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ABSTRACT

OPTIMIZING THE SERVICE POLICY OF A MOBILE SERVICE PROVIDER
THROUGH COMPETITIVE ONLINE SOLUTIONS TO THE 0/1 KNAPSACK

PROBLEM WITH DYNAMIC CAPACITY

TUĞÇE ERKILIÇ,

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Elif Uysal Bıyıkoğlu

June 2014, 52 pages

Demand for sustainable and environmentally friendly communication systems with
energy efficient transmission schemes has increased eminently in the last decades.
Resource allocation problems for energy harvesting networks have been studied and
many offline solutions have been proposed. An online problem is examined through-
out this thesis. Recent industry efforts to provide Internet service to areas deprived
of telecommunications infrastructure have been the main inspiration for the studies
conducted here. A mobile Internet service provider, a flying platform in the lower
stratosphere empowered by the renewable energy (solar, wind, etc.), is envisioned to
provide Internet access to the users as it moves over an area. Throughout its path, the
station aims to achieve maximum throughput by responding to the demands of the
users while prudently managing its available energy. Given the related background,
first, the problem is modelled as a 0/1 knapsack problem. Then, several online heuris-
tics are proposed using threshold policies obtained through various methods applied
to the decision problem, including rule-based heuristics. Performances of these poli-
cies are compared via competitive ratio analysis with the optimal offline solution,
which yield a computationally efficient outcome.
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Keywords: Energy Harvesting, Service Provider on the Move, Competitive Ratio
Analysis, Deterministic Resource Allocation, Online Heuristics, Efficient Threshold
Determination Techniques, Genetic Algorithm, Rule Based Optimization, Decision
Problem, 0/1 Knapsack Problem, Knapsack with Dynamic Capacity
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ÖZ

DİNAMİK KAPASİTELİ 0/1 KNAPSACK PROBLEMİNE REKABETÇİ
ÇEVRİMİÇİ ÇÖZÜMLER GETİREREK HAREKETLİ SERVİS

SAĞLAYICILARIN SERVİS VERME POLİTİKALARINI ENİYİLEME

TUĞÇE ERKILIÇ,

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Elif Uysal Bıyıkoğlu

Haziran 2014 , 52 sayfa

Son yıllarda enerji verimli gönderim şemalarına sahip, kendi-kendine yetebilen ve
çevre dostu haberleşme sistemlerine duyulan ihtiyaç önemli ölçüde artmıştır. Şu ana
kadar yapılan çalışmalarda enerji hasatı yapan ağların kaynak paylaşım problemle-
rinde kullanılabilecek çevrimdışı çözümler üzerine çalışılmış ve birçok yöntem öne-
rilmiştir. Bu tez kapsamında çevrimiçi bir problem incelenmiştir. Son yıllarda en-
düstriyel girişimlerle geliştirilmesi ve yaygınlaştırılması düşünülen yeterli alt yapıya
sahip olmayan bölgelere internet sevisi sağlama fikri bu çalışmanın temel esin kay-
nağı olmuştur. Güneş, rüzgar gibi yenilenebilir enerji kaynaklarını kullanarak kendi-
kendine yetebilen, stratosferde uçan bir platform üzerine yerleştirilmiş mobil servis
sağlayıcılar, üzerinden geçtikleri alanlardaki kullanıcılara internet erişimi sağlayarak
bu fikri hayata geçirme imkanı sunmaktadır. İzlediği yol boyunca gelen kullanıcı ta-
leplerini en yüksek oranda karşılama eğiliminde servis sağlama amacı taşıyan bu is-
tasyonların, servis devamlılığını garanti edebilmeleri için mevcut enerji kaynaklarını
ölçülü bir şekilde kullanmaları gerekmektedir. Konu ile ilgili yapılan çalışmalar ince-
lenerek gerekli alt yapı verildikten sonra problem, 0/1 knapsack problemi olarak mo-
dellenmiştir. Daha sonra, kural tabanlı vb. çeşitli yöntemler karar verme problemine
uygulanmış ve eşik bulma yöntemi izlenerek çeşitli çevrimiçi çözümlere ulaşılmış-
tır. Önerilen çevrimiçi çözüm yöntemlerinin performansları çevrimdışı en iyi çözüm
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ile rekabetçi oran analizi yoluyla karşılaştırılmış ve testler sonucunda bu yöntemlerin
performans verimliliği gösterilmiştir.

Anahtar Kelimeler: Enerji Hasatı, Hareketli Servis Sağlayıcılar, Rekabetçi Oran Ana-
lizi, Deterministik Kaynak Paylaşımı, Çevrimiçi Çözümler, Etkili Eşik Belirleme
Teknikleri, Genetik Algoritma, Kural Tabanlı Eniyileme, Karar Verme Problemi, 0/1
Knapsack Problemi, Dinamik Kapasiteli Knapsack
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CHAPTER 1

INTRODUCTION

The worldwide increase in the demand for energy efficient transmission schemes has

prominently enhanced the priority of the self-sustainable communication networks.

Wireless communication technologies have introduced mobility as a major advance-

ment, but these suffer from energy constraints due to dependence on batteries. An

outstanding implementation area in communications where the energy efficient trans-

mission is important is wireless sensor networks (WSN). The constructed sensor ar-

chitecture may be spread over a wide area where accessibility of the sensors is limited

and changing the batteries is not an option in case of energy depletion. There are sev-

eral solutions to deal with that challenge. One is to reduce the power consumption to

prolong the sensors’ lifetime whereas another proposes the use of an energy harvest-

ing system [52].

Energy harvesting communication systems consist of transmitters empowered by en-

vironmental renewable resources such as solar, vibration, and thermal etc. The ability

to scavenge energy from renewable energy sources is profoundly applicable to dis-

tributed networks such as WSNs. For the transmission of information the system may

not be able to guarantee the same amount of rate at all times when depending on a

variable energy source instead of a constant power supply. The well known resource

allocation problem comes into the picture where a decision has to be made consid-

ering the forthcoming events in addition to the present demands to achieve effective

transmission.

Recently, upgrading the available energy harvesting WSN technology to an inventive

level, major industry players have been pushing for ubiquitous Internet access for
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areas around the world lacking telecommunication infrastructure. For this purpose,

mobile Internet service providers (ISP) have been deployed in the Earth’s atmosphere

(e.g. [19, 36]) and this Layer type wind patterns in the stratosphere allowed changing

the locations of these units which is proving to be a promising technology to bring

Internet access to such areas. These mobile self-sustainable ISPs provide internet

access at 3G speeds to the users at fixed locations such as homes or offices.

Inspired by such a novel initiative, in this thesis, we examine the resource allocation

problem of a mobile station, called an Access Point on the Move (APOM). It harvests

its own energy particularly using solar cells and tries to maximize the throughput it

provides to as many users as possible as it flies over a geographic area. In addition,

there may be multiple APOMs covering a certain area. While moving, considering

its energy limitation, each APOM should decide which users to be served or left

for the next APOM. To the best of our knowledge, there are no known competitive

online algorithms in the literature about this version of the problem where the resource

capacity is dynamic, which is the case when energy arrivals replenish the available

capacity of the access point.

This thesis consists of 8 chapters. The next chapter provides a literature review on

related resource allocation problems while stating the conceptual differences with the

solutions we plan to propose for our problem. Then, in Chapter 3 a detailed review

on a very well known combinatorial optimization problem, ’Knapsack Problem’ is

provided within the scope of efficient solutions and performance metrics for the de-

terministic offline and online versions of this problem. In Chapter 4, the system model

is introduced thoroughly where the optimal decision problem of resource allocation

on user demands is defined and set up as a generalized version of the classical knap-

sack problem. The optimal offline and online solutions for a non-harvesting stationary

service provider is analysed at the first two sections of Chapter 5. Following that the

optimality of the online algorithm for the dynamic capacity case assuming some ini-

tial constraints is exhibited, and a threshold based heuristic solution to this problem is

proposed. Then, the extended optimal model is adapted to energy harvesting mobile

access point scenario by proposing two alternative deterministic threshold policies

in Section 5.3. Several online heuristics to solve the APOM scenario problems are

also presented in Chapter 6, the constructed structure and the compatibility of these

2



methods with APOM problem are further examined. Detailed numerical and simu-

lation results are provided in Chapter 7 where the performance comparison between

the heuristics are presented. Finally, the results are interpreted and future directions

are outlined in Chapter 8.
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CHAPTER 2

LITERATURE REVIEW ON ENERGY HARVESTING

NETWORKS

Energy harvesting devices converting ambient energy into electrical energy have at-

tracted much interest in many sectors such as telecommunications, military, MEMS

etc. Energy scavenging technology can be used to empower cellphones, mobile com-

puters, radio communication equipment, etc. Solar and piezoelectric energy harvest-

ing are the most common techniques due to their high power densities. Different

harvesting schemes requires different means to be efficient and have distinct energy

profiles. For example, some systems convert motion, such as that of ocean waves, into

electricity to be used by oceanographic monitoring sensors for autonomous operation

whereas solar cells take the advantage of sun in a daily period. As stated in [26],

energy sources can be categorized as follows: Uncontrollable and Unpredictable,

Uncontrolled but Predictable, Fully Controllable and Fully Predictable.

