A SURFACE CRACK IN AN ORTHOTROPIC MEDIUM SUBJECTED TO
SLIDING CONTACT BY A RIGID STAMP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
DUYGU SARIKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
MECHANICAL ENGINEERING

JUNE 2014






Approval of the thesis:

A SURFACE CRACK IN AN ORTHOTROPIC MEDIUM SUBJECTED TO
SLIDING CONTACT BY ARIGID STAMP

submitted by DUYGU SARIKAYA in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Mechanical Engineering Department, Middle

East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Siiha Oral
Head of Department, Mechanical Engineering

Prof. Dr. Serkan Dag
Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Levend Parnas
Mechanical Engineering Dept., METU

Prof. Dr. Serkan Dag
Mechanical Engineering Dept., METU

Prof. Dr. Miifit Glilgeg
Mechatronics Engineering Dept., Cankaya University

Prof. Dr. Suat Kadioglu
Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Demirkan Coker
Mechanical Engineering Dept., METU

Date: 05/06/2014



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, | have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Duygu SARIKAYA

Signature :



ABSTRACT

A SURFACE CRACK IN AN ORTHOTROPIC MEDIUM SUBJECTED TO
SLIDING CONTACT BY ARIGID STAMP

Sarikaya, Duygu
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Serkan Dag
June 2014, 195 pages

This study is concerned with the surface crack problem in an elastic orthotropic half-
plane subjected to sliding contact by a rigid stamp of an arbitrary profile. In this
study the effect of sliding contact on the mixed-mode stress intensity factors and
contact stresses is investigated. Within the scope of the research, surface crack
problem for orthotropic materials is examined. The well-known equations of
elasticity for an orthotropic semi-infinite medium are used to formulate the fracture
and contact problems in coupled form. The coupled elasticity problem is solved by
means of a direct approach. Integral transforms are utilized to satisfy the governing
equations of the problem and boundary conditions exactly. The coupled problem is
reduced to a system of three singular integral equations. By adopting a collocation
approach, the equations are solved numerically to determine the stress intensity
factors and contact stresses. The main results of the analyses are the effect of the
material properties and friction coefficient on the mixed mode stress intensity factors

at the crack tip, contact stresses and required contact force.

Keywords: Sliding contact/crack problems, Stress Intensity Factors, Singular Integral

Equations.
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RiJIT BIR ZIMBA iLE KAYMA TEMASINA MARUZ KALAN
ORTOTROPIK ORTAMDAKI BiR YUZEY CATLAGI

Sarikaya, Duygu
Doktora, Makina Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Serkan Dag
Haziran 2014, 195 sayfa

Bu calisma, cesitli profillerdeki rijit bir zimba ile kayma temasina maruz kalan
ortotropik ortamdaki bir ylizey catlag: ile ilgilidir. Bu ¢aligmada kayma temasinin,
karistk mod gerilme siddeti c¢arpant ve temas gerilmeleri {izerindeki -etkisi
aragtirtlmistir. Bu ¢alisgma kapsaminda yilizey c¢atlagi problemleri ortotropik
malzemeler i¢in incelenmistir. Kirilma ve temas problemlerinin baglasik formda elde
edilebilmesi i¢in, yar1 sonsuz ortotropik bir ortam igin elastisite denklemleri
kullanilmistir. Bu baglasik elastisite problemi direk yaklasim ile c¢oziilmiistiir.
Problemin ana denklemlerini ve sinir sartlarin1 saglamak i¢in integral doniisiimleri
kullanilmistir. Baglasik problem, ii¢ adet tekil integral denklemine indirgenmistir.
Gerilme siddeti carpanit ve temas gerilmelerini saptamak icin, diizenleme teknigi
kullanilarak integral denklemleri niimerik olarak ¢Oziilmiistiir. Analizlerin asil
sonuclari, malzeme Ozelliklerinin ve siirtiinme katsayisinin karigitk mod gerilme

siddeti ¢arpani, temas gerilmeleri ve gerekli temas kuvveti tizerindeki etkileridir.

Anahtar Kelimeler: Kayma Temas/Catlak Problemleri, Gerilme Siddeti Carpant,
Tekil Integral Denklemleri.
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CHAPTER 1

INTRODUCTION

The aim of this study is to develop a method to examine the surface crack problem in
an elastic orthotropic half-plane subjected to sliding contact by a rigid stamp. Main interest
of the study is on the effect of sliding contact on the mixed-mode stress intensity
factors and contact stresses. In this chapter, literature review of related fracture and
contact mechanics problems are given. Then, the scope of this study is described.

1.1 Literature Survey

Fracture and contact mechanics are foundational to the field of engineering. Many
studies are conducted regarding the behavior of solids subjected to contact, and those
of that contain cracks and defects. Here, recent researches in this field are

summarized.

Dag and Erdogan [1] consider the coupled problem of crack/contact mechanics in a
nonhomogeneous medium and investigate the behavior of a surface crack in a
functionally graded medium loaded by a sliding rigid stamp in the presence of
friction. In this study, the dimensions of the graded medium are assumed to be very
large in comparison with the local length parameters of the crack/contact region.
Thus, in formulating the problem the graded medium is assumed to be semi-infinite.
Contact stresses, the in-plane component of the surface stress and stress intensity

factors at the crack tip are determined. The results are presented for various



combinations of friction coefficient, material nonhomogeneity constant and

crack/contact length parameters.

A surface crack in a semi-infinite elastic graded medium under general loading
conditions is studied by Dag and Erdogan [2]. In this study it is assumed that first by
solving the problem in the absence of a crack it is reduced to a local perturbation
problem with arbitrary self-equilibrating crack surface tractions. The local problem is
then solved by approximating the normal and shear tractions on the crack surfaces by
polynomials and the normalized modes | and 11 stress intensity factors are given. As
an example the results for a graded half-plane loaded by a sliding rigid circular stamp

are presented.

The problem of internal and edge cracks in an orthotropic strip is considered by
Delale and Erdogan [3]. This problem is formulated in terms of singular integral
equations. For the symmetric case the stress intensity factors are calculated and are
compared with the isotropic results. The results show that the stress intensity factors
are dependent on the elastic constants and are generally different from the
corresponding isotropic results.

Mode | crack problem for a functionally graded orthotropic strip is considered by
Guo et al. [4]. In this study, internal and edge cracks perpendicular to the boundaries
are examined. The elastic property of the material is assumed to vary continuously
along the thickness direction. The principal directions of orthotropy are parallel and
perpendicular to the boundaries of the strip. The singular integral equation for
solving the problem and the corresponding asymptotic expression of the singular
kernel are obtained. Three different loading conditions, namely crack surface
pressure, fixed-grip loading and bending, are considered during the analysis. The
influences of parameters such as the material constants and the geometry parameters

on the stress intensity factors (SIFs) are studied.



Ozturk and Erdogan [5] consider Mode | crack problem in an inhomogeneous
orthotropic medium. In this study, the symmetric crack problem is considered and
the material is both oriented and graded. The mode | crack problem for the
inhomogeneous orthotropic plane is formulated and the solution is obtained for

various loading conditions and material parameters.

The mixed mode crack problem in plane elasticity for a graded and oriented material
is considered by Ozturk and Erdogan [6]. It is assumed that the crack is located in a
plane perpendicular to the direction of property grading and the principal axes of
orthotropy are parallel and perpendicular to the crack plane. The problem is
formulated in terms of the averaged constants of plane orthotropic elasticity and
reduced to a system of singular integral equations which is solved for various loading
conditions and material parameters. The presented results consist of the strain energy
release rate, the stress intensity factors and the crack opening displacements. It is
found that generally the stress intensity factors increase with increasing material

inhomogeneity parameter, shear parameter and decreasing stiffness ratio.

Gupta and Erdogan [6] consider the problem of edge cracks in an infinite strip. In
this study, the elastostatic plane problem of an infinite strip containing two
symmetrically located internal cracks perpendicular to the boundary is formulated in
terms of a singular integral equation with the derivative of the crack surface
displacement as the density function. The solution of the problem is obtained for
various crack geometries and for uniaxial tension applied to the strip away from the
crack region. The limiting case of the edge crack is considered in some detail. The
results presented consist of stress intensity factors. The results also include the
solution of the edge crack problem in an elastic half-plane.

The crack problem for an orthotropic half-plane stiffened by elastic films problem is
considered by Mahajan et al.[8]. In this study, various contact and crack problems for
an orthotropic substrate, stiffened by elastic films, are considered. The film is



modeled as a membrane and the substrate as an orthotropic half-plane with the
principal axes of orthotropy parallel and perpendicular to the boundary. The problem
is formulated in terms of a system of singular integral equations. The influence of the
relative crack/stiffener dimensions, the film/substrate stiffness ratios and the material

orthotropy on the stress intensity factors is studied.

The elasticity solution of cracking due to sliding contact in a homogeneous half-
plane for different stamp profiles is considered by Hasebe et al. ([9]-[12]). In these
problems, the homogeneous half-plane is in sliding contact with a rigid stamp. The
coupled crack and contact problems are solved using complex stress functions and
the conformal mapping technique. This technique is limited to the crack and contact
problems in homogeneous half-plane and also since the homogeneous half-plane is
mapped into a unit circle, the solution procedure does not account for singularities at

some irregular points.

De and Patra [13] consider edge crack in orthotropic elastic half-plane problem. In
this study, two edge crack problems, (1) having prescribed crack shape and (2)
having been opened by prescribed normal pressure, are examined. Numerical results,
for various loading functions of stress intensity factor and crack energy are

determined.

The plane elasticity problem for an infinite medium containing a line crack is
considered by Konda and Erdogan [14]. The main results of this study are the
calculated modes | and Il stress intensity factors. The effects of the material
nonhomogeneity constant, the crack orientation, the loading conditions and the

Poission’s ratio on the stress intensity factors are studied.

Cinar and Erdogan [15] consider the crack and wedging problem for an orthotropic
strip. In this study, first the plane elasticity problem for an orthotropic strip

containing a crack parallel to its boundaries is considered. The problem is formulated



under general mixed mode loading conditions. It is shown that the stress intensity
factors depend on two dimensionless orthotropic constants only. The problem of
loading the strip by a rigid rectangular wedge is then considered. It is found that for
relatively small wedge lengths continuous contact is maintained along the wedge-
strip interface, at a certain critical wedge length the separation starts at the
midsection of the wedge and the length of the separation zone increases rapidly with

increasing wedge length.

The problem of orthotropic semi-infinite strip with a crack along the fixed end is
considered by Loboda [16]. In the study, the model of a crack with frictionless
contact zones near its tips is used. The stress intensity factors at the crack tips and the

corners of the strip, which are the main parameters of fracture, are evaluated.

Kim and Paulino [17] consider the interaction integral for fracture analysis of
orthotropic FGMs. In this study, stress intensity factors for mode | and mixed-mode
two-dimensional problems are evaluated by means of the interaction integral and the
finite element method. Extensive computational experiments have been performed to
validate the proposed formulation. The accuracy of numerical results is discussed by

comparisons to available analytical, semi-analytical, or numerical solutions.

Interface crack problems in graded orthotropic media are considered by Dag et al.
[18]. In this study, the authors examine the problem using analytical and
computational techniques. In the analytical formulation an interface crack between a
graded orthotropic coating and a homogeneous orthotropic substrate is considered.
The problem is formulated in terms of the averaged constants of plane orthotropic
elasticity and reduced to a pair of singular integral equations which are solved
numerically to compute the mixed mode stress intensity factors and the energy
release rate. In the second part of the study, enriched finite elements are formulated

and implemented for graded orthotropic materials. Comparisons of the finite element



and analytical results show that enriched finite element technique is capable of

producing highly accurate results for crack problems in graded orthotropic media.

In the study by Kim and Paulino [19], a finite element methodology is developed for
fracture analysis of orthotropic functionally graded materials (FGMs) where cracks
are arbitrarily oriented with respect to the principal axes of material orthotropy. The
effects of boundary conditions, crack tip mesh discretization and material properties
on fracture behavior are investigated in detail. To validate the methodology many
numerical examples are submitted. The accuracy of the results is discussed by

comparison to available (semi-) solutions.

Contact mechanics of graded coatings under isothermal conditions is considered by
Guler and Erdogan [20]. The objective of this study was to obtain a series of
analytical benchmark solutions for examining the influence of such factors as
material inhomogeneity constants, the coefficient of friction and various length
parameters on the contact stresses. Extensive results are given for the influence of

material nonhomogeneity and friction on the contact stress at the contacting surface.

Shah and Wang [21] considered two homogeneous spheres in contact and determined
the contact stress in the bodies under full-slip and partial-slip conditions. These
stresses are then used to solve the Hertzian fracture problem. The critical fracture
load required for the development of Hertzian crack system is also calculated.

Giannakopoulos and Pallot [22] consider two-dimensional isothermal contact of a
rigid cylinder on an elastic graded substrate. In this study, the normal, sliding, and
rolling types of contacts are addressed. Flat ended and cylindrical punches are

examined in detail. The effect of adhesion in frictionless contact is also studied.

Barber [23] examines contact problems for a thin elastic layer. In this study,
indentation by a rigid frictionless punch of a thin elastic layer on a rigid foundation is



considered in a three-dimensional setting. Results are given for the case where an
incompressible layer is indented by an ellipsoidal punch. Also an approximate
solution for the contact area and the load-penetration relation by considering
frictionless indentation of an elastic half space by a punch of an arbitrary profile is
developed by Barber and Billings [24].

Prasad et al. [25] develops a systematic methodology to quantify the mechanics of
steady-state frictional sliding response for a plastically graded material. Specifically,
the effect of linear gradient in yield stress on the frictional sliding response is
examined through parametric FEM computation of the instrumented scratch test.

A multi-layered model for isothermal sliding frictional contact analysis of
functionally graded materials (FGMs) with arbitrarily varying shear modulus under
plane strain state is developed by Ke and Wang [26]. Ke and Wang [27] also
considered a multi-layered model for frictionless contact analysis of functionally
graded materials (FGMSs) with arbitrarily varying elastic modulus under plane strain-

state deformation.

Fracture initiation and propagation in a homogeneous coating due to sliding
indentation is studied both experimentally and theoretically by Malzbender and With
[28]. Using simplified closed form expressions for the stress intensity factors the
authors try to estimate the critical crack length that would cause fracture.

Fracture of thin homogeneous elastic coatings due to sliding contact by a cylindrical
indentor is investigated by Oliveira and Bower [29]. After calculating the contact
stresses in the coating substrate system, several fracture problems in the coating and

at the interface of the coating and substrate are studied.

Contact loading of orthotropic materials is investigated by Stephen ([30], [31]).
These works show that a general procedure for calculating stress due to contact



loading can be obtained by combining two solution techniques. The first is the
procedure outlined by Willis, in which the numerical contour integration is used to
determine the size and aspect ratio of the elliptical contact area, and the contact
pressure distribution. Detailed stress fields are then obtained by using these
parameters in the general solution for transverse pressure loading of laminated

orthotropic materials due to Pagano and Srinivas and Rao.

Mahajan [32] considers contact behavior of an orthotropic laminated beam indented
by a rigid cylinder. In this research, the influence of various parameters such as beam
thickness, indenter size, presence of compliant layer and delamination on the contact

behavior of a symmetric orthotropic laminate is studied.

A plane contact problem for an orthotropic strip is considered by Erbas et al. [33]. In
this study, a singular integral equation is derived for the contact pressure. The
analytic expression of the associated kernel is unique for all types of orthotropy. An

iterative solution method is developed to investigate a thick strip.

De and Patra [34] consider dynamic punch problems in an orthotropic elastic half-
plane. In this study, complex variable technique is employed to obtain closed form
solution of the elastodynamic problems of a single moving punch and a row of
equally spaced identical moving punches, situated along the boundary of a semi-

infinite orthotropic elastic medium.

In the contact problem of a rigid flat-ended punch on an elastic half-plane, the
contact stress under punch is studied by Chen et al. [35]. In the research, a
fundamental solution for the multiple flat punch problems on the elastic half-plane is
investigated where the punches are disconnected and the forces applied on the
punches are arbitrary. The singular integral equation method is suggested to obtain
the fundamental solution. Also the contact problem for rigidly connected punches on

an elastic half-plane is considered.



Lin [36] considers punch problem for planar anisotropic elastic half-plane. Four
different conditions of contact problem for the rigid punch are analyzed in this study.
From the surface traction and Green’s function of anisotropic half-plane, the full-
field solutions of stresses are constructed. Numerical calculations of surface traction
under the rigid punch are presented base on the analysis and are discussed.

Sliding punches with or without friction along the surface of an anisotropic elastic
half-plane is considered by Hwu and Fan [37]. In this research, a general unified
solution for the full field stresses and displacements is derived by the complex-
variable formulation. With this general full field solution, a simple unified solution

for the contact pressure and surface deformation is derived.

1.2 Scope of the Research

The main objective of this study is to examine the problem of surface cracking in
orthotropic materials due to sliding contact. As mentioned Section 1.1 solutions of
certain contact and crack problems of plane elasticity are available in the technical
literature. Some basic crack geometries in orthotropic materials have been considered
until now. Also, several contact mechanics problems for orthotropic materials have
been solved. Coupled crack and contact problems for isotropic materials have also
been examined. But, there are no previous studies examining the behavior of a
surface crack located in a homogeneous orthotropic medium subjected to sliding

contact.

It is known that in mechanical structures, many failures occur due to the fracture.
Under the applications involving high stress, friction or wear, crack initiation and
propagation may take place. The surface cracking which is caused by friction forces
and leading to fretting fatigue is within the scope of this problem (see [38] for
details). To estimate the subcritical growth of a surface crack under contact stress,
the mixed mode stress intensity factors at the tip of the crack are needed.



In Chapter 2, a solution method to examine the fracture problem due to sliding
contact in an orthotropic medium is developed. To solve the surface crack, contact
and coupled crack/contact problems in an orthotropic medium, a formulation is
developed by using Fourier transformation technique. In the crack problem, surface
crack in the orthotropic medium under mixed mode loading conditions is considered.
For homogeneous materials, mode | and mode Il problems can be solved in
uncoupled form. Then the coupled crack and contact problem in an orthotropic half-
plane is considered. The coupled problem is reduced to three singular integral
equations, and singular behavior of the solution at the end points is examined. In
order to solve the integral equations, methods are developed for stamps of flat,
triangular and circular profiles. Numerical results of the problem are given in
Chapter 3. Numerical results are given for mixed mode stress intensity factors at the
crack tip, contact stresses and required normal contact force. The results obtained for
an isotropic medium are compared with those of given by Dag [40] and accuracy of
the solution is verified. Contact stress calculation is verified by making comparisons
to the results given by Galin [46]. The effect of the material properties and friction
coefficient on the mixed mode stress intensity factors at the crack tip, contact stresses
and required contact force are examined for the mentioned profiles. In Chapter 4,

conclusions obtained in this study are summarized.
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CHAPTER 2

PROBLEM STATEMENT AND FORMULATION

2.1 Problem Definition

In this study, orthotropic materials are considered. The configuration of the problem
to be examined is depicted in Figure 2.1. An orthotropic elastic half - plane is in
sliding frictional contact with a rigid stamp of an arbitrary profile. The contact area

extends from x, =a to x, =b at the surface and the half-plane contains an edge crack

of length d. The crack is perpendicular to the boundary of the half-plane. The normal

and tangential forces transferred by the contact are P and Q=nP, respectively,
where 7 is the coefficient of friction. E;, E, and u represent the Young’s moduli

and shear modulus of the half-plane respectively and v is the Poissons’s ratio .

2.2 Formulation of the Problem

First, the boundary conditions that must be satisfied in the solution of the problem

are expressed. There are mixed boundary conditions at the surface x, =0 and at the
crack plane x, =0. At the surface of the half-plane x, =0, shear and normal stresses

are zero outside the contact area. In the contact area, normal displacement

component u, (0,x,) is known. Normal displacement derivative with respect to x, is
related to the stamp profile and this derivative can be represented as a function of x, .
At the crack plane x, =0, shear and normal stresses are zero at the crack faces. The

faces displace relative to each other in normal and tangential directions, but outside

11



the crack i.e. for x, >d, there is no relative tangential or normal displacement at
X, =0 plane. Integration of the normal stresses in the contact area gives the total

force P applied to the stamp and stresses must vanish as (xl2 +x3 )—>oo. Shear stress

in the contact area is represented by Coulomb’s Law.

Figure 2.1: Geometry of the problem

The boundary conditions can be expressed in the following form:

o1 (0,%,) =0, X, <aand x, >b, (2.1a)
o1, (0,%,) =0, X, < aand x, >b, (2.1b)
C_seiul (0,%,) =f (xy), a<Xx,<b, (2.1c)
o172 (0,X%,) =noy1 (0,%,), a<Xx,<b, (2.1d)
o (X1,0) =0, 0<x <d, (2.1e)
oy, (X,0) =0, 0<x <d, (2.1f)
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b
Jall 0,x2)dx; =—P, (2.19)

(0227012’011)—)0 as (X12+X§)—>00, (2.1h)

where u; (%, X, ) is the normal displacement component, f (x,) is a known function
and Cg IS a material property, related to shear modulus, given by (2.4a). The
problem is formulated using three unknown functions. Following unknown functions

can be defined:

Cgs O -
=5 —(Up (x1,0") Uy (%,07)) = fy (x), 0<x <d, (2.2a)
2 0
Ces O + -
5 —— (U (x1,07)—uy (%,07))=f2(x1), 0<x <d, (2.2b)
2
011 (0,%) =f3(xz), a<x,<b, (2.2¢)

where u, and u, are the displacement components in x; and x,directions,

respectively.

In the absence of body forces equations of equilibrium are expressed as follows:

8611 80'12

ou 9% g

ox 0%, (2.33)
60'12 6022

9012 99 g

Pt (2.3b)

The constitutive relations of orthotropic materials can be represented in the following

form (see [39] for details):

011 Ci Cp 0 &11
022 |=|C2 Cpn 0 ||&2], (2.43)
012 0 0 Cg |12
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where,

2
Ei-vir By

(1- v vap) EL

Cgs =214, for both plane stress and plane strain

and

2 2 .2
A=E; (1-vy Vs —Va Viz+ Va1 Vig Vs Va2) —Bp (Vi +2vip vig v +Viz vay )

E2
1
) plane stress

, plane strain
A

v, B E
12 12 2_ planestress
Ei-vip E;

(vig +vi3vy) B E

2 plane strain
A

E, E,
— plane stress
Ei-vir By
A-vyvi3) B E

2 plane strain
A

(2.4b)

(2.4c)

(2.4d)

(2.4e)

(2.4)

In the case of an orthotropic material (which has three mutually perpendicular planes

of material symmetry), the number of elastic constants is nine for a 3D stress state.

For plane stress case, constitutive relations of orthotropic materials can be

represented in terms of four independent elastic parameters. For plane strain case,

there are seven independent elastic parameters in constitutive relations (see [39] for

details). Substituting equations (2.4) into equations (2.3), governing equations are

obtained as:

14



(2.5a)

(2.5b)

(2.5¢)

(2.5d)

(2.5€)

Adopted solution procedure is shown in Figure 2.2. In this figure, the contact

problem without crack is represented as Problem 1 and in this case the stresses and

displacements will be determined in terms of

f; which is given by (2.2c). In

Problem 2, stress and displacement fields will be determined in terms of the f, and

f, given by (2.2a) and (2.2b). For contact problem (problem 1), f, and f, are zero

and f; is zero for crack problem (problem 2). By summing the solutions of problems

1 and 2, the total stress and displacement fields for the original problem can be

obtained and the boundary conditions of the original coupled problem can be

satisfied.
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Figure 2.2: Solution Procedure

2.2.1 Problem 1: The Contact Problem

Geometry of the contact problem is shown in Figure 2.3. The primary unknown

function is,
f3(x,), a<x,<b
0,%x,) = .
o1 (0.%2) {0, —o<X,<aandb<x, <oo. (26)
Shear stress at the surface can be written as follows:
77f3(X2), a<X2<b
0,%,) = .
12 (0.%) {O, —o<X,<aandb<x, <o , (2.7)

where 7 is the friction coefficient. The stress and displacement fields are derived in

terms of f5(x,).
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Vo,

Figure 2.3: Geometry of the contact problem

Considering Fourier Transformation in x, direction, the displacement components

can be expressed as follows:

1 o0

U13(X11X2)=g JU13(X1’P)9XPGPX2)dP, (2.8a)
1 0

Uz (4, %)=~ [Uza (30, p)expli o) dp. (2.8b)

In equations (2.8), subscript 3 represents the displacements due to stamp loading.

Substituting (2.8) in (2.5), following ordinary differential equations are obtained.

d2u du
Ay ——28 52U, +(1+d;,)i 3 -0, 2.9a
11 q X12 P Uz +( 12)ip d % ( )
d?u . du
—223—/02 dpp U g +(1+dyp)i p——22=0. (2.9b)
d x{ dx

One can assume a solution of the formexp(sx;) for U;3 and U,;. Then, following

characteristic equation is determined,
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2 2 4
dqgdyy —2dy, —d d
4_P (dyy dpp 12 12)52+/3 2 _q .

(2.10)
dll dll
p? (dyy dyy —2dy, —d3) p?(dyy dyy —2dy, —d3) ? phd
For — 11 Y22 12 12 <0, _ 11 ¥22 12 12 —4 22 >0 there
dig dqy 1

are four real roots, s;, s,, s3=-s;, S, =—S, In this case the corresponding material

is classified as type I [3].

