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ABSTRACT 
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Eren Özsoy, Öykü 
Ph.D., Department of Health Informatics 
Supervisor: Assoc. Prof. Dr. Tolga Can 

 
 
 

June 2014, 105 pages 
 
 
 

Inference of gene regulatory or signaling networks from perturbation experiments 
and gene expression assays is one of the challenging problems in bioinformatics. 
Recently, the inference problem has been formulated as a reference network editing 
problem and it has been show that finding the minimum number of edit operations 
on a reference network in order to comply with perturbation experiments is an NP-
complete problem.  
 
In this dissertation, we propose linear programming based solutions for 
reconstruction of biological networks. We propose an integer linear programming 
(ILP) model for reconstruction of signaling networks from RNAi data and a 
reference network. The ILP model guarantees the optimal solution; however, is 
practical only for small networks of size 10-15 genes due to computational 
complexity. In order to scale for large networks, we propose a divide and conquer 
based heuristic, in which a given reference network is divided into smaller sub-
networks that are solved separately and the solutions are merged together to form the 
solution for the large network. However the solution that we have developed for 
reconstruction of signaling networks using RNA interference data is not suitable for 
networks with multiple sources and sinks. In order to handle such networks, we use 
gene expression data and develop another ILP based graph theoretical method.  
 
We validate our proposed approaches on real, semi-synthetic and synthetic data sets, 
and comparison with the state of the art shows that our proposed approaches are able 
to scale better for large networks while attaining similar or better biological 
accuracy. 
 
Keywords:  regulatory networks, network topology, linear optimization, RNAi, gene 
expression 
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ÖZ 

 
 

BİYOLOJİK AĞLARIN OLUŞTURULMASI İÇİN TAM SAYILI DOĞRUSAL 
PROGRAMLAMA TABANLI ÇÖZÜMLER 

 
 
 

Eren Özsoy, Öykü 
Doktora, Tıp Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Tolga Can 
 
 
 

Haziran 2014, 105 sayfa 
 
 
 

Gen düzenleme veya sinyal ağlarının pertürbasyon deneyleri ve gen ifade 
incelemesiyle çıkarımı biyoenformatikteki zor problemlerden birisidir. Yakın 
zamanda, çıkarım problemi referans ağ biçimlendirmesi problemi olarak formüle 
edilmiş ve pertürbasyon deneyleriyle uyumlanması için referans ağ üzerinde 
gerçekleştirilen minimum biçimlendirme işlem sayısının bulunmasının NP-Tam bir 
problem olduğu gösterilmiştir.  
 
Bu doktora tezinde, biyolojik ağların yeniden yapılandırılması için doğrusal 
programlama tabanlı çözümler önerilmiştir. RNA engelleme (RNAi) verisi ve 
referans ağ kullanılarak, sinyal ağlarının yeniden yapılandırılması için tam sayılı 
doğrusal programlama (TDP) modeli geliştirilmiştir. TDP modeli optimal çözümü 
garanti etmektedir ancak hesaplama karmaşıklığından dolayı yalnızca 10-15 genden 
oluşan küçük ağlar için elverişlidir. Büyük ağları ölçeklendirmek için böl ve yönet 
tabanlı yeni bir yöntem önerilmiştir. Bu yöntemde verilen referans ağ, ayrı ayrı 
çözülen alt ağlara ayrılmakta ve bu çözümler büyük ağın çözümünü oluşturmak için 
birleştirilmektedir. Fakat RNAi verisini kullanarak sinyal ağlarının yeniden 
yapılandırılması için geliştirdiğimiz çözümler çoklu alıcı/hedef içeren ağlar için 
uygun değildir. Buna benzer ağların çözümü için gen ifade verisi kullanılmıştır ve 
yeni bir TDP tabanlı çizge teorik yöntem geliştirilmiştir.  
 
Önerilen yöntemler; gerçek, yari sentetik ve sentetik verilerle doğrulanmıştır ve 
literatürdeki yöntemlerle karşılaştırılması, önerilen yöntemlerin büyük ağlara 
ölçeklenmede benzer ya da daha iyi biyolojik doğruluk elde ettiğini göstermiştir. 
 
Anahtar kelimeler: Düzenleyici ağlar, ağ topolojisi, lineer opimizasyon, RNAi, gen 
ekspresyonu 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Motivation and Related Work 

The human body is composed of countless number of cells, which are the smallest 
structural components of all organisms. Each cell contains thousands of genes and 
the interactions between them carry out specialized functions, understanding of 
which are crucial from medical and biological perspective. Yet, these functions, such 
as gene regulation, are not yet fully understood due to their complexity. 
 
Systems biology deals with estimating the relationships between the genes in signal 
transduction networks and gene regulatory networks. The structure that the genes 
form and the interactions between them can be explained basically by networks. 
Each gene in the cell is represented by a node and the interactions between these 
genes are depicted by edges in the network. Although there are several studies in the 
literature that estimate networks from perturbation effects, they are either not 
accurate enough or cannot scale for large networks since it is a very challenging task. 
RNA interference (RNAi) is a perturbation technique used for finding the genes in a 
pathway (Fire et al., 1998). It opens new perspectives for network reconstruction 
methods. Although RNAi is a useful technique to identify genes associated with a 
particular phenotype, the temporal and spatial placement of these genes in the 
respective cellular pathways remains a problem (Moffat and Sabatini, 2006). 
Markowetz et al., 2007, proposed Nested Effect Models for the construction of 
signal transduction networks. Such models construct the signal transduction 
networks by using the nested structure of observed perturbation effects. Although 
they are suitable models for effect-result type of data, such as RNAi data, they 
require several types and relatively high number of readouts per knockdown. This 
prevents the usage of the results of RNAi experiments using one messenger gene.  
 
It is possible to place genes in the respective pathways by interrogation of databases 
and literature (König et al., 2008) however, in the case when there is insufficient 
information about the genes in the pathways, automated approaches that place these 
genes in the network have to be developed. Kaderali et al., 2009, develop a 
probabilistic method that can reconstruct network topologies using single gene 
knockdown data. However, because of the computational complexity of this method, 
it can be applied to only small networks (8-10 genes). The method developed by 
Hashemikhabir et al., 2012, constructs relatively accurate networks satisfying RNAi 
data; however, the method does not always include all the genes in the constructed 
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network. To overcome such difficulties, our first motivation is to develop methods 
that reconstruct signaling networks from RNAi data with high accuracy and for large 
networks.   
 
We first propose an Integer Linear Programming (ILP) based approach that 
reconstructs the optimum network by applying minimum number of edit operations 
on a given reference network taken from the literature. The product network is 
ensured to satisfy the RNAi data by the formulation of the problem. Although this 
approach yields very accurate results, it fails to scale for large networks and can 
reconstruct networks with 10-12 genes, which constitutes the basis of our second 
motivation. Therefore, we extend our approach to deal with large networks 
employing the divide and conquer technique.  
 
Despite their success, these methods are convenient only for the networks with a 
single receptor gene and a single reporter gene. Since there are multiple receptor and 
reporter genes in real biological networks these methods are not suitable for such 
networks. Our third motivation is to overcome this problem by developing another 
ILP based graph theoretical method using gene expression data. In this method, we 
use time-series data consisting of gene expression measurements at different time 
periods. Such data allows us to track the changes happening in the network, and thus 
to find the interactions between genes. To improve the results, we integrate 
perturbation data with time-series data. Since these data contain noise due to the 
nature of the experiments, we propose additional methods to reduce the effects of 
noise. 

1.2 Biological background 

This section provides the necessary biological and mathematical background for 
understanding the material and methods presented in this dissertation. 

1.2.1 Biological networks 

Understanding biological networks is essential from a medical or biological 
perspective. Network inference is crucial for interpreting the topology of the 
networks. Modeling the relationship between signal transduction networks, gene 
regulatory networks, and protein-protein interaction (PPI) networks is a very 
important problem in systems biology.   This section gives brief information about 
some major biological networks, which were used in this study, signaling networks, 
gene regulatory networks and PPI networks.  
 
A network can be defined as a collection of nodes and edges. In biological networks, 
nodes may be either a gene or a gene product and edges correspond to the 
interactions between these nodes. We use the terms protein and gene interchangeably 
in the rest of the study, sometimes using the term gene to indicate a gene product.  
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Signaling networks are represented as directed networks structurally.  Each node of 
the network represents either a protein or a gene, and the interactions between these 
proteins/genes are represented by edges of the network. These interactions are 
directed edges and the direction of an interaction depicts the direction of the signal 
flow.   The signal is usually received at a single receptor protein and is transduced to 
a target gene.  
 
Signal transduction is a series of biochemical reactions involving proteins; therefore 
some of the physical interactions in PPI networks may indicate signaling processes. 
Exploiting this relationship, PPI networks can be used as reference networks, i.e., as 
initial skeleton networks, for reconstruction of the topology of signaling networks 
(Hashemikhabir et al. 2012).  While signaling networks are modeled as directed 
graphs, high-throughput protein-protein interaction data is undirected. It is possible 
to transform this undirected data to directed pathways (Gitter et al., 2011). 
 
Gene regulatory networks organize gene regulation which is simply the decision 
given by the cell to turn on or turn off the genes so as to control gene expression. 
They are similar to signal transduction networks in forming signaling cascades. Any 
gene can activate many others and large number of genes can be expressed as a 
result of an initial stimulus. 
 
There are several models developed for reconstruction of signaling and gene 
regulatory networks using various types of high throughput data. The type and 
amount of data, prior knowledge for the network, experimental and computational 
resources play an important role in the development of these models. In this study, 
RNA interference data and microarray data are used to solve the network inference 
problem. Genes are represented by nodes and edges refer to the interactions between 
a gene product and its receptor gene. 

1.2.2 RNA interference Data 

RNA interference (RNAi) is a research tool that is used for a high-throughput 
analysis of gene function at the genome-scale. This powerful technique allows 
researchers to identify complex biological processes in the cells of the organisms 
ranging from plants to mammals. The introduction of the RNAi technique had a 
revolutionary effect on the studies of several biological processes, such as signal 
transduction, infection responses, cancer biology, etc (Moffat and Sabatini, 2006; 
Rao et al., 2013; Sarkies and Miska, 2013; Prados et al., 2013). It can be used as a 
therapeutic approach for several diseases where there is an abnormal problem in 
protein production and to inhibit the expression or replication of pathogenic viruses, 
such as HIV (Rossi, 2006) and hepatitis C virus (Seo et al., 2003). 
 
Traditionally, double-stranded RNAs (dsRNAs) are used to knockdown, i.e. reduce 
the activity of the genes of particular interest and the change on the cellular activity 
is observed (Fire and Mello, 1998). The dsRNA is divided into small duplex RNAs 
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which consist of approximately 21–23 nucleotides siRNAs (small interfering RNAs) 
by an enzyme which is called Dicer. Interaction of siRNAs with the RNA-induced 
silencing complex (RISC) which is a multiprotein complex, results in sequence 
specific association of the activated RISC complex with the messenger RNA 
transcript (Figure 1.1). This interaction results in sequence-specific cleavage of the 
target transcript and thus, the production of the unwanted protein is prevented by 
avoiding its translation. 
 
 

 
 
Figure 1.1 The mechanism of gene silencing by RNAi interference. 
 
 
 
The genes between the receptor and reporter genes in a signaling network have 
varying levels of influence on the transduced signal. In this study, we model this 
influence in a binary manner, and label the intermediate genes as critical or non-
critical.  By using RNAi data, a gene can be resolved to be a critical gene or a non-
critical one. RNAi data is generated from RNAi experiments which can be used to 
find the genes in a pathway (Fire et al., 1998). For RNAi screens at large-scale, the 
readouts are established upon single reporters (Brass et al., 2008). Genome-wide 
screens that have high contents are developing with an increasing rate with the 
advances in technology (Sacher et al., 2008). RNAi screens are used to investigate 
the downstream effects of a silenced gene.  In these experiments, every other gene 
except the receptor and the reporter gene in the system are knocked down and the 
expression level of the reporter gene is measured. The genes which influence the 
reporter gene significantly are called “critical genes” and the rest are called “non-
critical genes”. The result of a knock-down is usually measured as the level of 
differential expression (e.g., fold change) of the reporter gene (Friedman and 
Perrimon, 2006) and called the RNAi score. By using RNAi scores, the order of the 
genes in a signaling network can be predicted (Singh, 2011). 

1.2.3 Microarray data 

The functionality of a gene can be determined by measuring the amount of mRNA 
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production during DNA transcription, in a cell. This can be done by using 
microarrays, which can detect the mRNA levels of thousands of genes in a single 
experiment. Microarrays, or gene-chips, consist of DNA spots attached to a surface 
consisting of specific DNA sequences. When a gene is activated, it produces mRNA 
which is complementary. Therefore, it is able to bind to the original portion of the 
DNA strand from which it was copied. To determine the activated or de-activated 
genes, the mRNA molecules are collected from a cell in consideration. Then, these 
mRNA molecules are labeled by using an enzyme which generates the so-called 
complementary DNA (cDNA) to the mRNA. Fluorescent agents are attached to the 
cDNA during this process. Then, these labeled cDNAs are placed onto the 
microarray, and they bind to their complementary DNAs on the microarray with 
fluorescence. Measuring the intensity of fluorescence at each spot on the microarray 
using a scanner, activity level of a gene can be obtained.  
 
Depending on the type of experiment, microarray data can be either time-series or 
perturbation data. Time series data gives information about the time-change of gene 
expression levels. By using this data, the genes which are activated in a biological 
event can be discovered. The dynamics of the cellular system, as well as the order of 
the genes and their causal effects can be determined. Perturbation experiments are 
similar to RNAi experiments in that the activity of a gene is perturbed and its effects 
to the cellular activity are studied. Microarray data is available in terms of a gene 
expression matrix, which is a table of rows representing gene names and columns 
representing the individual sample. The columns can be either time points or 
treatments depending on the experiment type. The expression profile for a gene is 
accessed from the corresponding row on the matrix. 

1.3 Mathematical background 

Network inference problem is a kind of problem that figures out the placement of 
genes and the interactions between them. There are several models in the literature to 
solve this problem. In this study, the proposed model is formulated as a linear 
optimization problem where the objective function is defined as the minimization of 
applied changes on a given reference network.  

1.3.1 Linear programming 

Linear programming is a method to solve an optimization problem where the 
objective function and the constraints are linear functions of variables. A linear 
function f is defined by:  
 

1 2 1 1 2 2( , ,...., ) ...n n n j j
j J

f x x x a x a x a x a x
∈

= + + + =∑     (1.1) 

where aj are real numbers and xj are the variables. Linear constraints are the linear 
equalities or linear inequalities in the form 
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1 2( , ,...., )nf x x x b=       (1.2) 

1 2( , ,...., )nf x x x b≤       (1.3) 

1 2( , ,...., )nf x x x b≥       (1.4) 
 
where b is a real number. Strict inequalities, i.e. “larger than” or “smaller than”, are 
not allowed in linear programming.  
 
Linear programs are represented in two forms; standard form and slack form. In 
standard form, a linear function is maximized subject to linear inequalities, whereas 
in slack form, it is maximized subject to linear equalities. One of the methods for 
solving linear programs is the simplex method. In order to solve a linear problem by 
simplex method, it is represented in slack form. A linear program subject to linear 
constraints can always be converted to standard form. 
 
A linear program in standard form is shown as follows: 
 

Maximize j j
j J

c x
∈
∑        (1.5)  

Subject to 
 

       for  ij j ij J a x b i I
∈

≤ ∀ ∈∑     (1.6) 

0      for  jx j J≥ ∀ ∈       (1.7) 
 
where cj and bi are real numbers with I = {1, 2,…., m} and J = {1, 2,…., n},  and xj 
are the real numbers that are to be found. Expression (1.5) is called the objective 
function, and (1.6) and (1.7) are called the constraints. Inequalities (1.7) are also 
called nonnegativity constraints. Not all linear programs (LPs) need nonnegativity 
constraints but they have to be shown if LP is represented in standard form. Any 
setting of xj’s satisfying all the constraints (1.6)-(1.7) is called a feasible solution to 
the LP.  
 
In order to solve an LP by the simplex method, it is required to represent the LP in 
slack form, where all the constraints other than the nonnegativity constraints are 
converted to equalities.  
 
Consider the inequality constraint 
 

       for  ij j ij J a x b i I
∈

≤ ∀ ∈∑     (1.8) 

 
Introducing new variables xn+i, i.e. the slack variables, this constraint is converted to 
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  n i i ij j
j J

x b a x+
∈

= −∑        (1.9) 

0n ix + ≥         (1.10) 
 
By this conversion, we obtain an equivalent linear program in which the only 
inequality constraints are the nonnegativity constraints. The variables xn+i are called 
the basic variables and the xj are called the nonbasic variables. Removing the 
maximize and subject to words, adding an optional constant v  to the objective 
function and denoting the objective function as z, the slack form can be expressed as 
 

j j
j J

z v c x
∈

= +∑        (1.11) 

    for   i i ij j
j J

x b a x i N
∈

= − ∀ ∈∑      (1.12) 

 
where N denotes the index set of nonbasic variables and all variables x are 
nonnegative. 

1.4 Contributions 

In this dissertation, we focus on the biological network inference problem. 
Reconstruction of gene regulatory networks and signaling networks from 
perturbation and gene expression assays is a challenging task. Finding the 
relationships between the genes in signaling networks and gene regulatory networks 
is very important to understand the whole system biologically in systems biology. 
However, the computational costs of solutions increase exponentially with the 
increasing number of genes in the system.  Therefore construction of large scale 
networks is a challenging problem. Our contributions in this study can be grouped 
under three main categories;  reconstruction of small size, single receptor single 
reporter networks optimally, large scale network reconstruction with single receptor 
and single reporter networks, and large scale network reconstruction with multiple 
receptor multiple and reporter networks. 
 
We propose linear programming based solutions for the network inference problem. 
Our first approach is to formulate this problem as an integer linear optimization 
problem, which will provide a network satisfying the RNA interference (RNAi) data 
with a minimum change made on a given reference network. The genes in the 
network are known a priori according to our assumption. The given reference 
network may be taken from any protein-protein interaction (PPI) network database 
or it may be a literature curated network, where each node represents a protein or a 
gene and also we have RNAi data from RNAi experiment results related with the 
studied network topology. In fact, a reference network is not required but it forms a 
good skeleton to the reconstructed network. Due to the nature of RNAi screening 
experiments there may be some errors in the RNAi data. Moreover, there may be 
some errors in the reference network depending on the experiment it has been 
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obtained. These errors may cause some contradictions between the given reference 
network and RNAi data. Using RNAi data and the reference network together as a 
complementary data may reduce such errors. For our approach, we show that as the 
number of nodes in a network increases, the number of constraints increases 
exponentially. We explicitly derive the number of constraints for several different 
scenarios. To handle the exponential growth problem, first we use raw RNAi scores 
to decide the placement of the genes. It helps to reduce the search space of the 
problem.  In order to inspect how RNAi scores affect the number of constraints for a 
given problem, we considered a 12–node example and showed that it is possible to 
reduce the number of constraints by 97% depending on the number of critical genes 
and their ordering. We considered several problems with different reference 
networks, number of nodes and RNAi data. Our experiments show that, the topology 
of a network with 10 nodes can be constructed by our approach in a reasonable time. 
The integer linear programming (ILP) approach guarantees the optimal solution, 
however; it is not possible to solve the networks having more than 10 nodes in a 
reasonable time because of the complexity of the problem. Finding solutions for 
larger networks becomes difficult as the number of constraints increases 
exponentially.  
 
To obtain solutions for large networks, we propose a heuristic based on the divide 
and conquer approach. This approach allows us to reduce the number of nodes for a 
network by dividing it into sub-networks up to 10 nodes, then solve each sub-
network separately by our ILP approach, and finally combine the obtained resulting 
sub-networks at their respective positions to reconstruct the large network. 
Depending on the given reference network topology (i.e. ratio of the number of 
critical genes and network size) we develop two different division algorithms.  We 
validate our divide and conquer approaches on real, semisynthetic and synthetic 
networks. These networks are varying to test our methods performance from sparser 
to denser, smaller to larger and having specific percentages of noises. Comparison 
with state of the art methods reveals that our methods can construct networks better 
in terms of recall and precision measures, scalability, robustness, and consistency 
with the RNAi data. The divide and conquer approaches are able to scale better for 
large networks while attaining similar or better biological accuracy compared with 
the state of the art methods. Moreover, while the state of the art methods cannot 
include all genes and the interactions related with these genes to the reconstructed 
network topology, our approach finds connected networks. A connected network can 
be defined as a network which includes every gene in the network topology and 
every gene is an element of a directed pathway from the receptor gene to the target 
gene.  For dense and large networks, while the state of the art methods fail to 
construct networks in 1 hour, we are able to find solutions in minutes. By applying 
the divide and conquer strategy, we are able to scale our solution to large networks 
which makes the ILP solution a practical approach. The methods that we developed 
using RNA interference data are suitable for networks having single receptor and 
single reporter genes. It is not possible to find solutions for multiple receptor and 
reporter networks with these methods. 
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To deal with multiple receptor and reporter networks, we propose an ILP based 
graph theoretical model using time series gene expression data. Such data allows us 
to track the changes happening in the network, and thus to find the interactions 
between genes. The results show that time series data gives the underlying structure 
of the constructed network. In addition to the time series data, we show that 
integration of any biological information (such as perturbation data, RNAi data, and 
novel information about some interactions) to the proposed approach makes it 
accurate. We applied our approach on synthetic dataset along with different 
percentage of noise to validate its ability to construct networks on noisy data. Also 
the mouse agouti signaling network was reconstructed by the proposed approach and 
showed that several interactions and sub-networks can be found correctly.  By using 
this approach we can solve large scale networks easily.  
 
In summary, in this study, we show that the dimensionality of the network inference 
problem increases by the increase in the number of genes in the system. We 
developed an integer linear programming approach for reconstruction of signaling 
networks and prove that it finds the optimal solution, however; it is not able to scale 
large networks. To handle this problem we developed a divide and conquer based 
heuristic, which is a robust approach and guarantees to find a connected network 
topology. By using the proposed method, we reconstruct networks with hundreds of 
genes in minutes.  It still has a drawback on multiple receptor and multiple reporter 
gene networks and we deal with this problem by proposing an integer linear 
programming based graph theoretical model which can solve large scale multiple 
receptor multiple reporter large scale networks. Our results show that our approach 
can reconstruct biologically significant networks. 

1.5 Outline of the Dissertation 

This study can be partitioned into three parts. In the first part we deal with the 
network inference problem by using linear programming approach along with the 
RNAi data and a given reference network for small size networks. This method 
provides solutions for networks up to 10 nodes. We give the proof of exponential 
growth of the dimensionality of the problem. The integer linear programming 
approach given in this chapter forms the backbone of our next approach for large 
scale network reconstruction, which is a divide and conquer based approach 
mentioned in the second part, it is able to scale for large networks in minutes, 
however; it reconstruct networks with a single receptor and a single reporter. To 
handle this drawback, third part presents the integer linear programming based graph 
theoretical model for reconstruction of multiple receptor multiple reporter gene 
networks. 
 
In Chapter 2, we give the integer linear programming approach to construct signaling 
pathways from protein-protein interactions (PPI) and RNA interference (RNAi) data. 
This chapter details a general discussion on this approach and proves that the 
computational requirement of the problem grows exponentially by the increasing 
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number of nodes; therefore it cannot scale for larger networks with more than 10 
genes in reasonable time. Chapter 3 presents a method to handle this drawback by 
developing a divide and conquer based heuristic. In Chapter 3, we show that our 
approach is a robust approach and constructs biologically significant networks. And 
also we can deal with large networks with hundreds of nodes in minutes and 
construct the network topology. We compare our approach with the state of art 
methods and demonstrate our performance.  In Chapter 4, we present another integer 
linear programming approach that uses time series gene expression data for 
reconstructing multiple receptor multiple reporter networks. We evaluated our study 
on a real network and demonstrate that our approach is able to reconstruct the sub 
networks and several interactions common in the actual network topology easily. 
And finally, in Chapter 5, we represent a brief summary of our study and give some 
future directions.    
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CHAPTER 2 

2. RECONSTRUCTION OF SIGNALING NETWORKS FROM RNAi 
DATA 

In this chapter, we present the method we have developed to construct signaling 
pathways from protein-protein interactions (PPI) and RNA interference (RNAi) data 
using Integer Linear Programming (ILP) (Eren Ozsoy and Can, 2013). By using this 
method, which we call thereafter Original Integer Linear Programming (oILP) to not 
confuse with other ILP based methods that we present in Chapter 3, we solve several 
example networks and give a comparison between findings of our method and state 
of the art methods (Eren Ozsoy and Can, 2013). Also, we derive the total number of 
constraints in the problem mathematically and show the result for a 12-gene 
network.  The aim of the integer linear optimization model is to reconstruct the 
signaling network from the given PPI network satisfying RNAi data by making 
minimum number of changes on the given network. The corresponding integer linear 
program is solved by CPLEX v12.3 (64 bit). For evaluation of the method, 1000 
reference PPI networks each with seven, eight, or nine proteins, and RNAi data for 
each of the regular proteins in the network were generated randomly. The solutions 
were examined to have a general overview about reconstruction of signaling 
networks from RNAi data by using the proposed method. We compare oILP with a 
state of art method on real and semi-synthetic small size networks. And lastly, we 
analyzed how the number of constraints grow for different network topologies and 
network sizes and conclude that the oILP formulation cannot scale up for large 
networks even with the integration of additional biological data that provide 
additional constraints. 

