [40, 44]

RMS error =
‖uexact− ucomputed‖2√

nod

Relative error=
‖uexact− ucomputed‖2

‖uexact‖2
,

wherenod is the total number of all grid points in space direction, andthe errors can
be computed at any time level.

4.2.1 One-dimensional hyperbolic telegraph equation

PDQ approximations for the derivatives in Eq.(4.19) can be written as

ux =

N∑

k=1

aikukl , uxx =

N∑

k=1

bikukl , (4.28a)
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ut =

L∑

k=1

¯̄alkuik , utt =

L∑

k=1

¯̄blkuik (4.28b)

wherei = 1, 2, . . . , N ; l = 1, 2, . . . , L, N andL are the number of discretization
points, andaik, bik, and¯̄alk, ¯̄blk are the weighting coefficients for the first and second
order derivatives, in space and time directions, respectively. These coefficients are
computed by Eqs.(4.9)-(4.10) when PDQ is used. Therefore, Eq.(4.19) will be dis-
cretized as

L∑

k=1

¯̄blkuik + 2α
L∑

k=1

¯̄alkuik + β2uil −
N∑

k=1

bikukl = f(xi, tl), (4.29)

wherei = 1, 2, . . . , N andl = 1, 2, . . . , L.

The main system Eq.(4.29) may be denoted as an algebraic system

[B] {u} = {f} , (4.30)

whereu is the unknown vector to be determined with the entries at thegrid points
(xi, tl), and the matrix[B] consists of the known weighting coefficients. The known
vectorf contains the function valuesf(xi, tl) as entries. The initial conditionu(x, 0) =
v1(x) is inserted to the system (4.30) directly modifying the matrix[B] and the vector
f . The other initial conditionut(x, 0) is expanded by DQM formulation as

v2(xi) = ut(xi, 0) =

L∑

k=1

¯̄a1kuik, i = 1, 2, . . . , N. (4.31)

Eq.(4.31) will also be a system which can be described as

[B0] {u} = {v2} . (4.32)

where the matrix[B0] and the vector{v2} contain coefficients̄̄a1k andv2(xi) as entries,
respectively.

If Dirichlet type boundary conditions are given, these conditions are directly inserted
to Eq.(4.30) and Eq.(4.32) with the given initial conditionsu(x, 0). So, the coefficient
matrices[B] and[B0] will be of size(N − 2)(L− 1)× (N − 2)(L− 1) and(N − 2)×
(N − 2)(L− 1), respectively.

The systems (4.30) and (4.32) form an overdetermined system. Therefore, least square
method or QR factorization will be made use of for obtaining the solution vector{u}.

If Neumann type boundary conditions are given, the sizes of the new coefficient matrix
[Bneu] in Eq.(4.30) and[Bneu

0 ] in Eq.(4.32) will be (L − 1)N × (L − 1)N andN ×
(L−1)N , respectively. Neumann boundary conditions are also discretized using PDQ
as

k1(tl) = ux(a, tl) =

N∑

k=1

a1kukl, (4.33a)
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k2(tl) = ux(b, tl) =

N∑

k=1

aNkukl, l = 1, . . . , L, (4.33b)

which can be formed as a system

[B∂Ω1 ] {u} = {k} , (4.34)

where [B∂Ω1 ] is a matrix of size2(L − 1) × (L − 1)N containing the coefficients
a1k, aNk and the vector{k} containsk1(ti), k2(ti) as entries. Then, the whole system
(4.30) with [Bneu], (4.32) with [Bneu

0 ] and (4.34) again is an overdetermined system
which will be solved either by QR or least square method.

Also, the ordering of the unknown vector is important since the structure of[B] or
[Bneu] depends on this ordering. To get a well-conditioned matrix[B], the unknown
vector{u} is arranged as in the following order

{u} = {ui1, ui2, ui3, . . . , uiL}T ,

wherei = 2, 3, . . . , N−1 if boundary conditions are Dirichlet type, andi = 1, 2, . . . , N
if Neumann type boundary conditions are used.

GCL grid points inx-space on an interval[a, b] are computed by Eq.(4.18). In the time
direction, equally spaced (ES) grid points are used on an interval[0, T ] as

tl =
(l − 1)T

L− 1
, l = 1, 2, . . . , L. (4.35)

4.2.1.1 Test problem.

Consider the one-dimensional hyperbolic telegraph equation (4.19) in the interval0 ≤
x ≤ 2π, 0 < t ≤ 3 with α = 4, β = 2. The exact solution is taken as [51]

u(x, t) = e−tsin(x). (4.36)

In this case,f(x, t) = (2− 2α + β2) e−tsin(x). The initial and boundary conditions
are extracted from the exact solution as

u(x, 0) = sin(x), ut(x, 0) = −sin(x), (4.37)
u(0, t) = 0, u(2π, t) = 0, t ∈ [0, 3], (4.38)

ux(0, t) = e−t, ux(2π, t) = e−t, t ∈ [0, 3]. (4.39)

Table4.1shows RMS errors obtained by using Dirichlet type boundary conditions (4.38)
with different∆t (equally spaced time grid is used) values. It is noticed that10−5 accu-
racy is achieved even with a coarse mesh (∆t = 0.5) in time direction. It is improved
with a finer mesh (∆t = 0.25).

Table4.2 reports RMS errors obtained by Neumann boundary conditions(4.39). Al-
though the accuracy is decreased with Neumann boundary conditions using PDQ for
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both time and space derivatives, the results are improved interms of accuracy increas-
ingN . When FDQ weighting coefficients are used in space directionand PDQ weight-
ing coefficients in time direction, the results by using FDQ even withN = 11 have
better accuracy than the results obtained by PDQ.

Figure4.2 depicts the very well agreement of DQM and exact solutions atdifferent
time levels even with equally spaced time grid points. The number of GCL grid points
in space is small (N = 17) and∆t = 0.25 is considerably large compared to other
time integration schemes.

Table 4.1: Problem 4.2.1.1: RMS errors withN = 11 using Dirichlet BCs.

t ∆t = 0.25 ∆t = 0.5
0.5 8.57e-07 6.20e-05
1 3.94e-07 3.90e-05
2 1.66e-07 3.00e-05
3 6.23e-08 2.93e-05

Table 4.2: Problem 4.2.1.1: RMS errors with∆t = 0.25 with Neumann BCs.

PDQ FDQ
t N = 11 N = 13 N = 17 N = 11

0.5 2.82e-05 7.74e-07 2.26e-10 1.79e-10
1 1.52e-05 3.78e-07 1.45e-10 1.39e-10
2 4.44e-06 1.41e-07 8.32e-11 8.03e-11
3 3.09e-06 7.63e-08 5.72e-11 5.53e-11
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Figure 4.2: Problem 4.2.1.1: Numerical and exact solutionsat different times with
∆t = 0.25,N = 17 using Neumann BCs.
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4.2.2 Two-dimensional hyperbolic telegraph equation

The space and time derivatives in Eq.(4.20) can be discretized by using PDQ as

ux =

N∑

k=1

aikukjl, uxx =

N∑

k=1

bikukjl, (4.40a)

uy =
M∑

k=1

ājkuikl, uyy =
M∑

k=1

b̄jkuikl, (4.40b)

ut =

L∑

k=1

¯̄alkuijk, utt =

L∑

k=1

¯̄blkuijk, (4.40c)

and the discretized form of Eq.(4.20) is

L∑

k=1

¯̄blkuijk+2α

L∑

k=1

¯̄alkuijk+β
2uijl−

N∑

k=1

bikukjl−
M∑

k=1

b̄jkuikl=g(xi, yj, tl), (4.41)

whereN,M,L are the number of discretization points inx, y, t directions, andi =
1, 2, . . . , N ; j = 1, 2, . . . ,M ; l = 1, 2, . . . , L, respectively.

The initial conditionut(x, y, 0) and the Neumann type boundary conditions are added
to the system Eq.(4.41) discretizing them using PDQ approximations as follows

ut(x, y, 0) =

L∑

k=1

¯̄a1kuijk, l = 1; i = 1, . . . , N, j = 1, . . . ,M,

ux(0, y, t) =
N∑

k=1

a1kukjl, i = 1,

ux(1, y, t) =

N∑

k=1

aNkukjl, i = N ; j = 1, . . . ,M, l = 1, . . . , L, (4.42)

uy(x, 0, t) =
M∑

k=1

ā1kuikl, j = 1,

uy(x, 1, t) =

M∑

k=1

āMkuikl, j =M ; i = 1, . . . , N, l = 1, . . . , L.

As in one-dimensional telegraph equation, the DQM discretized system (4.41) will be
solved together with the initial and boundary conditions. If the boundary conditions
are of Dirichlet type, they will be inserted to the overdetermined system combined
with the system resulting from initial conditions. For Neumann boundary conditions,
the system (4.41) and (4.42) will be solved together.

One of the difficulties in two-dimensional hyperbolic telegraph equation is that the sys-
tem to be solved becomes larger asN,M,L are increased. This causes more memory
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and CPU usage. To overcome this problem, the system is reduced by removing the
entries on the coefficient matrix of the system which correspond to known information
(e.g.initial conditionu(x, y, 0) and the Dirichlet type boundary conditions). Mean-
while, the right hand side of the reduced system is also modified taking into account
removed known entries in the coefficient matrix.

The order of the unknown vector{u} in this case is organized to get a well-conditioned
system. Consider the unknown vector as a matrixU whose each row entry corresponds
to a time level. Notationally,




u1j1 u2j1 . . . uNj1
u1j2 u2j2 . . . uNj2

...
...

. . .
...

u1jL u2jL . . . uNjL


 ,

wherej = 1, 2, . . . ,M , and the matrix of sizeL × NM will be rewritten as a vector
writing columns consecutively.

The solution is obtained by solving only one system with the inserted initial and bound-
ary conditions, and the aforementioned reduction of known entries is performed to re-
duce the size of the system. The solution vector contains allrequired time level values
in it.

The solvability of the overdetermined system of equations depends on the column rank
of the coefficient matrix which isNML in this case. When the initial and/or Neumann
type boundary conditions are discretized using DQM, and added to the system, the
row size is certainly greater thanNML which makes the system overdetermined. The
choice of the grid points in both space and time domains affects the stability of the
system. As mentioned in the Shu’s book [142], the solution with GCL grid points
becomes more stable than equally spaced grid points in both space and time directions.
Moreover, appropriate choice ofN,M andL makes the final coefficient matrix full
column rank.

GCL grid points on[0, 1] for x- andy-spaces are taken as

xi =
1

2

(
1− cos

(
i− 1

N − 1
π

))
, i = 1, 2, . . . , N, (4.43)

yj =
1

2

(
1− cos

(
j − 1

M − 1
π

))
, j = 1, 2, . . . ,M. (4.44)

Furthermore, time direction is divided equally as in (4.35) or by GCL grid points on
an interval[0, T ] as

tl =
T

2

(
1− cos

(
l − 1

L− 1
π

))
, l = 1, 2, . . . , L. (4.45)
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4.2.2.1 Test problem 1.

