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ABSTRACT

PARAMETER ESTIMATION OF MULTICOMPONENT MICRO-DOPPLER
SIGNALS

YILDIZ, HÜSEYİN
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Mete Severcan

June 2014, 80 pages

Vibrating and rotating parts on a radar target is known to generate frequency mod-
ulated echo signal which is called micro-Doppler signal. Micro-Doppler signals are
commonly modeled as the sum of sinusoidally modulated signals and the parameters,
such as amplitude, frequency, phase, of these modulations are useful in the identifica-
tion of these targets. In this thesis, the parameters of micro-Doppler signals from he-
licopter targets are estimated for the classification of the helicopters. Time-frequency
analysis and Hough transform is used for the separate extraction of the number of
blades, blade length and angular velocity of the rotor. The algorithm is developed for
a pulse-Doppler tracking radar. The performance of the proposed algorithm is tested
for different SNR values. The effectiveness of different time-frequency distribution
methods on the parameter extraction technique is analyzed.

Keywords: micro-Doppler, time-frequency distribution, Hough transform, helicopter
blade signal, parameter estimation
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ÖZ

ÇOK BİLEŞENLİ MİCRO-DOPPLER SİNYALLERİNİN PARAMETRE
KESTİRİMİ

YILDIZ, HÜSEYİN
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mete Severcan

Haziran 2014 , 80 sayfa

Hedef platformlar üzerinde bulunan titreşen ve dönen parçaların, radar sinyalleri üze-
rinde mikro-Doppler adı verilen frekans modülasyonlu yankı sinyallerine sebep ol-
duğu bilinmektedir. Mikro-Doppler sinyalleri, çoğunlukla sinüzoidal modülasyonlu
sinyallerin toplamı olarak modellenmektedir. Bu tip modülasyonların genlik, frekans
ve faz gibi parametreleri, hedeflerin tanımlanmasında kullanılabilecek parametlerdir.
Bu tezde, helikopterlerin tanımlanması amacı ile, helikopterlerden yansıyan mikro-
Doppler sinyallerinin parametreleri kestirilmektedir. Helicopterlerin pervane uzun-
luklarının, pervane sayılarının ve pervanelerin açısal hızlarının ayrı ayrı hesaplanması
için zaman-frekans analizi ve Hough dönüşümü yöntemleri kullanılmaktadır. Bu ça-
lışmadaki algoritma darbe-Doppler izleme radarları için geliştirilmiştir. Algoritmanın
performası farklı sinyal-gürültü oranları için test edilmiştir. Farklı zaman-frekans da-
ğılımı tekniklerinin parametre çıkarım algoritmasının başarımı üzerindeki etkisi ana-
liz edilmiştir.

Anahtar Kelimeler: mikro-Doppler, zaman-frekans dağılımı, Hough dönüşümü, heli-
kopter pervane sinyali, parametre kestirimi
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CHAPTER 1

INTRODUCTION

Classification of the detected airborne targets in a combat situation has become in-

creasingly important with the advances in airborne strike power. Helicopters are spe-

cial air targets for example which has the capability to hide in a terrain or forested

area, then suddenly appear. Because of this reason, it is highly desired to identify the

detected helicopter for a radar system.

To classify and identify a target, distinguishing features of the target should be ex-

tracted. For this purpose, several methods are proposed. Each of them are using

different features of the radar system and the target. In this work, we concentrate on

the micro-Doppler features of the returned signal. If a structure on the observed tar-

get has rotation or vibration relative to its main body translation, it causes a frequency

modulation on the returned radar signal. This frequency modulations generates addi-

tional spectral sidebands around the target’s bulk Doppler frequency shift, which is

defined as the micro-Doppler effect [7] [5] [8]. The sources of vibrations or rotations

that cause micro-Doppler effect may be propellers of a fixed-wing aircraft, rotors of

a helicopter, or the engine compressor, blade assemblies of a jet aircraft, swinging

limbs of a human being, an engine-induced vibrating surface of a truck and so on.

Returned radar signals from these structures contain micro-Doppler characteristics

related to them. Therefore, micro-Doppler signatures of the target dynamic parts can

be used for target detection, recognition and classification.

Main rotor blade dynamics of a helicopter can be extracted by using micro-Doppler

signatures of returned radar signal. A helicopter can be identified by its blade param-

eters which are blade length and number of blades [25]. The angular velocity of the
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rotor may be an important blade parameter, but it may change while flying.

A helicopter consists of three main scattering centers. These are main body, main

rotor and tail rotor. The RCS of the main rotor is significantly larger than the other

two. If we compare the main and tail rotors, main rotor blades have larger RCS

than the tail rotor blades. Also, the rotation rate of tail rotor blades are higher and

the length of its blades are shorter than the main rotor blades [9]. Because of these

reasons, processing the micro-Doppler signatures of the main rotor blades is a more

suitable choice for target classification.

To analyze time-varying micro-Doppler signature, traditional techniques such as Fou-

rier transform are unable to provide time-dependent frequency information. There-

fore, joint time-frequency analysis is needed. However, low resolution time-frequency

analysis techniques such as short time Fourier transform, do not provide the required

resolution to extract micro-Doppler signatures [24]. Therefore, high resolution lin-

ear and quadratic time-frequency (TF) analysis techniques are recently employed for

extracting m-D features.

1.1 Related Works

Several methods are analyzed to deal with micro-Doppler signatures and to extract

blade parameters from the helicopter return signal. The wavelet analysis of helicopter

data, along with the TF representation based imaging system, is presented in [9].

However, in that work, blade length and number of blades were not determined un-

ambiguously. One of the parameters, blade length, number of blades or rotation rate

of the rotor is assumed to be known. A different method for analyzing micro-Doppler

signatures is proposed in [38]. In this work, the authors obtain time-frequency rate

distribution instead of time-frequency distribution by using cubic phase function. Af-

ter getting time-frequency rate distribution, they apply generalized Hough transform

to extract the micro-Doppler features. However, the cubic phase function is defined

for the polynomial phased signals with maximum degree of 3 while the phase modu-

lation of blade echo is sinusoidal. In [40], the blade parameters are estimated based

on Maximum Likelihood methods and the corresponding Cramér-Rao bounds are de-
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rived. In [4], blade parameters are extracted based on inverse radon transform. In

[41], it is proposed that helicopters can be classified by the ratio L/N of the blade

length and number of blades. These parameters can be extracted by using Doppler

spectrum and time signal. However, the L/N technique has drawbacks, since signif-

icant number of helicopters have the same quotient. In [42] time-frequency analysis

of the Doppler spectrum is suggested to determine the number of blades by counting

the sinusoidal traces created by blade tip in the time-frequency distribution.

1.2 Our Approach

In this study, a technique based on time-frequency analysis and Hough transform is

investigated to extract helicopter blade parameters from micro-Doppler signatures of

the blade return signal for the purpose of target recognition. To get the time frequency

distribution, Cohen’s class of distributions are used to reach the necessary resolution.

After getting the time-frequency distribution image, flash period of the approaching

blades are extracted. Then, maximum tip Doppler frequency of returned signal is

estimated using the spectrum of flashes. Finally, using extracted parameters, Hough

transform is applied to the time-frequency image to find the blade parameters.

1.3 Outline

First of all, the mathematical model for helicopter blade return signal is derived in

Chapter 2, for different number of blades, blade lengths and angular velocities. Then,

in Chapter 3, time-frequency distribution techniques which are short time Fourier

transform, Wigner-Ville, pseudo-Wigner-Ville, smoothed pseudo-Wigner-Ville, Choi-

Williams and Guo-Durand-Lee distributions are analyzed. Cohen’s time frequency

class is explained. The cubic phase function is also described in that chapter. In

Chapter 4, the algorithm used in this work is described and analyzed. The results

of the proposed algorithm is given in Chapter 5. The results are given for different

helicopters, different SNR values and different time-frequency techniques(SPWVD,

CWD, GDLD). Finally, Chapter 6 concludes with the evaluation of obtained results

and a discussion of future work.
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CHAPTER 2

OVERVIEW OF RADAR DOPPLER EFFECT AND

MODELING HELICOPTER BLADE RETURN SIGNAL

In this chapter, Doppler effect and helicopter return signal will be analyzed. First,

radar return signal from a point scatterer will be derived. After that, the Doppler

effect in the return signal will be presented. Then, the concept of micro-Doppler will

be described and the helicopter blade return signal will be derived.

2.1 Review Of Doppler Effect

Transmitted radar signal in the complex form can be written as

x(t) = a(t) exp[j2πFt × t+ θ(t)] (2.1)

where a(t) is the constant amplitude pulse envelope, Ft is the transmitted carrier

frequency and θ(t) is phase term or the phase modulation term.

The return signal from a point target is a delayed version of the transmitted pulse.

This time delay is related to the range of the scatterer and can be calculated from the

two-way trip time as

∆t = 2×R(t)/c. (2.2)

The amplitude of the return signal is also different from the transmitted signal because
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of the propagation loss and the radar cross section (RCS) of the target. Thus, the

return signal model from a point scatterer at range R0 = c∆t/2 is

s(t) = b(t−∆t) exp[j2πFt × (t−∆t) + θ(t−∆t)] + n(t) (2.3)

where b(t) is return signal pulse envelope, θ(t) is echo signal phase term and n(t) is

additive receiver noise [2].

If we assume that there is no phase modulation on the pulse, θ(t) becomes constant,

θ, and the return signal in Equation 2.3 can be rewritten as

s(t) = b(t−∆t) exp[j2πFt × (t−∆t) + θ] + n(t). (2.4)

The phase of the return signal (ignoring the noise) is

φ(t) = 2πFt × (t−∆t) + θ. (2.5)

The instantaneous frequency of the return signal can be calculated as

Fr(t) =
1

2π
× dφ(t)

dt

= Ft × (1− d∆t

dt
).

(2.6)

If we analyze Equation 2.6, the only time dependent term is ∆t. As given in Equation

2.2, if the range between the target and the radar is constant, ∆t is not time dependent

and d∆t
dt

= 0. Because of this reason, instantaneous received frequency Fr becomes

constant and equals to the transmitted carrier frequency Ft of the radar.

2.1.1 Doppler Effect

When electromagnetic signal interacts with a scatterer which has a motion, some

properties of the signal change. From these changes, one can deduce the motion
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of the scatterer with respect to the transmitter. When radar waves interacts with a

moving target, the carrier frequency of the returned signal will be shifted [7]. If the

range between target and the radar is not constant, the instantaneous frequency of

received signal Fr will differ from the transmitted carrier frequency Ft, because of

the Doppler effect. The theory of special relativity can explain the Doppler effect.