2.1 Introduction 

The characterization of interactions between genes in signal transduction and genetic 
regulatory networks is one of the main research fields in systems biology. The 
reconstruction of pathways in signaling networks from gene knockdown experiments 
is enabled by developments in RNA interference screening technology forms a basis 
in identifying genes related to a particular phenotype (Fire et al., 1998; Gao and 
Huang, 2013; Moffat and Sabatini, 2006). On the other hand, the placement of genes 
in the signaling networks is still a challenging task (Kaderali et al., 2009; Froehlich 
et al.,  2007; Knapp and Kaderali, 2013).  
 
In the approach that we developed for the reconstruction of regulatory networks 
from RNAi, we use RNAi hits and RNAi scores. RNAi hits determine whether a 
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gene is a critical one or a non-critical one. Therefore, such data is Boolean, i.e., 
binary. In addition to this data, we use RNAi scores, which is the raw RNAi data. In 
our approach, RNAi scores determine the spatial ordering of the critical genes when 
the differences between these scores are high. Hence, the search space is reduced and 
more accurate biological networks can be constructed.  

2.2  Related works 

For the reconstruction of signaling networks from PPI data, several methods have 
been developed, such as the color coding algorithm (Scott et al., 2006) and 
Netsearch algorithm (Steffen et al., 2002). However, these methods can only search 
for a limited set of topologies such as linear paths.  
 
When there is insufficient information about the genes in a signaling network, 
automated methods that place these genes in the network have to be developed. A 
survey on the methods developed for such purposes are performed by Kaderali and 
Radde, 2008. The developed methods use Boolean models, correlation based models 
and associative network approach, Bayesian networks, models based on differential 
equations and similar techniques. Several methods use microarray gene expression 
as input data and aim to generate gene regulation networks using time dependent or 
static data. Some methods like Bayesian networks allow the integration of biological 
prior information. Despite all these developed methods, the temporal and spatial 
placement of the genes in a signaling network is still a challenging problem. 
 
For the construction of signaling networks using RNA interference, only a few 
methods are available. Markowetz et al., 2007 proposed Nested Effect Models for 
this problem. Such models construct the signal transduction networks by using the 
nested structure of observed perturbation effects. Although they are suitable models 
for effect-result kind of data, such as RNAi data, they require several kinds and 
relatively high number of readouts per knockdown. This prevents the usage of the 
results of RNAi experiments using one reporter gene.  
 
Kaderali et al., 2009, developed a probabilistic method that can reconstruct network 
topologies using single reporter genes by generating topologies consistent with this 
data. However, because of the computational complexity of this method, only small 
networks can be solved in a reasonable time.  
 
InfluenceFlow (Singh, 2011) combines PPI and RNAi data and finds consistent 
network topologies with RNAi data. It uses RNAi scores to determine the order of 
the genes, i.e., whether a gene is an upstream or downstream node in the signal flow. 
It uses linear programming to construct signaling network in tree topology. However, 
most signaling network topologies are more complicated than the tree topology; 
therefore, InfluenceFlow is not able to model such complex topologies. 
 
Ruths et al., 2007, use PPI data and single knockout or inhibition experiments to 
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reconstruct signaling networks. They try to find a consistent network with a given set 
of single knockout or inhibition experiments. They use the given PPI network 
structure as a reference and make the network consistent with the gene knockdown 
experiments by adding missing interactions to the given PPI network. However, they 
do not consider false positive interactions with their approach. 
Hashemikhabir et al., 2012, (SiNeC) use reference PPI networks and RNAi data 
together to reconstruct signaling networks. They use the given network as the initial 
topology and they perform a number of edge addition and edge deletion operations 
on this reference network while maintaining its consistency with the RNAi data. 
They try to keep the number of edit operations at minimum. They can handle both 
false positive and false negative interactions; however, they cannot deal with the 
genes if they are not RNAi hits and if there is no reference interaction related with 
this gene in the given PPI network. Therefore, their final output topology may not be 
a connected network in which every node is involved in the signaling process. In 
addition, the scalability of their proposed technique is limited to a couple of hundred 
nodes.  
 
In this chapter, we propose an integer linear program based model for the 
reconstruction of signal transduction networks from RNAi data. We assume that the 
genes that comprise the signaling network are given and the related RNAi data with 
these genes are also provided initially. For the integer linear programming 
formulation, we define a binary state variable for each edge: the state variable is 1 if 
the edge is present in the network, otherwise it is 0. Then, each knockdown data is 
formulated as linear constraints after enumerating all possible paths from the source 
node s (receptor gene) to the sink node t (reporter/target gene). The major difference 
of our approach from Hashemikhabir et al.’s approach is that in addition to satisfying 
the RNAi constraints, we also impose a flow constraint which requires every node in 
the network to transduce all or part of the signal flow. The reference network can be 
either a PPI network or another signaling network from a different species or 
condition. For example, a network, which might be already constructed based on the 
experiments carried out in the past, may be used as a reference network. If there is 
novel biological information about the network, e.g., RNAi data is available, this 
network has to be updated with respect to this novel biological information.  
 
Another difference of our approach from Hashemikhabir et al.’s approach is that 
while Hashemikhabir et al. treat RNAi data as Boolean data after thresholding, we 
make use of not only the same Boolean data but also the corresponding raw RNAi 
scores. If there is a distinctive difference between the RNAi scores of the genes, we 
use them in topological ordering of these genes in the network. This reduces the 
search space by eliminating some of the constraints in the ILP model. In addition, 
making use of the raw RNAi scores is beneficial in dividing the network into sub-
networks while using topological features of the reference network. If some of the 
genes are not connected to the reference network, we cannot decide on the location 
of these genes. In such situations, we use the raw RNAi scores and place such a gene 
in the sub-network including genes with the closest RNAi scores. The details of our 
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formulation are given in the next section of this dissertation. 

2.3 Problem Formulation 

Consider a given directed graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) where 𝑉𝑉 represents the node (gene) set and 
𝐸𝐸 represents the edge (interaction) set, with a source node s (receptor gene), and a 
sink node t (target gene). This graph may be taken from any of the protein-protein 
interaction (PPI) network database with undirected PPI edges modeled as two 
directed twin edges. Assume that the RNAi data is available from RNAi experiment 
results. The aim is to reconstruct a new network from the given network satisfying 
RNAi data by making minimum changes on the given network. We formulate this 
problem as a linear optimization problem, which finds a connected network 
satisfying the RNAi data with a minimum change applied on the given network. A 
connected network is a network which includes every gene in the network topology 
and every gene is an element of a directed pathway from the receptor gene to the 
target gene. 
 
Let xij be the binary variable representing the presence of the edge between nodes i 
and j which is from gene i to gene j in the given network. If the edge is present, then 
the value of xij is 1, otherwise it is 0. Similarly, let wij represent the edges in the final 
constructed network that satisfies the given RNAi data. The RNAi data consists of 
the information whether the signal is transferred from the source node s to the sink 
node t after the knockdown of a single node. We call these binary variables “the state 
variables”. The goal is to reconstruct the given network with respect to the RNAi 
data by minimizing the changes that have to be applied to the given reference 
network. The objective function for this linear problem would be the sum of the 
absolute values of the differences between wij and xij, ∑ |𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖|∀𝑖𝑖𝑖𝑖 . If the 
difference is 1, it means that the edge is either taken out from the network or it is 
inserted into the network. Therefore, minimizing the sum of these differences results 
in a network that is obtained by applying minimum number of edit operations while 
satisfying the constraints obtained from the knockdowns. 
 
The result of each knockdown can be formulated as a linear constraint after 
enumerating all possible paths from the source node s to the sink node t. If the signal 
is not observed at the sink node after knockdown of a node (gene), then any path 
from source s to sink t excluding the knockdown node should not be complete, i.e., 
the path has to be broken somewhere between the source and the sink. If it is 
observed, then at least one of the possible paths not including the knockdown node 
should be complete. If a path is not complete, then at least one of the edges on the 
path should not be present. Therefore, the state variable corresponding to that edge 
must be 0. If a path is complete, then all edges on the path must be present and the 
corresponding state variables take the value of 1.  
 
To visualize the discussion above, consider a network consisting of 5 nodes, two of 
which are the source node s and the sink node t, as in Figure 2.1. Note that, there are 
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no edges going into the source node s and no edges coming out of the sink node t. 
Also, self-edges are not allowed and there is no direct edge from source to sink. 
Even with these assumptions, if we disregard the sign of an edge (whether it 
activates or inactivates its target node) the number of possible network topologies 
would be close to 2nxn for a network with n nodes. The topology shown in part (a) 
includes all possible paths from the source to the sink.  
 
Let (s-3-t) be a given path on this network which is taken from a PPI network 
database, as in Figure 2.1. All other edges are missing in the reference network and it 
is known that this network consists of 5 nodes. Let the knockdown data be as given 
in Table 2.1. According to this data, knockdown of node 1 causes the sink node t to 
be not activated. This result can be written as mathematical constraints considering 
all possible paths which do not include node 1. Since no activation of the sink node 
is observed, none of these paths can transduce the signal, i.e., they must all be 
broken at one or more edges. Such a constraint can be satisfied by only setting at 
least one of the state variables of the edges on these paths to 0. Therefore, for a non-
transducing path, the product of the state variables must be 0. We call node 1 a 
“critical gene” since it affects the signal transduction, i.e., the signal is not 
transduced to the sink node. We call the other nodes “non-critical gene(s)” since they 
have no effect on the signal transduction.  
 
 

 
(a)                  (b) 

 
Figure 2.1 (a) A 5-node network with all possible edges, (b) a given reference 
network: solid lines show the edges in the reference network, dashed lines show the 
non-existent edges. 
 
 
 

Table 2.1 Artificial knockdown data 
 

 
Only source gene s is activated, while the remaining are 

inactive. Effect on gene t is observed. 
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Now, all the paths which do not include an edge connected to node 1 should be 
determined. For our problem with the knockdown of node 1, these non-transducing 
paths are (s-2-t), (s-3-t), (s-2-3-t), and (s-3-2-t). All of these paths must be broken, 
i.e., one of wij’s in these paths must be zero. This condition can be formulated for our 
problem as follows: 
 

𝑤𝑤𝑠𝑠2  +  𝑤𝑤2𝑡𝑡  ≤  1     (2.1) 
𝑤𝑤𝑠𝑠3  +  𝑤𝑤3𝑡𝑡  ≤  1     (2.2) 
𝑤𝑤𝑠𝑠2  +  𝑤𝑤23  +  𝑤𝑤3𝑡𝑡  ≤  2   (2.3) 
𝑤𝑤𝑠𝑠2  +  𝑤𝑤23  +  𝑤𝑤3𝑡𝑡  ≤  2    (2.4) 

 
Since at least one of the state variables at the left hand sides of the inequalities is 
zero, the corresponding sum must be less than the number of terms in the inequality. 
There is a logical “AND” relationship between all of these constraints. They must all 
be satisfied at the same time; otherwise the signal would be transduced from the 
source node to the sink node. 
 
Next, the second knockdown data is to be written as a constraint for our linear 
programming problem. Knockdown of node 2 results in activation of the sink node t. 
This observation means that at least one path that does not include node 2 must be 
complete, i.e., not broken, so that it is possible to transduce the signal from source to 
the sink. If a path transduces the signal, then all of the state variables of the edges on 
that path must be 1. For our problem with the knockdown of node 2, at least one path 
that does not include an edge connected to node 2 must be present in the network. 
These paths are (s-1-t), (s-3-t), (s-1-3-t), and (s-3-1-t). At least one of these paths has 
its wijs entirely equal to 1. This condition can be formulated for this problem as 
follows: 
 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤1𝑡𝑡  ≥ 2 or     (2.5) 
 𝑤𝑤𝑠𝑠3 + 𝑤𝑤3𝑡𝑡  ≥ 2 or     (2.6) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤13 + 𝑤𝑤3𝑡𝑡  ≥ 3 or    (2.7) 
 𝑤𝑤𝑠𝑠3 + 𝑤𝑤31 + 𝑤𝑤1𝑡𝑡  ≥ 3    (2.8) 
 
Note that the inequality signs (greater than or equal to) can be replaced by equalities, 
since the state variables are binary variables. Between these constraints, there is a 
logical “OR” condition, i.e., at least one of them must be satisfied. Note that 
constraint (2.6) cannot be satisfied because of constraint (2.2); therefore it can be 
omitted from the formulation.  
 
Similarly, the knockdown of node 3 implies that at least one of the paths (s-1-t), (s-2-
t), (s-1-2-t), and (s-2-1-t) must be present in the network. The formulation of this 
constraint is as follows: 
 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤1𝑡𝑡  ≥ 2 or    (2.9) 
 𝑤𝑤𝑠𝑠2 + 𝑤𝑤2𝑡𝑡  ≥ 2 or    (2.10) 

16 
 



 𝑤𝑤𝑠𝑠1 + 𝑤𝑤12 + 𝑤𝑤2𝑡𝑡  ≥ 3 or   (2.11) 
 𝑤𝑤𝑠𝑠2 + 𝑤𝑤21 + 𝑤𝑤1𝑡𝑡  ≥ 3    (2.12) 
 
Here, constraint (2.10) cannot be satisfied because of constraint (2.1), therefore it 
can be excluded from the formulation.  
 
After combining the objective function and all these constraints, the problem is 
stated as follows: 
 Minimize ∑�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖�   (2.13) 
 
 Subject to  
 𝑤𝑤𝑠𝑠2  +  𝑤𝑤2𝑡𝑡  ≤  1     (2.14) 
 𝑤𝑤𝑠𝑠3  +  𝑤𝑤3𝑡𝑡  ≤  1     (2.15) 
 𝑤𝑤𝑠𝑠2  +  𝑤𝑤23  +  𝑤𝑤3𝑡𝑡  ≤  2    (2.16) 
 𝑤𝑤𝑠𝑠2  +  𝑤𝑤23  +  𝑤𝑤3𝑡𝑡  ≤  2    (2.17) 
 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤1𝑡𝑡  ≥ 2  or     (2.18) 
 𝑤𝑤𝑠𝑠3 + 𝑤𝑤3𝑡𝑡  ≥ 2  or     (2.19) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤13 + 𝑤𝑤3𝑡𝑡  ≥ 3 or    (2.20) 
 𝑤𝑤𝑠𝑠3 + 𝑤𝑤31 + 𝑤𝑤1𝑡𝑡  ≥ 3    (2.21) 
 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤1𝑡𝑡  ≥ 2  or     (2.22) 
 𝑤𝑤𝑠𝑠2 + 𝑤𝑤2𝑡𝑡  ≥ 2  or     (2.23) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤12 + 𝑤𝑤2𝑡𝑡  ≥ 3  or    (2.24) 
 𝑤𝑤𝑠𝑠2 + 𝑤𝑤21 + 𝑤𝑤1𝑡𝑡  ≥ 3    (2.25) 
 
Now, it is necessary to convert the constraints related with “OR” (2.18)-(2.25) into 
linear form. We apply the strategy described in Hillier and Lieberman, 2001, to 
convert the OR constraints into linear form: 
 
 Either/Or constraints  
Suppose that at least one of the following equalities must hold: 
 

Either    𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝑏𝑏1   (2.26) 
or  𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝑏𝑏2    (2.27) 

 
Using a sufficiently large positive number M, an equivalent set of constraints can be 
formulated as 
 
 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝑏𝑏1 + 𝑀𝑀𝑀𝑀    (2.28) 
 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝑏𝑏2 + 𝑀𝑀(1 − 𝑀𝑀)   (2.29) 
 
where y is a binary variable. Since y must be either 1 or 0, both (2.28) and (2.29) are 
satisfied if at least one of (2.26) and (2.27) is satisfied. A more general case when K 
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out of N constraints must hold is explained below (Hillier and Lieberman, 2001). 
 
K out of N Constraints must hold:    
If there are several constraints only some of which must hold, formulation of 
either/or constraint explained above can be expanded to account for such 
requirement. Assume that there are N constraints and K of them must hold where K 
< N. The formulation is stated as 
 
 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝑏𝑏1 + 𝑀𝑀𝑀𝑀1 
 𝑓𝑓2(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝑏𝑏2 + 𝑀𝑀𝑀𝑀2 
   . 
   . 
   . 
 𝑓𝑓𝑁𝑁(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝑏𝑏𝑁𝑁 + 𝑀𝑀𝑀𝑀𝑁𝑁 
 𝑀𝑀1 + 𝑀𝑀2 + ⋯+ 𝑀𝑀1 = 𝑁𝑁 − 𝐾𝐾 
 𝑀𝑀𝑖𝑖 = 0  or  1. 
 
The equality in  𝑀𝑀1 + 𝑀𝑀2 + ⋯+ 𝑀𝑀1 = 𝑁𝑁 − 𝐾𝐾 can be changed by an inequality ≤ if at 
least K constraints are required to be satisfied. 
 
If yi = 0, then the original constraint is obtained. However, if yi = 1, because of the 
large positive number M, even if the original constraint is not satisfied, the new 
constraint is satisfied. Since K out of N constraints must hold, the summation of yi’s 
should be equal to N-K. 
 
Now, we can reformulate the constraints (2.18)–(2.25) using the method described 
above to transform “OR” conditions into “AND” conditions. The constraints (2.18)-
(2.21) and (2.22)-(2.25) then take the form  
  
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀1 ≥ 2   (2.30) 
 𝑤𝑤𝑠𝑠3 + 𝑤𝑤3𝑡𝑡 + 𝑀𝑀𝑀𝑀2 ≥ 2    (2.31) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤13 + 𝑤𝑤3𝑡𝑡 + 𝑀𝑀𝑀𝑀3 ≥ 3   (2.32) 
 𝑤𝑤𝑠𝑠3 + 𝑤𝑤31 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀4  ≥ 3  (2.33) 
 𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 + 𝑀𝑀4 ≤ 3   (2.34) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀5  ≥ 2   (2.35) 
 𝑤𝑤𝑠𝑠2 + 𝑤𝑤2𝑡𝑡 + 𝑀𝑀𝑀𝑀6 ≥ 2   (2.36) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤12 + 𝑤𝑤2𝑡𝑡 + 𝑀𝑀𝑀𝑀7 ≥ 3   (2.37) 
 𝑤𝑤𝑠𝑠2 + 𝑤𝑤21 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀8 ≥ 3   (2.38) 
 𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 + 𝑀𝑀4 ≤ 3   (2.39) 
 
Since it is required that at least one of the constraints (2.30)-(2.33) and (2.35)-(2.38) 
must hold, (2.34) and (2.39) are written as inequalities respectively and N - K = 4 – 1 
= 3. Eliminating the constraints that cannot be satisfied due to the constraints 
obtained from knockdown of node 1, the problem can be finally stated as 
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 Minimize     ∑�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖�    (2.40) 
 Subject to 
 𝑤𝑤𝑠𝑠2  +  𝑤𝑤2𝑡𝑡  ≤  1    (2.41) 
 𝑤𝑤𝑠𝑠3  +  𝑤𝑤3𝑡𝑡  ≤  1     (2.42) 
 𝑤𝑤𝑠𝑠2  +  𝑤𝑤23  +  𝑤𝑤3𝑡𝑡  ≤  2    (2.43) 
 𝑤𝑤𝑠𝑠2  +  𝑤𝑤23  +  𝑤𝑤3𝑡𝑡  ≤  2    (2.44) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀1 ≥ 2   (2.45) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤13 + 𝑤𝑤3𝑡𝑡 + 𝑀𝑀𝑀𝑀2 ≥ 3   (2.46) 
 𝑤𝑤𝑠𝑠3 + 𝑤𝑤31 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀3  ≥ 3  (2.47) 
 𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 ≤ 3    (2.48) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀4  ≥ 2   (2.49) 
 𝑤𝑤𝑠𝑠1 + 𝑤𝑤12 + 𝑤𝑤2𝑡𝑡 + 𝑀𝑀𝑀𝑀5 ≥ 3   (2.50) 
 𝑤𝑤𝑠𝑠2 + 𝑤𝑤21 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀6 ≥ 3   (2.51) 
 𝑀𝑀4 + 𝑀𝑀5 + 𝑀𝑀6 ≤ 3    (2.52) 
 
The optimum solution to this linear program gives 3 as the objective function value 
and the state variables are found as w3t=1, ws1=1, w1t=1, and the remaining are 0. 
Therefore, totally 3 changes are applied to satisfy the given constraints: edge s-3 is 
removed and edges s-1 and 1-t are added to the network. The final network structure 
is given in Figure 2.2.  
 
 

 
Figure 2.2 The resulting network satisfying the RNAi data as given in (Table 2.1) 

and therefore the constraints (2.41)-(2.52). 
 
 
 
The solution makes sense considering the given constraints. In order to prevent 
signal transduction with the knockdown of node 1, either edge s-3 or edge 3-t must 
be removed from the network. Also, in order for the signal to be transduced after the 
knockdown of node 2 or 3, the path s-1-t must be present in the network. There may 
be more than one optimum solution for this problem. Removing edge 3-t and 
keeping edge s-3 results in another optimum solution. We report one of these 
possible solutions as output by the tool we use, CPLEX v12.3 (64 bit).  
 
In this formulation, we assume that there is at least one non-critical gene, i.e., there 
is at least one OR-condition. This formulation works even if all the nodes are non-
critical; however, it does not work if they are all critical genes. When there is at least 
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one non-critical gene, our formulation guarantees that there is a path from the source 
to the sink due to the OR-conditions we impose. However, when there is no non-
critical gene, we state in our formulation that only some of the pathways must be 
incomplete so that the signal cannot be transduced. This formulation results in an 
incomplete network for such specific problem, therefore we need to consider a 
specific solution. The solution to this problem is simple; if all nodes are critical, it 
means that all of them are connected end to end. Thus, we include the corresponding 
constraints which state that at least one of them should be satisfied (as in OR-
conditions described above). Assume that in the previous 5-node example, all nodes 
are critical. Then, the solution network must be one of the following: s-1-2-3-t, s-1-
3-2-t, s-2-1-3-t, s-2-3-1-t, s-3-1-2-t, s-3-2-1-t. The constraints for this case are 

 
𝑤𝑤𝑠𝑠1 + 𝑤𝑤12 + 𝑤𝑤23 + 𝑤𝑤3𝑡𝑡 + 𝑀𝑀𝑀𝑀1 ≥ 4    (2.53) 
𝑤𝑤𝑠𝑠1 + 𝑤𝑤13 + 𝑤𝑤32 + 𝑤𝑤2𝑡𝑡 + 𝑀𝑀𝑀𝑀2 ≥ 4    (2.54) 
𝑤𝑤𝑠𝑠2 + 𝑤𝑤21 + 𝑤𝑤13 + 𝑤𝑤3𝑡𝑡 + 𝑀𝑀𝑀𝑀3 ≥ 4    (2.55) 
𝑤𝑤𝑠𝑠2 + 𝑤𝑤23 + 𝑤𝑤31 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀4 ≥ 4    (2.56) 
𝑤𝑤𝑠𝑠3 + 𝑤𝑤31 + 𝑤𝑤12 + 𝑤𝑤2𝑡𝑡 + 𝑀𝑀𝑀𝑀5 ≥ 4    (2.57) 
𝑤𝑤𝑠𝑠3 + 𝑤𝑤32 + 𝑤𝑤21 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀6 ≥ 4    (2.58) 
𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 + 𝑀𝑀4 + 𝑀𝑀5 + 𝑀𝑀6  ≤ 5    (2.59) 

 
The formulation described above as a whole may result in a network in which some 
of the nodes are not connected to the network or they can act as a sink node (no edge 
is going out of them) or as a source node (no edge is going into them). Such situation 
can occur for a non-critical gene. For non-critical genes, we consider the paths that 
do not include the non-critical gene, which gives no information about the non-
critical gene. Therefore, this node may not be connected to the network after solving 
the problem, because the constraints are satisfied. Since this node is a non-critical 
gene, i.e., the signal is transduced after it is knocked down, it does not make any 
difference whether it is connected to the network or not.  In order for this node to be 
included in the solution network, there must be at least one path from source node to 
sink node containing this particular node. As an example, consider the 5-node 
network given in Figure 2.1. For this network, node 2 is a non-critical gene, so in 
addition to the constraints (2.30)-(2.34), new constraints that include the path 
passing through node-2 must be written and connected by ORs. These additional 
constraints are given as 
 

𝑤𝑤𝑠𝑠2 + 𝑤𝑤2𝑡𝑡 + 𝑀𝑀𝑀𝑀1 ≥ 2      (2.60) 
𝑤𝑤𝑠𝑠1 + 𝑤𝑤12 + 𝑤𝑤2𝑡𝑡 + 𝑀𝑀𝑀𝑀2  ≥ 3    (2.61) 
𝑤𝑤𝑠𝑠2 + 𝑤𝑤23 + 𝑤𝑤3𝑡𝑡 + 𝑀𝑀𝑀𝑀3 ≥ 3    (2.62) 
𝑤𝑤𝑠𝑠2 + 𝑤𝑤21 + 𝑤𝑤1𝑡𝑡 + 𝑀𝑀𝑀𝑀4 ≥ 3    (2.63) 
𝑤𝑤𝑠𝑠3 + 𝑤𝑤32 + 𝑤𝑤2𝑡𝑡 + 𝑀𝑀𝑀𝑀5 ≥ 3    (2.64) 
𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 + 𝑀𝑀4 + 𝑀𝑀5 ≤ 4     (2.65) 

 
Adding such constraints for all non-critical genes will yield these nodes to be 
included in the network. In other words, we force our method to create a network for 
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which every node is a member of a pathway that is directed from source node to the 
sink node.  With this approach, we can construct networks with up to 10 nodes in a 
reasonable time. We name this method as oILP (original ILP formulation). 