In most theoretical works, energy storage device in an energy harvesting system is

considered as an energy buffer [5]. The simplest model of energy dynamics for a

time-slotted energy harvesting system is as follows:

ei+1 = (ei − wi) + bi, wi < ei (2.1)

Here ei represents the available energy at the ith slot and bi denotes the harvested en-

ergy at that slot whereas wi stands for the energy consumption. Equation 2.1 presents

the available energy amount in the (i+ 1)th slot considering the energy expenditures

and replenishments in the previous time slot i.

In [49], efficient energy management policies for an energy harvesting sensor network
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are proposed, first by deriving throughput optimal polices for a single node, then

extending the results to multiple sensor structure. Sharma et al. assumed a stochastic

model in which data transmission and energy replenishment rate are presumed to be

i.i.d. and it is shown that these assumptions are general enough to cover most of

the stochastic models developed for traffic and energy harvesting at sensor networks

[49]. The optimal power policy can be substantially altered by taking into account

the inefficiencies of energy storage in an energy harvesting network. In [55, 56],

an average rate maximizing policy is proposed for an energy harvesting transmitter

with inefficient energy storage where the transmitter is to transmit with the harvest

rate. That may change the total rate throughout the transmission, implying that the

optimization problem is an instance of a utility maximization framework.

In [28], a single source node with energy harvesting capability making the decision

whether to transmit or not at each slot is examined in detail. In such a structure,

the optimal policy is proved to be a threshold type one considering the stochastic

channel states and available energies at each instant. The throughput performance on

a Gilbert-Elliot Channel based on a threshold type policy is used for the performance

results. Tassiulas et al. showed that it is possible to find an optimum maximum

throughput policy via equalizing the node pressures (weights) at each server while

examining the stability properties of queueing systems and scheduling policies [53].

This fundamental idea is utilized throughout this work as well.

In [41] it is stated that if the net consumption rate is lower than the possible harvest-

ing rate, then it is possible to establish a self-sustaining system via enough mobile

nodes. In addition to energy scavenging sensor nodes, recent studies have revealed

that employing energy harvesting via alternative energy sources such as solar irradia-

tion [11], vibrations [37] and wind [61] to power transmitters of network devices such

as Internet service providers has gained tremendous interest [31, 34] as well.

Meanwhile, the most recent studies conducted by METU Communications Network

Research Group should be mentioned separately in this section as well. In [6, 10]

identification and localization on a wireless magnetic sensor network is examined in

detail, which brings the discussion of whether magnetic sensors to be used in WSNs

or not. Considering the sensing limitations of magnetic sensors, target detection, iden-
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tification and sequential localization were accomplished using Minimum Euclidean

Distance method. In [7], Baghaee et al. proposed Orthogonal Matching Pursuit

algorithm for target localization and identification in multiple sensors multiple tar-

get case. These studies proved that an energy efficient, intelligent magnetic sensor

network could be designed. In [8, 9], the implementation of a WSN demonstration

testbed powered up by vibration energy as a part of E-CROPS project has been illus-

trated in addition to demonstration of Energy-Neutral Operation for the same setup.

In [35], the implementation of a very well-known decision theory problem, Rest-

less Multi Armed Bandit Problem, over a single hop network is studied where two

scheduling scenarios are proposed mainly. The first transmission scheme under en-

ergy harvest constraints tries to find a low complexity scheduling policy whereby the

fusion center can collect the maximum amount of throughput in this data backlogged

system as also mentioned in [22]. The extended form of this problem is examined

in finite and infinite time horizon schemes in [20]. Secondly, the infinite data back-

log assumption is lifted. Gul et al. proposed a low-complexity policy called UROP

(Uniformizing Random Ordered Policy) in [21] and showed its near optimality under

uniform, non-uniform, independent, Markovian energy harvest processes, the results

of which reveal that UROP uses the arriving energy with almost perfect efficiency.

In [1], duty cycle optimization in energy harvesting sensor networks is studied, in

which duty cycles of sensor nodes are determined according to energy harvest pat-

terns. In addition, Akgun implemented the proposed algorithms using Bluetooth Low

Energy technology under indoor and outdoor experimental setups, which revealed

that the maximum throughput is achieved. WSN applications with low energy har-

vesting rates such as piezoelectric or indoor solar cell implementations, it is impor-

tant to manage the energy harvest and transmission scheme. The ideal transmitter

assumption requires the full knowledge on the channel state and power allocation

schemes, however in reality this information is provided via feedback channels to

the transmitter. Considering this problem, in [47, 48] Shakiba-Herfeh et al. studied

the optimization of feedback in multiple input single output (miso) downlink mul-

tiuser systems with energy harvesting capability where the nodes are designated to

distribute their feedback transmissions judiciously across time in order to achieve

a certain throughput. In [18, 57], Uctu et al. analysed and made the real life im-
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plementation of various scheduling algorithms for energy harvesting systems on a

software defined radio setup. Optimal power and rate allocation schemes introduced

in [3, 5] are studied for data packets arriving at arbitrary but known instances consid-

ering channel state, energy and data buffers’ states over an energy harvesting fading

channel. Also, the implementation of a very recent study, a near optimal transmission

scheme, has been conducted using Expected Threshold Lazy Scheduling Policy intro-

duced by Bacinoglu et al. in [4] over a finite horizon fading channel. Energy efficient

transmission schemes and throughput maximization transmission scheduling policies

are studied in energy harvesting WSN problem setups as previously mentioned above

but the mobility concept has not been examined in that sense so far.

The transition from immobile to mobile problem structures first proposed to increase

the network longevity. The mobile sensors in communication networks are exam-

ined in detail in [16, 39, 50], but the use of renewable energy in mobile sinks is not.

The most common offline scheme used in these works involves integer linear pro-

gramming where the previous knowledge on the sensor nodes and energy schemes

are available. Comparing the mobile service providers with fixed ones, the studies

in [50, 60] revealed the main benefits of using the mobile service providers. Since

path planning turns out to be a critical concept regarding mobility, some of the these

studies mainly dealt with determining optimal paths to prolong network lifetime as

in [23, 29]. A rule based path planning strategy is adopted by Alkesh et al. in [2]

to decide on cluster heads of a network to maximize the lifetime of wireless sensor

networks with limited batteries. In this rule based scheme, neither the data collection

nor the energy consumption rate are not examined considering the rules developed,

only the optimum movement strategy to retrieve a longer lifetime for sensor nodes is

proposed.

The recent studies show that most of the resource allocation problems of mobile en-

ergy harvesting stations presume a constant service capacity and aim to find an opti-

mal path to meet the maximum service rate as in [43]. Xie et al. address the problem

of collocating the mobile service provider on the wireless charging machine in [59]

with the objective of minimizing energy consumption an approximate distributed on-

line algorithm applying optimal offline solution method to smaller problem instances

to reach online solution. In studies [44, 45], a distributed time allocation method to
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maximize data collection under constant path planning is proposed in a WSN, with

sensors having their own renewable resources. In these studies, the resource allo-

cation problem is formulated as a knapsack problem where the mobility of the sink

is randomized but related channel assumptions made on the sensor nodes are rather

known in advance.

The studies introduced throughout this thesis stems from the previous study, in which

Erkilic et al. denoted that there exists no non-trivial solution to the dynamic capac-

ity resource allocation problem for an energy harvesting mobile service provider and

they implemented various optimization tools to evaluate the total achieved through-

put performances considering the optimal offline solution via dynamic programming

[14].