Suppose the target is moving with a constant range rate v(t) toward the radar, special

relativity theory can predict the received frequency, as given in [1], as

Fr =
1 + v/c

1− v/c
× Ft. (2.7)

If the range rate is constant in Equation 2.7, Fr(t) becomes Fr. Equation 2.7 can be

rewritten in a binomial series as

Fr = (1 +
v

c
)× [1 +

v

c
+ (

v

c
)2 + ...]× Ft

= [1 + 2
v

c
+ 2(

v

c
)2 + . . .]× Ft.

(2.8)

For a real target, it is very obvious that the speed of light is much higher than the

speed of the target (v
c
� 1). In Equation 2.8, we can ignore all second order and

higher terms without loosing significant information [2]. Then, the received signal

frequency is

Fr = [1 +
2v

c
]× Ft. (2.9)

The Doppler frequency, defined as the difference between received and the transmit-

ted frequency, can be obtained as [2]

FD = Fr − Ft

= [1 +
2v

c
]× Ft − Ft

=
2v

c
× Ft

=
2v

λt

(2.10)
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where λ is the transmitted wavelength.

2.1.2 Stop And Hop Assumption

Basically in this approximation, it is assumed that the target remains stationary during

the flight of the radar pulse. At time t = t0 target is stationary at range R0 and

assumed staying unmoving during the trip time of the pulse. Then, the target hops to

position R(t) = R0 − v × T and stops there, when the next pulse is transmitted and

so forth. Hence, the situation is modeled as if the target is stationary at the range Rm

when the mth pulse is transmitted.

If the target has constant range rate, R(t) becomes = R0− v× t and Equation 2.2 can

be modified as

∆t = 2× R0 − v × t
c

. (2.11)

Note that in Equation 2.11, we assume that the target is stationary while the pulse is

traveling (stop-and-hop assumption).

Then, the received signal phase in Equation 2.5 becomes

φ(t) = 2πFt × (t− 2× R0 − v × t
c

) + θ. (2.12)

The Doppler frequency is the difference between the received and the transmitted

signal frequencies [2]. As described above, frequency of the signal can be calculated

by taking the derivative of the phase of the signal with respect to time. If we change

the phase in Equation 2.6, received signal frequency is calculated as

Fr =
1

2π
× δφ(t)

δt

= Ft × (1− δ∆t

δt
)

= Ft × (1 +
2v

c
)

(2.13)
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The corresponding Doppler frequency can be calculated as

FD = Fr − Ft

= Ft × (1 +
2v

c
)− Ft

=
2vFt
c

=
2v

λt
.

(2.14)

Note that the calculated Doppler above is same as the calculated Doppler in Equation

2.10. This result shows us that the stop and hop assumption gives reliable accuracy.

2.2 Micro-Doppler Effect

In the previous section, we have seen that the Doppler frequency shift created by the

target which has constant radial velocity with respect to radar is time-invariant. How-

ever, the Doppler frequency shift generated by micro-motion dynamics of the target

can be a time-varying function. This motion imposes a time-varying modulation onto

the frequency as described in [9]. This modulation is called micro-Doppler effect.

The micro-Doppler effect can be caused by rotating structures, such as propellers of

a fixed-wing aircraft, rotors of a helicopter, or vibrating structures [7]. This feature

enables us to know the dynamic properties of the targets such as knowledge about the

blade numbers and blade speed of the helicopter.

To analyze micro-Doppler signature of a vibrating target, consider the geometry

shown in Figure 2.1. The point target located at point P is vibrating between pointsG

to G′ ,distance Dv, with oscillation frequency of fv. Then, the time delay in Equation

2.2 turns into

∆t = 2× [R0 − v × t+Dv cos(β) sin(2πfvt+ φ0)]/c (2.15)

where R0 is the initial range, v is the target body’s range rate, β is the angle between

vibration direction and the radar-target line and φ0 is the initial phase of the vibration.

9



Figure 2.1: Geometry of a vibrating target.

Assume that the initial phase of the vibration φ0 and the initial phase of the signal

θ are 0. Then, using the time delay in Equation 2.15, the received baseband signal

becomes

s(t) = σ exp[−j 4π

λ
× (R0 − v × t+Dv cos(β) sin(2πfvt))] (2.16)

and the baseband phase in Equation 2.12 becomes

φ(t) = −4π

λ
× (R0 − v × t+Dv cos(β) sin(2πfvt))). (2.17)

Therefore, the Doppler frequency is obtained as

FD(t) =
1

2π
× dφ(t)

dt

= −2

λ
× (−v + 2πDvfv × cos(β) cos(2πfvt))

=
2v

λ
− 4πDvfv × cos(β) cos(2πfvt)

λ
.

(2.18)
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As shown in Equation 2.18, the Doppler frequency is not constant but time dependent

because of the micro motions of the target. The first term 2v
λ

is the Doppler frequency

caused by the main target motion while the second term−4πDvfv×cos(β) cos(2πfvt)
λ

is the

micro-Doppler modulation term.

Assume a radar with wavelength λ = 0.03 m tracking a target which is stationary but

vibrant. The amplitude of the vibration Dv is 0.01 meters and the vibration frequency

fv is 2 Hz. The elevation angle β is 60◦. With this configuration, the result of Equation

2.18 can be seen in Figure 2.2.

Figure 2.2: Time-frequency micro-Doppler signature calculated by Equation 2.18.

The micro-Doppler modulation generates sidebands about the targets main motion’s

Doppler frequency shift. Because of this reason, in order to demodulate these micro-

Doppler frequencies, coherent processing must be used to track the phase change of

the target [7].

Traditional analysis like Fourier transform or the short time Fourier transform can not

be sufficient to supply necessary resolution to demodulate these signal components.

Because of this reason, higher-resolution time–frequency analysis tools are required

[8].

2.3 Modeling Blade Return Signal

In this section, we derive an analytical model for the main rotor blade echoes de-

scribed in both [5] and [3]. Each blade is taken as a straight wire segment. Before
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starting derivation, it is very helpful to assume that:

• there is no blind region

• the target is tracked in Doppler domain, so the Doppler effect of the body of the

helicopter is compensated and the return signal is modeled only with the blade

Doppler frequency.

• all points of the blade is in the main lobe of the antenna.

• range between the target and the radar is much larger than the blade length.

• returned signal amplitude is the reflectivity coefficient of the scatterer.

Figure 2.3: Geometry of a rotating wire [4].

Our blade is modeled as continuous point targets along a wire in one dimension [3].

As seen in Figure 2.3, the straight wire of length L is radially oriented at center of

rotation point . The length d is the blank region between rotation center and the blade

root.

Let x be a scattering point on the wire, then the range R of the point scatterer x to the

radar at time t is

R(t) =
√
R2
body + x2 + 2×Rbodyx cos(wt) (2.19)
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where w is the angular velocity of the blades and the Rbody(t) is the range of the body

of the helicopter. The Equation 2.19 stands for the law of cosines. Assuming R0 � x

so (x/Rbody(t))
2 7→ 0 in the far field [5], Equation 2.19 becomes

R(t) = Rbody(t) + x cos(wt). (2.20)

If there is an elevation angle β between the radar and the target helicopter (assuming

target helicopter is parallel to the ground, as described in [5]), Equation 2.20 becomes

R(t) = Rbody(t) + x cos(wt) cos(β) (2.21)

and the time delay for the signal is

∆t = 2× R(t)

c

= 2× Rbody(t) + x cos(wt) cos(β)

c
.

(2.22)

For the range function in 2.21 the return signal in Equation 2.4 becomes

s(t) = b(t−∆t) exp[j2πFt × (t−∆t)]

= σ exp[j2πFt × (t− 2× Rbody(t) + x cos(wt) cos(β)

c
)]

= σ exp[j2πFt × t− 4π × Rbody(t)

λ
− 4π × x cos(wt) cos(β)

λ
]

= σ exp[j2πFt × t−
4π cos(β)

λ
× x cos(wt)− φ]

(2.23)

where sigma is the reflectivity of the point scatterer x and φ is the phase term with

respect to the range of the body of the helicopter. At the beginning of this section,

we assumed that the radar is a Doppler tracking radar and the target’s body Doppler

frequency is shifted to zero by the radar receiver. Therefore, the returned baseband

signal is

s(t) = σ exp[−j 4π cos(β)

λ
× x cos(wt)] (2.24)
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Equation 2.24 gives the return signal for one scatterer, for a wire shown in Figure 2.3,

ignoring the scatterer free region d, the total signal is

s(t) =

∫ L

0

σ exp[−j 4π cos(β)

λ
× x cos(wt)]dx (2.25)

This integration leads to an exact analytical result [5], which is

s(t) = σL× exp[−j 4π cos(β)

λ

L

2
× cos(wt)]× sinc[

4π cos(β)

λ

L

2
× cos(wt)] (2.26)

where sinc(x) = sin(x)/x, x 6= 0 and sinc(0) = 1. As explained in [3], this sinc term

describes the amplitude modulation of the signal in time and the periodic cos(wt)

function inside the sinc function that describes the characteristic blade flashes of the

helicopter return signal.

Suppose a helicopter has one blade. The length of the blade is 6 meters and the

rotation speed of 300 rpm. This helicopter is tracked with a pulsed Doppler radar with

the carrier frequency of 10 GHz and pulse repetition frequency of 40 kHz. Assume

there is no reflection from the body and the tail blades of the helicopter and there is no

noise and vibration. The return signal calculated from the mathematical derivations

can be seen in Figure 2.4.

Figure 2.4a shows the time domain signal. As seen in Figure 2.4a, there are flashes

when blades are perpendicular to the radar line of sight at which the RCS of the blade

is maximum, as described in [3]. The flash period is 0.1 seconds while the rotation

speed is 300 rpm (which means that the period of rotation is 0.2 seconds). The flashes

occur two times in one period, first one occurs while approaching, the second occurs

while receding.

Figure 2.4b shows the Fourier transform of the received signal. The power is uni-

formly distributed over a large band. This distribution is symmetric about the 0

frequency. The limits are determined by the maximum Doppler frequency of the
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helicopter blades. Maximum received Doppler frequency can be calculated as

fmax =
2× vmax

λ

=
2× wL
λ

=
4× pi× 5× 6

0.03

= 12566Hz

(2.27)

the power is distributed along the −fmax − +fmax.

Figure 2.4c is the spectrogram of the return signal which gives more information than

the first two, because one can see both time and frequency properties of the signal

on the same graph. The figure shows the evolution of spectrum as blade rotates.

Again the flashes can be seen from the figure. The first flash at time 0.05 is the

flash corresponding to the approaching blade, the second is due to the receding blade,

because the first has positive frequencies, while the second has negative frequencies.

