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ABSTRACT 

 

 

A SURFACE CRACK IN AN ORTHOTROPIC MEDIUM SUBJECTED TO 

SLIDING CONTACT BY A RIGID STAMP 

 

 

Sarıkaya, Duygu 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Serkan Dağ 

June 2014, 195 pages 

 

 

This study is concerned with the surface crack problem in an elastic orthotropic half-

plane subjected to sliding contact by a rigid stamp of an arbitrary profile. In this 

study the effect of sliding contact on the mixed-mode stress intensity factors and 

contact stresses is investigated. Within the scope of the research, surface crack 

problem for orthotropic materials is examined. The well-known equations of 

elasticity for an orthotropic semi-infinite medium are used to formulate the fracture 

and contact problems in coupled form. The coupled elasticity problem is solved by 

means of a direct approach. Integral transforms are utilized to satisfy the governing 

equations of the problem and boundary conditions exactly. The coupled problem is 

reduced to a system of three singular integral equations. By adopting a collocation 

approach, the equations are solved numerically to determine the stress intensity 

factors and contact stresses. The main results of the analyses are the effect of the 

material properties and friction coefficient on the mixed mode stress intensity factors 

at the crack tip, contact stresses and required contact force. 

 

Keywords: Sliding contact/crack problems, Stress Intensity Factors, Singular Integral 

Equations.
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ÖZ 

 

 

RİJİT BİR ZIMBA İLE KAYMA TEMASINA MARUZ KALAN 

ORTOTROPİK ORTAMDAKİ BİR YÜZEY ÇATLAĞI 

 

 

Sarıkaya, Duygu 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Serkan Dağ 

Haziran 2014, 195 sayfa 

 

 

Bu çalışma, çeşitli profillerdeki rijit bir zımba ile kayma temasına maruz kalan 

ortotropik ortamdaki bir yüzey çatlağı ile ilgilidir. Bu çalışmada kayma temasının, 

karışık mod gerilme şiddeti çarpanı ve temas gerilmeleri üzerindeki etkisi 

araştırılmıştır. Bu çalışma kapsamında yüzey çatlağı problemleri ortotropik 

malzemeler için incelenmiştir. Kırılma ve temas problemlerinin bağlaşık formda elde 

edilebilmesi için, yarı sonsuz ortotropik bir ortam için elastisite denklemleri 

kullanılmıştır. Bu bağlaşık elastisite problemi direk yaklaşım ile çözülmüştür. 

Problemin ana denklemlerini ve sınır şartlarını sağlamak için integral dönüşümleri 

kullanılmıştır. Bağlaşık problem, üç adet tekil integral denklemine indirgenmiştir. 

Gerilme şiddeti çarpanı ve temas gerilmelerini saptamak için, düzenleme tekniği 

kullanılarak integral denklemleri nümerik olarak çözülmüştür. Analizlerin asıl 

sonuçları, malzeme özelliklerinin ve sürtünme katsayısının karışık mod gerilme 

şiddeti çarpanı, temas gerilmeleri ve gerekli temas kuvveti üzerindeki etkileridir.  

 

Anahtar Kelimeler: Kayma Temas/Çatlak Problemleri, Gerilme Şiddeti Çarpanı, 

Tekil İntegral Denklemleri. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

The aim of this study is to develop a method to examine the surface crack problem in 

an elastic orthotropic half-plane subjected to sliding contact by a rigid stamp. Main interest 

of the study is on the effect of sliding contact on the mixed-mode stress intensity 

factors and contact stresses. In this chapter, literature review of related fracture and 

contact mechanics problems are given. Then, the scope of this study is described. 

 

1.1 Literature Survey 

Fracture and contact mechanics are foundational to the field of engineering. Many 

studies are conducted regarding the behavior of solids subjected to contact, and those 

of that contain cracks and defects.  Here, recent researches in this field are 

summarized. 

 

Dag and Erdogan [1] consider the coupled problem of crack/contact mechanics in a 

nonhomogeneous medium and investigate the behavior of a surface crack in a 

functionally graded medium loaded by a sliding rigid stamp in the presence of 

friction. In this study, the dimensions of the graded medium are assumed to be very 

large in comparison with the local length parameters of the crack/contact region. 

Thus, in formulating the problem the graded medium is assumed to be semi-infinite. 

Contact stresses, the in-plane component of the surface stress and stress intensity 

factors at the crack tip are determined. The results are presented for various 
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combinations of friction coefficient, material nonhomogeneity constant and 

crack/contact length parameters. 

 

A surface crack in a semi-infinite elastic graded medium under general loading 

conditions is studied by Dag and Erdogan [2]. In this study it is assumed that first by 

solving the problem in the absence of a crack it is reduced to a local perturbation 

problem with arbitrary self-equilibrating crack surface tractions. The local problem is 

then solved by approximating the normal and shear tractions on the crack surfaces by 

polynomials and the normalized modes I and II stress intensity factors are given. As 

an example the results for a graded half-plane loaded by a sliding rigid circular stamp 

are presented. 

 

The problem of internal and edge cracks in an orthotropic strip is considered by 

Delale and Erdogan [3]. This problem is formulated in terms of singular integral 

equations. For the symmetric case the stress intensity factors are calculated and are 

compared with the isotropic results. The results show that the stress intensity factors 

are dependent on the elastic constants and are generally different from the 

corresponding isotropic results. 

 

Mode I crack problem for a functionally graded orthotropic strip is considered by 

Guo et al. [4]. In this study, internal and edge cracks perpendicular to the boundaries 

are examined. The elastic property of the material is assumed to vary continuously 

along the thickness direction. The principal directions of orthotropy are parallel and 

perpendicular to the boundaries of the strip. The singular integral equation for 

solving the problem and the corresponding asymptotic expression of the singular 

kernel are obtained. Three different loading conditions, namely crack surface 

pressure, fixed-grip loading and bending, are considered during the analysis. The 

influences of parameters such as the material constants and the geometry parameters 

on the stress intensity factors (SIFs) are studied. 
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Ozturk and Erdogan [5] consider Mode I crack problem in an inhomogeneous 

orthotropic medium. In this study, the symmetric crack problem is considered and 

the material is both oriented and graded. The mode I crack problem for the 

inhomogeneous orthotropic plane is formulated and the solution is obtained for 

various loading conditions and material parameters. 

 

The mixed mode crack problem in plane elasticity for a graded and oriented material 

is considered by Ozturk and Erdogan [6]. It is assumed that the crack is located in a 

plane perpendicular to the direction of property grading and the principal axes of 

orthotropy are parallel and perpendicular to the crack plane. The problem is 

formulated in terms of the averaged constants of plane orthotropic elasticity and 

reduced to a system of singular integral equations which is solved for various loading 

conditions and material parameters. The presented results consist of the strain energy 

release rate, the stress intensity factors and the crack opening displacements. It is 

found that generally the stress intensity factors increase with increasing material 

inhomogeneity parameter, shear parameter and decreasing stiffness ratio. 

 

Gupta and Erdogan [6] consider the problem of edge cracks in an infinite strip. In 

this study, the elastostatic plane problem of an infinite strip containing two 

symmetrically located internal cracks perpendicular to the boundary is formulated in 

terms of a singular integral equation with the derivative of the crack surface 

displacement as the density function. The solution of the problem is obtained for 

various crack geometries and for uniaxial tension applied to the strip away from the 

crack region. The limiting case of the edge crack is considered in some detail. The 

results presented consist of stress intensity factors. The results also include the 

solution of the edge crack problem in an elastic half-plane. 

 

The crack problem for an orthotropic half-plane stiffened by elastic films problem is 

considered by Mahajan et al.[8]. In this study, various contact and crack problems for 

an orthotropic substrate, stiffened by elastic films, are considered. The film is 
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modeled as a membrane and the substrate as an orthotropic half-plane with the 

principal axes of orthotropy parallel and perpendicular to the boundary. The problem 

is formulated in terms of a system of singular integral equations. The influence of the 

relative crack/stiffener dimensions, the film/substrate stiffness ratios and the material 

orthotropy on the stress intensity factors is studied. 

 

The elasticity solution of cracking due to sliding contact in a homogeneous half-

plane for different stamp profiles is considered by Hasebe et al. ([9]-[12]). In these 

problems, the homogeneous half-plane is in sliding contact with a rigid stamp. The 

coupled crack and contact problems are solved using complex stress functions and 

the conformal mapping technique. This technique is limited to the crack and contact 

problems in homogeneous half-plane and also since the homogeneous half-plane is 

mapped into a unit circle, the solution procedure does not account for singularities at 

some irregular points. 

 

De and Patra [13] consider edge crack in orthotropic elastic half-plane problem. In 

this study, two edge crack problems, (1) having prescribed crack shape and (2) 

having been opened by prescribed normal pressure, are examined. Numerical results, 

for various loading functions of stress intensity factor and crack energy are 

determined. 

 

The plane elasticity problem for an infinite medium containing a line crack is 

considered by Konda and Erdogan [14]. The main results of this study are the 

calculated modes I and II stress intensity factors. The effects of the material 

nonhomogeneity constant, the crack orientation, the loading conditions and the 

Poission’s ratio on the stress intensity factors are studied. 

 

Cinar and Erdogan [15] consider the crack and wedging problem for an orthotropic 

strip. In this study, first the plane elasticity problem for an orthotropic strip 

containing a crack parallel to its boundaries is considered. The problem is formulated 
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under general mixed mode loading conditions. It is shown that the stress intensity 

factors depend on two dimensionless orthotropic constants only.  The problem of 

loading the strip by a rigid rectangular wedge is then considered. It is found that for 

relatively small wedge lengths continuous contact is maintained along the wedge-

strip interface, at a certain critical wedge length the separation starts at the 

midsection of the wedge and the length of the separation zone increases rapidly with 

increasing wedge length. 

 

The problem of orthotropic semi-infinite strip with a crack along the fixed end is 

considered by Loboda [16]. In the study, the model of a crack with frictionless 

contact zones near its tips is used. The stress intensity factors at the crack tips and the 

corners of the strip, which are the main parameters of fracture, are evaluated.  

 

Kim and Paulino [17] consider the interaction integral for fracture analysis of 

orthotropic FGMs. In this study, stress intensity factors for mode I and mixed-mode 

two-dimensional problems are evaluated by means of the interaction integral and the 

finite element method. Extensive computational experiments have been performed to 

validate the proposed formulation. The accuracy of numerical results is discussed by 

comparisons to available analytical, semi-analytical, or numerical solutions. 

 

Interface crack problems in graded orthotropic media are considered by Dag et al. 

[18]. In this study, the authors examine the problem using analytical and 

computational techniques. In the analytical formulation an interface crack between a 

graded orthotropic coating and a homogeneous orthotropic substrate is considered. 

The problem is formulated in terms of the averaged constants of plane orthotropic 

elasticity and reduced to a pair of singular integral equations which are solved 

numerically to compute the mixed mode stress intensity factors and the energy 

release rate. In the second part of the study, enriched finite elements are formulated 

and implemented for graded orthotropic materials. Comparisons of the finite element 
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and analytical results show that enriched finite element technique is capable of 

producing highly accurate results for crack problems in graded orthotropic media.  

 

In the study by Kim and Paulino [19], a finite element methodology is developed for 

fracture analysis of orthotropic functionally graded materials (FGMs) where cracks 

are arbitrarily oriented with respect to the principal axes of material orthotropy. The 

effects of boundary conditions, crack tip mesh discretization and material properties 

on fracture behavior are investigated in detail. To validate the methodology many 

numerical examples are submitted. The accuracy of the results is discussed by 

comparison to available (semi-) solutions. 

 

Contact mechanics of graded coatings under isothermal conditions is considered by 

Guler and Erdogan [20]. The objective of this study was to obtain a series of 

analytical benchmark solutions for examining the influence of such factors as 

material inhomogeneity constants, the coefficient of friction and various length 

parameters on the contact stresses. Extensive results are given for the influence of 

material nonhomogeneity and friction on the contact stress at the contacting surface. 

 

Shah and Wang [21] considered two homogeneous spheres in contact and determined 

the contact stress in the bodies under full-slip and partial-slip conditions. These 

stresses are then used to solve the Hertzian fracture problem. The critical fracture 

load required for the development of Hertzian crack system is also calculated. 

 

Giannakopoulos and Pallot [22] consider two-dimensional isothermal contact of a 

rigid cylinder on an elastic graded substrate. In this study, the normal, sliding, and 

rolling types of contacts are addressed. Flat ended and cylindrical punches are 

examined in detail. The effect of adhesion in frictionless contact is also studied. 

 

Barber [23] examines contact problems for a thin elastic layer. In this study, 

indentation by a rigid frictionless punch of a thin elastic layer on a rigid foundation is 
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considered in a three-dimensional setting. Results are given for the case where an 

incompressible layer is indented by an ellipsoidal punch. Also an approximate 

solution for the contact area and the load-penetration relation by considering 

frictionless indentation of an elastic half space by a punch of an arbitrary profile is 

developed by Barber and Billings [24]. 

 

Prasad et al. [25] develops a systematic methodology to quantify the mechanics of 

steady-state frictional sliding response for a plastically graded material. Specifically, 

the effect of linear gradient in yield stress on the frictional sliding response is 

examined through parametric FEM computation of the instrumented scratch test. 

 

A multi-layered model for isothermal sliding frictional contact analysis of 

functionally graded materials (FGMs) with arbitrarily varying shear modulus under 

plane strain state is developed by Ke and Wang [26]. Ke and Wang [27] also 

considered a multi-layered model for frictionless contact analysis of functionally 

graded materials (FGMs) with arbitrarily varying elastic modulus under plane strain-

state deformation. 

 

Fracture initiation and propagation in a homogeneous coating due to sliding 

indentation is studied both experimentally and theoretically by Malzbender and With 

[28]. Using simplified closed form expressions for the stress intensity factors the 

authors try to estimate the critical crack length that would cause fracture. 

 

Fracture of thin homogeneous elastic coatings due to sliding contact by a cylindrical 

indentor is investigated by Oliveira and Bower [29]. After calculating the contact 

stresses in the coating substrate system, several fracture problems in the coating and 

at the interface of the coating and substrate are studied. 

 

Contact loading of orthotropic materials is investigated by Stephen ([30], [31]). 

These works show that a general procedure for calculating stress due to contact 
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loading can be obtained by combining two solution techniques. The first is the 

procedure outlined by Willis, in which the numerical contour integration is used to 

determine the size and aspect ratio of the elliptical contact area, and the contact 

pressure distribution. Detailed stress fields are then obtained by using these 

parameters in the general solution for transverse pressure loading of laminated 

orthotropic materials due to Pagano and Srinivas and Rao. 

 

Mahajan [32] considers contact behavior of an orthotropic laminated beam indented 

by a rigid cylinder. In this research, the influence of various parameters such as beam 

thickness, indenter size, presence of compliant layer and delamination on the contact 

behavior of a symmetric orthotropic laminate is studied. 

 

A plane contact problem for an orthotropic strip is considered by Erbas et al. [33]. In 

this study, a singular integral equation is derived for the contact pressure. The 

analytic expression of the associated kernel is unique for all types of orthotropy. An 

iterative solution method is developed to investigate a thick strip.  

 

De and Patra [34] consider dynamic punch problems in an orthotropic elastic half-

plane. In this study, complex variable technique is employed to obtain closed form 

solution of the elastodynamic problems of a single moving punch and a row of 

equally spaced identical moving punches, situated along the boundary of a semi-

infinite orthotropic elastic medium. 

 

In the contact problem of a rigid flat-ended punch on an elastic half-plane, the 

contact stress under punch is studied by Chen et al. [35]. In the research, a 

fundamental solution for the multiple flat punch problems on the elastic half-plane is 

investigated where the punches are disconnected and the forces applied on the 

punches are arbitrary. The singular integral equation method is suggested to obtain 

the fundamental solution. Also the contact problem for rigidly connected punches on 

an elastic half-plane is considered. 
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Lin [36] considers punch problem for planar anisotropic elastic half-plane. Four 

different conditions of contact problem for the rigid punch are analyzed in this study. 

From the surface traction and Green’s function of anisotropic half-plane, the full-

field solutions of stresses are constructed. Numerical calculations of surface traction 

under the rigid punch are presented base on the analysis and are discussed. 

 

Sliding punches with or without friction along the surface of an anisotropic elastic 

half-plane is considered by Hwu and Fan [37]. In this research, a general unified 

solution for the full field stresses and displacements is derived by the complex-

variable formulation. With this general full field solution, a simple unified solution 

for the contact pressure and surface deformation is derived. 

 

1.2 Scope of the Research 

The main objective of this study is to examine the problem of surface cracking in 

orthotropic materials due to sliding contact.  As mentioned Section 1.1 solutions of 

certain contact and crack problems of plane elasticity are available in the technical 

literature. Some basic crack geometries in orthotropic materials have been considered 

until now. Also, several contact mechanics problems for orthotropic materials have 

been solved. Coupled crack and contact problems for isotropic materials have also 

been examined. But, there are no previous studies examining the behavior of a 

surface crack located in a homogeneous orthotropic medium subjected to sliding 

contact. 

 

It is known that in mechanical structures, many failures occur due to the fracture. 

Under the applications involving high stress, friction or wear, crack initiation and 

propagation may take place. The surface cracking which is caused by friction forces 

and leading to fretting fatigue is within the scope of this problem (see [38] for 

details). To estimate the subcritical growth of a surface crack under contact stress, 

the mixed mode stress intensity factors at the tip of the crack are needed.  
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In Chapter 2, a solution method to examine the fracture problem due to sliding 

contact in an orthotropic medium is developed.  To solve the surface crack, contact 

and coupled crack/contact problems in an orthotropic medium, a formulation is 

developed by using Fourier transformation technique.  In the crack problem, surface 

crack in the orthotropic medium under mixed mode loading conditions is considered. 

For homogeneous materials, mode I and mode II problems can be solved in 

uncoupled form. Then the coupled crack and contact problem in an orthotropic half-

plane is considered. The coupled problem is reduced to three singular integral 

equations, and singular behavior of the solution at the end points is examined. In 

order to solve the integral equations, methods are developed for stamps of flat, 

triangular and circular profiles.  Numerical results of the problem are given in 

Chapter 3. Numerical results are given for mixed mode stress intensity factors at the 

crack tip, contact stresses and required normal contact force. The results obtained for 

an isotropic medium are compared with those of given by Dag [40] and accuracy of 

the solution is verified. Contact stress calculation is verified by making comparisons 

to the results given by Galin [46]. The effect of the material properties and friction 

coefficient on the mixed mode stress intensity factors at the crack tip, contact stresses 

and required contact force are examined for the mentioned profiles. In Chapter 4, 

conclusions obtained in this study are summarized. 
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CHAPTER 2  

 

 

PROBLEM STATEMENT AND FORMULATION 

 

 

 

2.1 Problem Definition 

In this study, orthotropic materials are considered. The configuration of the problem 

to be examined is depicted in Figure 2.1. An orthotropic elastic half - plane is in 

sliding frictional contact with a rigid stamp of an arbitrary profile. The contact area 

extends from ax 2  to bx 2  at the surface and the half-plane contains an edge crack 

of length d. The crack is perpendicular to the boundary of the half-plane. The normal 

and tangential forces transferred by the contact are P and PQ  , respectively, 

where   is the coefficient of friction. 21 , EE  and   represent the Young’s moduli 

and shear modulus of the half-plane respectively and   is the Poissons’s ratio .  