If the roots are complex, the related material is classified as type Il. The problem of

interest here is that of type I. Assuming type I, roots are written as,

Sl :_A‘lp|, ER(S]_) <01 (211&)
52 :—B|p|, 9{(32) <O, (leb)
where,
A—£ q d11d22—2d12—d122 (2.12a)
C2dy | /02 d2 — 4ds; dyy dyp — 20y dyy A2 + 405 + 403 + dfy — 4d, -
11022 11022 U1 11022 017 12 12 + 0o 11022
—dyy dy, +20, + d2
B 1 _2d, 11U22 12 T U2 _ (2.12b)
20y + \/ d121 d222 —4d;1dy, di;—2d;;dy, d122 + 4d122 + 4d132 + d142 —4d,,d5,

The displacement components u,; and u,; can then be written as

© 2
1 .
U13(X1’X2):—2ﬁ I E M;exp;x +ipx;)dp, (2.13a)
]
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o2

1 .
U23(X1’X2):Z j ZMJ‘ N;jexps;x+ipXxp)dp, (2.13b)
il

where M (p) are unknown functions and

2 2
p° —dyy8]

Nj(p):(1+d12)i,05j

o (1=12). (2.14)
By using equation (2.4a), stresses and displacement derivative can be obtained as

follows:

© 2

1 . .

0113(x1,x2)_76z I dllsj +dp Nj |p)M jEXp6S; X +ipXy)dp, (2.15a)
0 j=1

0-223(X1,X2)=TZ (d12 S +d22 N |p)M eXp(S Xl+ | sz)dp, (2_15b)

é'—o8
MN

=5

J:

2
le +Njs; )M exps; X +ipx;)dp, (2.15¢)
J:

Ces 1 ¢
0'123(X1’X2)— %8 I

0
6x_u13(X1’X2)__ I ',OZM exp(s; Xy +ipXz)dp. (2.15d)
j=1

Using the boundary conditions (2.6) and (2.7), following equations can be written,

© 2

1

EJ.ZCHS +Co N 'P)M exp( pxz)dp
—oo =1

(2.16a)
_ {f3 (X,) ,a<x,<b

0,-o<xp,<aandb<x, <o,
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© 2
C—SGiIZ(ip +N;s; )M exp(i px,)dp
~o 1= (2.16h)
nfa(xp), a<x; <b
10, —w<xy<aandb<x, <o,
and M (p) can be expressed as follows:
2 b
M (P =g v () [ faexptiotat. (2.17)
a

To determine v ;(p), Fourier transform is applied to (2.16) and using (2.17),

following equations are obtained,

2
Z:(d11 $j+dp N; ip)l//j (p)=1, (2.18a)
j=1
2
j=L

At this point, the formulation of the contact problem for an orthotropic half-plane is
completed. Stress and displacement field are expressed in terms of the unknown
function f;(x,) by equations (2.13), (2.15), (2.17) and (2.18).

2.2.2 Problem 2: The Crack Problem
Figure 2.4 presents the geometry of the surface crack problem in an orthotropic half-
plane. In this case stresses and displacements are derived in terms of f, and f,

given by (2.2a) and (2.2b). In order to formulate the crack problem, a superposition
method is used as shown in Figure 2.5. In this method, a crack in an infinite plane

and the half-plane solution for x, >0 are considered and these solutions are

20



superimposed so as to satisfy the boundary conditions at the free surface. Then, the

stresses and displacements are derived.

The half-plane contains a surface crack at x, =0 and mixed mode loading conditions

appear on the crack plane. For this crack, the mode | (or the opening mode) and
mode Il (or the sliding mode) problems can be considered as uncoupled. This is due
to the fact that, normal loading on crack faces does not induce mode Il stress
intensity factor and shear loading does not induce mode 1 stress intensity factor. Also
mode | and mode Il problems can be formulated separately.

In each problem first the infinite plane containing a crack is considered and stress
and displacement fields are derived in terms of f, and f, which are given by (2.2a)

and (2.2b), respectively. In this case, Fourier transforms of the equations (2.5) can be

taken in x; direction, and solving the resulting system of ordinary differential
equations stress and displacement expressions for both half-planes x, >0 and
X, < 0 can be obtained. Then, the general solution of a half-plane without a crack

and the infinite plane solution will be superimposed to satisfy the boundary

conditions at the free surface.

I‘EI‘j

Figure 2.4: Geometry of the crack problem
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Figure 2.5: Superimposition for the crack problem

2.2.2.1 The Opening Mode Problem ( f, =0)

In order to solve the opening mode problem, a crack in an infinite plane located at
0<x, <d is considered. In this case, f,(x) given by (2.2b) is equal to zero. The
stress and displacement fields are derived in terms of f;(x;) given by (2.2a). By

using Fourier integrals, displacement components for the infinite plane are expressed

as follows:

Ul(ll) (X, Xz)zg J.Ul(ll) (o, x2)explwx;)dw, (2.19)
(i) I

Usq (X11X2)_Z JU21 (0, %z)explox)do, (2.19b)
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where subscript 1 and superscript (i) stand for opening mode problem and an infinite

medium, respectively. Substituting (2.19) in (2.5) following differential equations are

determined:
o d2u® du®
—dyy @ U+ —2 - p?Ugy+ 1+ dpy)i0—2-=0, (2.20a)
11 d X2 d X2
_ d2y® du®
_a)ZU(I)+d22 221 _p2 U13+(1+d12)|60 u :0. (220b)
21 d XZ d X2

One can assume a solution of the form exp(hx,). By using this form, the

characteristic equation of the problem is determined as,

2 2 4
dy;dyy —2dy, —d d
nt_? (dyy dg 12 12)n2+60 1 _

0. (2.21)
d22 d22

Roots of the characteristic equation for a type | material are found to be

n = Ela, R(n,) >0, (2.22a)

n, =Fla, R(n,) >0, (2.22b)

ns=—Elel,  R(n3) <0, (2.22c)

ng=—Flo],  %R(n,) <0, (2.22d)

where

2 \/ . {d11d22—2d12—d122 J 228
2d, /02 02— 4dy; dyp dyp — 20y, Ay 02 + 405+ 4d3, +dfy — 4dyyd,

Footo \/_ ZdZZ[_ s 20+ ] . (2.23D)
20z + \/dlzl A7, — 4dyy dpp dip — 2y Ay dfy + 405 + 405, + A — 4dyydyy
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Following stresses and displacements equations are obtained for x, <0and x, >0,

X, <0
1 1<
ull)(xl’XZ)ZZ j ZCJexp(n Xy +lwX)dw,
—0 J=1

o0

u21)(x1,x2)_%jZC Ajexpj X, +iwx)dw,

—o J=1
Ces 1 <
afil)(xl,xz)—ﬁ o D sy @exp( x, +iwx)do,
—o J=1
1 7
aé'zf(xl,xz)—T—” I 28921)1 (w)exp( x; +iwx;)dw,
—o0 j=1
Coo 1 [
Gl(lZl)(Xl’XZ)_ﬂ_ﬂ I Z(nJHwA )Ciexphj x; +tiwx)do,
—oo J=1
o 17
a—ull)(xl,x2)=2—j2C n;exp; x; +iwx)do,
X2 ﬂ—oo =1

2
41 (4. %)= (dyyio+dy, Ajn;)C;
j=1

2
50,00, %)=Y (A iw+dy Ajn)Cy
=1

where superscript (i~)refersto x,<0.
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X,>0:

ug) )(lexz)z— j ZC exp(n; x; +iwx)do, (2.25a)
_Ooj =3
u21)(x1,x2)_— j ZC Ajexpnj x; +iwx)dw, (2.25b)
—o0 J=3
(i) Cos 1 [N o) i
oy (X1 XZ)__ Zslllj (w) exp(nj X +iwX)do, (2.25¢)
,OO j=3
(i) Ces 1 )
O 01 (X, x2)—— I 232211 (w)exp(nj X, +iwx)do, (2.25d)
,OO j=3
(i Cee 1
O (X1, Xp)=—7> ~[Z:(n +iwA;)Cjexph; x; +ioXx)dw, (2.25e)
_Oo j=3
0 . (i" 1 7
ax_zull (Xl,XZ):Z_J;OJZ;‘CJ njexp(;x; +iwx)do, (2.25f)
P 4
Sl(lll)j (Xl'XZ):z(dlliw+d12 Ajnj)C; , (2.259)
j=3
P 4
S§I21)j (X1:X2)=Z(d12 fo+dy Ajn;j)C; (2.25h)
j=3

where superscript (i*)refers to x,>0. C; (w) (j=12,3,4) are unknown functions

givenin (2.24) and (2.25) and A; (®) is obtained as

A (@) " 1] (j=12,34) 2.26
ja) (1+d12)|a)nj, J_, Y ' ( )
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Now, the half-plane (x, >0) problem without a crack is considered. For the opening
mode problem, uy;(%,x,) is an even function of x, and uy (xq,%,) IS an odd
function of x,; therefore, for the half-plane (x, >0) problem without a crack, the

displacement components can be expressed by using Fourier cosine and sine

integrals as follows:

uf) (4, %)= (U (x,0) cos(e xp)dar (2.273)
0

i) (. %2) = [UR (4, @sin(axp) da (2.27b)
0

where subscript 1 and superscript h stand for opening mode and half-plane problems,
respectively.  Equation  (2.27) implies that  u (x,x,) =u (% ,—%,) ,

ult (%, %) = —ul (%, ,—x,) . Substituting (2.27) in (2.5), differential equations are

obtained as:
dyy —— —a?UP + (1+dp,) @ 5 2l o0, (2.282)
d x{ Xy
d2u® du®
: Xl;l —a? U (14 dpy) . ;11 =0. (2.28b)

One can assume a solution of the form exp(px). By using this form, the

characteristic equation of the problem is determined in the form:

b 0% (dy, dyy — 27y, —d3) 02 AL (2.29)
dll dll

Roots of the characteristic equation for a type | material are found to be

P =Ad], R(py) >0, (2.30a)

26



p, =Bla], R(p,) >0, (2.30b)
ps=—Aal,  R(ps) <O, (2.30¢)
ps=—Bla|,  R(p,) <O. (2.30d)
where, A and B are given by (2.12).

For the half-plane problem (x, >0), the stresses and displacements are determined as

follows:
il (1,%2)= [ (B3 exp(p3 x0)-+ B4 exp(py X)) cosler xz) der, (2.31a)
0
Ugi) (X, %)= J-(Bs D3 exp(ps 1)+ B4 Dy exp(pg X1))sin(a x;) der (2.31b)
0
Cee o
O'l(ﬁ(xl,xz)= %jZ(dll pj+d, Dja)Bj exp(pj %) cos(a X;)de, (2.31c)
0 =38
Ces o
Gég)l(xl’xz):%jzmlz pj+dy Dja)B;j exp(pjXy) cos(a x,)da, (2.31d)
0 j=3
Ces [
o (X4, %p) = %J.Z(Dj Pj—a)B; exp(p;x) sin(ax;)da, (2.31e)
0 J=3
? T :
Ui (00, %p) =~ [ (By exp(pa xy) + By exp(ps x)sin(a xz) dar, (2.31f)
2 0

where B; (w) (j=3,4)are unknown functions and D;(«) is expressed as follows:

2 2
—dip?
Dj(a):(a 11p]

—_— 2.32
1+ dlz)a pJ ( )
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The solution of mode | problem for x, >0 and x, >0 can be expressed as follows:

ull(xl,x2)=u1(i1+)(x1,x2)+u1(2)(x1,x2), x>0, x,>0, (2.333)
u21(x1,x2):u§i£)(x1,x2)+u§2)(x1,x2), X, >0, x,>0, (2.33b)
akjl(xl,xz)zaf}z(xl,x2)+o|£hj)1(xl,x2), k,j=12, x>0, x,>0. (2.33c)
In the formulation, there are six unknown functions C,(w), ... , C4(®@), Bs(a),

B,(«). These functions can be expressed in terms of unknown function f;(x,).

Boundary conditions of the opening mode problem are determined as,

0991 (X1 ,40) =091 (X1 ,—0), O0<X <00, (2.34a)
o121 (X ,40) =091 (X ,—0), 0<x; <00 , (2.34b)
Upp (% ,40) =ugy (%,-0),  0<x; <0, (2.34c)
Ces O

Ta—xl(uzl (X, +0) —upy (% ,=0))=f1(x), O<x <d, (2.34d)
Upq (X ,40) =Uy (X ,—0), d<x <0, (2.34e)
o111 (0,%2) =0, TO<Xp <®© (2.341)
o121 (0,X%,) =0, —0< Xy <O . (2.34g)
In order to obtain Cy(®), ..., C,(w) in terms of f,(x,), equations (2.34a-e) and

equations (2.24) and (2.25) are utilized and following equations are obtained,

d
;@) =Pyl [ hOepCondt  (-1234), (2.353)
0
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4 2
D (iwdi, +A;njdy) Py (@) =Y (iody, +Ajnj dy) Py (@)=0, (2.35h)
j=3 j=1

4 2
D (nj+ioA; )P (@) =D (0 +iwA| )P (@)=0, (2.35¢)
j=3 j=1

4 2
iw{ZAj Pi (@) - >_A; P, (a))}zl, (2.35d)
=3 j=1

P, (@)+P; (w)-P, (w)- P, (@) =0. (2.35¢)

Since the half-plane solution (x, >0) does not include a crack, the half-plane solution
(x,>0) given by (2.31) and the unknown functionsB;(«) and B,(«) do not

contribute to equations (2.35). Boundary conditions (2.34a-e) are satisfied by the

half-plane (x; >0) solution. B; («) and B, («), which are the unknown functions of
the half-plane (x, >0) problem, are expressed in terms of f,(x;) by using the free
surface boundary conditions. So in the determination of B;(«) and B,(«), (2.34f),

(2.349), (2.31c), (2.31e), (2.25c) and (2.25e) are used and the following equations are

obtained,

|

M-

: (dll pj+d12 DJ Cl)BJ COS(aXZ)da

J

1l
w

= (2.36a)
+% IZ(dlliw+d12 Ajn;)C; exp(nj x;)dwo=0, 0<x, <o ,
wi=3
% 4
IZ(Dj p;—a)Bjsin(ax;)da
. (2.36b)

% 4
1 .
+27[ J.J_Z:;(”j +|a)Aj)Cj exp(nj X,)dow=0, 0<Xx, <oo.
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Because of the symmetry, only x, >0 case is considered. C;(w)(]j=1...4) can be
determined using (2.35a-e) in terms of f,. After lengthy manipulations using
MAPLE (2.36) following equations are obtained,

4

d
1 2 .
> (dyy p; +di, D; @) Bj (@) = —Z—j‘ f,(t) dt ij(a;, ayexpCiot)do,  (2.37a)
j=3 7 Ces

o0

—00

é(D | pj—a)B; (“)2_7126_2661 fl(t)dtjj;azl(w, @)expii ot) do | (2.37b)
where,

Fiy(@.0) =% , (2.383)
Fios(@.) =% , (2.38b)

Ny (@, a)z%i o(-d;, F2w%d;,E%d;, —d;,E%d;, F2a?

—dppE2dya? — dyy, Fe?dyE? +dypdie’ (2.39)
— d12 dellaz + E2F2d11a)2d122 + E2F2d11a)2d12

- d11d11a2d12 - d11d116¥2) ;
N121(a), 0[)=%I (02 (E2F2d122 + E2d11d12 + d11F2d12 + dlzl)a y (2.39b)

D(w,a)= (F? w® +a®)(E? 0® +a?)(1+dy,), (2.39¢)
and, E and F are given by (2.23).

Residue theorem can be used to evaluate the inner integrals in (2.37) (for detailed
explanation of the theorem see [41] and [42]). In order to apply this theorem, first a
positively oriented simple contour in the complex plane is considered as shown in
Figure 2.6.
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Im

I
- { R »Re
R
T = ]._1 +1_3
T;

Figure 2.6: The contour for evaluation of the integral.

By considering the integration on the contour I'=T; +TI, is considered, following

equation can be written.

j Fuy (@, ) exp(—i a)t)da)zj Fuu1 (@, @) exp (=i ot) do
F " (2.40)
+ J'F Fuu1 (0, @) exp(—i ot) do.

If the integrand in (2.40) is analytic on the positively oriented simple closed contour

I, except possibly for a finite number of singular points interior to T , using the

residue theorem following equation can be written,
n
I Fi11 (o, @) exp(—iwt)dw:ZziZ(Residues of theintegrandin I). (2.41)
T

k=1

Taking the limitas R — ooin (2.40),
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J.Flll(a),a)exp(—ia)t)da)+ lim I Fyy1 (0, @) exp(i wt) do=
R— o JI,
* i (2.42)
=2ﬂiZ(Residues of theintegrandin lower half complex plane).

k=1
By using MAPLE, it can be shown that second term on the left hand side of (2.42)

vanishes, then (2.40) can be rewritten as follows:

ij(w, @) exp(—i wt) do =
N (2.43)

n
=—27ri2(Residues of theintegrandin lower half complex plane).
k=1

The integral can be evaluated by determining the residues in the lower complex

plane. The poles of the integrand in (2.43) are obtained as,

2] =i?a, () >0, (2.44a)
o, =—i?“, H(o,) <0, (2.44b)
o, =iE“, Hoy) >0, (2.44¢)
o, =—‘E“, H(w,) <0. (2.44d)

Imaginary parts of w, and w, are less than zero which means », and o, are in lower
half plane. Therefore, the poles of @, and @, are used to evaluate the integral. The

integral can be written as follows:
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J.Flll(a),a)exp(—ia)t)da) =—27ri[ lim (o - @,)F1 (0, @)exp(—i ot)

Zo (2.45)

W—> Wy

After lengthy calculations, the integral is evaluated as,

J Fi11 (@, @) exp(-i ot) do=
B (2.46)

= il x{R exp(—a—tj+R exp(—a—tﬂ
2d;; (E? - F?)(L+dy,) ' F ? E)J

where,
Ry =(E? dyy + dyy ) (dyy 1+ dpp )+ dpp (F2 — dyy ), (2.472)
Ry =—(F2dyp +dyy ) (dyy (1 dyp )+ dpp (E2 — dyy ) (2.47b)

By using a similar method, the inner integral in (2.37b) is evaluated. After

simplifications (2.37) are reduced to following form,

4
Z(dn pj+d, Dja)Bj(a)=
=3

d

(2.48a)
_ 2 ! 5 J‘{Rlexp[—a—tj+R2 exp(—a—tﬂfl(t)dt,
Coo 27dy; (E? —F2)(L+dpp) % F E

4 2 E2F2d3 +dydy, (E2+F2)+d3
D.(Djpj-a)Bj(a)= s
C66 2ﬂ'd11 EF (E -F )(1+ d12)

=3
d
X I[— E exp(— %tj+ F exp(— %t] } f, (t)dt ,

0

(2.48D)

where,
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d
Bj(a)= Cij[sj(a,t) exp(— “th+ B} (a.t) exp(— “Etj } f,(t)dt. (2.49)
66

0

Equations (2.48) can be rewritten as follows:

4

Z(dn pj +diy Dj @) Bj(a,t) =Ry (e, 1) (2.50a)
=3

4 *

Z(Dj pj—a)Bj(a,t)= Ry (at), (2.50b)
=3

4 *k

Z(dn pj+dy Dj a)Bj (a,t) =Rup(a)t), (2.50c)
j=3

4 *k

Z(Dj pj —a)Bj (a,t)= Rpppp(a,t), (2.50d)
=3
where,

R
R a,t)= 1 ,
1111(a 1) 2720, (B2~ F2)(L+ duy) (2.51a)
222 42 2 g2 2
Rlzn(a,t):—(E P ity 0 (BT F )+df) (2.51b)
2rdyy F(EC—F°)(1+dyy)
R
R a,t) = 2 ,
1112 (a1, 1) 2700, (B2~ F2) L+ diy) (2.51c)
22242 2 g2 2
Rmz(a,t)z(E F2d2 +d;,dy, (E2 +F )+d11). 2.519)

27dy; E(E2—F?)(1+dy,)

At this point, the formulation of the opening mode problem is completed. The

stresses and displacement fields are derived in terms of f,. The unknown functions

used in the formulation of the opening mode problem are given by equations (2.35)
and (2.50).
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2.2.2.2 The Sliding Mode Problem ( f, =0)

In order to solve the sliding mode problem, it is assumed that a crack in an infinite
plane is located at 0 < x, <d . In this case, f,(x;)given by (2.2a) is equal to zero. The
stress and displacement fields are derived in terms of f,(x) given by (2.2b).

Displacement and stress components for the infinite plane can be obtained by
following a similar procedure as given in Section 2.2.2.1. These components for the

infinite plane are determined as follows:

Xy <0:
17
“12)(X11X2)_Z__[ JZ_;FJ exp(n; x; +iwx)do, (2.52a)
17
UZZ)(Xl’XZ):ZIZFJ Ajexp(n; x; +iwx)do, (2.52b)
—o J=1
1l
0"112 ) (%, %,) ==& 66 Zsl(llz)j (w)exp(n; x; +iwx)dw, (2.52c)
,Oo j=1
Ces 1 [ o
ngz)(xl’xz):%g I ZSSZZ)J (w)exp(nj X, +iwx)dw, (2.52d)
)
Coo 1 [
olbs (xl,xz)_ﬂ = ~[Z:(njﬂa)A )Fjexp(; x, +iox)do, (2.52¢)
—oo J=1
9yl AN d
8x_2u12 (Xl’XZ)_Z_jJZ_; jnjexpi; x; +iwx)do, (2.52f)
2
51('12)1' (xl,x2)=2“(dllia)+d12 Ajnj)F;, (2.529)
j=1

35



2
SSZZ)] (X11X2)=Z(d12 fwo+dy Ajnj)F; (2.52h)
j=L
where subscript 2 refers to the sliding mode or mode 1l problem and superscript (i7)
refers to x,<0. Fj(w) (j=1...4) are unknown functions and n; and A;(w) are

given by (2.22) and (2.26), respectively.

X, >0:
ulz)(xl,x2)=— I ZF exp(nj X, +iwx)dw, (2.53a)
—0 j=3
uzz)(xl,xz)_— I ZF Ajexphj X, +iox)do, (2.53b)
—0 J=3
1 fw
ot ()= "2 L [ 35 @)expln; x, +ion) do, (2.530)
—oo J=3
. C 1 <A
o-é'zz)(xl,xz)_ 06 o IZSSZZ)J (@)exp(n; X, +iwX;)dw, (2.53d)
—o0 j=3
. C 1
o) (X1, Xp) ==& 66 IZ(n +iwA;) Fj exp(n X, +iox)do, (2.53e)
—o0 J=3
0
%Uu)(xbxz)_—jzlz njexp(n; x; +iwx)do, (2.53f)
—o0 j=3
P 4
Sh2j (X1, %2)= Y ([dyiw+dy, Ajn))Fy (2.539)

i=3
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P 4
S5 (4, %)= D (dpiw+dy Ajnj)Fj (2.53h)
i3

where superscript (i*)stands for x,>0.

For the sliding mode problem, u,,(x;,X,) is an even function of x, and uy, (x;, X,)
Is an odd function of x,, therefore for the half-plane (x, >0) problem without a

crack, displacement components can be expressed by using Fourier sine and cosine
integrals as follows:

) 0,%2)= [UL 0, @sinerng) dar, (2.543)
0

Uz (%4,%p) = IU§2) (%, @)cos(a x,) der, (2.54b)
0

where subscript 2 and superscript h stand for sliding mode and half-plane problems,
respectively.  Equation  (2.54) implies that  u® (x.,x;) =—ul (x;,~x,) ,

ull) (%, %) = ul) (% ,—x,) . Substituting (2.54) in (2.5) following differential

equations are obtained,

q2um qu®d

dy——22 _2uM _(144d 2 _p, 2.55a
11 dxlz a®Up’ —( 12) & dx, ( )
d2u du

—2 g% dpU) + L+ dyy)a—22-=0. (2.55b)
d X dx

One can assume a solution of the form exp(tx;). By using this form the characteristic

equation of the problem is determined as,
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t4_012(dndzz—2(112_(1122)»[2+0‘4 da, -0. (2.56)
dll dll

Roots of the characteristic equation for a type | material are found to be

t; =Ada|, R(t,) >0, (2.57a)
t, =Bla], R(t,) >0, (2.57b)
ty =—Ad], R(t3) <0, (2.57c)
ty=-Blo|,  %N(,) <0, (2.57d)

where, A and B are given by (2.12).

For the half-plane problem (x, >0), the stresses and displacements are obtained as

follows:
i) (1, %2) = [ (B3 expta X0)+ Gy expta xp))sin(@ X ) dar, (2.58a)
0
ug) (%4, %) = I(Gs Haexplts x;)+G, Hyexp(ty X)) cos(a x; ) da (2.58b)
0
h Ces [~
o1}, %)="2 [ 3" (Cuat; ~Ci H; @)G; expl; ) sin(arx;) dr, (2.58¢)
0 J=3
h Cos [~
o5 (X4, X,) = %_‘-Z(Cn tj—Cop Hja)Gj exp(tjXy) sin(a x;)da, (2.58d)
0 j=3
Cee o
B0 x)= =2 [ 3 (H;t; +a)G; expt; xy) cos(ax,) der, (2.58¢)
0 =3
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8 oo
—u (6, 3)= [ (Gg explts X))+ Gy explty 1)) cos(ar ) da
2

0

where G; (») (j=3,4) are unknown functions and H (a) is expressed as,

Forx, >0 and x, >0 the solution of mode Il problem is given as follows:
ulz(xl,xz)zul(i2 )(xl,x2)+u1(2)(x1,x2), X, >0, X, >0,

" X
U22(X1'X2)=Ug2)(X11X2)+U§2)(X1’X2)' X >0, x;>0,

. : _
O j2 (4. %) =0 D (%0, X2) + o\ 0y (1, %), K, j=12, %,>0, X,>0.