Now, the two-dimensional telegraph equation (4.20) is considered in the region0 ≤
x, y ≤ 1, t > 0, with α = β = 1. The analytical solution given by [40] is

u(x, y, t) = cos(t) sin(x) sin(y), (4.46)

from which initial condition, Dirichlet boundary conditions andg(x, y, t) are extracted
as

u(x, y, 0) = sin(x) sin(y), ut(x, y, 0) = 0, (4.47a)
u(x, 0, t) = 0, 0 ≤ x ≤ 1, y = 0, (4.47b)
u(0, y, t) = 0, 0 ≤ y ≤ 1, x = 0, (4.47c)
u(1, y, t) = cos(t) sin(1) sin(y), 0 ≤ y ≤ 1, t ≥ 0 (4.47d)
u(x, 1, t) = cos(t) sin(x) sin(1), 0 ≤ x ≤ 1, t ≥ 0 (4.47e)
g(x, y, t) = 2 sin(x) sin(y) [cos(t)− sin(t)] . (4.47f)

Table4.3presents the comparison of the DQM solution and the exact solution in terms
of relative errors for different∆t values when equally spaced time grid points are used.
In this two-dimensional problem, FDQ approximation for space derivatives, keeping
PDQ approximation for time derivatives is also studied. As can be seen from the Table,
both PDQ and FDQ approximations in space directions give almost the same accuracy
even with coarse time grid points (∆t = 0.5 and∆t = 0.25) taking a little more
space grid points in FDQ. Furthermore, asL is increased (∆t is decreased), accuracy
increases.

Table 4.3: Problem 4.2.2.1: Relative errors.

PDQ (N=M=17) FDQ (N=M=21)
t ∆t = 0.25 ∆t = 0.5 ∆t = 0.25 ∆t = 0.5

0.5 1.18e-09 8.80e-05 3.62e-09 8.93e-05
1 1.11e-09 5.94e-05 3.62e-09 6.03e-05
2 4.28e-10 9.17e-05 3.43e-09 9.31e-05
3 1.36e-10 1.09e-04 3.66e-09 1.10e-04

4.2.2.2 Test problem 2.

In this case, Eq.(4.20) is taken into account withα = β = 1 andα = 5, β = 1 in the
region0 ≤ x, y ≤ 1, t > 0. The analytical solution is given by [47]

u(x, y, t) = ln(1 + x+ y + t), (4.48)

with the initial conditions

u(x, y, 0) = ln(1 + x+ y), ut(x, y, 0) =
1

1 + x+ y
, (4.49)

127



and the boundary conditions are of Dirichlet and Neumann type

uy(x, 0, t) =
1

1 + x+ t
, 0 ≤ x ≤ 1,

ux(1, y, t) =
1

2 + y + t
, 0 ≤ y ≤ 1, t ≥ 0,

u(x, 1, t) = ln(2 + x+ t), 0 ≤ x ≤ 1,

u(0, y, t) = ln(1 + y + t), 0 ≤ y ≤ 1.

The inhomogeneity is extracted from the exact solution as

g(x, y, t) =
2α

1 + x+ y + t
+ β2 ln(1 + x+ y + t) +

1

(1 + x+ y + t)2
. (4.50)

Relative errors between numerical solution (PDQ) and exactsolution for different∆t
values are presented in Table4.4. Even with a large∆t = 1, about10−4 accuracy is
reached. As∆t is decreased, accuracy is increased as expected. The error decreases
with a higherα value. Again, it is noticed that with considerably small number of
grid points both in space direction (N = M = 11) and time direction (∆t = 0.5 or
∆t = 0.25), at least10−6 accuracy is obtained.

Table 4.4: Problem 4.2.2.2: Relative errors with differentvalues ofα.

α = β = 1 α = 5, β = 1
t ∆t = 0.25 ∆t = 0.5 ∆t = 1 ∆t = 0.25 ∆t = 0.5
1 9.65e-08 6.55e-05 1.18e-03 5.02e-08 9.67e-06
3 8.24e-09 9.65e-07 2.60e-04 7.75e-09 2.03e-06
5 1.53e-08 1.04e-05 5.68e-04 2.69e-08 9.64e-06

4.2.2.3 Test problem 3.

Consider the homogeneous (g(x, y, t) = 0) Eq.(4.20) in the region0 ≤ x, y ≤ 1, t >
0, with α = 1 + π2, β = 1. The exact solution is given by [54]

u(x, y, t) = e−tsin(πx)sin(πy),

with the initial conditions

u(x, y, 0) = sin(πx) sin(πy),

ut(x, y, 0) = − sin(πx) sin(πy),

and Dirichlet and Neumann boundary conditions on parallel walls are

u(x, 0, t) = 0, 0 ≤ x ≤ 1,

u(1, y, t) = 0, 0 ≤ y ≤ 1, t ≥ 0,

uy(x, 1, t) = −πe−t sin(πx), 0 ≤ x ≤ 1
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ux(0, y, t) = πe−t sin(πy), 0 ≤ y ≤ 1.

Table4.5 compares the numerical solution (both PDQ and FDQ) with the exact so-
lution for different time levels in terms of RMS errors. FDQ weighting coefficients
are used in space directions remaining PDQ weighting coefficients in time direction
(FDQ-PDQ) as well as PDQ approximation is used in both directions (PDQ-PDQ). In
this problem, we use GCL grid points in both space and time directions. FDQ-PDQ
approximation gives better accuracy than PDQ-PDQ approximation for this problem.

To emphasize the importance of the GCL grid points in time direction, Figures4.3-4.4
present RMS errors versus the number of grid points in time direction. The number
of GCL grid points in space direction (N = M = 11) at T = 3 is fixed and only
PDQ-PDQ approximation is considered. When the number of equally spaced points
in time exceeds28, the system becomes rank deficient. This means that large number
of ES grid points in time direction causes unstable solution. On the other hand, GCL
grid points in time direction still gives very good accuracyfor 11 ≤ L ≤ 41 as can be
seen in Figure4.4. Moreover, RMS error using11 to 23 ES grid points increases faster
than RMS error using the same number of GCL grid points in time. The accuracy
with GCL grid points in time direction remains in a scale between0.2 × 10−9 and
1.8× 10−9.

This observation is important for physical problems which require the solution at a
high time level. In that case, the number of grid points in time direction should be
large and endure oscillations of the solution. Thus, GCL grid points in time are more
preferable than ES grid points.

Table 4.5: Problem 4.2.2.3: RMS errors for u(x,t) usingM = N = 11, L = 13.

t PDQ-PDQ FDQ-PDQ
0.75 1.31e-09 1.38e-11
2.25 1.04e-09 9.40e-12

3 6.71e-10 7.74e-12
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Figure 4.3: Problem 4.2.2.3: RMS error versus ES grid pointsin time direction.
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Figure 4.4: Problem 4.2.2.3: RMS error versus GCL grid points in time direction.

4.3 Klein-Gordon and sine-Gordon equations

The Klein-Gordon equation (KGE) arises in many scientific areas such as nonlinear
optics, solid state physics and quantum field theory [161]. This equation has a great
importance in relativistic quantum mechanics, which is used to describe spinless parti-
cles. Furthermore, soliton-like structures have gained a great deal of interest in the last
years. Soliton waves do not create any deformation due to dispersion while progress-
ing. Soliton solutions are encountered in various nonlinear differential equations such
as Korteweg & de Vries equation, the Schrödinger equation,the sine-Gordon equa-
tion. The two-dimensional sine-Gordon equation (SGE) arises in quantum tunnelling
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related with Josephson junction.

In this section, the one-dimensional quadratic and cubic Klein-Gordon equations, and
two-dimensional sine-Gordon equation are solved by using differential quadrature method
in space direction and also blockwise in time direction. Initial and derivative boundary
conditions are also approximated by DQM.

4.3.1 Klein-Gordon equation (KGE)

The nonlinear KGE has the general form

utt + τuxx + αu+ γuk = f(x, t), a ≤ x ≤ b, t ≥ 0, (4.51)

with the initial conditions

u(x, 0) = φ1(x), ut(x, 0) = φ2(x), (4.52)

and with the Dirichlet or Neumann type boundary conditions,whereτ, α, γ are known
constants. The Eq.(4.51) is called Klein-Gordon equation with quadratic nonlinearity
if k = 2, with cubic nonlinearity ifk = 3.

The linearization of the Eq.(4.51) is done as

un+1
tt + τun+1

xx + αun+1 + γ (un)k−1 un+1 = f(x, t) (4.53)

wheren is the iteration number.

The discretized form of the Eq.(4.53) using the derivative approximations by DQM
(Eq.(4.28)) is

L∑

k=1

¯̄blku
n+1
ik + τ

N∑

k=1

biku
n+1
kl + αun+1

il + γ (unil)
k−1

︸ ︷︷ ︸u
n+1
il = f(xi, tl) (4.54)

wherei = 1, . . . , N ; l = 1, . . . , L; L,N are the total number of grid points in time
and space domains, respectively, andbik and¯̄blk are the weighting coefficients for the
second order derivatives in space and time. The underbracedterms are formed as a
diagonal matrix.

The initial conditionut(x, 0) is also discretized as

ut(xi, 0) =

L∑

k=1

¯̄a1kuik = φ2(xi), i = 1, . . . , N, (4.55)

whereφ2 values are known, and contain the other initial valuesu(x, 0) = φ1(x) (the
values ofui1). The algebraic system from Eq.(4.55) is added to the system of Eq.(4.54)
resulting in an overdetermined system.

The boundary conditions may be Dirichlet

u(a, t) = h1(t), u(b, t) = h2(t), t ≥ 0, (4.56)
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or Neumann type

ux(a, t) = r1(t), ux(b, t) = r2(t), t ≥ 0. (4.57)

Dirichlet type boundary conditions are directly inserted to the system of Eq.(4.54). On
the other hand, Neumann type boundary conditions are also discretized by DQM as

ux(a, tl) =

N∑

k=1

a1kukl = r1(tl), (4.58)

ux(b, tl) =
N∑

k=1

aNkukl = r2(tl), l = 1, . . . , L (4.59)

which give also an algebraic system and added to the system (4.54) together with
Eq.(4.55).

The order of the unknown vector{u} is arranged as

{u} = {ui1, ui2, ui3, . . . , uiL}T ,

wherei = 2, 3, . . . , N−1 if boundary conditions are Dirichlet type, andi = 1, 2, . . . , N
if Neumann type boundary conditions are used.