 

2.2 Formulation of the Problem 

First, the boundary conditions that must be satisfied in the solution of the problem 

are expressed. There are mixed boundary conditions at the surface 01 x  and at the 

crack plane 02 x . At the surface of the half-plane 01 x , shear and normal stresses 

are zero outside the contact area. In the contact area, normal displacement 

component ),0( 21 xu is known. Normal displacement derivative with respect to 2x  is 

related to the stamp profile and this derivative can be represented as a function of 2x . 

At the crack plane 02 x , shear and normal stresses are zero at the crack faces. The 

faces displace relative to each other in normal and tangential directions, but outside 
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the crack i.e. for dx 1 , there is no relative tangential or normal displacement at 

02 x  plane. Integration of the normal stresses in the contact area gives the total 

force P  applied to the stamp and stresses must vanish as    2
2

2
1 xx . Shear stress 

in the contact area is represented by Coulomb’s Law.  

 

 
Figure 2.1: Geometry of the problem 

 

 

The boundary conditions can be expressed in the following form: 

bxandaxx  22211 ,0),0( , (2.1a) 

bxandaxx  22212 ,0),0( , (2.1b) 

bxaxfxu
x

C





2221

2

66 ,)(),0(
2

, (2.1c) 

bxaxx  2211212 ,),0(),0(  , (2.1d) 

dxx  1122 0,0)0,( , (2.1e) 

dxx  1112 0,0)0,( , (2.1f) 
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Pdxx

b

a

 2211 ),0( , (2.1g) 

     2
2

2
1111222 0,, xxas , (2.1h) 

where ),( 211 xxu is the normal displacement component, )( 2xf  is a known function 

and 66C  is a material property, related to shear modulus, given by (2.4a). The 

problem is formulated using three unknown functions. Following unknown functions 

can be defined: 

dxxfxuxu
x

C




 
1111212

1

66 0,)())0,()0,((
2

, (2.2a) 

dxxfxuxu
x

C




 
1121111

1

66 0),())0,()0,((
2

, (2.2b) 

bxaxfx  223211 ,)(),0( , (2.2c) 

where 1u  and 2u  are the displacement components in 1x  and 2x directions, 

respectively.  

In the absence of body forces equations of equilibrium are expressed as follows: 

0
2

12

1

11 









xx


, (2.3a) 

0
2

22

1

12 









xx


. (2.3b) 

The constitutive relations of orthotropic materials can be represented in the following 

form (see [39] for details): 
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where,  
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
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strainplaneandstressplanebothfor2 1266 C  (2.4e) 

and  

)2()1( 2
32

2
13321312

2
12232231331133132231   EE , (2.4f) 

In the case of an orthotropic material (which has three mutually perpendicular planes 

of material symmetry), the number of elastic constants is nine for a 3D stress state. 

For plane stress case, constitutive relations of orthotropic materials can be 

represented in terms of four independent elastic parameters. For plane strain case, 

there are seven independent elastic parameters in constitutive relations (see [39] for 

details). Substituting equations (2.4) into equations (2.3), governing equations are 

obtained as: 
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where,  

66

11
11

2

C
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d  , (2.5c) 

66

12
12

2

C

C
d  , (2.5d) 

66

22
22

2

C

C
d  . (2.5e) 

 

Adopted solution procedure is shown in Figure 2.2. In this figure, the contact 

problem without crack is represented as Problem 1 and in this case the stresses and 

displacements will be determined in terms of  3f  which is given by (2.2c). In 

Problem 2, stress and displacement fields will be determined in terms of the 1f  and 

2f  given by (2.2a) and (2.2b). For contact problem (problem 1), 1f  and 2f  are zero 

and 3f  is zero for crack problem (problem 2). By summing the solutions of problems 

1 and 2, the total stress and displacement fields for the original problem can be 

obtained and the boundary conditions of the original coupled problem can be 

satisfied. 
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Figure 2.2: Solution Procedure 

 

 

2.2.1 Problem 1: The Contact Problem 

Geometry of the contact problem is shown in Figure 2.3. The primary unknown 

function is, 










.and,0

,)(
),0(

22

223
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xbax

bxaxf
x  (2.6) 

Shear stress at the surface can be written as follows: 




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


,and,0

,)(
),0(

22

223
212

xbax

bxaxf
x


  (2.7) 

where   is the friction coefficient. The stress and displacement fields are derived in 

terms of )( 23 xf .  
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Figure 2.3: Geometry of the contact problem 

 

 

Considering Fourier Transformation in 2x  direction, the displacement components 

can be expressed as follows: 





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

dxixUxxu )exp(),(
2

1
),( 21132113 , (2.8a) 





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

dxixUxxu )exp(),(
2

1
),( 21232123 . (2.8b) 

In equations (2.8), subscript 3 represents the displacements due to stamp loading. 

Substituting (2.8) in (2.5), following ordinary differential equations are obtained. 

0)1(
1

23
1213

2

2
1

13
2

11 
xd

Ud
idU

xd

Ud
d  , (2.9a) 

0)1(
1

13
122322

2

2
1

23
2


xd

Ud
idUd

xd

Ud
 . (2.9b) 

One can assume a solution of the form )exp( 1xs for 13U  and 23U . Then, following 

characteristic equation is determined, 
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0
)2(

11

22
4

2

11

2
12122211

2
4 




d

d
s

d

dddd
s


. (2.10) 

For 04
)2(

,0
)2(

11

22
4

2

11

2
12122211

2

11

2
12122211

2














 





d

d

d

dddd

d

dddd 
 there 

are four real roots, 241321 ,,, ssssss   in this case the corresponding material 

is classified as type I [3]. 

If the roots are complex, the related material is classified as type II. The problem of 

interest here is that of type I. Assuming type I, roots are written as, 

0)(, 11  sAs  , (2.11a) 

0)(, 22  sBs  , (2.11b) 

0)(, 33  sAs  , (2.11c) 

0)(, 44  sBs  , (2.11d) 

where, 




















2211
4
12

3
12

2
12

2
122211122211

2
22

2
11

2
12122211

11
11 44424

2

2

2

ddddddddddddd

dddd
d

d
A , (2.12a) 




















2211
4
12

3
12

2
12

2
122211122211

2
22

2
11

2
12122211

11
11 44424

2
2

2

1

ddddddddddddd

dddd
d

d
B . (2.12b) 

The displacement components 13u  and 23u  can then be written as 

 


 

 


dxixsMxxu

j

jj

2

1

212113 )exp(
2

1
),( , (2.13a) 
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 


 

 


dxixsNMxxu

j

jjj

2

1

212123 )exp(
2

1
),( , (2.13b) 

where  )(jM  are unknown functions and 

 
)2,1(,

1
)(

12

2
11

2





 j

sid

sd
N

j

j

j



 . (2.14) 

By using equation (2.4a), stresses and displacement derivative can be obtained as 

follows: 

  


 

 


 dxixsMiNdsd
C

xx

j

jjjj

2

1

211211
66

21113 )exp(
2

1

2
),( , (2.15a) 

  


 

 


 dxixsMiNdsd
C

xx

j

jjjj

2

1

212212
66

21223 )exp(
2

1

2
),( , (2.15b) 

  


 

 


 dxixsMsNi
C

xx

j

jjjj

2

1

21
66

21123 )exp(
2

1

2
),( , (2.15c) 

 


 








dxixsMixxu

x
j

jj

2

1

212113
2

)exp(
2

1
),( . (2.15d) 

Using the boundary conditions (2.6) and (2.7), following equations can be written, 

 










 


 

,and,0

,)(

)exp(
2

1

22

223

2

1

21211

xbax

bxaxf

dxiMiNCsC

j

jjj 


 (2.16a) 
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 










 


 

,and,0

,)(

)exp(
2

1

2

22

223

2

1

2
66

xbax

bxaxf

dxiMsNi
C

j

jjj






 (2.16b) 

and )(jM can be expressed as follows: 

 

b

a

jj dttitf
C

M )exp()()(
2

)( 3
66

 . (2.17) 

To determine )( j , Fourier transform is applied to (2.16) and using (2.17), 

following equations are obtained, 

 




2

1

1211 1)(

j

jjj iNdsd  , (2.18a) 

 




2

1

)(

j

jjj sNi  . (2.18b) 

At this point, the formulation of the contact problem for an orthotropic half-plane is 

completed. Stress and displacement field are expressed in terms of the unknown 

function )( 23 xf  by equations (2.13), (2.15), (2.17) and (2.18). 

 

2.2.2 Problem 2: The Crack Problem 

Figure 2.4 presents the geometry of the surface crack problem in an orthotropic half-

plane. In this case stresses and displacements are derived in terms of 1f  and 2f  

given by (2.2a) and (2.2b). In order to formulate the crack problem, a superposition 

method is used as shown in Figure 2.5. In this method, a crack in an infinite plane 

and the half-plane solution for 01 x  are considered and these solutions are 
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superimposed so as to satisfy the boundary conditions at the free surface. Then, the 

stresses and displacements are derived.  

 

The half-plane contains a surface crack at 02 x  and mixed mode loading conditions 

appear on the crack plane. For this crack, the mode I (or the opening mode) and 

mode II (or the sliding mode) problems can be considered as uncoupled. This is due 

to the fact that, normal loading on crack faces does not induce mode II stress 

intensity factor and shear loading does not induce mode I stress intensity factor. Also 

mode I and mode II problems can be formulated separately.  

 

In each problem first the infinite plane containing a crack is considered and stress 

and displacement fields are derived in terms of 1f  and 2f  which are given by (2.2a) 

and (2.2b), respectively. In this case, Fourier transforms of the equations (2.5) can be 

taken in 1x  direction, and solving the resulting system of ordinary differential 

equations stress and displacement expressions for both half-planes 02 x  and 

02 x  can be obtained. Then, the general solution of a half-plane without a crack 

and the infinite plane solution will be superimposed to satisfy the boundary 

conditions at the free surface. 

 

 

 
 

Figure 2.4: Geometry of the crack problem 
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Figure 2.5: Superimposition for the crack problem 

 

 

2.2.2.1 The Opening Mode Problem ( 02 f ) 

In order to solve the opening mode problem, a crack in an infinite plane located at 

dx  10  is considered. In this case, )( 12 xf  given by (2.2b) is equal to zero. The 

stress and displacement fields are derived in terms of )( 11 xf  given by (2.2a). By 

using Fourier integrals, displacement components for the infinite plane are expressed 

as follows: 






 


dxixUxxu
ii

)exp(),(
2

1
),( 12

)(
1121

)(
11 , (2.19a) 






 


dxixUxxu
ii

)exp(),(
2

1
),( 12

)(
2121

)(
21 , (2.19b) 
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where subscript 1 and superscript (i) stand for opening mode problem and an infinite 

medium, respectively. Substituting (2.19) in (2.5) following differential equations are 

determined: 

0)1(
2

)(

1213
2

2
2

)(2

)(2
11

2111

11


xd

Ud
idU

xd

Ud
Ud

ii

i  , (2.20a) 

0)1(
2

)(

1213
2

2
2

)(2

22
)(2 1121

21


xd

Ud
idU

xd

Ud
dU

ii

i  . (2.20b) 

One can assume a solution of the form )exp( 2nx . By using this form, the 

characteristic equation of the problem is determined as, 

0
)2(

22

11
4

2

22

2
12122211

2
4 




d

d
n

d

dddd
n


. (2.21) 

Roots of the characteristic equation for a type I material are found to be 

0)(, 11  nEn  , (2.22a) 

,0)(, 22  nFn   (2.22b) 

0)(, 33  nEn  , (2.22c) 

0)(, 44  nFn  , (2.22d) 

where 




















2211
4
12

3
12

2
12

2
122211122211

2
22

2
11

2
12122211

22
22 44424

2

2

2

ddddddddddddd

dddd
d

d
E , (2.23a) 




















2211
4
12

3
12

2
12

2
122211122211

2
22

2
11

2
12122211

22
22 44424

2
2

2

1

ddddddddddddd

dddd
d

d
F . (2.23b) 
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Following stresses and displacements equations are obtained for 02 x and 02 x , 

02 x : 

 


 







dxixnCxxu

j

jj
i

2

1

1221
)(

11 )exp(
2

1
),( , (2.24a) 

 


 







dxixnACxxu

j

jjj
i

2

1

1221
)(

21 )exp(
2

1
),( , (2.24b) 

 


 







 dxixnS
C

xx

j

j
i

j
i

2

1

12
)(

111
66

21
)(

111 )exp()(
2

1

2
),( , (2.24c) 

 


 







 dxixnS
C

xx

j

j
i

j
i

2

1

12
)(

221
66

21
)(

221 )exp()(
2

1

2
),( , (2.24d) 

 


 







 dxixnCAin
C

xx

j

jjjj
i

2

1

12
66

21
)(

121 )exp()(
2

1

2
),( , (2.24e) 

 


 




 




dxixnnCxxu
x

j

jjj
i

2

1

1221
)(

11
2

)exp(
2

1
),( , (2.24f) 







2

1

121121
)(

111 )(),(

j

jjj
i

j CnAdidxxS  , (2.24g) 







2

1

221221
)(

221 )(),(

j

jjj
i

j CnAdidxxS  , (2.24h) 

where superscript )( i refers to 02 x . 
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02 x : 

 


 







dxixnCxxu

j

jj
i

4

3

1221
)(

11 )exp(
2

1
),( , (2.25a) 

 


 







dxixnACxxu

j

jjj
i

4

3

1221
)(

21 )exp(
2

1
),( , (2.25b) 

 


 







 dxixnS
C

xx

j

j
i

j
i

4

3

12
)(

111
66

21
)(

111 )exp()(
2

1

2
),( , (2.25c) 

 


 







 dxixnS
C

xx

j

j
i

j
i

4

3

12
)(

221
66

21
)(

221 )exp()(
2

1

2
),( , (2.25d) 

 


 







 dxixnCAin
C

xx

j

jjjj
i

4

3

12
66

21
)(

121 )exp()(
2

1

2
),( , (2.25e) 

 


 




 




dxixnnCxxu
x

j

jjj
i

4

3

1221
)(

11
2

)exp(
2

1
),( , (2.25f) 







4

3

121121
)(

111 )(),(

j

jjj
i

j CnAdidxxS  , (2.25g) 







4

3

221221
)(

221 )(),(

j

jjj
i

j CnAdidxxS  , (2.25h) 

where superscript )( i refers to 02 x . )4,3,2,1()( jC j   are unknown functions 

given in (2.24) and (2.25) and )(jA  is obtained as 

 
)4,3,2,1(,

1
)(

12

22
11





 j

nid

nd
A

j

j

j



 . (2.26) 
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Now, the half-plane ( )01 x  problem without a crack is considered. For the opening 

mode problem, ),( 2111 xxu  is an even function of 2x  and ),( 2121 xxu  is an odd 

function of 2x ; therefore, for the half-plane ( )01 x  problem without a crack, the 

displacement components can be expressed by using Fourier cosine and sine 

integrals as follows: 






0

21
)(

1121
)(

11 )cos(),(),(  dxxUxxu
hh , (2.27a) 






0

21
)(

2121
)(

21 )sin(),(),(  dxxUxxu
hh , (2.27b) 

where subscript 1 and superscript h stand for opening mode and half-plane problems, 

respectively. Equation (2.27) implies that ),(),( 21
)(

1121
)(

11 xxuxxu
hh

 , 

),(),( 21
)(

2121
)(

21 xxuxxu
hh

 . Substituting (2.27) in (2.5), differential equations are 

obtained as: 

0)1(
1

)(
21

12
)(

11
2

2
1

)(
11

2

11 
xd

Ud
dU

xd

Ud
d

h
h

h

 , (2.28a) 

0)1(
1

)(
11

12
)(

2122
2

2
1

)(
21

2


xd

Ud
dUd

xd

Ud
h

h
h

 . (2.28b) 

One can assume a solution of the form )exp( 1px . By using this form, the 

characteristic equation of the problem is determined in the form: 

0
)2(

11

22
4

2

11

2
12122211

2
4 




d

d
p

d

dddd
p


. (2.29) 

Roots of the characteristic equation for a type I material are found to be 

0)(, 11  pAp  , (2.30a) 
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0)(, 22  pBp  , (2.30b) 

0)(, 33  pAp  , (2.30c) 

0)(, 44  pBp  . (2.30d) 

where, A and B are given by (2.12). 

For the half-plane problem ( )01 x , the stresses and displacements are determined as 

follows: 






0

214413321
)(

11 )cos())exp()exp((),(  dxxpBxpBxxu
h , (2.31a) 






0

21444133321
)(

21 )sin())exp()exp((),(  dxxpDBxpDBxxu
h , (2.31b) 








0

21

4

3

1211
66

21
)(

111 )cos()exp()(
2

),(  dxxpBDdpd
C

xx jj

j

jj
h , (2.31c) 








0

21

4

3

2212
66

21
)(

221 )cos()exp()(
2

),(  dxxpBDdpd
C

xx jj

j

jj
h , (2.31d) 








0

21

4

3

66
21

)(
121 )sin()exp()(

2
),(  dxxpBpD

C
xx jj

j

jj
h , (2.31e) 









0

214413321
)(

11
2

)sin())exp()exp((),(  dxxpBxpBxxu
x

h , (2.31f) 

where )4,3()( jB j  are unknown functions and )(jD  is expressed as follows: 

  j

j
j

pd

pd
D






12

2
11

2

1
)(




 . (2.32) 
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The solution of mode I problem for 01 x  and 02 x can be expressed as follows: 

0,0,),(),(),( 2121
)(

1121
)(

112111 


xxxxuxxuxxu
hi , (2.33a) 

0,0,),(),(),( 2121
)(

2121
)(

212121 


xxxxuxxuxxu
hi , (2.33b) 

0,0,2,1,,),(),(),( 2121
)(
121

)(
1211 


xxjkxxxxxx
h
jk

i
jkjk  . (2.33c) 

In the formulation, there are six unknown functions )(1 C , … , )(4 C , )(3 B , 

)(4 B . These functions can be expressed in terms of unknown function )( 11 xf . 

Boundary conditions of the opening mode problem are determined as, 

 112211221 0,)0,()0,( xxx  , (2.34a) 

 111211121 0,)0,()0,( xxx  , (2.34b) 

 1111111 0,)0,()0,( xxuxu , (2.34c) 

dxxfxuxu
x

C





111121121

1

66 0,)())0,()0,((
2

, (2.34d) 

 1121121 ,)0,()0,( xdxuxu , (2.34e) 

 22111 ,0),0( xx , (2.34f) 

 22121 ,0),0( xx . (2.34g) 

In order to obtain )(1 C , … , )(4 C  in terms of )( 11 xf , equations (2.34a-e) and 

equations (2.24) and (2.25) are utilized and following equations are obtained, 
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jj  , (2.35a) 
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0)()()()( 1234   PPPP . (2.35e) 

Since the half-plane solution ( 01 x ) does not include a crack, the half-plane solution 

( 01 x ) given by (2.31) and the unknown functions )(3 B  and )(4 B  do not 

contribute to equations (2.35). Boundary conditions (2.34a-e) are satisfied by the 

half-plane ( 01 x ) solution. )(3 B  and )(4 B , which are the unknown functions of 

the half-plane ( 01 x ) problem, are expressed in terms of )( 11 xf  by using the free 

surface boundary conditions. So in the determination of )(3 B  and )(4 B , (2.34f), 

(2.34g), (2.31c), (2.31e), (2.25c) and (2.25e) are used and the following equations are 

obtained,  
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Because of the symmetry, only 02 x  case is considered. )(jC ( 4,...,1j ) can be 

determined using (2.35a-e) in terms of 1f . After lengthy manipulations using 

MAPLE (2.36) following equations are obtained, 
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, (2.37a) 
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where, 
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121 ddFdddEdFEiN  , (2.39b) 

)1()()(),( 12
222222 dEFD   , (2.39c) 

and, E and F are given by (2.23). 