Equation 2.26 gives us the baseband return signal for one blade of a helicopter. The

total returns from the blades can be calculated by summing the returns from every

blade. Blades are uniformly separated in angle, so that the phase difference of kth

blade is

φk =
2πk

N
(2.28)

where N is number of blades. Then, the total return signal can be calculated as

s(t) =
N−1∑
k=0

σL× exp[−j 4π cos(β)

λ

L

2
× cos(wt+

2πk

N
)]

× sinc[
4π cos(β)

λ

L

2
× cos(wt+

2πk

N
)]

(2.29)

where the initial phase of the first blade is 0. If the phase of first blade is not equal to

0, in Equation 2.29, cos(wt+ 2πk
N

) terms should be replaced by cos(wt+ 2πk
N

+ θ0).
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(a) Time domain return signal
(b) FFT of return signal

(c) Spectrogram of return signal

Figure 2.4: Time and frequency plots of one blade return signal. Plots are

normalized to peak signal.
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Figure 2.5 shows the return signal in time and frequency domains for four blades.

In Figure 2.5c, the flashes occurs more often compared to single blade. Another

difference is while nth blade is receding, the (n+ 2)th blade is approaching. Because

of this reason, at the flash time, there are both positive and negative frequencies.

Figure 2.6 shows the return signal in time and frequency domains for five blades. The

difference between five blades and four blades is, while one blade flashes, no other

blade is perpendicular to the radar.
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(a) Time domain return signal (b) FFT of return signal

(c) Spectrogram of return signal

Figure 2.5: Time and frequency plots of four blade return signal. Plots are

normalized to peak signal.
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(a) Time domain return signal
(b) FFT of return signal

(c) Spectrogram of return signal

Figure 2.6: Time and frequency plots of five blade return signal. Plots are

normalized to peak signal.
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CHAPTER 3

OVERVIEW OF TIME FREQUENCY TRANSFORMS

In this chapter, the joint time-frequency analysis techniques will be discussed in de-

tail. First, the shortcomings of the standard Fourier transform will be discussed. After

that the short time Fourier transform will be explained following which the bilinear

transforms Wigner-Ville, Choi-Williams and Guo-Durant-Lee distributions, will be

considered. Cubic phase function, which is a time-frequency rate distribution, will

also be analyzed in this chapter.

3.1 Introduction

Standard Fourier Transform gives information about frequency characteristics of the

signal. The basic idea of Fourier transform is expressing the signal in terms of si-

nusoids with different frequencies and amplitudes. The output of Fourier transform

is amplitudes of each frequency components inside the signal. However, if the fre-

quency of the signal changes with time, spectrum can not give the information about

the relationship between frequency change and time. Fourier transform can not pro-

vide simultaneous time and frequency localization. It is not useful for non-stationary

signals. For example, for LFM (linear frequency modulation) signals, the frequency

of the signal changes continuously as time goes by. The spectrum of the LFM signal

gives only the bandwidth information about the modulation. The difference between

spectrum and joint time-frequency analysis is, while spectrum gives the existing fre-

quencies, the joint time-frequency analysis gives which frequencies existed at a par-

ticular time [10].
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The basic idea in joint time-frequency transformation is to find a joint function of both

time and frequency that will describe the energy density of a signal simultaneously

both in time and frequency. This function must conserve the energy of the whole

signal, hence

E =

∫ +∞

−∞

∫ +∞

−∞
P (t, ω)dωdt (3.1)

where the P (t, ω) is the joint time-frequency function and E is the total signal energy.

However, note that, there are many functions that satisfy the correct value for the

total energy but that does not describe the energy density of the signal in time or

frequency [10]. Because of this reason, the ideal joint density in time and frequency

should satisfy the marginals which are time and frequency. Integrating the energy

for all frequencies at any time should give the instantaneous energy at that time and

integrating the energy over all times at any frequency should give the energy of the

signal for that frequency. Consequently, as given in [6], the time marginal condition

is

∫ +∞

−∞
P (t, ω)dω = |s(t)|2 (3.2)

and the frequency marginal condition is

∫ +∞

−∞
P (t, ω)dt = |S(ω)|2 (3.3)

where S(ω) is the spectrum of the signal. Then, it is guaranteed that the function

P (t, ω) is the ideal joint time-frequency distribution function of the signal s(t). If

joint density satisfies the marginals, the total energy conservation is also satisfied.

Although many distribution do not satisfy the total energy conservation, they are suc-

cessful in representing the time-frequency characteristics of the signal such as Short

Time Fourier Transform. Because of that reason, Cohen names it as "weak one" [6]. In

addition, some of the distributions do not satisfy the marginal conditions while giving

a good representation of the time-frequency like Smoothed Wigner-Ville Distribution.
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There are many distributions developed to express the signal in time and frequency

jointly. For all time frequency distributions, Leon Cohen developed a general form

[10], [6], [12],

C(t, ω) =
1

4π2

∫ ∫ ∫
s(u+

1

2
τ)s∗(u− 1

2
τ)φ(θ, τ)e−jθt−jτω+jθududτdθ (3.4)

In general, it can be said that there is no best time frequency distribution technique.

There must be suitability between technique and the process. Therefore, Cohen’s

class is very important because one can design a time frequency distribution using

this general form with desired parameters. The detailed explanation about Cohen’s

Class will be given after the definition of Wigner-Ville distribution.

3.2 Short Time Fourier Transform

The short time Fourier transform is the most widely used Fourier transform based

technique for time-frequency signal analysis, because it is simple and the results are

satisfactory [10]. The idea behind it is splitting the signal into overlapping sections in

time and taking Fourier transform of each section of the signal, as shown below

St(ω) =
1√
2π

∫ +∞

−∞
e−jωt

′
s(t′)h(t′ − t)dt′ (3.5)

where h(t) is a windowing function which is normalized so as to be of unit energy

[13]. Note that the only difference between the standard Fourier transform and the

short time Fourier transform is the windowing function.

The sections are narrow enough to be considered as a stationary signal. The length

of the window function determines the segment length. For each time location where

the window is centered,we obtain a Fourier transform. Each Fourier transform pro-

vides frequency information for different time slices. Then, time dependent frequency

spectrum is obtained.

The spectrogram is the magnitude square of the short time Fourier transform, which
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is

Ps(t, ω) = |St(ω)|2. (3.6)

Figure 3.1 shows the spectrogram of the sum of two linear frequency modulated signal

given below

s(t) = exp[−j2π(−175t+ 100)t] + exp[−j2π(−175t+ 250)t]. (3.7)

Although this is the standard method for time frequency analysis, the signals whose

frequency content is changing so rapidly are problematic for the spectrogram. Be-

cause finding an appropriate short-time window is hard. Also shortening the time

window means reduction in the frequency resolution, because there is a trade off be-

tween the time and the frequency resolution. It is a well known fact that the narrower

the signal in time broader its spectrum, and vice versa, and therefore accurate local-

ization in frequency requires a wider time window while accurate localization in time

requires wider frequency window. Uncertainty principle tells that it is not possible to

have arbitrarily high accuracy in both time and frequency. Equation below gives this

uncertainty principle

σt × σω ≥
1

2

√
1 + 4Cov2

tω (3.8)

where σt and σω are standard deviations of time and bandwidth of the signal respec-

tively and Covtω is the covariance of time and instantaneous frequency of the signal.

Covtω is a measure of how time and the instantaneous frequency are related. Which

is defined as

Covtω = E{tω(t)} − E{t}E{ω} (3.9)

In the best case, the Covtω term becomes zero when there is no relationship between

time and the instantaneous frequency. Then the σt × σω product becomes minimum
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(a) 3-D mesh plot

(b) 2-D plot

Figure 3.1: The Spectrogram of the sum of two chirp (Equation 3.7).
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[6]. More detailed information about the uncertainty can be found in Chapter 1 and

Chapter 3 of reference [6].

Spectrogram gives energy of the signal in the neighborhood of [t−∆t/2, t+ ∆t/2]×
[ω − ∆ω/2, ω + ∆ω/2] area, where ∆t and ∆ω are the time and frequency window

widths of spectrogram respectively [11]. The ∆ω and the ∆t can not be both se-

lectable, only the time window width ∆t is selectable. The other is determined by

uncertainty principle given in Equation 3.8.

3.3 Wigner-Ville Distribution

The Wigner-Ville distribution is the prototype for the Cohen’s class time frequency

distributions that are qualitatively different from the spectrogram [6]. It was first

developed by the Wigner in the area of quantum mechanics in 1932. In 1947, Ville

modified it to use for signal analysis.

Wigner-Ville distribution is defined as the Fourier transform of the autocorrelation

function [6]. Therefore, it can be written as

WVD(t, ω) =
1

2π

∫
R(t, τ)e−jωτdτ (3.10)

where the instantaneous autocorrelation function is

R(t, τ) = s(t+
τ

2
)s∗(t− τ

2
) (3.11)

where s∗ stands for the complex conjugate of s. Substituting Equation 3.11 into

Equation 3.10

WVD(t, ω) =
1

2π

∫
s(t+

τ

2
)s∗(t− τ

2
)e−jωτdτ (3.12)

gives the more general form of the Wigner-Ville distribution [14][15]. In terms of the
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signal spectrum S(ω)

WVD(t, ω) =
1

2π

∫
S(ω +

θ

2
)S∗(ω − θ

2
)e−jtθdθ (3.13)

[6]. The Wigner-Ville distribution can also be represented using ambiguity function,

which is defined as the inverse Fourier transform of the autocorrelation function as

shown below [16] [6]

A(θ, τ) =

∫
R(t, τ)ejθtdt. (3.14)

Note that Equation 3.14 shows that the Ambiguity function A(θ, τ) is the inverse

Fourier transform of the autocorrelation functionR(t, τ). ThenR(t, τ) can be written

as the Fourier transform of the ambiguity function as

R(t, τ) =
1

2π

∫
A(θ, τ)e−jtθdθ. (3.15)

Thus, if we replace autocorrelation function with Equation 3.15, the Wigner-Ville

distribution becomes

WVD(t, ω) =
1

4π2

∫ ∫
A(θ, τ)e−jtθe−jωτdθdτ. (3.16)

Although there is no physical relationship between the Wigner-Ville distribution and

the ambiguity function, this approach is very helpful to understand the Cohen’s class

distributions.

The main advantage of Wigner-Ville distribution over spectrogram is the higher res-

olution in time and frequency [16]. However, the analysis of multicomponent signals

is problematic because of the cross terms between the components of the signal [17].

