
 

 

 

REAL-TIME SINGLE FRAME SUPERRESOLUTION 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO  

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES  

OF  

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

BY 

 

 

 

CEM TARHAN 

 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR  

THE DEGREE OF MASTER OF SCIENCE 

IN 

ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 

 

 

 

JUNE 2014 

 

 

 

 

 

 



 



Approval of the thesis: 

 

REAL TIME SINGLE FRAME SUPER RESOLUTION 

 

 

 

submitted by CEM TARHAN in partial fulfillment of the requirements for the 

degree of Master of Science in Electrical and Electronics Engineering 

Department, Middle East Technical University by, 

 

 

Prof. Dr. Canan Özgen 

Dean, Graduate School of Natural and Applied Sciences 

 

Prof. Dr. Gönül Turhan Sayan 

Head of Department, Electrical and Electronics Engineering 

 

Prof. Dr. Gözde Bozdağı Akar 

Supervisor, Electrical and Electronics Engineering Dept., METU 

 

 

Examining Committee Members: 

 

 

Prof. Dr. A. Aydın Alatan 

Electrical and Electronics Engineering Dept., METU 

 

Prof. Dr. Gözde Bozdağı Akar 

Electrical and Electronics Engineering Dept., METU 

 

Assoc. Prof. Dr. İlkay Ulusoy 

Electrical and Electronics Engineering Dept., METU 

 

Assist. Prof. Dr. Fatih Kamışlı 

Electrical and Electronics Engineering Dept., METU 

 

Cahit Uğur Ungan, M.Sc 

SST, ASELSAN Inc. 

 

 

       Date:         05/06/2014       

 



 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced 

all material and results that are not original to this work. 

 

Name, Last name  : Cem TARHAN 

Signature  :  

 



 

v 

ABSTRACT 

 

REAL-TIME SINGLE FRAME SUPERRESOLUTION 

 

 

Tarhan, Cem 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Gözde Bozdağı Akar 

 

 

May 2014, 94 pages 

 

A demand in real-time applications for superresolution increases as the surveillance 

and low resolution camera usage is spread for cost optimization. In this thesis two 

real-time superresolution algorithms have been proposed. The first algorithm 

(NDUID) is composed of non-dyadic upsampling cascade for smooth interpolation 

and an edge enhancement block that uses a non-blind deconvolution. Second 

algorithm (EDAT) starts with Total Variation decomposition. The structure 

component is interpolated with a fast edge adaptive interpolation and the edges are 

enhanced using a shock filter. Texture channel only upsampled by bicubic 

interpolation. The EDAT is also implemented on a Spartan 3A DSP FPGA to 

demonstrate the results on a real application. Experimental results show that 

implemented algorithm is capable of upsampling 320x240 resolution images by a 

factor of two at 52 fps with better quality than other real-time algorithms. 

 

Keywords: Super Resolution, Total Variation, Bilateral Filter, Edge Adaptive 

Interpolation, Non-Dyadic Upsampling, Non-Blind Deconvolution, FPGA, Real 

time algorithm. 
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ÖZ 

 

GERÇEK ZAMANLI TEK RESİM SÜPERÇÖZÜNÜRLÜK 

 

 

Tarhan, Cem 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 

 

 

Mayıs 2014, 94 sayfa 

 

Gerçek zamanlı süperçözünürlük uygulamaları, artan izleme kameraları ve 

yaygınlaşan düşük çözünürlüklü kamera kullanımı ile artmaktadır. Bu tezde gerçek 

zamanlı iki superçözünürlük algoritması önerilmiştir. İlk algoritmada (NDUID) çift-

olmayan çözünürlük arttırma metodu ile düzgün kenarlı yüksek çözünürlüklü resim 

elde edildikten sonra akıllı ters evrişim ile yüksek frekanslar belirginleştirilmiştir. 

İkinci algoritmada (EDAT) toplam değişim bazlı ayrışım metodu ile resim iki kanala 

ayrılmıştır. Yüksek gürültü içeriği olan doku kanalı bicubic yükseltme metodu ile 

yükseltilirken, resmin görsel olarak önemli kısmı olan yapı kanalı kenar uyumsal 

eklenti metodu ile büyütülmüş ve şok filtre ile kenarlar belirgin hale getirilmiştir. 

Sonuç bu iki kanalın toplanması ile elde edilmiştir. EDAT, gerçek zamanlı bir 

uygulamada ispatlanmak amacıyla alan programlanabilir kapı dizisi (APKD,FPGA) 

üzerinde uygulanmıştır. 

 

Anahtar Kelimeler: Süper Çözünürlük, Toplam Değişim, Çift-yönlü filtre, Kenar 

Uyumsal Eklenti, Çift-Olmayan Yükseltme, Akıllı Ters Evrişim, FPGA, Gerçek 

zamanlı uygulama.  
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CHAPTER 1  

 

 

INTRODUCTION 

 

1.1 Introduction 

The surveillance becomes widespread with concerns of security. Although using a 

high resolution camera might provide the best accuracy, it is not cost effective for 

mass surveillance applications. To optimize the cost of a system, the cost for video 

acquisition must be reduced. Even though using a low resolution camera is the only 

method for cost optimization, it reduces the received image quality and increases 

complexity of machine vision algorithms for security. For that reason 

superresolution algorithms start to draw attention. Increasing the size of captured 

video with state of the art algorithms might compensate for the loss of information 

for the sake of cost optimization. Since surveillance is a real-time application, the 

superresolution algorithm is needed to be implemented in real-time. Using a low 

resolution camera also reduces the complexities and cost for transmission by 

reducing the bandwidth therefore its usefulness is doublefold. 

 

In image acquisition a 3D image is projected on 2D senor arrays that capture the 

image with limited number of pixels. Superresolution algorithms use given low 

resolution pixels to estimate unknown high resolution pixels. There are many 

methods to consider such as Bayesian approaches, dictionary based learning 

methods, multiframe, single frame methods etc. As multiframe applications are 

arguably the best methods to estimate high resolution pixel information, they require 

internal storage of multiple frames and large amounts of data to be processed 

simultaneously. Similarly learning based methods also require a large dictionary of 
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low-high resolution image patches to be used as a method to interpolate missing 

pixels.  

 

To implement an algorithm in real-time with large amounts of data to be processed 

there are limited number of options such as field programmable gate arrays (FPGA) 

and digital signal processors (DSPs) that are generally used together with FPGAs. 

Today’s technology of FPGAs allows users to store up to 100MB of data to be 

processed simultaneously with up to 500MHz of clock rate although an FPGA with 

such properties costs over 2000$. To create an affordable system one needs to accept 

the tradeoffs. Therefore for a real-time application single frame superresolution is 

the most suitable choice. 

 

1.2 Scope of Thesis 

In this thesis, single frame approaches for superresolution have been analyzed. The 

aim is to come up with a method suitable for real time applications. Since the 

computational efficiency and parallel implementation requirements are necessary 

and useful for FPGA applications we have filtered the researched literature. 

 

We have searched the literature for all possible methods for superresolution such as 

spatial and transform domain methods, learning based and statistical methods. We 

have found the fastest state-of-the-art algorithms.  

 

We have implemented all of the analyzed algorithms on Matlab for comparison. The 

weaknesses of all algorithms are discovered and two new methods are proposed to 

improve available algorithms in the literature. 
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The proposed methods are tested against the literature and according to the 

numerical results we have chosen one algorithm that exceeds the quality of state of 

the art algorithms to be implemented on a Field Programmable Gate Array (FPGA). 

 

The implementation results are collected and compared against frequently used 

algorithms such as bicubic. Our proposed method exceeded the quality of other real-

time algorithms. 

1.3 Outline of Thesis 

In chapter 2 literature research about super resolution is going to be given. Concepts 

that are used inside the thesis are going to be clarified. 

 

In chapter 3 four algorithms that are analyzed in detail are going to be formulized 

and elaborated with results of our own. 

 

In chapter 4 two proposed methods are going to be described and compared against 

used algorithms and mainstream algorithms such as bicubic interpolation. 

 

In chapter 5 FPGA implementation details, resource utilization and speed limitations 

are going to be given. 

 

In chapter 6 FPGA results are going to be compared against theoretical results. 

 

In chapter 7 future works will be described and conclusions are going to be made. 
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CHAPTER 2  

 

 

LITERATURE RESEARCH 

 

2.1 Image Observation Model 

The image capturing systems are not perfect due to discrete elements used inside. 

Finite aperture size causes optical blur since it allows only an allowed distance to be 

captured without blur. The blur is modeled by a point spread function. Non-zero 

aperture time causes motion blur, discrete sensor elements cause sensor blur and 

aliasing limits the resolution of an image. Figure- 2-1 shows the diagram of image 

observation model. 

 

Figure- 2-1: Image Observation Model 

 

The image generation is modelled by 

 

             
 

( 2-1)  

Where X and Y are high resolution and low resolution images, D is downsampling 

operator, H models the blurring effect, F is motion information which is used for 

multiframe SR algorithms and V is the noise. The equation can be written in terms 
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of a single matrix multiplication Y = M X + V where M is named as degradation 

matrix. 

 

These matrices are very sparse and this equation is generally ill-posed. In real 

applications these matrices are unknown therefore they needed to be estimated 

which makes the problem more ill-posed. 