Residue theorem can be used to evaluate the inner integrals in (2.37) (for detailed 

explanation of the theorem see [41] and [42]). In order to apply this theorem, first a 

positively oriented simple contour in the complex plane is considered as shown in 

Figure 2.6. 
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Figure 2.6: The contour for evaluation of the integral. 

 

 

By considering the integration on the contour 21   is considered, following 

equation can be written. 
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dtiF

dtiFdtiF

 (2.40) 

If the integrand in (2.40) is analytic on the positively oriented simple closed contour 

 , except possibly for a finite number of singular points interior to  , using the 

residue theorem following equation can be written, 
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111  
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n

k

idtiF  . (2.41) 

Taking the limit as R in (2.40), 
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 (2.42) 

By using MAPLE, it can be shown that second term on the left hand side of (2.42) 

vanishes, then (2.40) can be rewritten as follows: 
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 (2.43) 

The integral can be evaluated by determining the residues in the lower complex 

plane. The poles of the integrand in (2.43) are obtained as, 

0)(, 11  



F

i
, (2.44a) 

0)(, 22  



F

i
, (2.44b) 

0)(, 33  



E

i
, (2.44c) 

0)(, 44  



E

i
. (2.44d) 

Imaginary parts of 2  and 4 are less than zero which means 2  and 4 are in lower 

half plane. Therefore, the poles of 2  and 4  are used to evaluate the integral. The 

integral can be written as follows: 
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After lengthy calculations, the integral is evaluated as, 
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where, 
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By using a similar method, the inner integral in (2.37b) is evaluated. After 

simplifications (2.37) are reduced to following form, 
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where, 
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Equations (2.48) can be rewritten as follows: 
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At this point, the formulation of the opening mode problem is completed. The 

stresses and displacement fields are derived in terms of 1f . The unknown functions 

used in the formulation of the opening mode problem are given by equations (2.35) 

and (2.50). 
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2.2.2.2 The Sliding Mode Problem ( 01 f ) 

In order to solve the sliding mode problem, it is assumed that a crack in an infinite 

plane is located at dx  10 . In this case, )( 11 xf given by (2.2a) is equal to zero. The 

stress and displacement fields are derived in terms of )( 12 xf  given by (2.2b). 

Displacement and stress components for the infinite plane can be obtained by 

following a similar procedure as given in Section 2.2.2.1.  These components for the 

infinite plane are determined as follows: 
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where subscript 2 refers to the sliding mode or mode II problem and superscript )( i  

refers to 02 x . )(jF  ( 4,...,1j ) are unknown functions and jn  and )(jA  are 

given by (2.22) and (2.26), respectively. 

 

02 x : 

 


 







dxixnFxxu

j

jj
i

4

3

1221
)(

12 )exp(
2

1
),( , (2.53a) 

 


 







dxixnAFxxu

j

jjj
i

4

3

1221
)(

22 )exp(
2

1
),( , (2.53b) 

 


 







 dxixnS
C

xx

j

j
i

j
i

4

3

12
)(

112
66

21
)(

112 )exp()(
2

1

2
),( , (2.53c) 

 


 







 dxixnS
C

xx

j

j
i

j
i

4

3

12
)(

222
66

21
)(

222 )exp()(
2

1

2
),( , (2.53d) 




 







 dxixnFAin
C

xx

j

jjjj
i

4

3

12
66

21
)(

122 )exp()(
2

1

2
),( , (2.53e) 

 


 




 




dxixnnFxxu
x

j

jjj
i

4

3

1221
)(

12
2

)exp(
2

1
),( , (2.53f) 







4

3

121121
)(

112 )(),(

j

jjj
i

j FnAdidxxS  , (2.53g) 



 

37 

 







4

3

221221
)(

222 )(),(

j

jjj
i

j FnAdidxxS  , (2.53h) 

where superscript )( i stands for 02 x .  

For the sliding mode problem, ),( 2122 xxu  is an even function of 2x  and ),( 2112 xxu  

is an odd function of 2x , therefore for the half-plane ( )01 x  problem without a 

crack, displacement components can be expressed by using Fourier sine and cosine 

integrals as follows: 
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equations are obtained, 
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One can assume a solution of the form )exp( 1tx . By using this form the characteristic 

equation of the problem is determined as, 
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Roots of the characteristic equation for a type I material are found to be 
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0)(, 44  tBt  , (2.57d) 

where, A and B are given by (2.12). 

For the half-plane problem ( )01 x , the stresses and displacements are obtained as 

follows: 
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







0

214413321
)(

12
2

)cos())exp()exp((),(  dxxtGxtGxxu
x

h , (2.58f) 

where )4,3()( jG j   are unknown functions and )(jH  is expressed as, 

  j

j
j

td

td
H






12

22
11

1
)(




 . (2.59) 

For 01 x  and 02 x  the solution of mode II problem is given as follows: 

0,0,),(),(),( 2121
)(

1221
)(

122112 


xxxxuxxuxxu
hi , (2.60a) 

0,0,),(),(),( 2121
)(

2221
)(

222122 


xxxxuxxuxxu
hi , (2.60b) 

0,0,2,1,,),(),(),( 2121
)(
221

)(
2212 


xxjkxxxxxx
h
jk

i
jkjk  . (2.60c) 

In the formulation, there are six unknown functions )(1 F , … , )(4 F , )(3 G , 

)(4 G . These functions can be expressed in terms of unknown function )( 12 xf . 

Boundary conditions of the sliding mode problem are determined as,  

 112221222 0,)0,()0,( xxx  , (2.61a) 

 111221122 0,)0,()0,( xxx  , (2.61b) 

,  1122122 0,)0,()0,( xxuxu  (2.61c) 

dxxfxuxu
x

C





112112112

1

66 0,)())0,()0,((
2

, (2.61d) 

 1112112 ,)0,()0,( xdxuxu , (2.61e) 

 22112 ,0),0( xx , (2.61f) 

 22122 ,0),0( xx . (2.61g) 
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In order to obtain unknown functions )(1 F , … , )(4 F  in terms of )( 12 xf , 

equations (2.61a-e) and equations (2.52) and (2.53) are used and following equations 

are found, 

,)(exp)()(
2

)(

0

2
66

 

d

jj dttitfZ
C

F    )4,3,2,1( j , (2.62a) 

0)()()()(

2

1

2212

4

3

2212  


 j

j

jjj

j

jj ZdnAdiZdnAdi , (2.62b) 

0)()()()(

2

1

4

3

 


 j

j

jjj

j

jj ZAinZAin , (2.62c) 

011223344  ZAZAZAZA , (2.62d) 

  1)()()()( 1234   ZZZZi . (2.62e) 

Since the half-plane solution ( 01 x ) does not include a crack, the half-plane solution 

( 01 x ) given by (2.58) and the unknown functions )(3 G , )(4 G  do not contribute 

to equations (2.62). Boundary conditions (2.61a-e) are satisfied by the half-plane 

( 01 x ) solution. )(3 G  and )(4 G , which are the unknown functions of the half-

plane ( 01 x ) problem, are expressed in terms of )( 12 xf  by using the free surface 

boundary conditions. So, in the determination of the )(3 G  and )(4 G , (2.61f), 

(2.61g), (2.58c), (2.58e), (2.53c) and (2.53e) are used and the following equations are 

obtained,  
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,0,0)exp()(
2

1

)sin()(

22

4

3

1211

0

2

4

3

1211











 





xdxnFnAdid

dxGHdtd

j

j

jjj

j

j

jj






 (2.63a) 

.0

,0)exp()(
2

1
)cos()(

2

4

3

2

0

2

4

3



 


 





x

dxnFAindxGtH

j

jjjjj

j

jj 



 (2.63b) 

Because of symmetry, only 02 x  case is considered. )(jF  ( 4,...,1j ) can be 

determined using (2.62a-e) in terms of 2f . After lengthy manipulations using 

MAPLE, (2.63) equations are obtained as follows: 




 dtiFdttf
C

GHdtd

d

j

j

jj )exp(),()(
12

)()( 112

0

22
66

4

3

1211  




, (2.64a) 




 dtiFdttf
C

GtH

d

j

j

jj )exp(),()(
12

)()( 122

0

22
66

4

3

 




, (2.64b) 

where, 

),(

),(
),(

22

112
112






Dd

N
F  , (2.65a) 

),(

),(
),(

22

122
122






Dd

N
F  , (2.65b) 

),(112 N  and ),(122 N are equal to: 
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1212

2
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2
12112













ddFddddd

dddFddddddd

ddEdddEddFd

dddddddd

dddEdFdddEd

ddddddddN













 (2.66a) 

.)

(
2

1
),(

2
112211

2
22

22
1122

2

2
122211

2
1122

2
12

2
22

22

2
1112

2
121212

2
1112

2
12

2
12122







dddFddd

dddddEdFdE

dddddddddiN







 (2.66b) 

E and F are given by (2.23) and ),( D  is given by (2.39c). 

By using the residue theorem, the inner integrals in (2.64) are evaluated as described 

in Section 2.2.2.1 and )(jG can be defined in the following form, 

 


























d

jjj dttf
E

t
tG

F

t
tG

C
G

0

2
***

66

)(exp),(exp),(
2

)(





 . (2.67) 

Then equations (2.64) can be written as: 

),(),()( 1121
*

4

3

1211 tRtGHdtd j

j

jj  


, (2.68a) 

),(),()( 1221
*

4

3

tRtGtH j

j

jj  


, (2.68b) 

),(),()( 1122
**

4

3

1211 tRtGHdtd j

j

jj  


, (2.68c) 

),(),()( 1222
**

4

3

tRtGtH j

j

jj  


, (2.68d) 
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where, 

)1()(2
),(

12
22

22

3
1121

dFEEFC

R
tR





 , (2.69a) 

)1()(2
),(

12
2222

22

5
1221

dFEFEC

R
tR





 , (2.69b) 

)1()(2
),(

12
22

22

4
1122

dFEEFC

R
tR





 , (2.69c) 

)1()(2
),(

12
2222

22

6
1222

dFEFEC

R
tR





 , (2.69d) 

and 

         11
2

12121111
2

2212123 11 dFddddEdddER  , (2.70a) 

         11
2

12121111
2

2212124 11 dEddddFdddFR  , (2.70b) 

      11
2

221212
2

1211
2

5 1 dEdddFddER  , (2.70c) 

      11
2

221212
2

1211
2

6 1 dFdddEddFR  . (2.70d) 

At this point, the formulation of the sliding mode problem is completed. The stresses 

and displacement fields are derived in terms of 2f . The unknown functions used in 

the formulation of the sliding mode problem are given by equations (2.62) and 

(2.68). For a surface crack subjected to mixed-mode loading, the stress and 

displacement fields can be expressed as, 

0,0),,(),(),( 2121122111211  xxxxuxxuxxu , (2.71a) 

0,0),,(),(),( 2121222121212  xxxxuxxuxxu , (2.71b) 

0,0,2,1,),,(),(),( 2121221121  xxjkxxxxxx jkjkjk  . (2.71c) 
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For the coupled crack and contact problem, stress and displacement fields can be 

expressed as follows: 

0,0,),(),(),(),( 21211321122111211  xxxxuxxuxxuxxu , (2.72a) 

0,0,),(),(),(),( 21212321222121212  xxxxuxxuxxuxxu , (2.72b) 

,0,0,2,1,

),,(),(),(),(

21

21321221121





xxjk

xxxxxxxx jkjkjkjk 
 (2.72c) 

where displacement and stresses are given by (2.13), (2.15) and (2.18). 

 

2.2.3 Derivation of the Singular Integral Equations 

In equation (2.72), the stress and displacement fields for the coupled crack and 

contact problem are provided. For the coupled problem, stresses and displacement 

derivative are written as follows: 






b

a

d

j

jj dttftxxkdttftxxkxx )(),,()(),,(),( 32113

0

2

1

2112122 , (2.73a) 






b

a

d

j

jj dttftxxkdttftxxkxx )(),,()(),,(),( 32123

0

2

1

2122112 , (2.73b) 








b

a

d

j

jj dttftxxkdttftxxkxxu
x

C
)(),,()(),,(),(

2
32133

0

2

1

213211
2

66 . (2.73c) 

In order to determine unknown functions 1f , 2f  and 3f , boundary conditions (2.1e), 

(2.1f) and (2.1c) are applied, the following integral equations are obtained,  
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
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


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


 (2.74c) 

Due to symmetry, 0)0,( 1222 x  for 0)(1 tf , 0)(2 tf , 0)(3 tf  and 0)0,( 1121 x  

for 0)(1 tf , 0)(2 tf , 0)(3 tf , hence 

0),0,( 112 txk , (2.75a) 

0),0,( 121 txk . (2.75b) 

The kernels are expressed as follows: 

)3,2,1,2,1(,),,(),0,(

0

11 


jidtxKtxk ijij  , (2.76a) 

)3,2,1,3(,),,(),,0(

0

22 


jidtxKtxk ijij  . (2.76b) 

Equations (2.73) can be rewritten as 

dxdttftxkdttftxkx

b

a

d

  13113

0

1111122 0,0)(),0,()(),0,()0,( , (2.77a) 
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dxdttftxkdttftxkx

b
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d

  13123
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2122112 0,0)(),0,()(),0,()0,( , (2.77b) 
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a
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









 (2.77c) 

Asymptotic analyses have to be performed in order to extract the singularities in the 

kernels as   approaches to infinity. The asymptotic analyses for the kernels are 

given in the following section.  

 

2.2.3.1 Asymptotic Analysis of k11(x1, x2, t) 

),,( 2111 txxk  is expressed as follows: 

),,(),,(),,( 21
)(

1121
)(

112111 txxktxxktxxk
hi

 . (2.78) 

By using the infinite plane solution and the half-plane )0( 1 x solution )(
11

i
k  and 

)(
11

h
k are obtained. Referring to (2.25d) and (2.35), ),,( 21

)(
11 txxk
i  is written as 






 


dtxixtxxk
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))(exp(),(
2

1
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1121
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11 , (2.79a) 
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3

222122
)(

11 )exp()()(),(

j

jjjj
i

xnPnAdidx  , (2.79b) 

where jn  )4,3,2,1( j , jA  and jP  are given by (2.22), (2.26) and (2.35), 

respectively. Changing the limits of integration (2.79a) becomes, 
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where, 
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111 xxxK
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112 xxixK
iii   . (2.81b) 

)(
111

i
K  and )(
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i

K  can be expressed as, 

)exp()()exp()(),( 24
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111223
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11112
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111 xnKxnKxK
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  , (2.82a) 

)exp()()exp()(),( 24
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112223
)(

11212
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112 xnKxnKxK
iii

  , (2.82b) 

and, 
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1111   PnAdidPnAdidK
i , (2.83a) 

    )()()()()( 44422124442212
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1112   PnAdidPnAdidK
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    )()()()()( 33322123332212
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1121   PnAdidPnAdidiK
i , (2.83c) 
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i . (2.83d) 

In order to extract the singular terms, asymptotic analyses of )(
111

i
K  and )(

112
i

K  are 

required as  . Asymptotic expansions of )(
111

i
K  and )(

112
i

K  are given by, 
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By using MAPLE, asymptotic expansions are obtained as follows: 
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The coefficients of the expansion 210a  and 220a  are given in Appendix A by 

equations (A.1a) and (A.1b), respectively. Subtracting the asymptotic expansions 

from the integrands in (2.80), using integration cutoff points, evaluating some of the 

integrals in closed form, taking the limit as 02 x , and after some manipulations 
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where 20a is given in Appendix A by (A.1c) and, 
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in which, )(
112

i
A  is an integration cutoff point. 

Referring to (2.31d) and (2.49), ),,( 21
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11 txxk
h  is written in the following form, 






0

21
)(

1121
)(

11 )cos(),,(),,(  dxxtKtxxk
hh , (2.88) 

where, 
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
 
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j
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F

t
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





  (2.89a) 

)4,3(,)()( 2212
)(

11  jDdpd jj
h
j  , (2.89b) 

and jp  )4,3,2,1( j , jD , and *
jB / **

jB are given by (2.30), (2.32) and (2.50), 

respectively. )(
11

h
K  can be expressed as 
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1112
)(
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 (2.90) 

where, 

*
3322312

)(
1111 )()( BDdpdK

h   , (2.91a) 

**
3322312

)(
1112 )()( BDdpdK

h   , (2.91b) 

*
4422412

)(
1121 )()( BDdpdK

h   , (2.91c) 

**
4422412

)(
1122 )()( BDdpdK

h   . (2.91d) 

In order to extract the singular terms, )(
11

h
K  is expanded into a series as  . 

Asymptotic expansion of )(
11

h
K  is given by 

.exp)(exp)(
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 (2.92) 

By using MAPLE, asymptotic expansions are obtained as follows: 
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110
)(

1111 )( bK
h


  , (2.93a) 

120
)(

1112 )( bK
h


  , (2.93b) 

210
)(

1121 )( bK
h


  , (2.93c) 

220
)(

1122 )( bK
h


  . (2.93d) 

The coefficients of the expansion 110b , 120b , 210b  and 220b  are given in Appendix 

A by (A.2). Subtracting the asymptotic expansions from the integrands in (2.88), 

using integration cutoff points, evaluating some of the integrals in closed form, 

taking the limit as 02 x , and after some manipulations ),,( 21
)(

11 txxk
h  is expressed 

as: 

),(),0,( 1
)(
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1
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1
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1
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)(
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









 , (2.94) 

where A and B are expressed by (2.12), E and F are expressed by (2.23) and, 

 
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)(
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



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hhh
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

 (2.95) 

in which, )(
11

h
A  is an integration cutoff point. 

)(
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h
K  can be rewritten as follows, 
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t
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t
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F

t
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 (2.96) 
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),0,( 1
)(

11 txk
i  and ),0,( 1

)(
11 txk

h  are given by equations (2.86) and (2.94), respectively. 

Adding these two equations ),0,( 111 txk is written as, 

),(),(
2

1
),0,( 111111

1

20
111 txhtxh

tx

a
txk fs 





, (2.97) 

where, 

ExBt

Eb

FxBt

Fb

ExAt

Eb

FxAt

Fb
txh s

1

220

1

210

1

120

1

110
111 ),(











 , (2.98a) 

),(),(),( 1
)(

111
)(

112111 txJtxJtxh
hi

f  . (2.98b) 

),( 1
)(

112 txJ
i  and ),( 1

)(
11 txJ

h are provided by equations (2.87) and (2.95), respectively. 