Suppose we express a signal as

s(t) = s1(t) + s2(t). (3.17)
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By substituting s(t) into Equation 3.12, we get

WVD(t, ω) =
1

2π

∫
s(t+

τ

2
)s∗(t− τ

2
)e−jωτdτ

=
1

2π

∫
[s1(t+

τ

2
) + s2(t+

τ

2
)]× [s∗1(t− τ

2
) + s∗2(t− τ

2
)]e−jωτdτ

=
1

2π

∫
s1(t+

τ

2
)s∗1(t− τ

2
) + s1(t+

τ

2
)s∗2(t− τ

2
)

+ s2(t+
τ

2
)s∗1(t− τ

2
) + s2(t+

τ

2
)s∗2(t− τ

2
)e−jωτdτ

= WVD11(t, ω) +WVD22(t, ω) +WVD12(t, ω) +WVD21(t, ω)

(3.18)

where the WVD11 and WVD22 are the Wigner-Ville distribution of the s1 and s2

respectively and the WVD12 and the WVD21 are the cross terms. The cross Wigner-

Ville distribution is complex and WVD21 = WVD∗12, therefore WVD12(t, ω) +

WVD21(t, ω) is real [6]. The Wigner-Ville distribution of s(t), therefore, can be

written as

WVD(t, ω) = WVD11(t, ω) +WVD22(t, ω) + 2Re{WVD12(t, ω)}. (3.19)

If we analyze Equation 3.19, the Wigner-Ville distribution of the sum of two signals is

not sum of two Wigner-Ville distributions. There is an extra term 2Re{WVD12(t, ω)}
which is called cross term or interference term. Detailed analysis of cross terms

in Wigner-Ville distribution can be found in [17], [6], [18]. Figure 3.2 shows the

Wigner-Ville distribution of the signal that is sum of two chirp signal given in Equa-

tion 3.7. The cross term is exactly in between the two chirp term. This is not surpris-

ing, because any pair of signals creates one cross-term at middle of the two signals

both in time and frequency [18][6][17].

3.3.1 Cohen’s General Class Of Time Frequency Distributions

As described above, the cross terms are major drawback of the Wigner-Ville distribu-

tion. This phenomena may cause difficulties in interpreting the Wigner-Ville distri-
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(a) 3-D mesh plot

(b) 2-D plot

Figure 3.2: The WVD of the sum of two chirp with cross term (Equation 3.7).
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bution as an energy distribution over time and frequency [24]. To suppress the cross

terms, smoothing filters in both time and frequency can be used as

WVD′(t, ω) =

∫ ∫
WVD(u, θ)Φ(t− u, ω − θ)dudθ (3.20)

where Φ(t, ω) is the 2-D smoothing filter [16]. In this case, Equation 3.16 can be

written as

WVD′(t, ω) =
1

4π2

∫ ∫
A(θ, τ)φ(θ, τ)e−jθte−jτωdτdθ (3.21)

where φ is the kernel function for smoothing which is the 2-D inverse Fourier trans-

form of the 2-D smoothing function Φ(t, ω) [16]:

Φ(t, ω) =

∫ ∫
φ(θ, τ)e−jωτe−jθtdτdθ. (3.22)

Note that the only difference between Equation 3.16 and Equation 3.21 is the kernel

function. If we choose Φ(t, ω) as δ(t)δ(ω), the φ(θ, τ) becomes 1 and Equation

3.20 turns into standard Wigner-Ville distribution. We can also generate the Cohen’s

general form for time frequency distributions from Equation 3.21, by using Equation

3.14 and Equation 3.11 as

WVD′(t, ω) =
1

4π2

∫ ∫
A(θ, τ)φ(θ, τ)e−jθte−jτωdτdθ

=
1

4π2

∫ ∫ ∫
R(u, τ)φ(θ, τ)e−jθte−jτωe−jθudτdθdu

=
1

4π2

∫ ∫ ∫
s(u+

τ

2
)s∗(u− τ

2
)φ(θ, τ)e−jθte−jτωe−jθudτdθdu

4
= C(t, ω).

(3.23)
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3.3.2 Pseudo Wigner-Ville Distribution

For a given time and frequency, the standard Wigner-Ville distribution uses all times

and frequencies from minus infinity to plus infinity. The summation from minus

infinity to plus infinity is practically impossible. In addition, Wigner-Ville distribution

weighs all times and frequencies equally. However, we may want to emphasize the

properties near the time of interest. Because of these reasons, pseudo-Wigner-Ville

distribution is introduced [19] as

PWVD(t, ω) =
1

2π

∫
h(τ)s∗(t− τ

2
)s(t+

τ

2
)e−jωτdτ

=

∫
H(ω − θ)WVD(t, θ)dθ

(3.24)

where h(t) is windowing function and H(ω) is Fourier transform of h(t). Pseudo-

Wigner-Ville distribution is the short-time Wigner-Ville distribution. It is also the

smoothed version of the standard Wigner-Ville distribution. One consequence of the

smoothing is the suppression of the cross terms, since we have made Wigner-Ville

distribution local. While windowing, the lag suppresses the cross terms. Another re-

sult of smoothing is that it destroys many properties of the Wigner-Ville distribution

such as marginal properties [20] [6]. Figure 3.3 shows the pseudo-Wigner-Ville dis-

tribution (with Chebyshev window) of the sum of two chirp signal, given in Equation

3.7.

In Figure 3.3, there are still cross terms, because the windowing function used in

Equation 3.24 causes smoothing only in the frequency direction. Therefore, the cross

terms in the time direction are not attenuated [20].

3.3.3 Smoothed-Pseudo Wigner-Ville Distribution

In the previous section, we have seen that the pseudo-Wigner-Ville distribution im-

plements smoothing only in the frequency direction. Because of this, the cross terms

can not significantly be attenuated by the pseudo-Wigner-Ville distribution. To sup-

press cross terms in the time direction, smoothed-pseudo-Wigner-Ville distribution
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(a) 3-D mesh plot

(b) 2-D plot

Figure 3.3: The PWVD of the sum of two chirp with cross term (Equation 3.7).
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(SPWVD) is introduced. The smoothed-pseudo-Wigner-Ville distribution is also a

pseudo-Wigner-Ville distribution but with an additional smoothing filter in the time

direction [20]. If we choose the 2-D smoothing function in Equation 3.20 as

Φ = g(t)H(ω), (3.25)

PWVD becomes SPWVD, where g(t) and H(ω) (which is the Fourier transform of

h(t)) are time and frequency windows respectively. Their lengths can be determined

independently [21]. A longer g(t) yields more time smoothing and longer h(t) yields

less frequency smoothing [20]. Note that choosing g(t) = δ(t), the SPWVD becomes

PWVD with no time smoothing. Equation for the SPWVD can be written as

SPWVD(t, ω) =

∫ ∫
WVD(u, θ)Φ(t− u, ω − θ)dudθ (3.26)

Figure 3.4 shows the smoothed-pseudo-Wigner-Ville distribution of the sum of two

chirp signal given by Equation 3.7. As seen from the figure, the cross terms are

completely cleared.

3.4 Choi-Williams Distribution

Choi-Williams distribution is a reduced interference distribution with the kernel [22]

φ(θ, τ) = e−θ
2τ2/σ. (3.27)

This kernel function treats like a low pass filter on the θ−τ plane. The low pass char-

acteristics of the kernel can be controlled by the constant σ. Larger σ means that more

suppression and the smaller σ is less suppression of the cross terms. However, there

is a trade of between the suppression of the cross terms and the auto terms. Also note

that the kernel converges to the 1 as σ goes to∞. This means that CWD distribution

converges to the WVD as σ goes to∞. Substituting the kernel in Equation 3.27 into
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(a) 3-D mesh plot

(b) 2-D plot

Figure 3.4: The SPWVD of the sum of two chirp (Equation 3.7).
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Equation 3.4, the more general form of Choi-Williams distribution is obtained as

CWD(t, ω) =
1

4π2

∫ ∫ ∫
e−θ

2τ2/σs(u+
1

2
τ)s∗(u− 1

2
τ)e−jθt−jτω+jθududτdθ.

(3.28)

Then, by integrating Equation 3.28 over θ, we can obtain

CWD(t, ω) =

1

4π3/2

∫ ∫
1√
τ 2/σ

e
− (u−t)2

4τ2/σ s(u+
1

2
τ)s∗(u− 1

2
τ)e−jθt−jτω+jθue−jτωdudτ.

(3.29)

Figure 3.5 shows the Choi-Williams distribution of sum of two chirp signal given by

Equation 3.7. As seen from the figure, the cross terms are completely suppressed

from the time-frequency plane.

3.5 Guo-Durand-Lee Distribution

Guo-Durand-Lee distribution (also known as Bessel distribution) is a reduced inter-

ference distribution based on the Bessel function of the first kind of order one kernel

[23]. Although it is presented to analyze the heart sound and the blood flow signals, it

can be used in many applications, because of the high time-frequency resolution and

the low cross term level. The kernel for this distribution is defined in the [23] as

φ(ξ, τ) =
J1(2παξτ)

παξτ
(3.30)

where ξ is the frequency lag and α is scaling factor. By substituting the kernel given

in Equation 3.30 into Equation 3.4 and integrating with respect to ξ (Note that the

kernel given in Equation 3.4 is defined based on θ not ξ and θ = 2πξ ), we can obtain
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(a) 3-D mesh plot

(b) 2-D plot

Figure 3.5: The Choi-Williams distribution of the sum of two chirp (Equation 3.7).
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the Guo-Durand-Lee distribution as [23]

GDLD(t, ω) =∫
e−jωτ

[∫
2

πα|τ |

√
1−

(u− t
ατ

)2

× Π(
u− t
2ατ

)s(u+
1

2
τ)s∗(u− 1

2
τ)du

]
dτ

(3.31)

where

Π(x) =

1, |x| ≤ 0.5

0, otherwise.
(3.32)

The rectangular function Π is used to block the negative values under square root

function.

Figure 3.6 shows the Guo-Durand-Lee distribution of sum of two chirp signal given

in Equation 3.7. As seen from the figure, the cross terms are completely cleared from

the time-frequency plane.

3.6 Cubic Phase Function

The cubic phase function is defined as

CP (t, Ω) =

∫ ∞
0

s(t+ τ)s(t− τ)e−jΩτ
2

dτ (3.33)

where Ω is the instantaneous frequency rate for the spectrum of cubic phase function

[35] [36].

The cubic phase function is a bilinear time-frequency rate distribution function. It

has a similar form to the Cohen’s class time frequency distributions. However, the

cubic phase function is used to estimate the instantaneous frequency rate of the signal.

Consider the cubic phase signal

s(t) = Aej(a0+a1t+a2t2+a3t3). (3.34)
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(a) 3-D mesh plot

(b) 2-D plot

Figure 3.6: The Guo-Durand-Lee distribution of the sum of two chirp (Equation 3.7).
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By substituting s(t) given in Equation 3.34 into Equation 3.33, one can obtain

CP (t, Ω)

=

∫ ∞
0

Aej(a0+a1(t+τ)+a2(t+τ)2+a3(t+τ)3)Aej(a0+a1(t−τ)+a2(t−τ)2+a3(t−τ)3)e−jΩτ
2

dτ

= A2ej(2a0+2a1t+2a2t2+2a3t3)

∫ ∞
0

e(2a2+6a3t−Ω)τ2dτ.