Most of the related studies used a stochastic model as observed which turns out to

be more advantageous to fit in the real life conditions. In [13, 54] a Kalman filter

based solar prediction algorithm is examined in detail for fixed transmitters and real

energy harvesting statistics are utilized to model the solar irradiation pattern of solar

panels. Then, extending this study to mobile energy harvesting transmitters in [13],

Ceran investigated the transmission scheme of a mobile service provider assuming a

fully stochastic model, which defines the randomness of user appearances, character-

istics and energy harvesting pattern thoroughly and proposed several online heuris-

tics. However, the statistics on available data, user characteristics, channel states or

energy replenishment patterns are necessary for such methods to be implementable.

Considering this deficiency, there has been no similar study related to online resource

allocation problem of mobile Access Points with energy harvesting capability using

a deterministic decision making strategy.

The previous studies rather propose an efficient scheme whether on reduction of en-

ergy consumption rate or maximization of data collection, but none of them proposes

an instantaneous threshold based scheme for the resource allocation problem at an

energy harvesting downlink. The study conducted throughout this thesis differs from

the previous literature background as mentioned in this section since the main purpose

is to reach an optimum service policy through competitive online solutions. It is tried

to develop efficient online decision making strategies here considering the throughput
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maximization scheme of an energy harvesting mobile service provider while trying

to maximize the service provided to the users appearing in a sequential manner under

energy constraints.
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CHAPTER 3

A REVIEW OF THE KNAPSACK PROBLEM

The APOM resource allocation problem will be mapped to the very well known com-

binatorial optimization problem known as the Knapsack Problem (KP). This chapter

not only provides related terminology on the knapsack problem but also presents

the main ideas behind applying the solution techniques to similar resource allocation

problems.

The knapsack problem arises often in economic resource allocation problems and

also studied in fields such as combinatorics, computer science, complexity theory,

cryptography, applied mathematics and operation research where the real life decision

making processes are considered.

The most common form of KP is the 0/1 knapsack problem which can be presented

with the help of a story in [40] as follows: Suppose a robber finds N items while

robbing a store (i = [1, 2, ...N ]). Each item has a distinct value, i.e. vi is the value

of the ith item, and weighs wi pounds where xi is the action to be taken whether to

take that item or not, assuming all integer (vi, wi) values for each item. The thief

can carry at most W pounds in his sack and tries to collect the most valuable items

respecting this sack capacity constraint. To solve this problem, the 0/1 knapsack

problem formulation is proposed. For each item, the robber has to either take that

item or pass it up; he cannot take a partial or fractional amount of any item [46].

The standard 0/1 knapsack problem can be formulated as follows:
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Problem 1. Offline 0/1 Knapsack Problem with Static Capacity

Maximize:
N∑
i=1

vixi

subject to:
N∑
i=1

wixi ≤ W

xi ∈ {0, 1}

For various reasons, the knapsack problem is an interesting topic from the perspective

of computer science. The decision problem form of the offline knapsack problem is

denoted as whether a value V can be achieved or not under capacity constraint ofW .

There is no possible algorithm both correct and fast polynomial-time at all problem

instances since the decision problem is an NP-complete one. As stated in [32], there

are two existing techniques to solve NP-complete problems: Exact Algorithms such as

dynamic programming and Heuristic Algorithms. The optimum proposed solution to

the classical KP is dynamic programming, however the curse of dimensionality of this

method decreases the computational efficiency most of the time. In addition to NP-

completeness of the decision problem, optimization problem is NP-hard which is also

as difficult as the decision problem. That implies there exists no known polynomial

algorithm to verify whether a solution is optimal or not.

3.1 Variations of the Offline Knapsack Problem

In the classical sense, the problem is an offline one where the knowledge on the items

is available and an optimum decision plan can be derived and implemented.

Different from the standard 0/1 knapsack formulation which restricts the chosen num-

ber of each kind of item to zero or one, there are extended forms of this problem. In

addition to capacity constraints over the decision process of 0/1 KP various individual

limitations can be defined according to the required application using multi-objective

knapsack problem. Another one is the fractional knapsack problem where the items

can be subdivided [38] and complete load of an item is not necessary. Furthermore,

it is possible to use more than one sack which composes a multiple knapsack struc-

ture (which may be used in multiple base station architecture for example), called bin
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packing problem. Different from considering all available capacity at one sack, this

problem requires an optimization not only for the available energy of one sack but

also an optimum decision has to be made within the various sacks, which is widely

used in operation research scheduling problems. There is also subset-sum problem

related to knapsack terminology, which is a special form of KP assuming each item

has the same value and weight vi = wi.

Regardless of the special instances of the problem mentioned above, an item i to be

evaluated in a knapsack problem is mainly characterized by its value and weight pair

(vi, wi).

The classical offline knapsack problem approach is often unsuitable for real time

applications where the decisions are need to be made over an incomplete set of in-

formation on the items. Many realistic and interesting applications require the online

solution to the knapsack problem.

3.2 Online Knapsack Problem

The knapsack problem was first examined in [51] without even relating it to KP termi-

nology since they compared the performances of different algorithms for list access

problem. In this work, an upper bound was shown while comparing the cost perfor-

mance of the algorithm with the optimal cost at all problem instances. Then, pursuing

these studies, Karlin et al. [27] proposed a competitive analysis method as follows.

Let an online instance of a problem be σi and through the end of horizon a set of

instances occur as σ = [σ1σ2...σN ]. A(σ) is defined as the total value achieved by

algorithm A over a problem instance σ, whereas OPT (σ) is defined as the value

achieved by the optimal offline algorithm with complete knowledge on the future

instances. An online algorithm is said to be α-competitive if it is guaranteed to

satisfy the following inequality over all problem instances:

OPT (σ) ≤ αA(σ) + b (3.1)
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Most problem formulations presume b = 0, but it may be useful to keep this in the

equations for a rescaled problem instance [38].

It is intuitively assumed that the performance of an online algorithm is precisely re-

vealed by its competitive ratio, and the less knowledge on the future instances results

in more degradation in performance [38].

In Chapter 5 considering this related performance criteria, the competitive ratio analy-

sis conducted for online knapsack problem in [62] is extended to the APOM problem

setup.
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CHAPTER 4

SYSTEM MODEL

4.1 Movement of the Mobile Station

Energy harvesting Internet service provider, APOM, is assumed to follow a prede-

fined linear path. Its velocity is constant, vc, for the time being to assure a predictable

user appearance rate before generalizing the problem to randomized user arrival case.

APOM relies on renewable energy resources (solar, wind etc.) and its linear move-

ment contributes to the predictability of its energy replenishment pattern.

As to be stated in the following sections and illustrated in Figure 4.1, the user de-

mands are evaluated along the path of APOM and the harvests of amount Bj where

j ∈ {1, 2, ..., k} are expected at N th
j slots where the expected harvest intervals may

change at each slot. For the sake of simplicity and as a necessity for the determinis-

tic model let us discard the time concept by presuming an event-based structure. As

the APOM travels on its route, the decisions are made on an event-based schedule

where each user request represents the start of the corresponding slot, which implies

N slots for a system of N users. Since every energy replenishment will change the

service capacity of APOM, the problem may be examined in k subintervals regarding

k harvest instances.

4.2 User Characteristics and Demands

A finite sequence of users γ = [1, ..., N ] appears on the APOM’s route demanding

Internet service. In this model, one user is observed per time slot as stated above,
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Figure 4.1: System Model of User Demands and Energy Replenishment Pattern

which corresponds to a problem horizon of N slots. Then, the user metrics are eval-

uated at each slot which are the utility achieved by serving that user (i.e. amount of

transmitted data), and the energy consumption it requires.

For each user i, APOM chooses whether to transmit to it or not based on that user’s

individual characteristics. Once a decision is made on a user, there is no re-evaluation

of the same user. The main purpose in this work is to develop an efficient scheme to

provide maximum utility for user demands throughout the path of a mobile service

provider . Each user is classified by a value and weight pair: (vi, wi) for the ith

user, where the value corresponds to the utility gained by serving this user and weight

stands for the power consumption required to serve it. Also, let us denote an efficiency

metric of a user i as the vi/wi ratio.