 

2.2.3.2 Asymptotic Analysis of k13(x1, x2, t) 

Referring to (2.15b), ),,( 2113 txxk  is written as 






 


dtxixtxxk ))(exp(),(
2

1
),,( 21132113 , (2.99a) 

 




2

1

12212113 )exp()(),(

j

jjjj xsiNdsdx  , (2.99b) 

where, js , )4,3,2,1( j  and )( j are given by (2.11) and (2.18), respectively. 

Changing the limits of integration in (2.99a), 13k  becomes, 

 




0

21132211312113 ))(sin(),())(cos(),(
2

1
),,( 


dtxxKtxxKtxxk , (2.100) 

where, 



 

52 

 

),(),(),( 1131131131 xxxK   , (2.101a) 

)),(),((),( 1131131132 xxixK   , (2.101b) 

131K  and 132K  is expressed as, 

)exp()()exp()(),( 1213121113111131 xsKxsKxK   , (2.102a) 

)exp()()exp()(),( 1213221113211132 xsKxsKxK   , (2.102b) 

in which 

)())(()())(()( 112211211221121311   iNdsdiNdsdK , (2.103a) 

)())(()())(()( 222221222222121312   iNdsdiNdsdK , (2.103b) 

 )())(()())(()( 112211211221121321   iNdsdiNdsdiK , (2.103c) 

.
)())((

)())((
)(

2222212

2222212
1322



















iNdsd

iNdsd
iK  (2.103d) 

In order to extract the singular terms, asymptotic analyses of 131K  and 132K  are 

required as  . Asymptotic expansions of 131K  and 132K  are given by 

)exp()()exp()(),( 1213121113111131 xsKxsKxK    , (2.104a) 

)exp()()exp()(),( 1213221113211132 xsKxsKxK    . (2.104b) 

By using MAPLE, asymptotic expansions are obtained as follows: 

11011311 ),( gxK   , (2.105a) 

12011312 ),( gxK   , (2.105b) 

21011321 ),( gxK   , (2.105c) 
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22011322 ),( gxK   . (2.105d) 

The coefficients of the expansion 110g , 120g , 210g  and 220g  are given in Appendix 

A by equation (A.3). Subtracting the asymptotic expansions from the integrands in 

(2.100), using integration cutoff points, evaluating some of the integrals in closed 

form, taking the limit as 02 x , and after some manipulations ),,( 2113 txxk  is 

expressed as 

),(),(),0,( 113113113 txhtxhtxk fs  , (2.106) 

where, 












































)()(

)(

)()(

)(

)()()()(

)(

2

1
),(

22
1

222
1

2

220
2

210
22

1

22
1

222
1

2

120110
3
1

22
1

222
1

2

20
3

22
1

222
1

2

120110
2

1

113

txBtxA

gAgBtx

txBtxA

gAgBABx

txBtxA

gt

txBtxA

gBgAtx

txh s
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, (2.107a) 

),(),(),( 11321131113 txJtxJtxh f  . (2.107b) 

20g  is given in Appendix A by equation (A.3e) and, 

  
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A
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(2.108a) 
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  
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(2.108b) 

in which, 131A and 132A  are integration cutoff points. 

 

2.2.3.3 Asymptotic Analysis of k22(x1, x2, t) 

),,( 2122 txxk is expressed as follows: 

),,(),,(),,( 21
)(

2221
)(

222122 txxktxxktxxk
hi

 , (2.109) 

By using the infinite plane solution and the half-plane )0( 1 x solution )(
22
i

k  and )(
22
h

k  

are obtained. Referring to (2.53e) and (2.62), ),,( 21
)(

22 txxk
i  is expressed as, 






 


dtxixtxxk
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))(exp(),(
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1
),,( 12
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22 , (2.110a) 
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
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3
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22 )exp()()(),(

j

jjjj
i

xnZAinx  , (2.110b) 

where jn  )4,3,2,1( j , jA  and jZ  are given by (2.22), (2.26) and (2.62), 

respectively. Changing the limits of integration (2.110a) becomes, 

  ,))(sin(),())(cos(),(
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1
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22121
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22 


 

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(2.111) 

where, 
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),(),(),( 2
)(

222
)(

222
)(

221 xxxK
iii   , (2.112a) 

 ),(),(),( 2
)(

222
)(

222
)(

222 xxixK
iii   . (2.112b) 

)(
221
i

K  and )(
222
i

K  are expressed as, 

)exp()()exp()(),( 24
)(

221223
)(

22112
)(

221 xnKxnKxK
iii   , (2.113a) 

)exp()()exp()(),( 24
)(

222223
)(

22212
)(

222 xnKxnKxK
iii   , (2.113b) 

in which 

    )()()()()( 333333
)(

2211   ZAinZAinK
i , (2.114a) 

    )()()()()( 444444
)(

2212   ZAinZAinK
i , (2.114b) 

    )()()()()( 333333
)(

2221   ZAinZAiniK
i , (2.114c) 

    )()()()()( 444444
)(

2222   ZAinZAiniK
i . (2.114d) 

In order to extract the singular terms, asymptotic analyses of )(
221
i

K  and )(
222
i

K  are 

required as  . Asymptotic expansions of )(
221
i

K  and )(
222
i

K  are given by 

)exp()()exp()(),( 24
)(

221223
)(

22112
)(

221 xnKxnKxK
iii  
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)exp()()exp()(),( 24
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222223
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22212
)(

222 xnKxnKxK
iii  

 . (2.115b) 

By using MAPLE, asymptotic expansions are obtained as follows: 

0)(
)(

2211 



i
K , (2.116a) 

0)(
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2212 



i
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210
)(

2221 )( mK
i


  , (2.116c) 

220
)(

2222 )( mK
i


  . (2.116d) 

The coefficients of the expansion 210m  and 220m  are given in Appendix A by 

equations (A.4a) and (A.4b), respectively. Subtracting the asymptotic expansions 

from the integrands in (2.111), using integration cutoff points, evaluating some of the 

integrals in closed form, taking the limit as 02 x , and after some manipulations 

),,( 21
)(

22 txxk
i is expressed as 

),(
2

1
),0,( 1

)(
222

1

20
1

)(
22 txJ

tx

m
txk

ii






, (2.117) 

where 20m  is given in Appendix A by equation (A.4c) and, 
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 (2.118) 

in which, )(
222
i

A  is an integration cutoff point. 

Referring to (2.58e) and (2.67) ),,( 21
)(

22 txxk
h  is written in the following form, 
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jt , )4,3,2,1( j , jH ,and *
jG / **

jG are given by (2.57), (2.59) and (2.68), respectively. 
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K  can be expressed as, 
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where, 
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*
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h   . (2.122d) 

In order to extract the singular terms, )(
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h

K  is expanded into a series as  . 

Asymptotic expansion of )(
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K  is given by, 
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 (2.123) 

By using MAPLE, asymptotic expansions are obtained as follows: 
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220
)(

2222 )( nK
h


  . (2.124d) 

The coefficients of the expansion 110n , 120n , 210n  and 220n  are given in Appendix A 

by equation (A.5). Subtracting the asymptotic expansions from the integrands in 

(2.119), using integration cutoff points, evaluating some of the integrals in closed 

form, taking the limit as 02 x , and after some manipulations ),,( 21
)(

22 txxk
h is 

expressed as: 
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
 , (2.125) 

where A and B are given by (2.12), E and F are given by (2.23) and, 
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 (2.126) 

in which )(
22
h

A  is an integration cutoff point. )(
22
h

K  can be rewritten as follows: 
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(2.127) 

),0,( 1
)(

22 txk
i  and ),0,( 1

)(
22 txk
h  are provided by equations (2.117) and (2.125), 

respectively. Adding these two equations ),0,( 122 txk is written as, 

),(),(
2

1
),0,( 122122

1

20
122 txhtxh

tx

m
txk fs 





, (2.128) 

where, 
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
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

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1
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1
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1
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1

110
122 ),( , (2.129a) 

),(),(),( 1
)(

221
)(

222122 txJtxJtxh
hi

f  . (2.129b) 

),( 1
)(

222 txJ
i  and ),( 1

)(
22 txJ
h are given by equations (2.118) and (2.126), respectively. 

 

2.2.3.4 Asymptotic Analysis of k23(x1, x2, t) 

Referring to (2.15c) ),,( 2123 txxk is written as 






 


dtxixtxxk ))(exp(),(
2

1
),,( 21232123 , (2.130a) 

 




2

1

1123 )exp()(),(

j

jjjj xssNix  , (2.130b) 

where, js  )4,3,2,1( j  and )( j  are given by (2.11) and (2.18), respectively. 

Changing the limits of integration in (2.130a), 23k becomes 

 




0

21232212312123 ))(sin(),())(cos(),(
2

1
),,( 


dtxxKtxxKtxxk , (2.131) 

where, 

),(),(),( 1231231231 xxxK   , (2.132a) 

)),(),((),( 1231231232 xxixK   . (2.132b) 

231K  and 232K  are expressed as, 

)exp()()exp()(),( 1223121123111231 xsKxsKxK   , (2.133a) 
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)exp()()exp()(),( 1223221123211232 xsKxsKxK   , (2.133b) 

where, 

    )()()()()( 1111112311   sNisNiK , (2.134a) 

    )()()()()( 2222222312   sNisNiK , (2.134b) 

    )()()()()( 1111112321   sNisNiiK , (2.134c) 

    )()()()()( 2222222322   sNisNiiK . (2.134d) 

In order to extract the singular terms, asymptotic analyses of 231K  and 232K  are 

required as  . Asymptotic expansions of 231K  and 232K  are given by, 

)exp()()exp()(),( 1223121123111231 xsKxsKxK    , (2.135a) 

)exp()()exp()(),( 1223221123211232 xsKxsKxK    . (2.135b) 

By using MAPLE, asymptotic expansions are obtained as follows: 

11012311 ),( fxK   , (2.136a) 

12012312 ),( fxK   , (2.136b) 

21012321 ),( fxK   , (2.136c) 

22012322 ),( fxK   . (2.136d) 

The coefficients of the expansion 110f , 120f , 210f  and 220f  are given in Appendix 

A by equation (A.6). Subtracting the asymptotic expansions from the integrands in 

(2.131), using integration cutoff points, evaluating some of the integrals in closed 

form, taking the limit as 02 x , and after some manipulations ),,( 2123 txxk  is 

expressed as: 
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),(),(),0,( 123123123 txhtxhtxk fs  , (2.137) 

where, 
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, (2.138a) 

),(),(),( 12321231123 txJtxJtxh f  . (2.138b) 

20f  is given in Appendix A by equation (A.6e); A and B are provided by (2.12); and, 
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(2.139a) 
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(2.139b) 

in which 231A and 232A  are integration cutoff points. 

 

2.2.3.5 Asymptotic Analysis of k31(x1, x2, t) 

),,( 2131 txxk is expressed as follows: 

),,(),,(),,( 21
)(

3121
)(

312131 txxktxxktxxk
hi

 , (2.140a) 
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By using the infinite plane solution and the half-plane )0( 1 x solution, )(
31
i

k  and )(
31
h

k  

are obtained.. Referring to (2.25f) and (2.35), ),,( 21
)(

31 txxk
i  is written as 


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

 


dtxixtxxk
ii

))(exp(),(
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1
),,( 12

)(
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)(
31

, (2.141a) 






4

3

22
)(

31 )exp()(),(

j

jjj
i

xnPnx  , (2.141b) 

where jn  )4,3,2,1( j  and jP  are given by (2.22) and (2.35), respectively. Changing 

the limits of integration (2.141a) becomes 


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
d
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txxK
txxk

i

i

i , (2.142) 

where, 

),(),(),( 2
)(

312
)(

312
)(

311 xxxK
iii   , (2.143a) 

 ),(),(),( 2
)(

312
)(

312
)(

312 xxixK
iii   , (2.143b) 

)(
311
i

K  and )(
312
i

K  can be expressed as 

)exp()()exp()(),( 24
)(

311223
)(

31112
)(

311 xnKxnKxK
iii

  , (2.144a) 

)exp()()exp()(),( 24
)(

312223
)(

31212
)(

312 xnKxnKxK
iii

  , (2.144b) 

and, 

 )()()( 333
)(

3111   PPnK
i , (2.145a) 

 )()()( 444
)(

3112   PPnK
i , (2.145b) 
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 )()()( 333
)(

3121   PPniK
i , (2.145c) 

 )()()( 444
)(

3122   PPniK
i . (2.145d) 

In order to extract the singular terms, asymptotic analyses of )(
311
i

K  and )(
312
i

K  are 

required as  . Asymptotic expansion of )(
311
i

K  and )(
312
i

K  are given by 

)exp()()exp()(),( 24
)(

311223
)(

31112
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By using MAPLE, asymptotic expansions are obtained as follows: 
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3122 



i
K . (2.147d) 

The coefficients of the expansions 110h  and 120h  are given in Appendix A by 

equation (A.7). Subtracting the asymptotic expansions from the integrands in 

(2.142), using integration cutoff points, evaluating some of the integrals in closed 

form, taking the limit as 01 x , and after some manipulations ),,( 21
)(

31 txxk
i  is 

expressed as: 
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where E and F are given by (2.23) and 
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(2.149) 

in which )(
311
i

A  is an integration cutoff point. 

Referring to (2.31f) and (2.49) and (2.50), ),,( 21
)(

31 txxk
h  is written in the following 

form, 
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jp  )4,3,2,1( j  and *
jB / **

jB  are given by (2.30) and (2.50),  respectively. )(
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K  can 

be expressed as, 
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 (2.152) 

where, 

*
3
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3111 )( BK
h   , (2.153a) 
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)(
3112 )( BK
h   , (2.153b) 
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*
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)(
3121 )( BK
h   , (2.153c) 
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4

)(
3122 )( BK
h   . (2.153d) 

In order to extract the singular terms, )(
31
h

K  is expanded into series as  . 

Asymptotic expansion of )(
31
h

K  is given by 
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 (2.154) 

By using MAPLE, asymptotic expansions are obtained as follows: 
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)(

3112 )( lK
h


  , (2.155b) 

210
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3122 )( lK
h


  . (2.155d) 

The coefficients of the expansion 110l , 120l , 210l  and 220l  are given in Appendix A 

by equations (A.8a), (A.8b), (A.8c) and (A.8d), respectively. Subtracting the 

asymptotic expansions from the integrands in (2.150), using integration cutoff points, 

evaluating some of the integrals in closed form, taking the limit as 01 x , and after 

some manipulations ),,( 21
)(

31 txxk
h  is expressed as 
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where E and F are given by (2.23) , 10l , 20l and 0l  are given in Appendix A by 

equations (A.8e), (A.8f) and (A.8g), respectively and 
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 (2.157) 

in which )(
31
h

A  is an integration cutoff point. 

),,0( 2
)(

31 txk
i  and ),,0( 2

)(
31 txk
h  are given by equations (2.148) and (2.156), 

respectively. Adding these two equations ),,0( 231 txk is written as, 

),(),(),,0( 231231231 txhtxhtxk fs  , (2.158) 
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),(),(),( 2
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312
)(

311231 txJtxJtxh hi
f  . (2.159b) 

),( 2
)(

311 txJ
i  and ),( 2

)(
31 txJ
h are provided by equations (2.149) and (2.157), respectively. 

 

2.2.3.6 Asymptotic Analysis of k32(x1, x2, t) 

),,( 2132 txxk is expressed as follows: 

),,(),,(),,( 21
)(
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)(

322132 txxktxxktxxk
hi

 , (2.160) 

By using the infinite plane solution and the half-plane )0( 1 x solution, )(
32
i

k  and )(
32
h

k  

are obtained. Referring to (2.53f) and (2.62), ),,( 21
)(

32 txxk
i  is written as 
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




 


dtxixtxxk
ii

))(exp(),(
2

1
),,( 12

)(
3221

)(
32

, (2.161a) 






4

3

22
)(

32 )exp()(),(

j

jjj
i

xnZnx  , (2.161b) 

where jn  )4,3,2,1( j  and jZ  are given by (2.22), and (2.62), respectively. 

Changing the limits of integration (2.161a) becomes 



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
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



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2

1
),,( 
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
d

txxK

txxK
txxk

i

i

i , (2.162) 

where, 

),(),(),( 2
)(

322
)(

322
)(

321 xxxK
iii   , (2.163a) 

 ),(),(),( 2
)(

322
)(

322
)(

322 xxixK
iii   . (2.163b) 

)(
321
i

K  and )(
322
i

K  can be expressed as, 

)exp()()exp()(),( 24
)(

321223
)(

32112
)(

321 xnKxnKxK
iii

  , (2.164a) 

)exp()()exp()(),( 24
)(

322223
)(

32212
)(

322 xnKxnKxK
iii

  , (2.164b) 

and, 

 )()()( 333
)(

3211   ZZnK
i , (2.165a) 

 )()()( 444
)(

3212   ZZnK
i , (2.165b) 

 )()()( 333
)(

3221   ZZniK
i , (2.165c) 

 )()()( 444
)(

3222   ZZniK
i . (2.165d) 
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In order to extract the singular terms, asymptotic analyses of )(
321
i

K  and )(
322
i

K  are 

required as  . Asymptotic expansion of )(
321
i

K  and )(
322
i

K  are given by 

)exp()()exp()(),( 24
)(

321223
)(

32112
)(

321 xnKxnKxK
iii




 , (2.166a) 

)exp()()exp()(),( 24
)(

322223
)(

32212
)(

322 xnKxnKxK
iii




 . (2.166b) 

By using MAPLE, asymptotic expansions are obtained as follows: 

0)(
)(

3211 



i
K , (2.167a) 

0)(
)(

3212 



i
K , (2.167b) 
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)(

3221 )( rK
i



 , (2.167c) 

220
)(

3222 )( rK
i



 . (2.167d) 

The coefficients of the expansion 210r  and 220r  are given in Appendix A by 

equations (A.9a) and (A.9b), respectively. Subtracting the asymptotic expansions 

from the integrands in (2.162), using integration cutoff points, evaluating some of the 

integrals in closed form, taking the limit as 01 x , and after some manipulations 

),,( 21
)(

32 txxk
i  is expressed as: 
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where 20r is given in Appendix A by (A.9c) and 
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(2.169) 

in which )(
322
i

A  is an integration cutoff point. 

Referring to (2.58f) and (2.67) ),,( 21
)(

22 txxk
h  is written in the following form, 


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0
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3221
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hh , (2.170) 

where, 
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jt  )4,3,2,1( j , and *
jG / **

jG  are given by (2.57) and (2.68), respectively. )(
32
h

K  can 

be expressed as, 
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where, 

*
3

)(
3211 )( GK
h   , (2.173a) 

**
3

)(
3212 )( GK
h   , (2.173b) 

*
4

)(
3221 )( GK
h   , (2.173c) 
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**
4

)(
3222 )( GK
h   . (2.173d) 

In order to extract the singular terms, )(
32
h

K  is expanded into series as  . 