(2.58f)

(2.59)

(2.60a)

(2.60D)

(2.60c)

In the formulation, there are six unknown functions Fi(w), ... , F4(®@), Gjz(a),

G,(a). These functions can be expressed in terms of unknown function f,(x,).

Boundary conditions of the sliding mode problem are determined as,

O 20 (X1,40) =039, (% ,—0), 0<x <o,

0122 (X1 ,+0) =075, (%1,-0), 0<x <0,

yUgy (X ,40) =Uy, (X ,—0), 0<x <o

Ces O

Ta—xl(ulz (% ,+0) —upp (x,-0))="F,(x), O<x<d ,
Upp (% ,40) =Up, (% ,-0), d<x <o,

o112 (0,%5,) =0, —00< Xy <00

o122 (0, %) =0, —00< Xy <O .
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In order to obtain unknown functions Fy(w), ... , F,(w) In terms of f,(x),

equations (2.61a-e) and equations (2.52) and (2.53) are used and following equations

are found,
5 d
Fj (@) ===2() | L Oexp(Hwdt, (j=1234), (2.62a)
C66 0
4 2
Z(iwdlZ +Ajn;dy)Z; () —Z(ia’dlz +Ajn;dy)Zj(w)=0, (2.62b)
j=3 j=1
4 2
D (nj+ioA;)Z; (@) =D (nj+ieA;)Z;(@)=0, (2.62¢)
=3 j=1
Ay+ Al - A2y, -AZ =0, (2.62d)
i 0{Z, () +Z3(0) - Z, () - Z1 (@)} =1. (2.62¢)

Since the half-plane solution (x, >0) does not include a crack, the half-plane solution
(x,>0) given by (2.58) and the unknown functions G;(«), G,(«) do not contribute

to equations (2.62). Boundary conditions (2.61a-e) are satisfied by the half-plane

(x,>0) solution. G5 («) and G, («), which are the unknown functions of the half-
plane (x,>0) problem, are expressed in terms of f,(x;) by using the free surface
boundary conditions. So, in the determination of the G;(«) and G, («), (2.61f),

(2.619), (2.58¢), (2.58e), (2.53c) and (2.53e) are used and the following equations are
obtained,
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© 4
J.Z(dlltj —~dj, H; @)G; sin(@x,) da
0

= (2.63a)
2 Z(dllla)+d12A n;)F;j exp(hj x;)do=0, 0<Xx, <w,
—0]=3
Ht+ Gcosxd+— n+|AFexnde
!,- ( )G cos(a X,) da [OJZ;( oA F; exp(n x,) do (2.63)

0< X, <o0 .

Because of symmetry, only x,>0 case is considered. F;(») (j=1..4) can be

determined using (2.62a-e) in terms of f,. After lengthy manipulations using

MAPLE, (2.63) equations are obtained as follows:

;(dnt j—di, H{ )G, (a)——%ﬂ—_‘.fz(t)dt:[oFm(w a)exp-iot)do , (2.64a)
Z(H ty+)G; (@)= j fz(t)dtjﬁzz(w a)expiot)do, (2.64b)
where,

Fua(0.0) =3 12 2%, (2.653)
Fios (0,2) =(:'21222D—m , (2.65b)

N;p,(@,) and Ny, (o, ) are equal to:
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1
Ny (@, @) 2505 (—d122d11 a’zdlz - d122d12a2 - d122d11w2 - d122 a’

—dy,E%dye’dy + 0?dyyF2d,E? +dpydy0lds
+ 2d12(111602‘112 + d120)2(122(1121 + d12d11w2 (2.66a)
— dzzFZdlzwzdll + Ezdlldzza)zdlz + E2d11d22(02
—dp,dyd zzdna’2 + d126(’2(111d 2F 2+ dq,d 22(1120‘2

—dj,d 22(111012 + a’zdnd 2 F 2+ dy,d 22052 )

1.
N2y (@, ) =— EI o(-d1,a’dfy +dipdye®d;, —dipdipa’ +dypdy0°
+ E2w2d22F2d12 + Ezdzzdlla)z + d11d22d12a2 (2'66b)
- a)2d22d121 + wzdzzF zdll + dzzdllaz) .

E and F are given by (2.23) and D(w,«) is given by (2.39c).

By using the residue theorem, the inner integrals in (2.64) are evaluated as described
in Section 2.2.2.1 and Gj(a) can be defined in the following form,

2 ‘ at at
G; (a):C_ss J{Gj (a,1) exp[— F}Gj (1) exp(— EHfz(t)dt. (2.67)

0

Then equations (2.64) can be written as:

4
Z(dntj —dip Hj a)G?(a,t) =Ry (1) (2.68a)
=3
4 *
Z(Hjtj"‘a)Gj(a!t): Rizo1(a.t) (2.68b)
=3
4 ok
Z(dlltj —dp Hja)Gj (1) =Ry (1), (2.68¢)
=3
4 ok
Z(Hjtj+a)Gj (a,t)=Ripp (1), (2.68d)
=3
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where,

Rigo(a,t) = - i 2.69
e 0y, EF(E2—F2) (L4 dy) | (2.69)
Rippr (1) = Rs 2.69b
e 2 Cy ERF2(E? —F2)(L+dy,) | (2.69b)
Ripp (a,t) = - Ry 2.69
B 2 Cy EF(E2—F2)(1+dy,) (2.69¢)
Ry, (@,1) = Re 2.69d
B 2k Cy EZFZ(E2 —F2) (1 +dy) (2.69d)
and
Ry = E(d1p (L+ dyp )+ dp (E2 — doy J)(dyg 1+ dyp )+ iy (F2 — iy ), (2.70a)
Ry=-F (dlz (L+dyp)+dp (FZ - dll))(dll (L+dp)+dg, (E2 - dll))' (2.70b)
Ry =—E2 (dyy +dypF 2 )(dyp L+ dyp )+ d (B2 — dyy ), (2.70c)
Re = F 2 (dyy +dpE2 )(dip (+ dyp )+ dyp (F2 — by ). (2.70d)

At this point, the formulation of the sliding mode problem is completed. The stresses
and displacement fields are derived in terms of f,. The unknown functions used in
the formulation of the sliding mode problem are given by equations (2.62) and

(2.68). For a surface crack subjected to mixed-mode loading, the stress and

displacement fields can be expressed as,

Up (Xq, X2) =Ugq (Xq, X2) +U12 (Xg, X2), X >0, X, >0, (2.71a)
Uy (Xq, X2 ) =Ugq (Xq, X2) + U2 (X1, X2), X >0, X, >0, (2.71b)
ok j (X, X2) =0 1 (X1, X2) + o j2 (X1, X2), K, j=12, x>0, X;>0. (2.71c)
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For the coupled crack and contact problem, stress and displacement fields can be

expressed as follows:
Uy (Xg, X2) =Ugq (Xq, X2) +Upp (Xg, X2) +Up3(X1, X2), % >0, X, >0, (2.72a)
Up (Xq, X2) =Ugq (Xq, Xp) +Ugp (X1, Xp) +Ugg(Xg, X2), % >0, X, >0, (2.72b)

Oy j (X1, X2) =07 j1 (X1, X)) + 0 j2 (X, X2) + 0y ja (X1, X)),

2.72¢
k,j:1,2, X1>0,X2>0, ( )

where displacement and stresses are given by (2.13), (2.15) and (2.18).

2.2.3 Derivation of the Singular Integral Equations

In equation (2.72), the stress and displacement fields for the coupled crack and
contact problem are provided. For the coupled problem, stresses and displacement

derivative are written as follows:

o2 (44.%0) j > k) Ot j kis(x.%.1) fo (D)t (2.73a)
0=l
b
o1 (X1, X5) J‘Z:kzj(xl,x2 t) f; (t)dt+J‘k23(x1,x2 t) f5(t)dt, (2.73Db)
0 = a
C;,e ai Uy (% 1 Xp) j Zk3j(x1,x2 t) ;(t) dt+ I Kag (X0, Xp,1) T (0) dt . (2.73¢)
0 Jj=

In order to determine unknown functions f,;, f, and f;, boundary conditions (2.1e),

(2.1f) and (2.1c) are applied, the following integral equations are obtained,
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d 2 b
022 (%1.0) = lim IZklj(xl,xz,t) fJ—(t)dt+XIiTOIk13(x1,x2,t) £4(t) dt =0,
2 '=1 2 a

2] (2.743)
0<x <d,
d 2 b
,0) =i Kyi(Xg,Xo,t) fi(t)dt+ li k , X5, t) f5(t)dt =0,
012 (X1,0) xZITo ‘([JZ:;‘ 2j (X1, X2, 1) £ (t) +X2|TO_£ 23(X, X2, 1) f3(t) (2.74b)
O<x <d,
d 2
C66 a T
T%ul(OiXZ)—XlllinO'([;k%(X11X21t) fi(t)dt
(2.74c)

b
+ lim ~|Ak33(xl,x2,t) fa(t)dt=f(x,), a<x,<b.
X —0
a
Due to symmetry, oy, (x;,0)=0 for f,(t)=0, f,(t)=0, f3(t)=0 and oy (x;,0)=0
for f(t)=0, f,(t)=0, f5(t)=0, hence
k12 (Xl ,0,t)=0, (2.758.)

The kernels are expressed as follows:

kij (Xl 101t) :I Klj (let! p) dpv (I =12, J =12, 3) y (2763.)
0

kij (O’XZ’t):IKij (XZ’tvp)dp! (i:31 j:1!2’3)' (276b)
0

Equations (2.73) can be rewritten as

d b
0

a
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d b
17 (%1,0) =Ik22 (x1,0,t) f5(t) dt+jk23 (x,0,t) f5(t)dt =0, O0<x; <d, (2.77b)
0

a

5 0= jkgl(o . t)fl(t)dt+jk32(o x.0) T, () dt

(2.77c)
+Ik33(0, Xy,1) fa(t)dt=f(x,), a<x,<b.

Asymptotic analyses have to be performed in order to extract the singularities in the
kernels as p approaches to infinity. The asymptotic analyses for the kernels are

given in the following section.

2.2.3.1 Asymptotic Analysis of ky1(X1, X2, t)

ki1 (X, X5, 1) is expressed as follows:
Kig (%0 %0, ) =K (xg, %o, ) + k&) (%, %p,1) . (2.78)

By using the infinite plane solution and the half-plane (x >0) solution k. and

k) are obtained. Referring to (2.25d) and (2.35), k& (x,, x,,t) is written as

) (%00 = j 8 (@, %) explior (x, ~ ) do, (2.79)

(i) — 4 i n.\P. )

B (0,%)= (dp iw+dy Ajnj) P (@)exp; X;) (2.79)
j=3

where n; (j=1234), A; and P; are given by (2.22), (2.26) and (2.35),

respectively. Changing the limits of integration (2.79a) becomes,
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kQ (x1, %5, t)_—j[Kl('l)l(w, x,) cos(@ (x; — 1))+ K (e, xz)sin(co(xl—t))]da), (2.80)
0

where,
K (@,%) =3 (@, %)+ (-0, %5) , (2.81a)
KD, (@,%:) = (82 (@, %) 48 (0, %)). (2.81b)

K&, and K&, can be expressed as,

Kl('l)1 (0, %)= Kllll (w)exp(ng X,)+ Kl(il)12 (w)exp(ng X,), (2.82a)
1('1)2 (@, %5)= Kml(a)) exp(s X,) + sz (w)expny X,), (2.82h)
and,

K (@) =[diz i 0+ dp Ag(@) Py (@) + [~ dip i 0+ Ag(-0) 1 ]P3(-@),  (2.83a)
Kipio (@) =[dip i @+ Ay (@) 0y ]Py (@) +[-dip i 0+d Ay (-0) 4Py (-),  (2.83D)
K (@) =i {d1z i 0+, Ag(@)]Ps(@) —[- dpp i @+ d, Ag(-0)n3]Ps(-)},  (2.83c)
Ko (@) =ifldpz i @+ dp A (@) 0y ]Py (@) [ dpp i @+ d iy Ay (~0) 4Py (-)}.  (2.83d)

In order to extract the singular terms, asymptotic analyses of K, and K, are

required as @ — oo . Asymptotic expansions of K, and K&, are given by,
Kl('l)l"O (,%5)= Kl('l)l"f (w)expg X,) + Kl('11°2° (w)exp(ng X,), (2.84a)

Kl('1)2°° (%)= Kl('l)zf (w)expg X,) + sz (w)exp(ng X,) . (2.84b)

By using MAPLE, asymptotic expansions are obtained as follows:
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K% (@)=0, (2.85a)

KD (@)=0, (2.85b)
K% (@) =2z, (2.850)
K D55 (@) =agp. (2.85d)

The coefficients of the expansion a,;, and a,,, are given in Appendix A by

equations (A.la) and (A.1b), respectively. Subtracting the asymptotic expansions
from the integrands in (2.80), using integration cutoff points, evaluating some of the

integrals in closed form, taking the limit as x, — 0, and after some manipulations

k& (%, %,,t)is expressed as:

. 1 a R
K (.0.0=—— X12_°t +3{0 (4. 1), (2.86)

where a,, is given in Appendix A by (A.1c) and,

A

i 1 i .
3D (4= j IKf'l)z (©0) -5 fsin(@(x; 1) do
° ) (2.87)
N I [Kl(il)z (@0)—ay [sin(o(x —t))do,
27 9
Al(l)
in which, A% is an integration cutoff point.
Referring to (2.31d) and (2.49), k& (x,x,,t) is written in the following form,
kO )= | KD (et d
11 (X, Xz, 1) 11 (et x)cos(a x;)da, (2.88)
0

where,
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) * _at) g _at
KM (et %) = Z i (a)[BJ(a’t)EXp( = j"_BJ (a,t)exp( E H (2.892)
x exp(p; %),

¢1({]J) (@)=(dy, pj+dy Dja),  (i=34), (2.89b)

and p; (j=1234), D;, and Bj/Bj are given by (2.30), (2.32) and (2.50),

respectively. K can be expressed as

Kl(i‘)(a,t,xl) {Kl(m(a)exp( F) Kl(m(a)exp(—éﬂexp(p?,xl)

(2.90)
k@]~ 2 k@ -4 lowpon),
where,
Ki1 (@)= (dyp pa +dy, Dy ) By, (2.91a)
K{plo (@) =(dy, p3+dy Dy ) By, (2.91b)
K{1 (@) =(d1p Py +d3, Dy @) By, (2.91¢)
K{1, (er) = (d1p Py +dz, Dy ) By (2.91d)

In order to extract the singular terms, K(h) is expanded into a series as a —oo.

Asymptotic expansion of K. is given by

0 0 at 0 at
K™ (ar,t, %) = KIS (a)exp(—?Jr Ps xlj + kO (a,)exp[—EJr Ps xlj
(2.92)

h)eo at h)oo ot
+ Kl(lgl () exp(—?+ P4 xlj+ Kflgz () exp(—E+ Pa X j

By using MAPLE, asymptotic expansions are obtained as follows:
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KT (@) =buo, (2.93a)

K5 (a) =Dy, (2.93b)

KM*(a)=b (2.93c)
1121 2101 .

KM (@)=b (2.93d)
1122 (&) =VB220 -

The coefficients of the expansion by, by, by @and b,,, are given in Appendix

A by (A.2). Subtracting the asymptotic expansions from the integrands in (2.88),

using integration cutoff points, evaluating some of the integrals in closed form,
taking the limit as x, —0, and after some manipulations k" (x,,x,,t) is expressed

as:

F byE  byyF  byE
kM (x 0,t)= bi1o " 20 4210 4 220 LMy 1),
(4.0 t+AxF t+AxE t+BxF t+BxE i (40 (2.94)

where A and B are expressed by (2.12), E and F are expressed by (2.23) and,

(h)

1 04,0= | (KD (., %)~ K™ (@t %) e
0

) (2.95)
4 I[Kl(f) (@ t,x)— KD (@,t,x,) |da,
A
in which, A% is an integration cutoff point.
K™ can be rewritten as follows,
(h)oo at at
Kll (a,t,X1)=b110 exp —?—Aa Xl +b120 exp —E—Aa Xl
(2.96)

+ b210 expi_%t - Ba XlJ‘f‘ b220 exp(_%t — Ba Xl J
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k® (x,,0,t) and k! (x,,0,t) are given by equations (2.86) and (2.94), respectively.

Adding these two equations kj; (x; ,0,t) is written as,

1 8%
271' Xl -1

kg (X1,0,t)= +hygs (X3, 1) + g (X, 1) (2.97)

where,

bllOF + b120E + b21OF + bZZOE
t+AxF t+AxE t+BxF t+BxE’

hyas (X1, 1) = (2.98a)

hugr O, 0) =350 04, 1) + 37 (x0.1) . (2.98h)

I8 (%, 1) and I (x,,t) are provided by equations (2.87) and (2.95), respectively.

2.2.3.2 Asymptotic Analysis of ki3(X1, X2, t)

Referring to (2.15b), k;3(%;,X,,t) is written as

a3 (%2, 0= [dhs (. 30)explio (1, ~0) (2.99%)
71'700
2
¢z (p, X1)=Z(d12 Sj+dy Nj ip)l//j (p)exp(sjXy) (2.99b)
=1

where, s;, (j=12,34) and w;(p)are given by (2.11) and (2.18), respectively.

Changing the limits of integration in (2.99a), k,; becomes,
17 .
ki (0 %2 1) = — [ [Kizt (0,32) 0500 (2 =)+ Kizz (0, x)sin(o (x; )] dp, (2.100)
0

where,
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Kz (o, %) =di3 (0, %) + iz (=p, X1) s (2.101a)
Kizo (0, %) =i (d13(p, X1) — i3 (=0, %)) , (2.101b)

Kis; and Ky, is expressed as,

Kiz1 (0, %) =Kyz11 () exp(sy X)) + Kizio (0) Xp(sz X ) (2.102a)
K132 (0, %1) =Kiz21(0) €XP(S1 X1) + Kygzo () €XP(S X1) (2.102b)
in which

Kiz11(0) =(d1p 81 +d3p N1 (0)i p) w1 (p) +(d1p 81 —dyp Ny (=p)i p)wi(-p) (2.103a)

Kiz12 () =(d1z S2 +dp No(0)i1 p) w2 () +(dip S —dop Na(=p)i p)ya(—p),  (2.103b)
Kaaz1 (0) =i{(d15 51 + g5 Ny ()i p) w1 () — (d1p 81 —dgp Ny(=p)i p)wa(-p)},  (2.103c)

(diz 85 +dy Na(p)ip)ya (o)

- (d12 Sy —d22 NZ(—p) i p) Vo (_p)}' (2103d)

Kizn (0) = i{

In order to extract the singular terms, asymptotic analyses of K, andK,;, are

required as p — . Asymptotic expansions of K;5; and K;3, are given by
Kiz1(0, %) =Kiz11(0) €Xp(sy X1 ) + Kigip (0) €Xp(sy %) (2.104a)

K13, (0, %) =K1 (0) eXp(sy %) + Kia (0) eXp(s, X ) - (2.104b)

By using MAPLE, asymptotic expansions are obtained as follows:

Kiz11(p, %) =09110 (2.105a)
K1312 (P, 1) = 9120, (2.105h)
Kiz21(0, %) =9210 (2.105c¢)
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Kiz22 (P, %) =020 - (2.105d)

The coefficients of the expansion g;15, 9120, 9210 aNd g5 are given in Appendix

A by equation (A.3). Subtracting the asymptotic expansions from the integrands in
(2.100), using integration cutoff points, evaluating some of the integrals in closed

form, taking the limit as x, -0, and after some manipulations ky5 (X;,X,,t) IS

expressed as
kg (Xq.0,t) = hys (Xq,t) + hyss (X1, 1) (2.106)
where,

Xit? (AQuio + BOio) t° g
1 (A2x12+t2)(Bzxi2+t2) (A2x12+t2)(82x12+t2)

hyss (Xg,t) =—— ., (2.107a)
2n N X; AB(B Ji10 + Aliz) _ Xit? (B® 910 + A% 920)
(A2 xl2 +t2)(B? x12 +12) (A2 x12 +t2)(B? xl2 +12)
g (Xq,t) = J131 (g, 1)+ J132 (X1, 1) - (2.107b)
g, IS given in Appendix A by equation (A.3e) and,
Jia1 (X, 1) =
A131
1
= [ K510, 30) = (110 exP- Al ) + G120 exP(-B| ) Jeos(ot dp
70 (2.108a)
1 0

[K131(,0: X1) —(9110 exp(-A|p|Xy) + U120 EXP(B|p| Xl)) ]COS(Pt) dp,

31

+_
2

53



Jiz2 (%o, )=

1 A132

Tor I[Klsz (P, X1) —(9210 exp(—A|p|X) + 920 EXPB| | Xl)) ]Si”(/?t) dp
70 (2.108b)

1 7 .
T I[K132 (o, Xl)_(g 210 EXP(A|p| X1) + G220 €XP(-B| | Xl)) ]sm(pt) dp,
A32

in which, A5 and A5, are integration cutoff points.

2.2.3.3 Asymptotic Analysis of kya(X1, X2, t)

Koo (X, X5, t) IS expressed as follows:
Koo (X4, %2, ) =KD (%, %o, £) + kD) (%0, %5, 1) (2.109)

By using the infinite plane solution and the half-plane (x; >0) solution k{) and k)

are obtained. Referring to (2.53e) and (2.62), k%) (x,,x,,t) is expressed as,

k$ 04 :Xz,t):% [#2 @ x2)explo (x, - D) do, (2.110a)
) 4
0 (@,%) = Z(nj +iwA[)Z (@)exp(; X,) | (2.110b)
j=3

where n; (j=1234), A; and z; are given by (2.22), (2.26) and (2.62),

respectively. Changing the limits of integration (2.110a) becomes,

0

k2 (4. xZ,o:%! K80 xa)c0st0 04 ~0)+ K (0 x)sin sy - )] doy 1

where,
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K1 (0,%,) =43 (0, %) + 853 (-, %), (2.112a)
KD, (@,%)= 162 (@, %) 48 (-0, %) . (2.112b)

K{) and K{), are expressed as,

K 31 (0, %) =K (@) exp(ng xp) + Ky, (@) exp(ny %), (2.113a)
K, (@,%2) =K Sy (@) exp(ig ;) + KD,y (@) exp(ny x,) (2.113b)
in which

K1y (@) =[ng +i0Ag(0) 1Z5() +[ng — 10 Ag(-0) 1Z5(-00) (2.114a)
Ko (@) =[ny +i0A () 124(0) +[ng —i0A (-0) 124 (-0), (2.114b)
KBy (@) =i {ng + 10 Ag(@) 1Z5(0) [ — 10 Ay (-0) 125 (-a)}, (2.114c)
Ko (@) =i{[ny +i0A(@)]Z4(@)-[ns — 0 A (~0) |24 (-0)}. (2.114d)

In order to extract the singular terms, asymptotic analyses of K{), and K{), are

required as @ — 0. Asymptotic expansions of Kéiz)l and K2 are given by

K (0, %) =KD () exp(ng x,) + K (@) exp(ny x,) (2.115a)
K (0, %) =K () exp(ng X, ) + K52 (w) exp(ny x,) . (2.115b)

By using MAPLE, asymptotic expansions are obtained as follows:

K (w)=0, (2.116a)

Kt (@) =0, (2.116b)
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Kélz)zoi (@) =My, (2.116c¢)
K {55 (0) =My - (2.116d)

The coefficients of the expansion m,,, and m,,, are given in Appendix A by
equations (A.4a) and (A.4b), respectively. Subtracting the asymptotic expansions
from the integrands in (2.111), using integration cutoff points, evaluating some of the

integrals in closed form, taking the limit as x, — 0, and after some manipulations
k) (x;,x,,t) is expressed as

1 my

kY (x,,0t)=—
2 (%1,0,1) 27 ¥, —t

+38,(x, 1), (2.117)

where m,, is given in Appendix A by equation (A.4c) and,

(i)

i 1 ffea :
0= HKSZ)Z (0.0)-my Jsin(e (x, ~1)de
0

) (2.118)
o j KD (0.0)-myq fsin(@(x, — 1)) do,
)

in which, A%, is an integration cutoff point.
Referring to (2.58¢) and (2.67) k& (x,x,,t) is written in the following form,
K (x1, %p.1) = ng';) (.1, %,) cos( X,) der (2.119)

0
where,

* t ok at

4 (H-t-+a){G-(a,t)exp(—a—j+G- (a,t)exp(——ﬂ

K (atx)=> """ J F J E (2.120)

=3 xexp(tj xq),

56



tj, (i=1234),H;,and G;/G] are given by (2.57), (2.59) and (2.68), respectively.