In the model considered throughout this work, users appear to the APOM one by one

during its route. The value and weight metrics for each appearing user presents a

reward and a cost to the APOM. The reward could be the utility of providing service

to that user, which may be total rate or quality of service assured on the corresponding

path etc. The cost may be defined as the burden of that user to the system, which is

mainly the total energy expenditure giving service to this user. For example, if the

user has a poor link with the APOM due to bad weather conditions or throughput

maximization is tried on a fading channel or there exists an interference over the

transmitting channel, the cost of serving that user will be high. As expected the

efficiency ratio of each user will be critical on the decision problem since maximizing

total throughput by serving many users with lower costs will be more advantageous.

Still, energy scavenging will be a relief factor to increase the total service capacity

eventually.
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4.3 Energy Model

The Access Point on the Move is modelled to rely on the renewable energy resources

(solar, wind etc.), moving on a predefined linear path. Following a widely adopted

assumption about energy replenishment, the amounts of harvested energy in certain

time periods are non-deterministic but predictable as stated in [24, 30, 42, 54], so

energy harvesting instants and amounts are assumed to be predicted.

The sequence of user appearance events between consecutive energy harvests are

taken as energy harvest intervals. The initial energy amount is assumed to be B1 and

incoming energy with the next jth harvest is denoted as Bj+1. In the same manner,

(j + 1)th harvest occurs after N th
j user appearance, i.e. energy is replenished right

after N th
1 slot, N th

2 slot, and so on, up to some Nk = N th. There are a total of k

energy harvest intervals.

APOM should develop an efficient deterministic strategy to achieve maximum utiliza-

tion whereas the total energy consumption should remain below the available energy

plus the harvests that come along till the end of each energy harvest interval. At first

energy replenishment model of the APOM is accepted as deterministic and of known

amounts using the arguments in [54]. However, eventually the model is extended to

a randomized scenario and its performance is tested under different input streams to

reach practical results for real life implementations.

4.4 The Problem Setup

Combining movement pattern, user characteristics and energy model of the the APOM,

as a main function it makes a binary decision whether to serve a user or not. If there

was no energy constraint for the access point, it would respond to all user demands

affirmatively to achieve maximum utility. However, due to the fact that the energy

scavenging rate is slower than the power consumption rate, giving service to all users

is not feasible. Thus, there will be a decision process which will result in rejection

of a number of user demands. Hence, the problem turns out to be an online decision

and optimization problem with the aim of picking the optimum set of users to max-
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imize the total utility under energy limitations of APOM considering the causality

constraints as well. There will be no point in developing a method with the previous

knowledge on energy replenishments and possible future user demands since varia-

tions of this offline model have already been addressed in the literature.

Within the problem setup, users appear in a sequential manner and APOM must de-

cide whether or not to provide service to each user demand. The main goal of APOM

is to maximize a total value such as the total data rate provided to the encountered

users. Following knapsack terminology, the main constraint on sack filling problem

is the capacity as it is the case for the AP. The service capability of APOM is mainly

determined by the amount of available energy it has stored in its battery plus the en-

ergy replenishments as they occur, which will be referred as its service capacity. The

problem is to collect the maximum value over a user set γ of N users while ensuring

that the total weight does not exceed the service capacity. Stated this way, the prob-

lem is a dynamic capacity 0/1 online knapsack problem where capacity replenishment

takes place in accordance with energy harvesting capability.

Let the access point start its route with a certain amount B1 of energy stored in its

battery. Energy is replenished right after N th
1 slot, N th

2 slot, and so on, up to some

Nk = N th slot. Using this setup, the problem can be stated in terms of xi’s, which

indicate the decision to either serve user i or pass it up:

Problem 2. Offline 0/1 Knapsack Problem with Dynamic Capacity

Maximize:
N∑
i=1

vixi

subject to:
N1∑
i=1

wixi ≤ B1,

N2∑
i=1

wixi ≤ B1 +B2, ... ,

Nk∑
i=1

wixi ≤
k∑

j=1

Bj

Nk = N and xi ∈ {0, 1}

The problem formulation given in Problem (2) is a generalization of standard 0/1

knapsack problem with multiple constraints. In each energy harvest interval, the

available energy is the newly harvested energy plus the energy left over from pre-

vious intervals. Energy expenditure in an interval cannot exceed this amount. The
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overall structure may be modelled as a knapsack problem with increasing capacity

due to energy harvests prevailing at Nj instants where j ∈ {1, 2, ..., k}. At the first

subinterval when there exists no energy harvest in the picture, the energy constraint

is over B1 amount, the initial stored energy in APOM batteries. As the slots pass and

energy replenishments occur, the available service capacity of the APOM expands.

However, it is prominent to restate that the decisions made in the passing slots are

not to be reconsidered in the forthcoming ones. Since there will be no concrete in-

formation on the possible future harvests, the system cannot take a necessary action

before a replenishment even occurs, which guarantees the causality of the model that

the system is non-anticipative.

As explained in Chapter 3, including its dynamic capacity version presented in Prob-

lem 2, the classical knapsack problem is an offline combinatorial optimization prob-

lem, the standard proposed solution of which is dynamic programming. For the online

instances of this problem, there are a number heuristics with eligible performance.

On the other hand, the online knapsack problem with dynamic incremental capacity,

which is of interest to us, is still quite open.
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CHAPTER 5

OPTIMAL SOLUTIONS TO THE APOM RESOURCE

ALLOCATION PROBLEM

5.1 Optimal Offline Solution for Static Capacity

Dynamic Programming (DP) is a standard technique in the literature for solving dy-

namic decision problems. This technique, firstly proposed by a famous U.S. math-

ematician Richard Bellman in 1950s, is constructed upon a divide and conquer idea

and solves the sub problems that the original problem breaks into. It does not propose

a pure programming approach but rather provides an optimum planning [32].

The classical knapsack problem is a well studied combinatorial optimization problem

in Computer Science and Operations Research literature, which is NP-hard with no

efficient polynomial time solution [17]. The standard solution for the offline classical

knapsack problem involves dynamic programming approach as expected. Each sub

problem instance consists of two branches. For an item j and available capacity B,

let V (B) denote the maximum achievable value using that amount of that energy and

vjxj imply the individual reward contribution of the jth item. As mentioned before,

xj ∈ {0, 1} shows the decision on the corresponding item whether to take it or not.

The DP recurrence equation for APOM stated in Problem 2 is as follows:

V (B) = max
j

[vjxj + V (B − wjxj)] (5.1)

This recurrence equation first evaluates the value to be gained by taking jth item (vj)

where xj = 1 plus the profit to be collected using the iteration of equations on the next
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items appearing after j with the remaining capacity V (B−wj). Then, the evaluation

of the total reward reached with the next items by discarding the current one j is

conducted where xj = 0. After making this iteration at each j, using all possible xj

values over the whole problem instance space, we reach a matrix of available paths to

achieve the maximum utility involving all possible selections on the items (i.e. users,

for APOM). Based upon this analysis, optimum set of decisions is attained for the

solution of offline knapsack problem.

As stated above, DP proposes an offline solution to Problem 2, in which apriori

knowledge on the energy harvests and user characteristics are assumed to be avail-

able to the access point. Since no competitive solution has appeared in the literature

to the online knapsack problem with incremental capacity, the offline results of DP

with complete knowledge on the problem instances will be used as a performance cri-

teria which shall never be reached by any online algorithm but may be approximated

by a certain competitive ratio.

5.2 An Online Solution for Static Capacity that Achieves an Optimal Compet-

itive Ratio

Responding to instantaneous requests of encountered users, APOM has to adopt an

efficient and fast decision making strategy as a new user demand appears. In such

problems, if a well defined threshold could be stated, using a threshold based ap-

proach as a decision mechanism gives a satisfactory result in terms of overall per-

formance and computational complexity. Hence, we shall mainly look for threshold

based schemes which provably exhibit experimentally strong performance.

Following the approach of [62] this section restricts attention to threshold based deci-

sion rules, where the values and weights of the encountered users are compared with

a time-varying threshold. In addition to time, the threshold may also be a function of

the fraction of remaining capacity in the battery as mentioned in [51]. To consider the

deterministic online knapsack problem in a threshold based scheme using the initial

setup proposed by [62], upper and lower bounds on the user rate, energy requirement

and energy harvesting will be assumed, which are not unrealistic considering prac-
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tical correspondents to these limitations exist. In practice, APs admit only users in

a certain area of coverage, which automatically limits the power consumption. Re-

wards from a user (rate, pricing, etc.) are inherently bounded as well. Finally, solar

irradiation is quite predictable on an hourly basis and almost constant in an hour as

stated in [54]. Therefore , upper and lower bounds on energy replenishment rate can

be predicted.