Asymptotic expansion of )(
32
h

K  is given by 
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 (2.174) 

By using MAPLE, asymptotic expansions are obtained as follows: 
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)(

3211 )( sK
h


  , (2.175a) 
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3212 )( sK
h
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  , (2.175b) 
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3221 )( sK
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
  , (2.175c) 
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)(

3222 )( sK
h


  . (2.175d) 

The coefficients of the expansion 110s , 120s , 210s  and 220s  are given in Appendix A 

by equations (A.10a), (A.10b), (A.10c) and (A.10d), respectively. Subtracting the 

asymptotic expansions from the integrands in (2.170), using integration cutoff points, 

evaluating some of the integrals in closed form, taking the limit as 01 x , and after 

some manipulations ),,( 21
)(

32 txxk
h  is expressed as 
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
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where E and F are given by (2.23); 10s and 20s are given in Appendix A by equations 

(A.10e) and (A.10f), respectively; and 
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 (2.177) 

in which )(
32
h

A  is an integration cutoff point. 

),,0( 2
)(

32 txk
i  and ),,0( 2

)(
32 txk
h  are given by equations (2.168) and (2.176), 

respectively. Adding these two equations ),,0( 232 txk is written as 

),(),(),,0( 231232232 txhtxhtxk fs  , (2.178) 

where, 
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),(),(),( 2
)(

322
)(

322232 txJtxJtxh
hi

f  . (2.179b) 

),( 2
)(

322 txJ
i  and ),( 2

)(
32 txJ
h  are provided by equations (2.169) and (2.177), 

respectively. 

 

2.2.3.7 Asymptotic Analysis of k33(x1, x2, t) 

Referring to (2.15d) ),,( 2133 txxk is written as 






 


dtxixtxxk ))(exp(),(
2

1
),,( 21332133 , (2.180a) 
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




2

1

1133 )exp()(),(

j

jj xsix  , (2.180b) 

where, js  )4,3,2,1( j  and )( j  are given by (2.11) and (2.18), respectively. 

Changing the limits of integration in (2.180a), 33k  becomes 

 




0

21332213312133 ))(sin(),())(cos(),(
2

1
),,( 


dtxxKtxxKtxxk , (2.181) 

where, 

),(),(),( 1331331331 xxxK   , (2.182a) 

)),(),((),( 1331331332 xxixK   . (2.182b) 

331K  and 332K  can be expressed as, 

)exp()()exp()(),( 1233121133111331 xsKxsKxK   , (2.183a) 

)exp()()exp()(),( 1233221133211332 xsKxsKxK   , (2.183b) 

and, 

 )()()( 113311   iK , (2.184a) 

 )()()( 223312   iK , (2.184b) 

 )()()( 113321  K , (2.184c) 

 )()()( 223322  K . (2.184d) 

In order to extract the singular terms, asymptotic analyses of 331K  and 332K  are 

requires as  . Asymptotic expansion of 331K  and 332K  are given by 

)exp()()exp()(),( 1233121133111331 xsKxsKxK    , (2.185a) 
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)exp()()exp()(),( 1233221133211332 xsKxsKxK    . (2.185b) 

By using MAPLE, asymptotic expansions are obtained as follows: 

11013311 ),( exK   , (2.186a) 

12013312 ),( exK   , (2.186b) 

21013321 ),( exK   , (2.186c) 

22013322 ),( exK   . (2.186d) 

The coefficients of the expansion 110e , 120e , 210e  and 220e  are given in Appendix A 

by equations (A.11a), (A.11b), (A.11c) and (A.11d), respectively. Subtracting the 

asymptotic expansions from the integrands in (2.181), using integration cutoff points, 

evaluating some of the integrals in closed form, taking the limit as 01 x , and after 

some manipulations ),,( 2133 txxk  is expressed as 
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where 10e  and 20e  are given in Appendix A by equations (A.11e) and (A.11f), 

respectively and 

),(),(),( 23322331233 txJtxJtxh f  , (2.188) 
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 (2.189b) 

in which 331A and 332A  are integration cutoff points. 

 

2.2.4 Singular Behavior of the Solution 

By using the expressions given in Section 2.2.3 for the kernels, integral equations 

provided by (2.77) are written as follows: 
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(2.190c) 
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In these integral equations, there are Cauchy kernels and Fredholm kernels. ),( * txhijs  

and ),( * txhijf ( 1
* xx   for 2,1i and 2

* xx   for 3i ) are given in Section 2.2.3. 

),( * txhijs  are the Cauchy kernels that become unbounded as *x  and t  go to the end 

point simultaneously. ),( * txhijf  are bounded Fredholm kernels. The solution of the 

singular integral equations is obtained through the function-theoretic method as 

described by Dag [40] and Erdogan [43]. In this analysis, 0a case is considered. 

For 0a , unknown functions if  can be expressed as 

  dxxFxdxxf  1111111 0,)()( 11 
, (2.191a) 

  dxxFxdxxf  1121112 0,)()( 22 
, (2.191b) 

    bxaxFxbaxxf  2232223 ,)()(
 , (2.191c) 

where jF )3,2,1( j  is Hölder- continuous in its respective interval and it is assumed 

that 0),,,,,(1 2121   . The following sectionally holomorphic functions 

are considered: 
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The singular behavior of )(zj , )3,2,1( j around the end points is given as follows 

(see, for example Dag [40] and Erdogan [43]): 
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The function *
nF , )3,2,1( n  is bounded everywhere except possibly at the end points 

where it may have a weaker singularity. Using Plemelj formulas, equations (2.193) 

can be expressed as follows: 
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In their respective intervals, )( 11 xH , )( 12 xH and )( 23 xH are bounded and at the end 

points they have weaker singularities similar to )(* zF in equation (2.193). It is 

assumed that complex variables 1z , 2z and 3z  satisfy the following conditions: 
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)0( 11 dxz  , (2.195a) 

)0( 12 dxz  , (2.195b) 

)( 23 bxaz  . (2.195c) 

If these conditions are satisfied, )( 11 z , )( 22 z and )( 33 z  are holomorphic. Thus, 

following equations are written, 
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Apart from the Cauchy integrals, all kernels of the integral equations except 11k and 

22k  are bounded. The singular behavior of the terms sh11 and sh22  in kernels 11k and 

22k , respectively can also be expressed by using (2.98a), (2.129a) and (2.196) in the 

following form: 
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By using (2.193a) and (2.193b), singular behavior of sh11 and sh22  near 01 x  are 

obtained as follows: 
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In equation (2.198),   sign implies that the bounded terms are not included. By 

using (2.194) and (2.198), the singular terms of the integral equations are written as 

follows: 
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In order to obtain the unknown exponents, the characteristic equations are derived by 

using (2.199). Multiplying (2.199a) by 1)( 1


x and letting 01 x  following equation 

is obtained, 
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and multiplying (2.199a) by 1)( 1


 xd and letting dx 1 following equation is 

found, 

0)cot( 1  . (2.201) 

)0(1F and )(1 dF  are assumed to be nonzero. Applying a similar procedure used for 

equation (2.199a), following equations are obtained by using equation (2.199b), 
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0)cot( 2  . (2.202b) 

Again it is assumed that )0(2F  and )(2 dF  are nonzero, Multiplying (2.199c) by 

 )( 2 ax  and letting ax 2  following equation is obtained 

20

10)cot(
e

e
 , (2.203) 

and multiplying (2.199c) by  )( 2xb  and letting bx 2  another characteristic 

equation to determine   is obtained as follows: 

20

10)cot(
e

e
 . (2.204) 

Also, )(3 aF  and )(3 bF  are assumed to be nonzero. From equations (2.201) and 

(2.202b), it follows that .5.011   The strengths of singularity at the ends of the 

contact area are given by equations (2.203) and (2.204) and 10e  and 20e are given in 

Appendix A by equations (A.11e) and (A.11f), respectively. Due to the fact that for 
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1f  and 2f  there is no singularity at 01 x , they can be expressed in the following 

form (see Delale and Erdogan [3]): 

dt
td

tF
tf 


 0,

)(
)( 1

1 , (2.205a) 

dt
td

tF
tf 


 0,

)(
)( 2

2 . (2.205b) 

 

2.2.5 On the Solution of the Integral Equations 

The singular integral equations do not have closed form solutions. Therefore a 

numerical method has to be developed. Flat, triangular and circular stamps are 

considered in the solution. In this study, Jacobi polynomials are used to reduce the 

singular integral equations to systems of linear algebraic equations. The unknown 

functions 1f , 2f  and 3f  are expanded into series of Jacobi polynomials. The 

unknown constants of expansions are determined by using the point collocation 

method. Then, main numerical results, which are the mixed mode stress intensity 

factors, contact stresses and required contact force, are generated. 

 

2.2.5.1 Flat Stamp 

The geometry of the flat stamp problem is shown in Figure 2.7. The length of the 

contact area (b-a) is independent of the applied force P. It is known that, the stresses 

are singular at both ends of the contact region. 
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Figure 2.7: The geometry of the crack/contact problem for a flat stamp 

 

 

At this point, the intervals and the unknowns of the problem are normalized. Then 

normalized forms of the integral equations are obtained. First, the intervals in (2.190) 

are normalized by defining 
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in integrals involving )(1 tf , )(2 tf  and )(3 tf , respectively. Then the normalized 

unknowns of the problem are defined as follows: 
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The intervals (0, d) and (a, b) are also normalized by defining, 
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22
21

d
s

d
x  ,                     for eqn. (2.190b), (2.208b) 
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Using (2.207) and (2.208), normalized form of the integral equations (2.190) and 

equilibrium conditions (2.1g) are written as 
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Since, for a flat stamp normal displacement beneath the stamp is constant, right-hand 

side of equation (2.209c) is zero. The kernels ),( rsH iij are given in Appendix C. The 

unknown functions are expanded into series of Jacobi polynomials in the following 

form, 
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where )(rPn are the Jacobi polynomials and )3,2,1( iAin are the unknown constants 

of the expansions. Also, for 0a  01  ,  2 , 0 , 0  and 1 . 

Substituting (2.210c) in equilibrium equation (2.209d) and by using the Jacobi 

polynomials, and orthogonality relations given by Erdogan [44], 30A  is obtained as 

follows: 
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where   is the Gamma function. Substituting (2.210) into (2.209a-c), regularizing 

the singular parts of the equations using the expressions given in Appendix B and 

truncating the infinite series at N, following system of linear algebraic equations is 

obtained: 
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The expressions for )( iijn sm , )3,2,1,( ji are given in Appendix C. By using the 

collocation technique, equations (2.212) can be solved. The number of unknowns is 

)23( N . Roots of the Chebyshev polynomials of the first kind are used as the 

collocation points as follows: 
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Equations (2.212) can be solved for inA , )3,2,1( i . The contact stresses ),0( 211 x , 

),0( 212 x  and stress intensity factors at the crack tip )0,(d are evaluated by using the 

results. The stress intensity factors are obtained as 
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Using (2.210), the normalized stress intensity factors and the normal component of 

the contact stress are expressed as 
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2.2.5.2 Triangular Stamp 

The geometry of the triangular stamp problem is shown in Figure 2.8. The contact is 

smooth at bx 2  and there is a sharp corner at ax 2 . The contact stress ),0( 211 x  is 

singular at ax 2 . In this case, the stamp has a constant slope of )tan(  in the contact 

region. Here, displacement derivative can be written as: 
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,)tan(),0(  . (2.216) 

 

 
Figure 2.8: The geometry of the crack/contact problem for a triangular stamp 
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At this point, the intervals and the unknowns of the problem are normalized. Then, 

normalized form of the integral equations is obtained. First the intervals in (2.190) 

are normalized by defining 
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in integrals involving )(1 tf , )(2 tf  and )(3 tf , respectively. Then, the normalized 

unknowns of the problem are defined as follows: 
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The intervals (0, d) and (a, b) are also normalized by defining, 
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Using (2.218) and (2.219), normalized form of the integral equations (2.190) and 

equilibrium conditions (2.1g) are written as 
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where ),( rsH iij are given in Appendix C. Unknown functions )(ri , )3,2,1( i  are 

expressed as follows:  
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where )(rPn  are the Jacobi polynomials and )3,2,1( iAin  are the unknown constants 

of the expansions. Also, for 0a  01  ,  2 , 0 , 0  and 0 . 

Substituting (2.221c) in equilibrium equation (2.220d), normalized contact force is 

obtained as follows: 
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For the triangular stamp problem, solution approach is slightly different. It is known 

that the triangular stamp problem is defined as an incomplete contact mechanics 

problem where the size of the contact region is a function of the applied force. This 

problem is solved for a given contact area (i.e., for a known value of dab )(  ) and 

corresponding force is calculated using equation (2.222a). Substituting equations 

(2.221) into (2.220a-c), regularizing the singular terms of the equations using the 

expressions given in Appendix B and truncating the infinite series at N, following 

system of linear algebraic equations is obtained: 
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The expressions for )( iijn sm  )3,2,1,( ji  are given in Appendix C. By using the 

collocation technique, equations (2.223) can be solved. The number of unknowns is 

)33( N . Roots of the Chebyshev polynomials of the first kind are used as the 

collocation points as follows: 
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Equations (2.223) are solved for inA , )3,2,1( i . The contact stress ),0( 211 x , stress 

intensity factors at the crack tip )0,(d  and required contact force mdP 12  are 

evaluated by using the results. The stress intensity factors are defined by (2.214). 

Using equations (2.221), the normalized stress intensity factors and the normal 

component of the contact stress are expressed as follows: 
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2.2.5.3 Circular Stamp 

The geometry of the circular stamp problem is shown in Figure 2.9. The radius of the 

stamp is assumed to be equal to R and the centerline of the stamp passes through 

point cx 2 . At the end points ax 2 and bx 2  the contact is smooth and contact 

stress ),0( 211 x  is equal to zero. The length of the contact area depends on the 

applied force P. In the numerical solution, the problem is solved for known values of 

a and b corresponding values of P and c are calculated. 

 



 

90 

 

 
Figure 2.9: The geometry of the crack/contact problem for a circular stamp 

 

In this problem, it is assumed that the contact area )( ab   is much smaller than the 

radius R. The derivative of the normal displacement in the contact area is given as 

follows: 
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The intervals and the unknowns of this problem are also normalized. Then 

normalized forms of the integral equations are obtained. First, the intervals in (2.190) 

are normalized by defining 
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in integrals involving )(1 tf , )(2 tf  and )(3 tf , respectively. Then the normalized 

unknowns of the problem are defined as follows: 
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The intervals (0, d) and (a, b) are also normalized by defining, 
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Using (2.228) and (2.229), normalized form of the integral equations (2.190) and 

equilibrium conditions (2.1g) are written as 
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where ),( rsH iij are given in Appendix C. Unknown functions )(ri , )3,2,1( i  are 

expressed in the following form,  
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where )(rPn  are the Jacobi polynomials and )3,2,1( iAin  are the unknown constants 

of the expansions. Also note that 0 , 0  and 1 . Substituting (2.231c) 

into (2.230d), normalized contact force is obtained as follows: 
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It is also known that the circular stamp problem is defined as an incomplete contact 

mechanics problem. This problem is solved for a given contact area (i.e., for a known 

value of Rab )(  ) and corresponding force is calculated using equation (2.232a). 

Substituting equations (2.231) into (2.230a-c), regularizing the singular terms of the 

equations using the expressions given in Appendix B and truncating the infinite 

series at N, following system of linear algebraic equations is obtained: 
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(2.233c) 

where )( iijn sg  )3,2,1,( ji  are given in Appendix C. In the circular stamp problem, 

the variables Ra , Rb  and Rc  are not independent. In order to determine Rc  for 

given values of Ra  and Rb  the consistency condition for the circular stamp is 

used. Consider the singular terms in (2.230c) 
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If this term is divided by the weight function )( 33 s  and integrated from -1 to 1 

following equation is obtained, 
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Integrating other terms similarly, rearranging and after manipulations, the 

relationship between Ra , Rb  and Rc  is expressed as: 
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Equation (2.236) provides the profile of the circular stamp. If equation (2.236) is 

used to eliminate Rc  in (2.233c), this equation can be further simplified to 
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n1 , n2  and n3  involve double integrals and these double integrals increase the 

computation time compared to the flat and triangular stamp problems.  Equations 

(2.233a, b) and (2.238) are solved using the collocation technique. The number of 

unknowns is )33( N . Roots of the Chebyshev polynomials of the first kind are used 

as the collocation points as follows: 
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Equations (2.233) are solved for inA , )3,2,1( i . The contact stress ),0( 211 x , stress 

intensity factors at the crack tip )0,(d , and required contact force RP 12  are 

evaluated by using the results. The stress intensity factors are defined by (2.214). 

Using equations (2.231), the normalized stress intensity factors and the normal 

component of the contact stress are expressed as follows: 
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CHAPTER 3  

 

 

NUMERICAL RESULTS 

 

 

 

In this section, numerical results obtained for different stamp profiles are presented. 

The main results in this chapter are the stress intensity factors at the crack tip ),( 21 kk , 

contact stress )),0(( 211 x  and the required contact force. The effect of the friction 

coefficient , material elastic modulus ratios, stamp location and crack length on the 

stress intensity factors at the crack tip and contact stresses are examined. Computer 

programs are developed for the implementation of the numerical procedures 

described in Section 2.2.5 by using Visual Fortran Language. 

 

First some results are given, showing the surface stresses in a homogeneous medium 

in the absence of a crack and loaded by a sliding flat stamp. It is expected that as the 

flat stamp moves away from crack plane, the effect of the surface crack on the 

contact stress distribution will disappear. In such a case, solution valid for a 

homogeneous half-plane can be recovered. In order to show this effect and to verify 

the contact stress distributions, the contact problem solutions given in the literature 

[46] and contact stresses obtained from this study for a large value of da / are 

compared. In Appendix D, contact problem solutions for a rigid punch on isotropic 

and anisotropic elastic half-planes are given. These solutions are developed by Galin 

[46]. As the material alumina (Al2O3) is employed in the numerical calculations. 

Plasma sprayed alumina coatings are known to possess an orthotropic structure. 

Sevostianov and Kachanov [49]  developed a theoretical model to calculate the 

elastic and conductive properties of orthotropic plasma-sprayed alumina coatings. 
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The study by Sevostianov and Kachanov [49] also presents experimental data on the 

orthotropic elastic properties of alumina. The provided experimental data is 

originally obtained by Perthasarathi et al. [50] using ultrasound measurements and 

consists of the stiffness coefficients of the plasma-sprayed alumina coatings. In Dag 

[51], the experimental data given in [49] is used to calculate the elastic parameters of 

the orthotropic alumina surface. The material parameters of the alumina are given in 

Table 3.1. In this table, Figure 3.2 and Figure 3.3 present comparisons of contact 

stress distributions for isotropic materials with those of Galin [46] for the case of a 

flat stamp with 0.1)(  dab , 6da  for plane strain and plane stress cases, 

respectively. Contact stress distributions for orthotropic materials with those of Galin 

[46] for the case of a flat stamp with 0.1)(  dab , 6da  for plane strain and plane 

stress cases are shown in Figure 3.4 and Figure 3.5 respectively. The results are 

observed to be in excellent agreement. Hence, it can be concluded that the method 

proposed for contact stress computation leads to numerical results of high accuracy. 