(3.35)

The Equation above gives distribution of power on the time-frequency rate plane for

s(t). It is obvious that the peaks of the distribution lies on the line Ω = 2a2 + 6a3t.

Instantaneous frequency rate is defined as the second derivative of the phase of the

signal. The frequency rate of the signal given in Equation 3.34 is

IFR =
d2(a0 + a1t+ a2t

2 + a3t
3)

dt2

= 2a2 + 6a3.

(3.36)

which is equal to the peak curve of the cubic phase function.

Figure 3.7 shows the cubic phase time-frequency rate distribution of sum of two cubic

phase signals, exp(j2pi(500+50t+25t2+75t3))+exp(j2pi(500+50t+25t2+100t3)).

Frequency rate curves of the signals are calculated as 50 + 450t Hz/sec and 50 + 600t

Hz/sec respectively. The calculated curves can easily be seen from the Figure 3.7a

and Figure 3.7a.

Due to its bilinear structure, for multicomponent signals, cubic phase function suffers

from cross terms [37] [38] [39]. Another handicap of cubic phase function is that if

the phase order of the signal is higher than 3, the cubic phase function is biased and

inner interferences occurs [38]. For example, for 4th order polynomial phase signal,

the cubic phase function peaks along the 2a2 +6a3t+2a4τ
2 +12a4t

2, which depends

on the delay term. Therefore, the peaks of the cubic phase function is no more a

line. Because of these reasons, the cubic phase function is not applicable to the blade

return signal to get time-frequency rate distribution, which has sinusoidal phase.
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(a) 3-D mesh plot

(b) 2-D plot

Figure 3.7: The Cubic Phase Function of the sum of two cubic phase signal.
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CHAPTER 4

PROPOSED ALGORITHM

This chapter describes the signal processing algorithm that can be used to extract

blade parameters from simulated blade return signal. Firstly, the return signal will be

analyzed with traditional methods. Then, the proposed algorithm will be described.

4.1 Introduction

To identify a target, the target must have different features that others do not have. For

a helicopter, most characteristic part is blade and the most distinctive blade parameters

are number of blades and blade length. The table below shows the different blade

parameters for different type of helicopters.

Table 4.1: Blade Parameters for Different Helicopters
Helicopter Blade Length (m) Num. of Blades Max rps

AH-1W SUPERCOBRA 7.3 2 4.9
BELL-206 LONGRANGER 5.64 2 6.5
EC-130 EUROCOPTER 5.35 3 6.5
EC-120 COLIBRI 5 3 6.9
AH-64 APACHE 7.3 4 4.8
UH-60 BLACK HAWK 8.18 4 4.3
MD-500 4.02 5 8.2
CH-53 SEA STALLION 11 6 3.1
CH-53E SUPER STALLION 12.04 7 2.9

As seen from Table 4.1, helicopters can be identified by their blade lengths and num-

ber of blades. The proposed method tries to extract these parameters. The algorithm

starts with getting time-frequency image of the helicopter blade signal. After get-
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ting the image, the flash times and positions of the approaching and receding blades

will be found separately. Then, the tip Doppler frequency of the blades will be esti-

mated. At the end, the Hough transform will be implemented on the time-frequency

image with the parameters found before in order to estimate the period of blade tip

modulation.

In this chapter, the helicopters used in simulations are AH-64 APACHE and EC-130

EUROCOPTER. The rotation rate of the blades are 4.8 and 6.5 rps respectively (max

rps values are used). The blade numbers and the blade lengths are given in the Table

4.1.

For this work, the used radar is a pulsed Doppler tracking radar. Assume that tracking

is perfect such that the target is always in the 3 dB beamwidth of the radar and the

returned pulse from the target is always in the range gate of the radar. The radar has

also the capability to track the helicopter fuselage Doppler frequency. The COHO

(coherent oscillator) is operated by the output of the Doppler tracker in order to set the

helicopter fuselage return signal’s frequency to exactly middle of the IF (intermediate

frequency). After that, a perfect MTI (moving target indicator) circuit suppresses

the fuselage signal. Therefore, only remaining signal component is the blade return.

Because of this reason, in this work, only the blade return signal at the baseband is

modeled.

The effective parameters of the radar for our algorithm are the carrier frequency and

the prf (pulse repetition frequency). As given in Equation 2.10, the received Doppler

frequency is directly depended on the carrier frequency of transmitted signal.

The prf value is the sampling rate of target motion. To get alias free spectrum (or

spectrogram), the prf value must be at least twice the maximum Doppler frequency.

The maximum received Doppler frequency is the blade tip Doppler frequency when

the blade is perpendicular to radar line of sight. The linear velocity of the blade tip is

Vtip = 2πLfrotor (4.1)

Main rotor blades are designed to have a maximum linear tip velocity which is less

than the speed of sound (about 340 m/s). Therefore the maximum tip Doppler fre-
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quency according to Equation 2.14 is 22.67 kHz. The prf is twice of the maximum

Doppler frequency, which is about 45.3 kHz. However, for bilinear time-frequency

distributions, the sampling frequency must be twice the Nyquist rate [10], which is

90.6 kHz. Therefore, the 90 kHz prf is chosen for simulations.

In this chapter, for the simplicity of understanding of the algorithm, the noise power

is chosen as 60 dB below the peak power (occurs when one of the blades is perpen-

dicular to the radar line of sight) of the received signal (PSNR = 60 dB).

In this work, returned blade signal from helicopter is modeled as described in Chapter-

2. Contribution of tail rotor is ignored since the main rotor blades have larger RCS

than tail rotor blades, and the returned Doppler frequency of tail rotor is generally

much higher than the Doppler frequency caused by the main rotor [25]. It is also

assumed that while the observation time, the rps of the main rotor stays constant.

4.2 SNR Anaylsis

There are two noise sources for radar receivers. First one is the receiver thermal noise

caused by wave guides, duplexers, amplifiers and other receiver parts. The second

noise source is the noise that comes from the environment. In the calculations in this

work, this noise source is not considered. The noise is created with the desired SNR

value which is defined as

SNR =
Ps
Pn

(4.2)

where Ps is the signal power and Pn is the additive noise power. The noise is modeled

as complex Gaussian random variables with variance of σ2. The power of the noise

(Pn) is the variance (σ2) of it. Therefore, the generated noise is

CN (0,
Ps

SNR
). (4.3)

However, the signal returned from the helicopter blades is not constant. As seen from

Figure 4.2 and Figure 4.3, the ratio of maximum and minimum received powers is
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about 55 dB. Note that the receiver thermal noise level stays constant. Therefore,

for this situation, the SNR must be defined in a different manner. One way is using

PSNR (Peak Signal-to-Noise ratio). The peaks signal level is received when one of

the blades is perpendicular to the radar line of sight. This means that the ωt term in

Equation 2.29 is equal to π/2 (or −π/2). The another way to express the SNR is

average SNR, which is the ratio of average received power to average noise power in

a period of time. Average received power can be calculated by using

Ps,average =
1

N

N∑
n=1

|s[n]|2 (4.4)

where s[n] is the sampled received signal (sampled with pri) and N is the total number

of received pulses such that,

N =
1

frotor × pri
. (4.5)

Note that 1/frotor is one period of helicopter rotor, therefore N is the total number

of received pulses within one period. The summation is from 1 to N, because the

returned signal from blades is periodic with a period of 1/frotor.

Variation of SNR in time can be seen from Figure 4.1a and Figure 4.1b. The figures

are obtained for 60 dB PSNR values. The calculated average SNR values are 28.28

dB and 34.24 dB respectively. Note that although the PSNR values are same, there

is a difference between the average SNR values. One reason is that while AH-64

APACHE has 4 blades (even number), the EC-130 has 3 blades (odd number). For

even number blade returns, the flashes are caused by two blades. Another reason of

the difference is the blade length. A flash resulting from a longer blade length will

have a shorter duration while for a shorter blade, it will spread over time [24].
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(a) AH-64 APACHE

(b) EC-130

Figure 4.1: SNR versus Time (for 60 dB PSNR).

4.3 Return Signal Analysis

The returned signals from blades of helicopter is modeled as described in Chapter-2.

The resultant received signal for AH-64 APACHE is shown in Figure 4.2. The blade

flashes can easily be recognizable from the figure. Remember that the flashes occur

when a blade is oriented perpendicular to the radar line-of-sight at which the RCS is

maximum. Because there are even number of blades, two of the blades are oriented

perpendicular to the radar line of sight simultaneously. There are four flashes, because
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the observation time is equal to one period of main rotor which is 1/4.8 = 0.2083 s.

The received signal from the blades of EC-130 is shown in Figure 4.3. There are 6

flashes seen throughout one period of the helicopter rotor. The reason why there are

2×(number of blades) flashes is that there are odd number of blades. Therefore, there

is no overlapping between the approaching and receding blade flashes.

Figure 4.2: Returned Signal Power versus Time (AH-64 APACHE, 4.8 rps).

The observed period of flashes depends on the number of blades n and the main rotor

rps as

observed period of flashes =


1

2n×frotor , if n is odd

1
n×frotor , if n is even

(4.6)

which is the only information extracted from the time signal.

Fourier transform of the returned signal can be seen in Figure 4.4. The positive

Doppler side of the plateau region is caused by approaching blade returns while neg-

ative side is caused by the receding blade returns. The tip velocity of the helicopter
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Figure 4.3: Returned Signal Power versus Time (EC-130, 6.5 rps).

blade is calculated as ∼220.16 m/s by using Equation 4.1. The corresponding max-

imum tip Doppler frequency is the 14.677 kHz which can be verified from Figure

4.4. The spectrum of received signal from the EC-130 can be seen in Figure 4.5. The

tip velocity of the blades of EC-130 is 218.5 m/s. The corresponding maximum tip

Doppler frequency is 14.566 kHz. This can be seen from the spectrum of EC-130 in

Figure 4.5.

Note that the maximum tip Doppler frequency is not a useful information alone, but

it gives the information about L× frotor. By solving Equation 4.1 into Equation 2.14,

it gives

FD,tip =
2× 2πLfrotor

λ
. (4.7)

The analysis given in this section shows that the signal and the frequency spectrum

of the blade return are not sufficient to extract the necessary parameters for helicopter

identification. Therefore, more detailed analysis needed.
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Figure 4.4: Returned Signal Spectrum (AH-64 APACHE, 4.8 rps).