K can be expressed as,

ot ot
K (a,t,x;) = {Kég)n (@) exp(— ?] + KO (a,) exp(— Eﬂ exp(ts %)

(2.121)
| ki @enn(- L |+ ki @en( -4 | fent, )

where,

K (@) = (Hats +a) G, (2.122a)

K)o (@) = (Hats +a) Gy, (2.122b)

K®) (@) = (Hyty +a) Gy, (2.122¢)

K, (@) =(Hyty +@) Gy . (2.122d)

In order to extract the singular terms, K is expanded into a series asa —»o.

Asymptotic expansion of K is given by,

© © at © ot
K™ (e, t, %) = K (a)exp(—?ﬂ3 x1j+ K5 (oz,)exp(—EH3 le

(2.123)
+ Kég){f () exp(— a?t +t, le+ Kgg);; () exp[— %t +t, xlj,
By using MAPLE, asymptotic expansions are obtained as follows:
K (@) =i, (2.124a)
K315 (e2) = Mg, (2.124b)
KT (@) =g (2.124¢)
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K2 (@) = Ngno (2.124d)

The coefficients of the expansion ny;,, Nnyyo, Nyye @Nd N,y are given in Appendix A

by equation (A.5). Subtracting the asymptotic expansions from the integrands in

(2.119), using integration cutoff points, evaluating some of the integrals in closed
form, taking the limit as x, —»0, and after some manipulations k{} (x,,x,,t) is

expressed as:

Ny F Nyoo E Noyio F Noop E
110 4120 4 1210 4 220

+IW (x,1), .
t+ AxF t+AxE t+BxF t+Bx1E} 2 (1) (2.125)

k$D (x4.,0,1) ={

where A and B are given by (2.12), E and F are given by (2.23) and,
A7
1R 0an= | (K (.t %)~ K™ (@t %) e
O (2.126)

©
h)oo

+j[K§g)(a,t,x1)—K§2 (at,%) |de,

(h)
2

inwhich A is an integration cutoff point. K5 can be rewritten as follows:

w t t
K™ (@t %) = Nyyo EXD(—% - Aa X1j+ M2o exp(—% - Aa le

at at (2.127)

k& (x,0,t) and k& (x,0,t) are provided by equations (2.117) and (2.125),

respectively. Adding these two equations k., (%, ,0,t) is written as,

1 m
K2z (X1,0,1) = X Z_Ot +haps (Xg, 1) + ot (Xq,1) (2.128)

where,
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Ny F N,y E Ny F N,,o E
25 (0.1 L+AX1F t+AxE t+BxF t+BxE ( )

haar (%, 1) = 3505 (0, 1) + 355 (xq.1). (2.129b)

I8 (1) and I8 (x,,t) are given by equations (2.118) and (2.126), respectively.

2.2.3.4 Asymptotic Analysis of ky3(X1, X2, t)

Referring to (2.15¢) k,3(xq,X,,t) IS written as

s 0 30,0 [ s 30) expip (%2 - V), (2.1300)
2

P23 (P, Xl):Z(i p+Njs; )l//j (P)exp(s;Xy) (2.130b)
-1

where, s; (j=1234) and w;(p) are given by (2.11) and (2.18), respectively.

Changing the limits of integration in (2.130a), k,;becomes

Kag (X, X, 1'[):%_“'931(/0: X1) €0s(p (X, — 1))+ Koz (0, 1) sin(p (X, —t)]dp,  (2.131)
0

where,
Kaz1 (P, X1) =3 (0, X)) + o3 (=p, X1) , (2.132a)
Kazo (0, %) =i (#23 (0, %) — o3 (=P, X1)) - (2.132b)

Ko, and K,g, are expressed as,

K231 (0, %1) = K11 (0) €Xp(Sy Xq) + Kz (0) €XP(S2 X1) (2.133a)
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Kas2 (0, %1) =Kz1 (0) €XP(Sy X1) + Kzzo (0) €XP(S3 X1 ) (2.133b)

where,

Ka11(p) =i p + N1 (0) 81 )w1(0) + (=i p + Ny (=p) 81 )1 (=p) , (2.134a)
Kaa12(0) =i p +No(0) 52 )12 (0) + (=i p +Np(=p) 2 )y (=p), (2.134b)
Kaza1(0) =il(i p + Ny (p) s )y (0) = (=i p + Ny (=p) st )y (=)}, (2.134c)
Kasz2 (0) =il{i o +N2(0) 52)w2 () = (=i p +No(=p) 82 w2 (=)} (2.134d)

In order to extract the singular terms, asymptotic analyses of K,;; andK,s;, are

required as p — oo. Asymptotic expansions of K,;, and K, are given by,

K231(0, %) =K 3311 (p) exp(s; Xg ) + K315 (0) €Xp(S, %) (2.135a)

K232 (0, %) = K301 (0) €XP (81 X1 ) + K300 (0) €XP(S, X ) - (2.135hb)

By using MAPLE, asymptotic expansions are obtained as follows:

Kza11(0. %) = f110 (2.136a)
K212 (0, X1) = f120, (2.136b)
K321 (0, %) = fa10 (2.136¢)
KZa22 (0, %) = T - (2.1364d)

The coefficients of the expansion f;;5, fi0, fo0 @nd f,,, are given in Appendix

A by equation (A.6). Subtracting the asymptotic expansions from the integrands in
(2.131), using integration cutoff points, evaluating some of the integrals in closed

form, taking the limit as x, -0, and after some manipulations kys (X;,X,,t) i

expressed as:
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kas (X1,0,8) = hazs (X, 1) + hozt (X1, 1), (2.137)

where,
Xat? (A figo + B fip) 3 XPH(B® farp + A% Fap0)
1 [ (A2 X2 +t%)(B® x2 +t%) (A% x2 +t2) (B2 xZ +t?)
hazs (X1,t) =—— 3 5 f f , (2.138a)
3 " Ty LA AB (B fy30 + Afip)
(A% x2 +t2) (B2 x2 +t2) (A% x2 +t2)(B? x2 +t2)
1 1 1 1
hogt (X1, 1) = J 31 (Xg, ) + J 030 (Xq, 1) - (2.138h)

f,o 1S given in Appendix A by equation (A.6e); A and B are provided by (2.12); and,

Jo31 (X, )=

1 A231

Py I[K231(P, Xl)_(fllo exp(-A|p| x;)+ f100 eXp(B|o| Xl)) ]COS(Pt)dP
7 (2.139)

_[ Koz1 (0, %) — f110 exp(-A|p| x;)+ f1o0 eXp(B|o| Xl)) ]COS(Pt) dp,

Jo32(Xp, )=

1 A232

o j[Kz32 (P %)~ (f210 €XPEA| o %) + Fr90 €XPEB o] X)) Jsin(otydp
0 (2.139b)

1 7 .
o I[K232 (o, Xl)_(f210 exp(-A|p| X))+ fon0 eXpB|p| Xl)) ]Sm(/?t) dp,

32

in which A3 and A,s, are integration cutoff points.

2.2.3.5 Asymptotic Analysis of kz;(X1, X2, t)

Kgp (X1, X5, 1) IS expressed as follows:

K (%, X, ) =k (x1, %0, ) + kS (%, %5, 1), (2.140a)

61



By using the infinite plane solution and the half-plane (x, >0) solution, k$) and k!

are obtained.. Referring to (2.25f) and (2.35), k{? (x,%,,t) is written as

) 030, D= j¢"> (%) expli (g ~ 1) do, (2.141a)

4
2 (@.32) =D _n; Py(@exp; %2 | (2.141b)

i=3

where n; (j=12,3,4) and P; are given by (2.22) and (2.35), respectively. Changing

the limits of integration (2.141a) becomes

(@, x3) cos(e (X, —t))

e t)__J o + K, (@,%5)sin(@ (4 ~1) for @)
where,

K21 (@,%2) =45 (0, %,) +4$) (~@,%,) , (2.143a)
KD, (@.%) = ilpD (@.%) 4 (-0, %)), (2.143b)
K and K, can be expressed as

K (@, %) =K (@) exp(ng x,) + K&, (@) exp(n, x,), (2.1444a)
K3(12 (@, %)= Kém(a)) exp(nz X, )+ K3122 (w)exp(y X5), (2.144b)
and,

K211 (@) =3 [Py(0) + Py(-)] , (2.145a)
K& (@) =ny [Py (@) + Py (-e)] (2.145b)
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Kt (@) =ing [Ps(@) - P3(-0)] , (2.145c)
K{2ss (@) =ing [Py (@) — Py (-] (2.145d)

In order to extract the singular terms, asymptotic analyses of K{}, and K, are

required as o — oo . Asymptotic expansion of K{), and K{), are given by
K3(?1°° (w0, %5)= Ks(,il)f; (w)exp(ng X,) + K3(il)1°§ (w)exp(ny X,), (2.146a)
KDy (@,%5) =K D51 (0) expns Xp ) + K {5 (@) exp(ny Xp) - (2.146b)

By using MAPLE, asymptotic expansions are obtained as follows:

K (@) =hyyo, (2.147a)
K3(i1)10§ (@)=hyz, (2.147b)
K{Dor (@) =0, (2.147¢)
K {255 (@)=0. (2.147d)

The coefficients of the expansions h;;, and hy,, are given in Appendix A by

equation (A.7). Subtracting the asymptotic expansions from the integrands in

(2.142), using integration cutoff points, evaluating some of the integrals in closed
form, taking the limit as x, -0, and after some manipulations k) (x,%,,t) is

expressed as:

1 X3 EF (F hyyo + E hipo) Xat? (Ehygo + F hiz)
27| (B2 x5 +t%)(F% x5 +t2)  (E? x5 +1t%)(F2 x3 +t?%) (2.148)

k& (0,x,,t)=
+38 (x,,1),

where E and F are given by (2.23) and
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(i)

J?(,ll(xz t)— H 311(a) Xy)— h110 exp(ng X,) +hypo expng x2)) ]cos(a)t)da)

(2.149)
i I[Ké?l(w Xz)— h110 exp(nz Xp) +hyzo eXp(ny Xz)) ]cos(a)t)da),
(')

in which A{), is an integration cutoff point.

Referring to (2.31f) and (2.49) and (2.50), k{V(x;,x,,t) is written in the following

form,

K _[km i q

31 (X, %o,1) 31 (.t xg)sin(a x,) de, (2.150)
0

where,

KD (@t x) =

[B’;(a,t) exp(— %tj-i- B} (a.t) exp(— %tﬂ exp(p; ). (2.151)

—
] S
w

p; (j=1234) and B}/B] are given by (2.30) and (2.50), respectively. K{ can

be expressed as,

at at
(h) (a,t,%) = {Ke(,&(a) exp(— F}L Kéﬁz (a,)exp(— Eﬂ exp(p; %)

(2.152)
| kh@en -2 ek @exe - 2 esatourn),
where,
KM, (@) =-aB;, (2.153a)
KD, (@) =—a B3, (2.153b)
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K {1 (@) =—a By, (2.153¢)
K, (@) =-aBy . (2.153d)

In order to extract the singular terms, K" is expanded into series as a —oo.

Asymptotic expansion of K is given by

h)oo h)oo at h)eo at
Kél) (a,t,xq) = Ks(lil () exp(—F + ps3 xlj+ Kéﬁz (a,)exp(—E + ps3 xlj

ot » (2.154)
+ Ké?%‘f () exp(— s + Pg x1j+ K3122 () exp(— = + Py xlj
By using MAPLE, asymptotic expansions are obtained as follows:
K2 (o) =1 (2.155a)
3111 \@) =110 .
K§5 (@) =liz0, (2.155b)
Kt (@) =1 (2.155¢)
a121 (@) =l .
3(22;O (a) =lp0- (2.155d)

The coefficients of the expansion 1,0, lip9, oo @nd Iy, are given in Appendix A

by equations (A.8a), (A.8b), (A.8¢c) and (A.8d), respectively. Subtracting the
asymptotic expansions from the integrands in (2.150), using integration cutoff points,

evaluating some of the integrals in closed form, taking the limit as x; — 0, and after

some manipulations k{ (x;,x,,t) is expressed as

x§F252|0 . x2t2(F2I10 +E2I20)
(E2xZ +t%)(F2x3 +t2)  (E®x3 +t?)(F?x3 +t )

kg (0,%7,1)= IM(x1), (2.156)

where E and F are given by (2.23) , I, Ipand 1, are given in Appendix A by
equations (A.8e), (A.8f) and (A.80), respectively and
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=

(h)

J?(,rl])(xz,t)z

{Kég) (a,1,0)— ['10 exp(— %tj +1y exp[— %Jﬂ sin(a x,)da

+ j {Ks(g) (a,t,O)—(ho exp(— %t) +1y exp[— %tjﬂsin(a X,)da.

(h)
1

(D'—.H

(2.157)

in which A" is an integration cutoff point.

k& (0,x,,t) and k{’ (0,x,,t) are given by equations (2.148) and (2.156),

respectively. Adding these two equations ks, (0, X,,t) IS written as,
kag (0, X3,t) =hgys (X2,1) + ha1¢ (X2,1) (2.158)

where,

1 | X3 EF (F hyyy + E hysg + 27EF1,)
has (o, 1) =—— 2.2  12\(22 2 12
(B x5 +t7)(F“ x5 +t%)

27
+L{X2t2 (Ehygg + F hygo +27(F 2l + E%lyy)) } (2.159a)

2r (E? x§+t2)(F2x22+t2)

havt (%o, 1) = 38 (%0, 1) + 350 (x5, 1) - (2.159b)

38 (x,,1) and I (x,,t) are provided by equations (2.149) and (2.157), respectively.

2.2.3.6 Asymptotic Analysis of ksy(X1, X2, t)

Kso (X1, X5, t) IS expressed as follows:
Kap (X1, X2, 8) =k$) (%, X0, 0) + kY (%1, %5, 1) (2.160)

By using the infinite plane solution and the half-plane (x, >0) solution, k{) and k{}

are obtained. Referring to (2.53f) and (2.62), k) (%, x,,t) is written as
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i 1 h i
k& (%, X, 0= j o) (0,%;) explio (¥, —t))dw, (2.161a)

4
85 (@)= Y 0 Zj(@)exp; x,) (2.161b)

i=3

where n; (j=1234) and Z; are given by (2.22), and (2.62), respectively.

Changing the limits of integration (2.161a) becomes

O ) zi T K &) (@.%,) cos(e (¥, _t)ii) | G0, @162
% + K3z (@, X5) sin(w (X, —1))

where,

K1 (@,%:) =9 (0,%5) + 453 (-, %5) (2.163a)

KD, (%)= (82 (@, %) -4 (-0, ,)- (2.163h)

K, and K, can be expressed as,

Kéiz)l(a), Xp)= Kéiz)ll (w)exp(ns X,) + K,o(,iz)12 (w)exp(ny X5), (2.164a)

K ) (@,%5) =K, (@) exp(ns X,) + Ky, () exp(ny X,) (2.164b)

and,

K (@) =n3[Z3(@) +Z3(-0) ], (2.165a)

K (@) =n,[Z4(@) +Z4(-) ], (2.165h)

K Do (@) =ing [ Z5(0) ~Z5(-) ], (2.165¢)

KO, (@) =in, [Z,4(@)-Z4(-w) ] . (2.165d)
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In order to extract the singular terms, asymptotic analyses of K{), and K{), are

required as o — oo . Asymptotic expansion of K{), and K{), are given by

K3(i2)1°o (@,%p)= K:giz)f‘l’ (w)exp(ns X,) + Kéiz)f; (w)exp(ny x,), (2.1664)
Kéiz)zw (@, %5)= K?Eiz)zoi (w)exp(ns X, )+ Kéiz)z"; (w)exp(ny X,). (2.166b)

By using MAPLE, asymptotic expansions are obtained as follows:

K1 (@)=0, (2.167a)
Kr5 (@) =0, (2.167b)
K s (@) =T10, (2.167c)
K os (@) =Tz (2.167d)

The coefficients of the expansion r,,, and r,, are given in Appendix A by
equations (A.9a) and (A.9b), respectively. Subtracting the asymptotic expansions
from the integrands in (2.162), using integration cutoff points, evaluating some of the

integrals in closed form, taking the limit as x;, — 0, and after some manipulations

k&) (x1,%,,t) is expressed as:

K ® _ 1 X5 t(F %rigg + E %) t°ry0
3 (0,%z, 1) =——— 202 2ve2.2 o2y o202 i2ve2.2 a2
27| (EX5 +t9)(Fx5 +1%)  (E“X5 +t°)(F x5 +t%) (2.168)

+‘]3(’i2)2(X21t)1

where r,, is given in Appendix A by (A.9c) and
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(i)

\]3(,22(x2 t)_—— I[Kézz (0, %5)— r210 exp(ng X,)+ oo €Xp(ny x2)) ]sin(a)t)da)

(2.169)
- JA[K;E,IZ)Z (@, %3) - r210 exp(nz X2) +az0 €XP(N4 Xz)) ]Sin(wt)dCO,
(l)
in which A{), is an integration cutoff point.
Referring to (2.58f) and (2.67) kY (x,,x,,t) is written in the following form,
K (%, X, 1) = ng';) (.1, ;) cos( X,) der (2.170)

where,

K (a.t, %) = az {G (a, t)exp[——j+G (a, t)exp(——tﬂexp(t x) . (2.171)

j=3

t; (i=1234),and G}/G] are given by (2.57) and (2.68), respectively. K can

be expressed as,

K (a,t, %) = {Kézn(a)exp( FJ K3(212(a)exp[—%tﬂexp(t3xl)

(2.172)
K ( (h) _at
K3 (@) exp| — 3 + K35, () exp 3 exp(t, x;),
where,
K (@) =a Gy, (2.173a)
K3(212(0‘) a Gy, (2.173b)
K3 (@) =a Gy, (2.173¢)
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KO (@) =a G, (2.173d)

In order to extract the singular terms, K{ is expanded into series as a—o.

Asymptotic expansion of K{Y is given by

h)oo h)oo at h)oo at
K:Ez) (a,t, %) = Kézil () exp(—F +1t3 x1j+ K3(ziz (a,)exp(—E +13 xlj

at ot (2.174)
+ Kégg‘f () exp[— = +1t, x1j+ K3222 () exp(— = +1y xlj,
By using MAPLE, asymptotic expansions are obtained as follows:
K3(211 (@) =510, (2.175a)
K (@) =S10, (2.175b)
K (@)=s (2.175¢)
3221 210

KP(,Q%OZO (@) =S20- (2.175d)

The coefficients of the expansion s;;5, Sip0, Sp19 @Nd S,y are given in Appendix A

by equations (A.10a), (A.10b), (A.10c) and (A.10d), respectively. Subtracting the
asymptotic expansions from the integrands in (2.170), using integration cutoff points,

evaluating some of the integrals in closed form, taking the limit as x, — 0, and after

some manipulations k{} (x;,x,,t) is expressed as

X3t EF(Esyy + FSy) N t3 (Fsyo + ESyp)

k&) (0,x,,t)=
X2 (E2x2 +12)(F2x2 +12) (sz§+t2)(|:2x§+t2)

IV,  (2.176)

where E and F are given by (2.23); s;pand s,pare given in Appendix A by equations

(A.10e) and (A.10f), respectively; and
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%

J?(,fz‘) (Xy,t)= Kéfz‘) (a,1,0)— [510 exp(— %tj + Sy exp(— O{EtD cos(a X, )da

(2.177)

Ks (h) (a,t,0)— (510 exp(— %tj + S exp[— %tD cos(a x,)da,

J’_

—8 Ot—

%

in which Al is an integration cutoff point.

k) (0,x,,t) and k{) (0,x,,t) are given by equations (2.168) and (2.176),

respectively. Adding these two equations ks, (0, x,,t) iS written as

kaz (0, Xz, t) =3y (X2,1) + hay (X2,1) (2.178)
where,
h _i X22t(_F2 r210 — E2 r220 + 272' EF(ES:[O + F 520))
325 (X2, 1) = 202 12V (E2 2 , 42
2r (E° x5 +t°)(F° x5 +t%)
1| =ty +27(FSyg + ESyp)) (2.179a)
to- 2.2 .2 2.2 .2
27| (E® x5 +t%)(F° x5 +t%)
hapt (%2,8) = 353 (X0, 1) + 353 (x5.1) . (2.179b)

30 (x,,t) and 3P (x,,t) are provided by equations (2.169) and (2.177),

respectively.

2.2.3.7 Asymptotic Analysis of ksz(X1, X2, t)

Referring to (2.15d) kg3(X, X,,t) IS written as

kas (%1 %) == [ s (0 %0) explip (X, — ) dp, (2.1804)
272_0o
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2
b33 (P X)) =ip D v (P)exp;x) | (2.180b)
=1

where, s; (j=1234) and w;(p) are given by (2.11) and (2.18), respectively.

Changing the limits of integration in (2.180a), k,; becomes

kaz (Xq, Xz-t)zij'[Km(Py X1) €0s(p (Xp —1))+Kazo (0, X1)sin(0 (X, ~t)] dp,  (2.181)
0

where,
Kaz1 (0, %) =33 (0, X1) + P33 (=P, X1) (2.182a)
Kaz2 (0, %) =1 (¢33 (0, X1) — ¢33 (=, X1)) - (2.182Db)

Kss; and Kgg, can be expressed as,

Kz (2 %1) =Kaz1 (0) exp(sy X,) + Kgaio () eXp(s, %) (2.183a)
Kz (0. %) = Kgaz1 (0) Xp(sy 1) + Kagoo (0) €XPS; X4) (2.183b)
and,

Kaaw (0) =i plva(p) —w1(-p)], (2.184a)
Kaa1o () =i plw2 () — w2 (-p)] (2.184b)
Kaga1(p) =—ply1(0) + v (-p)] . (2.184c)
Kasz2(0) =—plw2 () + w2 (-p)] - (2.184d)

In order to extract the singular terms, asymptotic analyses of K3 andKg,, are

requires as p — oo . Asymptotic expansion of K3, and Ka,, are given by

K331(0, %) =K3311 (0) eXp(sy X1) + K331 (0) €XP(S, %q) (2.185a)
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K332 (0, X1) = K301 (0) €XP(Sy X1 ) + K 3300 (0) €XP(S, Xy ) - (2.185b)

By using MAPLE, asymptotic expansions are obtained as follows:

Kaan (o %) =€ (2.1864a)
K312 (0, X1) =€129 (2.186b)
K3321(0, %) =€210 (2.186¢)
K322 (P X1) =€290 - (2.186d)

The coefficients of the expansion e;;5, €50, €210 aNd ey are given in Appendix A

by equations (A.11a), (A.11b), (A.11c) and (A.11d), respectively. Subtracting the
asymptotic expansions from the integrands in (2.181), using integration cutoff points,

evaluating some of the integrals in closed form, taking the limit as x, — 0, and after

some manipulations ks; (X, , X,,t) 1S expressed as

1
ks3(0,Xp,t) =—

> (i}{%}é(xz —t)+ hgst (X5,1), (2.187)

where e, and e,, are given in Appendix A by equations (A.1le) and (A.11f),

respectively and
hazt (Xo,1) = J331 (X2, 1) + J332 (X2, 1), (2.188)
where

A33l
3331(X21t)=i J.[K331(p10)_e10 Jeos(p (x, —1))dp
0

3 (2.189%)
1

o J[K331(P:0)—elo Jeos(o (x, ~t)dp,
T

31
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A332
Issa(a )= [[Kan(p0) ez Jin(o (x, ~)dp
0

(2.189b)

# o [[Kasz (000 Jsin(o(x; ~0)dp,
d A332

in which Agq,and Agq, are integration cutoff points.

2.2.4 Singular Behavior of the Solution

By using the expressions given in Section 2.2.3 for the kernels, integral equations

provided by (2.77) are written as follows:

d

1 a

03 (%1,0) = J[z < Z_Ot +hypq (X1, ) + hyg ¢ (let)} f (t)dt
5 1

. (2.190a)
# [ [ 000+ gy (] fs 0t =0, 0<x <d,
a
‘ 1 m
o1 (%,0) = I{Ex—zotﬂ“hzzs (X1, 1) +hoy s (Xlit)j| f,(t)dt
-
o (2.190b)
+j[h235(x1,t)+h23f(xl,t)]fs(t)dt=o, 0<x <d,
a
Cee O ‘
%a_ul O, XZ):I[h3ls (Xp,1) +hgy¢ (Xzit)]f1(t) dt
+ [ [hgzs (%2, 8) + g (62, B)]f2 () dt
(2.190c)

+ i
27 X2 -t

D —— T O O

{ 1 [ei}r[%jg(xz — 1)+ hgss (xz,t)}fg(t)dtz f(x7),

a<X,<b.

74



In these integral equations, there are Cauchy kernels and Fredholm kernels. hyg (x",1)
and hy (x7,1) (x =% for i=1,2and x"=x, fori=3) are given in Section 2.2.3.
hijs (x",t) are the Cauchy kernels that become unbounded as x” and t go to the end

point simultaneously. hj; (x",t) are bounded Fredholm kernels. The solution of the

singular integral equations is obtained through the function-theoretic method as
described by Dag [40] and Erdogan [43]. In this analysis, a>0case is considered.