 

Table 3.1: The material parameters of plasma-sprayed alumina 

Property Alumina (Al2O3)  

1E  116.36 GPa 

2E  90.43 GPa 

12  38.21 GPa 

12  0.28 

13  0.27 

31  0.21 

32  0.14 

 

3.1 Flat Stamp 

The geometry of the flat stamp problem is depicted in Figure 2.7. Results pertaining 

to the flat stamp are provided in Figure 3.6-Figure 3.24. Developed solution method 
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for the flat stamp is validated by making comparisons to the results available in the 

literature. Figure 3.6, Figure 3.7 and Figure 3.8 present comparisons of normalized 

mode I and II stress intensity factors and contact stresses for homogeneous isotropic 

materials with those of given by Dag [40]  is taken as 0.25. In this analysis 

1211, dd and 22d  given in (2.5c-e) are used as 2.999611 d , 1.000812 d  and 

3.005222 d . These values are obtained by using isotropic material properties. As 

can be seen in these figures the results agree quite well. 

 

Figure 3.9 and Figure 3.10 show the modes I and II stress intensity factors generated 

for an orthotropic medium by taking 1.0/)(  dab . The results are given for various 

values of the friction coefficient. In the analysis, the properties of alumina (Al2O3) 

are utilized. As seen in Figure 3.9, for 0 mode I stress intensity factors are 

negative for all values of da / , which is indicative of crack closure. As the coefficient 

of friction, hence the tangential force, increases mode I stress intensity factors also 

increase. In Figure 3.10, for 0 mode II stress intensity factors are positive for all 

values of da / . If a small element at the crack tip is considered as shown Figure 3.1, 

the crack bend backwards and it extend in a direction opposite to the applied 

frictional force. 

 

 
Figure 3.1: Direction of crack extension 
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As the coefficient of friction increases mode II stress intensity factors are seen to 

decrease. Contact stresses in plasma-sprayed alumina for 1.0/)(  dab  and 

4.0/ da  are given in Figure 3.11 for various values of the friction coefficient. For 

0  singularities are equal at both ends of the contact area but due to the effect of 

the surface crack, the stress distribution is not exactly symmetric. As the coefficient 

of friction increases, singularity at the leading end i.e.,   decreases and there is 

higher stress intensification at the trailing end. 

 

Another set of results for the stress intensity factors are given in Figure 3.12 and 

Figure 3.13 for the relatively larger stamp size of 0.1/)(  dab . The trends are 

similar to those observed in Figure 3.9 and Figure 3.10. The contact stress 

distributions for 0.1/)(  dab are shown in Figure 3.14 for various values of the 

friction coefficient . 

 

Figure 3.15 and Figure 3.16 illustrate the effects of elastic modulus ratio 21 EE  and 

da /  on modes I and II stress intensity factors, respectively. Contact stress 

distributions for various values of elastic modulus ratio 21 EE  are given in Figure 

3.17.  Figure 3.18 and Figure 3.19 show the effect of 21 EE  on modes I and II stress 

intensity factors for. It can be seen that Mode I stress intensity factors increase as 

21 EE  increases (Figure 3.15 and Figure 3.18 ). Mode II stress intensity factors drop 

as 21 EE  gets larger (Figure 3.16 and Figure 3.19 ).  

 

Figure 3.20 and Figure 3.21 present the effects of the elastic modulus ratio 

31 EE and da  on the modes I and II stress intensity factors.  Contact stress 

distributions for various values of 31 EE  are given in Figure 3.22.  Figure 3.23 and 

Figure 3.24 show the effects of 31 EE  on modes I and II stress intensity factors. The 

effect of the elastic modulus ratio 31 EE  on modes I and II stress intensity factors 

and contact stress distributions is not that significant (Figure 3.20-Figure 3.24). 
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3.2 Triangular Stamp 

The geometry of the triangular stamp problem is shown in Figure 2.8. In this case, 

there is a sharp corner at the trailing end ax 2 hence at this point the contact stress 

),0( 211 x is singular. At point bx 2  the contact is smooth and ),0( 211 x is equal to 

zero. As described in Section 2.2.5.2, in order to avoid an iterative solution method, 

the problem is solved for a given contact area and corresponding value of the contact 

force is determined. The results for a triangular stamp sliding on the surface of the 

half-plane ( 0da ) are given in Figure 3.25-Figure 3.43 and Table 3.2-Table 3.8. 

Figure 3.25-Figure 3.27 are generated for an isotropic material for which 25.0  . 

Figure 3.25 and Figure 3.26 show the normalized modes I and II stress intensity 

factors, respectively for various values of the friction coefficient. Table 3.2 tabulates 

the variation of the normalized force with da  and Figure 3.27 presents the contact 

stresses for a stamp whose location is given by 1.0da , 1.1db . In this analysis 

1211, dd and 22d  are set as 2.999611 d , 1.000812 d and 3.005222 d . These values 

are obtained by assuming that the material is isotropic. The given results are in 

excellent agreement with those provided by Dag [40].  

 

The results for orthotropic materials are computed by using the material properties of 

plasma-sprayed alumina Al2O3 given in Table 3.1. Figure 3.28 and Figure 3.29 show 

the modes I and II stress intensity factors, respectively for an orthotropic material 

obtained by considering different values of friction coefficient. Table 3.3 shows the 

variations of the normalized force with da . As expected, the required force is larger 

for larger values of the friction coefficient. It can be seen that for all values of 

friction coefficient, normalized force quickly approaches a constant value for large 

values of da . The normalized contact force starts decreasing as the stamp gets 

closer to the crack. Figure 3.30 shows the contact stresses for 1.0da , 2.0db . In 

Figure 3.31-Figure 3.33 and Table 3.4, similar results are given for 0.1)(  dab . 
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The effects of the elastic modulus ratio 21 EE  on modes I and II stress intensity 

factors, for various values of the da are given in Figure 3.34 and Figure 3.35, 

respectively. Figure 3.36 shows the effect of 21 EE  on the contact stress distribution 

for 1.0da , 1.1db  and 4.0 . Figure 3.37 and Figure 3.38 show the competing 

effect of 21 EE  on modes I and II stress intensity factors. The effect of 21 EE  on 

normalized contact force is examined in Table 3.5 and Table 3.6. As can be seen, 

Mode I stress intensity factors increase as 21 EE  increases (Figure 3.34 and Figure 

3.37). Mode II stress intensity factors drops as 21 EE  becomes larger (Figure 3.35 

and Figure 3.38).  

 

Figure 3.39 and Figure 3.40 presents the influence of 31 EE   on modes I and II stress 

intensity factors,  respectively. Contact stress distributions  for various values of 

31 EE  are given in Figure 3.41.  Figure 3.42 and Figure 3.43 show the effect of 

31 EE  on modes I and II stress intensity factors for various values of the friction 

coefficient  . The effect of 31 EE  on the normalized contact force are examined in 

Table 3.7 and .  It can be seen that the effect of 31 EE  on modes I and II stress 

intensity factors and contact stress distributions is not significant especially when 

31 EE is large (Figure 3.39-Figure 3.43). 

 

3.3 Circular Stamp 

The geometry of the circular stamp problem is depicted in Figure 2.9. The radius of 

the circular stamp is denoted by R. There is smooth contact at both ends ax 2  and 

bx 2  hence the contact stress ),0( 211 x is zero at these points. The centerline of the 

stamp is at cx 2 . The numerical solution of the problem is described in Section 

2.2.5.3. The problem is solved by specifying a and b and corresponding values of the 

contact force P and c are calculated. Although no iterations are required, the 

computation time required for the solution of the circular stamp problem is more than 

that required for flat and triangular stamp problems. The double integrals (see 
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equations (2.237)) resulting from the consistency condition takes most of the 

computation time in the circular stamp problem. The results for a circular stamp 

sliding on the surface of the half-plane ( 0Ra ) are shown in Figure 3.44-Figure 

3.62 and Table 3.9-Table 3.15. Figure 3.44-Figure 3.46 are obtained for an isotropic 

material with 25.0 . Figure 3.44 and Figure 3.45 show normalized modes I and II 

stress intensity factors, respectively, for various values of the friction coefficient.   

Table 3.9 presents the variation of the normalized force with Ra  and Figure 3.46 

depicts the contact stresses for a stamp whose location is given by 1.0Ra , 

1.1Rb , 0.1Rd . In this analysis 1211, dd and 22d  are used as 2.999611 d , 

1.000812 d and 3.005222 d . These values are obtained by using isotropic material 

properties. The results are in excellent agreement with those given by Dag [40]. 

 

The results for orthotropic materials are obtained by using the material properties of 

plasma-sprayed alumina (Al2O3) given in Table 3.1. Figure 3.47 and Figure 3.48 

show the modes I and II stress intensity factors, respectively for various values of the 

friction coefficient. Required normalized forces are tabulated in Table 3.10 for 

different values of the friction coefficient. The variation of the contact force for small 

values of Ra depends on the size of the contact area between the crack faces. For 

small values of friction coefficient mode I stress intensity factors are negative and 

there is a crack closure. If the area of the contacting surfaces of the crack faces is 

relatively large, an increase in the contact force with the decrease in Ra  can be 

expected and this seems to occur for 0  and 2.0  . From Table 3.10 it can be 

seen that as Ra decreases required contact force decreases for 4.0  and 6.0 . 

Hence, the size of the contact area between the crack faces is expected to be smaller 

for 4.0  and 6.0 . Figure 3.49 shows the distribution of the contact stresses for 

various values of the friction coefficient with 1.0Ra ,  2.0Rb , 0.1Rd . Another 

set of results for stress intensity factors, contact force and contact stresses are given 

in Figure 3.50- Figure 3.52 and Table 3.11 for 0.1)(  Rab . As can be seen the 

trends are similar.  



 

104 

 

The effect 21 EE  on modes I and II stress intensity factors, for various values of the 

Ra  is examined in Figure 3.53 and Figure 3.54, respectively. Figure 3.55 shows the 

effect of 21 EE  on the contact stress distribution for 1.0Ra , 1.1Rb , 0.1Rd  

and 4.0 . Figure 3.56 and Figure 3.57 illustrate the effect of 21 EE  on modes I and 

II stress intensity factors for different values of the friction coefficient  . The 21 EE  

on the normalized contact force is examined in Table 3.12 and Table 3.13. As can be 

seen, Mode I stress intensity factor increases as 21 EE  gets larger (Figure 3.53 and 

Figure 3.56). Mode II stress intensity factor decreases as 21 EE  increases (Figure 

3.54 and Figure 3.57).  

 

Figure 3.58 and Figure 3.59 depict the effect of 31 EE  on modes I and II stress 

intensity factors for various values of the Ra . Contact stress for various values of 

31 EE  are given in Figure 3.60. Figure 3.61 and Figure 3.62 present the variations of 

stress intensity factors with respect to 31 EE for different values of the friction 

coefficient . The effect of the 31 EE  on normalized contact force is examined in 

Table 3.14 and Table 3.15. It can be seen that the influence of 31 EE  on modes I and 

II stress intensity factors and contact stress distributions is not that significant (Figure 

3.58-Figure 3.62). 
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3.4 Figures 

 
Figure 3.2: Comparisons of contact stress distributions for an isotropic half-plane loaded by 

a flat stamp, 0.1)(  dab , 6da , 2.999611 d , 1.000812 d , 3.005222 d  for plane 

strain. 
 

 
Figure 3.3: Comparisons of contact stress distributions for an isotropic half-plane loaded by 

a flat stamp, 0.1)(  dab , 6da , 2.999611 d , 1.000812 d , 3.005222 d for plane 

stress. 
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Figure 3.4: Comparisons of contact stress distributions for an orthotropic half-plane loaded 

by a flat stamp, 0.1)(  dab , 6da , 2.999611 d , 1.000812 d , 3.005222 d for 

plane strain. 
 

 
Figure 3.5: Comparison of contact stress distributions for an orthotropic half-plane loaded 

by a flat stamp, 0.1)(  dab , 6da , 2.999611 d , 1.000812 d , 3.005222 d for 

plane stress. 
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Figure 3.6: Mode I stress intensity factors for an edge crack in an isotropic half-plane loaded 

by a flat stamp as shown in Figure 2.7, 0.1)(  dab , 25.0 , 2.999611 d , 1.000812 d , 

3.005222 d . 
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Figure 3.7: Mode II stress intensity factors for an edge crack in an isotropic half-plane 

loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab , 25.0 , 2.999611 d , 

1.000812 d , 3.005222 d . 
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Figure 3.8:  Contact stress distributions for an isotropic half-plane with an edge crack and 

loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab , 25.0 , 4.0da , 

2.999611 d , 1.000812 d , 3.005222 d . 
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Figure 3.9: Mode I stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a flat stamp as shown in Figure 2.7, 1.0)(  dab . 
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Figure 3.10: Mode II stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a flat stamp as shown in Figure 2.7, 1.0)(  dab . 
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Figure 3.11: Contact stress distributions for an orthotropic half-plane with an edge crack and 

loaded by a flat stamp as shown in Figure 2.7, 1.0)(  dab , 4.0da . 
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Figure 3.12: Mode I stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab . 
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Figure 3.13: Mode II stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab . 
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Figure 3.14: Contact stress distributions for an orthotropic half-plane with an edge crack and 

loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab , 4.0da . 
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Figure 3.15: Effect of the elastic modulus ratio 21 EE  on mode I stress intensity factors for 

an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 

2.7, 0.1)(  dab , 4.0 . 
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Figure 3.16: Effect of the elastic modulus ratio 21 EE  on mode II stress intensity factors 

for an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 

2.7, 0.1)(  dab , 4.0 . 
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Figure 3.17: Effect of the elastic modulus ratio 21 EE  on the contact stress distribution for 

an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 2.7, 

0.1)(  dab , 1.0da , 4.0 . 
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Figure 3.18: Normalized 1k versus 21 EE and   for an edge crack in an orthotropic half-

plane loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab , 1.0da . 
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Figure 3.19: Normalized 2k versus 21 EE and   for an edge crack in an orthotropic half-

plane loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab , 1.0da . 
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Figure 3.20: Effect of the elastic modulus ratio 31 EE  on mode I stress intensity factors for 

an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 2.7, 

0.1)(  dab , 4.0 . 
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Figure 3.21: Effect of the elastic modulus ratio 31 EE  on mode II stress intensity factors 

for an edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 2.7, 

0.1)(  dab , 4.0 . 
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Figure 3.22: Effect of the elastic modulus ratio 31 EE  on contact stress distribution for an 

edge crack in an orthotropic half-plane loaded by a flat stamp as shown in Figure 2.7, 

0.1)(  dab , 1.0da , 4.0 . 
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Figure 3.23: Normalized 1k versus 31 EE and    for an edge crack in an orthotropic half-

plane loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab , 1.0da . 
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Figure 3.24: Normalized 2k versus 31 EE and  for an edge crack in an orthotropic half-

plane loaded by a flat stamp as shown in Figure 2.7, 0.1)(  dab , 1.0da . 

 

 

 

a/d

0 2 4 6 8 10
-0.3

-0.2

-0.1

0.0

0.1

0.2

Dag, [40]

Present study
P

dk1

0.4

0.2

0.0

6.0

 

Figure 3.25: Mode I stress intensity factors for an edge crack in an isotropic half-plane 

loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab , 25.0 , 2.999611 d , 

1.000812 d , 3.005222 d . 
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Figure 3.26: Mode II stress intensity factors for an edge crack in an isotropic half-plane 

loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab , 25.0 , 2.999611 d , 

1.000812 d , 3.005222 d . 
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Figure 3.27:  Contact stress distributions for an isotropic half-plane with an edge crack and 

loaded by a triangular stamp as shown in Figure 2.8, 25.0 , 1.0da , 1.1db , 

2.999611 d , 1.000812 d , 3.005222 d . 
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Figure 3.28: Mode I stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a triangular stamp as shown in Figure 2.8, 1.0)(  dab . 
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Figure 3.29: Mode II stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a triangular stamp as shown in Figure 2.8, 1.0)(  dab . 
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Figure 3.30: Contact stress distributions for an orthotropic half-plane with an edge crack and 

loaded by a triangular stamp as shown in Figure 2.8, 1.0da , 2.0db . 
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Figure 3.31: Mode I stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab . 



 

120 

 

a/d

0 2 4 6 8 10
-0.1

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

P

dk2

 

Figure 3.32: Mode II stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab . 
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Figure 3.33: Contact stress distribution for an orthotropic half-plane with an edge crack and 

loaded by a triangular stamp as shown in Figure 2.8, 1.0da , 1.1db . 
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Figure 3.34: Effect of the elastic modulus ratio 21 EE  on mode I stress intensity factors for 

an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in Figure 

2.8, 0.1)(  dab , 4.0 . 
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Figure 3.35: Effect of the elastic modulus ratio 21 EE  on mode II stress intensity factors 

for an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in 

Figure 2.8, 0.1)(  dab , 4.0 . 
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Figure 3.36: Effect of the elastic modulus ratio 21 EE  on the contact stress distribution for 

an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in Figure 

2.8, 1.0da , 1.1db , 4.0 . 
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Figure 3.37: Normalized 1k versus 21 EE and  for an edge crack in an orthotropic half-

plane loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab , 1.0da . 
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Figure 3.38: Normalized 2k versus 21 EE and  for an edge crack in an orthotropic half-

plane loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab , 1.0da . 
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Figure 3.39: Effect of the elastic modulus ratio 31 EE  on mode I stress intensity factors for 

an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in Figure 

2.8, 0.1)(  dab , 4.0 . 
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Figure 3.40: Effect of the elastic modulus ratio 31 EE  on mode II stress intensity factors 

for an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in 

Figure 2.8, 0.1)(  dab , 4.0 . 
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Figure 3.41: Effect of the elastic modulus ratio 31 EE  on the contact stress distribution for 

an edge crack in an orthotropic half-plane loaded by a triangular stamp as shown in Figure 

2.8, 1.0da , 1.1db , 4.0 . 
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Figure 3.42: Normalized 1k versus 31 EE and  for an edge crack in an orthotropic half-

plane loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab , 1.0da . 
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Figure 3.43: Normalized 2k versus 31 EE and  for an edge crack in an orthotropic half-

plane loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab , 1.0da . 
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Figure 3.44: Mode I stress intensity factors for an edge crack in an isotropic half-plane 

loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 0.1Rd , 25.0 , 

2.999611 d , 1.000812 d , 3.005222 d . 