When Dirichlet type boundary conditions are given, the system (4.55) of size(N −
2)× (N − 2)(L − 1) with the system (4.54) of size(N − 2)(L − 1)× (N − 2)(L−
1) contructs an overdetermined system of size(N − 2)L × (N − 2)(L − 1). With
Neumann boundary conditions, the systems (4.54), (4.55) and (4.58-4.59) will be of
sizesN(L− 1)×N(L− 1),N ×N(L− 1) and2(L− 1)×N(L− 1), respectively.
Thus, the resulting overdetermined system will be of size2(N + L− 1)×N(L− 1).
Obviously, the system size becomes larger with large valuesof N andL. This may
cause unstable results especially when high time-levels are considered. Therefore, we
divide the time direction into blocks and consider each block in itself as is shown in
Figure4.5. The advantageous part of DQM emerges from the use of small number of
grid points in each time-block as well as in space domain.

As can be seen from Figure4.5, initial conditionsu(x, 0), ut(x, 0) for the first block
are given.u(x, 0) for the other blocks is taken asu(x, tL) which is the computed result
at the last time-value of the previous time-block.

Moreover, we need to define newut(x, 0) condition for the next blocks after the first
one. Using the computed results at previous time block, we construct theut(x, 0) for
the next time-block by using again DQM approximation ofut as

ut(xi, t
m
0 ) = ut(xi, t

m−1
L ) =

L∑

k=1

¯̄am−1
Lk um−1

ik , i = 1, 2, . . . , N (4.60)

wherem = 2, . . . , bl, bl is the number of blocks and̄̄aLk shows the weighting coeffi-
cients for the second order derivative in time for one block.

132



x

t

Block 1

u(x, 0) = u(x, t10)

ut(x, 0) = ut(x, t
1
0)

Block 2

u(xi, t
2
0) = u(xi, t

1
L)

ut(xi, t
2
0) = ut(xi, t

1
L) =

L∑

k=1

¯̄a1Lku
1
ik

Block 3

u(xi, t
3
0) = u(xi, t

2
L)

ut(xi, t
3
0) = ut(xi, t

2
L) =

L∑

k=1

¯̄a2Lku
2
ik

••
••

Figure 4.5: Time blocks for 1D KGE.

4.3.2 sine-Gordon equation (SGE)

The general form of the two-dimensional sine-Gordon equation is

∂2u

∂t2
+ β

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− Φ(x, y) sin(u), (x, y) ∈ Ω, t > 0. (4.61)

whereΩ =

{
(x, y)

∣∣∣∣a ≤ x ≤ b, c ≤ y ≤ d

}
. The initial conditions are given as

u(x, y, 0) = f(x, y),
∂u

∂t
(x, y, 0) = g(x, y), (x, y) ∈ Ω, (4.62)

with boundary conditions

∂u

∂n
(x, y, t) = h(x, y, t), (x, y) ∈ ∂Ω, t > 0, (4.63)
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wheref, g andh are known continuous functions, and∂u/∂n is the normal derivative
of u.

The functionΦ(x, y) can be interpreted as a Josephson current density, andf(x, y) and
g(x, y) are wave modes or kinks and velocity, respectively. The parameterβ is called
dissipative term, which is assumed to be a real numberβ ≥ 0. Whenβ = 0, equation
(4.61) reduces to the undamped SGE in two space variables. Whenβ > 0, the damped
SGE is obtained.

The solution procedure for solving SGE using DQM is similar to the solution proce-
dure given for KGE. In that case, domain is two-dimensional and both first and second
order time derivatives are approximated by Eqs.(4.40).

Thus, the nonlinear undamped SGE (4.61) is discretized and linearized as

L∑

k=1

¯̄blku
n+1
ijk −

N∑

k=1

biku
n+1
kjl −

M∑

k=1

b̄jku
n+1
ikl = −Φ(x, y)sin(un) (4.64)

wheren is the iteration number,i = 1, . . . , N ; j = 1, . . . ,M ; k = 1, . . . , L, and
bik, b̄jk,

¯̄blk are the weighting coefficients for the second order derivatives inx-, y-,
t-domains, respectively, and̄̄alk is the weighting coefficient for the first derivative in
time.

The initial and boundary conditions are also discretized byusing DQM

ut(xi, yj, 0) = g(xi, yj) =

L∑

k=1

¯̄a1ku
n+1
ijk = 0, (4.65a)

uy(xi, c, tl) =
M∑

k=1

ā1ku
n+1
ikl = 0, uy(xi, d, tl) =

M∑

k=1

āMku
n+1
ikl = 0, (4.65b)

ux(a, yj, tl) =

N∑

k=1

aNku
n+1
kjl = 0, ux(b, yj, tl) =

N∑

k=1

a1ku
n+1
kjl = 0, (4.65c)

wherei = 1, . . . , N ; j = 1, . . . ,M ; l = 1, . . . , L.

As in the case of Klein-Gordon equation, the system (4.64) together with the initial
condition (4.65a) and Neumann boundary conditions (4.65b)-(4.65c) give an overde-
termined system for the numerical solution of sine-Gordon equation. The solution
procedure is also blockwise in time direction. Time blocks in this two-dimensional
case are constructed as shown in Figure4.6.

The discretized systems in (4.54) and (4.64) are solved iteratively by taking the initial
unknown vectoru0 as a zero solution. Then, the iteration is carried till the preassigned
convergence criteria is achieved.
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Figure 4.6: Time blocks for 2D sine-Gordon equation.

4.3.3 Solution procedure

Numerical solutions are obtained with DQM by using Gauss-Chebyshev-Lobatto(GCL)
grid points in space intervals, and GCL grid points in each equally divided time blocks.
Due to the overdetermined systems resulting from the insertion of boundary conditions,
QR factorization is used for the solution.

The stopping (convergence) criterion is‖un+1 − un‖∞ < ǫ with ǫ = 1e− 09.

The first and the last time level values of any time block are computed as

tm0 = (m− 1)
T
bl
, tmL = m

T
bl
,

whereT is the up time-value.
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Some error definitions used in the problems are

L∞ = max
i

∣∣∣uexact
i − ucomputed

i

∣∣∣ , i = 1, . . . , nod

L2 =

√√√√
nod∑

i=1

(uexact
i − ucomputed

i )2

RMS= L2/
√
nod,

wherenod is the total number of grid points in space. These errors at any time-value
are computed once the system is solved at one stroke at any time-block.

The energy of cubic nonlinear Klein-Gordon equation is given

E(t) =
1

2

∫

R

[
u2t + τu2x + 2G(u)

]
dx,

=
1

2

∫

R

[
u2t + τu2x + αu2 +

γu4

2

]
dx, (4.66)

and of the sine-Gordon equation (for undamped caseβ = 0) is also computed

E(t) =
1

2

∫ ∫ [
u2x + u2y + u2t + 2(1− cosu)

]
dxdy. (4.67)

as in [96, 55], respectively. For computing integrals (4.66) and (4.67), Clenshaw-Curtis
Quadrature [151] is employed since we use GCL grid points in space direction.

4.3.4 Klein-Gordon problems

4.3.4.1 Quadratic Klein-Gordon equation

Consider the Klein-Gordon equation with quadratic nonlinearity and exact solution
u(x, t) = x cos(t) [130]

utt − uxx + u2 = −x cos t+ x2 cos2 t, x ∈ (−1, 1) , t > 0, (4.68)

subject to the initial conditions

u(x, 0) = x, ut(x, 0) = 0, x ∈ [−1, 1], (4.69)

and Dirichlet boundary conditions

u(−1, t) = − cos(t), u(1, t) = cos(t), t ≥ 0. (4.70)

The results in Table4.6 are obtained by using N= 21 GCL grid points in space
direction, and10 time-blocks with11 GCL grid points in each block which is a quite
coarse grid. It is found that DQM both in space and blockwise in time procedure gives
very good accuracy compared to numerical procedures in [53, 130] using considerably
small number of grid points both in time and space domains. The accuracy is almost
doubled in terms of RMS errors than the errors given in [53], and much better than
the accuracy obtained in [130] as can be seen from Table4.6. Both space and time
increments used in our solution procedure are much larger than the ones used in [53,
130].
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Table 4.6: Problem 4.3.4.1: Errors in quadratic Klein-Gordon equation.

Present Results In [53] In [130], Method II
t L∞ L2 RMS RMS RMS
1 1.74e-13 3.96e-13 8.64e-14 6.51e-06 4.89e-10
3 2.68e-12 4.37e-12 9.54e-13 1.17e-05 4.66e-10
5 3.19e-12 5.16e-12 1.13e-12 2.19e-05 9.41e-11
7 2.89e-12 4.91e-12 1.07e-12 2.58e-05 5.09e-10
10 3.60e-12 6.08e-12 1.33e-12 7.95e-06 3.96e-10

4.3.4.2 Kink Wave (Cubic Klein-Gordon equation)

This is a cubic nonlinear KGE in the form [130]

utt − α2uxx + αu− βu3 = 0 (4.71)

in the region−10 ≤ x ≤ 10 with initial conditions

u(x, 0) =

√
α

β
tanh(κx), ut(x, 0) = −c

√
α

β
κ sech2(κx), (4.72)

whereκ =
√

α
2(c2−α2)

, andα, β, c2 − α2 > 0. The exact solution is

u(x, t) =

√
α

β
tanh(κ (x− ct)), (4.73)

from which Neumann boundary conditions may be extracted as

ux(−10, t) = κ

√
α

β
sech2 (κ(−10 − ct)) (4.74)

ux(10, t) = κ

√
α

β
sech2 (κ(10− ct)) . (4.75)

Table4.7shows the accuracy of the computed solutions with the variations of number
of grid points in space andα, β values att = 1. As can be seen, whenα is increased
(amplitude of the Kink wave

√
α/β increases), the accuracy reduces. As expected,

accuracy is improved when the number of grid points in space direction is increased.

Table4.8gives the Kink wave numerical solutions at different times.These results are
obtained by dividing T= 24 into 24 time blocks.11 GCL grid points are used at each
time block where the number of iterations carried is5. Moreover, Table4.8 presents
solutions with N= 96 GCL grid points in space, andα = 0.1, β = 1, c = 0.3.

Figure4.7shows the space-time graph of numerical solution of kink wave with N= 96
and L= 11 GCL points in each time blocks up tot = 12.

In Tables4.7and4.8, the energy differences in magnitude between specific and initial
times are also presented.
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Table 4.7: Problem 4.3.4.2: Errors for Kink Wave with different number of grid points
in space att = 1.