For a>0, unknown functions f; can be expressed as

£ (%) =x% (d = x ) Fy(x), 0<x <d, (2.191a)
fo (%) =% (d =% )2 Fp (%), 0<x <d, (2.191b)
fa(Xp)=(Xp —a)” (b=, )’ F3(x,), a<x, <b, (2.191c)

where F; (j=12,3) is Holder- continuous in its respective interval and it is assumed

that —1<R(4,,60,,4,4,,0,8)<0. The following sectionally holomorphic functions

are considered:

d
_1 60
AR l_t =t (2.192a)
d
1)
PRERE LU 21920
3 rdt-z '

The singular behavior of y;(z), (j=12,3)around the end points is given as follows

(see, for example Dag [40] and Erdogan [43]):
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exp( 7i6;) ,6, 1

= —F,(0) (d)* F,(d)(d —d)* +F (2),
PA=TROO gy RO Gy RO (21930)
3 4, EXPCib,) 202 T (-
v2(@) =R O)(a)* = Tt t  B @) (@) o 12)“ DR @D 5 193

o p EXp-riw) ; —p)#
V@)= ROy G ROE AT G DT a3

+ F3 (2).

The function F,, (n=1,2,3) is bounded everywhere except possibly at the end points

where it may have a weaker singularity. Using Plemelj formulas, equations (2.193)

can be expressed as follows:

d
ljfl—()t()oltz—Fl(O) (d)™ cot(r ;) x + Fy(d) (d)% cot(r 1) (d — %)™
1

Tdt—
0

(2.194a)
+Hq(x), 0<x <d,

d
1760 4 0 6, VRV
ﬂj—t_X1dt— F,(0) (d)* cot(r 6,) x% + F, (d) (d)% cot(r 1,)(d — x;) (2.194b)

+H,(x), O<x <d,

d
i f3(t) _ _\B _a\@
ﬂ!t_xz dt=—F,(a) (b a)” cot(z w) (x, — a) 2190

+F;(b)(b-a)” cot(;zﬂ)(b—xz)ﬂ +H3(x,), a<x,<b.

In their respective intervals, H,(x), H,(x;)and H;(x,)are bounded and at the end

points they have weaker singularities similar to F"(z)in equation (2.193). It is

assumed that complex variables z;, z, and z, satisfy the following conditions:
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z; ¢ (0<x <d), (2.195a)
z, ¢ (0O<x <d), (2.195b)
Z3 # (a<Xy <Db). (2.195c¢)

If these conditions are satisfied, w;(z;), w,(z,)and w4(z3) are holomorphic. Thus,

following equations are written,

d
1 ()
Wl(zl)_;jth, (2.196a)
=120 2.1960
yalis _ﬂot—zz ' @ )
va(z ):li fs® 4 (2.196¢)
3173 T Ot—Z3 '

Apart from the Cauchy integrals, all kernels of the integral equations except k,,and
k,, are bounded. The singular behavior of the termsh;;;and h,,, in kernels k,,and
k,, , respectively can also be expressed by using (2.98a), (2.129a) and (2.196) in the
following form:

d
hyqe (X1,8) f () dt = z|by 0 Fwq (=A% F) +bon E, (AXE
'([ h1s (%, 1) 1 (1) ”[ 110 Fwa( 1F) +bip By ( 1E) (2.19761)

+by10 Fy (=BX.F) + by Ev/l(_BxlE)]’

d
'([ Nggs (X1, 1) F2 (€) dt = 7z[ngy0 Fyp (A F) + Nigg Eyy (—AXE) (2.197h)

+Ng10 Fywp (=BX F) + Ny Eyy (_BxlE)]'

By using (2.193a) and (2.193b), singular behavior of h;;and h,,. near x, =0 are

obtained as follows:
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d
T
!hlls (X, 1) fr () dt = T [bno F(AF)% + by, E(AE)%

' (2.198a)
by F(BF)® + by E(BE)® | (d)% (x0)% F (0),

d
jhzzs (x, ) fo(t)dt = - [nllo F(AF)% +npy0 E(AE)*
0

sin(z) (2.198b)

410 F(BF)® + o E(BE)® | (d) (%)% F (0).

In equation (2.198), = sign implies that the bounded terms are not included. By
using (2.194) and (2.198), the singular terms of the integral equations are written as

follows:

T
sin(z6,)

+byso F(BF)® + by EBE)* [J0)®  (21992)
— Fy(d)(d)% cot(zh, ) (d — x;) ™,

o (¥ ,0) = Fl(oxdﬂi{"% cot(zd;) - [bm F(AF)% + by, E(AE)%

15 (%,.,0) = F, (0)(d)™ {% cot(z6,) - [”110 F(AF)% +ny, E(AE)®

sin(z6,)
+Ng10 F(BF)?% +nyq E(BE)gz]}(xl)"z (2.199b)
— Fyp (d)(d)% cot(za,)(d — x;)7

%iul (0,x%,) ;%[Fg(a)(b—a)ﬁ cot(zw) (x, —a)”

(2.199c¢)
—F3(b)(b-a)” cot(zp) (b - Xz)ﬂ]Jf e%O Fa(X2)(x; —a)” (b— Xz)ﬂ :

In order to obtain the unknown exponents, the characteristic equations are derived by
using (2.199). Multiplying (2.199a) by (x,)"% and letting x, —0 following equation

is obtained,
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z [bno F(AF)% + by E(AE)®

sin(zt}) (2.200)
+b210 F(BF)Q1 +b220 E(BE)HI] :0,

a
%cot(;r@l) -

and multiplying (2.199a) by (d-x,) ™ and letting x, —d following equation is

found,
cot(z ) =0. (2.201)

F,(0)and F,(d) are assumed to be nonzero. Applying a similar procedure used for

equation (2.199a), following equations are obtained by using equation (2.199b),

T
[”110 F(AF)% +ny,, E(AE)?

sin(76;) (2.202a)
+ n210 F(BF)Q2 + n220 E(BE)QZ] =O,

m
% cot(z0,) —

cot(zd,) =0. (2.202Db)
Again it is assumed that F,(0) and F,(d) are nonzero, Multiplying (2.199c) by
(x, —a)~ and letting x, —a following equation is obtained

e
cot(r w) = —eﬂ : (2.203)
20

and multiplying (2.199c) by (b—x,)™ and letting x, —b another characteristic

equation to determine g is obtained as follows:

cot(z ) = %0 . (2.204)
20

Also, F;(a) and F;(b) are assumed to be nonzero. From equations (2.201) and
(2.202Db), it follows that 4, = 4, =-0.5. The strengths of singularity at the ends of the
contact area are given by equations (2.203) and (2.204) and e, and e,,are given in

Appendix A by equations (A.11e) and (A.11f), respectively. Due to the fact that for
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f, and f, there is no singularity at x, =0, they can be expressed in the following

form (see Delale and Erdogan [3]):

fi(t) = e O<t<d, (2.205a)
Fa (1)

f(t)=—22==, O<t<d. _

2 (t) 4t <t< (2.205b)

2.2.5 On the Solution of the Integral Equations

The singular integral equations do not have closed form solutions. Therefore a
numerical method has to be developed. Flat, triangular and circular stamps are
considered in the solution. In this study, Jacobi polynomials are used to reduce the
singular integral equations to systems of linear algebraic equations. The unknown
functions f;, f, and f; are expanded into series of Jacobi polynomials. The
unknown constants of expansions are determined by using the point collocation
method. Then, main numerical results, which are the mixed mode stress intensity

factors, contact stresses and required contact force, are generated.

2.2.5.1 Flat Stamp

The geometry of the flat stamp problem is shown in Figure 2.7. The length of the
contact area (b-a) is independent of the applied force P. It is known that, the stresses

are singular at both ends of the contact region.
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Figure 2.7: The geometry of the crack/contact problem for a flat stamp

At this point, the intervals and the unknowns of the problem are normalized. Then
normalized forms of the integral equations are obtained. First, the intervals in (2.190)
are normalized by defining

t:9r+9, =949 and tzﬁwm, (2.206a,b,c)
2 2 2 2 2 2

in integrals involving f,(t), f,(t) and f5(t), respectively. Then the normalized

unknowns of the problem are defined as follows:

_ (2.207a)
¢ (r)= P a) | 1<r<1,
fz@”ij (2.207b)
¢z(r)=m, ~1<r<1,
f{b;awbzaj (2.207¢)
P5(r) = Pb_a) : —1<r<1. :

The intervals (0, d) and (a, b) are also normalized by defining,
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x=ds+ 4, for eqn. (2.190a), (2.2084a)

X =%sz +% | for eqn. (2.190b), (2.208b)
b-a b+a
Xy = 5 S3+T’ for egn. (2.190c). (2.208c)

Using (2.207) and (2.208), normalized form of the integral equations (2.190) and

equilibrium conditions (2.1g) are written as

axn ¢1(r) Ldr + j Hyy (s, 1y (r)dr+ j Hy3(s1, )3 (r)dr =0, (2.209a)

27 Y51
-1<s; <1,

1 1
L ¢2“) i+ [y (52, ) )+ [ Has(sz, 1) (3 =0,
) _

T (2.209D)
-1<s, <1,
1 1
[ Har (s, (ndr+ [ Hap (55,10 (0r + 722 gy (55) + 2 ¢3(f>r
S5 —
i B B (2.209¢)
+IH33(S3,r)¢3(r)dr=0, —1<sg <1,
-1
1
I¢3 (s3)dsz =—2. (2.209d)

Since, for a flat stamp normal displacement beneath the stamp is constant, right-hand
side of equation (2.209c) is zero. The kernels H; (s;,r) are given in Appendix C. The

unknown functions are expanded into series of Jacobi polynomials in the following

form,
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AN =00 Y A P2, o =0-r) @), (2.210)
n=0

(=020 D Ao P20, 0y (=) M2 r), (2.210b)
n=0
BN =)D AR, o) =@L-rf@+rf=, (2.210¢)
n=0

where P, (r)are the Jacobi polynomials and A, (i=1,2,3) are the unknown constants
of the expansions. Also, for a>0 «; =0, a,=w, B<0, ©<0 and B+wo=-1.

Substituting (2.210c¢) in equilibrium equation (2.209d) and by using the Jacobi
polynomials, and orthogonality relations given by Erdogan [44], A, is obtained as

follows:

2

0

2Pt (g + DT (e, +1)
B Ir'(f+ay,+2)

0 , (2.211b)
where T is the Gamma function. Substituting (2.210) into (2.209a-c), regularizing
the singular parts of the equations using the expressions given in Appendix B and

truncating the infinite series at N, following system of linear algebraic equations is

obtained:

N N
Zmnn (s1) Aun + Z Myz (S1) Agn =—My30(S1) Agg,  —1<8; <1, (2.212a)
n=0 n=1

N N
Zmzzn (s2) Asp +Zm23n (S2) Agn =—Ma3(S2) Agg,  —1<sp <1, (2.212b)
n=0 n=1
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N N N
Z Ma1n (S3) Aun + z Mazn (S3) Agn + Z Maan (S3) Agn =—Ma30(S3) Agp »
n=0

n=0 n=1

(2.212¢)

-1<s; <1

The expressions for my, (si), (i, j=12,3)are given in Appendix C. By using the
collocation technique, equations (2.212) can be solved. The number of unknowns is
(3N +2). Roots of the Chebyshev polynomials of the first kind are used as the

collocation points as follows:

(@i -
Of _CO{—Z(N 0 ], i=1..,N+1, (2.213a)
2i—1 )
Sy :co;[—;r((NlJrl;j, i=1...,N+1, (2.213b)
_(#(2i-D -
Sg; _cos( N j, i=1..N. (2.213c)

Equations (2.212) can be solved for A;,, (i=12,3). The contact stresses o;4(0,X,),
012 (0, X,) and stress intensity factors at the crack tip (d,0) are evaluated by using the

results. The stress intensity factors are obtained as

k= lim 2(x —d) oy (%,,0)=

X—d+0

_ Cg P . B (2.214a)
_xlngoT\/z(d = Xq) a—xl(uz (X1,07) —uy(x,0 )),
k2= IiTO’\IZ(Xl_d)O-lZ(Xl’O)Z
1 (2.214b)

~ lim Cﬁ,/z(d—xl)axi(ul(xl,ow—ul(xl,o—)).
1

x—d-0 2

Using (2.210), the normalized stress intensity factors and the normal component of

the contact stress are expressed as
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led « d N (-Y2,0)
=21 —— P D), .
5 b_agAm (2 (2.215a)
k2 vd « d o (-Y2,)
<= =27 E A, P (1), .
) b—_a e 2n ''n ( ) (2 215b)
- (O b—aS +b+aj
11 % 3 N
2 2 B a (B.y) (2.215¢)
=(1- 1 2 E A P 2 .
P/(b—a) ( 53) ( +33) e 3n 'n (53)

2.2.5.2 Triangular Stamp

The geometry of the triangular stamp problem is shown in Figure 2.8. The contact is

smooth at x, =b and there is a sharp corner atx, =a. The contact stress o, (0,x,) is
singular at x, =a. In this case, the stamp has a constant slope of tan() in the contact

region. Here, displacement derivative can be written as:

axiu(o, X,)=—tan@)=-m, a<Xx,<b. (2.216)
2

Figure 2.8: The geometry of the crack/contact problem for a triangular stamp
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At this point, the intervals and the unknowns of the problem are normalized. Then,
normalized form of the integral equations is obtained. First the intervals in (2.190)

are normalized by defining

t=9r+9, t=9r+9 and tzuwm—a, (2.217a,b,c)
2 2 2 2 2 2

in integrals involving f,(t), f,(t) and f5(t), respectively. Then, the normalized

unknowns of the problem are defined as follows:

H)=—° </ “1<r<l, (2.218a)
HioM
d d
fz(z”zj 2.218b
g, (r)=— 22 ~1<r<1, (2.218b)
HgpM
b-a b+a
f{ 2 T j 2.218
#s(r)= , -1<r<1. (2.218¢)
HgpM
The intervals (0, d) and (a, b) are also normalized by defining,
d d
X; :ES]' +§’ for egn. (2.190a), (2.219a)
d d
Xy ZESZ + 5 for egn. (2.190b), (2.219b)
b-a b+a
Xy = 5 S3 +T’ for egn. (2.190c). (2.219c¢)

Using (2.218) and (2.219), normalized form of the integral equations (2.190) and

equilibrium conditions (2.1g) are written as
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azo J’¢1( ) dr+ J.Hll(sl r)¢1(r)dr+JH13(sl s (r)dr =
-1

(2.220a)
-1<s; <1,
Mag [ (1) dr+IH (5. 1)¢ (r)dr+jH (s, 1) (r)dr =0,
27 35, - 1282, 1)9; 1 23132+ )73 (2.220Db)
1<s, <1,
1 L e [ #5(1)
[ Ha(53,1 )01+ [ Hap (53,106 (1)r + 722 gy () + 22 ol el
% % - (2.220¢)
+IH33(s3,r)¢3(r)dr=—1, —1<sg <1,
e
a P
—c ds, =— 2.22
J;¢3(53) 53 ,u12m ( Od)

where Hj; (s, r) are given in Appendix C. Unknown functions ¢ (r), (i=12,3) are

expressed as follows:

AN =0 A PR, e () =0-1) ), (2.2213)

¢2(r>=wz(r)ZA2n P29 (), @y () =@-r) 2+ r)n, (2.221b)
n=0

BN =)D AR (), s =@L-rf+rf=, (2.221¢)
n=0

where P, (r) are the Jacobi polynomials and A, (i=12,3) are the unknown constants
of the expansions. Also, for a>0 «; =0, a,=w, >0, ©w<0 and S+w=0.

Substituting (2.221c) in equilibrium equation (2.220d), normalized contact force is
obtained as follows:
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P b

—a
=22 A0y,
Hyomd 2d 070 (2.2222)

25 (B )T (a, +1)

(2.222b)
r'(f+ay+2)

0
For the triangular stamp problem, solution approach is slightly different. It is known
that the triangular stamp problem is defined as an incomplete contact mechanics
problem where the size of the contact region is a function of the applied force. This

problem is solved for a given contact area (i.e., for a known value of (b—a)/d) and

corresponding force is calculated using equation (2.222a). Substituting equations
(2.221) into (2.220a-c), regularizing the singular terms of the equations using the
expressions given in Appendix B and truncating the infinite series at N, following

system of linear algebraic equations is obtained:

N N

D My (1) Ay + ) Mign (51) Agy =0, —1<sy <1, (2.223a)
n=0 n=0

N N

Zmzzn (s2) Aon +Zm23n (52) Agn =0, —1<s,<1, (2.223b)
n=0 n=0

N N N
zm3ln (s3) Aun +Zm32n (s3) Agn + stsn (s3) Agp =1, —1<s3 <1 (2.223c)
n=0 n=0 n=0

The expressions for my,(s;) (i, j=12,3) are given in Appendix C. By using the

collocation technique, equations (2.223) can be solved. The number of unknowns is

(3N +3). Roots of the Chebyshev polynomials of the first kind are used as the

collocation points as follows:

Sj =co{;[((i:;£j i=(23), i=1...,N+1. (2.224)
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Equations (2.223) are solved for A;,, (i=12,3). The contact stress oy, (0,x,), Stress
intensity factors at the crack tip (d,0) and required contact force P/u,md are

evaluated by using the results. The stress intensity factors are defined by (2.214).
Using equations (2.221), the normalized stress intensity factors and the normal

component of the contact stress are expressed as follows:

kivd e 2 (/2,04
L L 2 p(¥2.a) (g _
5 Al b aZAin ®, (2.2250)
:2 f A P 1 1 )
5 Ao G, bo az on . (2.225b)
o (O b-a +b+aj
10— S3+—_— N
2 2 ., 3 _
=(1-53)"(1+55) ZZA3n P (s5). (2.225¢)
HppM pr

2.2.5.3 Circular Stamp

The geometry of the circular stamp problem is shown in Figure 2.9. The radius of the
stamp is assumed to be equal to R and the centerline of the stamp passes through

point x, =c. At the end points x, =aand x, =b the contact is smooth and contact
stress o4;(0,x,) is equal to zero. The length of the contact area depends on the

applied force P. In the numerical solution, the problem is solved for known values of
a and b corresponding values of P and c are calculated.
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Figure 2.9: The geometry of the crack/contact problem for a circular stamp

In this problem, it is assumed that the contact area (b—a) is much smaller than the

radius R. The derivative of the normal displacement in the contact area is given as

follows:
iu(Ox y=S—Xe a<x,<b 2.226
x, TR 2o (2.226)

2

The intervals and the unknowns of this problem are also normalized. Then
normalized forms of the integral equations are obtained. First, the intervals in (2.190)

are normalized by defining

t=9r+9, t=9r+9 and tzur+w, (2.227a,b,c)
2 2 2 2 2 2

in integrals involving f,(t), f,(t) and f5(t), respectively. Then the normalized

unknowns of the problem are defined as follows:

p(r)=—2 2] Ceret, (2.228a)

90



4 (1) = 2 Cler<l, (2.228b)
Hi2
b-a b+a
f{ 2 T ] 2.228
@s(r)= -l<r<1. (2.228c)
M2
The intervals (0, d) and (a, b) are also normalized by defining,
d d
X; :ES]' +§’ for egn. (2.190a), (2.229a)
d d
X = ESZ + 5 for egn. (2.190b), (2.229b)
b-a b+a
Xy = 5 S3 +T, for egn. (2.190c). (2.229c¢)

Using (2.228) and (2.229), normalized form of the integral equations (2.190) and
equilibrium conditions (2.1g) are written as

P ¢1(|’)
2 51 - dr+ .[Hll(sl r)¢1(r)dr+IHl3(31 rgs(r)dr = (2.230)
-1<s; <1,
My ( £2(1)
20 2

P e m+IHn@20%UWF+[HB®20%UNr_ 22500
-1<s, <1,

1 1 e [ #5(1)

J.H31(S3’r)¢1(r)dr+J.H32(531|')¢2(")dr+ 3 (S3) + 2> 3—rdr

i b ) (2.230c)

2c—(b—-a)s; —(b+a)
2R ’

—-1<s5 <1,

1
+ [ Hig(sq,1)gs(n)dr=
-1
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1
b-a P
le¢3 (s3)ds3 ==~ (2.230d)

where Hj (s;,r)are given in Appendix C. Unknown functions ¢ (r), (i=12,3) are

expressed in the following form,

A(r) = wl(r)iﬁan REM29(r), () =@-r)*?, (2.231a)
n=0
#2(r) =, () i Pon PCY2O(n), () =(2-1)72, (2.231h)
n=0
ds(r) = wg(r& Ao PV, as(n)=[L-r)(t+r), (2.231c)
n=0

where P,(r) are the Jacobi polynomials and A, (i=1,2,3) are the unknown constants
of the expansions. Also note that #>0, >0 and B+ w=1. Substituting (2.231c)

into (2.230d), normalized contact force is obtained as follows:

P b-

R —Z—Ra Paoby (2.232a)
_2BQ-B)x

oy = (2.232h)

It is also known that the circular stamp problem is defined as an incomplete contact
mechanics problem. This problem is solved for a given contact area (i.e., for a known
value of (b—a)/R) and corresponding force is calculated using equation (2.232a).
Substituting equations (2.231) into (2.230a-c), regularizing the singular terms of the
equations using the expressions given in Appendix B and truncating the infinite

series at N, following system of linear algebraic equations is obtained:
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N N
zglln (Sl)Aln +zgl3n(51) A3n =0, _1<Sl<1’ (2-2333-)
n=0 n=0

, EN (2.233b

Z:gZZn(SZ)AZnJr U2sn(S2) Agn =0, —1<s,<1,

n=0 n=0 )
2c—(b-a)s;—(b+a

2931“ (83) Aun +2932n (53) Agn +2933n (S3) Agn = ( ;Rs b+a),

"~ " (2.233¢)

-1<s3 <],

where g, (si) (i, j=1,2,3) are given in Appendix C. In the circular stamp problem,

the variables a/R, b/R and c/R are not independent. In order to determine c/R for
given values of a/R and b/R the consistency condition for the circular stamp is

used. Consider the singular terms in (2.230c)
e ez [ #5()
F(ss)=%0¢3(s3)+2%_jl$dr, “1<s, <1, (2.234)

If this term is divided by the weight function w;(s;) and integrated from -1 to 1

following equation is obtained,

1

J.F(s3)(1—s3)*ﬁ(1+ s3) “ds; =0. (2.235)
-1

Integrating other terms similarly, rearranging and after manipulations, the

relationship between a/R, b/R and c/R is expressed as:

N
{E_—( B - )_m} = ZAlnl//ln +ZA2nl//2n +ZA3nl//3n ' (2.236)

R sin(zp) 4= -

where,
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elffe
i

11
Wan = I { I @-r) @+r)P¥ ) (r)Hgg(ss,1) dr}(l s3) 7 (L+55) “ds;, (2.237c)

-1

I—"—.H

(L-r)¥2pt 1’20)(r)H32(83,r)dr}(1 s3) P (1+55)“dsg, (2.237b)

H'—"_‘

Equation (2.236) provides the profile of the circular stamp. If equation (2.236) is

used to eliminate c¢/R in (2.233c), this equation can be further simplified to

N
Z[gmn (%)‘Sm(ﬁﬂ) ln)Aln +Z(932n (%)‘Sm(ﬂﬁ) ZnJAZn +
n=0 (2.238)

sin b-a_(s_0
+Z[g33“(s3)_ Uh) 3njA3n=_TP1( g )(53), -l<sy <l

Wi, Voo and ., involve double integrals and these double integrals increase the

computation time compared to the flat and triangular stamp problems. Equations
(2.233a, b) and (2.238) are solved using the collocation technique. The number of

unknowns is (3N +3). Roots of the Chebyshev polynomials of the first kind are used
as the collocation points as follows:

55 :co{%} i=(L23),  i=1..,N+1. (2.239)

Equations (2.233) are solved for A;,, (i=12,3). The contact stress oy;(0,X,), Stress
intensity factors at the crack tip (d,0), and required contact force P/u,R are

evaluated by using the results. The stress intensity factors are defined by (2.214).
Using equations (2.231), the normalized stress intensity factors and the normal

component of the contact stress are expressed as follows:
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CHAPTER 3

NUMERICAL RESULTS

In this section, numerical results obtained for different stamp profiles are presented.

The main results in this chapter are the stress intensity factors at the crack tip (k;,k,),
contact stress (o4,(0,%,)) and the required contact force. The effect of the friction
coefficientn , material elastic modulus ratios, stamp location and crack length on the

stress intensity factors at the crack tip and contact stresses are examined. Computer
programs are developed for the implementation of the numerical procedures

described in Section 2.2.5 by using Visual Fortran Language.

First some results are given, showing the surface stresses in a homogeneous medium
in the absence of a crack and loaded by a sliding flat stamp. It is expected that as the
flat stamp moves away from crack plane, the effect of the surface crack on the
contact stress distribution will disappear. In such a case, solution valid for a
homogeneous half-plane can be recovered. In order to show this effect and to verify
the contact stress distributions, the contact problem solutions given in the literature
[46] and contact stresses obtained from this study for a large value of a/dare
compared. In Appendix D, contact problem solutions for a rigid punch on isotropic
and anisotropic elastic half-planes are given. These solutions are developed by Galin
[46]. As the material alumina (Al,O3) is employed in the numerical calculations.
Plasma sprayed alumina coatings are known to possess an orthotropic structure.
Sevostianov and Kachanov [49] developed a theoretical model to calculate the

elastic and conductive properties of orthotropic plasma-sprayed alumina coatings.
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The study by Sevostianov and Kachanov [49] also presents experimental data on the
orthotropic elastic properties of alumina. The provided experimental data is
originally obtained by Perthasarathi et al. [50] using ultrasound measurements and
consists of the stiffness coefficients of the plasma-sprayed alumina coatings. In Dag
[51], the experimental data given in [49] is used to calculate the elastic parameters of
the orthotropic alumina surface. The material parameters of the alumina are given in
Table 3.1. In this table, Figure 3.2 and Figure 3.3 present comparisons of contact
stress distributions for isotropic materials with those of Galin [46] for the case of a

flat stamp with(b—a)/d=1.0, a/d=6 for plane strain and plane stress cases,
respectively. Contact stress distributions for orthotropic materials with those of Galin
[46] for the case of a flat stamp with (b—a)/d =1.0, a/d =6 for plane strain and plane
stress cases are shown in Figure 3.4 and Figure 3.5 respectively. The results are
observed to be in excellent agreement. Hence, it can be concluded that the method
proposed for contact stress computation leads to numerical results of high accuracy.