2.4 Automatic Generations of Constraints 

In order to solve the network problem described in the previous section by using the 
optimization studio IBM CPLEX, it is necessary to generate the constraints 
automatically as the number of constraints becomes very large even for pathways 
with small number of genes. An LP-format file which can be read by CPLEX is 
created by a code written in C. The code generates the objective function with the 
input data, i.e. a given reference PPI network. The objective function consists of all 
the edge values wij that are to be found and the values xij which are the edge values 
for the given initial network. Then, for RNA interference data, the constraints are 
generated. Firstly, the constraints for knockdown of the genes which do not activate 
the receptor gene t are generated. The constraints include all possible paths from the 
reporter gene s to the receptor gene t which do not include the knockdown gene and 
there exists an “AND” relation between them as explained above. These paths have a 
minimum of 2 edges since a direct edge from source to sink and paths with loop are 
not allowed and a maximum of n-1 edges for a network consisting of n genes. For all 
configuration of paths, i.e. paths with different number of edges (e.g. paths 
consisting of 2 edges, 3 edges… n-1 edges), the constraints are written in the LP-file. 
Next, the constraints for the knockdown of the genes which activate the receptor 
gene t are generated. The constraints include all possible paths from the reporter 
gene s to the receptor gene t which do not include the knockdown gene and there 
exists an “OR” relation between them as explained above. They also have a 
minimum of 2 edges and a maximum of n-1 edges. Since they are related with “OR” 
condition, yi and M values are added to the constraints and the number of yi values is 
counted to write the additional constraints as in (2.18) and (2.22). Some of these 
paths are already dealt with when considering the genes which are not activating the 
receptor gene, therefore the corresponding constraint cannot be satisfied and they are 
excluded. In fact, this is the reason why the constraints for the genes which do not 
activate the receptor gene are generated first. Lastly, the variables wij and yi are 
defined as binary variables in the LP-file.  

2.5 Data Sets 

To evaluate the method described above, we use the following data sets in our 
experiments.  
 
Real data sets:  
We use type I IFN stimulated Janus Kinases and Signal Transducers and Activators 
of Transcription (JAK/STAT) network (Platanias, 2005) as real data set. JAK/STAT 
network is a small network with nine components. The signaling protein in this 9 
node network is IFNA2 (Interferon alpha-2) and the reporter protein is Luciferase. 
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The genes IFNAR1, IFNAR2, JAK1, TYK2, STAT2 and IRF9 are reported to be the 
critical genes and STAT1 is reported to be a noncritical gene (Kaderali et al., 2009).  
 
Semisynthetic data set: 
For generating semisynthetic data set, we use KEGG database (Kanehisa and Goto, 
2000). Fruit fly MAPK signaling network is selected from KEGG database. MAPK 
fruit fly is a sub pathway with the tailless (tll) and huckebein (hkb) genes. It has 10 
genes and 10 edges, which is the number of interaction between genes. Using this 
network, we have generated 25 semisynthetic data sets for this actual network. This 
is done by inserting edges to the actual networks at a certain rate and removing edges 
at the same or at a different rate; i.e. inserting or removing different number of edges 
from each of them. Therefore, both dense and sparse networks have been generated. 
These rates are; 10% insertion-10% deletion for the 1st network, 10% insertion-20% 
deletion for the 2nd network, ...., 10% insertion-50% deletion for the 5th network, 
20% insertion-10% deletion for the 6th network, ...., 20% insertion-50% deletion for 
the 10th network, ...., 30% insertion-40% deletion for the 14th network, ...., 50% 
insertion-50% deletion for the 25th network. First, edges are deleted randomly at a 
rate of p%; meaning p x |E| edges are randomly deleted from the actual network. 
Then, addition of edges is performed. For addition, we first generate the set of all 
edges as if the actual sinaling network is a fully connected network. After that,  we 
take the difference of two networks, i.e. the  fully connected network of the actual 
signaling network and the actual signaling network, and name it “the set of 
extraction”.  Then, we add edges at a rate of  p%, meaning p x |E| edges are 
randomly added to the network from the set of extraction. At the end, we have 25 
unique reference networks with different number of edges generated by this method 
and named as ADDRIP (“addition/deletion rates in percentages”). 
 
Synthetic data set: 
We have randomly generated 1,000 reference networks each with seven, eight, or 
nine genes, including the receptor and target genes. Each edge in a network is an 
obtained by Bernoulli trial with probability 0.5.  In addition, RNAi constraints have 
been generated for each of the genes with p(critical gene=1)=0.5. 
 
RNAi score generation: The real data sets we use in this study have RNAi data from 
RNAi knockdown experiments. However, synthetic and semi-synthetic data sets do 
not have RNAi data. Therefore, we have generated synthetic RNAi scores for our 
synthetic and semi-synthetic data sets. In order to generate RNAi scores, we first 
generate every possible path from the receptor gene to the target gene by a depth first 
search traversal of the network. After finding all possible paths between the receptor 
and the target gene, we analyze the genes in these paths. If a gene is included in most 
of the paths, than this gene has a higher influence in signal transduction. We assign 
an RNAi score to each gene based on the ratio of paths that the gene is observed. We 
simulate noise by a Gaussian error function. 
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2.6 Evaluation of the oILP approach 

We analyzed the performance of the original ILP formulation on 1000 synthetic 
small networks of sizes 7 to 9 components. Since the RNAi constraints for each of 
the regular genes in the network is generated with p(critical gene=1)=0.5, most of 
the initial PPI networks are dense networks. Then, for each PPI network we generate 
RNAi data. The knockdown results are simulated by randomly assigning a value of 0 
or 1 to the knockdown data for each gene between the receptor and the target genes. 
These values represent the observable results at the target gene after each 
knockdown. If the observable value is 0 at the target gene, the knockdown gene is a 
critical gene. If it is 1, then the corresponding gene is a noncritical gene.  From this 
RNAi data, the constraints for our ILP are constructed. If the knockdown result is 0, 
“AND” constraints are created; if it is 1, “OR” constraints are written down. 
 
Given a reference PPI network and a set of RNAi constraints, the corresponding 
integer linear program is solved by CPLEX_12.3 (64 bit). For each network, we 
inspect six different criteria, namely, (1) number of critical genes vs. average 
solution time, (2) number of critical genes vs. number of edit operations applied on 
the reference network, (3) number of edges in the reference network vs. average 
solution time, (4) number of edges in the reference network vs. number of edit 
operations applied on the reference network, (5) number of constraints vs. number of 
critical genes, (6) difference in number of “AND” and “OR” constraints vs. number 
of critical genes.  
 
The number of critical genes for an n-gene network can be at most n-2, i.e. all the 
genes between the receptor gene and the target gene are critical genes. If all of the 
genes are critical genes, we do not solve the problem, since the formulation 
described above is valid when there is at least one complete path from receptor gene 
to the target gene. The presence of a complete path in this formulation is guaranteed 
by having a noncritical gene, because at least one of the paths that do not include the 
noncritical gene must be complete. 
 
First, 7-gene networks are considered. The number of 7-gene networks created  
randomly are shown in Figure 2.3 with respect to the number of critical genes. The 
figure shows a normal distribution since the networks are created randomly with a 
0.5 probability of a gene being a critical gene. In some of the networks, all genes (i.e. 
5 genes) are critical genes. In that case, the problem is not solved. Similar graphs for 
8 and 9 gene networks are shown in Figure 2.10 and Figure 2.17.  Figure 2.4 shows 
the boxplot of solution times of oILP for different number of critical genes for 7-
gene networks. The black circles represent the outliers and they make the standard 
deviation very high. This is because the solution time depends not only on the 
number of critical genes but also on many other variables, such as number of 
constraints and number of edges in initial network. The solution time shows a 
normal distribution over the number of critical genes. This can be explained by the 
number of “AND” and “OR” constraints. Although the number of constraints 
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decreases with the increasing number of critical genes, as shown in Figure 2.8 the 
difference between them shows a similar but reverse behavior with the solution time, 
as shown in Figure 2.9. If the difference between the number of “AND” and “OR” 
constraints are small, the average solution time is high; if the difference is high, then 
the average solution time is low. From this observation, we can conclude that as the 
“and” and “OR” constraints mix more, the solution time gets higher since finding the 
edge values minimizing the objective function and at the same time satisfying both 
the “AND” and “OR” constraints are getting harder.  
 
In Figure 2.5, the number of changes made on the initial network with respect to the 
number of critical genes are shown. As the number of critical genes increases, the 
number of changes made on the initial network also increases. This is due to the 
increase in the number of “AND” constraints with the number of critical genes. 
Satisfying all the “AND” constraints is more difficult than satisfying only one of the 
“OR” constraints, because while satisfying only one “OR” constraint is enough, all 
the “AND” constraints must be satisfied at the same time. Therefore, more changes 
are made on the initial network as the number of critical genes increases.  
 
As mentioned before, the solution time may also depend on the number of edges in 
the initial network. Such a dependence is shown in Figure 2.6. Here, the number of 
edges in initial networks span from 7 to 23. This is because these networks are 
created randomly and each edge has a 0.5 probability of being present in the initial 
network. Figure 2.6 shows that the solution time slightly increases with the number 
of edges in the initial network. This is as expected because as the number of edges in 
initial network increases, more edges should be removed from the network to satisfy 
the constraints and therefore the time required to find such edges increases. 
Consequently, as shown in Figure 2.7, the number of changes made in the initial 
network also increases with the increasing number of edges in the initial network. In 
these two figures, while the solution time deviates too much, the standard deviation 
of the number of the changes in initial network is smaller and proportinal to the 
number of edges in the initial network.  
 
The above discussion is also valid for 8 gene networks, Figure 2.10 to Figure 2.16; 
and for 9 gene networks, Figure 2.17 to Figure 2.23. The created networks have a 
normal distribution. As the number of genes increase, the total number of constraints 
increase exponentially, which in turn results in an exponential increase in the 
solution time. Similarly, the number of edges in initial network and the number of 
changes imposed on the initial network increases with number of genes in the 
network.   
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Figure 2.3 Number of 7-gene networks that are created randomly for different 
number of critical genes. 

 
 
 
 
 

 
 

Figure 2.4 Solution times for the 7-gene networks with different number of critical 
genes. 
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Figure 2.5 Number of changes applied on the reference 7-gene networks with 
different number of critical genes. 

 
 
 

 
 

Figure 2.6 Solution times for the 7-gene networks with different number of edges in 
the reference networks. 
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Figure 2.7 Number of changes applied on the reference 7-gene networks with 
different number of edges in the reference networks. 

 
 
 
 
 
 

 
 

Figure 2.8 Number of “AND” and “OR” constraints for 7-gene networks with 
different number of critical genes. 
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Figure 2.9 Difference between “AND” and “OR” constraints for 7-gene networks 
with different number of critical genes. 

 
 
 
 
 
 
 
 

 
 

Figure 2.10 Number of 8-gene networks that are created randomly for different 
number of critical genes 
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Figure 2.11 Solution times for the 8-gene networks with different number of critical 

genes. 
 
 
 
 

 
 

Figure 2.12 Number of changes applied on the reference 8-gene networks with 
different number of critical genes. 
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Figure 2.13 Solution times for the 8-gene networks with different number of edges in 

the reference networks. 
 
 
 
 

 
 

Figure 2.14 Number of changes applied on the reference 8-gene networks with 
different number of edges in the reference networks. 
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Figure 2.15 Number of “AND” and “OR” constraints for 8-gene networks with 
different number of critical genes. 

 
 
 
 
 
 
 
 

 
 

Figure 2.16 Difference between “AND” and “OR” constraints for 8-gene networks 
with different number of critical genes. 
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Figure 2.17 Number of 9-gene networks that are created randomly for different 
number of critical genes. 

 
 
 
 
 
 

 
 
Figure 2.18 Solution times for the 9-gene networks with different number of critical 

genes. 
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Figure 2.19 Number of changes applied on the reference 9-gene networks with 
different number of critical genes. 

 
 
 
 

 
 
Figure 2.20 Solution times for the 9-gene networks with different number of edges in 

the reference networks. 
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Figure 2.21 Number of changes applied on the reference 9-gene networks with 
different number of edges in the reference networks. 

 
 
 
 
 
 

 
 

Figure 2.22 Number of “AND” and “OR” constraints for 9-gene networks with 
different number of critical genes. 
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Figure 2.23 Difference in number of constraints between “AND” and “OR” 
constraints for 9-gene networks with different number of critical genes. 

 
 
 

2.7 Comparison of oILP with state of the art 

We evaluated oILP first by applying it on the semisynthetic data (MAPK fruit fly) 
and than on the real data (JAK/STAT) which are described in Section 2.4. We 
compare the precision and recall values with the state of the art methods. these two 
accuracy measures are described below. 
 
Let G and Gc be the actual and constructed networks. 

- Precision is defined as the ratio of the number of interactions common to G 
and Gc to the interactions in Gc. 

- Recall is defined as the ratio of the number of interactions common to G and 
Gc to the interactions in G. 

2.7.1 Comparison of the results on semisynthetic MAPK network 

We first compare the results of oILP with SiNeC (Hashemikhabir et al., 2012). 
Although SiNeC and oILP have the same basic fundamentals dealing with the 
network inference problem, oILP has two essential differences; the major difference 
is that oILP results in a complete network structure, and the other one is that oILP 
use raw RNAi scores along with the information obtained from RNAi data which 
figures out whether a gene is a critical gene or not. Therefore, to point out that our 
method provides more accurate network topologies, we compare the results of oILP 
and SiNeC  on small size networks of up to 10 nodes. This comparison is performed 
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on the 25 networks that are mutated from the MAPK signaling network of 
Drosophila melanogaster (fruit fly) taken from the KEGG database. As we 
mentioned above, we use RNAi scores related with the RNAi hits to find the farthest 
gene from the sink node as described in Singh, 2011, and assume all of the reference 
networks are undirected networks. On the other hand, while SiNeC uses RNAi hits 
(meaning that the critical genes are known), it does not use the corresponding RNAi 
scores. Also, SiNeC uses the same reference networks as oILP does. According to 
the RNAi scores, the gene TOR is determined to be the farthest gene to the target 
gene. The results from SiNeC and oILP are compared in Figure 2.24 and Figure 2.25 
by means of recall and precision, respectively. The results used in obtaining the 
contour plots are also given in Table 3.2 in Chapter 3, along with the results for the 
comparison of SiNeC and our methods for large scale networks, for clarity. On these 
contour plots, x-axis represents the percent insertion and y-axis represents the 
percent deletion. The observed variable (third dimension) is indicated as a grayscale 
color on the plot. As the color gets lighter, the corresponding value becomes higher 
in these figures. The upper left corners show results for the reference networks 
which are sparse networks since there is 10% insertion but 50% deletion as described 
earlier in this section. As we move from upper parts of the plots to the lower parts, 
the reference networks get denser. As we move from left to right on the plots, we 
obtain results for denser reference networks. The densest network is at the lower 
right corner, since there is 50% insertion and 10% deletion. 
 
These figures show that the constructed networks by oILP are more accurate than the 
ones constructed by SiNeC. For all different noise rates, the minimum recall value 
attained by oILP is 0.6; however, SiNeC’s recall value is 0.4. In addition, oILP’s 
recall value is 0.9 at the upper right part of the figure which corresponds to the %50 
insertion and %50 deletion network, i.e., the most mutated network. The recall for 
SiNeC is 0.5 for the same network.  
 
The comparison between oILP and SiNeC for these different levels of noisy 
reference networks shows that oILP is more robust compared to SiNeC.  When 
SiNeC and oILP are compared by means of precision, we see that oILP has higher 
precision values. There is a great difference in precision values, especially when the 
noise rates are high. oILP handles the false positive interactions which are due to 
using undirected PPI networks, as well as false negative interactions. When some of 
the constructed networks are examined in detail by means of interactions and genes, 
it can be seen that if a gene is not a critical gene and if the reference PPI network that 
is used as a reference network does not have an interaction with this gene (however, 
it is known that this gene is a member of this signaling network), SiNeC cannot 
include such a gene in the final network. On the other hand, oILP constructs the 
network by including all the genes which are known to be a member of the network 
independent of their type, i.e., whether they are critical or non-critical. Moreover, it 
constructs a connected network as output. Every node is connected to the network 
and must contribute to signal transduction. On the other hand, oILP has a drawback 
that it cannot scale for large networks which have more than 10 genes. 
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(a) SiNeC,     (b) oILP 

Figure 2.24 Contour plot for precision values for MAPK fruit fly network.  
 
 
 

 
(a) SiNeC,     (b) oILP 

Figure 2.25 Contour plot for recall values for MAPK fruit fly network. 
 
 

2.7.2 Comparison of the results on JAK/STAT Network 

In order to make an evaluation about our method, we compared oILP with the 4 
methods in the literature, namely SiNeC (Hashemikhabir et al., 2012), 
InfluenceFlow (Singh, 2011), Ruths et al.`s method (Ruths et al., 2007), and Kaderali 
et al`s method (Kaderali et al., 2009), using JAK/STAT network. The true JAK/STAT 
network is shown in Figure 2.26a (Platanias, 2005). The protein-protein interactions 
are obtained from the EBI IntAct database as in Hashemikhabir et al., 2012 (Figure 
2.26b).  
 
Comparison with SiNeC: The constructed network by oILP is exactly the same as the 
one constructed by SiNeC. This is because both methods use similar idea while 
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constructing of the network. SINEC’s transforms the reference network into a new 
one which has consistency with the RNAi constraints while providing a minimum 
distance to the reference network. oILP’s aim is to reconstruct the connected 
signaling network from the given protein-protein interaction (PPI) network satisfying 
RNAi data by applying minimum edit operations on the given network using ILP.  
The main difference between the final outputs is that while oILP is forced to find a 
complete network, meaning all the genes are a member of a directed pathway from 
source to sink, SINEC finds the topology consistent with RNAi scores but does not 
guarantee finding a complete network and cannot handle the noncritical genes which 
are not connected to the network in the reference network. For JAK/STAT network, 
because of the reference network topology, both methods find the same final output 
because of the similarity between the main ideas of the methods.  The constructed 
network is given in Figure 2.26f. oILP constructs the network that is consistent with 
the RNAi data, meaning that it determines all the critical genes correctly. 
 
Comparison with Ruths et al.`s method: This method can be considered as a 
simplified version of oILP. It modifies a given reference network to satisfy the given 
RNAi constraints by inserting new edges only. The JAK/STAT network obtained by 
Hashemikhabir et al. 2012, using the method of Ruths et al., 2007, is shown in 
Figure 2.26d. As seen from the constructed network, genes JAK1 and TYK2 are 
predicted to be two other source nodes for JAK/STAT network and therefore, they do 
not belong to any signaling pathway. Since these two genes are found to be critical, 
the method modifies the network such that there is a path from the knocked-down 
gene to the receptor gene. Also, since the method does not consider a path in the 
reverse direction, it cannot modify the undirected edges to make them directed. On 
the other hand, oILP gave a direction to the undirected edge STAT1-IRF9, and added 
JAK1 and TYK2 genes to the signaling pathway. Although Ruths et al.’s method has 
a higher recall value, since it does not remove any edges; its precision value is 
lowered as a consequence. 
 
Comparison with InfluenceFlow: InfluenceFlow constructs a core network that 
includes only the RNAi hits and ensures satisfaction of the knock-down results. It 
cannot handle the missing interactions and it gives a network in spanning tree 
format. For the experiments with InfluenceFlow, raw RNAi scores obtained from 
Lars Kaderali is used and the genes STAT1, STAT2 and IRF9 are included in 
JAK/STAT network. As shown in Figure 2.26c, the constructed network by 
InfluenceFlow does not include the gene STAT1 since it is not an RNAi hit. It also 
excludes the genes JAK1 and TYK2 since their interactions with other genes are 
missing in IntAct. It also has two genes, IFNAR1 and IRF9, which are not a member 
of the signaling pathway from IFNA2 to Luciferase. However, oILP includes STAT1, 
JAK1 and TYK2 genes in the final network.  
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a) 
 

b) 

c) d) 

e) 
 

f) 

 
Figure 2.26 Schematic of JAK/STAT network. (a) True network: Type I IFN 
stimulated JAK/STAT network (Platanias, 2005), (b) Intact network; (Kerrien et al., 
2012). The constructed networks by (c) InfluenceFlow, (Singh, 2011), (d) Ruths et 
al., 2007, (e) Kaderali et al., 2009, (f) SiNeC (Hashemikhabir et al., 2012) and oILP. 
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Comparison with Kaderali et al.`s method: This method constructs the signaling 
network from RNAi data alone without using any network as a reference. For 
comparison of this method and oILP, the network having the highest probability that 
is reported by Kaderali et al. is used. To simplify the problem, Kaderali et al. uses 
combined nodes (a single node instead of two nodes) and these nodes are reported as 
separate nodes by Hashemikhabir et al., 2012. In their result (Figure 2.26e), the most 
probable topology determines JAK1 and TYK2 as the genes that come just before 
the reporter, although they interact with the type I IFN receptors, i.e. they have to be 
located at the topmost of the network. However oILP constructs the network that is 
consistent with the RNAi data, meaning that it determines all the critical genes 
correctly.  

2.8 Calculation of Number of Constraints 

Using the oILP approach described in Section 2.2 of the chapter, it is possible to 
reconstruct networks with up to 10genes in reasonable time. As the number of genes 
in a network increases, the number of constraints increases exponentially. Therefore, 
finding solutions for larger networks gets more and more difficult. In order to solve 
the problems for larger networks, we need to consider different practical methods. 
One such method is reducing the number of constraints by using more biological 
data. For this purpose, in addition to the currently used RNAi data, we use the 
corresponding RNAi scores. This will help us put the genes in an order with respect 
to their RNAi scores. These scores provide us the information about the closeness of 
the genes to the receptor gene. Therefore, using such information reduces the 
number of constraints. Using this information, we are able to solve larger networks 
of up to 12-13 genes. In order to understand how much reduction in number of 
constraints is obtained with such information, we first derive the equations for the 
number of constraints in a given problem. We start with the most general formulation 
in which we do not eliminate the common constraints in AND and OR constraints.  
 
Let the network in consideration has n+2 genes including the source gene s and the 
target gene t. Therefore, the network has n intermediate genes. We will find the 
number of constraints for pathways including different number of edges, i.e. 
pathways with 2 edges, pathways with 3 edges, etc. Pathway with only 1 edge is not 
considered because it is a direct pathway from source to sink (target gene). In each 
case, one of the genes is knocked down, therefore the number of intermediate genes 
to be considered becomes n-1. Then, we find the number of constraints when we 
eliminate them, and finally the number of constraints when we include the RNAi 
scores, as explained below. 
 

2.8.1 Number of constraints without elimination of common constraints in 
AND and OR conditions: 

For this case, the number of constraints does not change with the type of the gene, 
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i.e. whether the knockdown of the gene affects (critical gene - AND conditions) or 
does not affect (noncritical gene -OR conditions) the target gene. For example, for 
the 5-gene network example considered in Section 2.3, there are 4 constraints for 
each knockdown. However, when the OR constraints are linearized, one additional 
constraint is added. Therefore, for noncritical genes, one constraint is added to the 
calculated number of constraints. The derivations for number of constraints are given 
in the following. 
 
Paths with 2 edges:  A 2-edge pathway can be constructed with 3 genes; by putting a 
gene between the source and the target genes (s – gene – t ). As one of the genes is 
the knockdown gene, n-1 genes are possible to be put as the intermediate gene. Thus, 
there are n-1 possible 2-edge pathways. For convenience, the number of constraints 
for this case can be written as 

(𝑠𝑠). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔). (𝑡𝑡)     →   (1). (𝑔𝑔 − 1). (1) =
(𝑔𝑔 − 1)!
(𝑔𝑔 − 2)!

 

 
Paths with 3 edges:  Similarly, for a 3-edge pathway 4 genes are required, 2 of which 
are the source and the target genes (s – gene 1 – gene 2 – t). Therefore, there are 2 
intermediate genes for this case. There are n-1 possibilities for the first intermediate 
gene and n-2 possibilities (since one of the n-1 genes is put in the first place, n-2 
genes remain for the second place) for the second intermediate gene. The number of 
constraints can be found as 

(𝑠𝑠). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 1). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝑡𝑡)     →   (1). (𝑔𝑔 − 1). (𝑔𝑔 − 2). (1) =
(𝑔𝑔 − 1)!
(𝑔𝑔 − 3)!

 

 
Number of paths with 4 edges, 5 edges, …, n edges can be found accordingly. In 
summary, the number of paths, i.e. the number of constraints for each critical gene 
(AND condition) is the summation of number of 2-edge, 3-edge, … , n-edge paths, 
which are given below: 
      

2 − edge paths:        (𝑛𝑛−1)!
(𝑛𝑛−2)!

       (2.66) 
 
3 − edge paths:        (𝑛𝑛−1)!

(𝑛𝑛−3)!
       (2.67) 

 
4 − edge paths:        (𝑛𝑛−1)!

(𝑛𝑛−4)!
       (2.68) 

. 

. 

. 
𝑔𝑔 − edge paths:        (𝑛𝑛−1)!

0!
= (𝑔𝑔 − 1)!     (2.69) 

 
The total number of constraints for each critical gene is found by adding all these 
numbers up; 
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∑ (𝑛𝑛−1)!
(𝑛𝑛−𝑖𝑖)!

𝑛𝑛
𝑖𝑖=2 = ∑ (𝑛𝑛−1)!

(𝑛𝑛−(𝑖𝑖+1))!
𝑛𝑛−1
𝑖𝑖=1        (2.70) 

 
For a noncritical gene, i.e. OR constraints, one more constraint is added to this 
number. Therefore, the total number of constraints for a problem with m number of 
noncritical genes can be found as; 
 
(𝑔𝑔 −𝑚𝑚)∑ (𝑛𝑛−1)!

(𝑛𝑛−(𝑖𝑖+1))!
𝑛𝑛−1
𝑖𝑖=1 + (𝑚𝑚) �∑ (𝑛𝑛−1)!

(𝑛𝑛−(𝑖𝑖+1))!
𝑛𝑛−1
𝑖𝑖=1 + 1� = 𝑚𝑚 + ∑ (𝑛𝑛−1)!