N L∞ RMS E(0) |E(t)− E(0)|
α = 0.1, β = 1, c = 0.3

16 2.13e-03 8.08e-04 0.0509468 3.50e-06
32 1.80e-04 7.32e-05 0.0510529 9.57e-08
64 2.21e-07 1.13e-07 0.0510541 4.19e-12
128 3.07e-12 8.29e-13 0.0510541 2.02e-15
256 1.86e-12 2.11e-13 0.0510541 5.90e-16

α = 0.1, β = 10, c = 0.3
16 6.73e-04 2.56e-04 0.0050947 3.50e-07
32 5.69e-05 2.31e-05 0.0051053 9.57e-09
64 6.99e-08 3.56e-08 0.0051054 4.20e-13
128 9.74e-13 2.62e-13 0.0051054 9.80e-17
256 5.92e-13 6.69e-14 0.0051054 2.26e-16

α = 0.2, β = 1, c = 0.3
16 1.13e-02 4.42e-03 0.2090723 7.10e-05
32 3.21e-03 9.40e-04 0.2142506 4.59e-05
64 1.55e-04 4.10e-05 0.2150807 1.87e-07
128 1.71e-07 6.72e-08 0.2150849 2.04e-12
256 6.19e-12 2.20e-12 0.2150849 1.52e-13

Table 4.8: Problem 4.3.4.2: Errors for Kink Wave at different times.

t L∞ RMS |E(t)− E(0)|
9 4.41e-09 1.09e-09 1.66e-12
12 5.25e-09 1.21e-09 6.99e-12
18 3.56e-08 1.38e-08 1.52e-09
24 4.17e-07 1.81e-07 4.37e-07

4.3.4.3 Single-Soliton.

The same nonlinear Klein-Gordon equationutt − α2uxx + αu− βu3 = 0 is solved in
the region−10 ≤ x ≤ 10 with the initial conditions [39, 48, 130]

u(x, 0) =

√
2α

β
sech(λx), ut(x, 0) = cλ

√
2α

β
sech(λx) tanh(λx), (4.76)

whereλ =

√
α

α2 − c2 andα, β, α2 − c2 > 0. The exact solution is

u(x, t) =

√
2α

β
sech(λ (x− ct)), (4.77)

wherec is the velocity and the real parameter
√

2α/β is the amplitude of the wave.
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Figure 4.7: Problem 4.3.4.2: Space-time graph of numericalsolution of Kink Wave up
to t = 12.

Neumann boundary conditions is extracted from the exact solution as

ux(−10, t) = −
√

2a

b
λ sech(λ(−10− ct)) tanh(λ(−10− ct)), (4.78)

ux(10, t) = −
√

2a

b
λ sech(λ(10− ct)) tanh(λ(10− ct)). (4.79)

Table4.9 shows errors for the DQM solution using several number of grid points in
space direction fort = 1 with L = 11 GCL grid points in one time-block, andα =
0.3, β = 1, c = 0.25. Furthermore, Table4.10 shows that DQM gives very good
accuracy with L= 11 GCL grid points in each 12 time-blocks up to T= 12 using N=
256. This again corresponds approximately toh = 0.08 (in the sense of equally spaced
grid points) space increment which is larger than the ones used in other numerical
methods [48, 130]. Figure4.8 depicts the space-time numerical solution at different
time-levels up tot = 12.

Energy differences with the initial energy are also tabulated in Table4.9and4.10. It is
seen that energy does not change as time progresses.
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Table 4.9: Problem 4.3.4.3: Errors for Single Soliton with different number of grid
points in space att = 1.

N L∞ RMS E(0) |E(t)− E(0)|
64 5.96e-02 9.56e-03 0.124433 2.38e-04
128 3.17e-03 4.49e-04 0.119067 2.42e-06
192 1.02e-04 2.08e-05 0.118905 8.52e-09
256 9.01e-06 1.60e-06 0.118904 2.10e-10
320 2.82e-07 5.00e-08 0.118904 5.12e-14

Table 4.10: Problem 4.3.4.3: Errors for Single Soliton at different times.

t L∞ RMS |E(t)− E(0)|
6 1.64e-05 3.32e-06 4.94e-08
9 1.62e-05 3.71e-06 6.27e-08
12 2.23e-05 4.47e-06 6.81e-08

Figure 4.8: Problem 4.3.4.3: Surface plot of Single-Soliton.

4.3.4.4 Double Soliton.

Now, the equation Eq.(4.71) is considered in the region−10 ≤ x ≤ 10 with the initial
conditions [130]

u(x, 0) =

√
2α

β

[
sech

(
λ1(x− x10)

)
+ sech

(
λ2(x− x20)

)]
, (4.80)

ut(x, 0) = c1λ1

√
2α

β
sech

(
λ1(x− x10)

)
tanh

(
λ1(x− x10)

)
(4.81)
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+ c2λ2

√
2α

β
sech

(
λ2(x− x20)

)
tanh

(
λ2(x− x20)

)
, (4.82)

whereλi =
√

α
α2−c2i

, i = 1, 2 andα, β, α2 − c2i > 0. The exact solution is

u(x, t) =

2∑

i=1

√
2α

β
sech

(
λi(x− cit− xi0)

)
. (4.83)

Since the Neumann boundary conditionsux(−10, t) andux(10, t) are almost zero even
for large time values, we will also take the zero gradient on the boundary for this case
as in [23, 48].

The parameters are taken asα = 0.3, β = 1, c1 = 0.25, c2 = −0.25, x10 = −2 and
x20 = 2 as in [23] wherex10, x

2
0 andc1, c2 are the initial (t=0) positions and velocities

of two solitons, respectively.

Table4.11shows L∞ errors at different time levels. L= 11 GCL grid points in each
7 time blocks up to T= 7 and N= 256 GCL grid points in space are employed. At
the collision timet = 7.5, a blow-up occurs as can be seen in Figure4.9for which we
used N= 320 GCL points in space and9 GCL grid points inbl = 15 time blocks up
to T = 7.5.

For the last three examples, the meaning of small difference|E(t)− E(0)| is that the
energy is conserved at any time level.

Table 4.11: Problem 4.3.4.4: Errors for Double Soliton at different times withE(0) =
0.237807.

t L∞ |E(t)− E(0)|
1 8.76e-06 1.49e-10
2 5.92e-05 1.90e-09
3 3.33e-04 4.17e-09
4 1.79e-03 6.46e-09
5 9.54e-03 8.26e-09
6 5.32e-02 9.74e-09
7 4.02e-01 2.33e-07
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Figure 4.9: Problem 4.3.4.4: Surface plot of collision of two solitons att = 7.5.

4.3.5 sine-Gordon problems.

4.3.5.1 Test sine-Gordon problem.

The aim of this test problem is to show the advantage of DQM application when the
boundary conditions are time dependent.

The SGE Eq.(4.61) is considered withβ = 0 andΦ = 1 and the analytical solution [50]
asu(x, y, t) = 4 arctan(exp(x+ y − t)), and thus the initial conditions [50, 55]

u(x, y, 0) = 4 arctan(exp(x+ y)), −7 ≤ x, y ≤ 7,

ut(x, y, 0) = −
4 exp(x+ y)

1 + exp(2x+ 2y)
, −7 ≤ x, y ≤ 7,

and boundary conditions are

ux =
4 exp(x+ y + t)

exp(2t) + exp(2x+ 2y)
, for x=-7 andx=7, −7 ≤ y ≤ 7, t > 0,

uy =
4 exp(x+ y + t)

exp(2t) + exp(2x+ 2y)
, for y=-7 andy=7, −7 ≤ x ≤ 7, t > 0.

As can be seen in Table4.12, the L∞ errors with DQM are less than the L∞ errors
using RBF in [50]. The errors with DQM are obtained using N= M = 36 GCL grid
points inxy-space withbl = 7 blocks in time and L= 5 GCL grid points in each time
block. When the number of grid points in the space domain−7 ≤ x, y ≤ 7 or in time
domain is increased, the increase in accuracy in terms of L∞, L2 and RMS errors may
be obtained.
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The numerical solution att = 7 is depicted in Figure4.10(a), and Figure4.10(b) shows
the agreement between numerical and exact solutions wheny = x.

Table 4.12: Problem 4.3.5.1: Errors for sine-Gordon test problem.

Present Results In [50], RBF method
t RMS L2 L∞ L2

1 0.0008 0.0279 0.0050 0.2860
3 0.0012 0.0423 0.0062 0.5872
5 0.0016 0.0593 0.0096 0.8288
7 0.0025 0.0893 0.0157 1.0706
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Figure 4.10: Problem 4.3.5.1: Plots for test sine-Gordon problem.

4.3.5.2 Line soliton in an inhomogeneous medium

Consider SGE withΦ = 1+sech2
√
x2 + y2 whileβ = 0 over the region−7 ≤ x, y ≤

7 with the initial conditions [8, 32]

u(x, y, 0) = 4 arctan

[
exp

(
x− 3.5

0.954

)]
,

ut(x, y, 0) = 0.629 sech

(
x− 3.5

0.954

)
,

and zero gradient on the boundary.

Figures4.11are obtained using N= M = 21 GCL grid points inxy− space, L= 5
GCL points at each18 time-blocks. These figures are depicted in terms ofsin(u/2)
at timest = 0, 6, 12, 18. The line soliton is going throughx− direction without un-
dergoing any deformations as in [8]. It is transmitted as a straight line soliton. The
deformation occured in the study of Christiansen and Lomdahl [32] at t = 12 was
due to the boundary conditions. In this study, the discretization of Neumann bound-
ary conditions using DQM and adding to the main system is an appropriate approach
to eliminate this deformation. DQM has the capability of capturing this transmission
through the inhomogenity.
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Figure 4.11: Problem 4.3.5.2: Line soliton in an inhomogenous medium.
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4.3.5.3 Circular ring solitons

For the caseΦ = 1, β = 0 over the region−7 ≤ x, y ≤ 7, the circular ring solitons
are obtained with the initial conditions

u(x, y, 0) = 4 arctan
[
exp

(
3−

√
x2 + y2

)]
,

ut(x, y, 0) = 0,

and the zero gradient on the boundary.

Table4.13shows the energy at some values oft. The results are obtained by using
bl = 18 time-blocks with L= 6 GCL grid points at each block. It can be seen that
the energy is conserved when dissipative term is zero. N= M = 36 GCL grid points
are used in space direction to capture good behavior in Figures 4.12. The soliton
wave in terms ofsin(u/2) is drawn with the corresponding contours at different times.
From the initial stage tot = 2.8, shrinks are observed. As time goes on, oscillations
and radiations begin to form and continue. Furthermore, thecenter of soliton does not
change during all transformations. The results are in good agreement with [22, 46, 96].

Table 4.13: Problem 4.3.5.3: The energy of the circular ringsoliton when E(0) =
150.7983.

t t=2.8 t=5.6 t=8.4 t=11.2 t=12.6
E(t) 150.7938 150.7588 150.7559 150.7671 150.7724

|E(t)− E(0)| 0.0045 0.0395 0.0424 0.0312 0.0259
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Figure 4.12: Problem 4.3.5.3: Circular ring solitons.
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4.3.5.4 Collision of two circular solitons

Two circular ring solitons collide in case ofΦ = 1 and initial conditions [96]

u(x, y, 0) = 4 arctan

[
exp

(
4−

√
(x+ 3)2 + (y + 7)2

0.436

)]
,

ut(x, y, 0) = 4.13sinh

(
4−

√
(x+ 3)2 + (y + 7)2

0.436

)
,

over the region−30 ≤ x ≤ 10 and−21 ≤ y ≤ 7.

The system is solved in the region−10 ≤ x ≤ 10 and−7 ≤ y ≤ 7 and then the
solution is expanded by symmetry relations.