4.4 Parameter Extraction Using Joint Time-Frequency Analysis

The analysis in the previous section shows that the traditional analysis of time and

frequency is not sufficient for helicopter blade parameter estimation. Therefore, joint

time-frequency techniques are used for parameter extraction. One advantage of joint

time-frequency analysis is that one can separate the flashes due to approaching or

receding blades. This can not be possible using time signal or spectrum. In time

signal, the flash instants can easily be seen but there is no way to understand if it is

caused by an approaching or receding blade. While spectrum shows the power of

each frequency component of the return signal, there is no information about when

that frequency occurred. Another advantage is that it allows to observe the trace

produced by the tip of the blades. In this chapter, the time-frequency distribution of

the return signal is obtained using smoothed pseudo Wigner-Ville distribution.

Figure 4.6 shows the SPWVD of the returned signal of AH-64 APACHE. As seen

from the figure, the Doppler frequency of the flashes are both negative and positive,
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Figure 4.5: Returned Signal Spectrum (EC-130, 6.5 rps).

because two of the blades are oriented perpendicular to the radar line of sight simul-

taneously. It can also be seen that the tips of the blades produce sinusoidal traces

[3].

Figure 4.7 shows the SPWVD of the returned signal of EC-130 with 6.5 rps. As

seen from the figure, the flashes have positive frequencies and negative frequencies

occurring at different times. Since there are odd number of blades, the approaching

and receding blade flash times are different.

As seen from Figure 4.6 and Figure 4.7, the flash periods can be calculated separately

for approaching and receding blades. It is an important parameter for the blade feature

extraction as seen from Equation 4.8.

Tflash,approaching = Tflash,receding =
1

n× frotor
. (4.8)

Note that the period of approaching and receding blades are equal. because of this

reason, both can be called as Tflash. With joint time-frequency analysis, we can get
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Figure 4.6: SPWVD of Returned Signal (AH-64 APACHE, 4.8 rps).

the information about if there are even or odd number of blades. Therefore, it is

more useful to use the Tflash instead of the observed flash period measured from the

time signal. The Equation 4.8 is the modified version of Equation 4.6 with separately

extracted information about approaching and receding blade periods.

As seen from Equation 4.6, without blade tip trace, the obtained informations are still

insufficient to calculate number of blades. We also need to extract the rps (or period)

of blades. The information about the rps of blades can be extracted from the time-

frequency image. The sinusoidal trace of blade tips gives the angular information

about the blades. The period of traces equals to 1/frotor. Note that each trace has

same period. As seen from Figure 4.6 and Figure 4.7, the periods of tip traces are

about ∼0.208 ms and ∼0.154 ms respectively, which corresponds to

Ttip trace = 1/frotor. (4.9)
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Figure 4.7: SPWVD of Returned Signal (EC-130, 6.5 rps).

Now there are two equations (Equation 4.8 and Equation 4.9) with two unknowns

(frotor and n). Therefore, one of the blade parameters, number of blades, can be

calculated as

n =
Ttip trace

Tflash
. (4.10)

Another parameter of the blade is the length of the blade. To obtain an equation for

the blade length, Equation 4.9 can be solved into Equation 4.7. The resultant equation

is

L =
FD,tipλTtip trace

4π
(4.11)

Therefore, for the estimation of blade parameters, n and L, the required measurements

are Tflash, FD,tip and Ttip trace.
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4.4.1 Finding Flash Period (Tflash)

The period of approaching and receding blades (Tflash) can be calculated by finding

the approaching and receding flash instances in the time-frequency image. The main

reason of why we could not use time domain signal to find flash instances is that

there is no information about if the flash is from an approaching or receding blade.

However, magnitude square of time signal can be separated into two parts such that

each part has desired Doppler, as

|s(t)|2 = |s+(t)|2 + |s−(t)|2 (4.12)

where s+(t) is the positive Doppler frequency component and the s−(t) is the nega-

tive Doppler frequency component. Note that magnitude square of time signal gives

instantaneous power. As seen from Figure 4.6 and Figure 4.7, the approaching flashes

are at the positive frequency side of the time frequency image while receding flashes

are at the negative frequency side. Therefore, the positive frequency side of the

time-frequency distribution image is the time-frequency distribution of the s+(t) and

the negative side of it is the time-frequency distribution of the s−(t). However, the

problem is getting the time signal from the time-frequency distribution. Remember

that the time marginal property of the ideal joint time-frequency distribution given in

Equation 3.2, summing up the energy distribution for all frequencies at a particular

time gives the instantaneous power of the signal at that time. Therefore,

|s(t)+|2 =

∫ +∞

0

P (t, ω)dω (4.13)

and

|s(t)−|2 =

∫ 0

−∞
P (t, ω)dω (4.14)

where P (t, ω) is the joint-time frequency distribution. Figure 4.8 and Figure 4.9 show

the positive and negative Doppler sides of SPWVD of s(t) and the obtained |s+(t)|2

and |s−(t)|2 for the AH-64 APACHE (4.8 rps) and the EC-130 (6.5 rps). Note that
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the magnitudes in Figure 4.8a, Figure 4.8b, Figure 4.9a and Figure 4.9b are plotted in

linear scale.

4.4.1.1 Noise Analysis And Implementation Of CA-CFAR

To find the flash instances from the time domain signal, CA-CFAR (cell averaging

constant false alarm rate) threshold method can be used. If the noise in reference

cells are independent and identically distributed samples governed by an exponential

distribution, the CA-CFAR detector is nearly optimal (as number of reference cell

increases, the detector approaches to optimum detector) [26].

The basic idea of CA-CFAR is to calculate an adaptive threshold level for the chang-

ing conditions instead of determining a hard threshold level. The detector adjusts

the threshold level with desired and measured parameters. The desired parameter is

probability of false alarm, and the measured parameter is the mean power of the noise

(or interference). The actual average interference power is estimated from the signal

and so the threshold level is continuously adjusted to provide the desired false alarm

rate. This type of detectors is called as CA-CFAR.

Block diagram of CA-CFAR detector can be seen in Figure 4.10. There is a sliding

window that contains reference cells, guard cells and the cell under test (CUT). The

reference cells are used to calculate the average interference power. The CUT is

tested if it exceeds the calculated threshold or not. The CUT and the guard cells are

not taken into account while calculating the average interference power.

The average interference power can be calculated as

Z =
1

M

M∑
i=1

xi (4.15)

where xi is the power at the ith reference cell and M is the total number of reference

cells. The threshold multiplier K0 is calculated as

K0 = M(pfa−1/M − 1) (4.16)
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(a) |s+(t)|2 (b) |s−(t)|2

(c) Positive Doppler Side of SPWVD of s(t) (d) Negative Doppler Side of SPWVD of s(t)

Figure 4.8: The Positive and Negative Doppler Sides of SPWVD of s(t) and the

Obtained |s+(t)|2 and |s−(t)|2 (AH-64 APACHE, 4.8 rps).

(a) |s+(t)|2 (b) |s−(t)|2

(c) Positive Doppler Side of SPWVD of s(t) (d) Negative Doppler Side of SPWVD of s(t)

Figure 4.9: The Positive and Negative Doppler Sides of SPWVD of s(t) and the

Obtained |s+(t)|2 and |s−(t)|2 (EC-130, 6.5 rps).
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Figure 4.10: Block Diagram of CA-CFAR [29].

where pfa is the probability of false alarm. The resultant threshold level for the CUT

is

threshold = K0Z = (pfa−1/M − 1)
M∑
i=1

xi (4.17)

However, the noise power distributions of the obtained |s+(t)|2 and |s−(t)|2 are not

necessarily exponential since many time-frequency distributions do not satisfy the

marginal properties. Note that the WVD, CWD and GDLD satisfy the marginals

while PWVD, SPWVD and spectrogram do not [23] [27] [28] [20].

Figure 4.11 shows the noise analyses of time signals, which are reverted from the

time-frequency distributions by summing up the energy distribution for all frequen-

cies as described in previous section.

Figure 4.11a shows the time domain input signal, which is the generated complex

Gaussian noise. Figure 4.11c, Figure 4.11e and Figure 4.11g show the time signal
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(a) Input Noise (b) Histogram of Input Noise

(c) Time Signal Reverted from SPWVD

.

(d) Histogram of Time Signal Reverted from

SPWVD

(e) Time Signal Reverted from CWD (f) Histogram of Time Signal Reverted from CWD

(g) Time Signal Reverted from GDLD

.

(h) Histogram of Time Signal Reverted from

GDLD

Figure 4.11: The Noise analysis in Time-Frequency Distribution.

56



reverted from SPWVD, CWD and GDLD respectively. Figure 4.11b, Figure 4.11d,

4.11h and Figure 4.11f show the histogram of corresponding signals. As seen from

Figure 4.11a, the distribution of the input noise is exponential.

As seen from Figure 4.11c, one can say that, the reverted signal from the SPWVD

is different from the original signal which is given in Figure 4.11a. It can easily be

recognized that the signal in Figure 4.11c is the smoothed (low-passed) version of the

original signal. Also, as seen from the histogram given in Figure 4.11d, the distribu-

tion of noise is completely different from the original one which is given in Figure

4.11b. It is an expected result, because the SPWVD does not satisfy the marginal

properties.

However, as seen from Figure 4.11e, reverted signal from the CWD is a perfect copy

of the original signal given in Figure 4.11a. It is also clear that the distributions of

two signals are exactly the same as seen in Figure 4.11f and Figure 4.11b. Similarly,

as seen from the Figure 4.11g and 4.11h, the time signal and the histogram are same

with the graphs given in Figure 4.11a and Figure 4.11b. This is also expected because,

CWD and GDLD satisfy the marginal properties.

Figure 4.12 shows the CA-CFAR implementation over the signals s+(t) and s−(t)

reverted from the SPWVD for the blade returns of AH-64 APACHE and EC-130. For

the simulations, the probability of false alarm (pfa) is set to 10−5. As seen from the

graphs, the CA-CFAR threshold is exceeded at flash instances.
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(a) |s+(t)|2 and the Calculated CFAR Threshold

(AH-64 APACHE, 4.8 rps)

(b) |s−(t)|2 and the Calculated CFAR Threshold

(AH-64 APACHE, 4.8 rps)

(c) |s+(t)|2 and the Calculated CFAR Threshold

(EC-130, 6.5 rps)

(d) |s−(t)|2 and the Calculated CFAR Threshold

(EC-130, 6.5 rps)

Figure 4.12: Implementation of CA-CFAR Over the Signals s+(t) and s−(t)

Reverted From SPWVD for AH-64 APACHE and EC-130

After finding the flash instances, the Tflash,approaching and Tflash,receding can be esti-

mated as

Tflash,approaching =
1

N − 1

N−1∑
i=1

(t(i+1),(approaching) − t(i),(approaching)) (4.18)

Tflash,receding =
1

N − 1

N−1∑
i=1

(t(i+1),(receding) − t(i),(receding)) (4.19)

It is very obvious that the approaching and receding flash periods are equal to each

other for a helicopter. Therefore, Tflash,approaching and Tflash,receding are expected to
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be equal. We can call them Tflash. However, for more accurate evaluation of the

period, the average of Tflash,approaching and Tflash,receding can be used as

Tflash =
Tflash,approaching + Tflash,approaching

2
(4.20)

4.4.2 Finding Maximum Tip Doppler Frequency (FD,tip)

To find the blade length, it is necessary to find the maximum tip Doppler frequency of

the blade at flash instant. Figure 4.13 shows time-frequency distribution at detected

flash instances. Figure 4.13a and Figure 4.13c shows approaching blade flashes for

AH-64 and EC-130 respectively. As seen from the figures, the frequencies are pos-

itive. Figure 4.13b and Figure 4.13d shows receding blade flashes for negative fre-

quencies.