(𝑛𝑛−(𝑖𝑖+1))!
𝑛𝑛−1
𝑖𝑖=1      (2.71) 

 
Now, we need to add the additional constraints that have to be considered for the 
noncritical genes to be included in the network, as given  by constraints (2.60)-
(2.65).  
 
Paths with 2 edges:  Only one 2-edge path including the knockdown gene can be 
constructed:  
 

(𝑠𝑠). (𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔). (𝑡𝑡)     →   (1). (1). (1) = 1 
 
Paths with 3 edges:  There are 2 possibilities for this case: the knockdown gene can 
be put in the first or the second place. Then, one of the remaining n-1 genes can be 
put in the other place. 
 

(𝑠𝑠). (𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝑡𝑡)     →   (1). (1). (𝑔𝑔 − 1). (1) = (𝑔𝑔 − 1)
(𝑠𝑠). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔). (𝑡𝑡)     →   (1). (𝑔𝑔 − 1). (1). (1) = (𝑔𝑔 − 1)   �  

=  2(𝑔𝑔 − 1) = 2
(𝑔𝑔 − 1)!
(𝑔𝑔 − 2)!

 

 
Paths with 4 edges:  Similarly, there are 3 possibilities; 
 

  

(𝑠𝑠). (𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 3). (𝑡𝑡)     →   (1). (1). (𝑔𝑔 − 1). (𝑔𝑔 − 2) = (𝑔𝑔 − 1)(𝑔𝑔 − 2)
(𝑠𝑠). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔).𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. (𝑡𝑡)     →   (1). (𝑔𝑔 − 1). (1). (𝑔𝑔 − 2) = (𝑔𝑔 − 1)(𝑔𝑔 − 2)

(𝑠𝑠). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 3). (𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔). (𝑡𝑡)     →   (1). (𝑔𝑔 − 1). (𝑔𝑔 − 2). (1) = (𝑔𝑔 − 1)(𝑔𝑔 − 2)
  �  

=  3(𝑔𝑔 − 1)(𝑔𝑔 − 2) = 3
(𝑔𝑔 − 1)!
(𝑔𝑔 − 3)!

 

Number of paths with 5 edges, 6 edges, …, n edges for this case can be found 
accordingly and are summarized below: 
 

2 − edge paths:        1       (2.72) 
3 − edge paths:        2 (𝑛𝑛−1)!

(𝑛𝑛−2)!
      (2.73) 

4 − edge paths:        3 (𝑛𝑛−1)!
(𝑛𝑛−3)!

      (2.74) 
. 
. 
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. 

. 
𝑔𝑔 − edge paths:        (𝑔𝑔 − 1) (𝑛𝑛−1)!

[𝑛𝑛−(𝑛𝑛−1)]!
= (𝑔𝑔 − 1)(𝑔𝑔 − 1)!  (2.75) 

 
Adding all these numbers up, we obtain the number of constraints that includes the 
knockdown gene for each noncritical gene as; 

  
∑ 𝑖𝑖 (𝑛𝑛−1)!

(𝑛𝑛−𝑖𝑖)!
𝑛𝑛−1
𝑖𝑖=1         (2.76) 

 
The total number of such constraints for a problem with m number of noncritical 
genes can be found as; 
 

𝑚𝑚 �∑ 𝑖𝑖 (𝑛𝑛−1)!
(𝑛𝑛−𝑖𝑖)!

𝑛𝑛−1
𝑖𝑖=1 �       (2.77) 

 
In these calculations, the common constraints which appear between the AND-
conditions and between the AND- and OR-conditions are not eliminated. As the 
number of constraints increases exponentially with an increase in number of genes in 
a network, eliminating such common constraints will reduce the calculation time. In 
the following section, the number of constraints for such elimination will be derived. 

2.8.2 Number of constraints with elimination of common constraints in AND-  
and OR- conditions: 

In this section, we will find the number of constraints after elimination of the 
common constraints in AND and OR constraints. Assume that first m genes of an n-
gene network are critical, i.e. the corresponding constraints are AND-constraints. If 
the corresponding constraints are written for these m genes, it is seen that there are 
common ones. For example, the constraint corresponding to the path s-2-t appears in 
the constraints written for 1st knockdown, 3rd knockdown,…, mth knockdown, which 
are unnecessary. Only one of them is enough for the formulation. Also, some of the 
constraints corresponding to noncritical genes, i.e. OR constraints, cannot be 
satisfied since they are already included in the AND constraints, as explained before 
(constraint (2.6) cannot be satisfied because of the constraint stated in (2.2), 
therefore it can be omitted from the formulation). Therefore, such constraints should 
be eliminated from the formulation of the problem. Note that no elimination should 
be done between two critical genes because they are separate OR-conditions and 
should be satisfied independently.  
 
Elimination between AND-conditions: 
 
Let the network has n-genes with the first m-genes being critical (AND constraints). 
In order to calculate the number of constraints by eliminating the common 
constraints, the critical genes are handled one-by-one.   
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1st critical gene: 
For the 1st AND constraint, the number of constraints is the same as given in (2.66)-
(2.70). So the number of constraints for the 1st AND-condition is given by 
 

∑ (𝑛𝑛−1)!
(𝑛𝑛−(𝑖𝑖+1))!

𝑛𝑛−1
𝑖𝑖=1        (2.78) 

 
Note that none of these constraints include this gene since it is the knockdown gene. 
 
2nd critical gene: 
If the constraints corresponding to this case are written, it is seen that the constraints 
that do not include 1st critical gene are common with the constraints in the case 
above. Of course these constraints do not include the 2nd critical gene but such 
constraints are also present in the 1st case. This means; in this case, all the constraints 
must include the 1st critical gene, and therefore all others are eliminated. Now, we 
can obtain the number of constraints again by considering the paths with different 
number of edges. 
 
Paths with 2 edges:  Since the 1st critical gene (1st CG) must be present in the 
constraints, there is only one such path with 1 edge. 
 

(𝑠𝑠). (1𝑠𝑠𝑡𝑡 CG). (𝑡𝑡)     →   (1). (1). (1) = 1 =
(𝑔𝑔 − 2)!
(𝑔𝑔 − 2)!

 

 
Paths with 3 edges:  In this case, there are two places to put the 1st CG, and n-2 
different possibilities to put in the other place.  
 

(𝑠𝑠). (1𝑠𝑠𝑡𝑡 CG). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝑡𝑡)     →   (1). (1). (𝑔𝑔 − 2). (1) = (𝑔𝑔 − 2)
(𝑠𝑠). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (1𝑠𝑠𝑡𝑡 CG). (𝑡𝑡)     →   (1). (𝑔𝑔 − 2). (1). (1) = (𝑔𝑔 − 2)

   �  =  2(𝑔𝑔 − 2)

= 2
(𝑔𝑔 − 2)!
(𝑔𝑔 − 3)!

 

 
Paths with 4 edges: There are 3 possibilities for this case, 
 

  

(𝑠𝑠). (1𝑠𝑠𝑡𝑡  CG). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 3). (𝑡𝑡)     →   (1). (1). (𝑔𝑔 − 2). (𝑔𝑔 − 3) = (𝑔𝑔 − 2)(𝑔𝑔 − 3)
(𝑠𝑠). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (1𝑠𝑠𝑡𝑡  CG). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 3). (𝑡𝑡)     →   (1). (𝑔𝑔 − 2). (1). (𝑔𝑔 − 3) = (𝑔𝑔 − 2)(𝑔𝑔 − 3)
(𝑠𝑠). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 2). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 3). (1𝑠𝑠𝑡𝑡  CG). (𝑡𝑡)     →   (1). (𝑔𝑔 − 2). (𝑔𝑔 − 3). (1) = (𝑔𝑔 − 2)(𝑔𝑔 − 3)

  �  

=  3(𝑔𝑔 − 2)(𝑔𝑔 − 3) 
 

= 3
(𝑔𝑔 − 2)!
(𝑔𝑔 − 4)!

 

 
Number of paths with 5 edges, 6 edges, …, n edges for this case can be found 
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accordingly and are summarized below: 
 

2 − edge paths:        (𝑛𝑛−2)!
(𝑛𝑛−2)!

= 1     (2.79) 
 
3 − edge paths:        2 (𝑛𝑛−2)!

(𝑛𝑛−3)!
      (2.80) 

 
4 − edge paths:        3 (𝑛𝑛−2)!

(𝑛𝑛−4)!
      (2.81) 

. 

. 

. 
𝑔𝑔 − edge paths:        (𝑔𝑔 − 1) (𝑛𝑛−2)!

(𝑛𝑛−𝑛𝑛)!
= (𝑔𝑔 − 1)!   (2.82) 

 
Summation of all these numbers gives the number of constraints for the 2nd critical 
gene, and for convenience, we will use permutation notation P(k,m), i.e. m-
permutations of k;  
 

∑ 𝑃𝑃(𝑖𝑖, 1) (𝑛𝑛−2)!
(𝑛𝑛−(𝑖𝑖+1))!

𝑛𝑛−1
𝑖𝑖=1          (2.83) 

 
3rd critical gene: When 3rd critical gene is considered, it can be seen that the 1st and 
the 2nd critical genes must appear in all of the constraints. This is because all other 
constraints are already written in the constraints written for the 1st and the 2nd critical 
genes.  Since all the constraints must include 1st and the 2nd critical genes, then there 
is no path with 2 edges. So, we start with the paths with 3 edges, 
 
Paths with 3 edges:  There are only 2 possibilities for this case;  
 

(𝑠𝑠). (1𝑠𝑠𝑡𝑡 CG). (2𝑛𝑛𝑛𝑛 CG). (𝑡𝑡)     →   (1). (1). (1). (1) = 1

(𝑠𝑠). (2𝑛𝑛𝑛𝑛  CG). (1𝑠𝑠𝑡𝑡 CG). (𝑡𝑡)     →   (1). (1). (1). (1) = 1
   �  =  2 = 𝑃𝑃(2,2)

(𝑔𝑔 − 3)!
(𝑔𝑔 − 3)!

 

 
Paths with 4 edges:  Similar calculations can be done for this case with permutation 
of 1st and the 2nd critical genes. An example of 4-edge path is 
(𝑠𝑠). (1𝑠𝑠𝑡𝑡 CG). (2𝑛𝑛𝑛𝑛  CG). (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 3). (𝑡𝑡) . Other possible paths are obtained by 
permuting the intermediate genes and 6 different paths are found. The number of 
constraints for this case is expressed as 
 

𝑃𝑃(3,2)
(𝑔𝑔 − 3)!
(𝑔𝑔 − 4)!

 

 
Number of paths with 5 edges, 6 edges, …, n edges for this case can be found 
accordingly and are summarized below: 
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2 − edge paths:        0       (2.84) 
 
3 − edge paths:        𝑃𝑃(2,2) (𝑛𝑛−3)!

(𝑛𝑛−3)!
     (2.85) 

 
4 − edge paths:        𝑃𝑃(3,2) (𝑛𝑛−3)!

(𝑛𝑛−4)!
     (2.86) 

. 

. 

. 
𝑔𝑔 − edge paths:        𝑃𝑃(𝑔𝑔 − 1,2) (𝑛𝑛−3)!

(𝑛𝑛−𝑛𝑛)!
    (2.87) 

 
Adding all these numbers up, we obtain the number of constraints that includes the 
critical genes as 
 

∑ 𝑃𝑃(𝑖𝑖, 2) (𝑛𝑛−3)!
(𝑛𝑛−(𝑖𝑖+1))!

𝑛𝑛−1
𝑖𝑖=2         (2.88) 

 
The index i starts from 2 since all of the constraints must include the 1st and the 2nd 
critical genes.  
 
mth critical gene: Similarly, for mth critical gene, the number of constraints can be 
expressed as 
 

∑ 𝑃𝑃(𝑖𝑖, 2) (𝑛𝑛−𝑚𝑚)!
(𝑛𝑛−(𝑖𝑖+1))!

𝑛𝑛−1
𝑖𝑖=𝑚𝑚−1       (2.89) 

 
In order to obtain a general expression for the total number of constraints for critical 
genes, we need to express Eqn. (2.78) similar to Eqns. (2.83) and (2.88) with 
permutation notation, which is given below:  
 

∑ (𝑛𝑛−1)!
(𝑛𝑛−(𝑖𝑖+1))!

𝑛𝑛−1
𝑖𝑖=1 = ∑ �𝑃𝑃(𝑖𝑖, 0) (𝑛𝑛−1)!

�𝑛𝑛−(𝑖𝑖+1)�!
�𝑛𝑛−1

𝑖𝑖=0 − 1   (2.90) 
 
A summary of the derivations for the number of constraints for each critical gene 
with the elimination of common constraints is given below: 
 

1st critical gene:    ∑ �𝑃𝑃(𝑖𝑖, 0) (𝑛𝑛−1)!
�𝑛𝑛−(𝑖𝑖+1)�!

�𝑛𝑛−1
𝑖𝑖=0 − 1   (2.91) 

 
2nd critical gene:    ∑ 𝑃𝑃(𝑖𝑖, 1) (𝑛𝑛−2)!

�𝑛𝑛−(𝑖𝑖+1)�!
𝑛𝑛−1
𝑖𝑖=1     (2.92) 

 
3rd critical gene:    ∑ 𝑃𝑃(𝑖𝑖, 2) (𝑛𝑛−3)!

(𝑛𝑛−(𝑖𝑖+1))!
𝑛𝑛−1
𝑖𝑖=2     (2.93) 
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. 

. 
mth critical gene:    ∑ 𝑃𝑃(𝑖𝑖,𝑚𝑚− 1) (𝑛𝑛−𝑚𝑚)!

(𝑛𝑛−(𝑖𝑖+1))!
𝑛𝑛−1
𝑖𝑖=𝑚𝑚−1          (2.94) 

 
Summing all these constraints up, we obtain the total number of the constraints for 
critical genes with the elimination of common constraints as; 
 

∑ ∑ �𝑃𝑃(𝑖𝑖, 𝑗𝑗 − 1) (𝑛𝑛−𝑖𝑖)!
(𝑛𝑛−(𝑖𝑖+1))!

�𝑛𝑛−1
𝑖𝑖=𝑖𝑖−1

𝑚𝑚
𝑖𝑖=1 − 1    (2.95) 

 
Elimination between AND and OR-conditions: 
 
Elimination of the common constraints between AND and OR-constraints are similar 
to the elimination done above, however, this time, we will find the number of 
constraints only for the 1st noncritical gene as  the number of constraints for the other 
noncritical genes is the same as the number of constraints for the 1st noncritical gene. 
We will now explain in detail why the numbers of constraints for noncritical genes 
are the same. Assume that for an n-gene network (excluding the source and the target 
genes), there are m critical genes, and we wrote down all the corresponding 
constraints for the knockdowns of these m-genes. Expressing the constraints for the 
(m+1)th gene, which is a noncritical gene, is no different than expressing the 
constraints as if it is a critical gene. This is because the common constraints between 
this gene and the previous ones should be eliminated as it is done before between the 
critical genes. The difference starts with the (m+2)th gene. This time we cannot 
eliminate the common genes between the (m+1)th gene and (m+2)th gene, because 
both are noncritical genes and their constraints are connected by logical OR and they 
have to be treated separate from each other. The common constraints between the m 
critical genes and the (m+1)th gene are eliminated first and then, the same is done for 
(m+2)th gene. Therefore, although the eliminated constraints are different, the 
numbers of them are the same and this is valid for all noncritical genes.  
 
Derivation of the number of constraints for noncritical genes with elimination of the 
common genes can be done similar to the one for critical genes. Assuming that 
(m+1)th gene is also a critical gene and similar to the Eqn. (2.94), we obtain  
 

∑ 𝑃𝑃(𝑖𝑖,𝑚𝑚) (𝑛𝑛−𝑚𝑚−1)!
(𝑛𝑛−(𝑖𝑖+1))!

𝑛𝑛−1
𝑖𝑖=𝑚𝑚      (2.96) 

 
Since this number is the same for the rest of the noncritical genes, it is multiplied by 
(n-m) to obtain the total number of constraints for noncritical genes, which is 
expressed as 
 

(𝑔𝑔 −𝑚𝑚)∑ 𝑃𝑃(𝑖𝑖,𝑚𝑚) (𝑛𝑛−𝑚𝑚−1)!
(𝑛𝑛−(𝑖𝑖+1))!

𝑛𝑛−1
𝑖𝑖=𝑚𝑚     (2.97) 
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As it is stated before, we need additional constraints to have all the genes connected 
to the network. Otherwise, some of the genes may just rest in the space; they may 
have no connection or they may act as a target gene. We input these additional 
constraints only for the noncritical genes. These constraints consist of the paths 
which pass through the knockdown gene and they are all connected by logical ORs; 
i.e., at least one constraint must be satisfied. To linearize them, we again use the 
procedure explained before by adding one more constraint to the each group of 
noncritical gene constraints. Since we have now the elimination of common genes, 
each group of constraints must include the critical genes and the knockdown gene.  
 
Let us consider this situation with an example and let our network has only one 
critical gene. Again, we first write down the constraints for critical gene(s). When 
writing down the constraints for the noncritical genes, we need to consider paths 
with different edge numbers as before. There is no path with 2 edges since the paths 
must include both the noncritical genes and the critical gene. We need at least 3 
edges for such paths. Since both the noncritical genes and critical gene should be 
included in the constraints, there are only 2 paths with 3 edges. As we continue 
counting the number of constraints similarly for other paths with different number of 
edges, we see that the formulation is exactly the same with Eqns. (2.84)-(2.88). We 
can generalize the expression for the number of constraints for m critical genes with 
elimination of the common genes as 
 

�∑ (𝑛𝑛−𝑚𝑚−1)!
(𝑛𝑛−𝑖𝑖−1)!

𝑛𝑛−1
𝑖𝑖=𝑚𝑚+1 𝑃𝑃(𝑖𝑖,𝑚𝑚 + 1)� (𝑔𝑔 −𝑚𝑚)   (2.98) 

 
where the term in brackets is the number of constraints for each noncritical gene and 
(n-m) is the number of such constraints.  
 
A 12-gene example:  
In this section, we discuss the resulting number of constraints on a 12-gene network 
as an example. The number of constraints for different number of critical genes is 
given in Table 2.2 for such a network. The calculations follow the formulations 
given above. Each column in the first part of the table shows the number of 
constraints for the corresponding critical gene. Since the common constraints are 
eliminated, the number of constraints for each critical gene is different. For example, 
if there are 3 critical genes in the network, then the numbers of constraints for these 
genes are 986409 for the 1st critical gene, 1863218 for the 2nd gene, and 780908 for 
the 3rd gene. Their sum is given in the CUMULATIVE (A) row as 2644116. The rest 
of the genes are noncritical genes, therefore for the number of constraints of each of 
these genes (OR-conditions), we need to look at the number given in the TOTAL 
row of the 4th critical gene which is 696750. Since there are 7 noncritical genes, this 
number should be multiplied by 7. And also, since we add one more constraint to 
make each of them linear, we add 7 to this number. We also add additional 
constraints to the OR-conditions to connect all genes to the network as explained 
before and the numbers of these additional constraints are given in the second part of 
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the table. For our example (3 critical genes, 7 noncritical genes), this number is 
given in TOTAL (C) row as 20260975. The GRAND-TOTAL row shows the sum of 
all the constraints. 
 
As it is seen from the results, the number of constraints decreases with the increasing 
number of critical genes in the network, i.e. with the decreasing number of 
noncritical genes. The reason for such reduction in the constraints is that additional 
constraints are required for each noncritical gene. For example, for a network having 
two critical genes, 1863218 constraints are required for critical genes, and 780908 
constraints are required for the rest of the genes (which are noncritical genes) and an 
additional 3591174 constraints. This much additional constraints for such problem is 
approximately 4.5 times the number of constraints for each noncritical gene, 
therefore the total number of constraints decreases with decreasing number of 
noncritical genes.   

2.8.3 Effect of RNAi Scores 

As the number of genes in a network increases, the number of constraints increases 
exponentially. In order to be able to construct larger networks, we may reduce the 
number of constraints by using RNAi scores. RNAi scores provide us the 
information about the closeness of the genes to the reporter or the receptor gene. In 
order to understand how much reduction in number of constraints is obtained with 
such information, we can derive the equations for the number of constraints in a 
given problem as we did above. However, the derivation gets harder and impractical 
when RNAi scores are used. Instead, we count the number of constraints using the 
computer program we developed. To show how RNAi scores affect the number of 
constraints for a given problem, we considered the 12–gene example given above for 
3 different cases depending on the RNAi scores.  
 
Case 1: The first case is the one we already considered above which has no RNAi 
scores.  
 
Case 2: In the second one, only one of the gene is decided to be closer to the reporter 
gene depending on the RNAi scores. Note that this gene is a critical gene.  
 
Case 3: In the third example, two genes are decided to be closer to the reporter gene, 
however they both are considered to have the similar RNAi scores, therefore no 
judgment between them about their closeness to the reporter gene is made.  

49 
 



Ta
bl

e 
2.

2 
N

um
be

r o
f c

on
st

ra
in

ts
 fo

r a
 1

2-
ge

ne
 n

et
w

or
k 

co
ns

is
tin

g 
of

 d
iff

er
en

t n
um

be
r o

f c
rit

ic
al

 g
en

es
 

 
 
 
 
 

1s
t C

G
2n

d 
CG

3r
d 

CG
4t

h 
CG

5t
h 

CG
6t

h 
CG

7t
h 

CG
8t

h 
CG

9t
h 

CG
10

th
 C

G
2-

ed
ge

 p
at

hs
9

1
0

0
0

0
0

0
0

0
3-

ed
ge

 p
at

hs
72

16
2

0
0

0
0

0
0

0
4-

ed
ge

 p
at

hs
50

4
16

8
42

6
0

0
0

0
0

0
5-

ed
ge

 p
at

hs
30

24
13

44
50

4
14

4
24

0
0

0
0

0
6-

ed
ge

 p
at

hs
15

12
0

84
00

42
00

18
00

60
0

12
0

0
0

0
0

7-
ed

ge
 p

at
hs

60
48

0
40

32
0

25
20

0
14

40
0

72
00

28
80

72
0

0
0

0
8-

ed
ge

 p
at

hs
18

14
40

14
11

20
10

58
40

75
60

0
50

40
0

30
24

0
15

12
0

50
40

0
0

9-
ed

ge
 p

at
hs

36
28

80
32

25
60

28
22

40
24

19
20

20
16

00
16

12
80

12
09

60
80

64
0

40
32

0
0

10
-e

dg
e 

pa
th

s
36

28
80

36
28

80
36

28
80

36
28

80
36

28
80

36
28

80
36

28
80

36
28

80
36

28
80

36
28

80
TO

TA
L

98
64

09
87

68
09

78
09

08
69

67
50

62
27

04
55

74
00

49
96

80
44

85
60

40
32

00
36

28
80

CU
M

UL
AT

IV
E 

(A
)

98
64

09
18

63
21

8
26

44
12

6
33

40
87

6
39

63
58

0
45

20
98

0
50

20
66

0
54

69
22

0
58

72
42

0
Co

rr
es

po
nd

in
g 

N
CG

 co
ns

t. 
# 

 (B
)

87
68

09
*9

+9
 

=7
89

12
90

78
09

08
*8

+8
 

=6
24

72
72

69
67

50
*7

+7
 

=4
87

72
57

62
27

04
*6

+6
 

=3
73

62
30

55
74

00
*5

+5
 

=2
78

70
05

49
96

80
*4

+4
 

=1
99

87
24

44
85

60
*3

+3
=

13
45

68
3

40
32

00
*2

+2
=

80
64

02
36

28
80

*1
+1

=
36

28
81

CG
: c

rit
ic

al
 g

en
e,

    
 N

CG
: n

on
cr

iti
ca

l g
en

e
Ad

di
tio

na
l c

on
st

ra
in

ts
 to

 co
nn

ec
t a

ll 
ge

ne
s t

o 
th

e 
ne

tw
or

k:
 (o

nl
y 

fo
r c

rit
ic

al
 g

en
es

)
2-

ed
ge

 p
at

hs
0

0
0

0
0

0
0

0
0

3-
ed

ge
 p

at
hs

2
0

0
0

0
0

0
0

0
4-

ed
ge

 p
at

hs
48

6
0

0
0

0
0

0
0

5-
ed

ge
 p

at
hs

67
2

16
8

24
0

0
0

0
0

0
6-

ed
ge

 p
at

hs
67

20
25

20
72

0
12

0
0

0
0

0
0

7-
ed

ge
 p

at
hs

50
40

0
25

20
0

10
80

0
36

00
72

0
0

0
0

0
8-

ed
ge

 p
at

hs
28

22
40

17
64

00
10

08
00

50
40

0
20

16
0

50
40

0
0

0
9-

ed
ge

 p
at

hs
11

28
96

0
84

67
20

60
48

00
40

32
00

24
19

20
12

09
60

40
32

0
0

0
10

-e
dg

e 
pa

th
s

29
03

04
0

25
40

16
0

21
77

28
0

18
14

40
0

14
51

52
0

10
88

64
0

72
57

60
36

28
80

0
SU

BT
O

TA
L

43
72

08
2

35
91

17
4

28
94

42
4

22
71

72
0

17
14

32
0

12
14

64
0

76
60

80
36

28
80

0

TO
TA

L (
C)

 
43

72
08

2*
9+

9=
39

34
87

47
35

91
17

4*
8+

8=
28

72
94

00
28

94
42

4*
7+

7=
20

26
09

75
22

71
72

0*
6+

6=
13

63
03

26
17

14
32

0*
5+

5=
85

71
60

5
12

14
64

0*
4+

4=
48

58
56

4
76

60
80

*3
+3

=
22

98
24

3
36

28
80

*2
+2

=
72

57
62

0

GR
AN

D 
TO

TA
L 

(A
)+

(B
)+

(C
) 

48
22

64
46

36
83

98
90

27
78

23
58

20
70

74
32

15
32

21
90

11
37

82
68

86
64

58
6

70
01

38
4

62
35

30
1

50 
 



The number of constraints for these 3 cases and the corresponding % reduction in 
constraints are given in Table 2.3. In order to visualize the differences, the 
corresponding graphs are also given in Figure 2.27. The first row of Case 2 in Table 
2.3  is empty because of the fact that if there is only one critical gene, then there is 
no need for an RNAi score, i.e. no ordering between the genes can be made. The first 
two rows of Case 3 in Table 2.3 are also empty because as stated before, we 
considered that the closeness of the two critical genes is the same in all situations. 
Therefore, when the network has two critical genes, then no ordering can be made 
between these genes.  
 