In Figures4.13, surface plots of the collision of two expanding circular ring solitons
which are in terms ofsin(u/2) are depicted using N= M = 36 GCL grid points in
space, and11 time-blocks with L= 5 GCL grid points in each block. A large oval
ring soliton which is resulted with the collision between two expanding circular ring
solitons is emerged by two oval ring solitons bounding on an annular region. These
are in good agreement with the results in [8, 96].

4.3.5.5 Collision of four circular solitons

In this case, four circular ring solitons (Φ = 1, β = 0) collide with the initial condi-
tions

u(x, y, 0) = 4 arctan

[
exp

4−
√

(x+ 3)2 + (y + 3)2

0.436

]
,

ut(x, y, 0) = 4.13sech

(
4−

√
(x+ 3)2 + (y + 3)2

0.436

)

over the region−30 ≤ x, y ≤ 10. The Sine-Gordon equation is solved in−10 ≤
x, y ≤ 10, then the solution is expanded using symmetry relations.

We obtain Figures4.14in terms ofsin(u/2) using N= M = 41 GCL points in space
and 11 time-blocks up tot = 11 with L = 5 GCL points in each block. As can
be observed, there is a complex interaction of the four circular solitons in the center
where the values ofu vary rapidly. These are also in good agreement with the results
in [8, 96].

148



−30

−20

−10

0

10

−25
−20

−15
−10

−5
0

5
10

0

0.5

1

x

t=0

y

si
n(

u/
2)

−30

−20

−10

0

10

−25
−20

−15
−10

−5
0

5
10
−1

0

1

x

t=4

y

si
n(

u/
2)

−30

−20

−10

0

10

−25
−20

−15
−10

−5
0

5
10
−1

0

1

x

t=8

y

si
n(

u/
2)

−30

−20

−10

0

10

−25
−20

−15
−10

−5
0

5
10
−1

0

1

x

t=11

y

si
n(

u/
2)

Figure 4.13: Problem 4.3.5.4: Collision of two circular solitons
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Figure 4.14: Problem 4.3.5.5: Collision of four circular solitons
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4.4 The Burgers equations in one- and two-space

As a fundamental partial differential equation from fluid dynamics, Burgers’ equation
occurs in various areas of applied mathematics such as flow through a shock wave
traveling in a viscous fluid, modelling of dynamics, heat conduction, and acoustic
waves. Also, Burgers’ equation in two-space is a simplified model of incompressible
Navier-Stokes equations without considering pressure term. Therefore, the study of
Burgers’ equation can be considered as a prerequisite to thestudy of Navier-Stokes
equations.

The coupled viscous Burgers’ equation in one-space is givenby [100]

ut − uxx + ηuux + α (vux + uvx) = 0, x ∈ (a, b) , t ∈ (0, T ]

vt − vxx + ηvvx + β (vux + uvx) = 0, x ∈ (a, b) , t ∈ (0, T ] (4.84)

with initial and the boundary conditions

u(x, 0) = f1(x), v(x, 0) = f2(x), (4.85a)
u(a, t) = ψ1(a, t), u(b, t) = ψ2(b, t), (4.85b)
v(a, t) = φ1(a, t), v(b, t) = φ2(b, t), (4.85c)

whereη is a real constant,α, β are arbitrary constants depending on the system param-
eters such as Peclet number, Stokes velocity of particles due to gravity and Brownian
diffusivity [114].

Moreover, the system of two-dimensional Burgers’ equations (Navier-Stokes equations
without pressure gradient) are [167]

ut + uux + vuy =
1

Re
(uxx + uyy) , (x, y) ∈ D, t > 0 (4.86a)

vt + uvx + vvy =
1

Re
(vxx + vyy) , (x, y) ∈ D, t > 0 (4.86b)

subject to initial conditions and Dirichlet or Neumann boundary conditions

u(x, y, 0) = h(x, y), v(x, y, 0) = k(x, y), (x, y) ∈ D (4.87a)
u(x, y, t) = p(x, y, t), v(x, y, t) = r(x, y, t), (x, y) ∈ ∂D, t > 0 (4.87b)

∂u

∂n
= m(x, y, t) &

∂v

∂n
= l(x, y, t), (x, y) ∈ ∂D, t > 0 (4.87c)

whereRe is the Reynolds number,D =
{
(x, y)

∣∣ a ≤ x, y ≤ b
}

, ∂D is its boundary,
andh, k, p, r,m, l are known functions.

4.4.1 The coupled Burgers’ equations in one-space

The system of Eqs.(4.84) is linearized first with the following iterative procedure

∂un+1

∂t
− ∂2un+1

∂x2
+ ηun

∂un

∂x
+ α

(
∂un

∂x
vn + un

∂vn

∂x

)
= 0 (4.88a)
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∂vn+1

∂t
− ∂2vn+1

∂x2
+ ηvn

∂vn

∂x
+ β

(
∂un+1

∂x
vn + un+1∂v

n

∂x

)
= 0. (4.88b)

The procedure exploitsun+1 by solving Eq.(4.88a), and then using thisun+1 in Eq.(4.88b)
for obtainingvn+1. Initially, u0 andv0 are given, andn denotes the iteration number.

The differential quadrature method is applied both in time and space directions to the
linearized form of the equations Eqs.(4.88a-4.88b). Polynomial based DQ approxima-
tions for the derivatives in Eqs.(4.88a-4.88b) can be written as

ux =
N∑

k=1

aikukl , uxx =
N∑

k=1

bikukl , i = 1, . . . , N,

vx =

N∑

k=1

aikvkl , vxx =

N∑

k=1

bikvkl , i = 1, . . . , N, (4.89)

ut =
L∑

k=1

¯̄alkuik , vt =
L∑

k=1

¯̄alkvik , l = 1, . . . , L,

whereaik, bik are the coefficients of first and second order space derivatives respec-
tively, and¯̄alk are the first order time derivative coefficients.N andL are the number
of discretization points inx- andt-directions, respectively.

The DQM discretization of Eqs.(4.88a-4.88b) are written now

L∑

k=1

¯̄alku
n+1
ik −

N∑

k=1

biku
n+1
kl + (ηunil + αvnil)

N∑

k=1

aiku
n
kl + αunil

N∑

k=1

aikv
n
kl = 0 (4.90a)

L∑

k=1

¯̄alkv
n+1
ik −

N∑

k=1

bikv
n+1
kl +

(
ηvnil+βu

n+1
il

) N∑

k=1

aikv
n
kl+βv

n
il

N∑

k=1

aiku
n+1
kl =0. (4.90b)

Then, the system of Eqs.(4.90a-4.90b) is solved at one stroke in the whole region
[a, b]× [0, T ].

The iteration between Eq.(4.90a) and Eq.(4.90b) is carried until the convergence crite-
rion

‖un+1 − un‖∞
‖un+1‖∞

+
‖vn+1 − vn‖∞
‖vn+1‖∞

< ǫ (4.91)

is satisfied with a toleranceǫ = 1e− 7.

4.4.1.1 Test problem for 1D viscous Burgers’ equation

In this case, Eq.(4.84) is taken withη = 2 for different values ofα, β in the region
x ∈ [−10, 10], t ∈ (0, 1]. The exact solution is given by [147] as

u(x, t) = a0 (1− tanh (A(x− 2At))) ,
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v(x, t) = a0

(
2β − 1

2α− 1
− tanh (A(x− 2At))

)
,

whereA = 0.5a0
4αβ − 1

2α− 1
anda0 is an arbitrary constant. Initial and boundary condi-

tions are extracted from the exact solution.

Table4.14shows theL2 andL∞ errors for several values ofα andβ at the time values
t = 0.5 and1.0. N = 51 andL = 11 GCL grid points are computed in space (by
Eq.(4.18)) and time domains (by Eq.(4.45)). It is noticed that accuracy increases with
the decrease ina0.

Table 4.14: Problem 4.4.1.1: Errors for 1D Burgers’ equations withN = 51, L = 11.

u v
t a0 α β L2 L∞ L2 L∞

0.5 0.05 0.1 0.3 7.09e-04 6.78e-05 5.65e-04 3.55e-05
0.05 0.3 0.03 1.01e-03 1.48e-04 1.45e-03 3.37e-04
0.005 0.1 0.3 3.54e-05 4.47e-07 2.70e-05 1.78e-07
0.0005 0.1 0.3 3.49e-06 4.27e-09 2.66e-06 1.63e-09

1 0.05 0.1 0.3 1.21e-03 1.06e-04 9.08e-04 5.45e-05
0.05 0.3 0.03 1.46e-03 1.48e-04 2.43e-03 4.03e-04
0.005 0.1 0.3 3.78e-05 4.48e-07 2.84e-05 1.78e-07
0.0005 0.1 0.3 3.59e-06 4.28e-09 2.73e-06 1.64e-09

4.4.2 The Burgers equations in two-spaces

In order to eliminate the nonlinearity, an iterative systemfor Eqs.(4.86) is formed as
follows

∂un

∂t
+ un−1∂u

n

∂x
+ vn−1∂u

n

∂y
=

1

Re

(
∂2un

∂x2
+
∂2un

∂y2

)
(4.92a)

∂vn

∂t
+ un

∂vn

∂x
+ vn−1∂v

n

∂y
=

1

Re

(
∂2vn

∂x2
+
∂2vn

∂y2

)
, (4.92b)

wheren is the iteration number.un is obtained from Eq.(4.92a) and substituted into
Eq.(4.92b) for computingvn.

Polynomial based DQ is constructed for all derivatives inx-, y- and t-directions in
Eq.(4.92a) as

ux =

N∑

k=1

aikukjl, uy =

M∑

k=1

ājkuikl, ut =

L∑

k=1

¯̄alkuijk, (4.93a)

uxx =
N∑

k=1

bikukjl, uyy =
M∑

k=1

b̄jkuikl, (4.93b)
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wherei = 1, 2, . . . , N ; j = 1, . . . ,M ; l = 1, 2, . . . , L, andN,M,L are the number
of grid points inx, y andt spaces, respectively. Similarly, derivatives in Eq.(4.92b) are
defined for thev unknown.

The resulting discretized system of equations may be written as

L∑

k=1

¯̄alku
n
ijk +

N∑

k=1

(
un−1
ijl aik −

bik
Re

)
unkjl +

M∑

k=1

(
vn−1
ijl ājk −

b̄jk
Re

)
unikl = 0 (4.94a)

L∑

k=1

¯̄alkv
n
ijk +

N∑

k=1

(
unijlaik −

bik
Re

)
vnkjl +

M∑

k=1

(
vn−1
ijl ājk −

b̄jk
Re

)
vnikl = 0. (4.94b)

At the beginning,u0 and v0 are taken as zero everywhere ((xi, yj, tl)). Firstly, the
Eq.(4.94a) is solved at one stroke in each time block. Then, the obtained values of
u are carried out in the second equation (4.94b). The solution procedure continues
in this iterative way between these two coupled equations until the stopping criterion
Eq.(4.91) is satisfied withǫ = 1e− 11. Also, it is noticed that the computed values at
an up time value of a time block are the initial values of the next time block.