 

The motion information is collected for multiframe algorithms because those 

algorithms are required to gather multiple frames under a single high resolution 

image. Since multiple frame usage requires too much storage capacity and increases 

data size to be processed we have limited our scope for singleframe approaches. 

2.2 Spatial Domain Approaches 

Spatial domain methods use only pixel information apparent in an image and try to 

interpolate new pixels by using low resolution pixels only. The degraded and 

downsampled high resolution image is to be recovered by these algorithms as shown 

in Figure- 2-2. 

 

Figure- 2-2: Image Formation Reversal 
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2.2.1 Basic Methods 

Time domain approaches use only pixel values without using any transform or 

library. Basic approaches such as bicubic and bilinear interpolation use predefined 

quadratic or linear functions to fit new pixels into the image. Even though these 

methods are simple to implement and fairly competitive in numerical comparisons 

they do not contain any statistical or prior knowledge therefore they are open for 

artifacts such as jagginess and aliasing. 

2.2.2 Edge Adaptive Approaches 

Adaptive interpolation algorithms have been introduced to create computational ease 

together with satisfying images for human visual system. Edge adaptive 

interpolations are divided into two classes, namely explicit and implicit methods. 

Explicit methods estimate edge directions explicitly and use the information to 

interpolate the low resolution image. This method can be problematic since the 

estimation of edge direction determines the overall quality. Since natural images 

have noise and aliasing effects it is inescapable to have degradations over 

estimation. Also for a real-time application edge orientation number should be 

limited for computational cost efficiency [1]. Implicit methods use parametric cost 

functions or statistical models to jointly estimate the edge directions and interpolate 

[1][2][3][4]. Siu et al [1] uses bilateral filter approach to estimate new pixel values. 

Since bilateral filter coefficients also needed to be estimated, geometric duality 

method is used [4]. Geometric duality is proposed by Li et al. [4] and it correlates 

low resolution image to high resolution image pixels by constraining their 

covariance matrices to be similar. Although the proposed new edge upsampling 

(NEDI) method is a useful tool it uses lots of matrix inversion. Siu et al. [1] have 

resolved the computational burden by introducing a method called BSAI which will 

be discussed in chapter 3. Other methods use LR image pixel (or group of pixels) 

information with statistical approaches to find edge direction. 
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Another interesting method has been suggested by Krishnan et al. [5] recently. The 

method uses spline approximation to estimate edges via bitmap tracing. The traced 

image is composed of vector information which is upsampled without any aliasing. 

Then the HR traced image is used on a guided filter, proposed by He et al. [6]. The 

guided image filter is based on bilateral filter which preserves edge information. 

This algorithm is not included in analyzed algorithms chapter since it uses bitmap 

tracing and such software that is for sure not implementable on an FPGA.  

 

2.3 Transform Domain Approaches 

Transform domain approaches are used to simplify filtering and deconvolution 

operations. Even though a 2D filtering operations becomes simple multiplication in 

transform domain, basic approaches create halos, ringing and other artifacts. This 

problem is overcome by the aid of image gradient statistics and adaptive or non-

blind operations on Fourier domain [7][8][9][10]. 

 

Transform domain algorithms also contain wavelet domain applications. Wavelets 

transforms can be processed by statistical approaches to estimate unknown high 

resolution coefficients [11][12][13]. 

2.4 Statistical Approaches 

Statistical approaches create stochastic models to optimally reconstruct high 

resolution image from low resolution image. The reconstruction problem can be 

described by a Bayesian framework where X is desired (high-resolution) image, Y is 

degraded (low-resolution) image, M is degradation matrix. The Bayesian framework 

is formulized as 
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( 2-2)  

 

           is data likelihood and       is prior information on desired image and 

      is prior term of degradations. X and M are statistically independent. Pr(X) is 

typically [14] defined by using Gibbs distribution 

                   
 

( 2-3)  

where A(X) is non-negative potential function. 

 

2.4.1 Maximum Likelihood (ML) 

If a uniform prior for desired image is assumed Eq. (2-4) is reduced to ML 

estimation. ML estimator uses initial observations to estimate the most suitable 

solution which maximizes p(Y|X) which is assumed to be Gaussian generally. ML 

estimator is given as 

                     
 

( 2-4)  

The solution to this equation is found by pseudo inverse method 

                

 
( 2-5)  

 

If       is singular there are infinitely many solutions i.e. the problem is ill posed. 

To create unique solution regularization is required, which will be discussed in next 
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topic. The inverse matrix also constitutes a problem because of huge sizes of matrix 

inversion is time consuming. There are number of suggested methods in the 

literature. 

2.4.2 Maximum a Posteriori (MAP) 

Many works [15][16][17][18] have used MAP approach to the solution of statistical 

equations. Maximum a Posteriori estimation maximizes a posterior probability by 

estimating a priori information as in Eq (2-6). Commonly used MAP based 

reconstruction techniques are described below.  

 

                         
 

( 2-6)  

2.4.2.1 Gaussian Markov Random Field 

The GMRF is formulized as 

            ( 2-7)  

Where Q is a symmetric positive matrix, capturing spatial relations between adjacent 

pixels in the image by its off-diagonal elements. Q is often defined [14] as     

where   acts as a derivative operation on X. The log likelihood of the prior in (2-6) 

is given as 

                 
( 2-8)  

This is also known as Tikhonov regulization. One interesting paper [19] uses GMRF 

to impose geometric regularity constraint on an image while interpolating the image 

with a MAP based cost function that is optimized by simulated annealing. Behnad et 

al [20] also uses hidden Markov Model for MAP estimation to estimate higher order 
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statistical dependencies.  Even though GMRF is useful for its analytical sides, it is 

known for over-penalization of sharp edges therefore creating blurry results. 

2.4.2.2 Huber Markov Random Field 

The over-penalization i.e. smoothing problem of GMRF can be addressed by using 

image gradients with heavier tails than Gaussian distribution which does not model 

the natural images well. This approach is called Huber MRF where A(X) Gibbs 

potential is determined by the Huber function 

 
      

                  

                  
  ( 2-9)  

where   is first order derivative of the image. By using a prior, edges can be 

preserved while reconstructing. 

 

In literature Shan et al [8] have used this prior to constraint a deconvolution process 

which will be discussed in detail on chapter 3. Also [7][21] have addressed their 

problems with similar approaches. 

2.4.2.3 Total Variation 

Total Variation (TV) norm is a gradient penalty function. It is used in denoising, 

deblurring as well as super-resolution approaches [22][23][24][25][26]. The TV 

criterion penalizes total amount of change in the image which is measured by an L1 

norm 

            
( 2-10)  

where   is the gradient operation. L1 norm in the equation above favors sparse 

gradients, meaning it helps preservation of sharp edges while creating a local 

smoothness. Farsiu et al [16] formulized a method called Bilateral TV for robust 

regularization. Also [27] and later [22] have used TV regularization for image 
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decomposition and separately upsampling HF and LF components. This 

decompoisition approach will be discussed in chapter 3 in detail. 

2.5 Example Based Approaches 

Example based approaches use the idea of using existing information from a single 

image or a set of images to estimate high resolution pixels. 

Many methods [25] [28][29][30][31][32] use example based approaches. Example 

based approaches are divided into two categories. First category algorithms use a 

dictionary of low-high resolution patch pairs for interpolation. Main workload of 

these algorithms is to optimize dictionary search time and proper matching criteria. 

Second category of algorithms uses self-examples where high resolution patch is not 

extracted from a library but multiple scales of the same image. Second category of 

algorithms is suitable for a real-time application. 

2.6 Comparison of Methods 

Among aforementioned methods every approach has various advantages. Statistical 

methods, if modeled correctly, can solve image observation model inversion 

problem successfully. However statistical methods cannot estimate missing high 

frequency information because of ill-posedness. Methods with dictionaries have the 

advantage of incorporating already known high frequency patches therefore better 

reconstruction chance. However as the dictionary size increases the search algorithm 

and matching algorithm become more important. Various algorithms for dictionary 

search are incorporated. Furthermore the dictionary based methods need to handle 

temporal consistency to avoid flickering. Also dictionary based algorithms are not 

suitable for real-time algorithms. However fast the search algorithm is implemented 

on an FPGA with parallel implementation, the size for the dictionary limits the 

implementation. Among these methods we did not include multiframe approaches 

because of space limitation on FPGAs. Multiframe approaches, on theoretical basis, 
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can reconstruct lost high frequency information successfully due to subpixel image 

registration. However the problem of image registration is difficult to handle due to 

imperfect motion vectors, estimation of optical flow, white noise and lost pixel 

information. 

We have analyzed algorithms from literature to find their weaknesses and strong 

points. These discussions are done on chapter 3. 
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CHAPTER 3  

 

 

ANALYZED ALGORITHMS 

 

We have analyzed four main algorithms that span all methods for superresolution. 

The algorithms are summarized below and the details are going to be described later 

on in chapter 3. 

 

Fast image/video upsampling [8] proposed an iterative filtered back projection based 

algorithm which uses a minimization function to minimize the gradient distribution 

error and constraint the outcome to be bound to the input data. Even though 

algorithm as an iterative scheme it has been calculated that 3-4 iterations are 

adequate. 

 

Image and video upscaling from Local Self Examples [29] proposed a learning based 

algorithm which uses self-examples. The algorithm exploits an assumption which 

states that an image is similar to its upsampled version if small ratios are used. This 

assumption shortens the duration of patch extraction. 