 
Table 2.3 Number of constraints for 12-gene networks with different number of 

critical genes 
 

 Number of constraints    # of critical 
genes Case 1 Case 2 % reduction Case 3 % reduction 

1 48226446 - - - - 
2 36839890 19351562 47.5 - - 
3 27782358 10242638 63.1 10242638 63.1 
4 20707432 6162787 70.2 4208996 79.7 
5 15322190 4050790 73.6 2134022 86.1 
6 11378268 2882783 74.7 1262588 88.9 
7 8664586 2224210 74.3 850986 90.2 
8 7001384 1861585 73.4 641480 90.8 
9 6235301 1679221 73.1 529405 91.5 

 
 
 
When we compare Case 2 with Case 1, we see that at least 47.5% reduction is 
obtained for a 12-gene network consisting of two critical genes with knowledge of 
RNAi scores for these two genes. If the network has more than 5 critical genes, more 
than 73% reduction is possible.  
 
When two genes are determined to be closer to the reporter gene as in Case 3, the 
reduction in number of constraints becomes more, as expected. At least 63.1% 
reduction in the number of constraints occurs, and even a reduction of 91.5% is 
possible as it is seen from the table.  
 
The reason why 63.1% reduction is the same for Case 2 and Case 3 can be explained 
as follows: In both cases, there are 3 critical genes. According to the RNAi scores, 1 
gene is stated to be closer to the reporter gene in Case 1. However, in Case 2, it is 
stated that 2 genes are closer to the reporter gene, which can alternatively be stated 
as 1 gene is closer to the receptor gene. In terms of number of constraints, there is no 
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difference in stating that one gene is closer to the reporter gene or closer to the 
receptor gene and that’s why the number of constraints for Case 2 and Case 3 are the 
same. 
 
We also studied on some examples to see the effect of using more information 
(RNAi scores) on the number of constraints. We considered again a 12-gene network 
with 5 critical genes and numbered these 5 genes from 1 to 5. Depending on the 
RNAi scores, we assumed several different orderings between the critical genes and 
calculated the corresponding number of constraints. The following orders of genes 
are assumed: gene 1 is closer to the source gene than (a) gene 2, (b) genes 2 and 3, 
(c) genes 2, 3 and 4, (d) genes 2, 3, 4, and 5. Additionally, we considered the 
following situations: (e) gene 1 is closer to the reporter gene than gene 2, and gene 2 
is closer to the reporter gene than gene 3, (f) gene 1 is closer to the reporter gene 
than gene 2 and gene 2 is closer to the reporter gene than both genes 3 and 4, (g) and 
lastly, all genes are ordered from smallest id to largest id, e.g. 1-2-3-4-5.  
 
The numbers of constraints for these 7 examples are given in Table 2.4 together with 
the reduction percentage in the constraints compared to the case when no RNAi 
score is available. A minus (-) symbol means that ordering is made between those 
genes and comma (,) means the reverse, i.e. no ordering is made between the genes 
separated by a comma. For example, 1-2-3, 4 means that gene 1 is closer to the 
reporter gene than gene 2, and gene 2 is closer to the reporter gene than genes 3 and 
4, therefore gene 1 is closer than genes 3 and 4 also. The table shows that one more 
gene is added into the ordering as we proceed from example (a) to example (d) and 
its order is compared with the order of gene 1. Since more information is added to 
the system, the number of constraints decreases. While the reduction is 43.9% for 
example (a), it is 73.6% for example (d), which is a significant improvement. 
However, more significant reduction is also possible by ordering the genes between 
each other, e.g. compare examples (b) and (e). In both examples, there is ordering 
between 3 genes, but in addition to the information of example (b), an ordering is 
made also between genes 2 and 3 in example (e). This additional information results 
in an additional 76.6%-60.3%=16.3% reduction in the number of constraints. In 
example (g), we see a 97.3% reduction in the number of constraints since all critical 
genes are in an order with respect to their RNAi scores. 

2.9 Conclusion 

In this chapter, we present a formulation for the network reconstruction problem as a 
linear optimization problem which provides a network satisfying the RNAi data with 
minimum edit operations applied on the given reference PPI network. By using our 
approach we guarantee to find the optimal solution and a connected network 
topology as a final network. We show that the scalability of the problem 
exponentially increases as the number of genes in the network increases. We tried to 
decrease the dimensionality of the problem by adding some additional constraints 
obtained from RNAi scores; however, it allows addition of only a few genes in the 
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final network topology. We validate our proposed approach on real and synthetic 
data sets, and comparison with the state of the art shows that our proposed approach 
is able to scale better for small networks of size up to 10 genes while attaining 
similar or better biological accuracy.  
 
 
 

 
 

Figure 2.27 Number of critical genes vs. number of constraints for 3 cases 
 
 
 

Table 2.4 Examples with different RNAi scores 
 

Order of 
genes 

Number of 
constraints % reduction 

a) 1-2 8592709 43.9 
b) 1-2,3 6089246 60.3 
c) 1-2,3,4 4816475 68.6 
d) 1-2,3,4,5 4050790 73.6 
e) 1-2-3 3585783 76.6 
f) 1-2-3,4 1265133 91.7 
g) 1-2-3-4-5 406845 97.3 
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CHAPTER 3 

3. CONSTRUCTION OF LARGE-SCALE NETWORKS 

In this chapter, we present the methods we have developed to construct large-scale 
biological networks (Eren Ozsoy and Can, 2013). As shown in the previous chapter, 
as the number of nodes increases in a network, the number of constraints increases 
exponentially. Since the maximum number of nodes that can be handled in 
reasonable time with a standard desktop with our approach is 10, it is not possible to 
solve the networks that have larger number of nodes because of the complexity of 
the problem. To solve such problems, we propose the divide and conquer technique 
which allows us to reduce the number of nodes for a large network by dividing it 
into sub-networks that have up to 10 nodes, then to solve each sub-network 
separately, and finally to combine the obtained results. Since there is a limitation for 
the maximum number of nodes in a single sub-network for the previously developed 
method, the original network has to be divided into sub-networks in such a way that 
no more than 10 nodes should be allowed. 
 
We apply our method on several networks, which can be sparse or dense, have small 
or large number of nodes, and contain noisy data. The results show that our methods 
can construct networks better than the state of the art methods in terms of recall and 
precision measures, scalability, robustness, and consistency with the RNAi data. For 
some cases, the state of the art methods cannot place a non-critical gene in the 
constructed network if the connection of this gene to the reference network is 
missing, although it is known that this gene is part of a signal transducing path in the 
network. On the other hand, our method is able to include such genes in the 
reconstructed network resulting in a more biologically correct network. For dense 
and large networks, while the state of the art methods fail to construct networks in 1 
hour, we are able to find solutions in minutes. 

3.1 General divide and conquer algorithm 

The basic principle of divide and conquer algorithm is partitioning the complex 
problem into subproblems and then solve each of them. It is assumed that these 
subproblems, which are themselves smaller instances of the main problem, are easily 
solvable. If all these subproblems are solved correctly and integrated together, the 
solution of the complex problem is said to be found out. 
 
Therefore, a divide and conquer algorithm has three main steps; 
1- Divide the main problem into subproblems 
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2- Solve these subproblems recursively to conquer. 
3- Integrate the solution of subproblems to find the solution of the main 
problem. 
 
This is a promising approach for the solution of large network reconstruction 
problems. We use different strategies for different number of gene to number of 
critical genes ratios as explained in the next section. 

3.2 The Divide and conquer approach used for construction of large-scale 
networks 

As the number of genes increases in a network, the number of constraints increases 
exponentially (see Chapter 2). Since the maximum number of genes that can be 
handled in reasonable time with a standard desktop with our approach is 10, it is not 
possible to solve large networks. In order to scale for larger networks, we propose 
using a divide and conquer approach which allows us to employ the original ILP 
formulation on small sub-networks up to 10 genes and combine the obtained results. 
 
In this approach, partitioning the whole network into sub-networks is the most 
important process. We use RNAi data not only to find the RNAi hits by treating the 
data as Boolean after thresholding to find out the critical genes but also we use the 
raw RNAi scores to decide the placement of the gene mentioned in Chapter 2.  RNAi 
scores and the reference network (PPI) play an important role in deciding which sub-
network includes which genes. First, the critical genes are determined according to 
RNAi data. Then, two different approaches are applied to divide the original network 
to sub-networks depending on the ratio of the number of total genes to critical genes: 

i) ratio of the number of total genes to critical genes is greater than 10.  We 
propose two different division algorithms for this case which are detailed 
below.  

ii) ratio of the number of total genes to critical genes is less than 10.  
Since the largest network that can be solved by the oILP method is a 10 node 
network, the original network has to be divided into sub-networks in such a way that 
each sub-network has at most 10 nodes. 
 
In the combine phase of this approach, the reconstructed sub-networks are simply 
combined together from their common nodes, which are the articulation points 
(critical genes) to obtain the wholly reconstructed network.  
 
i) Horizontal Divide (# of genes/# of critical genes > 10):  
(a) The first approach, named as RNAiDivide, does not take the structure of the 
reference network into account and divides the network into sub-networks using only 
the RNAi scores. For this case (i), since we have a large network with small number 
of critical genes, the number of critical genes is not enough to divide the network 
into sub-networks which are smaller than 10 gene networks. Therefore, due to the 
small number of critical genes, all the critical genes are included in all sub-networks. 
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Then, the remaining genes are ordered with respect to their RNAi score values. After 
ordering, all genes are grouped into sub-networks having the same source (the 
receptor gene of the main network), the same target (the target gene of the main 
network) and the same critical genes. Then, according to the ordering, the rest of the 
non-critical genes are included in the sub-networks equally. Note that the last sub-
network may have smaller number of genes than the others if the network cannot be 
divided equally.  
 
A schematic of the structure of such a divided network is given in Figure 3.1. The 
sub-networks obtained by such division may have genes between all critical genes. 
Therefore, for example, sub-network-A includes the receptor gene s, the target gene 
t, all the critical genes 2-3-4-…, and some non-critical genes between these critical 
genes. 
 
This procedure has a drawback since the division of the network causes removal of 
some of the original edges (interactions) in the reference network. These edges are 
directed from a sub-network gene to another sub-network gene (upstream or 
downstream) and a remedy is possible with a difference: since some of the genes 
belonging to separate sub-networks can be in-between two consequent articulation 
points (critical genes) (e.g., between gene 1 and gene 2, from sub-network A to sub-
network B as in Figure 3.1), such edges can be inserted into the constructed network 
without any violations in our ILP approach. Algorithm 1 presents the pseudocode for 
RNAiDivide. 
 
 

 
 

Figure 3.1 Structure of the divided network produced by RNAiDivide. Each sub-
network has the same source and sink (s, t), and includes all the critical genes (1, 2, 
... etc.) and also the genes between the critical genes which belong to itself. The 
combined network has the same structure with changes applied in the paths between 
the critical genes.  
 
 
 
Our experimental results show that as the total number of genes increases, the 
resulting constructed network deviates too much from the reference network with the 
RNAiDivide approach. 
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Algorithm 1. RNAiDivide 
 
1: If (# of genes/# of critical genes > 10) then 
2:        Put the critical and non-critical genes in ascending order with respect to their 

RNAi scores. 
3:         While (# of genes in non-critical gene set) + (# of critical genes) > 10 do  
4: initialize a sub-network by assigning all the critical genes as members 

of the sub-network 
5:  insert first x genes from ordered non-critical gene set to the sub-

network such that total genes in the sub-network=10  
6:   remove inserted genes from the non-critical gene set 
7:         end while 
8:  call oILP for each sub-network 
9:   for all consecutive critical gene pairs do 
10:    if there are deleted interactions between sub-networks then 
11:    insert deleted interactions to the oILP solution 
12:    end if 
13:   end for 
14: end if 
15: combine all solutions together from their critical genes. 
 
(b) In order to increase the accuracy of our division method for case (i), we propose 
an alternative approach which takes into account the reference network topology 
along with the RNAi scores and name this method as TopologyRNAiDivide. The 
RNAi scores of the critical genes alone are not enough to make a decision about their 
locations –whether they are close to the source or to the sink- in the network.  
Therefore, the order of the critical genes should be determined by considering the 
given reference network structure and in some situations by utilizing the RNAi 
scores. We also use RNAi scores together with reference network structure when 
dividing the non-critical genes, if the sub-network of these genes cannot be 
determined from the reference network structure.  
 
The order of the critical genes can be determined easily if all of the genes are 
connected to the reference network. This can be done by a breadth-first-search (BFS) 
of the network. BFS starts with the receptor gene and continues with the neighboring 
genes. Then it searches the neighbors of these genes in turn. By inspecting the final 
search output, the order of the critical genes in the reference network can be 
determined since all the critical genes are known initially. If the reference network is 
a sparse network with some missing interactions we cannot place some of the genes 
using this BFS approach. In such situations, we utilize the RNAi scores. We place 
such genes by using the location of a previously placed gene with the closest RNAi 
score.  
 
After finding the order of the critical genes, we determine the genes in each sub-
network. Each gene belongs to a specific sub-network between two critical genes, or 

57 
 



between the receptor gene and the first critical gene, or between the last critical gene 
and the target gene. In order to assign genes to sub-networks, we start by finding the 
genes which are neighbors of the receptor gene. If an edge is directed towards a non-
critical gene from the receptor, then it is put into the first sub-network. Next, we 
continue assigning immediate neighbors of first sub-network to that sub-network, 
until a critical gene is confronted. At this point, since all the genes which belong to 
the first network are determined, we continue with the first non-critical gene that 
comes after the receptor gene. Then, applying the same procedure, the genes 
belonging to the second sub-network (i.e., which are downstream neighbors of the 
second critical gene) are determined. The genes belonging to the remaining sub-
networks can be determined in the same way until no genes remain to assign to a 
sub-network. 
 
In some cases, the sub-network may contain too many genes which is a problem for 
the ILP approach. For these cases, the sub-network has to be divided again into two 
or more sub-networks including the common receptor and target genes. Here, instead 
of dividing arbitrarily, this division has to be made in such a way that the resulting 
secondary sub-networks should include as much information as possible from the 
reference network. This way, the constructed network will be closer to the actual 
network, i.e., biologically more accurate, since the reference network includes 
several edges from the actual network. The order of genes can be determined by 
using breadth-first-search on sub-networks. The first and the last nodes in such sub-
networks are common. Since only a limited number of critical genes are included in 
the sub-networks, the required number of sub-networks is less than that of the 
RNAiDivide approach. Therefore, the problem can be solved with less 
computational effort with higher accuracy. In Figure 3.2, a schematic of the structure 
of a network divided by TopologyRNAiDivide is given. 
 
 

 
 

Figure 3.2 Structure of the divided network produced by TopologyRNAiDivide. 
Each group of sub-networks (sub-network A, sub-network B, ...) has the same source 
and sink (for e.g. the sink and source of group B sub-networks are gene 1 and 2.). 
After these sub-networks are solved, they are put in their respective places in this 
structure. 
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The algorithm for TopologyRNAiDivide is given below. 
  
Algorithm 2. TopologyRNAiDivide 
 
1: If (# of genes/# of critical genes > 10) then 
2:        run BFS on the given reference network to order the critical genes 
3:  if (# of critical genes < # of critical genes from BFS final output) 
4: Place the missing critical genes by using the location of a 

previously placed gene with the closest RNAi score.  
5: end if 
6:  for all non-critical genes do  
7: Locate non-critical genes by labeling them according to their 

downstream neighbors 
8:  end for 
9:  for all sub-networks do  
10: Count the # of genes in all sub-networks 
11:  if (# of genes in the sub-network > 10) 
12:    run BFS on the sub-network 
13: divide again into two or more 10-node sub-networks 

including the common receptor and target genes by 
BFS final output. 

14: end if 
15:  end for 
16:  run oILP for each sub-network 
17:  Combine all solutions together from their critical genes  
18:  for all consecutive critical gene pairs do   
19:   if there are deleted interactions between sub-networks then   
20:    insert deleted interactions to the oILP solution   
21:   end if  
22:  end for 
23: end if 
 
ii) VerticalDivide (# of genes/# of critical genes < 10):  
We perform this division technique when ratio of the number of total genes to critical 
genes is less than 10. For this case, we both use the RNAi scores and the reference 
network to partition the whole network into sub-networks as in 
TopologyRNAiDivide described above.  
 
The main idea is similar to that of TopologyRNAiDivide. However, this time, the 
sub-networks may contain more than one critical gene. If the RNAi scores are 
sufficient to decide the location of critical genes with respect to each other, such as 
when some of the critical genes have higher or lower scores than the other critical 
genes, we utilize these scores and their relative position in the reference network to 
order the genes. If the RNAi scores are sufficient to order all critical genes in the 
sub-network, genes are put in the order from the one having the lowest RNAi score 
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to the one having the highest RNAi score.  Such kind of division decreases the 
solution time according to the lowest number of constraints due to ordering of genes 
and make the final topology close to the true signaling network. 
 
Also, we assume that these sub-networks are connected to each other at some 
common genes which are in fact the articulation points (critical genes) of the main 
network. Therefore, while such genes act as a source for a sub-network, they act as a 
target gene for an upstream sub-network. Note that for the first sub-network, the 
receptor gene coincides with the receptor gene (s) of the main network, and for the 
last sub-network, the target gene coincides with the target gene (t) of the main 
network. The genes between the networks are the critical genes or non-critical genes 
and the critical genes can be ordered with respect to their RNAi scores. A schematic 
of the structure of such a divided network is given in Figure 3.3. However, the last 
sub-network may have smaller number of genes than the others if the network cannot 
be divided equally. This situation does not create a problem since we solve the 
problem by considering each sub-network separately. 
 
After the reference network is divided into sub-networks, we use the induced sub-
graphs to create smaller ILP instances. Removal of inter sub-network edges from the 
original reference network is a drawback of the divide and conquer approach since it 
causes the constructed network to be sparser. However some of these edges can be 
included in the final constructed network. If the removed edge is an upstream edge 
which is directed from a gene of a downstream sub-network to the gene of an 
upstream sub-network, then we can insert such an edge to the solution without 
violating the RNAi constraints. Therefore, we obtain a network more similar to the 
reference network. Algorithm 3 presents the pseudocode for VerticalDivide. 
 
 
 

 
 
Figure 3.3 Structure of the divided network produced by VerticalDivide. Each sub-
network includes a couple of critical genes, and they are connected end to end. 
Therefore, 2 consecutive sub-networks share a common critical node, which is the 
sink for the first network and the source for the second network. After the solution, 
these sub-networks are connected back to each other from these common genes. 
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Algorithm 3. VerticalDivide 
 
1: If (# of genes/# of critical genes < 10) then 
2:        run BFS on the given reference network to order the critical genes 
3:  if (# of critical genes < # of critical genes from BFS final output) 
4: Place the missing critical genes by using the location of a 

previously placed gene with the closest RNAi score.  
5: end if 
6:  for all non-critical genes do  
7: Locate non-critical genes by labeling them according to their 

downstream neighbors 
8:  end for 
9:  while # of genes in sub-network < 10 do 
10: add 2 consecutive critical genes to the sub-network together with the 

non-critical genes between them  
11: end do 
12:  run oILP for each sub-network 
13:  Combine all solutions together from their common critical genes  
14:  for all sub-networks do   
15:   if there are deleted upstream interactions between sub-networks then 
16:    insert deleted interactions to the combined oILP solution  
17:   end if  
18:  end for 
19: end if 
 

3.3 Data sets 

To evaluate the performance of the divide and conquer approach we apply our 
method on several networks, which are classified as synthetic, semisynthetic and real 
networks.  As the real network, we use ERBB network taken from the literature 
(Sahin et al., 2009). Semi-synthetic networks are obtained by adding noise to several 
real networks at different noise rates. The synthetic and semi-synthetic networks 
vary by sparseness or denseness, number of nodes they include and the noise that 
they have.  The details about these data sets are given below. 
 
Real data set: We use the ERBB receptor-regulated G1/S transition network (Sahin 
et al., 2009)) given in Figure 3.4a as the real data set. The ERBB network is a large 
network with 20 nodes, each of which can be either a gene or a complex of proteins. 
 
Semisynthetic data sets:  In order to compare the performances of our Horizontal 
Divide methods TopologyRNAiDivide and RNAiDivide on a semisynthetic dataset, 
we generate 20 reference networks for the VEGF_PGI2 network by the edge 
shuffling method (Milo et al., 2003) with the noise rates of r = 0.05, r = 0.1, r = 0.2, 
and r = 0.4. For each network, 𝑟𝑟 ×  |𝐸𝐸| edges are deleted or inserted to generate 
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random networks. The first 5 of these 20 networks are generated with a noise rate of 
0.05, the second 5 networks with a noise rate of 0.1, the third 5 networks with a 
noise rate of 0.2, and the last 5 networks with a noise rate of 0.4. 
 
In addition, to compare our methods with the state of the art methods, we use a 
selection of five signaling networks from the KEGG database (Kanehisa and Goto, 
2000). One of them is HSA2 network that is used by Hashemikhabir et al 0. HSA2 
network has 388 genes and 615 interactions. We named the rest of the networks as 
VEGF_PGI2, p53_apoptosis, neutrotrophin and FceRI (descriptions, number of 
genes, |V|, and number of edges, |E|, are given in Table 3.1). Using these five 
networks, we have generated 25 semisynthetic data sets for each actual network (a 
total of 125 networks). This is done by inserting edges to the actual networks at a 
certain rate and removing edges at the same or at a different rate, i.e., inserting or 
removing different number of edges from each of them. Therefore, both dense and 
sparse networks have been generated. The insertion/deletion rates range from 10% to 
50%, each. In this data set, we have 25 unique reference networks with different 
number of edges and we name this data set generation method as ADDRIP 
(“addition/deletion rates in percentages”). 
 
We also generated 200 reference networks from HSA2 data set 0 by modifying the 
original network using the degree preserving edge shuffling method (Milo et al., 
2003) with varying noise rates, i.e., 0.05, 0.1, 0.2, 0.4 to compare the running time 
performance of our method with the state of the art methods.   
 
Synthetic data set: We have generated two artificial signaling networks, which 
simulate signaling network topologies, with 24 and 72 genes named as Synthetic24 
and Synthetic72, respectively (as described in Table 3.1). Synthetic24 network has 
two critical genes and Synthetic72 has four critical genes.  We also randomly 
generated RNAi scores for each of the critical genes as described below in the 
following section.   
 
For both Synthetic24 and Synthetic72 networks, we generated 25 networks by using 
the “ADDRIP” method as described above. 
 
To compare the performances of TopologyRNAiDivide and RNAiDivide on a 
synthetic dataset, we also use Synthetic24 network by generating 20 reference 
networks using the edge shuffling method (Milo et al., 2003). 
 
RNAi score generation and Accuracy Measures: Since the synthetic and semi-
synthetic data we use in this study do not have RNAi data, we generate synthetic 
RNAi scores for these data. We follow the same procedure for the generation of 
synthetic RNAi scores as given in Chapter 2. Precision and recall values are the 
accuracy measures chosen for the evaluation of the results, which are also defined in 
Chapter 2.  
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Table 3.1 Datasets used in the experiments 
 

Dataset Description |V| |E| 

VEGF_PGI2  VEGF sub pathway containing the PGI2 gene 
(human) 14 15 

p53_apoptosis p53 apoptotic response sub pathway (human) 20 24 

Neutrotrophin neurotrophin sub pathway signaling with Bcl-2 
(human) 24 31 

FceRI Fc epsilon RI subpathway containing the genes 
JNK and p38 (human) 13 16 

HSA2 The HSA2 network from Sasan et al. 388 615 
Synthetic 72 72 gene synthetic signaling network 72 102 
Synthetic 24 24 gene synthetic signaling network 24 35 

 
 

3.4 Results 

We applied our methods on the given data sets and compared them with the state of 
the art methods. We first compare the results with SiNeC on ERBB network, then we 
compare two of our methods RNAiDivide and TopologyRNAiDivide with each other 
on synthetic and semi-synthetic networks, and finally compare SiNeC with 
TopologyRNAiDivide, which yields better results than RNAiDivide, on both 
synthetic and semi-synthetic datasets. 

3.4.1 Comparison on ERBB Network with the state-of-art methods 

It has been shown in Hashemikhabir et al. (2012) that SiNeC outperforms other state 
of the art methods, (Ruths et al., 2007; Singh, 2011; Kaderali et al., 2009) in the real 
data set, ERBB network (Hashemikhabir et al., 2012); therefore, in this section, we 
report a comparison of our method with SiNeC on the ERBB network only. 
 
ERBB Network: 
The ERBB network is a network in which the ratio of the number of components to 
the number of critical genes is small. Therefore, we use VerticalDivide to reconstruct 
the network for this dataset. The RNAi scores were taken from the Sahin et al.2009, 
and the critical genes are identified as ERBB1, ERBB1_2, IGF1R, ER-alpha, c-
MYC, CyclinD1, CyclinE1, CDK4, and CDK6 with respect to their RNAi data. We 
compare VerticalDivide with SiNeC on the ERBB receptor-regulated G1/S transition 
network. We use an undirected literature curated reference network (Figure 3.4a) to 
reconstruct the signaling network. 
 