 

 

 

 

Figure 3.45: Mode II stress intensity factors for an edge crack in an isotropic half-plane 

loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 0.1Rd , 25.0 , 

2.999611 d , 1.000812 d , 3.005222 d . 
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Figure 3.46:  Contact stress distribution for an isotropic half-plane with an edge crack and 

loaded by a circular stamp as shown in Figure 2.9, 1.0Ra , 1.1Rb , 0.1Rd , 

25.0 , 2.999611 d , 1.000812 d , 3.005222 d . 
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Figure 3.47: Mode I stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a circular stamp as shown in Figure 2.9, 1.0)(  Rab , 0.1Rd . 
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Figure 3.48: Mode II stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a circular stamp as shown in Figure 2.9, 1.0)(  Rab , 0.1Rd . 
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Figure 3.49: Contact stress distributions for an orthotropic half-plane with an edge crack and 

loaded by a circular stamp as shown in Figure 2.9, 1.0Ra , 2.0Rb , 0.1Rd . 
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Figure 3.50: Mode I stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 0.1Rd . 
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Figure 3.51: Mode II stress intensity factors for an edge crack in an orthotropic half-plane 

loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 0.1Rd . 
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Figure 3.52: Contact stress distributions for an orthotropic half-plane with an edge crack and 

loaded by a circular stamp as shown in Figure 2.9, 1.0Ra , 1.1Rb , 0.1Rd . 
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Figure 3.53: Effect of the elastic modulus ratio 21 EE  on mode I stress intensity factors for 

an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

0.1)(  Rab , 0.1Rd , 4.0 . 
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Figure 3.54: Effect of the elastic modulus ratio 21 EE  on mode II stress intensity factors 

for an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 

2.9, 0.1)(  Rab , 0.1Rd , 4.0 . 
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Figure 3.55: Effect of the elastic modulus ratio 21 EE  on the contact stress distribution for 

an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

1.0Ra , 1.1Rb , 0.1Rd , 4.0 . 
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Figure 3.56: Normalized 1k versus 21 EE and  for an edge crack in an orthotropic half-

plane loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 

0.1Rd , 1.0Ra . 
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Figure 3.57: Normalized 2k versus 21 EE and  for an edge crack in an orthotropic half-

plane loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 0.1Rd , 

1.0Ra . 
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Figure 3.58: Effect of the elastic modulus ratio 31 EE  on mode I stress intensity factors for 

an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

0.1)(  Rab , 0.1Rd , 4.0 . 
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Figure 3.59: Effect of the elastic modulus ratio 31 EE  on mode II stress intensity factors 

for an edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 

2.9, 0.1)(  Rab , 0.1Rd , 4.0 . 
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Figure 3.60: Effect of elastic modulus ratio 31 EE  on the contact stress distribution for an 

edge crack in an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

1.0Ra , 1.1Rb , 0.1Rd , 4.0 . 
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Figure 3.61: Normalized 1k versus 31 EE and  for an edge crack in an orthotropic half-

plane loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 

0.1Rd , 1.0Ra . 
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Figure 3.62: Normalized 2k versus 31 EE and  for an edge crack in an orthotropic half-

plane loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 0.1Rd , 

1.0Ra . 
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3.5 Tables 

 

Table 3.2: Normalized force values computed for various values of da and coefficient of 

friction  for an isotropic half-plane loaded by a triangular stamp as shown in Figure 2.8, 

0.1)(  dab , 25.0 , 2.999611 d , 1.000812 d , 3.005222 d .  

da  

mdP 12  

Present Study  Dag, [40] 

0.0  2.0  4.0  6.0   0.0  2.0  4.0  6.0  

0.05 1.4859 1.6329 1.8005 1.9917  1.3367 1.5219 1.7585 2.0212 

0.1 1.5644 1.7124 1.8795 2.0683  1.4152 1.6072 1.8515 2.1733 

0.3 1.804 1.9424 2.0923 2.2544  1.6791 1.8706 2.1009 2.2640 

0.5 1.9445 2.0659 2.1928 2.3246  1.8512 2.0226 2.2083 2.3320 

0.8 2.0414 2.1429 2.2454 2.3480  1.9865 2.1266 2.2577 2.3558 

1.0 2.0683 2.1623 2.2558 2.3482  2.0302 2.1552 2.2669 2.3560 

1.3 2.0859 2.1740 2.2608 2.3455  2.0632 2.1738 2.2776 2.3555 

1.7 2.0935 2.1786 2.2623 2.3436  2.0812 2.1816 2.2732 2.3540 

2.0 2.0952 2.1798 2.2628 2.3435  2.0869 2.1833 2.2701 2.3530 

2.5 2.0958 2.1805 2.2638 2.3447  2.0912 2.1840 2.2766 2.3525 

3.0 2.0957 2.1809 2.2647 2.3464  2.0928 2.1839 2.2746 2.3520 

3.5 2.0955 2.1812 2.2656 2.3480  2.0936 2.1838 2.2734 2.3517 

4.0 2.0953 2.1814 2.2664 2.3494  2.0939 2.1836 2.2726 2.3503 

4.5 2.0951 2.1817 2.2670 2.3505  2.0941 2.1835 2.2722 2.3595 

5.0 2.0950 2.1818 2.2676 2.3515  2.0942 2.1834 2.2719 2.3589 

5.5 2.0949 2.1820 2.2680 2.3523  2.0943 2.1834 2.2717 2.3585 

6.0 2.0948 2.1821 2.2684 2.3529  2.0943 2.1833 2.2715 2.3583 

7.0 2.0947 2.1824 2.2690 2.3539  2.0944 2.1833 2.2714 2.3580 

8.0 2.0947 2.1825 2.2694 2.3547  2.0944 2.1832 2.2713 2.3578 

9.0 2.0946 2.1826 2.2697 2.3552  2.0944 2.1832 2.2712 2.3578 

10.0 2.0946 2.1827 2.2700 2.3556  2.0944 2.1832 2.2712 2.3577 
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Table 3.3: Normalized force values computed for various values of da and coefficient of 

friction  for an orthotropic half-plane loaded by a triangular stamp as shown in Figure 2.8, 

1.0)(  dab .  

da  
mdP 12  

0.0  2.0  4.0  6.0  

0.05 0.1549 0.1738 0.1970 0.2261 

0.1 0.1783 0.1965 0.2177 0.2429 

0.3 0.2120 0.2267 0.2426 0.2596 

0.5 0.2223 0.2353 0.2487 0.2625 

0.8 0.2276 0.2392 0.2510 0.2627 

1.0 0.2288 0.2401 0.2513 0.2624 

1.3 0.2295 0.2405 0.2514 0.2621 

1.7 0.2298 0.2406 0.2514 0.2619 

2.0 0.2298 0.2406 0.2513 0.2618 

2.5 0.2299 0.2407 0.2513 0.2618 

3.0 0.2299 0.2407 0.2513 0.2618 

3.5 0.2299 0.2407 0.2514 0.2618 

4.0 0.2299 0.2407 0.2514 0.2618 

4.5 0.2299 0.2407 0.2514 0.2618 

5.0 0.2299 0.2407 0.2514 0.2619 

5.5 0.2299 0.2407 0.2514 0.2619 

6.0 0.2299 0.2407 0.2514 0.2619 

7.0 0.2299 0.2407 0.2514 0.2619 

8.0 0.2299 0.2407 0.2514 0.2619 

9.0 0.2299 0.2407 0.2514 0.2619 

10.0 0.2299 0.2407 0.2514 0.2619 
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Table 3.4: Normalized force values computed for various values of da and coefficient of 

friction  for an orthotropic half-plane loaded by a triangular stamp as shown in Figure 2.8, 

0.1)(  dab . 

da  
mdP 12  

0.0  2.0  4.0  6.0  

0.05 1.6820 1.8564 2.0536 2.2758 

0.1 1.7685 1.9430 2.1384 2.3563 

0.3 2.0245 2.1847 2.3563 2.5390 

0.5 2.1651 2.3047 2.4488 2.5962 

0.8 2.2550 2.3732 2.4912 2.6077 

1.0 2.2784 2.3891 2.4984 2.6049 

1.3 2.2930 2.3983 2.5014 2.6011 

1.7 2.2988 2.4018 2.5025 2.5997 

2.0 2.2999 2.4028 2.5033 2.6004 

2.5 2.3001 2.4035 2.5047 2.6027 

3.0 2.2999 2.4040 2.5062 2.6052 

3.5 2.2996 2.4044 2.5074 2.6074 

4.0 2.2993 2.4048 2.5084 2.6093 

4.5 2.2991 2.4051 2.5093 2.6108 

5.0 2.2990 2.4053 2.5100 2.6120 

5.5 2.2989 2.4055 2.5106 2.6130 

6.0 2.2988 2.4057 2.5110 2.6138 

7.0 2.2987 2.4060 2.5118 2.6150 

8.0 2.2987 2.4062 2.5123 2.6159 

9.0 2.2986 2.4063 2.5127 2.6166 

10.0 2.2986 2.4064 2.5129 2.6171 
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Table 3.5: Normalized force values computed for various values of da and 21 EE for an 

orthotropic half-plane loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab , 

4.0 . 

da  
mdP 12  

25.021 EE  5.021 EE  0.121 EE  5.121 EE  

0.05 2.1205 2.0905 2.0640 2.0466 

0.1 2.2190 2.1863 2.1523 2.1290 

0.3 2.4820 2.4366 2.3812 2.3395 

0.5 2.6146 2.5579 2.4829 2.4259 

0.8 2.7007 2.6295 2.5337 2.4632 

1.0 2.7253 2.6472 2.5434 2.4691 

1.3 2.7426 2.6577 2.5478 2.4716 

1.7 2.7509 2.6613 2.5489 2.4730 

2.0 2.7531 2.6619 2.5493 2.4741 

2.5 2.7541 2.6619 2.5501 2.4760 

3.0 2.7541 2.6619 2.5511 2.4777 

3.5 2.7539 2.6620 2.5520 2.4792 

4.0 2.7538 2.6622 2.5527 2.4803 

4.5 2.7536 2.6624 2.5534 2.4813 

5.0 2.7535 2.6626 2.5540 2.4821 

5.5 2.7535 2.6628 2.5545 2.4827 

6.0 2.7535 2.6630 2.5549 2.4832 

7.0 2.7535 2.6633 2.5555 2.4840 

8.0 2.7535 2.6636 2.5560 2.4845 

9.0 2.7536 2.6638 2.5563 2.4849 

10.0 2.7536 2.6639 2.5566 2.4852 
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Table 3.6: Normalized force values computed for various values of 21 EE and coefficient 

of friction  for an orthotropic half-plane loaded by a triangular stamp as shown in Figure 

2.8, 0.1)(  dab , 1.0da . 

21 EE  
mdP 12  

0.0  2.0  4.0  6.0  

0.14 2.0784 2.1596 2.2482 2.3451 

0.15 2.0681 2.1524 2.2444 2.3455 

0.25 1.9942 2.1008 2.2190 2.3509 

0.35 1.9465 2.0676 2.2030 2.3554 

0.50 1.8966 2.0329 2.1863 2.3599 

0.65 1.8604 2.0078 2.1739 2.3622 

0.75 1.8409 1.9941 2.1669 2.3627 

0.85 1.8239 1.9823 2.1607 2.3626 

0.95 1.8089 1.9717 2.1550 2.3619 

1.00 1.8021 1.9669 2.1523 2.3614 

1.20 1.7778 1.9496 2.1424 2.3582 

1.29 1.7685 1.9430 2.1384 2.3563 

1.30 1.7672 1.9421 2.1377 2.3560 

1.35 1.7622 1.9385 2.1355 2.3548 

1.40 1.7574 1.9350 2.1333 2.3535 

1.45 1.7527 1.9317 2.1311 2.3522 

1.50 1.7483 1.9284 2.1290 2.3507 
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Table 3.7: Normalized force values computed for various values of da and 31 EE for an 

orthotropic half-plane loaded by a triangular stamp as shown in Figure 2.8, 0.1)(  dab , 

4.0 . 

da  
mdP 12  

25.031 EE  5.031 EE  0.131 EE  0.231 EE  

0.05 2.5235 2.2066 2.0795 2.0225 

0.1 2.6205 2.2954 2.1649 2.1065 

0.3 2.8523 2.5186 2.3838 2.3237 

0.5 2.9368 2.6086 2.4758 2.4169 

0.8 2.9685 2.6473 2.5175 2.4604 

1.0 2.9722 2.6532 2.5244 2.4679 

1.3 2.9731 2.6555 2.5273 2.4710 

1.7 2.9736 2.6564 2.5284 2.4722 

2.0 2.9744 2.6572 2.5291 2.4730 

2.5 2.9761 2.6587 2.5306 2.4744 

3.0 2.9778 2.6603 2.5321 2.4758 

3.5 2.9792 2.6616 2.5333 2.4770 

4.0 2.9804 2.6627 2.5344 2.4780 

4.5 2.9814 2.6636 2.5352 2.4788 

5.0 2.9822 2.6643 2.5359 2.4795 

5.5 2.9829 2.6649 2.5365 2.4801 

6.0 2.9834 2.6654 2.5370 2.4806 

7.0 2.9842 2.6662 2.5377 2.4813 

8.0 2.9848 2.6667 2.5382 2.4818 

9.0 2.9852 2.6671 2.5386 2.4821 

10.0 2.9856 2.6674 2.5389 2.4824 
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Table 3.8: Normalized force values computed for various values of 31 EE and coefficient 

of friction  for an orthotropic half-plane loaded by a triangular stamp as shown in Figure 

2.8, 0.1)(  dab , 1.0da . 

31 EE  
mdP 12  

0.0  2.0  4.0  6.0  

0.08 8.3525 8.9530 9.6690 10.5384 

0.10 4.1605 4.5439 4.9803 5.4794 

0.25 2.1666 2.3807 2.6205 2.8885 

0.50 1.8974 2.0852 2.2954 2.5300 

0.80 1.8154 1.9950 2.1959 2.4201 

1.00 1.7901 1.9670 2.1649 2.3858 

1.29 1.7685 1.9430 2.1384 2.3563 

1.50 1.7581 1.9314 2.1254 2.3419 

1.80 1.7480 1.9201 2.1127 2.3277 

2.00 1.7431 1.9145 2.1065 2.3208 

2.20 1.7392 1.9101 2.1014 2.3151 

2.40 1.7360 1.9065 2.0973 2.3104 

2.80 1.7312 1.9009 2.0909 2.3031 

3.00 1.7294 1.8988 2.0884 2.3003 

3.20 1.7279 1.8969 2.0862 2.2978 

3.40 1.7266 1.8953 2.0844 2.2956 

4.00 1.7238 1.8918 2.0800 2.2904 
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Table 3.9: Normalized force values computed for various values of Ra and coefficient of 

friction  for an isotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

0.1)(  Rab , 0.1Rd , 25.0 , 2.999611 d , 1.000812 d , 3.005222 d .. 

Ra  

RP 12  

Present Study  Dag, [40] 

0.0  2.0  4.0  6.0   0.0  2.0  4.0  6.0  

0.05 0.6877 0.5946 0.5094 0.4525  0.7164 0.5855 0.5074 0.4487 

0.1 0.6424 0.5801 0.5147 0.4648  0.6523 0.5743 0.5127 0.4628 

0.3 0.5758 0.5481 0.5164 0.4901  0.5817 0.5478 0.5164 0.4872 

0.5 0.5473 0.5343 0.5179 0.5011  0.5436 0.5347 0.5159 0.4968 

0.8 0.5322 0.5262 0.5183 0.5097  0.5361 0.5264 0.5163 0.5049 

1.0 0.5281 0.5243 0.5188 0.5116  0.5301 0.5243 0.5170 0.5082 

1.3 0.5254 0.5232 0.5192 0.5135  0.5264 0.5231 0.5180 0.5113 

1.7 0.5242 0.5228 0.5196 0.5146  0.5247 0.5226 0.5188 0.5133 

2.0 0.5239 0.5227 0.5197 0.5150  0.5241 0.5226 0.5192 0.5141 

2.5 0.5237 0.5227 0.5199 0.5153  0.5238 0.5226 0.5195 0.5148 

3.0 0.5237 0.5227 0.5199 0.5154  0.5237 0.5226 0.5197 0.5150 

3.5 0.5236 0.5227 0.5199 0.5154  0.5236 0.5226 0.5198 0.5152 

4.0 0.5236 0.5227 0.5199 0.5154  0.5236 0.5226 0.5198 0.5152 

4.5 0.5236 0.5227 0.5199 0.5154  0.5236 0.5226 0.5198 0.5153 

5.0 0.5236 0.5227 0.5199 0.5154  0.5236 0.5227 0.5199 0.5153 

5.5 0.5236 0.5227 0.5199 0.5154  0.5236 0.5227 0.5199 0.5153 

6.0 0.5236 0.5227 0.5199 0.5154  0.5236 0.5227 0.5199 0.5153 

7.0 0.5236 0.5227 0.5199 0.5154  0.5236 0.5227 0.5199 0.5153 

8.0 0.5236 0.5227 0.5199 0.5154  0.5236 0.5227 0.5199 0.5153 

9.0 0.5236 0.5227 0.5199 0.5154  0.5236 0.5227 0.5199 0.5153 

10.0 0.5236 0.5227 0.5199 0.5154  0.5236 0.5227 0.5199 0.5153 
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Table 3.10: Normalized force values computed for various values of Ra and coefficient of 

friction   for an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

1.0)(  Rab , 0.1Rd .  

Ra  
RP 12  

0.0  2.0  4.0  6.0  

0.05 0.0061 0.0059 0.0056 0.0055 

0.1 0.0059 0.0058 0.0057 0.0056 

0.3 0.0058 0.0057 0.0057 0.0056 

0.5 0.0058 0.0057 0.0057 0.0056 

0.8 0.0057 0.0057 0.0057 0.0056 

1.0 0.0057 0.0057 0.0057 0.0056 

1.3 0.0057 0.0057 0.0057 0.0056 

1.7 0.0057 0.0057 0.0057 0.0056 

2.0 0.0057 0.0057 0.0057 0.0056 

2.5 0.0057 0.0057 0.0057 0.0056 

3.0 0.0057 0.0057 0.0057 0.0056 

3.5 0.0057 0.0057 0.0057 0.0056 

4.0 0.0057 0.0057 0.0057 0.0056 

4.5 0.0057 0.0057 0.0057 0.0056 

5.0 0.0057 0.0057 0.0057 0.0056 

5.5 0.0057 0.0057 0.0057 0.0056 

6.0 0.0057 0.0057 0.0057 0.0056 

7.0 0.0057 0.0057 0.0057 0.0056 

8.0 0.0057 0.0057 0.0057 0.0056 

9.0 0.0057 0.0057 0.0057 0.0056 

10.0 0.0057 0.0057 0.0057 0.0056 

 



 

145 

 

Table 3.11: Normalized force values computed for various values of Ra and coefficient of 

friction  for an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

0.1)(  Rab , 0.1Rd . 

Ra  
RP 12  

0.0  2.0  4.0  6.0  

0.05 0.7544 0.6455 0.5667 0.5062 

0.1 0.7034 0.6307 0.5711 0.5213 

0.3 0.6279 0.5970 0.5691 0.5419 

0.5 0.5977 0.5832 0.5671 0.5499 

0.8 0.5825 0.5760 0.5673 0.5566 

1.0 0.5786 0.5745 0.5679 0.5592 

1.3 0.5762 0.5736 0.5687 0.5614 

1.7 0.5751 0.5734 0.5692 0.5627 

2.0 0.5749 0.5734 0.5694 0.5631 

2.5 0.5747 0.5734 0.5695 0.5634 

3.0 0.5746 0.5734 0.5696 0.5635 

3.5 0.5746 0.5734 0.5696 0.5635 

4.0 0.5746 0.5734 0.5696 0.5635 

4.5 0.5746 0.5734 0.5696 0.5635 

5.0 0.5746 0.5734 0.5696 0.5635 

5.5 0.5746 0.5734 0.5696 0.5635 

6.0 0.5746 0.5734 0.5696 0.5635 

7.0 0.5746 0.5734 0.5696 0.5635 

8.0 0.5746 0.5734 0.5696 0.5634 

9.0 0.5746 0.5734 0.5696 0.5634 

10.0 0.5746 0.5734 0.5696 0.5634 
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Table 3.12: Normalized force values computed for various values of Ra and 21 EE for an 

orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 

0.1Rd , 4.0 . 