 

Fast image interpolation Using the Bilateral Filter [1] proposed a MAP based 

minimization problem to estimate bilateral filter coefficients in return to obtain the 

interpolated pixel value depending on the edge direction. The algorithm also uses a 

cost function to maintain continuity among neighbor pixels. The calculations are 

limited to four basic operations. 

 

Superresolution Utilizing Total Variation Regularization and a Shock Filter [22] uses 

total variation regularization based image decomposition to separate noisy texture 

component and structure component of an image. The structure component is 
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linearly interpolated and substituted to an edge enhancement block where texture 

component is only linearly interpolated. TV Decomposition block uses iterative 

operations, but the latency of each epoch is limited to a line time of image 

transmission. This is going to be analyzed and justified in chapter 5 in detail. 

3.1 Fast Image/Video Upsampling 

One of basic approaches of superresolution is inversion of image formation. A 

newly proposed algorithm [8] incorporates a pixel substitution block connected to a 

de-re-convolution cycle. The framework of the algorithm is based on the image 

formation model [33] as described in chapter 2. 

 

Figure- 2-1 shows the image formation model. This model can be described with 

two steps: filtering and decimation. A low resolution image can be represented as 

           ( 3-1 ) 

 

Where X is high resolution image, Y is low resolution image; f is discretized 

blurring filter and    is down sampling operator. This operation can be split into two 

parts as  

                    ( 3-2 ) 

X’ denotes linearly filtered high resolution image. This separation splits the problem 

into two. First problem is inverting the downsampling. Inversion of downsampling 

is an ill-posed problem since it is required to generate    pixels from one input 

pixel. Solution to this problem is given [8] by using a pixel-substitution block in a 

recursive algorithm. The second part of the problem is inverting the filtering, i.e. 

deconvolution. Jie et al. [34] proposed a non-blind deconvolution for inverse 

filtering process.  
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Figure- 3-1 : Framework for Image Reconstruction 

Figure- 3-1 shows the framework mentioned in the paper. The algorithm 

incorporates a deconvolution step and an iterative feedback control to constrain the 

image upsampling. 

3.1.1 Deconvolution 

 Deconvolution block estimates X using X’ over the course of iterations. 

Deconvolution minimizes            
 . The formula can be written in the form of 

matrix multiplication therefore the minimization problem becomes minimization 

of     . Finding the inverse of W is not always possible therefore the problem 

may not have an exact solution. A prior term is introduced [8] to make the problem 

well-posed. It has been shown [35] that gradient distribution of natural images 

follows similar curves, thus using a gradient function φ(x) ensures a unique solution. 

The discrete blurring function is taken as a Gaussian kernel of size 13x13. 

 

Figure- 3-2 shows the gradient distribution of natural images and a piece-wise 

continuous approximate function. Constant ‘k’ is given as 1.058, ‘a’ as 0.0002, ‘b’ 

as 13.97 and ‘lt’ as 13. 

 

 
      

                        

                
  ( 3-3 ) 
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Variable x is gradient of a pixel. After prior substitution, the minimization problem 

turns into  

                 
                                 ( 3-4 )  

  

 

Figure- 3-2 : Logarithmic Distribution of Gradients and Approximated Curve 

Variables    and    are substituted to gradient operators and a new minimization is 

defined in between to variables (          ) 

                   
                             

                                             
( 3-5 )  

 

The solution is obtained in two steps. First X is fixed to optimize   variables. 

                                                   
          

( 3-6 )  

 

Consecutively,    is fixed to minimize X. 

                 
                 

      
        

    
( 3-7 )  
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Square form of the energy minimization enables the usage of Parseval’s theorem. 

Minimization becomes as in (3.8) where F is Fourier transform 

                          
                            

 

                        
   

( 3-8 )  

 

To obtain the optimal F(X) one needs to set             to zero and the solution 

can be obtained as 

 
       

                                               
              

                                               
              

 
( 3-9 ) 

 

 

Finally the result is obtained by taking inverse Fourier transform. Two parts iterate 

until convergence is achieved. It is recommended that taking    as 20 and tripling its 

value on each iteration and taking   in between 0.01 and 0.3. 4 iterations were 

found to be enough for convergence. For 4 iterations the algorithm needs to use 13 

FFT calculations.  

3.1.2 Reconvolution 

After calculating the deconvolved image, if iteration limit is not reached the image is 

reconvolved with the Gaussian kernel and submitted back to the feedback loop. 

3.1.3 Pixel Substitution 

The substitution process is done after each iteration of de-re-convolution. Low 

resolution pixel values are overwritten to their corresponding locations. Figure- 3-3 

depicts this process. 
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Figure- 3-3: Pixel Substitution Process 

The benefit of this process [8] is that submitted pixel values are propagated through 

the high resolution image on the course of iterations. Therefore the upsampled image 

is constrained with the low resolution image. 

3.1.4 Results 

The implemented algorithm had artifacts due to pixel substitution block. The 

reconvolved image is altered due to prior operations therefore does not match the 

original image. This is shown in Figure- 3-4. Since the paper had given their results 

in only pictures and not in numerical figures, our numerical comparisons are going 

to be carried out with our results. 
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Figure- 3-4: Initial Upsampled Image and Pixel-Substitution Artifacts on 

Reconvolved Image 

The iterative algorithm iterates on this artifacts and yield with Figure- 3-5. 

 

Figure- 3-5: Bicubic vs. Resulting Image of Fast Image Upsampling [8] 

3.1.5 Computational Analysis 

The computational analysis can be approximated by calculating FFT usage, since it 

is going to determine a majority of the calculations. The algorithm [8] uses 60 FFT 
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operations.  15  FFT operations are used in a single epoch. Xilinx IP core for FFT 

can be used under 1 microseconds of latency for 8 bit data, therefore the total 

latency of the algorithm will not exceed 1us x 2 x 4 = 8 microseconds, which is 

enough by orders of magnitude to carry out operations for 60 fps video stream.  

3.2 Video Scaling with Local Self-Examples 

Self-examples are used for superresolution algorithms under the class of example 

based learning algorithms. Self-similarity assumption is used in SR methods to 

extract missing information for higher resolutions at multiple scales of the original 

image. In a recent paper [29] it has been proposed that small patches of images are 

similar to themselves for small scaling ratios under a close neighborhood. That 

assumption is named ‘local self-similarity’ as shown in Figure- 3-6. A yellow patch 

that is taken from the original image is almost identical to the red patch when down 

sampled by a small ratio. 

 

Figure- 3-6: Local Self-similarity Example 

Therefore the framework of the algorithm begins by scaling an image with small 

ratios and continues by refining high frequencies with local patches from lower 

resolution image. The idea of matching a low frequency patch and making 

refinement by using high frequency of that patch is proposed by Freeman et al. [28] 

although the idea is applied to a library of patches instead of a local search. The 

framework is shown in Figure- 3-7. 
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Figure- 3-7: Patch Extraction Framework 

The algorithm begins with input Y0 and upsamples it with the operator U as u1 = 

U(Y0). Variable u is used for low pass component of upsampled image where v is 

high pass component, and X is the resulting high resolution image. This initial high 

resolution image lacks high frequency information. To obtain best patch matching 

results the original image is downsampled and then upsampled by the same filters. 

(Mentioned operation is done to match two images spectrally, as it will be discussed 

in chapter 4 this method deteriorates the result.) u0 = U(D(Y0)) is obtained. 

Afterwards each patch from u1 is searched for a similar patch inside u0 against a 

restricted region (purple region in Figure- 3-7). After best match is found, high 

frequency component of the original image that is obtained by v0 = Y0 – u0 is added 

to u1 to have X1(p) = u1(p) + v0(p). 

3.2.1 Local Self-Similarity 

Self-similarity assumption depends on preservation of edge information across 

scales, therefore scaling factor needs to be as small as possible for smooth 

upsampling. Figure- 3-8 shows an error value against increasing scaling value. 
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Figure- 3-8: Scaling Factor vs. Patch Error 

Error decreases with scaling factor and time needed to obtain dyadic scaling 

increases. Therefore an optimization is required between number of upsampling 

operations and scaling ratios. 

3.2.2 Non-Dyadic Filter Banks 

As Fattal et al [29] mentioned, to create a downsample operator for N+1/N scaling 

factor, low resolution image needs to be filtered with N different filters and 

consequently subsampled by taking every N pixels out of N+1 pixels.  
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Figure- 3-9 : Non-Dyadic Downsampling Operation 

Similarly to perform N+1/N upsampling, the image must be separated into N zero 

padded images and filtered with N different filters as seen in Figure- 3-10. 

 

Figure- 3-10: Non-Dyadic Upsampling Operation 

After using several upsample-patch cycles the resulting image is obtained.  
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3.2.3 Results 

The result has certain defects and it is obvious that patch extraction framework had 

some issues. Figure- 3-11 shows the original outcome and Figure- 3-12 shows the 

resulting image when high frequency addition is diminished with a coefficient. It is 

obvious that blocky artifacts are due to a mismatch in block matching framework. 

The reasons are going to be analyzed on chapter 4. Since the paper had given their 

results in only pictures and not in numerical figures, our numerical comparisons are 

going to be carried out with our results. The image is used with the permission of 

Turgay et al. [36] 

 

Figure- 3-11: Bicubic vs. Original Outcome of Self-Examples 
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Figure- 3-12: Bicubic vs. Result of Diminished High Frequency Addition 

 

3.2.4 Computational Analysis 

Fattal et al. have implemented the algorithm on a GPU and obtained 24 fps full HD 

video output. Algorithm is inherently available for parallel implementation on an 

FPGA.  