Comparison with SiNeC: For both methods, the reference network and critical genes 
are taken the same. The constructed networks are given in Figure 3.4b and Figure 
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3.4c. In order to make a comparison between them, the precision and recall values 
are calculated for the constructed networks. While SiNeC has a precision value of 
0.28, we obtain a precision of 0.39 with our method. Also, recall value of our method 
is 0.55, while it is 0.52 for SiNeC. Both recall and precision values are greater for 
VerticalDivide, which indicates that VerticalDivide is able to produce biologically 
more accurate results on real data sets. 

3.4.2 Comparison between RNAiDivide and TopologyRNAiDivide 

In this section, we analyze the results of RNAiDivide and TopologyRNAiDivide on 
the datasets VEGF_PGI2 and Synthetic24. The results are shown in Figure 3.5 - 
Figure 3.8. 
 
For the VEGF_PGI2 network, we see that TopologyRNAiDivide is 10% more 
accurate on the average and produces less number of false positive interactions 
compared to RNAiDivide as the noise rate increases. Moreover, while RNAiDivide 
reconstructs the whole network by dividing the reference network into three sub-
networks, TopologyRNAiDivide reconstructs the signaling network with two sub-
networks. Therefore, TopologyRNAiDivide reduces the probability of deletion of the 
true edges due to the division of the network, which is a drawback of the division 
procedure. 
 
Depending on the increase in the number of genes in a network, RNAiDivide 
performs poorly compared to TopologyRNAiDivide in both running time and in 
finding accurate solutions. When we analyze the results for the Synthetic24 gene 
network, we see that TopologyRNAiDivide increases the recall values by 20% on 
average.  
 
In addition, an average of 25% increase in the precision values is observed. Due to 
the much better handling of false positive and false negative edges compared to 
RNAiDivide, TopologyRNAiDivide gives more accurate results. 
In conclusion, TopologyRNAiDivide copes with the problems of the division of 
large networks into smaller sub-networks much better than RNAiDivide and 
produces more robust solutions. We observe that TopologyRNAiDivide is more 
powerful in determining the true positive interactions while eliminating the false 
positive edges. 
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Figure 3.4 Schematic of ERBB network. (a) Reference network (Sahin et al., 2009), 
(b) constructed network by VerticalDivide, (c) SiNeC (Hashemikhabir et al., 2012) 

a) 

b) c) 
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Figure 3.5 Average recall values for VEGF_PGI2 data set.  
 
 

 
 

Figure 3.6 Average precision values for VEGF_PGI2 data set. 
 
 

 
 

Figure 3.7 Average recall values for Synthetic24 data set. 
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Figure 3.8 Average precision values for Synthetic24 data set. 
 
 

3.4.3 Comparison between TopologyRNAiDivide and SiNeC on large 
networks 

In the previous section, we have shown that TopologyRNAiDivide is able to 
construct signaling networks more accurately compared to RNAiDivide on large size 
networks. In this section, we compare TopologyRNAiDivide with SiNeC. 
 
To assess the performance of TopologyRNAiDivide on large networks, we compare 
the final topologies constructed by TopologyRNAiDivide and SiNeC by means of 
recall and precision on six different data sets. Four of these data sets are semi-
synthetic data sets, VEGF-PGI2, p53-apoptosis, neutrotrophin, and FceRI. The other 
two data sets we used in the comparison experiments are the Synthetic24 and 
Synthetic72 networks. p53-apoptosis and neutrotrophin networks have independent 
multiple parallel pathways structurally. The other four networks have bow-tie 
topology. We ran both SiNeC and TopologyRNAiDivide on these networks and 
calculated the corresponding recall and precision values. Contour plots which are 
described in Section 2.7.1 are used to represent these values for comparison. 
 
If we compare the precision and recall values for p53-apoptosis and neutrotrophin 
networks, the results of which are given in Figure 3.9 - Figure 3.12, it is seen that the 
robustness of the two methods are approximately same on the dense networks. 
However, while the reference networks become sparse, TopologyRNAiDivide is able 
to construct more accurate networks compared to SiNeC. This is because SiNeC 
cannot handle some non-critical genes if there is no interaction related with this gene 
in the reference network. Although TopologyRNAiDivide has better accuracy on 
sparse networks, it cannot handle false positive edges as much as SiNeC can do, due 
to the structural nature of the network. Since these two networks have independent 
multiple parallel pathways, TopologyRNAiDivide adds some false positive edges on 
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the final network to satisfy the constraints because of the division method. Moreover, 
higher precision values obtained by SiNeC are also because of the different 
structures of the constructed network topologies. While TopologyRNAiDivide is 
forced to construct a connected network topology, the topology of the constructed 
network by SiNeC may have genes which do not transduce the signal. Therefore, if 
all the genes are required to be involved in signal transduction, 
TopologyRNAiDivide should be used; if not, SiNeC may be preferred.  
 
Next we consider bow-tie topologies, which are theVEGF-PGI2, FceRI, Synthetic24, 
and Synthetic72 networks. The comparison between TopologyRNAiDivide and 
SiNeC is depicted in Figure 3.13 - Figure 3.20. The results reveal that 
TopologyRNAiDivide is more robust and results in less number of false positive and 
false negative edges compared to SiNeC in these four networks with varying number 
of genes. For such kind of network structures, TopologyRNAiDivide achieves better 
accuracy on both sparse and dense reference networks compared to SiNeC. 
TopologyRNAiDivide constructs more accurate results which are closer to the true 
network topology and always gives a connected network as a final output. The main 
difference between the final outputs is that while TopologyRNAiDivide is forced to 
find a connected network, with all the genes contributing to the flow, SINEC finds a 
topology consistent with the RNAi scores but does not impose a connectivity 
constraint; hence, cannot handle non-critical genes which are not connected to the 
signaling network in the reference network. 
 
In general, as the amount of deletion increases, TopologyRNAiDivide gives better 
results than SiNeC (the shaded area colors are lighter for TopologyRNAiDivide). 
This means that even if we have very little biological information at the beginning, 
i.e., high amount of deletions, our proposed approach is able to construct a network 
which has a closer topology to the actual network than the one SiNeC constructs. 
 
 
 

 
(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.9 Contour plot for precision values for the p53apoptosis network. 
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(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.10 Contour plot for recall values for the p53apoptosis network.  
 

 

 
(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.11 Contour plot for precision values for the neutroprophin network.  
 
 

 
(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.12 Contour plot for recall values for the neutroprophin network.  
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(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.13 Contour plot for precision values for the VEGF_PGI2 network.  
 

 

 
(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.14 Contour plot for recall values for the VEGF_PGI2 network.  
 
 

 
(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.15 Contour plot for precision values for the Synthetic 72 network.  
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(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.16 Contour plot for recall values for the Synthetic 72 network. 
 
 

 
(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.17 Contour plot for precision values for the Synthetic 24 network.  
 
 

 
(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.18 Contour plot for recall values for the Synthetic 24 network.  
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(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.19 Contour plot for precision values for the FceRI network.  
 
 

 
(a) SiNeC,     (b) TopologyRNAiDivide 

Figure 3.20 Contour plot for recall values for the FceRI network.  
 

 
 

3.5 Running time performance comparison with SiNeC 

Hashemikhabir et al. evaluated SiNeC running time performance in their study. 
While SiNeC can find solutions for large networks up to 200 genes in seconds, it 
fails to find a solution for dense networks in 1 hour. For example, SiNeC cannot find 
a solution for the HSA2 network which has 388 genes and 615 interactions in the 
true signaling network. To remedy this, they propose another method named S-
SiNeC which can provide a solution to the HSA2 network in seconds. However, S-
SiNeC fails to satisfy RNAi constraints for some networks; hence, cannot guarantee 
a correct solution for every input. On the other hand, the methods we propose can 
find a correct solution for any input. Therefore, in terms of robustness, we are more 
similar to SiNeC. The success rate of S-SiNeC is reported to be high when the 
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distance between reference network and the actual network is small. When the 
distance gets larger, it fails to satisfy some of the constraints but the number of such 
constraints is found to be small. S-SiNeC solves approximately 60 percent of the 
reference networks at the highest noise rate (40 percent noise rate). We think that in 
real settings, reference networks can be noisy and S-SiNeC will not be able to 
produce a solution for a considerable percentage of the instances. Therefore, in this 
chapter we compare our results with SiNeC, instead of S-SiNeC.  
 
We apply our method on all 200 mutated reference networks for the HSA2 network 
described in the data sets section and measure the running time. We divide each 
network into equal size sub-networks and calculate the total solution time. Each sub-
network is solved on a quad core 2.66 GHz CPU (Intel XEON E5430) 16 GB 
memory HPC node, sequentially. The total solution time for a network is calculated 
by summing up solution times given by CPLEX for each sub-network. The results 
show that the average of the running times for the 200 networks is 4.6 minutes with a 
minimum of 0.47 minutes and a maximum of 18.9 minutes. While SiNeC cannot 
find a solution to these large networks in 1 hour, we can reconstruct the networks in 
minutes, which shows that our approach can scale for large networks very well. This 
is a significant benefit of our proposed divide and conquer approach over the state of 
the art methods. Note that, although we report sequential solution times, it is also 
possible to solve each divided network in parallel with parallel architectures 
independently and construct networks in even shorter times. 

3.6 Conclusion 

In the previous part of this study, we formulate the network reconstruction problem 
as a linear optimization problem in which we construct a network satisfying the 
given RNAi data with minimum edit operations applied on a given reference PPI 
network. This ILP formulation can construct networks with high accuracy, for small 
networks of size up to 10 genes with single receptors and single reporters. In order to 
be able to construct large networks, we develop a divide and conquer based approach 
in this part of the study. The main idea is dividing the whole problem into solvable 
small problems, then solve each problem separately, and finally bring all solutions 
are together to find the final topology. We develop two different approaches depend 
on the given network topology. Comparison with the state of the art methods shows 
that the proposed methods scale better and give more accurate results. While the 
state of the art methods simply do not include a non-critical gene in the final 
constructed network if the reference network does not show a connection for this 
gene; we always include all the genes in the final constructed network. Therefore, if 
the input list of genes is all known to be involved in the signaling network, our 
method is more likely to construct biologically correct networks. Also, we are able to 
find solutions to both sparse and dense networks in minutes, while state-of-the-art 
methods fail to construct networks in 1 hour if the networks are dense and large 
networks.  
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In conclusion, since studying and understanding biological network topologies are 
essential for interpreting biological systems for drug target identification, the 
methods proposed in this study are valuable and convenient to construct novel 
network topologies from screening experiments.  
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CHAPTER 4 

4. CONSTRUCTION OF MULTI-SOURCE/MULTI-SINK NETWORKS 

The approach that we have developed for reconstruction of biological networks 
using RNA interference data is convenient with networks which have a single 
receptor gene and a single reporter gene. However, in real biological networks there 
are more than one such genes/proteins. Our previous approaches which are given in 
Chapter 2 and Chapter 3 are not suitable for networks with multiple sources and 
sinks. In order to handle such networks, we use gene expression data and develop 
another ILP based graph theoretical method. In the method we developed, we use 
time-series data which consists of gene expression measurements at different time 
periods. Such data allows us to track the changes happening in the network, and thus 
to find the interactions between genes.  
 
The simulations carried out on 10 and 20 gene synthetic networks show that the 
proposed methods perform very well even when significant amount of noise is 
present in the data. Additional biological information, such as perturbation 
experiments, results in more accurate networks. Using mice agouti signaling 
network, the method is shown to perform well on real biological networks and 
identify several interactions. 

4.1 Introduction 

For network inference, several models are developed which depend on the available 
data (Bower and Bolouri, 2001; de Jong, 2002). The type and amount of data, prior 
knowledge about the network, experimental and computational resources are 
important in the development of such models. In the last two decays, DNA 
microarray technology has emerged and widely used by researchers. The expression 
levels of the genes in a living organism can be measured in one array with this 
technology.  
 
The functionality of a gene can be determined by measuring the amount of mRNA 
production during DNA transcription, in a cell. This can be done by using 
microarrays, which can detect the mRNA levels of thousands of genes in a single 
experiment. Microarrays, or gene-chips, consist of DNA spots attached to a surface 
consisting of specific DNA sequences. When a gene is activated, it produces mRNA 
which is complementary. Therefore, it then binds to the original portion of the DNA 
strand from which it was copied. To determine the activated or de-activated genes, 
the mRNA molecules are collected from a cell in consideration. Then, these mRNA 
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molecules are labeled by using an enzyme which generates the so-called 
complementary DNA (cDNA) to the mRNA. Fluorescent agents are attached to the 
cDNA during this process. Then, these labeled cDNAs are placed onto the 
microarray, and they bind to their complementary DNAs on the microarray with 
fluorescence. Measuring the intensity of fluorescence at each spot on the microarray 
using a scanner, activity level of a gene can be obtained.  
 
Microarray data is available in terms of a gene expression matrix, which is a table of 
rows representing gene names and columns representing the experiment number. The 
columns can be either time points or treatments depending on the experiment type. 
The expression profile for a gene is accessed from the corresponding row on the 
matrix.  
 
Depending on the type of experiment, microarray data can be either time-series or 
perturbation data. Time series data gives information about the time-change of gene 
expression levels. Important information on time-varying cellular processes can be 
obtained. Similar to RNA interference experiments, perturbation experiments gives 
information about the effects of a change or treatment on the cellular activities. 
Following a disruption, the response of pathways can be determined.  These 
experiments are very suitable to be used in determining causal relationships between 
genes (Wagner, 2001; Milo et al., 2002). 

4.2 Models used for network inference 

There are several regulatory network inference models available in the literature. In 
Boolean networks, the gene expression levels are discretized in binary form and the 
Boolean functions of the genes in the network are found to explain these discretized 
values of gene expression (Liang et al., 1998; Kwon and Cho, 2007; Bornholdt, 
2008).  These models are usually easy to implement but not suitable for noisy data 
such as microarray data. Bayesian networks are directed acyclic graphs that 
represent the data best making use of a scoring function (Lee and Yang, 2008).  The 
expression levels of the genes in the network are represented as random variables 
determined by a probability distribution function. Dynamic Bayesian network model 
is simply an extended version of the Bayesian network model that takes into account 
dynamic effects in the network (Friedman et al., 2000; Zou and Conzen, 2005; 
Zhang et al. 2007; Li et al., 2011). The changes in time series gene expression data is 
assumed to occur in discrete intervals. In relevance networks, interactions are 
modeled by an undirected graph with weighted edges depending on a similarity or 
statistical dependence (Schafer and Strimmer, 2005; Margolin et al, 2006). Due to 
the relative simplicity of these models, they require less computational effort. 
Differential and difference equation models use system of differential equations to 
model the time change of gene regulation in the network (de Jong, 2002; Gebert et 
al., 2007; Gardner et al., 2003; Bansal et al., 2006). The computational cost of such 
quantitative models is usually very high.  
In this study, we develop a graph theoretical model, which can describe causal 
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regulatory relations in the network, for construction of signaling and gene-regulatory 
networks. We use gene expression data and develop an ILP based graph theoretical 
method. In the proposed method, we use time-series data which consist of gene 
expression measurements at different time points. Such data allow us to track the 
changes happening in the network, and thus to find the interactions between genes. 

4.3 Proposed approach 

For reconstruction of signaling and regulatory networks, we first developed a model 
that utilizes only time series gene expression data. Then, we improved the model by 
using perturbation experiments as additional data. Since these data are noisy, we 
proposed two methods to handle the conflicts that may be imposed by such data. 

4.3.1 Model Based on Gene-Expression Data Only 

Consider a given directed graph G(V,E) where V represents the node set and E 
represents the edge set, with several source nodes si, and  sink nodes tj. This graph 
may be a literature curated gene regulatory network or taken from any of the gene 
regulatory network database, where each node represents a gene and assume that the 
gene expression levels at different time points are available from microarray 
experiments. The aim is to reconstruct a new network from the given network 
satisfying microarray data by making minimum changes on the given network. The 
approach would be to formulate this problem as a linear optimization problem, 
which will provide a network satisfying the microarray data with a minimum change 
applied on the given network. 
 
Since the method we previously developed (Eren Ozsoy and Can, 2013) uses RNAi 
data and cannot handle networks with multiple sources and sinks, another approach 
is required to find real biological networks. Our goal is to develop an approach for 
reconstruction of gene regulatory networks using gene expression data. The 
approach has two main phases: pre-processing phase and solution of ILP 
formulation. Since the microarray data may contain several thousands of genes, only 
some of them must be taken into consideration to obtain valuable information about 
the signaling pathways. 
 
Preprocessing phase: In the pre-processing phase, the gene expression data is 
processed to identify the active genes at each time point. The states of the genes in 
the network, either active or inactive, are determined by using a threshold that 
depends on the dataset for the expression levels or fold changes. The state variables 
for active genes are assigned as 1, while remaining are assigned as 0. Finally, we 
obtain a matrix of ones and zeros for each gene at all time points. An example matrix 
is given in Figure 4.1.  
 
Solution  phase: In this phase, the objective function for the ILP formulation and 
the corresponding constraints are derived. 
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Objective function: 
We assume that the reference network is given (it can be taken from literature or any 
known pathway database) and it has to be modified to satisfy the constraints derived 
from the new biological data (microarray data). The network will be reconstructed 
by applying minimum edit operations, i.e. insertions/deletions on the network. The 
proposed method works even when there is no reference network available. For such 
case, minimum number of edge additions is sought. Let xij be the binary variable 
representing the presence of the edge between nodes i and j which is from node i to 
node j in the given network. If the edge is present, then the value of xij is 1, otherwise 
it is 0. Similarly, let wij represent the edges in the network that is to satisfy the given 
microarray data. The microarray data consists of the information whether a gene is 
active or inactive. We name these binary variables “the state variables”. The goal is 
to reconstruct the given network with respect to the microarray data by minimizing 
the changes that have to be applied to the initial reference network. The objective 
function for this linear problem would be the sum of the absolute values of the 
differences between wij and xij, i.e. |xij - wij|. If the edge is present both before and 
after the optimization,  then the difference becomes 0, which means no change is 
made on the corresponding edge in the network. However if the difference is 1, it 
means that the edge is either taken out from the network or it is inserted into the 
network. Therefore, minimizing the sum of these differences results in a network that 
is obtained by making minimum number of changes on it while satisfying the 
constraints obtained from the gene expression data. 
 

 

 Time 1 Time 2 Time 3 . 
Gene 1 1 0 0 . 
Gene 2 1 0 0 . 
Gene 3 0 1 0 . 

. . . . . 
 

Figure 4.1 Example matrix of time series data 
 
 

 
The corresponding objective function is given in Eq. (4.1) for the graph G(V,E) with 
n nodes, s source nodes and t sink nodes. The first term in Eq. (1) takes into account 
that there are no directed edges into the source nodes while the second term takes 
into account that there are no directed edges into the sink nodes. 
 

 1 1 1 1

    
s n t n t n

ij ij ij ij
i j s i s j s

i j

Minimize x w x w
− −

= = + = + = +
≠

− + −∑ ∑ ∑ ∑   (4.1) 
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Constraints: 
In the solution phase, the matrix of state variables is used in construction of the 
constraints to be used in our ILP approach. A gene is assumed to be activated when 
the corresponding state variable becomes 1 the first time. It does not matter what 
value the state variable is assigned thereafter.  
 
For the construction of constraints, the kinematics of the system is taken into 
consideration. The gene regulation rate is variable, and therefore the gene is assumed 
to be activated by all genes which are already activated at all previous time points 
and also can activate all the nodes at the following time points.  
 
The constraints are based on the following assumptions:  
 
• Sources are the genes which are activated at the first time point and sinks are 

the genes which are activated at the last time point;  
• Each source and sink has to be connected to the network;  
• At each time point, the genes may only be activated by the upstream genes, 

which are active in  ALL of the previous time points;  
• No direct edges from sources to sinks are allowed;  
• No edges between sources or sinks are allowed;  
• No self-edges are allowed. 

 
Note that these assumptions do not yield an upstream edge. However, there may be 
such edges in the reference network. Based on these assumptions, the following 
mathematical constraints are derived.  

1. There should be at least one edge going out of each source to the genes 
activated at the second time point.  

2. There should be at least one edge going into each sink from the genes 
activated at the last time point.  

3. There should be at least one edge going into an intermediate node from the 
upstream nodes activated at all previous time points. Also, there should be at 
least one edge going out of an intermediate node to all of the downstream 
nodes, including the sink nodes.  

 
Note that these constraints are derived only from the time series experiments. It is 
also possible to add additional constraints if any perturbation experiment is available 
for the network. The following section explains the integration of perturbation data 
to this model for a better accuracy. 
 
As an example, consider the following microarray data (Table 4.1) with 4 time-
points after the pre-processing phase and assume that there are 10 nodes. According 
to this table, Gene 1 and 2 are the source nodes, Gene 8, 9 and 10 are the sink nodes.  
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Table 4.1 Example microarray data 
 

 Time 1 Time 2 Time 3 Time 4 
Gene 1 1 0 0 0 
Gene 2 1 0 0 0 
Gene 3 0 1 0 0 
Gene 4 0 1 0 0 
Gene 5 0 0 1 0 
Gene 6 0 0 1 0 
Gene 7 0 0 1 0 
Gene 8 0 0 0 1 
Gene 9 0 0 0 1 
Gene 10 0 0 0 1 

1: activated genes       0: inactive genes 
 
 
 

1) The constraints stated in the first article can be written mathematically as: 
 

x13 + x14 >= 1  (source 1 = Gene 1) 
x23 + x24 >= 1  (source 2 = Gene 2) 

 
The number of constraints here is equal to the number of sinks (ns). 
 
2) Similarly, the constraints in the second article can be written as: 
 

x58 + x68  + x78 >= 1  (sink 1 = Gene 8) 
x59 + x69  + x79 >= 1  (sink 2 = Gene 9) 
x510 + x610  + x710 >= 1  (sink 3 = Gene 10) 

 
Here, the number of constraints is equal to the number of sinks (nt). 
 
3) The constraints in article 3a for genes activated at Time 2 can be written as: 
 

x13 + x23 >= 1  (Gene 3 - in)  
x35 + x36 + x37 + x38 + x39 + x310 >= 1  (Gene 3 – out) 
x14 + x24 >= 1  (Gene 4 - in)  
x45 + x46 + x47 + x48 + x49 + x410 >= 1  (Gene 4 – out) 

 
Therefore, the number of constraints is 2 times the number of genes activated at 
Time 2. 
 
Similarly, the constraints for genes activated at Time 3 can be written as: 
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x15 + x25 + x35 + x45 >= 1  (Gene 5 - in)  
x58 + x59 + x510 >= 1  (Gene 5 – out )  
x16 + x26 + x36 + x46 >= 1  (Gene 6 - in) 
x68 + x69 + x610 >= 1  (Gene 6 – out)  
x17 + x27 + x37 + x47 >= 1  (Gene 7 - in) 
x78 + x79 + x710 >= 1  (Gene 7 – out)  

 
The number of constraints is 2 times the number of genes activated at Time 3. 

4.3.2 Integration of Time Series Data and Perturbation Data 

Assume that in addition to the time series data, data from perturbation experiments 
are available. In perturbation experiments, each node (or only some of them) in the 
network are knocked-down and the effects on the remaining nodes are observed. A 
knock-down of one of the nodes in the network potentially changes the expression 
levels of the rest of the genes. If there is a significant decrease in the expression 
level, we assume that this gene is repressed. To make this assumption, we first pre-
process the perturbation data as we do for the time series data. By determining a 
threshold for activation–repression, we mark the nodes which are activated or 
repressed by assigning their state variables as 1 or 0, respectively. An example 
perturbation data in matrix form is shown in Figure 4.2. As an example, when gene 2 
is knocked down (KD), gene 3 is repressed while no change in gene 4 is observed. 
 

 

 Gene 1 Gene 2 Gene 3 Gene 4 . 
Gene 1 KD 1 1 0 . 
Gene 2 1 KD 0 1 . 
Gene 3 1 1 KD 1 . 
Gene 4 1 1 1 KD . 

. . . . . . 
 

Figure 4.2 Example matrix of perturbation data 
 
 
 
 Perturbation data provides additional constraints and even absence or presence of 
some edges. These additional constraints are stated below: 
 
4) If a sink node i is affected by the knockdown of a gene j at the time point just 
before the last one, then there must be a direct edge from node i to node j. 
5) Assume that knockdown of node i results in silencing of node j. It means that 
the edges that lead to j from all nodes activated in the previous or current time 
(except node i, since it is knocked down) are not present. Therefore, the state 
variables of these edges are zero. 
6) Assume that knockdown of node i does not have any effect on node j (i.e. 
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node j is still active). Node j can only be activated by the nodes which are activated 
in the current time step or previous time steps. Therefore, there should be at least one 
edge from these nodes to node j. Note that, the intermediate nodes are assumed that 
they can be affected by the nodes that are activated at the previous or current time 
step.  
 
Consider now the previous network with 10 nodes and having microarray data for 4 
time-points. We will simulate the knockdown data directly from the actual given 
network by knocking down each gene (or only some of them).  The perturbation data 
will be a binary data after pre-processing phase, stating that if it is zero for a gene, 
the gene is repressed by the corresponding knockdown; if it is one, then the gene is 
not affected by this knockdown. Only downstream effects are taken into account. 
The corresponding perturbation data is given in Table 4.2. Note that there is no need 
to knockdown the genes that are active at the last time step since they are the sink 
nodes in the network. 
 
  

Table 4.2 Perturbation data for the 10-node network. 
 