4.4.2.1 Test problem for 2D viscous Burgers’ equation.

Eqs.(4.86) is concerned in the region(x, y) ∈ [0, 1] with the exact solution [167]

u(x, y, t) =
3

4
− 1

4 (1 + exp(Re(−t− 4x+ 4y)/32))
(4.95a)

v(x, y, t) =
3

4
+

1

4 (1 + exp(Re(−t− 4x+ 4y)/32))
, (4.95b)

and the initial and boundary conditions are taken from this exact solution. The bound-
ary conditions also change with time.

For small Re numbers, GCL grid points in both directions (by Eq.(4.18) and Eq.(4.45))
give good agreement with the exact results. This is due to strong stability and conver-
gence properties of GCL grid points [142]. In Table4.15,L∞ error is given at different
time levels for several values ofRe. Due to the dominance of convection terms with
the increase inRe, the increase in the number of spatial discretization points improves
the results. In Table4.16, DQM results are compared with the exact results at some
specific GCL grid points in space withRe = 100.

For a much larger value ofRe, concerning the system as one block up tot = 2 increas-
ing the number of grid points makes the whole system very large. Therefore, keeping
N = M fixed, time is equally divided into blocks and each block is solved as a whole
system. By this way, one enables to make the time increment smaller. Iteration is car-
ried out at each block taking the previous block values as initial iteration values. The
results in Table4.17obtained by usingN = M = 23 with L = 7 in each9 blocks up
to t = 2 (i.e. 0.25 is the time block increment) capture at least10−2 accuracy. Mittal et
al. [99] has also solved the same problem by using DQM in space and 4thorder Runge
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Kutta method in time direction. In that study, for the same Reynolds number, at least
10−2 accuracy inL∞ error is also seen at equally spaced spatial points.

Table 4.15: Problem 4.4.2.1:L∞ errors for 2D Burgers’ equations for various values
of L andRe.

t=1.0 t=2.0
N =M L Re u v u v

11 11 1 2.00e-15 6.00e-15 2.55e-15 5.22e-15
11 11 10 3.55e-12 3.54e-12 2.80e-12 2.80e-12
11 11 100 1.47e-03 1.47e-03 1.20e-03 1.20e-03
11 21 100 1.48e-03 1.48e-03 1.20e-03 1.20e-03
21 11 100 1.75e-05 1.75e-05 1.04e-05 1.04e-05

Table 4.16: Problem 4.4.2.1: 2D Burgers’ equations solution with Re = 100, N =
M = 21, L = 13 at t = 0.5, 2.

u v
Exact DQM Exact DQM

t=0.5
(0.5000,0.0955) 0.50033 0.50033 0.99967 0.99967
(0.2730,0.2730) 0.54332 0.54333 0.95668 0.95667
(0.6545,0.2730) 0.50044 0.50045 0.99956 0.99955

(0.5,0.5) 0.54332 0.54332 0.95668 0.95668
(0.5,0.9045) 0.74263 0.74263 0.75737 0.75737

t=2
(0.5000,0.0955) 0.50000 0.50000 1.00000 1.00000
(0.2730,0.2730) 0.50048 0.50048 0.99952 0.99952
(0.6545,0.2730) 0.50000 0.50000 1.00000 1.00000

(0.0955,0.5) 0.55815 0.55814 0.94185 0.94186
(0.5,0.5) 0.50048 0.50048 0.99952 0.99952

(0.5,0.9045) 0.55815 0.55815 0.94185 0.94185
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Table 4.17: Problem 4.4.2.1: 2D Burgers’ equations withRe = 1000, N = M =
23, bl = 9, L = 7 at t = 0.5, 2.

u v
Exact DQM Exact DQM

t=0.5
(0.0794,0.0794) 0.50000 0.49672 1.00000 1.00328
(0.0794,0.5000) 0.75000 0.75243 0.75000 0.74757
(0.0794,0.9206) 0.75000 0.75601 0.75000 0.74398
(0.5000,0.0794) 0.50000 0.49882 1.00000 1.00118
(0.5000,0.5000) 0.50000 0.51162 1.00000 0.98838
(0.5000,0.9206) 0.75000 0.75750 0.75000 0.74252
(0.9206,0.0794) 0.50000 0.50559 1.00000 0.99441
(0.9206,0.5000) 0.50000 0.49212 1.00000 1.00788
(0.9206,0.9206) 0.50000 0.51456 1.00000 0.98548

t=2
(0.0794,0.0794) 0.50000 0.50984 1.00000 0.99016
(0.0794,0.5000) 0.50001 0.47327 0.99999 1.02673
(0.0794,0.9206) 0.75000 0.73039 0.75000 0.76961
(0.5000,0.0794) 0.50000 0.50356 1.00000 0.99645
(0.5000,0.5000) 0.50000 0.49451 1.00000 1.00548
(0.5000,0.9206) 0.50001 0.48653 0.99999 1.01347
(0.9206,0.0794) 0.50000 0.49954 1.00000 1.00046
(0.9206,0.5000) 0.50000 0.50094 1.00000 0.99906
(0.9206,0.9206) 0.50000 0.49977 1.00000 1.00024

4.5 MHD flow in a rectangular duct

The governing equations of the unsteady MHD duct flow of an incompressible, elec-
trically conducting fluid are of diffusion-convection type, and the velocity fieldV is
coupled with the induced magnetic fieldB in the equations. These coupled equations
are easily treated by DQM. Therefore, the DQM discretization of the governing equa-
tions in terms of transformed variables, and the numerical results are presented in this
section.

Coupled MHD equations are

∇2V +Ha
∂B

∂x
− ∂V

∂t
= −1, (4.96a)

∇2B +Ha
∂V

∂x
− ∂B

∂t
= 0, (4.96b)

whereV = B = 0 on the boundary of the duct which is insulated.Ha is the Hartmann
number given byB0L

√
σ/νρ.

The decoupled form of the dimensionless MHD duct flow equations (4.96) by the
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change of variablesΨ = V +B, Φ = V −B are

∇2Ψ+Ha
∂Ψ

∂x
− ∂Ψ

∂t
= −1, (4.97a)

∇2Φ−Ha∂Φ
∂x
− ∂Φ

∂t
= −1, (4.97b)

with the initial and boundary conditions

Ψ(x, y, 0) = Φ(x, y, 0) = 0, (x, y) ∈ Ω

Ψ(x, y, t) = Φ(x, y, t) = 0, (x, y) ∈ ∂Ω.

Equations (4.97) are parabolic convection-diffusion equations which become convec-
tion dominated for large values ofHa.

Applying the polynomial based DQ, all the derivatives in Eqs.(4.97) may be arranged
as follows

∂Ψ

∂x
=

N∑

k=1

aikΨkjl,
∂2Ψ

∂x2
=

N∑

k=1

bikΨkjl (4.98)

∂Ψ

∂y
=

M∑

k=1

ājkΨikl,
∂2Ψ

∂y2
=

M∑

k=1

b̄jkΨikl (4.99)

∂Ψ

∂t
=

L∑

k=1

¯̄alkΨijk,
∂2Ψ

∂t2
=

L∑

k=1

¯̄blkΨijk (4.100)

wherei = 1, . . . , N ; j = 1, . . . ,M ; l = 1, 2, . . . , L discretization points onx-axis,
y-axis andt-axis, respectively. This formulation is similar forΦ.

The discretized forms of the Eq.(4.97a) and Eq.(4.97b) are as follows

N∑

k=1

bikΨkjl +
M∑

k=1

b̄jkΨikl +Ha
N∑

k=1

aikΨkjl −
L∑

k=1

¯̄alkΨijk = −1. (4.101a)

N∑

k=1

bikΦkjl −
M∑

k=1

b̄jkΦikl −Ha
N∑

k=1

aikΦkjl −
L∑

k=1

¯̄alkΦijk = −1. (4.101b)

The systems (4.101a) and (4.101b) will be solved at one time. The solution set will give
all values at each time level. Left hand side of Eq.(4.101a) gives a huge block matrix of
size(L×M×N)×(L×M×N). Concerning the unknown vector as a matrix, each row
corresponds to one time level. In order to reduce the system size, Dirichlet boundary
conditions are inserted. Furthermore, an iterative solvergeneralized minimum residual
norm (GMRES) is employed to solve the deduced system of equations of the form
Ax = b due to the increase in the system size to obtain the reasonable behavior for
large values ofHa.

Gauss-Chebyshev-Lobatto (GCL) grid points onx andy spaces and equally spaced
grid points ont-axis are used. For the rectangular duct(−1 ≤ x ≤ 1,−1 ≤ y ≤ 1),
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all grid points are computed as

xi = − cos

(
i− 1

N − 1

)
, yj = − cos

(
j − 1

M − 1

)
, ti =

(l − 1)T

L− 1
, (4.102)

wherei = 1, 2, . . . , N ; j = 1, 2, . . . ,M ; l = 1, 2, . . . , L andT is the up time value.

Figure4.15shows the behaviors of velocity and induced magnetic field along thex-
axis (y = 0, 0 ≤ x ≤ 1) for Ha = 10 at several time levels. As is seen, almost the
same values are obtained att = 0.3 andt = 0.5. Namely, the steady-state solution
starts att = 0.3.

Figures4.16-4.18show the surface plots and contours of velocity and induced mag-
netic field lines from top to bottom at the left column and right column part of the
figures, respectively. With the increase in Hartmann number, strong boundary layer
formations clustering through the walls is observed both inthe velocity and induced
magnetic field. Further, the velocity becomes stagnant at the center of the duct.

Due to the small up time values,L is taken as small in high values ofHa. As an
observation, although the up time value is small, large values ofL may be taken as
well asN =M . However, the expected behavior is not well observed. If thetolerance
ǫ = 1e − 3 is attained to determine the steady state (‖Ψi,j,n+1 −Ψi,j,n‖∞ < ǫ and
‖Φi,j,n+1 − Φi,j,n‖∞ < ǫ), the steady state time values withHa = 10, 100, 500 are
computed as0.3, 0.1, 0.1, respectively. Alteration in this tolerance and up time value
naturally affect the time value to reach the steady-state. Blocks in time also work in
this problem.
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Figure 4.15: Problem 4.5:Ha = 10, T = 0.5, N =M = 21, L = 6
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Figure 4.16: Problem 4.5: Surface and contour plots of velocity and induced magnetic
field lines withHa = 10.

In this chapter, differential quadrature method (DQM) is applied to some prominent
physical problems such as 1D and 2D hyperbolic telegraph equations, Klein and sine-
Gordon equations, Burgers’ equations and MHD duct flow equations. In all problems,
time dependent governing equations are discretized by DQM both in time and space
directions. In some cases in which the small up time level is required or exists, the
system is considered as a whole meaning that the numerical solution is obtained at one
stroke. For some other cases, as the space derivatives are discretized by DQM, time
derivatives are discretized at each time blocks. That is, the solution is obtained at one
stroke in one block and these results provide the progress ofiteration for the next time
levels. Nonlinearity at all problems is eliminated by an iteration depending on initial
condition(s).