 

Figure- 3-13: Single Upsample Epoch 
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When 3x3 block size is used for block search and 5x5 neighborhood is used for local 

search range, the framework in Figure- 3-13 is achieved. Therefore as soon as 8 

lines of an image is received, the algorithm can start with 26 parallel operations of 

upsampling. Output of each block can be connected to next block as in Figure- 3-14 

to achieve minimal latency. 

 

Figure- 3-14: Framework for Achieving U/DxN Upsampling 

 

3.3 Edge Adaptive Interpolation with Bilateral Filter 

Edge directed interpolation preserves edge direction by preventing edge-orthogonal 

filtering which causes jagginess. There are explicit and implicit methods for finding 

the edge orientation as discussed in Chapter 2 in detail. Siu et al [1] proposed a fast 

edge directed interpolation method recently. The method implicitly estimates 

bilateral filter coefficients to estimate edge orientation. Main algorithm is based on 

soft decision estimation (SAI) [37] although it has been thoroughly altered to reduce 

the computational time. Maximum A Posteriori estimation of range distance values 

for bilateral filter is proposed to incorporate horizontal, vertical and diagonal 

correlations into four parameters. The parameters are regularized with an adaptive 

regularization. 
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3.3.1 Bilateral Filter 

Bilateral filter multiplies the pixel values with weights according to spatial and 

range distances between neighbor pixels and the pixel of interest. The interpolation 

is carried out according to the cost function [38] 

 

                     
            

 

 

   

  

 

( 3-10)  

 

Where the prior is assumed to be Gaussian, H is the value of the pixel to be 

estimated,           is observed pixel value and    is the neighboring pixels. There 

is no observed data for superresolution problem therefore cost function is reduced to  

 

                
 

 

   

 
( 3-11)  

 

        term is an approximation of first order derivatives used by bilateral filter. 

The bilateral filter [39] uses (3.12) to weight the derivatives. 

 

 
        

         
 

   
      

           
 

   
  

 

( 3-12)  

Where exp is exponential function and   values represent the variances of range and 

spatial distances. Siu et al. [1] shows that four nearest neighboring pixels are 

adequate for estimating the range value. Since four nearest neighbors have the same 

spatial distance    terms can be dropped therefore yielding 

 
        

      

  
  ( 3-13)  

 

After estimating the w values, those values can be substituted to ( 3-11) and the 

following closed form solution is obtained. 
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 ( 3-14)  

 

The closed form can be used as bilateral filter. However        term requires the 

high resolution image to be known. Since there is no high resolution data the 

       term is going to be estimated using MAP. 

3.3.2 MAP Estimation of Range Distance 

To estimate range distance, eight relations (operations) are used to estimate    

        by exploiting geometric duality concept [4] that incorporates low 

resolution pixels to approximate high resolution range distances.  

 

Figure- 3-15 : Locations of Neighbouring Pixels and the Pixel of Interest 

 

 

 

 

 

 

The solution for estimation of range distances is given 

 

 
   

   
     

   
           

   
 ( 3-15)  

 

 

The geometric duality concept is shown in Figure- 3-16. 
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Figure- 3-16: Range Distance Approximation Using Geometric Duality 

 

If a diagonal line exists in the low resolution image, range distances will weigh 

neighboring pixels according to edge orientation. 

 

Although this approach is perfect for diagonal lines they fail in range estimation 

when vertical or horizontal lines appear. It has been proposed [1] to use an adaptive 

regularization for that problem. Extra terms Rh and Rv are calculated to detect 

horizontal or vertical line. Extra terms   
    are calculated using a bicubic 

interpolated image. The regularization is then applied by mixing   
    and   

  

according to following equation. 

 

 
     

 

   
   

              
 

   
   

 

    

        

                

 

( 3-16 )  



32 

     
 

  
 

   
                

 

  
   

 

   

      

                

                

 

 

3.3.3 Soft Decision Interpolation 

Finding pixel values using ( 3-14) is called hard-decision since it does not take into 

account continuity of the pixel values. Recently proposed pixel-based SAI [40] 

provide higher accuracy than the original SAI. Pixel based SAI minimizes the cost 

function 

 

                      

 

   

  

     

 

   

        
                

 

   

  
 

   
     

 

   

 

   

  

 

( 3-17 )  

 

where     is neighboring pixels of    and      are of    . The locations of pixels 

are given in Figure- 3-17. To refine (3-17) a weighting parameter    is introduced 

for least squares estimation, yielding in 

 

                 
                

 

 

   

 

   

 

   

  
( 3-18 )  

 

            ( 3-19 )  
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Constant  ‘d’ is zero if gradient variable ‘g’ is less than 16 or limited to 1 if g is 

larger than 32 and d is equal to g/16 if g is between 16 and 32. Gradient g is 

calculated as 

                                   ( 3-20 )  

 

If gradient is less than 16 which means the pixels have similar values, all U weights 

become zero yielding ( 3-18 )  to  

 

                
 

 

   

 
( 3-21 )  

 

If gradients are higher than 16 the solution to the estimation is found as 

 
  

                      
 
          

 
         

 
   

      
      

      
      

  ( 3-22 )  

 

 

 

Figure- 3-17: Location of Pixels 

3.3.4 Adjacent Pixels 

After calculating first internal pixels, the remaining pixels are required to be 

calculated. Since the output image can be used as a new image, that is 45 degrees 
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turned, same equations can be applied in follow up, as shown in Figure- 3-18. It is 

stated that [1] adaptive regularization is not necessary for adjacent pixels since 

bicubic interpolation will not provide better results. 

 

Figure- 3-18: Adjacent Pixel Locations 

3.3.5 Results 

The results of the algorithm are similar, if not the same, to the given figures. 

Resulting image is given in Figure- 3-19. 
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Figure- 3-19: Comparison of Bicubic vs. Edge Adaptive Interpolation 

3.3.6 Computational Analysis 

The analyzed algorithm does not use any complex operations such as FFT although 

its process is fairly straight and not suitable for parallelization. The only complex 

operation is exponentiation, which is easily resolved with the usage of a look up 

table. Details of computational analysis are going to be discussed in chapter 5. 

3.4 Super Resolution Using Total Variation and Shock Filter 

The Total Variation regularization is first proposed by [41]. Later TV regularization 

is used as a method for regularizing interpolations [24].  It has been proven to be 

very successful for super resolution reconstruction besides other applications. The 

regularization required too much computational time beside its success thus 

improved versions have been proposed [23]. 
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In recent years a framework has been proposed [22]. As TV regularization is 

accepted to be an effective method for edge sharpening it does not improve texture 

component. For that matter, a separate frequency band operation is proposed. 

Figure- 3-20 shows the proposed [22] framework. 

 

Figure- 3-20: TV Decomposition and Shock Filter 

TV regularization is used to decompose the image into two bands namely structure 

(LF) and texture (HF). Newly introduced shock filter [42] is a non-linear filter that 

sharpens the edges of an image although it deteriorates the SNR of the image. Since 

the shock filter is used only for structure part which is low frequency band, there 

will be minimal degradation caused by shock filter’s drawbacks. 

3.4.1 Total Variation Decomposition 

The TV regularization is carried out by the formula below 

 

    
     

 
    
   

                  
   

                      
 

( 3-23 ) 

Where Y denotes the input image, p denotes a dual vector which will be used inside 

the iterations to propagate the updates of iterations,   is a coefficient and div denotes 
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divergence operation. After p converges  texture component   and structure 

component   is obtained. 

          
( 3-24 ) 

       
( 3-25 ) 

 

It is proposed [27] that TV regularization can be calculated by below formulas for 

interpolation. 

 

    
     

     
   

   
 

  
   

     
   

      
   
 
                 

   

  
( 3-26 )  

 

 

                   
        

 

      

 
( 3-27 )  

 

  is upsampled pixel value, Y is input image,   is gradient operation,     are 

coefficients, n denotes iteration number  and   is a weight matrix of a blurring 

operator. 

3.4.2 Shock Filter 

Shock filter is calculated by using below formulas as described in [42] 
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                                    ( 3-28 )  

 

 

 

     
   

        
    

   
        

     
   

  

   
   

            

( 3-29 ) 
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( 3-31 ) 

   
                           ( 3-32 ) 

   
                     ( 3-33 ) 

 

Y is input image, dt determines step size, function m(x,y) is defined as 

 
        

                            
                                                

    ( 3-34 )  

 

3.4.3 Results 

The results of the algorithm are similar, if not the same, to the given figures. 

Resulting image is given in Figure- 3-21. 
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Figure- 3-21: Comparsion of Bicubic vs. SR with TV and Shock Filter 

3.4.4 Computational Analysis 

Resulting algorithm uses simple operations such as addition and subtraction. The 

iterative scheme only creates a delay of one line of an image transmission per 

iteration. Details of computational analysis are going to be discussed on chapter 5. 
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CHAPTER 4  

 

 

PROPOSED ALGORITHMS 

 

 

In chapter 3, the formulization and descriptions are given for various algorithms for 

super resolution. In this chapter potential weaknesses and proposed solutions are 

going to be given. 