 
Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8 Gene9 Gene10 

Gene1 KD 1 0 0 1 0 1 0 0 1 
Gene2 1 KD 1 1 1 1 1 1 1 1 
Gene3 1 1 KD 1 1 1 1 1 1 1 
Gene4 1 1 1 KD 1 0 1 0 0 1 
Gene5 1 1 1 1 KD 1 0 1 1 0 
Gene6 1 1 1 1 1 KD 1 0 0 1 
Gene7 1 1 1 1 1 1 KD 1 1 0 

 
 
 
For example; when gene 1 is knocked down, genes 3, 4, 6, 8 and 9 are repressed 
while no change is observed in the network by the knockdown of node 2. 
With the perturbation data, additional constraints as well as absence or presence of 
some edges can be written considering the 3 statements given above accordingly: 
 
Statement 1) Since knockdown of gene 6 results in repression of genes 8 and 9 
(which are the sink nodes of the network), then there must be direct edges from gene 
6 to gene 8 and 9. Similarly, there must be a direct edge from gene 7 to gene 10. 
Therefore, we have 
 

x68 = x69 = x710 = 1 
 
Statement 2) As an example, consider gene 4. Knockdown of gene 4 results in 
repression of genes 6, 8 and 9. Therefore, the edges from genes 1, 2, 3 and 5 into 
genes 6, 8 and 9 are not present. If they were present, then knockdown of gene 4 
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could not result in silencing of these genes, because they would be activated over 
these edges. Therefore, we have 
 

x16 = x26 = x36 = x56 = 0 
x18 = x28 = x38 = x58 = 0 
x19 = x29 = x39 = x59 = 0 
 

Similarly, for other genes, we can write; 
 
for KD of gene 1:   x23 = x24 = x26 = x28 = x29 = 0   
 
for KD of gene 2:   no results – KD of gene-2 does not have an effect on the other 
genes. 
 
for KD of gene 3:   no results – KD of gene-3 does not have an effect on the other 
genes. 
 
for KD of gene 5:      x17 = x27 = x37 = x47 = x67 = 0 
 
for KD of gene 6:     x18 = x28 = x38 = x48 = x58 = x78 = 0 
                               x19 = x29 = x39 = x49 = x59 = x79 = 0 
 
for KD of gene 7:     x110 = x210 = x310 = x410 = x510 = x610 = 0 
 
Statement 3) As an example, consider gene-4. Knockdown of gene-4 shows no 
effect on genes-7, and 10. Therefore these genes must be activated by the genes 
which are still active, i.e. the genes activated at the current time step or the previous 
time steps. The genes which are active when gene-4 is knocked down are gene-1, 2, 
3 and 5. Therefore, there must be at least 1 edge from genes 1, 2, 3 and 5 into each of 
the genes 7 and 10. The corresponding constraints can be written as follows: 
 

x13 + x23 + x43 >= 1 
x15 + x25 + x35 >= 1 
x17 + x27 + x37 + x57 >= 1 
x310 + x510 + x710 >= 1 
 

Note that x110 and x210 are direct connections between the sources and the sinks and 
therefore they are zero. 
 
Similarly, for the rest of the genes, we can write; 
 
for KD of gene 1: genes 2, 5, 7, 10 are active 

x25 >= 1  
x27 + x57 >= 1 
x510 + x710 >= 1 
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for KD of gene 2:   all other genes are active. 
 

x13 + x43 + x53 >= 1 
x14 + x34 + x54 >= 1 
x15 + x35 + x45 >= 1 
x16 + x36 + x46 + x56 + x76 >= 1 
x17 + x37 + x47 + x57 + x67 >= 1 
x38 + x48 + x58 + x68 + x78 >= 1 
x39 + x49 + x59 + x69 + x79 >= 1 
x310 + x410 + x510 + x610 + x710 >= 1 

 
for KD of gene 3:   all other genes are active. 
 

x14 + x24 + x54 >= 1 
x15 + x25 + x45 >= 1 
x16 + x26 + x46 + x56 + x76 >= 1 
x17 + x27 + x47 + x57 + x67 >= 1 
x48 + x58 + x68 + x78 >= 1 
x49 + x59 + x69 + x79 >= 1 
x410 + x510 + x610 + x710 >= 1 
 

for KD of gene 5:   genes 3, 4, 6, 8 and 9 are active. 
 

x13 + x23 + x43 >= 1 
x14 + x24 + x34 >= 1  
x16 + x26 + x36 + x46 >= 1 
x38 + x48 + x68 >= 1 
x49 + x59 + x69 >= 1 
 

for KD of gene 6:   genes 7 and 10 are active 
 

x17 + x27 + x37 + x47 + x57 >= 1 
x310 + x410 + x510 + x710 >= 1 

 
for KD of gene 7:   genes 6, 8 and 9 are active 
 

x16 + x26 + x36 + x46 + x56 >= 1  
x38 + x48 + x58 + x68 >= 1 
x39 + x49 + x59 + x69 >= 1 

 
The complete ILP formulation is given below for the problem with combined time 
series and perturbation data. Here; n is the total number of nodes, s and t are the 
number of source and sink nodes in the system, respectively. The node set V is 
defined as the union of all node sets defined at each time level according to the given 
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time series data, i.e. V=Vs U V2 U V3 U … U Vx U Vx+1 U … Vp U Vt. Therefore, Vs 
and Vt are the set of source and sink nodes; V2, V3, Vx, Vx+1 are the nodes activated at 
the corresponding time levels; and Vp is the set of nodes activated just before the sink 
nodes. Vd is the set of downstream nodes that are activated after the knockdown of 
node i. 

1 1 1 1
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If only time series data is available, the first three constraints should be used. If any 
perturbation experiment result is available, then the last three constraints should be 
added. Addition of these constrains to the constraints given in previous section 
results in more accurate network reconstruction.  
 
Note that it is not required for each gene to be knocked down in this approach. 
However, each knockdown results in more strict constraints and therefore provides 
more accurate results.  
 
In addition to time series data, we can use any novel biological information about the 
interactions of the genes. With this information we can construct more accurate 
networks which are similar to the actual network. 
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When only time series data is used, the total number of constraints is: 
 

2(n - s - t) + s + t = 2n – s – t 
 
which has an order of O(n). This is much lower than our previous approach which 
has an exponential increase in the number of constraints, while this increase is linear 
for the current approach. Therefore, a network with thousands of genes can be solved 
easily with this approach. When the perturbation data is used with time series data, 
the computational time is not affected significantly although there are additional 
constraints. Since knockdown results of n genes can be known, and for each 
knockdown at most n constraints can be written (n genes can be active), there can be 
at most n2 additional constraints. Although the additional constraints increase the 
order of the problem to O(n2), networks with several thousands of genes can be 
reconstructed in seconds on a desktop computer by this approach. 

4.3 Handling of Noisy Perturbation Data 

Due to the nature of the perturbation experiments, there is noise in the expression 
values. Noise in the perturbation data may result in infeasible solution if the 
constraints stated above are used. For example, consider a network with noise in its 
perturbation data and assume that genes 1 and 2 are activated at time tx and gene 3 is 
activated at time tx+1 according to the time series data. On the other hand, the 
perturbation data states that with knockdown of gene 2, gene 3 is repressed. 
According to Statement 2 given for perturbation data, the edge from gene 1 to gene 3 
should be zero. Then, we have x13 = 0. Moreover, assume that gene 3 is repressed 
with the knockdown of gene 1 also. Therefore, we also have x23 = 0. According to 
the first constraint due to the time series data (there should be at least 1 edge going 
into an intermediate node from the upstream nodes activated at all previous time 
points), we have the constraint x13 + x23 ≥ 1 , which contradicts the two statements 
given  above (x13 = 0 and x23 = 0). This contradiction happens if a gene is repressed 
by at least two genes which are activated at the same time point. In the given 
example, genes 1 and 2 are activated in time tx and they both repress gene 3, which 
causes a conflict in the constraints. This condition implies that there is an uncertainty 
in the data about these genes. In order to handle such conflicts, two alternative ways 
can be utilized:  
 
1) Conflicting Constraint Relaxation (CCR): In CCR, we neglect all the equality 
constraints for the genes that are conflicting since there is an uncertainty in the 
information about these genes. None of the equality constraints should include the 
conflicting genes and no equality constraints should be written at the time level when 
the conflict occurs.  
 
2) Conflicting Data Elimination by Expression Values (CDEE): Instead of neglecting 
all equality constraints due to conflicts, it may be possible to extract some useful 
information by assuming one of the conflicting states that belong to the 
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corresponding gene is correct. This can be done by choosing the gene which has the 
lowest expression level. For example, in the example above, we compare the 
expression levels of gene 3 when gene 1 and gene 2 are knocked down. If the 
expression level of gene 3 is lower when gene 1 is knocked down, we choose it as 
correct and therefore keep the state value of gene 3 as 0 while replacing its state 
value with 1 in knockdown of gene 2.  
 
The CCR method is a more conservative method that ignores all biological data in 
case of a conflict. The network is constructed with minimum information available. 
On the other hand, the CDEE method aims to recover as much evidence as possible 
for the construction of the network. It uses a simple heuristic in assessing the 
confidence of an observation by using the level of repression of a gene due to a 
knock-down. 

4.4 Data sets 

Synthetic Dataset   
Performing simulations with synthetic data is advantageous because it is possible to 
test the method at different conditions by applying noise on the actual synthetic data 
and observe the changes in the results. In order to evaluate the performance of our 
method, we use 2 synthetic datasets for networks with 10 and 20 genes. The datasets 
are explained below. 
 
a) 10 node network example: 
The schematic of an example 10 node actual network is given in Figure 4.3. Assume 
that the filtered gene expression data for this network is given as the following 
(consistent with the given network):  Genes 1, 2 @ Time 1; Genes 3, 4, 5 @ Time 2; 
Genes 6, 7 @ Time 3; Genes 8, 9, 10 @ Time 4 are active. Since nodes 1 and 2 are 
activated at Time 1, they are the sources and since nodes 8, 9 and 10 are activated at 
the last time point, they are the sink nodes. 
 
Using this data, 25 mutated reference networks are created and they are solved to 
satisfy the given gene expression data. Generation of these 25 synthetic data sets for 
each actual network is done by inserting edges to the actual networks at a certain rate 
and removing edges at the same or at a different rate, i.e., inserting or removing 
different number of edges from each of them, generating both dense and sparse 
networks. The insertion/deletion rates range from 10 to 50 percent, each. In this data 
set, we have 25 unique reference networks with different number of edges. The 
perturbation data is extracted from Figure 4.3 and is given as the following (only 
repressed genes are given for the corresponding knockdown): Genes 3, 4, 6, 8, 9 
after KD of gene 1; genes 6, 8, 9 after KD of gene 4; genes 7, 10 after KD of gene 5; 
genes 8, 9 after KD of gene 6; gene 10 after KD of gene 7. 
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Figure 4.3 Actual synthetic 10- and 20- node networks used in the experiments. 
 
 
 
Perturbation data: We have generated noisy perturbation data sets for each actual 
network with the noise rates of 0.02, 0.04, 0.1, 0.2.  This is done by toggling 𝑟𝑟  × (# 
of genes)2 of perturbation data fifty-one times and rounding off the average to the 
nearest number (0 or 1) to generate noisy perturbation data. 
 
b) 20 node network example: 
The schematic of the example 20 node network is also given in Figure 4.3. The base 
gene expression data and the perturbation data for this network are derived from this 
figure. Similar to the 10-node network example, 25 mutated reference networks and 
noisy perturbation data are created from the actual network and they are solved to 
satisfy the given gene expression data. 
 
Real Dataset 
Mice:  Agouti signaling pathway in mice is selected to test the performance with a 
real dataset. K14-Agouti transgenic mice are hemizygous for the transgene and are 
non-agouti (a/a) at the endogenous agouti locus (Bultman et al., 1992) Mice of the 
transgenic line TG2579K14iA (Kucera et al., 1996) are backcrossed to C57BL/6J 
mice for more than 10 generations in order to obtain K14-Agouti transgenic mice 
that are congenic on the C57BL/6J genetic background. C57BL/6J (a/a) littermates 
were used as controls for K14-Agouti transgenic mice.  
 
RNA Isolation and cDNA Preparation:  Dorsal skin sections from K14-Agouti 
transgenic mice and a/a control mice are dissected and snap-frozen in liquid 
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nitrogen. Total RNA was isolated using TRIzol (Invitrogen), followed by on-column 
DNAse treatment and a purification step with the Qiagen RNeasy Mini Kit. 
SuperScript II Reverse Transcriptase (Invitrogen Life Technologies) was used to 
generate cDNA according to the manufacturer’s instructions.  
 
Real-Time qRT-PCR: The Cepheid SmartCycler real-time PCR machine is used for 
the qRT-PCR measurements. The TaqMan primers and probes were purchased from 
Applied Biosystems (TaqMan Assays-on-Demand Products Assay numbers: 
Mm00438337_m1, Mm00476174_m1, Mm00516876_m1, Mm00515219_s1, 
Mm00448100_m1, Mm00435540_m1, Mm00440911_m1, Mm00439518_m1, 
Mm00456961_m1, Mm00436931_m1). The 18S RNA (Rn18s) gene was used as an 
internal control to normalize experimental data. The threshold cycle (CT) for all 
experimental genes was first normalized to the corresponding Rn18s CT. Relative 
fold differences were then determined using the 2–∆∆CT method (Livak and 
Schmittgen, 2001) by comparing each experimental sample to the control sample. At 
least two transgenic and two control mice were analyzed at each time point, and the 
expression level of each gene was measured in duplicate for each mouse. The results 
are as shown in Table 4.3 (Son, 2006).  
 
 

Table 4.3 Differential expression levels of 10 selected genes in the skin of K14-
Agouti mice compared to control mice at various ages. Fold differences for each 

gene between transgenic animals and their littermate controls are shown. 
 

Mice ID Age in 
Days Hras1 Krt1-14 Ivl Pdgfa Plaur Stat1 Stat3 Csnk2a2 Pcna Tert 

Y27 33 0.87 1.40 1.91 0.89 0.91 0.40 0.80 0.72 0.86 1.40 
Y28 33 1.27 2.40 1.11 1.26 1.52 0.60 1.10 0.68 1.25 1.46 
1225 46 1.74 1.13 2.93 1.20 1.33 0.90 0.90 1.05 2.78 3.23 
1227 46 1.48 1.38 2.17 0.77 1.18 0.85 0.80 0.56 1.27 1.44 
1311 47 0.42 0.39 1.06 0.53 0.21 0.63 1.09 0.53 0.35 0.46 
1312 47 1.40 1.18 4.27 4.29 2.24 3.67 4.00 2.17 1.71 2.79 
1314 47 1.95 2.23 5.05 2.17 5.58 2.39 2.71 3.17 1.76 2.84 
1315 47 1.64 1.40 5.08 2.64 4.06 3.34 2.64 4.76 2.28 4.54 
1264 48 0.81 0.80 2.58 1.88 2.56 1.20 1.00 1.50 3.15 1.31 
1265 48 0.72 0.70 5.22 0.97 1.30 0.80 0.80 1.40 3.20 1.36 
1306 54 2.09 1.59 5.41 2.87 4.11 2.08 2.49 3.42 2.50 1.68 
1307 54 2.79 3.13 7.52 4.32 6.87 5.37 3.53 4.55 4.39 2.40 
1254 74 16.62 4.97 11.47 9.82 10.97 7.70 5.70 0.90 2.29 2.08 
1256 74 2.47 3.31 8.34 4.26 3.99 5.30 2.70 2.72 3.84 2.51 
1257 74 7.70 7.43 8.14 10.74 7.21 9.70 6.00 1.95 2.15 2.05 
1295 81 1.31 0.75 4.32 0.93 1.34 1.21 0.94 2.23 2.11 1.20 
1296 81 0.66 0.74 2.06 1.34 0.48 0.52 0.58 1.31 0.97 1.17 
Y100 89 3.02 5.64 12.17 11.79 3.76 4.04 4.27 3.77 4.63 1.83 
Y200 89 1.22 2.15 8.37 4.10 2.04 1.13 1.92 1.82 1.79 1.46 
1288 130 1.41 2.55 5.72 4.42 0.52 0.86 2.31 1.02 0.79 1.80 
1290 130 0.53 0.85 0.81 0.99 0.91 1.29 1.26 0.70 0.66 0.45 
1286 187 1.64 0.92 3.63 0.99 0.88 3.48 0.66 1.08 1.69 1.48 
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Genemania Network Analysis: GeneMANIA is a gene network analysis tool that 
presents known and predicted relationships between the query genes and gene sets 
through the large set of functional association data comprising protein and genetic 
interactions, pathways, co-expression, co-localization and protein domain similarity 
(by Jan’13, indexing 1,464 association networks containing 292,680,904 interactions 
mapped to 149,747 genes from 7 organisms) (Warde-Farley et al., 2010). 
GeneMANIA query is limited to the 10 genes with differential expression levels in 
K14-Agouti mouse with the NCBI gene symbol: Gene IDs listed as following: a: 
50518, Krt14:16664, Ivl: 16447, Tert:21752, Plaur:18793, Pdgfa:18590, 
Hras1:15461, Pcna:18538, Csnk2a2:13000, Stat1:20846, and Stat3:20848. Default 
options are used and the “co-expression” analysis is extracted for the evaluation. 
 
Further processing of data: The original fold-change data is further processed to 
make it suitable for use in our model. The data at each time level is first averaged 
and then normalized. At most three genes having the largest normalized value are 
assumed to be active at the corresponding time level. We set a value of 0.02 to be the 
maximum difference between two genes to be considered as active. After marking a 
gene as active at a certain time level, it is considered to stay active at all proceeding 
time levels and omitted from the further evaluation of active genes. If there are more 
than three genes within 0.02 at a certain time, we omit this time level from our pre-
processed data. The genes which are determined to be active at each time level 
according to this criterion are given in Table 4.4 in bold face. Note that at Time 5 and 
Time 8, no genes are determined to be active since there are more than three genes 
within the 0.02 range of the highest value at these time levels.  

4.5 Experimental Evaluation 

The approach described above is applied to the 10 and 20-gene networks by using 
only time-series microarray data, combined time-series and perturbation data, and 
combined noisy data. We use recall (R) and precision (P) values as accuracy 
measures, which are described in Chapter 2, for evaluation of the method.  
 
The results are given comparatively in Table 3 and Table 4 for the 10 and 20-gene 
networks, respectively. In these tables, the first column shows the amount of noise 
applied to the actual network in percentages; the second main column exhibits the 
results when only time series data is used. The rest of the columns show the results 
for combined time series data with pure or noisy perturbation data.  
 
For the 10-gene network, although the accuracies of the results when only time 
series data is used are high, addition of new information by perturbation experiments 
result in even higher accuracy. All the recall values become 1.0, meaning that the 
constructed networks have all edges that the actual network has. The major gain is in 
precision values. For the network with 50% insertion and 40% deletion, the precision 
value increases from 0.62 to 1.0, therefore the actual network is found perfectly. 
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Similar results are obtained for the 20-gene network. Both precision and recall 
values are improved with the additional information about the network. These 
improvements can be as high as 0.30 in recall and 0.44 in precision.  
 
 

Table 4.4 Activated genes at each time point in agouti signaling network. 
 

 Hras1 Krt1-14 Ivl Pdgfa Plaur Stat1 Stat3 Csnk2a2 Pcna Tert 
Time 1 0,094 0,167 0,132 0,094 0,106 0,044 0,083 0,062 0,092 0,125 
Time 2 0,111 0,086 0,175 0,068 0,086 0,060 0,058 0,055 0,139 0,161 
Time 3 0,057 0,054 0,162 0,101 0,126 0,105 0,109 0,111 0,064 0,111 
Time 4 0,046 0,045 0,235 0,086 0,116 0,060 0,054 0,087 0,191 0,080 
Time 5 0,067 0,065 0,177 0,098 0,150 0,102 0,082 0,109 0,094 0,056 
Time 6 0,153 0,090 0,160 0,142 0,127 0,130 0,082 0,032 0,047 0,038 
Time 7 0,075 0,057 0,244 0,087 0,069 0,066 0,058 0,135 0,118 0,091 
Time 8 0,052 0,096 0,254 0,196 0,072 0,064 0,077 0,069 0,079 0,041 
Time 9 0,065 0,114 0,218 0,181 0,048 0,072 0,119 0,058 0,049 0,075 

 
 
 
These results show that time series data gives the underlying structure of the 
constructed network. In addition to these data, integration of any biological 
information (such as perturbation data, RNAi data, novel information about some 
interactions, and etc.) to our approach makes it accurate. 
 
Note that, the perturbation data used in these calculations are perfect, i.e. they are 
produced from the actual network suitable with the graph. Therefore the results may 
not reflect the reality. In reality, the perturbation data is a noisy data and thus, noise 
should be added to the perturbation data.  
 
We performed all the previous simulations with noisy perturbation data to inspect the 
effect of noise and accuracy of our approach. 2, 4, 10 and 20 percent noise is added 
to the perturbation data by randomly changing the state variables either from 0 to 1 
or from 1 to 0. Let q be the number of expression levels obtained from perturbation 
experiments and prate be the percentage of noise to be applied to this data. q×prate 
expression values are randomly toggled to generate new perturbation data.  
 
The results with noisy data for 10 and 20 genes are given in Table 4.5 and Table 4.6, 
respectively. In these calculations, the conflicts are handled using the first approach 
explained above.  
 
For the 10-gene network, addition of 2 percent noise does not make any difference. 
The reason is that the network is small and therefore the corresponding noise 
addition is small. When there is 4 percent noise in the perturbation data, very little 
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change in only precision values is obtained. A significant difference in precision is 
obtained at 10 and 20 percent noise levels while the difference is not much for recall 
values. In general, as the noise level increases, decrease in recall and precision 
values is observed. However, it is found that for the same experiment (same 
insertion/deletion), recall values decrease less than the precision values. It means that 
despite high noise levels, our model is accurate in predicting the real network. 
Besides, it finds extra interactions with an increase in noise. It is possible to search 
for the presence of these interactions in wet-lab studies. In addition, in the next 
example (20-gene network), we observe that the decrease in recall and precision 
values are not only related with the noise itself, but also related with the amount of 
conflicts that the given noise created.  
 
 
 

Table 4.5 Comparison of results for the 10-gene network 
 

 Only time 
series data 

Time series and perturbation data 
No noise 2% noise 4% noise 10% noise 20% noise 

insertion/ 
deletion R P R P R P R P R P R P 

10/10 1.00 0.82 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.69 0.89 0.67 
10/20 1.00 0.82 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.69 0.89 0.62 
10/30 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.89 0.62 
10/40 0.89 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.78 0.64 
10/50 0.89 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.89 0.67 
20/10 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.89 0.62 
20/20 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.89 0.67 
20/30 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.89 0.62 
20/40 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.89 0.62 
20/50 0.89 0.80 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.69 0.78 0.58 
30/10 1.00 0.75 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.69 0.89 0.62 
30/20 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.89 0.67 
30/30 1.00 0.75 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.64 0.78 0.58 
30/40 0.89 0.67 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.62 0.78 0.64 
30/50 0.78 0.64 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.69 0.89 0.62 
40/10 1.00 0.69 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.69 0.89 0.62 
40/20 0.89 0.67 1.00 0.90 1.00 0.90 1.00 0.90 0.89 0.62 0.78 0.54 
40/30 0.89 0.67 1.00 0.82 1.00 0.82 1.00 0.82 1.00 0.64 0.89 0.57 
40/40 1.00 0.69 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.67 0.78 0.58 
40/50 0.89 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.89 0.67 
50/10 1.00 0.64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.89 0.57 
50/20 1.00 0.64 1.00 0.90 1.00 0.90 1.00 0.82 1.00 0.69 0.89 0.67 
50/30 0.89 0.67 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.60 0.89 0.57 
50/40 0.89 0.62 1.00 1.00 1.00 1.00 1.00 0.90 0.89 0.62 0.67 0.50 
50/50 0.89 0.62 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.64 0.89 0.57 

R: recall, P: precision 
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Table 4.6 Comparison of results for the 20-gene network 
 

 Only time  
series data 

Time series and perturbation data 
No noise 2% noise 4% noise 10% noise 20% noise 

insertion/ 
deletion R P R P R P R P R P R P 

10/10 0.95 0.90 1.00 1.00 1.00 1.00 0.95 0.79 0.85 0.61 0.90 0.60 
10/20 0.90 0.82 1.00 1.00 1.00 1.00 1.00 0.91 0.75 0.54 0.85 0.59 
10/30 0.85 0.77 0.95 0.86 0.95 0.86 0.90 0.82 0.70 0.54 0.80 0.57 
10/40 0.85 0.77 0.90 0.95 0.90 0.95 0.90 0.90 0.75 0.56 0.70 0.54 
10/50 0.70 0.67 0.90 0.90 0.90 0.90 0.85 0.77 0.70 0.54 0.65 0.50 
20/10 0.95 0.79 0.95 0.95 0.95 0.95 0.95 0.79 0.80 0.57 0.90 0.60 
20/20 0.90 0.75 0.90 0.95 0.90 0.95 0.85 0.81 0.70 0.48 0.75 0.54 
20/30 0.85 0.71 1.00 1.00 1.00 1.00 0.95 0.79 0.85 0.61 0.75 0.48 
20/40 0.80 0.70 0.95 0.90 0.95 0.90 0.85 0.68 0.55 0.39 0.65 0.42 
20/50 0.80 0.70 0.95 0.95 0.95 0.95 0.90 0.82 0.60 0.43 0.65 0.46 
30/10 0.95 0.73 1.00 0.95 1.00 0.95 0.95 0.76 0.80 0.53 0.90 0.56 
30/20 1.00 0.77 1.00 0.91 1.00 0.91 1.00 0.80 0.85 0.55 0.85 0.52 
30/30 0.85 0.65 0.80 0.80 0.80 0.80 0.85 0.71 0.75 0.52 0.70 0.50 
30/40 0.75 0.60 0.85 0.77 0.85 0.77 0.75 0.65 0.70 0.52 0.75 0.50 
30/50 0.70 0.56 0.95 0.95 0.95 0.95 0.85 0.77 0.65 0.43 0.65 0.43 
40/10 0.95 0.68 0.95 0.90 0.95 0.86 0.95 0.76 0.80 0.53 0.90 0.53 
40/20 1.00 0.71 0.95 0.83 0.95 0.83 0.90 0.72 0.75 0.50 0.90 0.55 
40/30 0.90 0.64 0.95 0.95 0.95 0.95 0.95 0.79 0.80 0.50 0.80 0.47 
40/40 0.75 0.54 0.90 0.86 0.90 0.86 0.85 0.71 0.65 0.43 0.65 0.42 
40/50 0.65 0.46 0.95 0.90 0.95 0.90 0.90 0.72 0.65 0.41 0.70 0.42 
50/10 1.00 0.67 1.00 0.91 1.00 0.91 0.95 0.66 0.80 0.47 0.85 0.46 
50/20 0.95 0.68 0.95 0.86 0.95 0.86 0.90 0.62 0.75 0.52 0.80 0.46 
50/30 0.75 0.54 0.95 0.83 0.95 0.83 0.85 0.65 0.70 0.45 0.75 0.48 
50/40 0.75 0.50 0.85 0.77 0.85 0.74 0.80 0.62 0.75 0.47 0.75 0.44 
50/50 0.70 0.50 0.90 0.86 0.90 0.82 0.80 0.57 0.65 0.42 0.65 0.38 

R: recall, P: precision 
 
 
 
For the 20-gene network, there is a slight difference in the results at 2 percent noise 
level compared to the results without noise. The difference is only in precision which 
is at most 0.04 and can be considered as negligible. When the noise level is 4 
percent, the decrease in both recall and precision values, especially in precision 
values, are more significant compared to the 10-node network. This is because the 
network is larger and therefore the noise is more. As the noise level increases to 10 
percent, the difference becomes even more significant. This is again due to the large 
number of noisy state variables in the perturbation data. However, at 20 percent 
noise level, we see an improvement in most of the recall and precision values 
compared to 10 percent noise level. Since there is more noise, it is reasonable to 
expect a less accurate result, however this is not the case for this example. The 
reason lies behind the number of conflicting data that are created during the noise 
addition process, rather than the amount of the noise. As the number of conflicts 
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increases, less equality constraints (i.e. xij=0) are generated, which in turn results in 
an increase in solution space. This is what happens in this example: by chance, the 
perturbation data with 10 percent noise contains more conflicting genes than the data 
with 20 percent noise. Therefore, less number of equality constraints result in less 
accurate results at 10 percent noise level. 
 