The accuracy of the proposed method (DQM both in time and space) is very good
when the results are compared with the existent analytical solutions. In general, the
results are obtained using considerably small number of grid points. However, the
system considered as a whole has large size for 2D problems resulting with high com-
putational cost and much more memory usage than 1D problems.In order to alleviate
this drawback, block by block time iterations, boundary conditions (Dirichlet type)
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Figure 4.17: Problem 4.5: Surface and contour plots of velocity and induced magnetic
field lines withHa = 100, T = 0.3, N =M = 36, L = 4.

implementation and the iterative solvers are utilized. Another remarkable point is that
the usage of non-uniform grid point distribution exhibits numerically stable results.
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Figure 4.18: Problem 4.5: Surface and contour Plots of velocity and induced magnetic
field lines withHa = 500, T = 0.3, N =M = 61, L = 4.
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CHAPTER 5

CONCLUSION

The most parts of this thesis involve the dual reciprocity boundary element solution
of mixed (natural and forced) convection flow problems in porous and non-porous
medium either in the presence of an applied magnetic field or without the magnetic
effect. The two-dimensional incompressible fluid flow governed by the Navier-Stokes
equations, and the Maxwell’s equations in the presence of magnetic effect are solved
numerically. DRBEM is chosen due to the boundary-only nature of the method, and
linear boundary elements are adopted throughout the thesis. Further, the DRBEM is
capable of using the fundamental solution of Laplace equation, and approximating
the inhomogeneous terms by radial basis functions. In particular, DRBEM is used
to compute space derivatives with the help of coordinate matrix constructed by radial
basis functions.

In an isotropic, homogeneous porous medium, Brinkman-extended Darcy model is
adopted. In this case, the decrease in the effective parameter Darcy number gives rise
to the slow fluid movement. Under the effect of an applied magnetic field, the problems
are considered either neglecting the induced magnetic fieldor not, according to the
value of magnetic Reynolds number. In most of the applications, induced magnetic
field is neglected due to the small magnetic permeability of the electrically conducting
fluid. The intense imposition of an applied magnetic field (the increase in Hartmann
number) causes the fluid to flow slowly, and heat transfer is suppressed. This is a
similar effect as in the decrease in Darcy number in a porous medium. Further, the
natural convection is pronounced with the increase in buoyancy. In other words, the
forced convection (e.g. due to the lid movement in a lid-driven cavity) diminishes.

In addition to the momentum equations and energy equation, considering the induc-
tion equations which means that the induced magnetic field isnot neglected, the two-
dimensional, unsteady, laminar MHD flow of an incompressible, viscous fluid is also
solved by DRBEM utilizing a conventional time integration scheme. The governing
equations referred as full MHD equations are solved either in terms of magnetic in-
duction components or only magnetic potential and current density variables. In these
problems, induced magnetic field or magnetic potential behaviors are altered with the
variation in magnetic Reynolds number.

Apart from the applications of DRBEM to fluid flow problems, differential quadrature
method is also used for solving mostly hyperbolic, and parabolic type partial differ-

163



ential equations. DQM is applied both in discretization of time and space derivatives.
This enables one to obtain the numerical results at one stroke. However, in 2D prob-
lems, the discretized system both in space and time results in a large sized system of
equations causing high computational cost and memory usage. Therefore, the pro-
posed method progresses block by block in time dividing timeinto blocks. In general,
the computed results are obtained by using considerably small number of grid points
by DQM compared to the other domain discretization methods.

Further investigations should be concentrated on the domain decompositions in the
applications of DRBEM and DQM for complicated regions. Also, mixed convection
flow in a porous enclosure containing an electrically conducting obstruction under the
effect of an applied magnetic field should be investigated.
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APPENDIX A

Non-dimensionalizations

Defining the non-dimensional variables as,

x′ =
x

L
, y′ =

y

L
, u′ =

u

U
, v′ =

v

U
, t′ =

tU

L

T ′ =
T − Tc
Th − Tc

, B′
x =

Bx

B0
, B′

y =
By

B0

A′ =
A

B0L
, ψ′ =

ψ

UL
, w′ =

wL

U
, j′ =

j

B0Uσ
.

the dimensionless equations for stream function, temperature, vorticity transport and
induced magnetic field are derived as follows.

A.1 Stream function equation

Note that

w = ∇× u =
∂v

∂x
− ∂u

∂y
= −∇2ψ

Applying the non-dimensional variables, we obtain

UL

L2
∇2ψ′ = −Uw

′

L

Cancelling the same terms and dropping the primes, the stream function equation

∇2ψ = −w (A.1)

is obtained.

A.2 Energy equation

The dimensional governing equation for energy is

α∇2T =
∂T

∂t
+ u.∇T (A.2)
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The non-dimensional parameters are used as

α∆T

L2
∇2T ′ =

U∆T

L

∂T ′

∂t′
+
U∆T

L
u′
∂T ′

∂x′
+
U∆T

L
v′
∂T ′

∂y′
. (A.3)

If each term is multiplied byL/(U∆T ), and the prime notation is dropped, the non-
dimensional form of the energy equation will be

1

PrRe
∇2T =

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
(A.4)

where
α

L2
.
L

U
=
ν

ν

α

LU
=

1

PrRe

A.3 Induction, magnetic potential and current density equations

In Eq.(1.31),
1

σµm
∇2B =

∂B

∂t
−∇× (u×B) , (A.5)

and
∇× (u×B) = u(∇.B︸︷︷︸

0

)−B(∇.u︸︷︷︸
0

) + (B.∇)u− (u.∇)B (A.6)

where

(B.∇)u =

(
Bx

∂

∂x
+By

∂

∂y

)
u =< Bx

∂u

∂x
+By

∂u

∂y
, Bx

∂v

∂x
+By

∂v

∂y
>

(u.∇)B =

(
u
∂

∂x
+ v

∂

∂y

)
B =< u

∂Bx

∂x
+ v

∂Bx

∂y
, u
∂By

∂x
+ v

∂By

∂y
>

such that

∇×(u×B) =< Bx
∂u

∂x
+By

∂u

∂y
−u∂Bx

∂x
−v∂Bx

∂y
, Bx

∂v

∂x
+By

∂v

∂y
−u∂By

∂x
−v∂By

∂y
>

(A.7)

Thus, the induction equations for thex− andy− components ofB in dimensional
form are

1

σµm
∇2Bx =

∂Bx

∂t
+ u

∂Bx

∂x
+ v

∂Bx

∂y
−Bx

∂u

∂x
− By

∂u

∂y
(A.8a)

1

σµm
∇2By =

∂By

∂t
+ u

∂By

∂x
+ v

∂By

∂y
− Bx

∂v

∂x
−By

∂v

∂y
(A.8b)

which are employed by non-dimensional variables as

B0

σµmL2
∇2B′

x =
B0U

L

∂B′
x

∂t′
+
B0U

L
u′
∂B′

x

∂x′
+
B0U

L
v′
∂B′

x

∂y′
− B0U

L
B′
x

∂u′

∂x′
− B0U

L
B′
y

∂u′

∂y′
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B0

σµmL2
∇2B′

y =
B0U

L

∂B′
y

∂t′
+
B0U

L
u′
∂B′

y

∂x′
+
B0U

L
v′
∂B′

y

∂y′
− B0U

L
B′
x

∂v′

∂x′
− B0U

L
B′
y

∂v′

∂y′

Multiplying all the terms byL/(B0U) and dropping the prime notation, the non-
dimensional form of the induction equations are obtained as

1

Rem
∇2Bx =

∂Bx

∂t
+ u

∂Bx

∂x
+ v

∂Bx

∂y
−Bx

∂u

∂x
− By

∂u

∂y
(A.9a)

1

Rem
∇2By =

∂By

∂t
+ u

∂By

∂x
+ v

∂By

∂y
− Bx

∂v

∂x
− By

∂v

∂y
(A.9b)

where
B0

σµmL2

L

B0U
=

1

Rem
.

Since the current displacement is assumed to be negligibly small, current density is

J =
1

µm
(∇×B) . (A.10)

ConsideringJ = (0, 0, j) andB = (Bx, By, 0), we can write

j =
1

µm

(
∂By

∂x
− ∂Bx

∂y

)
. (A.11)

Now, it can be given in non-dimensional form as

j′B0Uσ =
B0

µmL

(
∂B′

y

∂x′
− ∂B′

x

∂y′

)
, (A.12)

and canceling the termsB0Uσ on both sides of Eq.(A.12), and then dropping the prime
notation, non-dimensional current density is

j =
1

Rem

(
∂By

∂x
− ∂Bx

∂y

)
. (A.13)

Applying the operator−∂/∂y to Eq.(A.8a) and∂/∂x to Eq.(A.8b), and then adding
these two, it can be written

1

σµm
∇2

(
∂By

∂x
− ∂Bx

∂y

)
=

∂

∂t

(
∂By

∂x
− ∂Bx

∂y

)

+
∂u

∂x

∂By

∂x︸ ︷︷ ︸
1

+u
∂2By

∂x2︸ ︷︷ ︸
2

−∂u
∂y

∂Bx

∂x︸ ︷︷ ︸
3

−u∂
2By

∂y∂x︸ ︷︷ ︸
2

+
∂v

∂x

∂By

∂y︸ ︷︷ ︸
3′

+v
∂2By

∂x∂y︸ ︷︷ ︸
4

−∂v
∂y

∂Bx

∂y︸ ︷︷ ︸
1′

−v∂
2Bx

∂y2︸ ︷︷ ︸
4
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−∂Bx

∂x

∂v

∂x︸ ︷︷ ︸
3

−Bx
∂2v

∂x2︸ ︷︷ ︸
5

+
∂Bx

∂y

∂u

∂x︸ ︷︷ ︸
1

+Bx
∂2u

∂y∂x︸ ︷︷ ︸
5

−∂By

∂x

∂v

∂y︸ ︷︷ ︸
1′

−By
∂2v

∂y∂x︸ ︷︷ ︸
6

+
∂By

∂y

∂u

∂y︸ ︷︷ ︸
3′

+By
∂2u

∂y2︸ ︷︷ ︸
6

∂u

∂x
= −∂v

∂y
⇒ 1©+ 1′© = −2∂v

∂y

(
∂Bx

∂y
+
∂By

∂x

)

2© u
∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
= µmu

∂j

∂x

∂By

∂y
= −∂Bx

∂x
⇒ 3©+ 3′© = −2∂Bx

∂x

(
∂u

∂y
+
∂v

∂x

)

4© v
∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)
= µmv

∂j

∂y

5© − Bx
∂

∂x

(
∂v

∂x
− ∂u

∂y

)
= −Bx

∂w

∂x

6© − By
∂

∂y

(
∂v

∂x
− ∂u

∂y

)
= −By

∂w

∂y
.