4.1 Super Resolution Using Non-Dyadic Upsampling and Non-Blind 

Deconvolution 

As stated in chapter 3, two algorithms [8] [29], which will be merged into one, had 

been described. Interpolation with local self similarity assumption [29] had 

described a method that upsamples the image smoothly although with problems at 

HF extraction. Fast image/video upsampling [8] proposed a method for generating 

sharp images by using an iterative back-projection method although it had problems 

on pixel-substitution inside the framework. 

 

In this chapter we propose an algorithm that combines these two algorithms by 

fixing their weaknesses and making proposed blocks to be complementary at their 

weaknesses. 

4.1.1 Self-Similarity and Non-Dyadic Upsampling 

The self-similarity assumption is a widely discussed topic in super resolution 

algorithms, although localized patch extraction is a unique application of this 
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assumption. As it has been discussed in chapter 3, using non-dyadic filters for small 

upsampling ratios enables the localized patch extraction. 

 

The algorithm suggests [29] upsampling the original image with ratios 5/4, 4/3 or 

3/2. Then to spectrally match the upsampled image and the target image, it is 

suggested to do a Down-Upsampling to achieve u0 = U(D(Y0)) where Y0 is the low 

resolution image. Theoretically, matching frequency content of an upsampled image 

to a down-upsampled image is impossible, since upsampling requires one filtering 

and down-upsampling requires two filtering operations. The comparison of two 

operations for 5/4 ratio are shown in Figure- 4-1. 

 

Figure- 4-1: Frequency Response of Down-Upsampling and Upsampling Operations 

The observed decline in high frequency content in first graph in Figure- 4-1 

threatens the optimal patch extraction therefore causes blocky artifacts. 

 

In our tests we have discovered that, even for 5/4 ratio, the matched patches do not 

mate with each other. The local self-example extraction failed. 

 

However the non-dyadic upsampling and high frequency enhancement is still a 

useful method to smoothly enhance an image. The small upsample rate enables the 

opportunity to decrease aliasing. Figure- 4-2 shows a comparison between bicubic 

upsampling and non-dyadic upsampling cascade + high frequency enhancement. 
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Figure- 4-2: Bicubic vs Non-Dyadic Upsampling Cascade 

Notice that eventhough edges are not aliased they have lost some of their high 

frequency content due to soft high frequency enhancement that we have used. We 

have replaced patch extraction framework with another block. We have stayed loyal 

to the main algorithm and obtained u0 = U(D(Y0)) at each step of non-dyadic 

upsampling. Then we have added upsampled version of the remainder high 

frequency component to the upsampled image with a coefficient depending on the 

iteration number X1= U(Y0) + (0.1 +       )U(v0) where v0=Y0-u0 and n is the 

iteration number. The coefficient is obtained empirically. 

 

The resulting image from non-dyadic upsampling cascade is suitable for more high 

frequency enhancement due to its smooth structure. 

4.1.2 Non-Blind Deconvolution 

The first algorithm on chapter 3 had described a method for reversal of image 

formation. The algorithm [8] begins by upsampling the input image. Then initial 

upsampled image is submitted to a framework where it is deconvolved, reconvolved 

and pixel-substituted recursively. 
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Shan et al. [8] suggested that by substituting original pixels to an iterated image, the 

apparent information would be preserved as the image is evolved. Although it has 

been claimed that 4 iterations were enough to converge to a result, in our tests this 

has not been the case. 

 

The pixel-substitution block did not work as it has been described. The reconvolved 

image had subtly smoothed version of the original values. Substituting original 

pixels created singularities which have been emphasized by deconvolution stage 

therefore the algorithm crushed. 

 

However the non-blind deconvolution block is useful for edge enhancement. The 

block uses a MAP minimization solution which includes gradient distribution 

information from a library of images. 

4.1.3 NDUID 

We have called the upsampling structure “non-dyadic upsampling cascade” because 

it upsamples an input image 4 to 6 times to obtain a result. The outcome of the 

cascade lacks high frequency content therefore the iterative non-blind deconvolution 

from the first analyzed algorithm is used after the cascade. Since non-dyadic 

upsampling does not cause aliasing in an observable manner, the deconvolution 

block, which normally causes halos and artifacts, did well in increasing high 

frequency content while keeping artifacts to a minimum Figure- 4-3 shows a block 

diagram of the algorithm. 

 

Figure- 4-3 Framework of NDUID 
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 Figure- 4-4 shows a comparison of a detail and the final comparison of bicubic vs 

non-dyadic upsampling cascade using non-blind iterative deconvolution (NDUID) is 

shown in Figure- 4-6. Also Figure- 4-5 compares to the analyzed algorithms. It can 

be seen that artifacts from Figure- 3-11 and Figure- 3-5 have been resolved and a 

sharper image than Shan et al. algorithm is obtained. 

 

 

Figure- 4-4: Close-up Details of Bicubic vs NDUID 

 

Figure- 4-5: Detail Comparison of Bicubic vs NDUID 
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Figure- 4-6: Comparison of Bicubic vs. NDUID 

4.2 Super Resolution Using Total Variation Decomposition and Edge Adaptive 

Interpolation 

The framework from Sakurai et al. [22] used Total Variation decomposition to 

separate noisy parts of an image from its structure. Structure component, then 

substituted to linear interpolation and filtered with a special filter called shock filter 

[42]. The shock filter is used to enhance the outlines of the image while protecting 

the resulting image from jaggy edges by simply keeping noisy texture component 

away from shock filter. In our tests we have discovered that the smoother and less 

aliased the edges are the better preserved the shock filter outcome would be. While 

smooth edges can be achieved by increasing the smoothing ratio of TV 

decomposition it in turn causes the outcome to converge to linear interpolation 

because it means transferring more information to texture component. Other 

alternative for generation of smooth edges, while preserving adequate information 

on structure component, is using edge adaptive interpolation. For this purpose we 

have proposed to use an interpolation that uses MAP minimization based on bilateral 

filter [1]. 
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4.2.1 EDAT 

By fusing Total Variation regularization [23] and Edge Adaptive interpolation [1] in 

a framework of two separate bands [22] we have achieved the framework in Figure- 

4-7. 

 

Figure- 4-7: Framework of EDAT. 

A comparison of bicubic interpolation and Edge Adaptive Interpolation Using TV 

Decomposition (EDAT) is given in Figure- 4-8. Figure- 4-9 shows the proposed 

EDAT does not contain aliasing effects from Figure- 3-21 and is has better high 

frequency reconstruction compared to Siu et al. algorithm in Figure- 3-19. 
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Figure- 4-8: Comparison of Bicubic (left) vs. EDAT (right) 

 

Figure- 4-9: Close-up Details of Bicubic (left) vs. EDAT (right) 
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Figure- 4-10: Barbara Image Close-Up Bicubic (left) vs. EDAT (right) 

There is another alternative of this method which only will be briefly discussed for 

further studies. In our tests we have discovered that separating the input image into 

more than two bands with TV decomposition block had created the opportunity to 

enhance different frequency contents carefully. Specifically, repeating lines in an 

image can be separated to different wavelet transform images in wavelet domain, 

which can be substituted to edge adaptive interpolation while holding the right to use 

enhancement block or not. 

4.2.2 Edge Enhancement 

The edge enhancement block is altered for our proposal. Since the edge adaptive 

interpolation keeps generated singularities and artifacts to a minimum, shock filter 

does not generate additional noise. Therefore originally proposed TV filter that is 

used after the shock filter is removed since it is no longer needed. 

4.2.3 Edge Adaptive Interpolation 

The interpolation algorithm [1] uses a method called ‘adaptive regularization’ for 

vertical and horizontal lines. Input image is upsampled by bicubic in parallel to the 
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original algorithm. Depending on the angle of the line, which is calculated by range 

estimates from both images, the pixel value is converged to bicubic value. Therefore 

if a theoretical image that consists of only vertical lines is substituted to the 

algorithm the result will be identical to bicubic interpolation. Even though the idea is 

understandable it created discontinuities among other pixels causing misalignments. 

Therefore the adaptive regularization part is dismissed from the original algorithm 

which in turn increased the PSNR values on average by 0.07 dB. 

4.3 Numerical Comparisons 

Numerical comparisons are carried out on standard test images from Kodak image. 

 

Figure- 4-11: Kodakimg Test Results (1 thru 6 from Top to Bottom) 

The numerical comparisons are shown in Table- 4-1 using PSNR method. Although 

PSNR is widely used and accepted as a comparison method it is also known for its 

lack of structural measurement efficiency. Therefore we have made second 

calculations in  
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Table- 4-2 with Complex Wavelet SSIM[43] method, which takes into account pixel 

shift and rotation while measuring the structural similarity. 

PSNR calculation is given by           
    

         
    

 where I is pixel value of 

first and second compared images, MxN is the dimension of the image. 