Ra  
RP 12  

25.021 EE  5.021 EE  0.121 EE  5.121 EE  

0.05 0.7284 0.6623 0.5928 0.5506 

0.1 0.7212 0.6611 0.5960 0.5557 

0.3 0.6955 0.6465 0.5909 0.5555 

0.5 0.6835 0.6387 0.5873 0.5545 

0.8 0.6769 0.6349 0.5864 0.5554 

1.0 0.6754 0.6342 0.5866 0.5562 

1.3 0.6745 0.6340 0.5872 0.5570 

1.7 0.6742 0.6342 0.5876 0.5576 

2.0 0.6742 0.6343 0.5878 0.5578 

2.5 0.6742 0.6344 0.5880 0.5579 

3.0 0.6743 0.6345 0.5881 0.5580 

3.5 0.6743 0.6345 0.5881 0.5580 

4.0 0.6744 0.6345 0.5881 0.5580 

4.5 0.6744 0.6346 0.5881 0.5580 

5.0 0.6744 0.6346 0.5881 0.5580 

5.5 0.6744 0.6346 0.5881 0.5579 

6.0 0.6744 0.6346 0.5881 0.5579 

7.0 0.6744 0.6346 0.5881 0.5579 

8.0 0.6744 0.6346 0.5881 0.5579 

9.0 0.6744 0.6346 0.5881 0.5579 

10.0 0.6744 0.6346 0.5881 0.5579 
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Table 3.13: Normalized force values computed for various values of 21 EE and coefficient 

of friction  for an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

0.1)(  Rab , 0.1Rd , 1.0Ra . 

21 EE  
RP 12  

0.0  2.0  4.0  6.0  

0.14 0.8620 0.8130 0.7681 0.7286 

0.15 0.8579 0.8080 0.7626 0.7227 

0.25 0.8277 0.7702 0.7212 0.6788 

0.35 0.8054 0.7439 0.6926 0.6487 

0.50 0.7790 0.7147 0.6611 0.6156 

0.65 0.7564 0.6923 0.6370 0.5903 

0.75 0.7492 0.6798 0.6236 0.5762 

0.85 0.7383 0.6686 0.6117 0.5637 

0.95 0.7290 0.6586 0.6009 0.5525 

1.00 0.7247 0.6540 0.5960 0.5473 

1.20 0.7094 0.6372 0.5780 0.5285 

1.29 0.7034 0.6307 0.5711 0.5213 

1.30 0.7026 0.6297 0.5701 0.5202 

1.35 0.6993 0.6262 0.5663 0.5163 

1.40 0.6962 0.6227 0.5626 0.5125 

1.45 0.6932 0.6194 0.5591 0.5088 

1.50 0.6903 0.6162 0.5557 0.5052 
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Table 3.14: Normalized force values computed for various values of da and 31 EE for an 

orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 0.1)(  Rab , 

0.1Rd , 4.0 . 

Ra  
RP 12  

25.031 EE  5.031 EE  0.131 EE  0.231 EE  

0.05 0.6612 0.5973 0.5717 0.5612 

0.1 0.6689 0.6028 0.5763 0.5653 

0.3 0.6717 0.6023 0.5746 0.5630 

0.5 0.6723 0.6011 0.5727 0.5608 

0.8 0.6746 0.6020 0.5730 0.5608 

1.0 0.6758 0.6028 0.5737 0.5613 

1.3 0.6770 0.6037 0.5745 0.5620 

1.7 0.6777 0.6043 0.5750 0.5626 

2.0 0.6780 0.6045 0.5752 0.5627 

2.5 0.6782 0.6047 0.5754 0.5629 

3.0 0.6782 0.6047 0.5754 0.5629 

3.5 0.6782 0.6047 0.5754 0.5630 

4.0 0.6782 0.6047 0.5754 0.5630 

4.5 0.6782 0.6047 0.5754 0.5629 

5.0 0.6782 0.6047 0.5754 0.5629 

5.5 0.6782 0.6047 0.5754 0.5629 

6.0 0.6782 0.6047 0.5754 0.5629 

7.0 0.6782 0.6047 0.5754 0.5629 

8.0 0.6782 0.6047 0.5754 0.5629 

9.0 0.6782 0.6047 0.5754 0.5629 

10.0 0.6782 0.6047 0.5754 0.5629 
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Table 3.15: Normalized force values computed for various values of 31 EE and coefficient 

of friction  for an orthotropic half-plane loaded by a circular stamp as shown in Figure 2.9, 

0.1)(  Rab , 0.1Rd , 1.0Ra . 

31 EE  
RP 12  

0.0  2.0  4.0  6.0  

0.08 2.5499 2.2406 2.0143 1.8388 

0.10 1.4273 1.2546 1.1254 1.0239 

0.25 0.8321 0.7416 0.6689 0.6092 

0.50 0.7454 0.6667 0.6028 0.5497 

0.80 0.7187 0.6437 0.5825 0.5315 

1.00 0.7104 0.6366 0.5763 0.5259 

1.29 0.7034 0.6307 0.5711 0.5213 

1.50 0.7001 0.6279 0.5686 0.5191 

1.80 0.6969 0.6252 0.5664 0.5172 

2.00 0.6954 0.6240 0.5653 0.5163 

2.20 0.6942 0.6230 0.5645 0.5156 

2.40 0.6933 0.6222 0.5639 0.5151 

2.80 0.6920 0.6212 0.5631 0.5144 

3.00 0.6915 0.6208 0.5628 0.5142 

3.20 0.6911 0.6206 0.5626 0.5141 

3.40 0.6908 0.6204 0.5625 0.5140 

4.00 0.6902 0.6201 0.5624 0.5141 
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CHAPTER 4  

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

 

4.1 Conclusions 

In this study, a method is developed to examine the problem of surface cracking in 

orthotropic materials due to sliding contact by a rigid stamp. Calculated results 

consist of the effect of the friction coefficient  , stamp location, crack length and 

material properties on the stress intensity factors at the crack tip and contact stresses.  

 

In Chapter 2, the basic method to solve coupled crack and contact problem is 

developed for different stamp profiles. The coupled crack/contact problem is 

formulated by using the equations of elasticity and reduced to a system of singular 

integral equations. The solution procedure of the problem can be visualized in Figure 

2.2. In Section 2.2.1, the contact problem for an orthotropic medium under a rigid 

stamp is examined first by reducing the governing equations to a system of ordinary 

differential equations by using Fourier transformation. In Section 2.2.2, it is observed 

that, in the orthotropic half-plane problem having a symmetry with respect to 

02 x (see Figure 2.4) in geometry and material property distribution, the mode I (or 

the opening mode) and mode II (or the sliding mode) problems are uncoupled. Thus, 

the mode I and mode II problems are formulated separately. The stress and 

displacement fields are obtained in terms of the unknown functions in Section 2.2.3 . 

In order to determine the singular behavior of the unknown functions, the singular 

terms in the kernels of the integral equations are extracted by performing asymptotic 
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analyses for a stamp sliding on the surface ( 0a ). It can be concluded that in the 

coupled crack/contact problems for an orthotropic medium stress singularities   and 

  (see equations (2.203) and (2.204)) depend on the friction coefficient   (through 

10e  given in Appendix A by equation (A.11e)) and the Poisson’s ratio (through 10e  

and 20e  given in Appendix A by equations equation (A.11e-f)). In order to solve the 

integral equations, methods are developed for stamps of flat, triangular and circular 

profiles. Jacobi polynomials are used to reduce the singular integral equations to 

systems of linear algebraic equations. The unknown functions 1f , 2f  and 3f  are 

expanded into series of Jacobi polynomials. Then, the unknown constants of 

expansions are determined by using the collocation method.  

 

Numerical results of the problem are presented in Chapter 3. The results are given for 

stamps of flat, triangular and circular profiles. For the large values of crack-to-stamp 

distance, it is seen that the effect of the surface crack on the contact stress 

distribution is negligible. Also, contact stress distributions are verified by making 

comparisons to the results given in the literature [46] for large values of da / (see 

Figure 3.2, Figure 3.3, Figure 3.4 and Figure 3.5).  

 

The accuracy of the results is tested by comparing the results obtained for 

homogeneous isotropic materials for all stamp profiles with those of given by Dag 

[40]. In this study, elastic modulus ratios are taken as 0.99821 EE  and 

1.00231 EE  for isotropic materials. The reason is that, when these ratios are taken 

as exactly 1, there could be differences between compared results, due to the 

numerical errors. By using the values of 0.998 and 1.002 instead of 1 for 21 EE  and 

31 EE , respectively, better convergences are obtained and  the results are found to 

be in very good agreement with those of Dag [40] (see Figure 3.6, Figure 3.7, Figure 

3.8, Figure 3.25, Figure 3.26, Table 3.2, Figure 3.27, Figure 3.44, Figure 3.45, Table 

3.9 and Figure 3.46 ). Thus, developed solution methods for stamps of flat, triangular 

and circular profiles sliding on the surface of the half-plane are validated. 
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In order to obtain the results for orthotropic materials, the material alumina (Al2O3) 

is employed in the numerical calculations. Plasma sprayed alumina coatings are 

known to possess an orthotropic structure. The material constants are given in Table 

3.1. The basic trends obtained for flat, triangular and circular stamps can be 

summarized as follows: 

 

When no tangential force is transferred by the contact (i.e., coefficient of 

friction 0 ), 

o Mode I stress intensity factors are negative regardless of the location of the 

stamp (see Figure 3.9, Figure 3.12, Figure 3.28, Figure 3.31, Figure 3.47 and 

Figure 3.50). This would lead to crack closure. 

o Mode II stress intensity factors are positive regardless of the location of the 

stamp (see Figure 3.10, Figure 3.13, Figure 3.29, Figure 3.32, Figure 3.48 and 

Figure 3.51) which means, the crack bends backwards and it extends in a 

direction opposite to the applied frictional force (see Figure 3.1). 

o For flat stamp, singularities are equal at both ends of the contact area but due 

to the effect of the surface crack, the stress distribution is not exactly 

symmetric (see Figure 3.11 and Figure 3.14). 

 

When the tangential force increases, 

o Mode I stress intensity factors increase (see Figure 3.9, Figure 3.12, Figure 

3.28, Figure 3.31, Figure 3.47 and Figure 3.50 ). Since, as the coefficient of 

friction increases, state of the normal stress at the crack tip changes from 

compression to tension. 

o Mode II stress intensity factors decrease (see Figure 3.10, Figure 3.13, Figure 

3.29, Figure 3.32, Figure 3.48 and Figure 3.51). Since, as the coefficient of 
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friction increases, sign of the shear stress at the crack tip changes from 

positive to negative. 

o For flat stamp, singularity at the leading end decreases and there is higher 

stress intensification at the trailing end (see Figure 3.11 and Figure 3.14). 

 

For 4.0  and 6.0 , the mode I stress intensity factors are positive regardless of 

the location of the stamp and the crack is open (see Figure 3.9, Figure 3.12, Figure 

3.28, Figure 3.31, Figure 3.47 and Figure 3.50). 

 

In Chapter 3, results related to the required contact force for triangular and circular 

stamps are also given. The triangular and circular stamp problems are defined as 

incomplete contact mechanics problems where the size of the contact region is a 

function of the applied force. The required force approaches a constant value for 

large values of crack-to-stamp distance. Depending on the values of friction 

coefficient and stamp profile, the contact forces increase or decrease, as the stamp 

gets closer to the crack. 

 

The effect of elastic modulus ratio 21 EE  is also investigated in Chapter 3. It is seen 

that as 21 EE  increases, 

o Mode I stress intensity factors get larger (see Figure 3.15, Figure 3.18, Figure 

3.34, Figure 3.37, Figure 3.53 and Figure 3.56),  

o Mode II stress intensity factors decrease (see  Figure 3.16, Figure 3.19, Figure 

3.35, Figure 3.38, Figure 3.54 and Figure 3.57). 

 

The effect of the elastic modulus ratio 31 EE is also investigated in Chapter 3. It is 

found that the effect of 31 EE  on modes I and II stress intensity factors and contact 

stress distributions is not that significant (Figure 3.20-Figure 3.24, Figure 3.39-

Figure 3.43 and Figure 3.58-Figure 3.62). 
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4.2 Future Work 

In Section 2.2, we classified the orthotropic materials. This classification is related to 

the roots of the characteristic equation. If there are four real roots, the material is 

classified as type I. Otherwise; it is classified as type II. In this study, type I materials 

are studied. Such an undertaking can also be performed for type II materials. 

 

In order to determine the effect of nonhomogeneity, numerical methods can be 

developed for a problem involving a nonhomogeneous orthotropic medium such as a 

graded orthotropic half-plane. In the literature, there are numerous studies regarding 

the FGMs. In practice, the nature of processing techniques of some FGMs may lead 

to loss of isotropy. Using the averaged constants of plane orthotropic elasticity, 

which are first introduced by Krenk [52], the fracture and contact problems can be 

formulated in coupled form. 

 

In Section 2.2.4, the solution of the singular integral equations is obtained through 

function-theoretic method as described by Dag [40] and Erdogan [43] by assuming 

that 0a . By using this method, singularity analysis can also be performed for 0a  

case. Also, as an alternative means of verification, the singularity analysis can be 

carried out by considering another method such as Williams’ method [53]. This 

singularity analysis and verification study can be considered as parts of a future 

study.  
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ASYMPTOTIC EXPANSION COEFFICIENTS 
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APPENDIX B  

 

 

CLOSED FORM EXPRESSIONS FOR CAUCHY PRINCIPAL VALUE 

INTEGRALS 

 

 

 

Following result, which is given by Tricomi [45], is used in the evaluation of the 

Cauchy principal value integrals, 

,
2

1
;1;;1

)1(

)1()(2

)()1()1)(cot()()1()1(
1

)(

),(

1

1

),(








 


















x
nnF

n

n

xPxx
xt

dt
tPtt nn













 (B.1) 

where 1 , 1 , ,....2,1,0   is the gamma function, and F() is the 

hypergeometric function. If )(    is equal to -1, 0 or 1, (B.1) can be further 

simplified as follows, 
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where, )(   . 
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APPENDIX C  

 

 

FUNCTIONS USED IN THE NUMERICAL SOLUTION OF THE INTEGRAL 

EQUATIONS 

 

 

 

The transformed forms of the kernels used in equations (2.209a-c), are given as, 
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The terms used in equations (2.212) are given in the following form, 

,),()()1()1(

2

1
;23;21;1

)21(

)1()21(2

2
)(

1

1

111
),21(21

1
1

1

1
21

20
111

11

1

















 







drrsHrPrr

s
nnF

n

na
sm

n

n










 (C.4a) 






1

1

113
),(

113 ),()()1()1()( 22 drrsHrPrrsm nn
 , (C.4b) 

,),()()1()1(

2

1
;23;21;1

)21(

)1()21(2

2
)(

1

1

222
),21(21

2
1

1

1
21

20
222

11

1

















 







drrsHrPrr

s
nnF

n

nm
sm

n

n










 

(C.4c) 



 

187 

 






1

1

223
),(

223 ),()()1()1()( 22 drrsHrPrrsm nn
 , (C.4d) 




 

1

1

331
),21(21

331 ),()()1()1()( 11 drrsHrPrrsm nn
 , (C.4e) 




 

1

1

332
),21(21

332 ),()()1()1()( 11 drrsHrPrrsm nn
 , (C.4f) 

,),()()1()1(

2

1
;1;;1

)1(

)1()(2

2
)(

1

1

333
),(

3
2

2

220
333

22

2















 







drrsHrPrr

s
nnF

n

ne
sm

n

n










 (C.4g) 

where 20a , 20m and 20e  are given in Appendix A by equations (A.1c), (A.4c) and 

(A.11f), respectively. 
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The terms used (2.233) in are given as follows: 
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APPENDIX D  

 

 

CLOSED FORM CONTACT MECHANICS SOLUTIONS INVOLVING 

ISOTROPIC AND ANISOTROPIC HALF-PLANES 

 

 

 

The sliding contact problem involving a rigid flat punch and an isotropic half-plane; 

and that pertaining to a rigid punch and anisotropic half-plane are solved by Galin 

[46]. Also in [36], [47] and [48] to solve the contact problem, Galin’s [46] approach 

is utilized. We provide below Galin’s results. 

 

 

 
Figure D. 1: Geometry of the contact problem 
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The entire interval lxl  of the boundary of the half-plane is in contact with the 

flat punch and the normal pressure distribution )(xp  under the punch is given in the 

following form: 

For isotropic half-plane frictionless contact: 
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For anisotropic half-plane frictionless contact: 
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where 1m , 2m  and their complex conjugates 1m , 2m  are roots of the following 

characteristic equation: 

02)2(2 2226
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6612
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11  SmSmSSmSmS , (D.3) 

In which 11S , 12S , 22S , 16S , 26S  and 66S  are compliance coefficients. In the case 

when the half-plane is orthotropic and one of the axes of orthotropy is parallel to the 

boundary, 02616 SS . The equation above is then biquadratic and its roots 1m  and  

2m are purely imaginary. 
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For isotropic half-plane frictional contact: 
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where   is the coefficient of friction,  43  for plane strain, )1()3(    

for generalized plane stress and   is the Poissons’s ratio. 

For anisotropic half-plane frictional contact: 
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For an orthotropic half-plane the equation (D.5c) becomes  
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Since, the coordinate axes in this study do not match up with the coordinate axes of 

contact problem given in [46], the results given above are not used directly for 

comparison. The results given by Galin [46] are rearranged according to the 

coordinate axes used in this study (Figure D. 2). In order to get the solutions, in the 

procedure described in [36] are followed. 
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Figure D. 2: Geometry of the contact problem and principal axes x1 ,  x2. 

 

 

For a two-dimensional plane problem, stresses in  the body can be expressed in terms 

of the Airy stress function ),( 21 xx  as follows: 
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Substituting (D.6) into the compatibility equation, the governing equation is 

expressed in terms of ),( 21 xx . In absence of body forces, the governing equation is 

obtained as follows: 
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where 11S , 12S , 22S , 16S , 26S  and 66S  are compliance coefficients. Considering 

Fourier transformation in 2x , Airy stress function can be expressed as, 
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Substituting (D.8) in (D.7) following ordinary differential equations are obtained, 
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Assuming a solution of the form )exp( 1xm  for  , characteristic equation of the 

problem is determined as, 
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After applying the steps described in [36], normal pressure distribution )( 2xp  under 

the punch is obtained in the following form, 

For isotropic half-plane frictionless contact: 
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For anisotropic half-plane frictionless contact: 
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For isotropic half-plane frictional contact: 
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For anisotropic half-plane frictional contact: 
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where 1m , 2m , 1m , 2m  are roots of the characteristic equation given by (D.10). For 

an orthotropic half-plane, equation (D.14c) becomes, 
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