Table 3.1: The material parameters of plasma-sprayed alumina

Property Alumina (Al,O3)
E, 116.36 GPa

E, 90.43 GPa

Mo 38.21 GPa

TP 0.28

U3 0.27

V31 0.21

V32 0.14

3.1 Flat Stamp

The geometry of the flat stamp problem is depicted in Figure 2.7. Results pertaining

to the flat stamp are provided in Figure 3.6-Figure 3.24. Developed solution method
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for the flat stamp is validated by making comparisons to the results available in the
literature. Figure 3.6, Figure 3.7 and Figure 3.8 present comparisons of normalized
mode | and |1 stress intensity factors and contact stresses for homogeneous isotropic
materials with those of given by Dag [40] vis taken as 0.25. In this analysis
dy;, dppand d,, given in (2.5c-e) are used as d;; =2.9996, d;, =1.0008 and
d,, =3.0052. These values are obtained by using isotropic material properties. As

can be seen in these figures the results agree quite well.

Figure 3.9 and Figure 3.10 show the modes I and |1 stress intensity factors generated

for an orthotropic medium by taking (b—a)/d =0.1. The results are given for various

values of the friction coefficient. In the analysis, the properties of alumina (Al,O3)

are utilized. As seen in Figure 3.9, for n=0mode | stress intensity factors are

negative for all values ofa/d, which is indicative of crack closure. As the coefficient
of friction, hence the tangential force, increases mode | stress intensity factors also

increase. In Figure 3.10, for »=0mode Il stress intensity factors are positive for all

values of a/d. If a small element at the crack tip is considered as shown Figure 3.1,
the crack bend backwards and it extend in a direction opposite to the applied

frictional force.

.
/.

Figure 3.1: Direction of crack extension
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As the coefficient of friction increases mode Il stress intensity factors are seen to

decrease. Contact stresses in plasma-sprayed alumina for (b-a)/d=0.1 and

a/d=0.4 are given in Figure 3.11 for various values of the friction coefficient. For

n =0 singularities are equal at both ends of the contact area but due to the effect of

the surface crack, the stress distribution is not exactly symmetric. As the coefficient

of friction increases, singularity at the leading end i.e., — 8 decreases and there is

higher stress intensification at the trailing end.

Another set of results for the stress intensity factors are given in Figure 3.12 and

Figure 3.13 for the relatively larger stamp size of (b—a)/d=1.0. The trends are

similar to those observed in Figure 3.9 and Figure 3.10. The contact stress

distributions for (b—a)/d =1.0are shown in Figure 3.14 for various values of the

friction coefficientr .

Figure 3.15 and Figure 3.16 illustrate the effects of elastic modulus ratio E, /E, and

a/d on modes | and Il stress intensity factors, respectively. Contact stress

distributions for various values of elastic modulus ratio E,/E, are given in Figure
3.17. Figure 3.18 and Figure 3.19 show the effect of E;/E, on modes I and Il stress

intensity factors for. It can be seen that Mode | stress intensity factors increase as

E,/E, increases (Figure 3.15 and Figure 3.18 ). Mode Il stress intensity factors drop

as E;/E, gets larger (Figure 3.16 and Figure 3.19).

Figure 3.20 and Figure 3.21 present the effects of the elastic modulus ratio

E,/E;and a/d on the modes | and Il stress intensity factors. Contact stress
distributions for various values of E;/E; are given in Figure 3.22. Figure 3.23 and
Figure 3.24 show the effects of E,/E; on modes | and Il stress intensity factors. The
effect of the elastic modulus ratio E;/E; on modes | and Il stress intensity factors

and contact stress distributions is not that significant (Figure 3.20-Figure 3.24).
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3.2 Triangular Stamp

The geometry of the triangular stamp problem is shown in Figure 2.8. In this case,
there is a sharp corner at the trailing end x, = ahence at this point the contact stress
011(0,%,) is singular. At point x, =b the contact is smooth and &4;(0, x,)is equal to
zero. As described in Section 2.2.5.2, in order to avoid an iterative solution method,
the problem is solved for a given contact area and corresponding value of the contact
force is determined. The results for a triangular stamp sliding on the surface of the
half-plane (a/d >0) are given in Figure 3.25-Figure 3.43 and Table 3.2-Table 3.8.
Figure 3.25-Figure 3.27 are generated for an isotropic material for which v =0.25 .
Figure 3.25 and Figure 3.26 show the normalized modes | and Il stress intensity
factors, respectively for various values of the friction coefficient. Table 3.2 tabulates
the variation of the normalized force with a/d and Figure 3.27 presents the contact
stresses for a stamp whose location is given by a/d =0.1, b/d =1.1. In this analysis
dy,, dypand d,, are setas d;; =2.9996, d,, =1.0008and d,, =3.0052. These values

are obtained by assuming that the material is isotropic. The given results are in

excellent agreement with those provided by Dag [40].

The results for orthotropic materials are computed by using the material properties of
plasma-sprayed alumina Al,O3 given in Table 3.1. Figure 3.28 and Figure 3.29 show
the modes | and Il stress intensity factors, respectively for an orthotropic material
obtained by considering different values of friction coefficient. Table 3.3 shows the
variations of the normalized force with a/d . As expected, the required force is larger
for larger values of the friction coefficient. It can be seen that for all values of
friction coefficient, normalized force quickly approaches a constant value for large
values of a/d. The normalized contact force starts decreasing as the stamp gets

closer to the crack. Figure 3.30 shows the contact stresses for a/d =0.1, b/d =0.2. In

Figure 3.31-Figure 3.33 and Table 3.4, similar results are given for (b—a)/d=1.0.

101



The effects of the elastic modulus ratio E;/E, on modes | and Il stress intensity
factors, for various values of the a/d are given in Figure 3.34 and Figure 3.35,
respectively. Figure 3.36 shows the effect of E,/E, on the contact stress distribution
for a/d=0.1, b/d=1.1 and=0.4. Figure 3.37 and Figure 3.38 show the competing
effect of E;/E, on modes | and Il stress intensity factors. The effect of E,;/E, on

normalized contact force is examined in Table 3.5 and Table 3.6. As can be seen,

Mode | stress intensity factors increase as E,;/E, increases (Figure 3.34 and Figure
3.37). Mode Il stress intensity factors drops as E,/E, becomes larger (Figure 3.35

and Figure 3.38).

Figure 3.39 and Figure 3.40 presents the influence of E,/E; on modes | and Il stress

intensity factors, respectively. Contact stress distributions for various values of
E,/E; are given in Figure 3.41. Figure 3.42 and Figure 3.43 show the effect of

E,/E; on modes | and Il stress intensity factors for various values of the friction
coefficient » . The effect of E;/E; on the normalized contact force are examined in
Table 3.7 and . It can be seen that the effect of E;/E; on modes | and Il stress

intensity factors and contact stress distributions is not significant especially when
E,/Ej; is large (Figure 3.39-Figure 3.43).

3.3 Circular Stamp

The geometry of the circular stamp problem is depicted in Figure 2.9. The radius of

the circular stamp is denoted by R. There is smooth contact at both ends x, =a and
X, =b hence the contact stress o, (0, x,)is zero at these points. The centerline of the
stamp is at x, =c. The numerical solution of the problem is described in Section

2.2.5.3. The problem is solved by specifying a and b and corresponding values of the
contact force P and c are calculated. Although no iterations are required, the
computation time required for the solution of the circular stamp problem is more than

that required for flat and triangular stamp problems. The double integrals (see
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equations (2.237)) resulting from the consistency condition takes most of the
computation time in the circular stamp problem. The results for a circular stamp

sliding on the surface of the half-plane (a/R>0) are shown in Figure 3.44-Figure
3.62 and Table 3.9-Table 3.15. Figure 3.44-Figure 3.46 are obtained for an isotropic
material with v =0.25. Figure 3.44 and Figure 3.45 show normalized modes | and 11
stress intensity factors, respectively, for various values of the friction coefficient.
Table 3.9 presents the variation of the normalized force with a/R and Figure 3.46
depicts the contact stresses for a stamp whose location is given by a/R=0.1,
b/R=1.1, d/R=1.0. In this analysis d,;, dj,and d,, are used as d;; =2.9996,
d,, =1.0008and d,, =3.0052. These values are obtained by using isotropic material

properties. The results are in excellent agreement with those given by Dag [40].

The results for orthotropic materials are obtained by using the material properties of
plasma-sprayed alumina (Al,O3) given in Table 3.1. Figure 3.47 and Figure 3.48
show the modes | and 11 stress intensity factors, respectively for various values of the
friction coefficient. Required normalized forces are tabulated in Table 3.10 for
different values of the friction coefficient. The variation of the contact force for small
values of a/Rdepends on the size of the contact area between the crack faces. For
small values of friction coefficient mode | stress intensity factors are negative and
there is a crack closure. If the area of the contacting surfaces of the crack faces is
relatively large, an increase in the contact force with the decrease in a/R can be
expected and this seems to occur for =0 and =0.2 . From Table 3.10 it can be
seen that as a/Rdecreases required contact force decreases for n=0.4 and 7=0.6.
Hence, the size of the contact area between the crack faces is expected to be smaller
for =0.4 and 7=0.6. Figure 3.49 shows the distribution of the contact stresses for
various values of the friction coefficient with a/R=0.1, b/R=0.2, d/R=1.0. Another
set of results for stress intensity factors, contact force and contact stresses are given
in Figure 3.50- Figure 3.52 and Table 3.11 for (b—a)/R=1.0. As can be seen the

trends are similar.
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The effect E;/E, on modes | and Il stress intensity factors, for various values of the
a/R is examined in Figure 3.53 and Figure 3.54, respectively. Figure 3.55 shows the
effect of E;/E, on the contact stress distribution for a/R=0.1, b/R=1.1, d/R=1.0
and, =0.4. Figure 3.56 and Figure 3.57 illustrate the effect of E,/E, on modes I and
Il stress intensity factors for different values of the friction coefficient » . The E, /E,

on the normalized contact force is examined in Table 3.12 and Table 3.13. As can be

seen, Mode | stress intensity factor increases as E,/E, gets larger (Figure 3.53 and
Figure 3.56). Mode Il stress intensity factor decreases as E;/E, increases (Figure

3.54 and Figure 3.57).

Figure 3.58 and Figure 3.59 depict the effect of E;/E; on modes | and Il stress
intensity factors for various values of the a/R. Contact stress for various values of
E,/E5 are given in Figure 3.60. Figure 3.61 and Figure 3.62 present the variations of
stress intensity factors with respect to E,/E; for different values of the friction
coefficientn . The effect of the E,/E; on normalized contact force is examined in
Table 3.14 and Table 3.15. It can be seen that the influence of E; /E; on modes I and

Il stress intensity factors and contact stress distributions is not that significant (Figure
3.58-Figure 3.62).
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3.4 Figures
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Figure 3.3: Comparisons of contact stress distributions for an isotropic half-plane loaded by
a flat stamp, (b—a)/d=1.0, a/d =6, dy; =2.9996, d;, =1.0008, d,, =3.0052for plane
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Figure 3.4: Comparisons of contact stress distributions for an orthotropic half-plane loaded
by a flat stamp,(b—a)/d=1.0, a/d=6, d;; =2.9996, d,, =1.0008, d,, =3.0052for
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Figure 3.6: Mode I stress intensity factors for an edge crack in an isotropic half-plane loaded
by a flat stamp as shown in Figure 2.7, (b—a)/d =1.0,v=0.25, d;; =2.9996, d;, =1.0008,
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Figure 3.7: Mode Il stress intensity factors for an edge crack in an isotropic half-plane
loaded by a flat stamp as shown in Figure 2.7,(b—a)/d=1.0,v=0.25, d;; =2.9996,

dy, =1.0008, dyy =3.0052.
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Figure 3.8: Contact stress distributions for an isotropic half-plane with an edge crack and
loaded by a flat stamp as shown in Figure 2.7,(b—a)/d=1.0,v=0.25, a/d=04,
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Figure 3.9: Mode | stress intensity factors for an edge crack in an orthotropic half-plane
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loaded by a flat stamp as shown in Figure 2.7, (b —a)/d =0.1.
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Figure 3.10: Mode Il stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a flat stamp as shown in Figure 2.7, (b —a)/d =0.1.
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Figure 3.11: Contact stress distributions for an orthotropic half-plane with an edge crack and
loaded by a flat stamp as shown in Figure 2.7, (b —a)/d =0.1,a/d =0.4.
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Figure 3.12: Mode 1 stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a flat stamp as shown in Figure 2.7, (b—a)/d =1.0.
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Figure 3.13: Mode Il stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a flat stamp as shown in Figure 2.7, (b—a)/d =1.0.
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Figure 3.14: Contact stress distributions for an orthotropic half-plane with an edge crack and
loaded by a flat stamp as shown in Figure 2.7, (b —a)/d =1.0, a/d =0.4.
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Figure 3.15: Effect of the elastic modulus ratio E;/E, on mode I stress intensity factors for

an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure
2.7,(b—a)/d=1.0, n=0.4.
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Figure 3.16: Effect of the elastic modulus ratio E;/E, on mode Il stress intensity factors

for an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure
2.7,(b—a)/d=1.0, n=0.4.
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Figure 3.17: Effect of the elastic modulus ratio E; /E, on the contact stress distribution for

an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 2.7,
(b—a)/d=1.0, a/d=0.1, =04.
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Figure 3.18: Normalized k,versus E;/E, and n for an edge crack in an orthotropic half-
plane loaded by a flat stamp as shown in Figure 2.7, (b—a)/d =1.0, a/d=0.1.
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Figure 3.19: Normalized k, versus E;/E, and 7 for an edge crack in an orthotropic half-
plane loaded by a flat stamp as shown in Figure 2.7, (b —a)/d =1.0, a/d =0.1.
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Figure 3.20: Effect of the elastic modulus ratio E;/E; on mode | stress intensity factors for
an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 2.7,
(b—a)/d=1.0, n=04.
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Figure 3.21: Effect of the elastic modulus ratio E;/E; on mode Il stress intensity factors

for an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 2.7,
(b—a)/d=1.0, n=04.
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Figure 3.22: Effect of the elastic modulus ratio E;/E; on contact stress distribution for an

edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 2.7,
(b—a)/d=1.0, a/d=0.1, =04.
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Figure 3.23: Normalized k;versus E;/E; and 7 for an edge crack in an orthotropic half-
plane loaded by a flat stamp as shown in Figure 2.7, (b —a)/d =1.0, a/d=0.1.
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Figure 3.24: Normalized k, versus E;/E; and 7 for an edge crack in an orthotropic half-
plane loaded by a flat stamp as shown in Figure 2.7, (b —a)/d=1.0, a/d=0.1.
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Figure 3.25: Mode | stress intensity factors for an edge crack in an isotropic half-plane
loaded by a triangular stamp as shown in Figure 2.8, (b —a)/d =1.0,v=0.25, d;; =2.9996,

d12 210008, d22 230052
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Figure 3.26: Mode Il stress intensity factors for an edge crack in an isotropic half-plane
loaded by a triangular stamp as shown in Figure 2.8, (b—a)/d =1.0,v=0.25, d;; =2.9996,

dlz :10008, d22 :30052
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Figure 3.27: Contact stress distributions for an isotropic half-plane with an edge crack and
loaded by a triangular stamp as shown in Figure 2.8, v=0.25, a/d=0.1, b/d=1.1,

dll :29996, d12 =10008, d22 :30052
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Figure 3.28: Mode 1 stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a triangular stamp as shown in Figure 2.8, (b—a)/d =0.1.
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Figure 3.29: Mode Il stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a triangular stamp as shown in Figure 2.8, (b—a)/d =0.1.
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Figure 3.30: Contact stress distributions for an orthotropic half-plane with an edge crack and
loaded by a triangular stamp as shown in Figure 2.8, a/d =0.1, b/d =0.2.
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Figure 3.31: Mode I stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a triangular stamp as shown in Figure 2.8, (b —a)/d=1.0.
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Figure 3.32: Mode Il stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a triangular stamp as shown in Figure 2.8, (b —a)/d =1.0.
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Figure 3.33: Contact stress distribution for an orthotropic half-plane with an edge crack and
loaded by a triangular stamp as shown in Figure 2.8, a/d =0.1, b/d =1.1.
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Figure 3.34: Effect of the elastic modulus ratio E;/E, on mode I stress intensity factors for
an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in Figure
2.8, (h—a)/d=1.0, =04.
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Figure 3.35: Effect of the elastic modulus ratio E;/E, on mode Il stress intensity factors

for an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in
Figure 2.8, (b—a)/d=1.0, n=0.4.
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Figure 3.36: Effect of the elastic modulus ratio E; /E, on the contact stress distribution for

an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in Figure
2.8, a/d=0.1, b/d=1.1, n=04.
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Figure 3.37: Normalized k,versus E;/E, and 7 for an edge crack in an orthotropic half-
plane loaded by a triangular stamp as shown in Figure 2.8, (b—a)/d=1.0, a/d =0.1.
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Figure 3.38: Normalized k, versus E;/E, and n for an edge crack in an orthotropic half-
plane loaded by a triangular stamp as shown in Figure 2.8, (b —a)/d=1.0, a/d =0.1.
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Figure 3.39: Effect of the elastic modulus ratio E; /E; on mode | stress intensity factors for

an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in Figure
2.8, (h—a)/d=1.0, n=04.
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Figure 3.40: Effect of the elastic modulus ratio E;/E; on mode Il stress intensity factors
for an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in
Figure 2.8, (b—a)/d=1.0, n=0.4.
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Figure 3.41: Effect of the elastic modulus ratio E; /E; on the contact stress distribution for
an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in Figure
2.8, a/d=0.1, b/d=1.1, n=04.
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Figure 3.42: Normalized k,versus E;/E; and 7 for an edge crack in an orthotropic half-
plane loaded by a triangular stamp as shown in Figure 2.8, (b—a)/d=1.0, a/d =0.1.

0.6 i T T T T T T T T T T T T
05 | — =00 ]
[ ———— =02 ]
0.4 - — — =04
I o 17=0.6 ]
kpvd g3l h
P I ]
oz%jjim___________é
LA ]
01l ]
LF 1
ool v
0 1 2 3 4

E,/E;

Figure 3.43: Normalized k, versus E;/E; and 7 for an edge crack in an orthotropic half-
plane loaded by a triangular stamp as shown in Figure 2.8, (b—a)/d=1.0, a/d =0.1.
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Figure 3.44: Mode | stress intensity factors for an edge crack in an isotropic half-plane
loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=1.0, d/R=1.0, v=0.25,

dy; =2.9996, d;, =1.0008, d,, =3.0052.
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Figure 3.45: Mode I stress intensity factors for an edge crack in an isotropic half-plane
loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=1.0, d/R=1.0, v=0.25,

dy; =2.9996, d;, =1.0008, d,, =3.0052.

126



* Dag, [40] -
— Present study

-0.6 T
11(0,%,)
P/(b—a) -08 7
-1.0 T
1.2 — =04 -
—n=0.2
_14 L L L | L L L | L | L

-1.0 -0.5 0.0 0.5 1.0
(2x, —(b+a))/(b—a)

Figure 3.46: Contact stress distribution for an isotropic half-plane with an edge crack and
loaded by a circular stamp as shown in Figure 2.9, a/R=0.1, b/R=1.1, d/R=1.0,

y=0.25, dy, =2.9996, d;, =1.0008, d,, =3.0052.
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Figure 3.47: Mode 1 stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=0.1, d/R=1.0.

127



05—

0 2 4 6 8 10
alR

Figure 3.48: Mode |1 stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=0.1, d/R=1.0.
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Figure 3.49: Contact stress distributions for an orthotropic half-plane with an edge crack and
loaded by a circular stamp as shown in Figure 2.9, a/R=0.1, b/R=0.2, d/R=1.0.
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Figure 3.50: Mode 1 stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=1.0, d/R=1.0.
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Figure 3.51: Mode Il stress intensity factors for an edge crack in an orthotropic half-plane
loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=1.0, d/R=1.0.
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Figure 3.52: Contact stress distributions for an orthotropic half-plane with an edge crack and
loaded by a circular stamp as shown in Figure 2.9, a/R=0.1, b/R=1.1, d/R=1.0.
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Figure 3.53: Effect of the elastic modulus ratio E;/E, on mode I stress intensity factors for

an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
(b-a)/R=1.0, d/R=1.0, n=0.4.
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Figure 3.54: Effect of the elastic modulus ratio E;/E, on mode Il stress intensity factors
for an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure
2.9, (h—a)/R=1.0, d/R=1.0, =04.
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Figure 3.55: Effect of the elastic modulus ratio E; /E, on the contact stress distribution for

an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
a/R=0.1, b/R=1.1, d/R=1.0, n=04.
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Figure 3.56: Normalized k,versus E;/E, and 7 for an edge crack in an orthotropic half-
plane loaded by a circular stamp as shown in Figure 2.9, (b-a)/R=1.0,
d/R=1.0,a/R=0.1.
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Figure 3.57: Normalized k, versus E;/E, and 7 for an edge crack in an orthotropic half-
plane loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=1.0, d/R=1.0,
a/R=0.1.
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Figure 3.58: Effect of the elastic modulus ratio E;/E; on mode I stress intensity factors for
an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
(b-a)/R=1.0, d/R=1.0, =04
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Figure 3.59: Effect of the elastic modulus ratio E;/E; on mode Il stress intensity factors
for an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure
2.9, (h—a)/R=1.0, d/R=1.0, =04.
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Figure 3.60: Effect of elastic modulus ratio E;/E; on the contact stress distribution for an
edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
a/R=0.1, b/R=1.1, d/R=1.0,7=04.
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Figure 3.61: Normalized k,versus E;/E; and 7 for an edge crack in an orthotropic half-
plane loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=10,
d/R=1.0,a/R=0.1.
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Figure 3.62: Normalized k, versus E;/E; and 7 for an edge crack in an orthotropic half-
plane loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=1.0, d/R=1.0,
a/R=0.1.
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3.5 Tables

Table 3.2: Normalized force values computed for various values of a/d and coefficient of
friction » for an isotropic half-plane loaded by a triangular stamp as shown in Figure 2.8,
(b—a)/d=1.0,v=0.25, dy; =2.9996, d;, =1.0008, d,, =3.0052.

P/u,md
a/d  Present Study Dag, [40]

n=00 75=02 7n=04 n=06 n=00 7n=02 n=04 7n=06
0.05 14859 1.6329 1.8005 1.9917 1.3367 15219 1.7585 2.0212
0.1 15644 1.7124 1.8795 2.0683 14152 1.6072 1.8515 2.1733
0.3 1.804 1.9424 2.0923 2.2544 1.6791 1.8706 2.1009 2.2640
0.5 1.9445 2.0659 2.1928 2.3246 1.8512 2.0226 2.2083 2.3320
0.8 2.0414 2.1429 2.2454 2.3480 1.9865 2.1266 2.2577 2.3558
1.0 2.0683 2.1623 2.2558 2.3482 2.0302 2.1552 2.2669 2.3560
13 2.0859 2.1740 2.2608 2.3455 2.0632 2.1738 2.2776 2.3555
1.7 2.0935 2.1786 2.2623 2.3436 2.0812 2.1816 2.2732 2.3540
2.0 2.0952 2.1798 2.2628 2.3435 2.0869 2.1833 2.2701 2.3530
2.5 2.0958 2.1805 2.2638 2.3447 2.0912 2.1840 2.2766 2.3525
3.0 2.0957 2.1809 2.2647 2.3464 2.0928 2.1839 2.2746 2.3520
3.5 2.0955 2.1812 2.2656 2.3480 2.0936 2.1838 2.2734 2.3517
4.0 2.0953 2.1814 2.2664 2.3494 2.0939 2.1836 2.2726 2.3503
4.5 2.0951 2.1817 2.2670 2.3505 2.0941 2.1835 2.2722 2.3595
5.0 2.0950 2.1818 2.2676 2.3515 2.0942 2.1834 2.2719 2.3589
5.5 2.0949 2.1820 2.2680 2.3523 2.0943 2.1834 2.2717 2.3585
6.0 2.0948 2.1821 2.2684 2.3529 2.0943 2.1833 2.2715 2.3583
7.0 2.0947 2.1824 2.2690 2.3539 2.0944 2.1833 2.2714 2.3580
8.0 2.0947 2.1825 2.2694 2.3547 2.0944 2.1832 2.2713 2.3578
9.0 2.0946 2.1826 2.2697 2.3552 2.0944 2.1832 2.2712 2.3578
10.0 2.0946 2.1827 2.2700 2.3556 2.0944 2.1832 2.2712 2.3577
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Table 3.3: Normalized force values computed for various values of a/d and coefficient of
friction 7 for an orthotropic half-plane loaded by a triangular stamp as shown in Figure 2.8,

(b—a)/d=0.1.