Table- 4-1: PSNR Comparison of Theoretical Results 

PSNR (x4) Bicubic Shan[8] Fattal[29] NDUID Siu[1] Sakurai[22] EDAT 

Kodakimg1 20,0625 19,1406 12,9687 18,8750 20,5468 19,8750 20,2656 

Kodakimg2 27,5625 25,9062 19,3593 24,7375 27,7968 27,4687 27,5468 

Kodakimg3 25,8593 23,9062 15,8906 22,8906 26,3593 25,8437 26,2031 

Kodakimg4 17,7343 15,9531 11,7968 16,5781 18,0156 17,5312 17,8125 

Kodakimg5 25,9218 22,2968 17,1250 24 26,9062 25,8437 26,4687 

Kodakimg6 21,8437 19,2656 15,1250 19,828 22 21,6250 21,8281 

 

PSNR (x2) Bicubic Shan[8] Fattal[29] NDUID Siu[1] Sakurai[22] EDAT 

Kodakimg1 24,5685 22,4163 16,4129 22,4636 24,6296 24,4708 24,5803 

Kodakimg2 30,4216 28,4440 22,8773 29,2504 30,7109 30,4063 30,4589 

Kodakimg3 31,1171 26,8100 21,4757 28,2385 31,4414 31,2563 31,4221 

Kodakimg4 22,1925 18,6786 15,2238 19,7892 22,2972 22,1348 22,2952 

Kodakimg5 31,3140 24,1044 21,8345 27,8108 31,6342 31,2762 31,5496 

Kodakimg6 26,9734 21,7489 18,9365 24,0575 27,0172 26,9673 27,0695 

 

The reason for Fattal et al[29] algorithm to have such low values on PSNR is mainly 

due to the lack of knowledge on how to mix high frequency patches with high 

resolution patches. The results are obtained by default 1-1 addition of HF and HR 

patches.  
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Table- 4-2: SSIM Comparison of Theoretical Results 

SSIM(x2) Bicubic Shan[8] Fattal[29] NDUID Siu[1] Sakurai[22] EDAT 

Kodakimg1 0,8987 0,8488 0,6121 0,8355 0,8999 0,8978 0,9000 

Kodakimg2 0,8428 0,7870 0,5217 0,7853 0,8483 0,8422 0,8443 

Kodakimg3 0,9708 0,9404 0,7408 0,9268 0,9712 0,9712 0,9713 

Kodakimg4 0,9065 0,8623 0,6555 0,8596 0,9066 0,9076 0,9098 

Kodakimg5 0,9460 0,9053 0,6466 0,9017 0,9471 0,9458 0,9467 

Kodakimg6 0,9021 0,8623 0,6572 0,8459 0,8986 0,9024 0,9028 

 

SSIM(x4) Bicubic Shan[8] Fattal[29] NDUID Siu[1] Sakurai[22] EDAT 

Kodakimg1 0,5682 0,5382 0,2864 0,5451 0,5609 0,5709 0,5709 

Kodakimg2 0,5182 0,4762 0,2253 0,4848 0,5217 0,5202 0,5262 

Kodakimg3 0,6758 0,6464 0,3117 0,6578 0,6737 0,6869 0,6883 

Kodakimg4 0,5833 0,5516 0,3149 0,5586 0,5821 0,5904 0,5913 

Kodakimg5 0,6273 0,5883 0,2599 0,6013 0,6359 0,6374 0,6425 

Kodakimg6 0,5458 0,4986 0,2549 0,5136 0,5484 0,5472 0,5532 

 

Proposed algorithm EDAT exceeds other algorithms on SSIM comparison and 

scores well on pSNR. EDAT also performs well on visual results. Even though 

NDUID does not perform well compared to bicubic and EDAT, it exceeds its parent 

algorithms in average.  
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CHAPTER 5  

 

 

FPGA IMPLEMENTATION 

 

 

In this chapter the implementation details for the chosen algorithm is going to be 

given. In chapter 4, two superresolution algorithms have been proposed. NDUID 

used non-dyadic upsampling cascade for smoothly upsampling an image and non-

blind iterative deconvolution is used to increase high frequency content. EDAT used 

Total Variation decomposition to separate image into two frequency bands. LF 

structure channel is upsampled by Edge Adaptive interpolation and edges are 

enhanced by shock filter. The result is obtained by summing bicubic upsampled HF 

texture channel with structure channel outcome. 

 

According to our tests in chapter 4, both numerically and visually, EDAT is a better 

proposal. Also running times in Matlab gives an insight to the complexity of the 

algorithms. Although NDUID is a parallel implementable algorithm it takes 20 times 

longer to achieve a result than EDAT. 

 

Therefore in this chapter proposed EDAT is going to be described in detail as to how 

it has been implemented in FPGA, what optimizations are made, how iterative parts 

are implemented. 

5.1 Introduction 

In today’s technology most of the algorithms, if not all, are developed on PC’s with 

software that run on processors. A processor, to put it simply, is a device that 
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accepts instructions sequentially and runs a specific routine to have that instruction 

processed. 

Every command in a software code consists of multiple instructions which are 

handled by processor(s) that run on GHz of clock rates one by one. Although 

immense speeds of processors create the illusion of speed, algorithm developers 

know that it is not the case. 

 

In a real-time application usage of processors are almost always dismissed because 

of its unpredictable running times and the limitation of one instruction per cycle. 

 

Therefore only Field Programmable Gate Arrays (FPGA) and DSPs are solutions for 

a real time application. 

 

A DSP is an operationally evolved processor that has multiple (multiples 100 most 

of the case) small processors that have functional blocks inside. Those functional 

blocks consist of adder-subtracter, FIFOs, multiplier-accumulator and fixed-floating 

point converters. 

 

Figure- 5-1: Example DSP Design from Xilinx DSP Slice 
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 DSP cores are powerful in floating point operations and they provide solutions for 

software developed designs.  

 

FPGAs on the other hand are completely different than a DSP solution. FPGAs are 

programmed with Hardware Description Language (HDL) which requires a different 

mindset then of a software (C/C++) programmer. 

 

In HDL, every action is defined with clock edges as in a real hardware of flip-flops. 

Sequential commands, commands one under other, do not execute one after other 

but rather they “execute” at the same time. 

 

Actually the HDL commands do not execute but instead they are converted into 

hardware. Therefore one can define a hypothetical ‘and’ ‘or’ gate circuit by using 

HDL. 

 

The drawback of using FPGA is that it uses fixed point arithmetic which is open to 

overflowing and underperforms for small number operations. There are floating 

point solutions for recent technology hardware, although they consume a major part 

of the resources and every calculation, even the simplest addition, is required to be 

carried on with floating point cores which will eventually deplete limited DSP slices 

presented in an FPGA. 

 

The reason for FPGA being preferred for real-time applications is that every design 

is utterly predictable in the sense that every clock edge means a change in every 

state of every block that is connected to the same clock net. Therefore when a time 

critical algorithm is implemented on FPGA the designer is able to calculate, up to 

the number of clock cycles, how long will the algorithm take to complete. This is the 

main reason of an FPGA being preferred over a DSP. 
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There are implementable operations and there are hard-to implement operations on 

FPGA. Simple operations such as addition and subtraction can be achieved under a 

single clock cycle. Multiplications can be achieved under 5 clock latency and 

divisions can be achieved under 25 clock latency. As operations become more 

complex, such as exponentiation and square root, third party IP cores come into play 

making the precise calculation harder, resource utilization difficult and furthermore 

increasing the potency of the failure of implementation due to clock skew, delay, 

fan-out limitations etc. 

 

As design becomes complicated the clock nets become longer; causing clock delays. 

When clock delay exceeds the period of the clock, further logic blocks receive 

different inputs then front blocks; eventually limiting the clock speed. As logic block 

number increases, global clock buffers reach to their design limitation in providing 

enough current to all the nets therefore causing clock skews which again limits the 

clock speed. 

 

Although this seems as a catastrophic description, today’s technology allows a lot of 

space for development without limiting the user. 

5.2 FPGA Board 

For this thesis we have used Spartan3A DSP 3400 development board. The board 

has DVI video output 2 FMC connectors for DVI/VGA input daughter boards, 

SRAMs etc. 
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Figure- 5-2: Spartan 3A DSP 3400 Development Board. 

We have used fairly simple portion of the board for our application as shown in 

Figure- 5-3. Even though VGA input can be used as a source of data we have chosen 

to devote our time to develop the algorithm and leave the acquisition and 

transmission part for further studies. RS232 serial communication channel is chosen 

for receiving input data and transmitting the output. Since internal capacity of the 

FPGA is limited to 1Mbits the data is stored on Cypress brand SRAM which can 

operate up to 166MHz clock. 
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Figure- 5-3: Used Parts of the Board 

 

 

5.3 FPGA Specific Optimizations 

5.3.1 Using Switching Line Buffers 

Spartan 3A DSP FPGA has 126 line buffers with size of 18Kbits. Since a single 

buffer can be reached from a single port, each line buffer is used for a single line not 

depending on the line’s size. This limitation has lead us to use line buffers by 

shifting them. In Matlab application, a single code line1 = line2; will do this 

operation. In FPGA however a buffer content cannot be shifted to another buffer in 

one clock therefore we have used multiplexers for line buffers as shown in Figure- 

5-4. 
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Figure- 5-4: Line Buffer Usage with Multiplexers 

5.3.2 Decimal Numbers 

Since floating point operations have been dismissed the decimal number problem 

needs to be addressed. For example the bilateral filter coefficients, for edge adaptive 

interpolation, are calculated by         
 

  
 . It is obvious that the coefficient is 
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going to be smaller than one. In fixed point environment these problems are 

addressed by multiplying the result by a factor of 2
n
. 

5.3.3 Multiplication, Division, Addition, Subtraction 

Even though one does not think about using basic operations while proposing an 

algorithm it becomes crucial when implementing that algorithm in an FPGA. The 

simplest operation addition and subtraction are consequently are the easiest. The 

only important point about addition is that in a single operation no more than two 

variables can be added/subtracted. Multiplication is the second easiest operation in 

the sense that it consists of multiple additions. There is a block for multiplication 

which should be defined inside an HDL code, where the latency and resource 

utilization can be calculated. If a multiplication is required to be done in single clock 

the resource utilization will increase and potential timing errors will appear. 