Each new user can be taken into account only if the residual energy of APOM is

greater than the weight of that user. If the available energy exceeds the weight of

the user, a decision to offer or deny service to this user is made based on its weight

(energy consumption) as well as its value (utility). A threshold based user admission

mechanism was proposed in [62] for a related problem with a static and presum-

ably large available capacity. Here, the efficiency of the users (v/w), will be the

critical parameter for each user. The instantaneous threshold is defined as a mono-

tonic increasing function of the used fraction of the energy capacity denoted as z

where zi =
∑i

m=1 xmwm

B
, the filled up capacity till ith instant. There exists upper and

lower bounds on the efficiency ratios of the user sequence as U,L > 0 such that

L ≤ v
w
≤ U . The online threshold function proposed in [62] is defined as:

Ψ(z) = (
Ue

L
)z
L

e
where L ≤ v

w
≤ U (5.2)

where e denotes the natural logarithm and z represents the used fraction at any cor-

responding slot. At the beginning, APOM welcomes most of the users when there

is plenty of energy (z << B and ψ w L/e). As the energy is used up (z w 1),

threshold increases along with the filled up fraction since it reaches its upper limit as

ψ(z = 1) w U . At the end, the system only admits users with very high efficiency,

which means the scheme adopts a greedy attitude at beginning of the horizon while it

becomes more and more conservative towards the end.

As mentioned in Chapter 3, the usual success metric for an online algorithm is its

competitive ratio, the worst-case ratio of the algorithm’s performance to the optimal

offline solution under the same input [12]. Therefore, having complete uncertainty

in the input, the heuristic proposed should build solutions with a competitive ratio

better than the worst-case ratio by α. For different sets of users, the achieved value is

compared to the one obtained by any computationally all-powerful optimal algorithm
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which has complete knowledge about the set of items. If an online algorithm A, for a

user sequence γ is α-competitive:

OPT (γ)

A(γ)
≤ α, where α ≥ 1 (5.3)

should be satisfied where OPT (γ) and A(γ) are the values obtained from optimal

offline algorithm and the proposed online heuristic A respectively.

In the following parts, different threshold-based admission mechanisms are investi-

gated and compared on their performance regarding the total utility (rate) they pro-

vide. Competitive ratio analysis is used to test the performance of the online algo-

rithms.

5.3 Extended Online Solution with Deterministic Threshold Method for Dy-

namic Capacity

In Chapter 4, it was argued that Problem 2 is a generalization of 0/1 knapsack prob-

lem. In [33], authors reveal that no non-trivial competitive algorithm existed for

the general case of the online knapsack problem. Hence, following the work of

Chakrabarty et al. [62] and in the direction of the statement in [33]; several as-

sumptions are made and a threshold based online algorithm is proposed. The first

assumption is that all of the users have a weight much smaller than the sack capacity

(i.e., wi

B
≤ ε, ∀i ∈ A where ε << 1). The second one is that the efficiency (v/w)

of the users are neither too high nor too small. That is, there exists upper and lower

bounds on the user efficiencies as U,L > 0 such that L ≤ vi
wi
≤ U,∀i ∈ A.

As introduced in [62], the idea of the algorithm is straightforward. Early on, any item

which arrives should be picked. As the knapsack is filled, the algorithm becomes

more and more selective, that is, we pick items if the corresponding v/w ratio exceeds

the corresponding value of the following threshold function at that instant.

Let the threshold function be Ψ(z) = (Ue
L

)z L
e

following the work of [62] where U

and L are the upper and lower bounds for the v/w ratios of the incoming users. Let

zi =
∑i

m=1 xmwm

B
denote the fraction of the energy capacity (i.e. sack) filled up to

that instant. When an item i arrives, let zi be the fraction of energy capacity filled in
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case of selecting ith item. The APOM picks user i if i does not overfill the knapsack

capacity at that time and the efficiency ratio stays above the corresponding value of

the threshold function, vi
wi
≥ Ψ(zi) [62].

The user sequences demanding service appear to the access point as it routes over an

area. As mentioned in Section 4.3, k energy harvests are expected with amounts B =

[B1, B2, ..., Bk] with an incoming prediction on the corresponding problem instances

N = [N1, N2, ..., Nk].

We propose two adaptive threshold-based algorithms for the online version of the

dynamic capacity knapsack problem for APOM with energy harvests, based on the

function introduced in [62]. In the first one, while the fraction zi =
∑i

m=1 xmwm

B
is

computed, B is taken as the total energy available B = B1 + B2 + ... + Bk. It is

based upon a well stated assumption on possible future harvest capacity of APOM

where the energy replenishment rate are presumed to be predictable in a deterministic

problem setup as mentioned in Section 4.3. In this case the threshold function Ψ(z)

becomes a nondecreasing monotone function of z.

Definition 1. Monotone Threshold is an adaptive threshold function such that, for

users i = [1, ..., N ], it accepts user i if vi/wi ≥ Ψ(zi), and
∑i

m=1 xmwm ≤ B.

Here zi is computed as zi =
∑i

m=1 xmwm

B
, where B is the total amount of energy

B = B1 +B2 + ...+Bk after all the harvests occur.

Monotone Threshold function uses the total service capacity in decision metric z, but

proposed threshold function does not provide service to users unless the capacity con-

straints are satisfied as stated in the definition. Thus, verifying the system’s causality

constraints regarding energy, this method does propose a looser bound at the begin-

ning and becomes fiercely conservative to the end of the user sequence. The follow-

ing theorem presents the competitive ratio analysis for monotone threshold function

introduced for dynamic knapsack problem with incremental capacity assuming one

energy replenishment occurs.

Theorem 1. Under the condition
∑N1

m=1 xmwm ≤ B1, Monotone Threshold guar-

antees a competitive ratio no more than ln(U/L) + 1 assuming two energy harvest

intervals, i.e. k = 2.
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For the sake of completeness, the derivation of the competitive ratio analysis of Theo-

rem 1 under APOM Monotone Threshold assumptions considering the causality con-

straints for energy harvests is provided in Appendix A .Extending the proof in [62] to

the dynamic capacity case, the derivation given in Appendix A reveals that this proof

can be further extended to the cases for k > 2.

As an alternative way to the Monotone Threshold approach, the second function uti-

lizes the the amount of energy harvested up to that time instant at denominator of the

fraction discarding the strict nondecreasing assumption in the threshold function.

Definition 2. Jumping Threshold is an adaptive threshold function which imple-

ments the Monotone Threshold function at each energy harvest interval such that,

for i = [1, ..., N ], it chooses to serve user i if vi/wi ≥ Ψ(zi) and
∑Nk

m=1wm ≤ Bk

where the available energy is equal to Bk at that instance. In other words, Jumping

Threshold function is a piecewise monotone function of the current fraction in each

energy harvest interval. When a new energy arrival occurs, the fraction z jumps to a

lower level.

Detailed simulation results and numerical competitive ratio analysis of Monotone and

Jumping Threshold functions are illustrated in Chapter 7.
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CHAPTER 6

ONLINE HEURISTICS FOR RESOURCE ALLOCATION

PROBLEM FOR A MOBILE SERVICE PROVIDER

6.1 Genetic Algorithm: A Stochastic Approach to a Deterministic Problem

As the first online heuristic, Genetic Algorithm (GA) is proposed. In the compu-

tational science, engineering, bioinformatics, economics, manufacturing, mathemat-

ics, physics and many other fields, genetic algorithm (GA) is a widely used search

heuristic, also called a metaheuristic, that uses the process of natural selection as a

model. This heuristic is utilized for optimization purposes to various problems using

techniques inspired by natural evolution such as inheritance, mutation, selection, and

crossover.

In the literature, we encounter the implementation of GA to knapsack problems in

various applications since it is a widely used technique for optimization and search

problems, mostly NP-hard ones. The main idea as stated in [32] is that the candidate

solutions represented by GA are stochastically selected, recombined, mutated, either

eliminated or retained based on the relative fitness; even the original problem is based

upon a deterministic model. This stochastic approach to a deterministic problem drew

our attention and we propose the implementation of it to an even more novel concept

where the capacity of the knapsack may also change as the solutions are evolved

toward better ones. Thus, both the generation adaptation and the capacity change

effect due to energy harvests should be taken into consideration using this method.