P/ u,md
a/d

n=0.0 n=0.2 n=04 n=0.6
0.05 0.1549 0.1738 0.1970 0.2261
0.1 0.1783 0.1965 0.2177 0.2429
0.3 0.2120 0.2267 0.2426 0.2596
0.5 0.2223 0.2353 0.2487 0.2625
0.8 0.2276 0.2392 0.2510 0.2627
1.0 0.2288 0.2401 0.2513 0.2624
1.3 0.2295 0.2405 0.2514 0.2621
1.7 0.2298 0.2406 0.2514 0.2619
2.0 0.2298 0.2406 0.2513 0.2618
2.5 0.2299 0.2407 0.2513 0.2618
3.0 0.2299 0.2407 0.2513 0.2618
35 0.2299 0.2407 0.2514 0.2618
4.0 0.2299 0.2407 0.2514 0.2618
4.5 0.2299 0.2407 0.2514 0.2618
5.0 0.2299 0.2407 0.2514 0.2619
5.5 0.2299 0.2407 0.2514 0.2619
6.0 0.2299 0.2407 0.2514 0.2619
7.0 0.2299 0.2407 0.2514 0.2619
8.0 0.2299 0.2407 0.2514 0.2619
9.0 0.2299 0.2407 0.2514 0.2619
10.0 0.2299 0.2407 0.2514 0.2619
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Table 3.4: Normalized force values computed for various values of a/d and coefficient of
friction 7 for an orthotropic half-plane loaded by a triangular stamp as shown in Figure 2.8,

(b—a)/d=1.0.

P/,md
a/d

n=0.0 n=0.2 n=04 n=0.6
0.05 1.6820 1.8564 2.0536 2.2758
0.1 1.7685 1.9430 2.1384 2.3563
0.3 2.0245 2.1847 2.3563 2.5390
0.5 2.1651 2.3047 2.4488 2.5962
0.8 2.2550 2.3732 2.4912 2.6077
1.0 2.2784 2.3891 2.4984 2.6049
1.3 2.2930 2.3983 2.5014 2.6011
1.7 2.2988 2.4018 2.5025 2.5997
2.0 2.2999 2.4028 2.5033 2.6004
2.5 2.3001 2.4035 2.5047 2.6027
3.0 2.2999 2.4040 2.5062 2.6052
35 2.2996 2.4044 2.5074 2.6074
4.0 2.2993 2.4048 2.5084 2.6093
4.5 2.2991 2.4051 2.5093 2.6108
5.0 2.2990 2.4053 2.5100 2.6120
5.5 2.2989 2.4055 2.5106 2.6130
6.0 2.2988 2.4057 2.5110 2.6138
7.0 2.2987 2.4060 2.5118 2.6150
8.0 2.2987 2.4062 2.5123 2.6159
9.0 2.2986 2.4063 2.5127 2.6166
10.0 2.2986 2.4064 2.5129 2.6171
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Table 3.5: Normalized force values computed for various values of a/d and E,;/E, for an
orthotropic half-plane loaded by a triangular stamp as shown in Figure 2.8, (b—a)/d=1.0,
n=04.

P/uy;md
a/d
E,/E, =0.25 E,/E, =05 E,/E, =10 E,/E, =15

0.05 2.1205 2.0905 2.0640 2.0466
0.1 2.2190 2.1863 2.1523 2.1290
0.3 2.4820 2.4366 2.3812 2.3395
0.5 2.6146 2.5579 2.4829 2.4259
0.8 2.7007 2.6295 2.5337 2.4632
1.0 2.7253 2.6472 2.5434 2.4691
1.3 2.7426 2.6577 2.5478 2.4716
1.7 2.7509 2.6613 2.5489 2.4730
2.0 2.7531 2.6619 2.5493 2.4741
2.5 2.7541 2.6619 2.5501 2.4760
3.0 2.7541 2.6619 2.5511 24777
35 2.7539 2.6620 2.5520 2.4792
4.0 2.7538 2.6622 2.5527 2.4803
4.5 2.7536 2.6624 2.5534 2.4813
5.0 2.7535 2.6626 2.5540 2.4821
55 2.7535 2.6628 2.5545 2.4827
6.0 2.7535 2.6630 2.5549 2.4832
7.0 2.7535 2.6633 2.5555 2.4840
8.0 2.7535 2.6636 2.5560 2.4845
9.0 2.7536 2.6638 2.5563 2.4849
10.0 2.7536 2.6639 2.5566 2.4852
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Table 3.6: Normalized force values computed for various values of E;/E, and coefficient
of friction 7 for an orthotropic half-plane loaded by a triangular stamp as shown in Figure
2.8, (h—a)/d=1.0, a/d=0.1.

P/,md
E\/E,

n=0.0 n=0.2 n=04 n=0.6
0.14 2.0784 2.1596 2.2482 2.3451
0.15 2.0681 2.1524 2.2444 2.3455
0.25 1.9942 2.1008 2.2190 2.3509
0.35 1.9465 2.0676 2.2030 2.3554
0.50 1.8966 2.0329 2.1863 2.3599
0.65 1.8604 2.0078 2.1739 2.3622
0.75 1.8409 1.9941 2.1669 2.3627
0.85 1.8239 1.9823 2.1607 2.3626
0.95 1.8089 1.9717 2.1550 2.3619
1.00 1.8021 1.9669 2.1523 2.3614
1.20 1.7778 1.9496 2.1424 2.3582
1.29 1.7685 1.9430 2.1384 2.3563
1.30 1.7672 1.9421 2.1377 2.3560
1.35 1.7622 1.9385 2.1355 2.3548
1.40 1.7574 1.9350 2.1333 2.3535
1.45 1.7527 1.9317 2.1311 2.3522
1.50 1.7483 1.9284 2.1290 2.3507
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Table 3.7: Normalized force values computed for various values of a/d and E,;/E; for an
orthotropic half-plane loaded by a triangular stamp as shown in Figure 2.8, (b—a)/d=1.0,
n=04.

P/ u,md
a/d
E,/E; =0.25 E,/E; =05 E,/E; =1.0 E,/E; =20

0.05 2.5235 2.2066 2.0795 2.0225
0.1 2.6205 2.2954 2.1649 2.1065
0.3 2.8523 2.5186 2.3838 2.3237
0.5 2.9368 2.6086 2.4758 2.4169
0.8 2.9685 2.6473 2.5175 2.4604
1.0 2.9722 2.6532 2.5244 2.4679
1.3 29731 2.6555 2.5273 2.4710
1.7 2.9736 2.6564 2.5284 2.4722
2.0 2.9744 2.6572 2.5291 2.4730
2.5 2.9761 2.6587 2.5306 2.4744
3.0 2.9778 2.6603 2.5321 2.4758
3.5 2.9792 2.6616 2.5333 2.4770
4.0 2.9804 2.6627 2.5344 2.4780
4.5 2.9814 2.6636 2.5352 2.4788
5.0 2.9822 2.6643 2.5359 2.4795
55 2.9829 2.6649 2.5365 2.4801
6.0 2.9834 2.6654 2.5370 2.4806
7.0 2.9842 2.6662 2.5377 2.4813
8.0 2.9848 2.6667 2.5382 2.4818
9.0 2.9852 2.6671 2.5386 2.4821
10.0 2.9856 2.6674 2.5389 2.4824
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Table 3.8: Normalized force values computed for various values of E;/E; and coefficient
of friction 7 for an orthotropic half-plane loaded by a triangular stamp as shown in Figure
2.8, (h—a)/d=1.0, a/d=0.1.

P/,md
Ei/Eq

n=0.0 n=0.2 n=04 n=0.6
0.08 8.3525 8.9530 9.6690 10.5384
0.10 4.1605 4.5439 4.9803 5.4794
0.25 2.1666 2.3807 2.6205 2.8885
0.50 1.8974 2.0852 2.2954 2.5300
0.80 1.8154 1.9950 2.1959 2.4201
1.00 1.7901 1.9670 2.1649 2.3858
1.29 1.7685 1.9430 2.1384 2.3563
1.50 1.7581 1.9314 2.1254 2.3419
1.80 1.7480 1.9201 2.1127 2.3277
2.00 1.7431 1.9145 2.1065 2.3208
2.20 1.7392 1.9101 2.1014 2.3151
2.40 1.7360 1.9065 2.0973 2.3104
2.80 1.7312 1.9009 2.0909 2.3031
3.00 1.7294 1.8988 2.0884 2.3003
3.20 1.7279 1.8969 2.0862 2.2978
3.40 1.7266 1.8953 2.0844 2.2956
4.00 1.7238 1.8918 2.0800 2.2904
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Table 3.9: Normalized force values computed for various values of a/Rand coefficient of

friction # for an isotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
(b-a)/R=1.0, d/R=1.0, v=0.25, dy; =2.9996, d;, =1.0008, d,, =3.0052..

P/ R
a/R  Present Study Dag, [40]

n=00 7n=02 n=04 n=06 n=00 n=02 7n=04 7n=06
0.05 0.6877 0.5946 0.5094 0.4525 0.7164 0.5855 0.5074 0.4487
0.1 0.6424 0.5801 0.5147 0.4648 0.6523 0.5743 0.5127 0.4628
0.3 0.5758 0.5481 0.5164 0.4901 0.5817 0.5478 0.5164 0.4872
0.5 0.5473 0.5343 0.5179 0.5011 0.5436 0.5347 0.5159 0.4968
0.8 0.5322 0.5262 0.5183 0.5097 0.5361 0.5264 0.5163 0.5049
1.0 0.5281 0.5243 0.5188 0.5116 0.5301 0.5243 0.5170 0.5082
1.3 0.5254 0.5232 0.5192 0.5135 0.5264 0.5231 0.5180 0.5113
1.7 0.5242 0.5228 0.5196 0.5146 0.5247 0.5226 0.5188 0.5133
2.0 0.5239 0.5227 0.5197 0.5150 0.5241 0.5226 0.5192 0.5141
2.5 0.5237 0.5227 0.5199 0.5153 0.5238 0.5226 0.5195 0.5148
3.0 0.5237 0.5227 0.5199 0.5154 0.5237 0.5226 0.5197 0.5150
3.5 0.5236 0.5227 0.5199 0.5154 0.5236 0.5226 0.5198 0.5152
4.0 0.5236 0.5227 0.5199 0.5154 0.5236 0.5226 0.5198 0.5152
4.5 0.5236 0.5227 0.5199 0.5154 0.5236 0.5226 0.5198 0.5153
5.0 0.5236 0.5227 0.5199 0.5154 0.5236 0.5227 0.5199 0.5153
9.5 0.5236 0.5227 0.5199 0.5154 0.5236 0.5227 0.5199 0.5153
6.0 0.5236 0.5227 0.5199 0.5154 0.5236 0.5227 0.5199 0.5153
7.0 0.5236 0.5227 0.5199 0.5154 0.5236 0.5227 0.5199 0.5153
8.0 0.5236 0.5227 0.5199 0.5154 0.5236 0.5227 0.5199 0.5153
9.0 0.5236 0.5227 0.5199 0.5154 0.5236 0.5227 0.5199 0.5153
10.0 0.5236 0.5227 0.5199 0.5154 0.5236 0.5227 0.5199 0.5153
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Table 3.10: Normalized force values computed for various values of a/Rand coefficient of
friction 7 for an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
(b-a)/R=0.1, d/R=1.0.

P/u5R
a/R

n=0.0 n=0.2 n=04 n=0.6
0.05 0.0061 0.0059 0.0056 0.0055
0.1 0.0059 0.0058 0.0057 0.0056
0.3 0.0058 0.0057 0.0057 0.0056
0.5 0.0058 0.0057 0.0057 0.0056
0.8 0.0057 0.0057 0.0057 0.0056
1.0 0.0057 0.0057 0.0057 0.0056
1.3 0.0057 0.0057 0.0057 0.0056
1.7 0.0057 0.0057 0.0057 0.0056
2.0 0.0057 0.0057 0.0057 0.0056
2.5 0.0057 0.0057 0.0057 0.0056
3.0 0.0057 0.0057 0.0057 0.0056
35 0.0057 0.0057 0.0057 0.0056
4.0 0.0057 0.0057 0.0057 0.0056
4.5 0.0057 0.0057 0.0057 0.0056
5.0 0.0057 0.0057 0.0057 0.0056
5.5 0.0057 0.0057 0.0057 0.0056
6.0 0.0057 0.0057 0.0057 0.0056
7.0 0.0057 0.0057 0.0057 0.0056
8.0 0.0057 0.0057 0.0057 0.0056
9.0 0.0057 0.0057 0.0057 0.0056
10.0 0.0057 0.0057 0.0057 0.0056
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Table 3.11: Normalized force values computed for various values of a/Rand coefficient of
friction » for an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
(b—a)/R=1.0, d/R=1.0.

P/u5R
a/R

n=0.0 n=0.2 n=04 n=0.6
0.05 0.7544 0.6455 0.5667 0.5062
0.1 0.7034 0.6307 0.5711 0.5213
0.3 0.6279 0.5970 0.5691 0.5419
0.5 0.5977 0.5832 0.5671 0.5499
0.8 0.5825 0.5760 0.5673 0.5566
1.0 0.5786 0.5745 0.5679 0.5592
1.3 0.5762 0.5736 0.5687 0.5614
1.7 0.5751 0.5734 0.5692 0.5627
2.0 0.5749 0.5734 0.5694 0.5631
2.5 0.5747 0.5734 0.5695 0.5634
3.0 0.5746 0.5734 0.5696 0.5635
35 0.5746 0.5734 0.5696 0.5635
4.0 0.5746 0.5734 0.5696 0.5635
4.5 0.5746 0.5734 0.5696 0.5635
5.0 0.5746 0.5734 0.5696 0.5635
5.5 0.5746 0.5734 0.5696 0.5635
6.0 0.5746 0.5734 0.5696 0.5635
7.0 0.5746 0.5734 0.5696 0.5635
8.0 0.5746 0.5734 0.5696 0.5634
9.0 0.5746 0.5734 0.5696 0.5634
10.0 0.5746 0.5734 0.5696 0.5634
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Table 3.12: Normalized force values computed for various values of a/Rand E;/E, for an
orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=1.0,
d/R=1.0, n=04.

P/u5R
a/R
E,/E, =0.25 E,/E, =05 E,/E, =1.0 E,/E, =15

0.05 0.7284 0.6623 0.5928 0.5506
0.1 0.7212 0.6611 0.5960 0.5557
0.3 0.6955 0.6465 0.5909 0.5555
0.5 0.6835 0.6387 0.5873 0.5545
0.8 0.6769 0.6349 0.5864 0.5554
1.0 0.6754 0.6342 0.5866 0.5562
1.3 0.6745 0.6340 0.5872 0.5570
1.7 0.6742 0.6342 0.5876 0.5576
2.0 0.6742 0.6343 0.5878 0.5578
2.5 0.6742 0.6344 0.5880 0.5579
3.0 0.6743 0.6345 0.5881 0.5580
3.5 0.6743 0.6345 0.5881 0.5580
4.0 0.6744 0.6345 0.5881 0.5580
4.5 0.6744 0.6346 0.5881 0.5580
5.0 0.6744 0.6346 0.5881 0.5580
5.5 0.6744 0.6346 0.5881 0.5579
6.0 0.6744 0.6346 0.5881 0.5579
7.0 0.6744 0.6346 0.5881 0.5579
8.0 0.6744 0.6346 0.5881 0.5579
9.0 0.6744 0.6346 0.5881 0.5579
10.0 0.6744 0.6346 0.5881 0.5579
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Table 3.13: Normalized force values computed for various values of E;/E, and coefficient
of friction 7 for an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
(b—a)/R=1.0, d/R=1.0, a/R=0.1.

P/u5R
E\/E,

n=0.0 n=0.2 n=04 n=0.6
0.14 0.8620 0.8130 0.7681 0.7286
0.15 0.8579 0.8080 0.7626 0.7227
0.25 0.8277 0.7702 0.7212 0.6788
0.35 0.8054 0.7439 0.6926 0.6487
0.50 0.7790 0.7147 0.6611 0.6156
0.65 0.7564 0.6923 0.6370 0.5903
0.75 0.7492 0.6798 0.6236 0.5762
0.85 0.7383 0.6686 0.6117 0.5637
0.95 0.7290 0.6586 0.6009 0.5525
1.00 0.7247 0.6540 0.5960 0.5473
1.20 0.7094 0.6372 0.5780 0.5285
1.29 0.7034 0.6307 0.5711 0.5213
1.30 0.7026 0.6297 0.5701 0.5202
1.35 0.6993 0.6262 0.5663 0.5163
1.40 0.6962 0.6227 0.5626 0.5125
1.45 0.6932 0.6194 0.5591 0.5088
1.50 0.6903 0.6162 0.5557 0.5052
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Table 3.14: Normalized force values computed for various values of a/d and E;/E; for an
orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, (b—a)/R=1.0,
d/R=1.0, n=04.

P/u5R
a/R
E,/E; =0.25 E,/E; =05 E,/E; =10 E,/E; =20

0.05 0.6612 0.5973 0.5717 0.5612
0.1 0.6689 0.6028 0.5763 0.5653
0.3 0.6717 0.6023 0.5746 0.5630
0.5 0.6723 0.6011 0.5727 0.5608
0.8 0.6746 0.6020 0.5730 0.5608
1.0 0.6758 0.6028 0.5737 0.5613
1.3 0.6770 0.6037 0.5745 0.5620
1.7 0.6777 0.6043 0.5750 0.5626
2.0 0.6780 0.6045 0.5752 0.5627
2.5 0.6782 0.6047 0.5754 0.5629
3.0 0.6782 0.6047 0.5754 0.5629
3.5 0.6782 0.6047 0.5754 0.5630
4.0 0.6782 0.6047 0.5754 0.5630
4.5 0.6782 0.6047 0.5754 0.5629
5.0 0.6782 0.6047 0.5754 0.5629
5.5 0.6782 0.6047 0.5754 0.5629
6.0 0.6782 0.6047 0.5754 0.5629
7.0 0.6782 0.6047 0.5754 0.5629
8.0 0.6782 0.6047 0.5754 0.5629
9.0 0.6782 0.6047 0.5754 0.5629
10.0 0.6782 0.6047 0.5754 0.5629
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Table 3.15: Normalized force values computed for various values of E,;/E; and coefficient
of friction 7 for an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9,
(b—a)/R=1.0, d/R=1.0, a/R=0.1.

P/u5R
Ei/Eq

n=0.0 n=0.2 n=04 n=0.6
0.08 2.5499 2.2406 2.0143 1.8388
0.10 1.4273 1.2546 1.1254 1.0239
0.25 0.8321 0.7416 0.6689 0.6092
0.50 0.7454 0.6667 0.6028 0.5497
0.80 0.7187 0.6437 0.5825 0.5315
1.00 0.7104 0.6366 0.5763 0.5259
1.29 0.7034 0.6307 0.5711 0.5213
1.50 0.7001 0.6279 0.5686 0.5191
1.80 0.6969 0.6252 0.5664 0.5172
2.00 0.6954 0.6240 0.5653 0.5163
2.20 0.6942 0.6230 0.5645 0.5156
2.40 0.6933 0.6222 0.5639 0.5151
2.80 0.6920 0.6212 0.5631 0.5144
3.00 0.6915 0.6208 0.5628 0.5142
3.20 0.6911 0.6206 0.5626 0.5141
3.40 0.6908 0.6204 0.5625 0.5140
4.00 0.6902 0.6201 0.5624 0.5141
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

In this study, a method is developed to examine the problem of surface cracking in
orthotropic materials due to sliding contact by a rigid stamp. Calculated results

consist of the effect of the friction coefficient », stamp location, crack length and

material properties on the stress intensity factors at the crack tip and contact stresses.

In Chapter 2, the basic method to solve coupled crack and contact problem is
developed for different stamp profiles. The coupled crack/contact problem is
formulated by using the equations of elasticity and reduced to a system of singular
integral equations. The solution procedure of the problem can be visualized in Figure
2.2. In Section 2.2.1, the contact problem for an orthotropic medium under a rigid
stamp is examined first by reducing the governing equations to a system of ordinary
differential equations by using Fourier transformation. In Section 2.2.2, it is observed
that, in the orthotropic half-plane problem having a symmetry with respect to
x, =0 (see Figure 2.4) in geometry and material property distribution, the mode | (or
the opening mode) and mode Il (or the sliding mode) problems are uncoupled. Thus,
the mode | and mode Il problems are formulated separately. The stress and
displacement fields are obtained in terms of the unknown functions in Section 2.2.3 .
In order to determine the singular behavior of the unknown functions, the singular

terms in the kernels of the integral equations are extracted by performing asymptotic
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analyses for a stamp sliding on the surface (a>0). It can be concluded that in the
coupled crack/contact problems for an orthotropic medium stress singularities » and
/S (see equations (2.203) and (2.204)) depend on the friction coefficient 5 (through
e, given in Appendix A by equation (A.11e)) and the Poisson’s ratio (through e,,
and e,, given in Appendix A by equations equation (A.11e-f)). In order to solve the
integral equations, methods are developed for stamps of flat, triangular and circular
profiles. Jacobi polynomials are used to reduce the singular integral equations to
systems of linear algebraic equations. The unknown functions f,, f, and f; are

expanded into series of Jacobi polynomials. Then, the unknown constants of

expansions are determined by using the collocation method.

Numerical results of the problem are presented in Chapter 3. The results are given for
stamps of flat, triangular and circular profiles. For the large values of crack-to-stamp
distance, it is seen that the effect of the surface crack on the contact stress
distribution is negligible. Also, contact stress distributions are verified by making
comparisons to the results given in the literature [46] for large values of a/d (see
Figure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5).

The accuracy of the results is tested by comparing the results obtained for
homogeneous isotropic materials for all stamp profiles with those of given by Dag
[40]. In this study, elastic modulus ratios are taken as E;/E,=0.998 and
E,/E; =1.002 for isotropic materials. The reason is that, when these ratios are taken
as exactly 1, there could be differences between compared results, due to the
numerical errors. By using the values of 0.998 and 1.002 instead of 1 for E;/E, and
E,/E5 , respectively, better convergences are obtained and the results are found to

be in very good agreement with those of Dag [40] (see Figure 3.6, Figure 3.7, Figure
3.8, Figure 3.25, Figure 3.26, Table 3.2, Figure 3.27, Figure 3.44, Figure 3.45, Table
3.9 and Figure 3.46 ). Thus, developed solution methods for stamps of flat, triangular
and circular profiles sliding on the surface of the half-plane are validated.
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In order to obtain the results for orthotropic materials, the material alumina (Al,O3)
is employed in the numerical calculations. Plasma sprayed alumina coatings are
known to possess an orthotropic structure. The material constants are given in Table
3.1. The basic trends obtained for flat, triangular and circular stamps can be

summarized as follows:

When no tangential force is transferred by the contact (i.e., coefficient of

frictionn =0),
o Mode | stress intensity factors are negative regardless of the location of the
stamp (see Figure 3.9, Figure 3.12, Figure 3.28, Figure 3.31, Figure 3.47 and

Figure 3.50). This would lead to crack closure.

o Mode Il stress intensity factors are positive regardless of the location of the
stamp (see Figure 3.10, Figure 3.13, Figure 3.29, Figure 3.32, Figure 3.48 and
Figure 3.51) which means, the crack bends backwards and it extends in a

direction opposite to the applied frictional force (see Figure 3.1).

o For flat stamp, singularities are equal at both ends of the contact area but due
to the effect of the surface crack, the stress distribution is not exactly

symmetric (see Figure 3.11 and Figure 3.14).

When the tangential force increases,

o Mode I stress intensity factors increase (see Figure 3.9, Figure 3.12, Figure
3.28, Figure 3.31, Figure 3.47 and Figure 3.50 ). Since, as the coefficient of
friction increases, state of the normal stress at the crack tip changes from

compression to tension.

o Mode Il stress intensity factors decrease (see Figure 3.10, Figure 3.13, Figure
3.29, Figure 3.32, Figure 3.48 and Figure 3.51). Since, as the coefficient of
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friction increases, sign of the shear stress at the crack tip changes from

positive to negative.

o For flat stamp, singularity at the leading end decreases and there is higher

stress intensification at the trailing end (see Figure 3.11 and Figure 3.14).

For =0.4 and r=0.6, the mode | stress intensity factors are positive regardless of

the location of the stamp and the crack is open (see Figure 3.9, Figure 3.12, Figure
3.28, Figure 3.31, Figure 3.47 and Figure 3.50).

In Chapter 3, results related to the required contact force for triangular and circular
stamps are also given. The triangular and circular stamp problems are defined as
incomplete contact mechanics problems where the size of the contact region is a
function of the applied force. The required force approaches a constant value for
large values of crack-to-stamp distance. Depending on the values of friction
coefficient and stamp profile, the contact forces increase or decrease, as the stamp

gets closer to the crack.

The effect of elastic modulus ratio E,/E, is also investigated in Chapter 3. It is seen

that as E; /E, increases,

o Mode I stress intensity factors get larger (see Figure 3.15, Figure 3.18, Figure
3.34, Figure 3.37, Figure 3.53 and Figure 3.56),

o Mode Il stress intensity factors decrease (see Figure 3.16, Figure 3.19, Figure
3.35, Figure 3.38, Figure 3.54 and Figure 3.57).