Therefore it is wise to use a multiplication in 3-5 clock latencies to obtain optimal 

performance and utilization. 

 

The division is the hardest because it is not as straightforward as addition/ 

multiplication. The division block uses radix-2 algorithm to iteratively calculate the 

quotient and remainder. Therefore it requires a minimum latency to output a result. 

Although the latency can reach to 25 clock edges it is not a loss in terms of a 

streaming data line because the block accepts input on every clock and outputs the 

result at every clock after the required latency. 

The main optimization for division multiplication is input data size since it increases 

the resource usage exponentially. 

5.4 Top Level Design 

The design of HDL code is made hierarchically. There is always a top module that 

connects outer world signals inside the functional sub-modules. Figure- 5-5 shows 
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the top module and connection of sub-modules to the outer world. Top module has 

three stages. First stage is input stage, RS232 pins are connected to Electronic 

Development Kit (EDK) core. EDK is a microprocessor created from internal 

resources of FPGA. There are useful blocks for functions such as RS232, I2C and 

Ethernet etc. Other than these blocks the processor runs with a fairly limited clock 

speed therefore is not suitable for further usage. Received data is transmitted from 

EDK to Top module to be sent to the SRAM. After the low resolution input image is 

obtained the Top module connects SRAM signals to sub-modules. Since internal 

capacity is limited FPGA reads data and writes the output on-the-run back to the 

SRAM. To achieve dual operation TV Filter block is assigned as master to control 

the connection. While TV filter is reaching to SRAM operation is put to read mode. 

After TV Filter reads a single line it connects the pins to Bicubic Transmission 

Module and Shock Filter. As operations are finalized output is written to SRAM line 

by line. The texture and structure component results are not combined inside the 

FPGA for debugging reasons. 

 

 

Figure- 5-5: FPGA Top Module 
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Upsampling means an increase in data rate, therefore for each pixel input there will 

be four pixel outputs. In two frequency bands case there will be 8 times more data to 

output. To achieve this data rate, clock rate of Edge Adaptive Interpolation, Shock 

Filter and Bicubic Transmission Module is quadrupled. The synchronization of two 

output modules is achieved by design. Edge Adaptive Interpolation calculations 

together with shock filter operations takes long enough for bicubic results to be 

transmitted to SRAM. 

 

To sum up the control flow is as follows: 

 

Top module captures all lines into SRAM 

  Top Module changes the mode from input stage to algorithm stage 

  TV Filter captures one line of N pixels with clock rate of C 

   TV Filter changes mode of operation from read to write 

  Bicubic Transmission Module outputs 2N pixels with clock rate of 4C 

  Shock Filter Outputs 2N pixels with clock rate of 4C returns ack. to TV Filter 

   TV Filter changes mode from write to read 

  If all lines are read return ack. to Top module for output stage 

If Algorithm is finished Top Module changes the mode to Output Mode. 

 Top module transmits all data from SRAM through RS232. 

 

Figure- 5-6 shows a result from simulations. CE is an abbreviation for clock enable. 

When CE_TV is low, TV filter is reading from SRAM and as soon as TV filter 

leaves the control by pulling CE_TV to high, Bicubic Transmission Module starts 

sending results to SRAM. After Edge Adaptive Interpolation and Shock Filter 

finishes operations, shock filter block start to send the results, thankful to the precise 

calculation to ensure that bicubic is finished before shock filter block starts.  

 

Figure- 5-6: Write/Read Cycle 
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5.5 Total Variation Filter 

 

In equation (3-23) TV filter operation is summarized. 

 

 

    
     

 
    
   

                  
   

                      
 

( 5-1 ) 

 

A dual vector p, for x and y dimensions, is iterated over itself to reach a solution. 

Gradient operation, for FPGA, can be broken down into two difference operations.   

is taken 1 for simplicity.               is defined, for gradient result      

               and                     is defined.                        

              . 

 

Then for the denominator L2 norm                 is defined. Although a 

square root operation is difficult to implement in FPGA, square root of sum of 

squares is a distance and it can be approximated according to relative distance of 

two variables. If dux is larger than duy by an order of magnitude, “d” can be 

approximated as d = 1 + dux. L2 Norm approximation is done by piecewise 

continuous function: 
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In literature there are few examples of L2 norm approximations which are generally 

designed for processor based codes or floating point operations. The approximation 

that we have proposed is an easier-to-implement method whose artifacts are 

negligible due to its usage for summation normalization inside the algorithms. 

 

The result can be discretized depending on relative magnitudes of two variables. The 

dual vector p is also split into px and py. 

 

In our tests we have found that 4 iterations are enough for convergence. In a 

software environment iterations are done on whole image. Since in Spartan 3A DSP 

FPGA there are 126 line buffers available, the iterative scheme is reduced to line by 

line scheme. 

The overall algorithm is shown in the pseudo code and in Figure- 5-7. 

 

 

 

Do for all lines  

  Capture 1
st
  line. 

 As capturing 2
nd

  line 

  Calculate dux1, duy1, d, px1, py1, divp1 

  Update 1
st
  line 

 As capturing 3
rd

  line 

  Calculate dux2, duy2, d, px2, py2, divp2 

  Update 2
nd

  line 

  As updating 2
nd

 line calculate dux1, duy1, d, px1, py1, divp1 

  Update 1
st
  line 

 Carry on until fifth line 

 Output first line 

End Do; 
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Figure- 5-7: Total Variation Filter Line Based Iterative Scheme 

The resource requirements are listed below: 

1. 8 Division modules for dux1,2,3,4 and duy1,2,3,4 calculations 

2. 10 line buffer for 5 lines and 5 updated lines 

3. 8 line buffers for px1,2,3,4 and py1,2,3,4 

4. Other math operations and pipeline delay vectors. 

 

The final code is synthesized and the resource utilization is found as in Figure- 5-8. 

The utilization is in estimated state since only final TOP level module is 

implemented. The estimated values reflect non-optimized values for place and route 

results therefore they can be accepted as a maximum value for utilization. 

 

Figure- 5-8: TV Filter Resource Utilization 
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5.6 Edge Adaptive Interpolation 

This is the largest module to be designed because of its operational load. The 

algorithm starts by calculating the first internal pixels that will be placed on 

interpolated lines. To calculate a new pixel, by using bilateral filter minimization 

problem, range distance estimates need to be calculated. Range estimates are 

calculated using (3-15). Therefore 4 pixels from 4 lines are required. Once range 

distance estimates are calculated, bilateral filter coefficients are obtained using (3-

13). The equation contains exponentiation which requires floating point operations 

strictly, but since there are 0 to 255 possible values for range distance, the value of 

filter coefficients can be obtained from a look up table that is filled with known 

results for each range value. As mentioned previously, these coefficients are decimal 

numbers the look up table is filled with numbers that are multiples of 2
7
.  

 

There is an optimization made for the multiplication value. If the multiplication 

value is chosen to be quite large it will allow all possible coefficient value to be 

almost precisely represented with integers. However those values are used for 

multiplication, as in (3-14), therefore choosing larger values means creating a 

multiplication that requires operations with more bits which in return increases the 

complexity and resource utilization. 2
7
 was on a sweet spot in between being too 

large and cleaving nearly all coefficients. Before going into real application, all of 

these optimizations are reflected to Matlab codes where all variables were integers 

and gave insights on how discretization affected our result. 

 

Another optimization was made about cascaded multiplications. If values with range 

2
8
 are multiplied over a cascade of four, the resulting value will have a range of 2

64
. 

The resource utilization is going to be 24 times more than that of a single stage 

multiplication. Therefore, by confirming suitability on Matlab, cascaded 

multiplication results are diminished by an order of 2
8
 every time they are 

substituted to another stage of multiplication.  
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After first internal pixels are calculated the newly found values are needed to be 

corrected according to pixel continuity. For that matter    values are calculated (3-

19) and continuity criterion minimization is applied according to the solution (3-22).  

 

The basic grid of initial pixels is obtained as in Figure- 5-9. Next step will be to 

calculate neighbor pixels using the same method for 45 degrees rotated grid. The 

pixel locations will be in different line buffers compared to initial pixels but the 

operations required to calculate new pixels are the same, once 16 pixel values are 

obtained.  
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Figure- 5-9: Initial and Secondary Neighbour Pixel Locations 

The ability to use the same operational basis for three different pixel calculations 

lead us to another optimization. As we have discussed previously, the clock rate for 
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Edge Adaptive Interpolation is quadruple of TV Filter. This enables the opportunity 

to do some calculations sequentially. 

 

A detailed resource analysis set forth that to make all the calculations, 108 

multiplications and 6 divisions are required. That is a huge number that will almost 

occupy 35% of FPGA with just the operations. By using the speed allowance, 

operations for initial pixels, secondary interpolated line pixels and secondary main 

line pixels are calculated and updated sequentially by using the same resources. This 

reduced multiplications to 36 and divisions to 1, saving 20% space. 