In the implementation genetic algorithm to find an optimal threshold function, a pop-
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ulation of candidate solutions for threshold values, each having a set of properties,

which can be mutated and altered, is evolved toward better solutions. Most of the

time, solutions are represented in binary as strings of 0s and 1s, but other encod-

ings are also possible [58]. An efficient utilization of GA requires the use of genetic

operators such as crossover, mutation and selection, which are essential to improve

the candidate solutions where strings are chosen, combined or altered in a stochastic

process [32].

In the following sections employing GA, we try to reach an optimal threshold function

from two different perspectives such as a user based evolution and an approach taking

into account every possible value of the fraction of available capacity.

6.1.1 User Based Genetic Algorithm

The first attempt to construct a feasible threshold for APOM via genetic algorithm

is realized by making a fitness evaluation over incoming user demands. The fitness

evaluation conducted through each generation performs on the user sets to maximize

the total service provided to users while checking the total weight constraint each

time. A user set which achieves the best competitive ratio is chosen as a solution,

then next generations are formed using the best candidates from previous generation.

This procedure continues until the total achieved reward converges to a certain level at

the end. First, upper and lower bounds on the efficiency ratios of randomly assigned

user sets are determined. Then, using random user sequences satisfying L < vi
wi
< U ,

the parent chromosome stream is constructed. Before taking into account the energy

harvests, a Mutation Function is defined to force the threshold function evolve in a

nondecreasing manner. So, after setting the Crossover Rate to 0.8 and stating capacity

constraints under fitness evaluation function to be verified at each step, the algorithm

is started for a 100 generations with a parent generation of 1000 users. The solution

has converged to an optimal point via the examination of the random selection on

users with distinct efficiency ratio over 100 generations. Then, for this setup the

optimum stepwise increments to be added up to the threshold function at each step is

proposed to reach the maximum utility.

To illustrate the performance of this heuristic compared with the online solution
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Figure 6.1: User Based Threshold Function by GA vs Monotone Threshold Function

Computed over a Randomly Generated User Sequence of 100 Users with Efficiency

Ratios varying between U = 10 and L = 5

method proposed in [62], results in Figure 6.1 shows the attained utility using both

methods in addition to the threshold trends they adopt. Since online threshold func-

tion proposed in the previous chapter ψ(zi) is an explicit function of fraction but not

directly the user appearances (or item numbers), the GA, formed upon user demands,

follows a smoother trend through the end. The results are taken for the user sequence

γ composed of 100 randomly generated users with U = 10 and L = 5 as upper and

lower bounds. The achieved utility is as expected since genetic algorithm constructed

upon user demands in a static capacity KP proposed a more greedy threshold while

the Monotone Threshold used in [62] tends to be strictly conservative through the end

of horizon due to its available fraction dependent construction. Thus, without con-

sidering the harvest instants, the analysis conducted in 6.1 revealed that Monotone

threshold achieved a competitive ratio of 1.098 whereas user based GA has a ratio of

1.065 compared with the optimum strategy. It is beneficial to restate that the perfor-

mance of an online algorithm increases as its competitive ratio approaches to 1, i.e.

the performance gets more and more closer to the optimum algorithm.

Next, user based GA approach is implemented for the energy replenishment model.

After constructing the parent chromosome, the same mutation function is forced over
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generations to get a monotonic threshold trend at the end. However, the harvest model

required an update on the available energy of APOM and did not satisfy a reason-

able competitive ratio for this scenario. Thus, adopting a fraction based approach

eludes from these observations proposing a new perspective where the utilization of

the available energy and the effect of energy harvests on the fraction of the service

capacity should be taken into account at each step as explained in Section 6.1.2.

6.1.2 Fraction Based Genetic Algorithm

To apply GA on a fraction based scheme, a chromosome is chosen as a vector that

defines a threshold for each region of fraction. For this purpose, the values that re-

maining fraction of capacity (z) can take are quantized in the following manner: The

range of fraction ([0, 1]) is divided into equal regions as [t1t2...t1000], where ti corre-

sponds to the threshold for region i, i.e. ψ(z) = ti, and note that z ∈ [ i−1
1000

, i
1000

]. A

quantization over 1000 intervals are assumed to be sufficient providing an opportu-

nity to sweep over a wide range. A number of chromosomes as stated in the previous

section are randomly formed, and their corresponding competitive ratios are found

through the fitness function evaluation. The fitness function checks the energy con-

straint on the available capacity at each step as well. In addition, capacity is updated

at each energy replenishment, so is the fraction z. Following the standard mutation

and crossover procedures, the chromosomes evolve into an optimal threshold vector.

The observations on the fraction based method on the natural selection of the best

users over generations give a certain competitive ratio in the best and the worst cases

for randomly generated parent sequences, which is provided and discussed in Chapter

7.

To briefly illustrate the general tendency of the fraction based threshold function gen-

erated by GA, the comparison of the outcome with the Monotone Threshold function

is given in Figure 6.2. As seen, both are nondecreasing linear functions of fraction

z. The simulations are run over a sequence of 1000 users with randomly assigned

v/w ratios varying between U = 10 and L = 5. Considering the total throughputs

at the output, the Monotone Threshold has an performance metric 1.048 whereas the

fraction based threshold achieves a competitive ratio of 1.062.
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Figure 6.2: Performance of Fraction Based Threshold Function by GA vs Mono-

tone Threshold Function Computed over Fraction on a Randomly Generated User

Sequence of 1000 Users with Efficiency Ratios varying between U = 10 and L = 5

Then, the energy replenishments are simulated using these methods. The perfor-

mance graphs of the GA Threshold function and Jumping Threshold functions are

illustrated in Figure 6.3 for one energy harvest model. As observed from the figure,

fraction based genetic algorithm manages to trace the extended optimum online solu-

tion described in Section 5.3 very closely since it reaches the best set of solutions over

generations. The achieved competitive ratio for GA threshold is 1.086 for this case,

with only a minimal decrease in performance compared with previous no-harvest user

based GA example.

As a result of genetic algorithm studies regarding the proposed heuristics, the com-

putational complexity of GA method turns out to be high and the time efficiency is

very low; however, it presents a reasonable performance for resource allocation and

throughput maximization problem of energy harvesting APOM.

6.2 Rule Based Method

Handling uncertain knowledge is a tricky problem when decisions based on such

knowledge appear to be critical. In such cases, a system that employs a broad set of

rules may efficiently deal with uncertainty in the data [15]. A connected set of well de-

fined rules, consisting of related variables in both the propositions and consequences,
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Figure 6.3: Performance of Fraction Based Threshold Function by GA vs Jumping

Threshold Function on Energy Harvesting Model over a Randomly Generated User

Sequence of 1000 Users with Efficiency Ratios varying between U = 10 and L = 5

are competitive to manage the uncertain cases. An efficient rule based system must

depend on accurate decision criteria which adopts ‘if-then’ rules while constructing

the decision structures. These rules can be attained by summarizing the reduced data

set from the attribute reduction process, which is discussed in [25] considering rule

extraction using soft computing techniques.

The main problem in rough set technique is to discretize the real values associated

with the membership degrees to form the rules. The method here is to transform the

corresponding real values into a tuple that represent the membership degrees in all of

the attribute subsets [25].

Although the rule based approach has been implemented in a few resource allocation

problems in the literature [2], there has been no previous study on the threshold de-

termination via this method so far. Hence, within the scope of this work rule based

method is proposed as the second heuristic which turned out to be a useful tech-

nique to determine a threshold function for the resource allocation decision problem

of APOM. Once, the rules are stated wisely considering the critical decision making

metrics in the problem setup, the results lead us to an efficient threshold function at

the end. The attained function works fast and even better than the optimal online
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Table 6.1: Membership Rules of 5 Degrees for Threshold Determination Belonging
to the Membership Functions given in Figures 6.4,6.5, 6.6

Energy Harvest Closeness Capacity Fullness Threshold
Very-Near Very-High Med
Very-Near High Low
Very-Near Med Low
Very-Near Low Very-Low
Very-Near Very-Low Very-Low
Near Very-High High
Near High Med
Near Med Low
Near Low Very-Low
Near Very-Low Very-Low
Med Very-High High
Med High Med
Med Med Med
Med Low Low
Med Very-Low Very-Low
Far Very-High Very-High
Far High High
Far Med High
Far Low Low
Far Very-Low Low
Very-Far Very-High Very-High
Very-Far High Very-High
Very-Far Med High
Very-Far Low Med
Very-Far Very-Low Low

heuristic of Chakrabarty et al. [62] in most cases since the overall threshold is a

well trained one under random sets of users and calibrated via distinct characteristic

randomized user sets as well.