The effect of the elastic modulus ratio E;/E; is also investigated in Chapter 3. It is
found that the effect of E,/E; on modes | and Il stress intensity factors and contact

stress distributions is not that significant (Figure 3.20-Figure 3.24, Figure 3.39-
Figure 3.43 and Figure 3.58-Figure 3.62).
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4.2 Future Work

In Section 2.2, we classified the orthotropic materials. This classification is related to
the roots of the characteristic equation. If there are four real roots, the material is
classified as type 1. Otherwise; it is classified as type Il. In this study, type | materials

are studied. Such an undertaking can also be performed for type Il materials.

In order to determine the effect of nonhomogeneity, numerical methods can be
developed for a problem involving a nonhomogeneous orthotropic medium such as a
graded orthotropic half-plane. In the literature, there are numerous studies regarding
the FGMs. In practice, the nature of processing techniques of some FGMs may lead
to loss of isotropy. Using the averaged constants of plane orthotropic elasticity,
which are first introduced by Krenk [52], the fracture and contact problems can be

formulated in coupled form.

In Section 2.2.4, the solution of the singular integral equations is obtained through
function-theoretic method as described by Dag [40] and Erdogan [43] by assuming
that a>0. By using this method, singularity analysis can also be performed for a=0
case. Also, as an alternative means of verification, the singularity analysis can be
carried out by considering another method such as Williams’ method [53]. This
singularity analysis and verification study can be considered as parts of a future

study.
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- CyA’B%dyydy, +CppBdy; A%dy,
+CyB?A%dyydy, —CppAdy; B2 dy,
~Cy;A?Bdy, — C1;A’B3dy, — C1, A’BdS
+Cy,B%d3 A% +C;;B?Ad,, +Cy;B2A%;,
+CyB2AdS —C, A%df B2 —C,B3%dy,
—Cy,Bdy, +Cip A%dyy +Cpp Ady,
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(d11 + delz) B

A3EC11d11d12 - A3EC12d121
+ A3
+ AEC,,d55 — AEd;,C,dy;
+ AEC,dy, + AE3d},Cyp
+Cy;A%dy; +Cyy A%dy,E?
+Cy;A%dy,d;, +C A?dSE?
+Cppdyy + d12E2012 - C12d121A2
_C12d11A2d12E2

EC,,dq, + A*E%d;4Cyy

|220=_

p—

27rd11E(E2 ~-F?

(d11 + Ezdlz)

~CyA’B%dy;dy, +CppBdy; A%dy,
+Cy1B?A%d;;d;, —C1pAdyyB2dyy
~Cy;A?Bdy, - Cy;A?B3d;; - C;A’BdS
+Cy,B3d4 A% +CyB%Ady, + C,B2A%,,
+CyB?Adf, —C, A%d7B? —C,B%dy,
—Cy,Bdy, +Cpp A%dyy +CppAdy,

A%BFCy,d;,dy, + A>BFCyydyq
+ A’BF3d,,C,, — A’BFC,,d 2
— ABC,,d,,d;, F? + ABCyyd;;

+ ABCy;d;,F 2 + ABC;;d;,dy5

— ABC,,d3 + ABC,d5F?

+ AB%d,FCy,dy; + AB2FCyydyy
+ AB%F3d,,C;, — AB’FdZCyy
~Codyy —d1pF*Cpy

lio =l110 + 1210 =

anllF(Ez —F2)

A’C,;B?dy,d;, + A’C;B?dy,
+Cy,A%dy, — A’C,d3B2
+ACy,Bdyyd;; — ACy;Bdy

— ACy,BdS + ABCy, dyy +Cypdy,
+Cy,d;; B2
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A?BEC,,d;,d;, + A2BEC;d;,
+ A?BE®d;,C,, — ABEC,d3
— ABCy,dy;d1,EZ + ABCyydy

+ ABCyyd,E® + ABCyydyy i,

— ABCy,dZ + ABC,;d5E?

+ AB?d,ECy,d;; + AB?EC;dy,
+ AB2E®d;,C;, -~ AB?EdACy, (A.8)
log =liog + log =— —Cypdy; —dppE*Cyy
20 = 1120 T 1220 AZCllBZdlldlz N AzClledn ,
+CypA%dy; — ACpdfiB?

2 dllE(E2 -F 2) +AC,,Bd;;d;, — AC;Bdy,

— ACy;Bdf, + ABCy, di; +Cypdy,
+Cy,d;,B?

(d2y + F2dy,)
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AEd,,C,,B?d,,F? + AEd,,C,;B%d5F?

— AEC,,d#B?dy,F? + AFE2d,,C,;B?dy;

+ AFE2d5C,,B?d,; — AFE2d,,C,,d; B2

— BEC,,dZ A%d;,F? + BEd;;C;; A’d 5 F 2

+ BEd;;C; A%dy,F 2 — BFE?d;,Cyppd3 A®
+BFE?d3C,,A%dy, + BFE?d;,Cy; A%dy,

- d11d12F 2C12 - E2d12C12d11 - E2d122F 2C12

- ABC12dl:31 + ABClldlzl - C12d121 - ABE2d12C12d121

+ ABE?d%Cydy; + ABE?d,Cyyd;; — ABC,dZd,F 2
+ ABd,,C,,d5F 2 + ABd,;Cy;d;,F2 — E2ABdSCypdy F 2
+ ABC;,dfd;, + E2ABASCy F2 + E2ABASCy F2
—E2AB?FdACy, - E?A?BFdAC,, - E2AB?F2dAC,,
— EA’BF2dZCyy

lg =lyg +150 =

A%C,;B?dy,d;, + A’C;B?dy,
+Cy,A%dyy — A’Cp,d 3B

27dy, EF(E + F)| + AC;,Bdy;d;, — AC;;Bd;,

— AC;Bd2 + ABCy, dy; + Cppdys
+Cy,d;; B2

E(Clz +Cyp0yp —Cppdyy +F Zczz)

M210 = (Ez —Fzﬁzz ,

F(C12 +Cypdyy, —Cppdyy + Ezczz)

20 =—

F0 =10 + 0 =

(E2-F?k,, !

— FCpE +Cypy +Cppdyy —Cprdyy

(E+F)Cy, ’
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B3F3d,,C;, - B3FCp,dj
+B3FCy,dy;d;, + B3FCyydyy
+BF3d;,Cy, — BFd;,Cyody;
+BFC,d5 + BFCy;d;,
+Cy;B%d;,F2 +Cy;B%dy,
+Cy;,B%d5F2 + €y B?%dydy,
- ClZdllBZdle 2~ ClZdlle2
+dy,F 2C12 +Cypdyy

- C,;A’B3d,, —C,;A’Bd,;, — C,;A’BdS
+Cy,B3dZ3 A% +C,B?A%d,; +CyB?Ady,
+CyB%AdZ - C,A%d2B? + Cp,Ady,

- CnA2 Bsdndlz +Cyp,B d11A2d12

+ C1182A3d11d12 —ClednBZdlz
—Cy,B%d;; — C1pBdy, + Cpp Aldyy

(Clz + E2C22 +Cypdy, —szdn)A

(A.10a)

S110 =~

p—

27;022F2(E2—F2

B3E3d,,C,, - B*EC,d3
+B3EC,;d;,d;, + B3ECyydyy
+BE3d;,C,, — BEd;,Cy,dy;
+BEC,,d3 + BEC;;d;,
+CyB2d,E? +Cy,B?%dy
+Cy;B%d5E? +CyB2dy,dy,
- C12dlled12 EZ - ClZdlle2
+d12E*Cyy +Cppdyy
—C,;A*B3dy; —C;A®Bd;, —C;A’BdS5 |’
+Cy,B3d3 A% +C,B*A%dy; +C;B2Ad,,
+Cy;B%AdZ —C, A%dZ B2 +CypAdy,

- C11A2 Bsdlld12 +CyppB d11A2d12

+ C11BZ A3d11(112 - C12Ad1182d12

-Cp B3d11 —CypBdyp +Cyp A3d11

(C12 + cmzz +Cypdy, _C22dll)A

(A.10b)

S120 =

27CE2(E2 - F2)
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(Clz + E2C22 +Cyppdyy — szdn)B

A3F3d,,Cp, — ASFCpd3

+ A%FCyydyydy, + ABFCyydyy
+ AF3d;,Cy, — AFd;,Cp,dy;
+ AFCy,d5 + AFCy;d;,

+Cy A%d,F2 +Cy A%dy,

+Cy A%d5F2 +Cy A%dy,dy,
- C12dllA2dlZ F 2 C12(1121A2

+dp,F 2(:12 +Cyppdyy

So10 =

2;;022F2(E2—F2

(Clz + cmzz +Cppdpp — C22d11)B

S—

~Cy;A?B%d,; — C;;A’Bd;, — C1; A’Bd5
+C,B3d4 A% +CB2A%d;, +CyB?Ady,
+CyyB?AdS —C, A%dZB? +Cyp Ady,
—Cy,A?B%dyyd;, +Cp,Bdy  A%d),
+Cy1B2A%,d;, —Cip Ady B2d;,
—Cy,B%d;; —CppBdy, +Cpp A%dy

A3E3d11C12 - A3EC12d121

+ A3Eclld11d12 + ABEClldll
+ AE3d;,Cy, — AEd;,Cyo0g
+ AEC,,d3 + AEC,,d;,
+CyA%dy,E? +C A%dy,
+Cy A2dZE? + Cyy A%dyy 0y,
— Cyp0y, A%y, E? - Cppd A2

+tpECyp + Cpptyy

Sp20=—

27rC22E2(E2 ~F?

- C11A2 Bgdn - C11A2|3dlz - C11A28d122
+C;,B%d2 A% +C,B2A%y,

2 2 2 342 p2
+CppAdy, — C A?B%dyydy,
+C;,Bd;A%d;, + C;B2A%,,dy,

- ClZAdlled12 - CIZB3dll - C1ZBdlZ
+C, A%y,
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[012 +E*Cy

+Cypdyp; —Cpdyy

|

— A’BFC,,df + A>BFCyyd;,

+ A?BF3d,,C,, + A°BFC,;d;,d;,
+ ABCy,dy;d;, — ABCy,dy; F2dy,

+ ABCy;d;; — ABC,d3

+ ABCy,d5F 2 + ABC,,F2d,

— AB?FC;,d2 + AB?FCyyd;,

+ AB%F3d,,C;, + AB*FCyydyyd;,
- d12C12 F 2 - C12d11

S10 =S110 T S210 =

27ZC22F2(E2—F2)

(C12 +F?Cy

+Cypdyp —Cpodyy

CA%B%dy; +Cyy A’B?dyydy,
—Cy,B?d 1A% +Cp A%dyy
-C;;,ABd;, +C,Bdy;Ady,
—Cy1ABdS, + ABCy,dy,

+Cyppdyp + C12(111BZ

~ A’BEC,,d{ + A’BEC;,d;,

+A?BE3d,Cy, + A2BECy;dq,d 1,

+ABCy,dy;d;, — ABC,dy E2dy,
+ABCy,dy; —ABC,d 3

] +ABC,,d5E? + ABCy,E?d,,

— AB%EC,,d2 + AB?EC;,d;,

+ AB%E®d;,C;, + AB*ECy;dq,d1,

—dy,CpE? —Cpdy

So0 =S100 tS220 =~

27C,,E2(E2 - F?)

C1A?B?dy; +C13 A®B?dyydyy
~C;,B%dfi A% +Cpp A%dyy
—-C;;ABdy, +C4,Bdy;Adyy
~Cy,ABdf, + ABCp,dy,

+Cypdyp +Cppdy4 B ?
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45 All+ dy, ) (- C1pB2dy; +CpyB2dy, +Cyy +CpyB2)

€110 =

€100 =

€r10="—

_CllAZ Bd12 _CllAZ Bd122 _C11A283d11d12
+Cy;B2Ad,, +C;;B?AdZ +Cy;B2A3d,,dy,
~C;A’B3d,; —C,B%d;; +Cp,B3dS A
+Cy;B2A3dy, + C;,A%dy; — C,A%d 2 B?

+ ClZ B d11A2dlZ - C12Adlled12 - ClZ BdlZ
+Cy,Ady,

4B+ dy, ) Cip A2dy; +CuAdy, +Cyp +CyyA?)

—-Cy;A?B3dy; —Cy,B3d;, +Cp,B3dAA?
+CyB2A%d; + C;,A%dy; —C, A%d 2 B?

+ C12 Adlz

2AB(d12 + Bzdll)(1+ dp,)

- CllA2 BdlZ - C11A2 Bd122 - C11A283d11dlZ
+Cy;B%Ad,, +C;;B?Ad +Cy;B2A%d,,d;,
—C,;A?B3dy; — Cy,B3d;, + Cp,B3dAA?
+Cy;B%A%d,; +C, A%y, —C, Ad 2B

+ C12 B d11A2dlZ - C12AdllBZdlZ - ClZ BdlZ
+CypAdy,
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- C11A2 BdlZ - CllA2 Bd122 - CllA2 B3d11d12
+Cy;B%Ad,, +C;;B?AdS +Cy;B2A%d,,d;,

+Cy,Bdy; A%dy, — CipAdyy B2dy, —Cp,Bdy,

(A.11a)

(A.11b)

(A.11c)



2AB(dy, + A2dy, )+ dy)
- CllA2 BdlZ - C11A2 Bd122 - C11A283d11d12
+C;B2Ady, +Cy B%AdS, + C;B2A%d,,dy,
-C,,A%B%d,; —-C,B3d;; +C,B3d A A? (A.11d)
+CyB2A%d, + C;,A%dy; —C,A%d 2 B?
+ ClZB d11A2d12 - ClZAdlledﬂ - ClZ BdlZ
+CypAdy,

€200 =

4n(ACy;1B+ ACy;Bdy, — AC,Bdy; —Cpp) (14dy,)
A%?C,,B%dy, d;, —A%Cy, d3B? + A% CyB% dyy
Ces | +C1, A% dyy — ACy;Bd;,— AC,;Bd2 (A.11e)
+AC,Bdy, dyp + ACy,Bdy; +Cyppdyy +CppB2dy,

€10 = €110 €120 =—

2(A+B)dy; (1+dy,) AB
A%C,,B%d;, d;, — A%Cy, dZB% + A2CyB%dy,
+Cy,A%dy; — ACy,Bd;,— AC;;BdS + AC;,Bdy; dg,
+ ACy,Bdy; +Cppdyy +CppB2dy;

€20 =€210 T €0 =

(A.11f)
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APPENDIX B

CLOSED FORM EXPRESSIONS FOR CAUCHY PRINCIPAL VALUE
INTEGRALS

Following result, which is given by Tricomi [45], is used in the evaluation of the
Cauchy principal value integrals,

1
lj(l— £)* (L+1)? p{@h) (t)i = cot(ra)(1— x)* 1+ x)? P{*P) (x)
T hel t—x

(B.1)

n+L-n-a-41-a,—
zT(n+a+ f+1)

29 A T(@)r(n+ g +1) F( 1- x)
> )

where a>-1, g>-1, a«=0,12...T is the gamma function, and F() is the

hypergeometric function. If (a+ ) is equal to -1, 0 or 1, (B.1) can be further
simplified as follows,

1

1 dt

“la-tn*a+t)pleh) iy — -
ﬂ_jl( @i PR o

(B.2)
2‘1

= cot(zar)(L— x)* L+ X)7 PP (x) - @A) (x),

sin(za) " ¥

where, y=—(a+p).
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APPENDIX C

FUNCTIONS USED IN THE NUMERICAL SOLUTION OF THE INTEGRAL
EQUATIONS

The transformed forms of the kernels used in equations (2.209a-c), are given as,

H11(51,r)=%(H11s(511r)+ Har (51.1)), (C.1a)
H13(511")=b;2a(H13s(311")+H13f (Sl’r))’ (C.1b)
H22(52,r):%(H223(52,r)+szf (sz,r)), (C.1c)
H23(32,V)=b;2a(H235(521r)+ H 231 (Sg,l’)), (C.1d)
H31(s3,r)=%(H315 (S3.1) + Hayg (s3,r)), (C.1e)
H32(53,F)=%(H325(53,I’)+ Hasot (53:")), (C.11)
"'33(53,"):b;2a Hast (3.1), (C.19)
where,
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Hijs (si, 1) =hijs (X,1), (C.2a)

Hig (Si, 1) =hg (X.1), (C.2b)
9Si+9, i=1,2
2 2
X — (C.3a)
b—aSi b+a _3
2 2
—r+—, j=12
2 " J
t= (C.3b)
b-a_ b+a
—_—r+—, ]=3
2 2

The terms used in equations (2.212) are given in the following form,

2z 292 T(-Y2)r(n+ oy +1 1-s
mlln(sl)z% ﬂr((n]i])/z&ao){l )xF(n+1;—n+J,/2—a1;3/2; le
1
(C.4a)
1
+ [a=n"2@e N« (DHy (s, ndr,
-1
1
Myzn (52) = [ @=1)# @+ )% R (M3 (s, 1) dr (C.4b)
-1
My 2% Y2 M(—~Y2)I(N+ary +1 1-s
Myn (S2) = 220 ﬂl“((n]i])/z(Jrao)ll )xF(n+1;—n+],/2—a1;3/2; sz
1
(C.4c)

1
+ _[(1— NY2@1+r)*s Pn(_j/z’al) (N Hy(sy,r)dr,
x|
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1
Mo (52) = [ @=1)7 @+ 1) PV (N)H g (s, D) (C.4d)
-1

1
Magn (53) = [ 0= 1)@+ )% Y29 (H (55,0 (C.4e)
-1

1
Magn (53) = [ @=1) 2@+ % P> (NH g (s5,1) dr (C.4f)
-1

ey 27 T(BT(N+ay +1)
2 z'(n+ f+a, +1)

M3, (S3) =

1-—
xF[n+1;—n—/3—a2;1—ﬁ; 233J

(C.49)

1
+ [a=n/ @™ PP (DHg (55, dr,
-1

where a,,, myand e,, are given in Appendix A by equations (A.1c), (A.4c) and

(A.11f), respectively.

Note that if «, + #=-1, 0, or 1 (C.49) reduces to

ew 27" L pa)
2 sin(zB) "(@th)

1
Maan (3) = (s9)+ [@=1 @+ D™ P (DHg (s5,1)dr . (C.50)
-1

In this case, if a, + f=-1and n=0;
1
Mag (s3) = [ (L=1)7 L+ 1) Hag (s, 1) dr (C.5b)

-1

The terms used (2.233) in are given as follows:
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gur ()= 820 2 TN +D)

2 zT(n+1/2)

x F[n +1;—n+1/2;3/2;1_231j

1
+ [a=n P20 (Hy (s, nar,
1

1
G (5) = [ =17 @+ 1) PP (Hya(sy, 1)
-1

My, 27¥2 M(=1/2)I(n +1)
2 zT(n+1/2)

9oon(Sy) = xF(n+1;—n+1/2;3/2;1_232j

1
+ I(l-r)‘”2 P20 (\)H ) (s,, r) dr
-1

1
92 (52) = [ 0=’ @+ D) R (DH (s, D
-1

1
Osin (53) = [ =) RO (Hg (53, 1)
1

1
Oson (53) = [ @=1) V2 RIF2) () H3 (5, 1) dr
-1

1
e 2 “B-w © w
Gaan (52) =2 — = PP (s3) + [ =17 @+ 1) PP (Hgs (s3,1) dr
-1

2 sin(zp) "
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APPENDIX D

CLOSED FORM CONTACT MECHANICS SOLUTIONS INVOLVING
ISOTROPIC AND ANISOTROPIC HALF-PLANES

The sliding contact problem involving a rigid flat punch and an isotropic half-plane;
and that pertaining to a rigid punch and anisotropic half-plane are solved by Galin

[46]. Also in [36], [47] and [48] to solve the contact problem, Galin’s [46] approach
is utilized. We provide below Galin’s results.

¥y

Figure D. 1: Geometry of the contact problem
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The entire interval —1<x<Iof the boundary of the half-plane is in contact with the
flat punch and the normal pressure distribution p(x) under the punch is given in the

following form:
For isotropic half-plane frictionless contact:

P
p(X)Zm, —l<x<l. (Dl)

For anisotropic half-plane frictionless contact:

p(x)=PCOS7m ! , -l<x<l, (D.2a)
T (I + X)a+1/2 (I _ X)a+1/2
a= 1arctané’, (D.2b)
T
Sye —822(1+ _1 +1+_1J
2\m m m, m (D.20)

Spfl 1,1 1
2ilm m m, m,
where m;, m, and their complex conjugates m;, m, are roots of the following
characteristic equation:
S;m* —2S,5m3 +(2S;, + Sgg)M? —2S,6M+S,, =0, (D.3)

In which S;;, Si5, Ss, Sig, Sy and Sg are compliance coefficients. In the case

when the half-plane is orthotropic and one of the axes of orthotropy is parallel to the

boundary, S;5 =S, =0. The equation above is then biquadratic and its roots m; and

m, are purely imaginary.
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For isotropic half-plane frictional contact:

p(x):PCOSﬂa ! , —l<x<l, (D.4a)
T (I + X)a+]/2 (I _ X)a+l/2 :
1
a =-—arctand, (D.4b)
Vs
B (k-1
0= (ciD)’ (D.4c)

where 7 is the coefficient of friction, x =3—4v for plane strain, x=3-v)/1+v)

for generalized plane stress and v is the Poissons’s ratio.

For anisotropic half-plane frictional contact:

p(X)=PCOS7m ! —l<x<lI D5
T (I + X)a+1/2 (I _ X)a+1/2 ! ! ( . a)
a= 1arctané’, (D.5b)

T

_SA i_i__i_{_i_i__i +826_77 Sl i_ﬁ._l_ +812
2 \m m my, m, 2 \mm, mm,

0= (D5C)
822[ 1 1 1 1] 822( 1 1 ]
B e el Rt / ey ——
2i\lmg m m, m, 2i \mm, mm,
For an orthotropic half-plane the equation (D.5¢) becomes
Sy + Sppuv
9277[ 22 T 912U 2] (D.5d)

— Sy (v +0y) .

Since, the coordinate axes in this study do not match up with the coordinate axes of
contact problem given in [46], the results given above are not used directly for
comparison. The results given by Galin [46] are rearranged according to the
coordinate axes used in this study (Figure D. 2). In order to get the solutions, in the

procedure described in [36] are followed.
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X

Figure D. 2: Geometry of the contact problem and principal axes X;, X..

For a two-dimensional plane problem, stresses in the body can be expressed in terms

of the Airy stress function ®(x,,x,) as follows:

R
oy =—, (D.6a)
OX5
R
Ogp =—, D.6b
22 aXlz ( )
R
012 ——m. (DGC)

Substituting (D.6) into the compatibility equation, the governing equation is
expressed in terms of d(x;,x,). In absence of body forces, the governing equation is

obtained as follows:

' o) o' o) )
5, 0P 95 9P L0s 15.) 0L 95 0P g TP g D7
11 axg 16 aXng 12 66 axfxg 26 axfxz 22 6)({1 ( )

where S;;, Sio, Sy, Sig, Sps and Sg are compliance coefficients. Considering

Fourier transformation in x,, Airy stress function can be expressed as,
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#0.%)=—— [0, @)expl o) do. (D.9)

Substituting (D.8) in (D.7) following ordinary differential equations are obtained,

R () d2® - do d*®
Sy 0% = 2S5i@° — — (251, + Sgg) @2 —— — 2S,s iw——+ S, ——=0. D.9
11 16 ax, 12 + 66 o 26 o 22 it (D.9)

Assuming a solution of the form exp(mx;) for @, characteristic equation of the

problem is determined as,
822m4 - 2826m3 + (2812 + 866)m2 - 2316m + Sll = O . (D.lO)

After applying the steps described in [36], normal pressure distribution p(x,) under

the punch is obtained in the following form,

For isotropic half-plane frictionless contact:

—l<x, <.

p(x2) =—F=—.
2 ﬂm (D.11)

For anisotropic half-plane frictionless contact:

coszma 1

p(x,)=P , —l<x, <I, _
2 T (I + Xz)a+]/2 (I _ X2)a+]/2 2 (D 12a)
a= 1arctané’, (D.12b)
Vi
816_811[1 +_i L _1J
B 2\m m o m, m,
0=- (D.12c)
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For isotropic half-plane frictional contact:

p(x,) = p L257% 1 1<, <l D13
2 T (I + Xz)a+]/2 (I _ Xz)a+]/2 ! 2 ! ( . a)
1
a =—arctand, (D.13b)
T
(x-1)
0= :
n (k1) (D.13c)
For anisotropic half-plane frictional contact:
cosza 1
X,)=P , —l<x, <, .
p(x2) 15 30) 2 ()= 2 2 (D.144)
1
a =—arctand, (D.14b)
T

S S
T e B T s
2\m m o m, m, 2 \mm, mm,

Suf1 11 1) Suf 1 1 |
2i\lm m m, m, 772i mm, mm,

where m;, m,, m,, m, are roots of the characteristic equation given by (D.10). For

0=— (D.14c)

an orthotropic half-plane, equation (D.14c) becomes,

n [311 + S120102]
0= . D.14d
S11(vy +0y) ( )
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