By summing up energy distributions for all flashes (for approaching and receding

blades separately), we will get the spectrum of blades at flash instances. This is

equivalent to use the flash instances of time signal to get the spectrum. To find the

maximum tip Doppler frequency (FD,tip) of blades, edge detection algorithm is imple-

mented. The edge detection algorithm takes derivative of the obtained flash spectrum

and finds the absolute peak value of the derivative of the spectrum.

Figure 4.14 shows the spectrum of flashes and the derivative of it for the approaching

and receding blades separately for AH-64 and EC-130. The blue line in the graphs

shows the spectrum of flashes while the red line shows the derivative of the spectrum.

The absolute value of the detected tip Doppler frequency from the approaching and

the receding blade return are expected to be equal. Because of this reason and for

more accurate estimation, the maximum tip Doppler frequency (FD,tip) can be es-

timated by averaging the calculated absolute values of tip Doppler frequencies for

approaching and receding blade at flash instances.
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(a) Detected Approaching Flashes (AH-64

APACHE, 4.8 rps)

(b) Detected Receding Flashes (AH-64 APACHE,

4.8 rps)

(c) Detected Approaching Flashes (EC-130, 6.5

rps)

(d) Detected Receding Flashes (EC-130, 6.5 rps)

.

Figure 4.13: Detected Flashes in Frequency Domain for AH-64 APACHE and

EC-130

In the spectrum of the blade returns given in Figure 4.4 and Figure 4.5, the maximum

and the minimum frequency positions are determined by the blade tips. Therefore, the

tip Doppler frequency can be measured from the spectrum of the return signal. How-

ever, knowing the flash instances is sufficient to determine maximum tip Doppler

frequency. There is no need to use spectrum of entire time signal. Also, it is obvi-

ous that the spectrum of complete return signal is more noisy than the spectrum of

only flashes. Therefore, estimating blade tip Doppler frequency from the spectrum of

flashes yields more accurate results than the return signals spectrum.
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(a) Detected Approaching Flashes (AH-64

APACHE, 4.8 rps)

(b) Detected Receding Flashes (AH-64 APACHE,

4.8 rps)

(c) Detected Approaching Flashes (EC-130, 6.5

rps)

(d) Detected Receding Flashes (EC-130, 6.5 rps)

.

Figure 4.14: Detected Flashes in Frequency Domain for AH-64 APACHE and

EC-130

4.4.3 Finding Tip Trace Period (Ttip trace)

For calculation of blade parameters, n and L, necessary parameters are Tflash, FD,tip

and Ttip trace. In the previous sections, Tflash and FD,tip are extracted from the return

signal. As seen from Equation 4.10 and Equation 4.11, Ttip trace is necessary for cal-

culation of both n and L. Remember that the definition of Ttip trace is the period of the

sinusoidal trace of blade tip in the time-frequency distribution.
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Because the trace is a sinusoid, we can model it for one blade as

tip trace = A× cos(2πFtip tracet+ φ0) +B (4.21)

where A is amplitude, B is dc level, Ftip trace is frequency of the trace which is equal

to 1/Ttip trace and the φ0 is the initial phase of the sinusoidal trace.

Some of the tip trace parameters are already extracted in previous sections. It is

obvious that the amplitude A of the sinusoidal trace is equal to FD,tip. Because the

radar compensates the velocity of the body of the helicopter, there is no dc level at

the frequency. Therefore, B is equal to 0 . The constant phase term φ0 is the phase of

the cosine at t = 0. It corresponds to

φ0 = −2πFtip tracetf (4.22)

where tf is the first approaching flash instance of the corresponding blade. Therefore,

the tip trace becomes

tip trace = FD,tip × cos(2π
1

Ttip trace
(t− tf )) (4.23)

The only unknown parameter is the 1/Ttip trace. Note that the trace periods of all blades

are equal to each other for a helicopter because, as seen from Equation 4.9, it only

depends on the frotor of the helicopter rotor. However, the boundaries of the Ttip trace

is not known. Because of these reasons, instead of searching the period of tip trace

Ttip trace, it is better to search the blade number n. n can get a limited number of values,

2, 3, 4, 5, 6 or 7. Also as seen from Equation 4.10, the Ttip trace in Equation 4.25 can

be rewritten by using n as

Ttip trace = n× Tflash (4.24)

where Tflash is found in the previous section.
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4.4.3.1 Estimation Of The Number Of Blades Using Hough Transform

Hough transform is a method for detecting complex patterns on a binary image [31]

[30] [32] [34]. The Hough transform maps the features of an image into sets of points

in the parameter space. The basic idea of the Hough transform is accumulating the

values of the pixels through the created test lines. The test lines are created with the

different parameters from the parameter set. At the end of the procedure, there will

be a matrix called Hough matrix. The dimension of the Hough matrix is equal to

the number of parameters used in Hough transform. The advantages of the Hough

transform are its robustness to noise and discontinuities in the pattern [33]. The main

disadvantage of the Hough transform is the necessary storage and the exponentially

growing complexity of the algorithm when the number of searched parameters in-

crease [30] [33].

Although the Hough transform is defined for binary images, it can used in gray scale

images. Note that the time-frequency distribution can be treated as a gray scale image.

In our case, the searched line is a sinusoid given in Equation 4.23. The only parameter

for the Hough transform is the period of tip trace Ttip trace. Equation 4.23 is derived for

the trace of one blade. For each blade of the helicopter, the tip traces are

tip tracei = FD,tip × cos(2π
1

n× Tflash
(t− tf,i)) (4.25)

where tf,i is the first approaching flash instance of the ith blade. The FD,tip, Tflash

and flash instances (tf,i) are found in previous sections. However, it is not possible to

know which flash corresponds to which blade. The first approaching flash instance of

each blade (tf,i) can be found separately by using the first approaching flash instance

of the first blade (tf,1) and the Tflash. Remember that the definition of the Tflash is

the flash period of approaching (and/or receding (they are equal)) blade flashes. It

is obvious that the time between the approaching flash instances is equal to Tflash.

Therefore, tf,i is

tf,i = tf,1 + (i− 1)× Tflash (4.26)
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where tf,1 is the first approaching blade flash of first blade. The resultant trace for ith

blade for n blade helicopter is

tip tracei = FD,tip × cos(2π
1

n× Tflash
(t− (tf,1 + (i− 1)× Tflash))) (4.27)

To increase the detection performance of Hough transform, a modification should be

made on the time-frequency distribution. Remember that the basic idea behind the

Hough transform is to accumulate the values of the pixels through the test lines. The

value of the corresponding entry of the Hough matrix increases unnecessarily when

the trace intersects with one of the blade flashes. The value of the pixels through the

flash is very high compared to the values through the tip trace. Therefore, the detec-

tion probability of Hough transform decreases. Also, as seen from Figure 4.7, for odd

number of blades, there is blade root trace. As seen from Figure 4.15, the pixels at

the flash instances and those around zero Doppler are masked before implementation

of Hough transform.

(a) Masked Time-Frequency Distribution for

AH-64 APACHE, 4.8 rps

(b) Masked Time-Frequency Distribution for

EC-130, 6.5 rps

Figure 4.15: Masked Time-Frequency Distributions for AH-64 APACHE and

EC-130

For this case, the Hough matrix is one dimensional. The only searched parameter is

the number of blades n.

However, the effectiveness of Hough transform is directly related with the accuracy of

the estimated maximum tip Doppler frequency (FD,tip). In case there is an inaccuracy
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of the estimation of FD,tip, it should be added to the search parameters. However, to

decrease the computation time, the search boundaries for the tip Doppler frequency

can be restricted with the calculated ±3%. The value ±3% is found experimentally.

Since it is already known whether the number of blades is even or odd, search param-

eters can further be reduced. If there are odd number of blades, the searched blade

numbers are 3, 5 and 7, else the searched blade numbers are 2, 4 and 6.

Figure 4.16 shows the resultant Hough matrix for the time-frequency distribution

images of the AH-64 APACHE and EC-130. As seen from the Hough matrix for

AH-64 APACHE in Figure 4.16a, the maximum entry of the matrix is at 4 blade and

14.68 kHz. The Figure 4.16b shows the Hough matrix for EC-130. The maximum

entry of the matrix is at 3 blade and 14.59 kHz. From Equation 4.10, the Ttip trace can

be calculated from the Tflash and n. The Tflash for the AH-64 APACHE has been

calculated before and the number of blades is found by the Hough transform.

(a) Hough Matrix for AH-64 APACHE, 4.8 rps (b) Hough Matrix for EC-130, 6.5 rps

Figure 4.16: Hough Matrix for AH-64 APACHE and EC-130

4.5 Summary

For the classification of helicopters, required features are the number of blades n and

the length of the blades L. Equation 4.10 and Equation 4.11 show how the blade

features can be calculated from the extracted signal parameters. As seen from Equa-

tion 4.10 and Equation 4.11, the necessary parameters to calculate blade features are

Tflash, Ttip trace and FD,tip. The Tflash was calculated by applying CA-CFAR algo-
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rithm to the synthetic time signals reverted from the time-frequency distribution in

Section 4.4.1. The Ttip trace is obtained as an indirect result of the Hough transform in

Section 4.4.3. The FD,tip is calculated using the flashes in the time-frequency distri-

bution in Section 4.4.2. However, FD,tip is also searched with the Hough transform

for fine-tuning in Section 4.4.3.
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CHAPTER 5

SIMULATION RESULTS

In this chapter, the simulation results of the proposed algorithm for different type of

helicopters, different time-frequency distribution techniques and with different SNR

values will be given.

5.1 Simulation Configurations

Simulations are performed for each helicopter given in Table 5.1 for average SNR

values of 30, 25, 20, 15, 10, 5, 0, -5 and -10 dB. Also, To get reliable results, each

simulation is performed for 20 times. Note that the frotor values of the helicopters are

chosen as the 0.7×maximum rps values, which are close to their nominal operational

values. To compare effectiveness of different time-frequency distributions for our

proposal, all simulations are repeated for SPWVD, GDLD and CWD.

The blade return signal is modeled as if it obtained by a pulse-Doppler tracking radar

with carrier frequency of 10 GHz and with constant prf of 90 kHz. The reason of

choosing these parameters and the radar model are explained in the previous chapter.