Details of the rule based system constructed for the Access Point on the Move are

presented in Table 6.1. There are two input memberships functions (MF) assigned

to define the decision strategy in each possible case to be encountered by APOM.

Both of the input MFs are defined as trapezoidals of 5 degrees as can be traced in

Figures 6.4 and 6.5. The output MF is assigned as the desired change in the threshold

as shown in Figure 6.6, the ultimate trend of which will be used to determine which
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users to serve eventually.

One of the input membership functions is chosen as the closeness to energy harvest

instants in terms of the number of user arrivals. This parameter is prominent in real

life scenarios since expecting an energy harvest sooner or at a far instant may com-

pletely alter the possible decision at the corresponding slot. Once, the harvest instant

gets closer and closer, the service provider should adopt a greedy attitude since it

would serve as long as its service capacity allows it to do. This metric is chosen to

vary between [0, 1] where the values closer to 1 denotes that an energy arrival is pre-

sumed to happen soon. As illustrated in Figure 6.4, Very-Near covers the input MF

values near by 1, i.e. the current user appears at a slot close to the harvest instant Ni,

whereas Very-Far stands for the user arrivals at the beginning of an energy harvest

interval where the input MF is set to be in the vicinity of 0. The other degrees as

Near, Med (for Medium) and Far represent the degrees in between Very-Near and

Very-Far in the descending order through the harvest instant.

In addition to the energy replenishment rate, the fraction of the utilized energy of

available capacity is a critical measure as well. Thus, the second MF is assigned as

the depletion of available energy of APOM. The values vary between [0, 1] interval

same as the first MF function, ranging from Very-Low to Very-High in 5 levels. The

instances where the capacity fullness metric is closer to 1 indicate that most of the

available energy is utilized where the threshold trend to accept new users shall dimin-

ish in that direction. On the other hand, the values closer to 0 implies there is available

capacity of APOM to serve more users. So, considering the energy harvest closeness

the threshold should remain at relatively low values to increase total throughput.

Using the input MFs and following the well defined calibrated rules from Table 6.1,

the behaviour of the threshold function is attained in Figure 6.7. To interpret these

results, consider a problem instance where access point gets closer to an energy scav-

enging point. If the available energy is high (implies that the capacity fullness closer

to 0), the algorithm shall respond any user demand affirmatively. As the capacity fills

and the energy harvests are awaited in the long term (which represents the energy

harvest closeness value in the vicinity of 1), the service quality decreases and only

the user with highest rates get service.
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Figure 6.4: Input Membership Function of Energy Harvest Closeness

Figure 6.5: Input Membership Function of Fraction of Capacity Fullness

It should also be noted that the increased performance of this heuristic is tremen-

dously related with the enlarged problem dimension. The complexity is increased

as the problem instances are defined in one more dimension but the accuracy on de-

cisions leads to an improved utility maximization performance via proposing a 3D

solution to a 2D problem. After attaining the threshold function over a rule based

structure, this function is used as the decision metric for the new randomly assigned

users to get overall performance results provided in Chapter 7.
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Figure 6.6: Output Membership Function of Threshold

Figure 6.7: Surface Graph of Threshold Function Attained via Rule Based Algorithm

Described in Section 6.2 Indicating the Behaviour of Output Threshold Function with

respect to Input Membership Functions
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CHAPTER 7

NUMERICAL AND SIMULATION RESULTS

Access Point on the Move is envisioned as a moving station providing Internet access

at 3G speeds or more to users demanding service. For a service advertised as 3G

essentially needs to meet MT-2000 standards which implies peak data rates of at

least 200 kbps. Up to this point different methods are analysed in Chapters 5 and

6 and their performances are compared with the optimal offline solution in terms

of competitive ratio analysis and possible throughput results. The previous chapters

include some illustrative examples on the general behaviour of the threshold functions

and explained the critical decision metrics they use to construct an efficient allocation

model for APOM while achieving throughput maximization. In this chapter, more

generalized results are attained testing the performances of the proposed heuristics

systematically. Worst-case and average case analysis are performed under Monte

Carlo Simulations.

Transmission power decisions may be chosen as (5; 10; 23; 26; 74; 100; 159; 256

mW) are based on relative data rates provided in Table 7.1 retrieved from 802.11n

standard. Considering the user types and the dimension of user sequences a transmis-

sion rate is presumed and the performances are different heuristics are evaluated.

For the sake of simplicity, the first evaluation is conducted under the predicted energy

replenishment rate under perfect channel assumption. The results of which are illus-

trated in Tables 7.2 and 7.3. User efficiency (v/w) ratios are bounded with U = 10

and L = 6 where L ≤ v
w
≤ U . User efficiency ratios take uniformly distributed ran-

domly real-time assigned values within this interval. APOM total transmission rate

capacity is taken as 2000mW . 1000 Monte Carlo trials are conducted, generating
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Table 7.1: Single Stream Data Rates in 802.11n Standard for 40MHz Channel

Modulation Type Coding Rate Data Rate (Mbps)
BPSK 1/2 15
QPSK 1/2 30
QPSK 3/4 45
16-QAM 1/2 60
16-QAM 3/4 90
64-QAM 2/3 120
64-QAM 5/6 150

Table 7.2: Competitive Ratio Comparison of Different Threshold Heuristics with Op-

timal Offline Solution for a User Sequence of 1000 Users and Capacity=2000

Threshold method Average comp. ratio Worst comp. ratio Best comp. ratio

Monotone threshold 1.1084 1.3100 1.064

Jumping threshold 1.3700 1.7200 1.3500

GA based threshold 1.1422 1.5102 1.1087

Rule based threshold 1.0362 1.2066 1.0229

1000 user arrivals at each session.

The total achieved throughput and related competitive ratio results given Tables 7.2

and 7.3respectively show that even the worst-case competitive ratio of the offered

heuristics never exceeds 1.75. Moreover, the results for the monotone threshold func-

tion following [62] are consistent with the worst possible competitive ratio derived

in Appendix A, which is 1.51 since the worst case competitive ratio cannot be worse

than that limit ln(U/L) + 1 as . Rule based threshold achieves the lowest worst com-

petitive ratio, among the tested algorithms. As mentioned before, due to the increase

in problem model complexity by defining another decision parameter, the rule based

threshold starts to provide the best performance over all.

Then, a time varying channel extension is examined and a channel fading parameter

is introduced in the following simulation. For indoor applications we may observe

constant channel states and gains for long durations, but for outdoor problems includ-

ing mobile transceivers or users the channel state may change even at each slot [3].

A fading factor γk may be modelled as a Markov process with well defined states but
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Table 7.3: Total Throughput Comparison of Different Threshold Heuristics with Op-

timal Offline Solution for a User Sequence of 1000 Users and Capacity=2000

Method Average total value Worst total value Best total value

Offline optimal solution 17599 17167 18050

Monotone threshold 15880 13374 16647

Jumping threshold 12778 10221 13103

GA based threshold 15416 11581 16042

Rule based threshold 17003 14524 17163

in this deterministic model, perfect channel assumption is used with no other outdoor

interference, only a constant decrease the throughput is to be expected in some slots.

Following this setup the energy harvest patterns are also considered in a more realistic

scenario where the overall resource allocation problem is examined over Nk energy

harvests where k = 10, assumed to occur in a 24-hour cycle. The amounts of the har-

vests are presumed to be different as well as their occurring slots. This assignments

allow us to examine a relatively arbitrary model which prevails upon the potential

weather condition changes and fading channel conditions for randomly located users

demanding service.