 

Figure- 5-10: Pixel and Line Naming 

The overall algorithm is shown in pseudo code below, naming is made according to 

Figure- 5-10: 
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Do for all lines 

Capture N
th

 line 

  Update N-2
nd

  inter pixels 

  Calculate N-3
rd

  neighbor pixels 

  Calculate N-4
th

  adjacent pixels 

  Update N-5
th

  neighbor pixels 

  Update N-5
th

 adjacent pixels 

Output N-7
th

  main line 

Output N-7
th

  interpolated line 

SWITCH LINES 

 

Pixel calculation and updating operations are common except the input pixels which 

will be handled with another process. Figure- 5-11 show operations of calculation 

and Figure- 5-12 show operations of updating. Relative delays between variables 

and order decimations between cascaded multiplications are not shown for 

simplicity. Pixel values and coefficient values are shown with letters and as w0-3 

respectively. The coefficient values are calculated in pixel calculation step and 

stored inside a line buffer to be used in pixel update step. 

 

 

Figure- 5-11: Pixel Calculation Operations 
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Figure- 5-12: Pixel Updating Operations 

Figure- 5-13 show the estimated resource utilization for edge adaptive interpolation 

block only. 
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Figure- 5-13: Edge Adaptive Interpolation Resource Utilization 

5.7 Shock Filter and Bicubic Interpolation 

Shock filter is an iterative algorithm. However the step parameter is used to slowly 

converge the output. In our tests we have discovered that using single iteration with 

larger step variable yields the same result for smoothed images such as our case. 

Therefore shock filter is optimized to work as a batch algorithm. 

 

Bicubic interpolation filters four pixel values to obtain high resolution pixel value 

both for in-line pixels and intermediate lines. 

 

Bicubic Transmission Module is responsible for synchronizing bicubic outputs with 

Total variation filter input and shock filter outputs. It consists of four line buffers 

where two lines are accumulated and sent sequentially when third line arrives. 

 

Resource utilizations of shock filter, bicubic interpolation, bicubic transmission 

module are given on Figure- 5-14, Figure- 5-15 and Figure- 5-16 respectively. 
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Figure- 5-14: Shock Filter Resource Utilization 

 

Figure- 5-15: Bicubic Interpolation Resource Utilization 
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Figure- 5-16: Bicubic Transmission Module Resource Utilization 

5.8 Final Design 

The final design is collected under the top module. Top module signals are 

connected to RS232 pins, SRAM pins, clock generator pins. The clock on board has 

27 MHz frequency. With 27MHz clock we can achieve 33 frames per second speed 

with chosen 640x480 output pixel rate. The chosen resolution is taken from cameras 

that are used widely for low resolution video capturing. 

 

The final design, together with its constraints, has a limit of 42 MHz clock rate. This 

means the fps figure can go up to 51 fps if clock speed is changed. 

 

The final design is implemented and tested on our board. Results are going to be 

given on next chapter. Figure- 5-17 shows the final implemented resource 

utilization. 
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Figure- 5-17: Implemented Design Resource Utilization 
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CHAPTER 6  

 

 

EXPERIMENTAL RESULTS 

 

Input to FPGA is sent and output from FPGA is received via RS232 serial 

communication channel using HyperTerminal software.  

 

Figure- 6-1: HyperTerminal Interface 

6.1 Detailed Results 

Details of the results are given in four figures from lena image. Figure- 6-2 shows 

edge reconstruction success and better estimation for thin lines. The images are 

original, FPGA result, Matlab Bicubic result from left to right respectively. The 

results of numerically compared images are given on the next topic. 
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Figure- 6-2: Details of Images 

6.2 Degradations 

The main drawback of using FPGA is quantization of all values as mentioned on 

chapter 5. We have quantized bilateral filter coefficients to 2
7
 to optimize between 

resource utilization and quality. That caused edge adaptive interpolation to fill new 

pixels with slightly different values than they should normally have. This is due to 

quantized possible values of a new pixel. 

Other possible cause of artifacts is the approximation of L2 Norm, square root of 

sum of squares. The approximation is quantized to three levels where two values are 

equal, within close proximity and different with an order of magnitude. This causes 

only normalization problems but it might increase the value of singularities slightly. 
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Another cause of possible artifacts is division. First type of division error is due to 

rounded decimals of division results which is inconceivable. Second type of division 

error is due to bit loss from division which is done by bit shifting. Bit shifting may 

cause value of a pixel to change by one, two or four. 

6.3 Numerical Results 

The FPGA result is compared with the original image together with the theoretical 

result obtained from Matlab and theoretical bicubic result obtained from Matlab. 

Table 6.1 shows comparison results of theoretical and practical results.  
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Table- 6-1: PSNR Comparison of Experimental Results 

PSNR FPGA Bicubic FPGA EDAT  Matlab 

Bicubic 

Matlab EDAT 

Kodakimg1 23.6578 23.6837 24.5685 24.5803 

Kodakimg2 30.0495 30.1378 30.4216 30.4589 

Kodakimg3 30.6926 30.7509 31.1171 31.4221 

Kodakimg4 21.7534 21.9398 22.1925 22.2952 

Kodakimg5 28.9176 28.9295 31.3140 31.5496 

Kodakimg6 24.9994 25.0287 26.9734 27.0695 

Average 26.6784 26.7451 27.7645 27.8959 

 

Table- 6-2: SSIM Comparison of Experimental Results 

SSIM FPGA Bicubic FPGA EDAT  Matlab 

Bicubic 

Matlab EDAT 

Kodakimg1 0.8879 0.8897 0.8987 0.9000 

Kodakimg2 0.8463 0.8467 0.8428 0.8443 

Kodakimg3 0.9606 0.9548 0.9708 0.9713 

Kodakimg4 0.8862 0.8896 0.9065 0.9098 

Kodakimg5 0.9264 0.9296 0.9460 0.9467 

Kodakimg6 0.8407 0.8420 0.9021 0.9028 

Average 0.8913 0.8921 0.9112 0.9125 

 

The EDAT exceeds the quality of the basic method bicubic. Figure- 6-3 shows 

whole and close-up comparsions of bicubic (left) and EDAT (right). 
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Figure- 6-3: Comparison of Bicubic(left) vs EDAT(right) from FPGA Results 

Figure- 6-4 shows the comparison of FPGA and Matlab results respectively. 

Occasional artifacts on leftmost images can be seen which are caused by the 

aforementioned degredations. 
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Figure- 6-4: Comparison of FPGA (left) vs. Matlab (right) Results 

6.4 Running Time 

The current FPGA board had 27MHz clock available for operation. By using 

available clock and Digital Clock Manager (DCM) blocks for faster clocks, we have 

achieved 33 frames per second for 640x480 output resolution. The reports from ISE 

software indicate that maximum achievable clock speed is 42.264 MHz which 

means the temporal speed can be extended to 52 frames per second or 800x600 

resolution at 33 fps. With this configuration bicubic implementation can be run with 

speeds up to 96 MHz. Although bicubic can output twice the fps or approximately 
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1.5 times higher resolutions the reconstruction quality of EDAT may still surpass the 

need for speed. 

Considering the used FPGA is 7 years old technology, these results are promising 

for higher resolution applications. 
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CHAPTER 7  

 

 

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusions 

In this thesis we have proposed two algorithms (NDUID, EDAT) and implemented 

one algorithm on FPGA for a real-time application (EDAT). 

 

NDUID uses a non-dyadic upsampling cascade to slowly interpolate an image to a 

reasonable size for better edges. Since the upsampling cascade does not contribute 

much to high frequency content a texture enhancement block called non-blind 

deconvolution is used. The deconvolution process uses heavy tailed gradient 

distribution prior embedded into frequency domain iterative deconvolution. 

 

EDAT uses Total Variation decomposition to split the image into high frequency 

texture component and low frequency structure component. Since both components 

carry different information they have been treated differently. Texture component is 

upsampled by bicubic interpolation and is not retouched since it does not include 

visual information other than local details. Structure component is, however, 

interpolated by an edge adaptive interpolation which is based on bilateral filter. The 

smooth and continuous edges together with lack of noise (since it is separated to 

texture component) enabled us to use a special filter called shock filter which, in 

short, converts a sinusoid into square-like function. Then two components have been 

combined. 
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The algorithms have been chosen according to their speed. Even though algorithms 

had learning based, frequency domain based, and MAP based minimizations 

included, all of them were implementable on an FPGA. 

 

The resulting algorithm, EDAT, is chosen for FPGA because of fewer computations, 

better numerical and visual results. EDAT performed well on PSNR and SSIM 

results compared to conventional bicubic and the included original algorithms. 

 

FPGA results are acceptable because of better edge reconstruction and visual results. 

The speed limit allows the implemented algorithm to be used with real cameras for 

low cost applications. Since the FPGA board that we have used is a seven years old 

technology, the algorithm is open for further enhancement in temporal and spatial 

resolutions. 

7.2 Future Work 

The FPGA implementation is not made for a real time application other than 

calculation of running time for real time application. The foremost refinement would 

be to add frame-grabber and frame-buffers for video input and output to process a 

real time video stream from a camera. 

 

In our work we have not paid attention to texture component on EDAT because it 

cannot be modeled with any known method well enough to process it further with 

the availability for real-time application. One of the refinements can be to devise a 

method to further enhance texture component. 

 

Another refinement for EDAT can be to separate the image into four, or more, 

wavelet transform pairs. Since some of the edge information is polluted due to 

composition of bicubic interpolated texture and edge adaptive interpolated structure 

component. TV decomposition block can be used to filter the image with more 



89 

blurring to spare more information for remaining texture component. Then the 

remaining high frequency content can be decomposed into edge directional pairs for 

better signal processing. 
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