While sampling the blade dynamics with radar, the frotor values of the helicopter

rotors are assumed to stay constant. The observation duration of the radar is assumed

to be 0.5 seconds for all configurations, which corresponds to maximum of periods of

the rotors of the helicopters given in Table 5.1 (Note that CH-53E has the maximum

period, which is 0.493 seconds).

Average SNR is the most suitable choice for our situation because of the reasons given
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Table 5.1: Simulated Helicopter Parameters
Helicopter Blade Length (m) Number of Blades frotor

AH-1W 7.3 2 3.43
EC-130 5.35 3 4.55
AH-64 7.3 4 3.36
MD-500 4.02 5 5.74
CH-53 11 6 2.17
CH-53E 12.04 7 2.03

in previous chapter. The corresponding peak-SNR values of blade return signals are

given in Table 5.2. As seen from the table, although average SNR values are the same,

the PSNR values are different. This is because longer blade length will have a shorter

duration while shorter blade will be splayed over time [24] and then the resultant peak

powers are different.

Table 5.2: The PSNR Values Corresponding to Different Average SNR’s of Used
Helicopters

AH-1W EC-130 AH-64 MD-500 CH-53 CH-53E

-10 dB 25.4 dB 15.7 dB 21.7 dB 12.2 dB 21.5 dB 15.4 dB
-5 dB 30.4 dB 20.7 dB 26.6 dB 17.3 dB 26.5 dB 20.5 dB
0 dB 35.4 dB 25.7 dB 31.7 dB 22.3 dB 31.6 dB 25.5 dB
5 dB 40.4 dB 30.7 dB 36.6 dB 27.3 dB 36.5 dB 30.5 dB

10 dB 45.4 dB 35.7 dB 41.7 dB 32.3 dB 41.5 dB 35.5 dB
15 dB 50.4 dB 40.7 dB 46.6 dB 37.3 dB 46.5 dB 40.5 dB
20 dB 55.4 dB 45.8 dB 51.7 dB 42.3 dB 51.6 dB 45.5 dB
25 dB 60.4 dB 50.7 dB 56.7 dB 47.3 dB 56.6 dB 50.5 dB
30 dB 65.4 dB 55.7 dB 61.7 dB 52.3 dB 61.5 dB 55.5 dB

The results are obtained to measure performances of flash period (Tflash) estimator,

maximum tip Doppler frequency (FD,tip) estimator and number of blades (n) estima-

tor. For flash period (Tflash) and maximum tip Doppler frequency (FD,tip), the root

mean square error (RMSE) is used as a measure. However, because the number of

blades can take only restricted integer values, instead of using RMSE, probability of

success is used.
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5.2 Results

Table 5.3 shows the normalized root mean square errors of the estimated flash peri-

ods (Tflash). Remember that the Tflash is calculated by using the found flash time

instances and flash instances are found by using the CA-CFAR detector. Therefore,

the table shows the effectiveness of applying CA-CFAR detector algorithm to flash

detection over time-frequency distribution. As seen, obtained RMSE values are neg-

ligibly small. For all cases, the RMSE value is decreasing from -10 to 0 dB. After that

point, The RMSE value nearly stays constant while average SNR is increasing. As

a result, all methods gives nearly the same performance for the estimation of Tflash.

Note that the values on the table is expressed as a percentage of the actual flash period.

Table 5.3: Normalized RMSE Values of Estimated Flash Periods (Tflash)
SPWVD GDLD CWD

-10 dB %0.795785 %0.694398 %0.755054
-5 dB %0.040620 %0.042620 %0.036620
0 dB %0.000683 %0.000658 %0.000684
5 dB %0.000657 %0.000635 %0.000623

10 dB %0.000650 %0.000675 %0.000537
15 dB %0.000607 %0.000620 %0.000542
20 dB %0.000603 %0.000620 %0.000527
25 dB %0.000610 %0.000603 %0.000520
30 dB %0.000604 %0.000570 %0.000358

Table 5.4 shows the RMSE values of the estimated maximum tip Doppler frequency

(FD,tip). The maximum tip Doppler frequency is extracted by using the spectrum of

flashes obtained from the flash times. For SPWVD case, the RMSE values are below

the %1 which means that the standard deviation of the error is below the %0.5 of the

actual maximum tip Doppler frequency. For the GDLD case, the RMSE is just above

%1 and for CWD case, it is just below the %1. For all cases, the effect of SNR is

small. As a result, SPWVD and CWD methods gives nearly the same performance

for the estimation of FD,tip and they are better than the GDLD method. Note that the

values on the table is expressed as a percentage of the actual tip Doppler frequency.

Figure 5.1 shows the probability of successful estimation of number of blades versus

average SNR for different helicopters and for different time-frequency distributions.
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Table 5.4: Normalized RMSE Values of Estimated Tip Doppler Frequency (FD,tip)
SPWVD GDLD CWD

-10 dB %0.898569 %1.083545 %0.884094
-5 dB %0.885258 %1.072466 %0.869259
0 dB %0.868521 %1.066753 %0.855594
5 dB %0.842364 %1.066547 %0.830107

10 dB %0.855791 %1.054782 %0.826614
15 dB %0.831215 %1.036541 %0.827515
20 dB %0.821547 %1.011862 %0.823254
25 dB %0.833254 %1.018625 %0.821456
30 dB %0.828014 %1.010547 %0.823354

The blue lines show SPWVD, red lines show GDLD and the green line show CWD

method.

Figure 5.1a shows the success probability for AH-1W. For SPWVD method, for 15 dB

and higher average SNR values, the success probability is nearly 100%. For GDLD

method, the probability of success is nearly 100% for 25 dB or higher average SNR.

For CWD method, up to 20 dB average SNR, the probability of success is nearly

100%.

Figure 5.1b shows the success probability for EC-130. For SPWVD method, for

10 dB and higher average SNR values, the success probability is nearly 100%. For

GDLD method, the probability of success is nearly 100% for 20 dB and higher av-

erage SNR values. For CWD method, up to 15 dB average SNR, the probability of

success is nearly 100%.

Figure 5.1c shows the success probability for AH-64. For SPWVD method, for 10 dB

and higher average SNR values, the success probability is nearly 100%. For GDLD

and CWD methods, the probability of success is nearly 100% for 20 dB and higher

average SNR.

Figure 5.1d shows the success probability for MD-500. For SPWVD and CWD

method, for 15 dB and higher average SNR values, the success probability is nearly

100%. For GDLD method, the probability of success is nearly 100% for 20 dB and

higher average SNR.
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Figure 5.1e shows the success probability for CH-53. For All methods, for 20 dB and

higher SNR values, the probability of success is nearly 100%.

Figure 5.1f shows the success probability for CH-53E. For All methods, for 20 dB

and higher SNR values, the probability of success is nearly 100%.

(a) AH-1W. (b) EC-130.

(c) AH-64. (d) MD-500.

(e) CH-53. (f) CH-53E.

Figure 5.1: Probability of Successful Estimation of Number of Blades versus

Average SNR For Different Type of Helicopters.
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All the graphs in Figure 5.1 shows that, from an SNR point, the probability of suc-

cessful estimation of number of blades decreases with the decreasing average SNR as

expected.

Figure 5.2 shows an average value for the probability of successful estimations of

number of blades. This graph is obtained by averaging the values given in Figure 5.1.

As seen from the figure, down to 20 dB average SNR, the probability of success is

same for all of the three methods. However, after that point, the probability obtained

with the GDLD method decreases sharper than the others while SPWVD and CWD

methods show nearly same characteristic.

Figure 5.2: Average Probability of Successful Estimation of Number of Blades

versus Average SNR

Figure 5.3 shows the time costs of the time-frequency distribution methods. Note that

the values are normalized to the time cost of GDLD, such that its cost is equal to 1.

As seen from the figure, costs of SPWVD and the CWD is nearly the cost of GDLD

is higher than them.
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Figure 5.3: Time Costs of Time-Frequency Transform Methods

The results show that while our algorithm estimates the FD,tip and the Tflash well even

for lower average SNR values like -10 dB, the estimation of number of blades requires

high average SNR values such as 20 dB and higher. This is because, to estimate the

FD,tip and the Tflash, the blade flashes are used and the RCS of the blade is maximum

at the flash instant. However, to estimate the number of blades, trace of blade tip is

used. If one wants to classify helicopters by L / n quotient, without finding the blade

parameters unambiguously, the proposed technique without Hough transform offers

high probability of success even for low SNR values.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work, we introduced a procedure for micro-Doppler analysis of helicopter re-

turn signal in order to extract the blade parameters. The proposed method combines

both time-frequency analysis and Hough transform . From the micro-Doppler sig-

natures of the return signal, we calculated the blade parameters which are number

of blades, blade length an angular velocity. We also compare the effectiveness of

different bilinear time-frequency techniques for our algorithm.

To process micro-Doppler signatures of blades, firstly we obtained the time-frequency

distribution. Instead of using short time Fourier transform, we used bilinear time-

frequency distribution techniques, since bilinear transforms offer more resolution in

both time and frequency. After getting the distribution, we obtained the separate flash

instances of approaching and receding blades by using CA-CFAR detector. With the

obtained flash instances, we calculated the period of approaching and receding blade

flashes. Then, we obtain the maximum tip Doppler frequency, which occurs when

blade is perpendicular to radar line of sight. We used Fourier transform of blade

return signal to extract this information. However, to increase SNR value, we used

small time windows near flash instances to get Fourier transform. However, period

of flashes and maximum tip Doppler frequency does not give the blade parameters

without the frotor estimate unambiguously. Because of this reason, to extract the

frotor of the rotor, we applied the Hough transform to the time-frequency distribution

image with the extracted parameters.

Simulation results show that our algorithm is very effective under certain conditions.

As seen from Figure 5.2, Table 5.3 and Table 5.4, for 20 dB and higher average SNR
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values, the probability of success of our algorithm is nearly 100% and the error ratio

is below %1. We also conclude that the Hough transform can be applied on the time-

frequency distributions to recognize expected patterns. Another result of our work is

that the SPWDV and CWD give nearly the same results. And they performs better

than the GDL for our algorithm. Also the cost of SPWVD and the CWD is less then

the GDLD. In addition, this work shows that it is feasible to use CA-CFAR for the

purpose of finding flash instances.

For future work, some of the issues that may be explored are listed below:

• expanding the algorithm for jet engine parameter extraction,

• analysis of helicopters that have double main rotor, such as CH-47 Chinook,

• analysis of tail rotor return signal,

• estimation of blade parameters using bi-static radar,

• analysis of real helicopter signal and comparison of the results with synthetic

signal results,

• design of a new kernel for Cohen’s class distribution to analyze blade signals.
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