The competitive ratio analysis for all of the threshold function methods proposed in

Chapters 5 and 6 yield the results shown in the performance graphs 7.1 and 7.2. The

worst-case results illustrated in Figure 7.1 reveal that the Monotone Threshold func-

tion and Rule Based Threshold function present closer performances as the user char-

acteristics differ more and more by loosing U and L bounds on the user efficiency

ratios (changing the required service rates on a larger scale) whereas their perfor-

mances differ more as similar characteristic user sequences are encountered, which

implies an increased quality of service demanding a stable transmission rate. The rule

based threshold provides the best competitive ratio for a less distinct user set as the

decrease in user efficiency diversity rate approaches to 0.9 in the worst-case analy-

sis in Figure 7.1. As the difference in diversity of user efficiency rates increase, the

performances of Jumping Threshold and Monotone Threshold Functions get closer

as expected since they end up in the same decisions for relatively similar user se-

quences. The Genetic Algorithm does not propose a competing performance in terms

of competitive ratio analysis, but proves to be sufficiently efficient in most cases.
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Figure 7.1: Performance Evaluation of Different Online Threshold Heuristics vs. Di-

versity in Users Characteristics: ’Worst Case Competitive Ratio Analysis’, Monte

Carlo Simulation of 1000 runs over a Randomly Generated User Sequence of N =

1000 Users under k = 10 Energy Harvests of Different Amounts between [0, 250mJ ]

Modelled on a 24-Hour Daily Period with APOM Capacity Constraint of 2000mJ

For the average case performance outputs given in Figure 7.2, the rule based, mono-

tone and jumping threshold methods ensure a similar competitive ratio through the

end of horizon but the rule based threshold approach eludes from others approximat-

ing to the optimal solution as the user efficiency characteristics become more similar.

These three methods on average case analysis satisfies the the lower bound on the

competitive ratio (1.51) that a fraction based online KP heuristic should confirm as

stated in [62]. Similarly, the genetic algorithm reveals a worse performance com-

pared with the other methods as discussed earlier. However, over a similar set of user

sequence its performance augments as observed since the training of the strategy over

generations become more concrete eliminating many irrelevant steps in the fitness

evaluation process.

To cover all of the performance analysis and see the throughput maximization per-

formance of proposed techniques, Figure 7.3 is provided assuming harvested energy

is between [0, 250mJ ] coming at random unknown intervals. The throughput per-

formances show that the decision process implemented via rule based optimization
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Figure 7.2: Performance Evaluation of Different Online Threshold Heuristics vs. Di-

versity in Users Characteristics : ’Average Case Competitive Ratio’, Monte Carlo

Simulation of 1000 runs over a Randomly Generated User Sequence of N = 1000

Users under k = 10 Energy Harvests of Different Amounts between [0, 250mJ ] Mod-

elled on a 24-Hour Daily Period with APOM Capacity Constraint of 2000mJ

gives the most satisfactory outcome as discussed earlier. However, all other heuristics

are performance-wise comparable considering different user sequence characteristics

and required transmission rates. It should also be noted that even this randomized

throughput results stayed at a much higher level in terms of transmission rates com-

pared with service requirements for 3G communication.
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Figure 7.3: Throughput Performance Evaluation of Different Online Threshold

Heuristics vs. Diversity in Users Characteristics, Monte Carlo Simulation of 1000

runs over a Randomly Generated User Sequence of N = 1000 Users under k = 10

Energy Harvests of Different Amounts between [0, 250mJ ] Modelled on a 24-Hour

Daily Period with APOM Capacity Constraint of 2000mJ
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CHAPTER 8

CONCLUSION

In this thesis, we addressed the problem of online user admission for a mobile inter-

net service provider, which is inspired by the emerging interest of industry initiatives

toward providing Internet access to deprived areas. First, the problem setup is mod-

elled as a very well-known combinatorial optimization problem, Knapsack Problem.

Then, the offline optimum solutions are examined as well as online heuristics for this

model. Due to energy replenishment capability of the service provider, the standard

static capacity knapsack formulation has been changed and some online heuristics

are proposed. These solutions turned out to be applicable to other instances of online

knapsack problems with incremental capacity since AP is capable of energy harvest-

ing, which corresponds to incremental dynamic capacity as well.

For a throughput maximization decision problem, obtaining a threshold type scheme

turned out to be advantageous for online models. We considered adaptive threshold

based policies, where a user is admitted if its utility to weight ratio exceeds a certain

threshold, where the threshold also varies depending on availability of energy and

closeness to the next energy harvesting instant. We proposed monotonic, and piece-

wise monotonic threshold functions, based on a previous literature. Next, we devel-

oped two different threshold functions using Rule Based approach and Genetic Al-

gorithm. The competitive ratios of the algorithms were measured using Monte Carlo

simulations. Experimental results demonstrate that the proposed decision methods

using different threshold functions for the resource allocation problem of the energy

harvesting APOM are efficient in achieving close to optimal competitive ratios as well

as low computational complexity.
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As a further study, the strategies proposed in this paper can be extended to a mul-

tiple mobile station case for improved efficiency in practical uses. Route planning

for stations, their intercommunication protocols and the optimum station settlement

may also be the subjects of other researches themselves. Optimum path planning

combined with our concept, even better performances can be attained. In addition,

different models may be applied to APOM scenario problems, where the channel

characteristics are implemented with a real life compatible interference model. Also,

energy replenishments might be interpreted stochastically. As well as channel gains,

the energy replenishment can also be stated as a Markov Process. Finally, the de-

terministic plan for this model and stochastic policy can be compared. Yet, there

may still be further extensions to the problem apart from applying different possible

models. The main idea behind this problem is obviously an innovative approach for

communication networks and once practically used, it is very likely for such a system

to spread over the world in the coming years especially in space studies and military

projects in addition to civilian applications.
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APPENDIX A

COMPETITIVE RATIO DERIVATION

Proof of Theorem 1. Following the steps given in [62], for any input sequence of

σ after some time including energy harvests, let the algorithm terminate filling Z

fraction of the total capacity (total amount of energy harvests until that instant). Let

S and S∗ denote the set of selected users by the Monotone Threshold method and the

offline optimal algorithm respectively. In equations A.1 and A.2, weight and value

of the common items in both sets are assigned to the variables W and V . Then, the

proof of the deterministic competitive ratio is given as follows:

∑
i∈(S∩S∗)

wj , W (A.1)

∑
i∈(S∩S∗)

vj , V (A.2)

An upper bound is needed to be defined on the total value of optimal algorithm. There-

fore, since all the users to be selected by the optimal algorithm but not by the Mono-

tone Threshold Algorithm have value over weight ratios smaller than the threshold at

that instant and threshold is an increasing function, we have an upper bound as:

OPT (σ) ≤ V + ψ(Z)(B −W ) (A.3)

OPT (σ)

A(σ)
≤ V + ψ(Z)(B −W )

V + v(S \ S∗)
(A.4)

Using the threshold function we may define upper bounds for the common total value

parameter V and remaining total value of optimal algorithm as V1 and V2 respec-
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tively.

V ≥
∑

i∈(S∩S∗)

ψ(zj)wj , V1 (A.5)

v(S \ S∗) ≥
∑

i∈(S\S∗)

ψ(zj)wj , V2 (A.6)

OPT (σ)

A(σ)
≤ V + ψ(Z)(B −W )

V + v(S \ S∗)
(A.7)

≤ V1 + ψ(Z)(B −W )

V1 + v(S \ S∗)
≤ V1 + ψ(Z)(B −W )

V1 + V2
(A.8)

OPT (σ)

A(σ)
≤ ψ(Z)B∑

i∈S

ψ(zj)wj

≤ ψ(Z)∑
i∈S

ψ(zj)∆zj
(A.9)

Then, the assumption of encountering very small weights with respect to the capacity

is used and ∆zj is defined as follows:

∆zj , zj+1 − zj = wj/Bforallj (A.10)∑
i∈S

ψ(zj)∆zj ∼=
∫ Z

0

ψ(z)dz (A.11)

=

∫ c

0

Ldz +

∫ Z

c

ψ(z)dz (A.12)

=
L

e

(Ue/L)z

ln(Ue/L)
=

ψ(z)

ln(U/L) + 1
(A.13)

Finally, when the obtained result of Eqn A.13 is substituted for the denominator of

Eqn A.13, we have a deterministic competitive ratio given as:

OPT (σ)

A(σ)
≤ ln(U/L) + 1 (A.14)
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