Thus, the dimensional form of the current density equation is

1

σ
∇2j = µm

(
∂j

∂t
+ u

∂j

∂x
+ v

∂j

∂y

)
−
(
Bx

∂w

∂x
+By

∂w

∂y

)

− 2

[
∂Bx

∂x

(
∂v

∂x
+
∂u

∂y

)
+
∂v

∂y

(
∂Bx

∂y
+
∂By

∂x

)]
.

With the help of the defined non-dimensional parameters, we can write

B0Uσ

σL2
∇2j′ = µm

B0U
2σ

L

(
∂j′

∂t′
+ u′

∂j′

∂x′
+ v′

∂j′

∂y′

)
− B0U

L2

(
B′
x

∂w′

∂x′
+B′

y

∂w′

∂y′

)

− 2
B0U

L2

[
∂B′

x

∂x′

(
∂v′

∂x′
+
∂u′

∂y′

)
+
∂v′

∂y′

(
∂B′

x

∂y′
+
∂B′

y

∂x′

)]

Once the each term is multiplied byL2/(UB0), and the prime notation is dropped, the
non-dimensional form of the current density equation is also obtained as

∇2j = Rem

(
∂j

∂t
+ u

∂j

∂x
+ v

∂j

∂y

)
−
(
Bx

∂w

∂x
+By

∂w

∂y

)

− 2

[
∂Bx

∂x

(
∂v

∂x
+
∂u

∂y

)
+
∂v

∂y

(
∂Bx

∂y
+
∂By

∂x

)]
(A.14)
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Thex- andy-components ofB in terms of vector potentialA = (0, 0, A) is written
asBx = ∂A/∂y andBy = −∂A/∂x satisfying the solenoidal nature∇.B = 0.
Putting these definitions into Eq.(A.11), and then non-dimensionalizing, we obtain, in
succession,

∇2A = −µmj
B0L

L2
∇2A′ = −µmB0Uσj

′

∇2A′ = −µmULσj′

∇2A = −Remj

Or, with already non-dimensionalized equations, substituting the definitions ofBx and
By into Eq.(A.13), the magnetic potential equation is obtained as

j =
1

Rem

(
−∂

2A

∂x2
− ∂2A

∂y2

)

∇2A = −Remj (A.15)

An alternative magnetic potential equation may be derived instead of Eq.(A.15). Using
Eq.(A.9a) andBx = ∂A/∂y,

1

Rem
∇2

(
∂A

∂y

)
=

∂

∂t

(
∂A

∂y

)
+ u

∂

∂x

(
∂A

∂y

)
+ v

∂

∂y

(
∂A

∂y

)
− Bx

∂u

∂x
− By

∂u

∂y

∇2

(
∂A

∂y

)
=
∂2

∂x2

(
∂A

∂y

)
+
∂2

∂y2

(
∂A

∂y

)
=

∂

∂y

(
∂2A

∂x2

)
+
∂

∂y

(
∂2A

∂y2

)
=
∂

∂y

(
∇2A

)

1

Rem

∂

∂y

(
∇2A

)
=

∂

∂y

(
∂A

∂t

)
+

∂

∂y

(
u
∂A

∂x

)
− ∂u

∂y

∂A

∂x

+
∂

∂y

(
v
∂A

∂y

)
− ∂v

∂y

∂A

∂y
− Bx

∂u

∂x
− By

∂u

∂y

Cancelling bold terms by the last two terms using continuityequation and the definition
By = −∂A/∂x, and then dropping the operator∂/∂y from both sides, the following
magnetic potential equation is obtained

1

Rem
∇2A =

∂A

∂t
+ u

∂A

∂x
+ v

∂A

∂y
. (A.16)

A.4 Vorticity transport equation

In Eq.(1.32b),

−1

ρ
(J×B) =

1

ρ
(B× J) =

1

ρµm
(B× (∇×B)) ,
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where

B× (∇×B) = B×

∣∣∣∣∣∣

~i ~j ~k
∂
∂x

∂
∂y

0

Bx By 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣

~i ~j ~k
Bx By 0

0 0 ∂By
∂x
− ∂Bx

∂y

∣∣∣∣∣∣

=< By

(
∂By

∂x
− ∂Bx

∂y

)
,−Bx

(
∂By

∂x
− ∂Bx

∂y

)
>,

and note thatg = (0,−g, 0) is considered.

Thus, momentum equations foru andv components, respectively, are

ν∇2u =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂P

∂x
+

By

ρµm

(
∂By

∂x
− ∂Bx

∂y

)
(A.17)

ν∇2v =
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂P

∂y
− Bx

ρµm

(
∂By

∂x
− ∂Bx

∂y

)
− gβ(T − Tc) (A.18)

When the non-dimensional variables are performed with the non-dimensional defini-
tion of pressure asP ′ = P/(ρU2),

νU

L2
∇2u′ =

U2

L

∂u′

∂t′
+
U2

L
u′
∂u′

∂x′
+
U2

L
v′
∂u′

∂y′
+
ρU2

ρL

∂P ′

∂x′
+

B2
0

ρµmL
B′
y

(
∂B′

y

∂x′
− ∂B′

x

∂y′

)

νU

L2
∇2v′ =

U2

L

∂v′

∂t′
+
U2

L
u′
∂v′

∂x′
+
U2

L
v′
∂v′

∂y′
+
ρU2

ρL

∂P ′

∂y′
+

B2
0

ρµmL
B′
x

(
∂B′

y

∂x′
− ∂B′

x

∂y′

)
− gβ∆TT ′,

and each term is multiplied byL/U2, then dropping the prime notations, non-dimensional
form of u- andv-components of velocity are deduced as

1

Re
∇2u =

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂P

∂x
+

Ha2

ReRem
By

(
∂By

∂x
− ∂Bx

∂y

)
(A.19a)

1

Re
∇2v =

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂P

∂y
− Ha2

ReRem
Bx

(
∂By

∂x
− ∂Bx

∂y

)
− Ra

PrRe2
T

(A.19b)

where
νU

L2

L

U2
=

ν

LU
=

1

Re
(A.20a)

gβ∆TL

U2

α.ν.ν.L2

α.ν.ν.L2
=
gβ∆TL3

αν

α

ν

ν2

U2L2
=

Ra

PrRe2
(A.20b)

B2
0

ρµmL

L

U2
=

B2
0

ρµmU2

L2.σ.µ

L2.σ.µ
=
B2

0L
2σ

µ

1

σµmUL

ν

UL
=

Ha2

ReRem
(A.20c)

Applying the operators∂/∂y and−∂/∂x to the Eqs.(A.19a) and (A.19b), respectively,
pressure terms are eliminated and the non-dimensional vorticity transport equation is
obtained as

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Ra

PrRe2
∂T

∂x
(A.21)
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− Ha2

ReRem

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]

Since
1

Rem

(
∂By

∂x
− ∂Bx

∂y

)
= j, Eq.(A.21) may also be written as

1

Re
∇2w =

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− Ha2

Re

(
Bx

∂j

∂x
+By

∂j

∂y

)
− Ra

PrRe2
∂T

∂x
(A.22)

Note that the dimensional vorticity equation may be extracted by Eqs.(A.17)-(A.18)
eliminating the pressure at dimensional stage. Then, applying the non-dimensional
variable definitions to this dimensional form of the vorticity equation, non-dimensional
vorticity equation as in Eq.(A.21) is obtained. In other words, consider the equation

ν∇2w =
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− gβ∂T

∂x

− 1

ρµm

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]
, (A.23)

and the dimensionless definition of vorticityw′ = wL/U with the other dimensionless
variables defined at the beginning of this appendix. In primenotations,

νU

L3
∇2w′ =

U2

L2

∂w′

∂t′
+
U2

L2
u′
∂w′

∂x′
+
U2

L2
v′
∂w′

∂y′
− gβ∆T

L
T ′

− B2
0

ρµmL2

[
B′
x

∂

∂x′

(
∂B′

y

∂x′
− ∂B′

x

∂y′

)
+B′

y

∂

∂y′

(
∂B′

y

∂x′
− ∂B′

x

∂y′

)]
. (A.24)

Once each term is multiplied byL2/U2, then Eq.(A.24) is rewritten as

ν

LU
∇2w′ =

∂w′

∂t′
+ u′

∂w′

∂x′
+ v′

∂w′

∂y′
− gβL∆T

U2
T ′

− B2
0

ρµmU2

[
B′
x

∂

∂x′

(
∂B′

y

∂x′
− ∂B′

x

∂y′

)
+B′

y

∂

∂y′

(
∂B′

y

∂x′
− ∂B′

x

∂y′

)]
. (A.25)

Dropping the prime notation, and with the definitions of dimensionless numbers (A.20),
the vorticity transport equation (A.21) in dimensionless form is obtained.
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APPENDIX B

Composite quadrature rules with equally spaced points

B.1 Composite trapezoidal rule

Suppose that the interval[a, b] is subdivided inton subintervals[xi, xi+1] of width
h = (b − a)/n by using the equally spaced nodesxi = a + ih, for i = 0, 1, 2, . . . n.
The composite trapezoidal rule forn subintervals for the approximation of the integral
of f(x) over[a, b] is [94]

∫ b

a

f(x)dx ≈ h

2
(f(a) + f(b)) + h

n−1∑

i=1

f(xi), (B.1)

and the error term is−b− a
12

h2f ′′(τ), τ ∈ (a, b). Note thatn can either an even or an

odd number.

B.2 Composite Simpson’s rule

Suppose that the interval[a, b] is subdivided into2n subintervals[xi, xi+1] of equal
width h = (b − a)/(2n) by usingxi = a + ih for i = 0, 1, 2, . . . , 2n. The composite
Simpson’s rule for2n subintervals for the approximation to the integral off(x) over
[a, b] is [94]

∫ b

a

f(x)dx ≈ h

3

(
f(a) + f(b) + 2

n−1∑

i=1

f(x2i) + 4
n∑

i=1

f(x2i−1)

)
, (B.2)

and the error term is−b− a
180

h4f (4)(τ), τ ∈ (a, b). Note that the number of subintervals

should be an even number (2n).

B.3 Composite Simpson’s 3/8 rule

Suppose that the interval[a, b] is subdivided into3n+1 subintervals[xi, xi+1] of equal
widthh = (b−a)/(3n+1) by usingxi = a+(i−1)h for i = 1, 2, . . . , 3n+1. Extending
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the Simpson’s3/8 rule [29], the composite Simpson’s rule for3n+ 1 subintervals for
the approximation to the integral off(x) over[a, b] is derived as

∫ b

a

f(x)dx ≈ 3h

8

(
f(x1) + 3

n∑

i=1

f(x3i−1) + 3

n∑

i=1

f(x3i) + 2

n−1∑

i=1

f(x3i+1) + f(xN)

)
,

(B.3)

and the error term is−b− a
80

h4f (4)(τ), τ ∈ (a, b). Note thatN − 1 should be divided

by 3.
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