4.6 Evaluation of the analysis results on the real dataset in comparison to 
GeneMANIA networks 

The method is applied to mice agouti signaling network using relative change of 
expression levels by time, i.e. without any perturbation experiment data (Figure 4.4). 
As no literature curated network or any network taken from other databases are taken 
as the reference network in the analysis, the reference network for the method was 
empty. As the K14-Agouti mice caries the overexpressed agouti transgene, agouti is 
assumed to start the stimulation in our computational experiments. The constructed 
network with our method and the co-expression network built by GeneMANIA are 
given in Figure 4.4. It can be seen that the method finds several common interactions 
and sub-networks. 
 
When we have searched for the edge Tert-Pcna through KEGG database, HTLV-I 
infection Pathway (map05166) was the only KEGG pathway result returned, where 
Tert and Pcna represented together within the same pathway. As also presented on 
the KEGG pathway, both Tert and Pcna are signaling molecules transcribed due to 
induction of intercellular molecules and do not directly induce each other’s 
transcription. As the proposed model is based on time series expression data, the 
Tert-Pcna interaction proposed in the model might be suggesting the boundary 
between the initial signaling cascade and the following loop of proliferation signals 
in the second phase (Figure 4.5), which keeps the cells under pressure of agouti 
overexpression at the proliferative stage, thus susceptible to oncogenic stimuli 
(Kuklin et al., 2004). 

4.7 Discussion 

In this chapter, two ILP based methods for reconstruction of gene regulatory 
networks are proposed. While one of the methods uses only the time series data, the 
other one uses combined time-series and perturbation data that employ gene 
expression levels. The additional perturbation data result in reconstructing more 
accurate networks especially when the data include no or very little noise. Moreover, 
integrating genetic perturbations with gene expression data enables learning of 
causal regulatory relations between genes. 
 
Additionally, we show that our method works well on a real dataset. The method is 
applied on the mouse agouti signaling network and it is found that it identifies 
several interactions and sub-networks very well. Also, our method is able to scale for 
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large networks easily. 
 
In conclusion, since studying and understanding signaling networks is of utmost 
importance for the identification and treatment of several diseases, the method 
proposed in this chapter is valuable and convenient for construction of novel 
signaling networks. 
 
 
 
 

  

 
Figure 4.4 Shared interaction between proposed vs. co-expression networks: The 
agouti signaling network model build based on differential expressions level changes 
over time with no pre-assumptions is presented on the left. The signaling network 
compared to the co-expresion network built by GeneMANIA analysis is on the right. 
The two main shared sub-networks are labeled with the corresponding boxes. 
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Figure 4.5 I. Phase : Initial signaling network, II. Phase: Proliferation loop. 
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CHAPTER 5 

5. CONCLUSIONS AND FUTURE WORK 

In this dissertation, we have presented integer linear programming based methods for 
construction of biological networks that help biologists to reconstruct signaling 
networks from screening experiments. Our contributions can be grouped under three 
main categories;  reconstruction of small size, single receptor single reporter 
networks optimally, large scale network reconstruction with single receptor and 
single reporter networks, and large scale network reconstruction with multiple 
receptor multiple and reporter networks. 
 
For reconstruction of small size, single receptor single reporter networks optimally, 
we presented an integer linear programming approach which can reconstruct more 
accurate networks compared with state of the art methods and guarantees optimal 
solution. Constructed network topologies contain all genes that are known to be 
members of the network, which makes the final network topology connected. 
Moreover the constructed network is consistent with the RNAi data which shows 
that our approach can figure out all critical genes correctly. However, it has a 
drawback in finding large scale networks because of the exponential growth of the 
number of constraints with increasing number of genes in the network. With the 
available computer resources, it scales up to 10 nodes in reasonable time. 
 
For large scale network reconstruction with single receptor and single reporter 
networks, we have presented divide and conquer based approaches applied on 
several networks with single receptor and single reporter, which can be sparse or 
dense, have small or large number of nodes and contain noisy data. The results show 
that our methods can construct networks better than the state of the art methods in 
terms of recall and precision measures, scalability, robustness, and consistency with 
the RNAi data.  For dense and large networks, while the state of the art methods fail 
to construct networks in 1 hour, we are able to find solutions in minutes. While these 
proposed methods can reconstruct large scale networks easily, they are not able to 
reconstruct networks with multiple receptor and multiple reporters.  
 
For large scale network reconstruction with multiple receptor and multiple reporter 
networks, we have presented an integer linear programming based graph theoretical 
model using time series gene expression data. When the time series data is used 
alone, the method produces a basic structure of the network. The additional 
biological information in any form such as perturbation data, RNAi data, or novel 
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information about some interactions, improve the results significantly and more 
accurate networks are constructed with the proposed method To assess the 
performance of our methods on noisy data, we applied these methods on synthetic 
data set which have different noise levels. After obtaining promising results on the 
synthetic data set, we implemented the proposed approach on mouse agouti signaling 
network as a real data set, and found several interactions and sub-networks correctly.  
It was shown that the developed methods were able to solve large scale networks 
easily.  
 
We have represented the activation interactions by our models. To simulate real 
networks both activation and inhibition interactions are essential and biologically 
meaningful. As a further study, inhibition interactions can be modeled along with the 
activations which make the problem more complex because of the additional 
information that brings additional constraints. Moreover, the methods can be 
improved by making use of combinatorial knockdowns, i.e. simultaneous 
knockdowns of multiple genes, which will greatly enhance the reconstructed 
network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

98 
 



 

REFERENCES 

 
Bansal, M., Della Gatta, G., & di Bernardo, D. (2006). Inference of gene regulatory 

networks and compound mode of action from time course gene expression 
profiles. Bioinformatics (Oxford, England), 22(7), 815-822.  

 
Bornholdt, S. (2008). Boolean network models of cellular regulation: Prospects and 

limitations. Journal of the Royal Society, Interface / the Royal Society, 5 Suppl 
1, S85-94.  

 
Bower, J. M., & Bolouri, H. (2001). Computational modeling of genetic and 

biochemical networks. Cambridge, Mass.: MIT Press.  
 
Brass A.L., Dykxhoorn D.M., Benita Y., Yan N., Engelman A., Xavier R.J., 

Lieberman J., & Elledge S.J. (2008) Identification of host proteins required for 
HIV infection though a functional genomic screen. Science, 319(5865):921-926. 

 
Bultman, S. J., Michaud, E. J., & Woychik, R. P. (1992). Molecular characterization 

of the mouse agouti locus. Cell, 71(7), 1195-1204.  
 
de Jong,H. (2002) Modeling and simulation of genetic regulatory systems: a 

literature review. Journal of Computational Biology, 9(1), 67–103. 
 
Eren Ozsoy, O., & Can, T. (2013). A divide and conquer approach for construction of 

large-scale signaling networks from PPI and RNAi data using linear 
programming. IEEE/ACM Transactions on Computational Biology and 
Bioinformatics / IEEE, ACM, 10(4), 869-883. 

 
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. 

(1998). Potent and specific genetic interference by double-stranded RNA in 
caenorhabditis elegans. Nature, 391(6669), 806-811.  

 
Friedman, A., & Perrimon, N. (2006). A functional RNAi screen for regulators of 

receptor tyrosine kinase and ERK signalling. Nature, 444(7116), 230-234.  
 
Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using bayesian networks 

to analyze expression data. Journal of Computational Biology : A Journal of 
Computational Molecular Cell Biology, 7(3-4), 601-620.  

 

99 
 



Froehlich, H., Fellmann, M., Sueltmann, H., Poustka, A., & Beissbarth, T. (2007). 
Large scale statistical inference of signaling pathways from RNAi and 
microarray data. BMC Bioinformatics, 8, 386.  

 
Gao, K., & Huang, L. (2013). Achieving efficient \RNAi\ therapy: Progress and 

challenges. Acta Pharmaceutica Sinica B, 3(4), 213. 
 
Gardner, T. S., di Bernardo, D., Lorenz, D., & Collins, J. J. (2003). Inferring genetic 

networks and identifying compound mode of action via expression profiling. 
Science (New York, N.Y.), 301(5629), 102-105.  

 
Gebert,J., Radde N. &Weber G.-W.  (2007) Modeling gene regulatory networks with 

piecewise linear differential equations, European Journal of Operational 
Research, 181 (3), 1148–1165. 

 
Gitter, A., Klein-Seetharaman, J., Gupta, A., & Bar-Joseph, Z. (2011). Discovering 

pathways by orienting edges in protein interaction networks. Nucleic Acids 
Research, 39(4), e22.  

 
Hashemikhabir, S., Ayaz, E. S., Kavurucu, Y., Can, T., & Kahveci, T. (2012). Large-

scale signaling network reconstruction. IEEE/ACM Transactions on 
Computational Biology and Bioinformatics / IEEE, ACM, 9(6), 1696-1708.  

 
Hillier, F. S., & Lieberman, G. J. (2001). Introduction to operations research (7th 

ed.) McGraw-Hill. 
 
Kaderali, L., Dazert, E., Zeuge, U., Frese, M., & Bartenschlager, R. (2009). 

Reconstructing signaling pathways from RNAi data using probabilistic boolean 
threshold networks. Bioinformatics (Oxford, England), 25(17), 2229-2235. 

 
Kaderali, L., & Radde, N. (2008). Inferring gene regulatory networks from 

expression data.94, 33-74. 
 
Kanehisa M. & Goto S. (2000). Kegg: Kyoto Encyclopedia of Genes and Genomes. 
Nucleic Acids Research, 28(1) 27-30. 
 
Karlebach,G. & Shamir,R. (2008). Modelling and analysis of gene regulatory 

networks. Nature Reviews Molecular Cell Biology, 9, 770–780.  
 
Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., et al. 

(2012). The IntAct molecular interaction database in 2012. Nucleic Acids 
Research, 40(Database issue), D841-6.  

 
Knapp, B. & Kaderali, L. (2013). Reconstruction of cellular signal transduction 

networks using perturbation assays and linear programming. Plos One, 8(7), 

100 
 



e69220. 
 
Kucera, G. T., Bortner, D. M., & Rosenberg, M. P. (1996). Overexpression of an 

agouti cDNA in the skin of transgenic mice recapitulates dominant coat color 
phenotypes of spontaneous mutants. Developmental Biology, 173(1), 162-173.  

 
Kuklin, A. I., Mynatt, R. L., Klebig, M. L., Kiefer, L. L., Wilkison, W. O., Woychik, 

R. P., et al. (2004). Liver-specific expression of the agouti gene in transgenic 
mice promotes liver carcinogenesis in the absence of obesity and diabetes. 
Molecular Cancer, 3, 17.  

Kwon, Y. K., & Cho, K. H. (2007). Analysis of feedback loops and robustness in 
network evolution based on boolean models. BMC Bioinformatics, 8, 430.  

 
Lee,W.P. & Yang,K.C. (2008) A clustering-based approach for inferring recurrent 

neural networks as gene regulatory networks, Neurocomputing, 71 ,600–610. 
 
Li, Z., Li, P., Krishnan, A., & Liu, J. (2011). Large-scale dynamic gene regulatory 

network inference combining differential equation models with local dynamic 
bayesian network analysis. Bioinformatics (Oxford, England), 27(19), 2686-
2691.  

 
Liang, S., Fuhrman, S., & Somogyi, R. (1998). Reveal, a general reverse engineering 

algorithm for inference of genetic network architectures. Pacific Symposium on 
Biocomputing.Pacific Symposium on Biocomputing, , 18-29.  

 
Livak,K.J. & Schmittgen,T.D. (2001) Analysis of relative gene expression data using 

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25 
(4), 402-8. 

 
Margolin,A.A., Nemenman I., Basso K., Wiggins C., Stolovitzky G., Favera R.D. & 

Califano A. (2006) ARACNE: An algorithm for the reconstruction of gene 
regulatory networks in a mammalian cellular context, BMC Bioinformatics, 
7(Suppl 1): S7 

 
Markowetz, F., Kostka, D., Troyanskaya, O. G., & Spang, R. (2007). Nested effects 

models for high-dimensional phenotyping screens. Bioinformatics (Oxford, 
England), 23(13), i305-12.  

 
Milo R., Kashtan N., Itzkovitz S., Newman M. E. J., & Alon U. (2003), On the 

uniform generation of random graphs with prescribed degree sequences, eprint 
arXiv:cond-mat/0312028 

 
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). 

Network motifs: Simple building blocks of complex networks. Science (New 
York, N.Y.), 298(5594), 824-827.  

101 
 



Moffat, J., & Sabatini, D. M. (2006). Building mammalian signalling pathways with 
RNAi screens. Nature Reviews Molecular Cell Biology, 7(3), 177-187. 

 
Platanias, L. C. (2005). Mechanisms of type-I- and type-II-interferon-mediated 

signalling. Nature Reviews. Immunology, 5(5), 375-386.  
 
Prados, J., Melguizo, C., Roldan, H., Alvarez, P.J., Ortiz, R., Arias, J.L., & Aranega 

A. (2013). RNA Interference in the Treatment of Colon Cancer. BioDrugs, 27 
(4), 317-327. 

 
Rao, D.D., Wang, Z., Senzer, N., Nemunaitis, J. (2013). RNA interference and 

personalized cancer therapy. Discovery Medicine, 15(81),101-110. 
 
Rossi J.J. (2006). RNAi as a treatment for HIV-1 infection, BioTechniques, 40(4), 

25-29. 
 
Ruths, D., Tseng, J., Nakhleh, L., & Ram, P. (2007). De novo signaling pathway 

predictions based on protein-protein interaction, targeted therapy and protein 
microarray analysis. Systems Biology and Computational Proteomics, 4532, 
108-118. 

 
Sacher, R., Stergiou, L., & Pelkmans, L. (2008). Lessons from genetics: Interpreting 

complex phenotypes in RNAi screens. Current Opinion in Cell Biology, 20(4), 
483-489.  

 
Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., et al. (2009). 

Modeling ERBB receptor-regulated G1/S transition to find novel targets for de 
novo trastuzumab resistance. BMC Systems Biology, 3, 1-0509-3-1.  

 
Sarkies, P. & Miska, E.A. (2013), RNAi pathways in the recognition of foreign 

RNA: antiviral responses and host-parasite interactions in nematodes. 
Biochemical Society Transactions, 41(4), 876-880. 

 
Schafer, J., & Strimmer, K. (2005). An empirical bayes approach to inferring large-

scale gene association networks. Bioinformatics (Oxford, England), 21(6), 754-
764.  

 
Scott, J., Ideker, T., Karp, R. M., & Sharan, R. (2006). Efficient algorithms for 

detecting signaling pathways in protein interaction networks. Journal of 
Computational Biology : A Journal of Computational Molecular Cell Biology, 
13(2), 133-144.  

 
Seo, M. Y., Abrignani, S., Houghton, M., & Han, J. H. (2003). Small interfering 

RNA-mediated inhibition of hepatitis C virus replication in the human 
hepatoma cell line huh-7. Journal of Virology, 77(1), 810-812.  

102 
 



Singh, R., & Massachusetts Institute of Technology. Department of Electrical 
Engineering and Computer Science. (2012). Algorithms for the analysis of 
protein interaction networks  

 
Steffen, M., Petti, A., Aach, J., D'haeseleer, P., & Church, G. (2002). Automated 

modelling of signal transduction networks. BMC Bioinformatics, 3, 34.  
 
Son, Y.A. (2006) Differential Expression of Skin Cancer and Hair-Follicle Cycle 

Regulated Genes in Tumor Susceptible K14-Agouti Mice. PhD Thesis, 
University of Tennessee, Knoxville, USA. 

 
Wagner,A. (2001) How to reconstruct a large genetic network from n gene 

perturbation in n2 easy steps. Bioinformatics, 17, 1183–97. 
 
Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., et 

al. (2010). The GeneMANIA prediction server: Biological network integration 
for gene prioritization and predicting gene function. Nucleic Acids Research, 
38(Web Server issue), W214-20.  

 
Zhang, Y., Deng, Z., Jiang, H., & Jia, P. (2007). Inferring gene regulatory networks 

from multiple data sources via a dynamic Bayesian network with structural 
EM. Proceedings of the 4th International Conference on Data Integration in the 
Life Sciences, Philadelphia, PA, USA. pp. 204-214. 

 
Zou, M., & Conzen, S. D. (2005). A new dynamic Bayesian network (DBN) 

approach for identifying gene regulatory networks from time course microarray 
data. Bioinformatics (Oxford, England), 21(1), 71-79.  

  

103 
 



 
 

CURRICULUM VITAE 
Oyku EREN OZSOY 

 
 
 
Education 
 
June 2014 Doctor of Philosophy in Health Informatics, Middle East 

Technical University, Ankara, Turkey. 
June 2008 Master of Science in Computer Engineering, Baskent 

University, Ankara, Turkey.  
January 2006 Bachelor of Science in Computer Engineering, Baskent 

University, Ankara, Turkey.  
 
 
Field of Study 

Bioinformatics, Computational Biology, Mathematical 
Mmodeling and Algorithm Development, Optimization 
Algorithms, Machine Learning Techniques, Data Mining, 
Biological Networks. 

 
 
Professional Experience 
 

Ph.D. scholar, TUBITAK – Short Term R&D Funding 
Program, Prediction of Signal Transduction Networks from 
Gene Expression and RNAi Data, Middle East Technical 
University, Ankara, Turkey, 2013- 2014 

 
Ph.D. researcher, SYSPATHO:EU-FP7 Research Project, 
New Algorithms for Host Pathogen Systems Biology, Middle 
East Technical University, Ankara, Turkey, 2011- 2013 

 
Teaching assistant, Informatics Institute, Hacettepe University, 
Ankara, Turkey, 2010-2011 

 
Visiting Scientist, BioQuant center of Heidelberg University, 
Heidelberg, Germany, August 2011- November 2011 

 
Teaching and research assistant, Department of Computer 
Engineering, Baskent University, Ankara, Turkey, 2006-2010 

 

104 
 



Publications 
 

O.Eren Ozsoy, Y. Aydin Son, T. Can 
Reconstruction of Signaling and Regulatory Networks using 
Time-Series and Perturbation Experiments. submitted. 
 
O. Eren Ozsoy, T. Can 
A Divide and Conquer Approach for Construction of Large-
Scale Signaling Networks from PPI and RNAi Data Using 
Linear Programming. 
IEEE/ACM Transaction on Computational Biology and 
Bioinformatics, 2013, 10 (4), 869-883. 
 
O. Eren Ozsoy, T. Can 
Construction of signaling pathways from PPI and RNAi data 
using Linear Programming. 
25th Conference of European Chapter on Combinatorial 
Optimization ECCO 2012, 2012, Antalya, Turkey. 
 
H.Ogul, C.Beyan, O.Eren, K.Yildiz, T.Ercelebi, B.Sonmez 
MicroRNA target recognition from compositional features of 
aligned microRNA-mRNA duplexes. 
Proceedings of International Symposium on Innovations in 
Intelligent Systems and Applications, 2010, Kayseri, Turkey. 
 
O.Eren, H.Ogul  
Automated classification of allergen proteins. 
Proceedings of 14th Annual Biomedical Engineering 
Conference (BIYOMUT'08), 2008, Ankara, Turkey. 

 
 
 

105 
 



  



 
TEZ FOTOKOPİ İZİN FORMU 

                                     
 
ENSTİTÜ 

 

Fen Bilimleri Enstitüsü  

 
Sosyal Bilimler Enstitüsü    

 
Uygulamalı Matematik Enstitüsü     

 
Enformatik Enstitüsü 

 
Deniz Bilimleri Enstitüsü       

 
 

YAZARIN 
 

Soyadı   :  EREN ÖZSOY 
Adı         :  ÖYKÜ 
Bölümü :  Tıp Bilişimi 

 
TEZİN ADI (İngilizce) : INTEGER LINEAR PROGRAMMING BASED SOLUTIONS FOR 

CONSTRUCTION OF BIOLOGICAL NETWORKS 
 

TEZİN TÜRÜ :   Yüksek Lisans                                        Doktora   
 

1. Tezimin tamamı dünya çapında erişime açılsın ve   kaynak gösterilmek şartıyla tezimin bir 
kısmı veya tamamının fotokopisi alınsın. 

 
2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullancılarının erişimine açılsın. (Bu 

seçenekle tezinizin  fotokopisi ya da elektronik kopyası Kütüphane  aracılığı ile ODTÜ dışına 
dağıtılmayacaktır.) 

 
3. Tezim  bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin  fotokopisi ya da 

elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.) 
 
                                                                                                      
 

Yazarın imzası     ............................                    Tarih  06/06/2014          
 

X 

X 

X 

 


	oeozsoy_dissertationFinalv2
	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	1.1 Motivation and Related Work
	1.2 Biological background
	1.2.1 Biological networks
	1.2.2 RNA interference Data
	1.2.3 Microarray data

	1.3 Mathematical background
	1.3.1 Linear programming

	1.4 Contributions
	1.5 Outline of the Dissertation

	2. RECONSTRUCTION OF SIGNALING NETWORKS FROM RNAi DATA
	2.1 Introduction
	2.2  Related works
	2.3 Problem Formulation
	2.4 Automatic Generations of Constraints
	2.5 Data Sets
	2.6 Evaluation of the oILP approach
	2.7 Comparison of oILP with state of the art
	2.7.1 Comparison of the results on semisynthetic MAPK network
	2.7.2 Comparison of the results on JAK/STAT Network

	2.8 Calculation of Number of Constraints
	2.8.1 Number of constraints without elimination of common constraints in AND and OR conditions:
	2.8.2 Number of constraints with elimination of common constraints in AND-  and OR- conditions:
	2.8.3 Effect of RNAi Scores

	2.9 Conclusion

	3. CONSTRUCTION OF LARGE-SCALE NETWORKS
	3.1 General divide and conquer algorithm
	3.2 The Divide and conquer approach used for construction of large-scale networks
	3.3 Data sets
	3.4 Results
	3.4.1 Comparison on ERBB Network with the state-of-art methods
	3.4.2 Comparison between RNAiDivide and TopologyRNAiDivide
	3.4.3 Comparison between TopologyRNAiDivide and SiNeC on large networks

	3.5 Running time performance comparison with SiNeC
	3.6 Conclusion

	4. CONSTRUCTION OF MULTI-SOURCE/MULTI-SINK NETWORKS
	4.1 Introduction
	4.2 Models used for network inference
	4.3 Proposed approach
	4.3.1 Model Based on Gene-Expression Data Only
	4.3.2 Integration of Time Series Data and Perturbation Data

	4.3 Handling of Noisy Perturbation Data
	4.4 Data sets
	4.5 Experimental Evaluation
	4.6 Evaluation of the analysis results on the real dataset in comparison to GeneMANIA networks
	4.7 Discussion

	5. CONCLUSIONS AND FUTURE WORK
	REFERENCES
	CURRICULUM VITAE


	bos
	Tez Fotokopi Izin Formu-oyku
	Fen Bilimleri Enstitüsü


