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ABSTRACT

ESTIMATION IN INTERVAL CENSORED DATA

Bayramoglu, Koniil
Ph.D., Department of Statistics

Supervisor : Assoc. Prof. Dr. Baris Siiriicii

June 2014, 98| pages

Interval censored failure time data occur in many areas including medicine, eco-
nomics, zoology, psychology, sociology and engineering. In such studies, the variable
of interest is often not exactly observed, but known to fall within some interval. In
this thesis, the likelihood functions for fixed and random interval censored data are
obtained. Modified Maximum Likelihood and Copula Methods are utilized for the
estimation of unknown parameters. Bivariate interval censored data are also consid-
ered as a generalization in this work. To estimate the association between two random
variables, we focus on the situation where they follow a copula model. To check the
accuracy and efficiency of the methods, some numerical studies are conducted.

Keywords: interval censored data, estimation, copula, bivariate distributions, random
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ARALIKLI SANSURLU VERILERDE CIKARIM

Bayramoglu, Koniil
Doktora, Istatistik Boliimii

Tez Yoneticisi  : Dog. Dr. Barig Siiriicii

Haziran 2014 , 0§ sayfa

Aralikli sansiirlii veri, tip ekonomi, psikoloji, sosyoloji ve mithendislik gibi alanlarda
yapilan calismalarda yer almaktadir. Bu tip veriler iki nokta arasinda gozlemlen-
mekte, fakat gercek degerleri tam olarak bilinememektedir. Bu tezde, sabit ve rasgele
aralikli sansiirlii veriler icin en cok olabilirlik fonksiyonlar1 elde edilmistir. Uyar-
lanmis En Cok olabilirlik ve Copula yontemleri bilinmeyen parametrelerin tahmin
edicilerini bulmak icin kullanilmustir. iki degiskenli aralikli sansiirlii veriler de bu
calismada daha genel bir durum olarak ele alinmig, degiskenler arasindaki iligskinin
modellenmesi i¢cin Copula yontemi onerilmistir. Monte Carlo simulasyon modeli kul-
lanilarak gelistirilen yontemlerin tutarliliklari ve etkinlikleri incelenmistir.

Anahtar Kelimeler: aralikli sansiirlii veri, ¢ikarim, iki degiskenli dagilimlar, rasgele
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Censoring is one of the most important concepts in recent literature where an obser-
vation of interest is incomplete and observed only when it falls into a certain range.
Censored data can be considered different from missing data, as we get some informa-
tion from the censored observations while missing observations provide no informa-
tion about the variable of interest. Depending on the relationship between the variable
of interest and the censoring point there are various types of censoring mechanisms.

Basically, these are known as right censoring, left censoring and interval censoring.

1.1 Right Censoring and Left Censoring

In right censoring, known as the most common form of censoring, a data point is
above a certain threshold where its exact value is unknown. In other words, subjects
are examined for a certain period, no event has yet occurred when the study comes
to an end. Consider patients, for example, in a clinical trial where the effects of
medicine treatment on Gastrointestinal Carcinoid Tumors are studied for 10 years.
Those patients who have no change in their tumor size by the end of the study are

right censored.

In left censoring, a data point is a below a certain threshold where its exact value is
unknown. In this case, the event of interest has already occurred prior to beginning
the study. The age at which teenagers begin to drink alcohol is an example for the left

censored data.



1.2 Interval Censoring

Interval censoring is used to indicate a type of incomplete data where the study sub-
jects cannot be observed continuously. Therefore, the variable of interest is not known
exactly but is only known to lie between two values. In his well known study, Turn-
bull [44] defined interval censored observation as a "union of several nonoverlapping

windows or intervals".

Interval censored data has applications in many areas including medicine, epidemi-
ology, economics, agronomy, zoology, psychology, sociology, demography, manage-
ment, reliability and engineering. Typical examples of interval censoring mostly arise
in medical and health studies. For example, an individual in the Gastrointestinal Car-
cinoid Tumor study, may skip some of his/her pre-scheduled appointments. This
results in a gap in his/her examination times and he/she returns with a changed tumor
size. Another example can be the time from HIV infection to AIDS diagnosis. For a
HIV positive individual, the HIV infection time can only be determined by observing
the individual’s past. Thus, HIV infection time is not known exactly, but is known to

lie between the last HIV negative and first HIV positive tests [39].

In most applications, the random variable of interest is the time to an event, such as a
death or a disease. However, it can be any random variable representing an inspection
point between —oo and oco. To this point, our random variable of interest can be

defined in a way that starts from —oo or a known point.

Many studies have been conducted under the assumption of normality for the interval
censored data. Swan [40]] obtained the maximum likelihood estimates of unknown
parameters for interval censored data where the variable of interest is normally dis-
tributed. Similarly, Peto [31] assumed that the data from annual surveys on sexual
maturity development of girls was normally distributed and proposed an approach
where he maximized the log-likelihood by a Newton Raphson algorithm. Ren [335]]
provided goodness-of-fit tests for normally distributed interval censored data. In an
another study [34], he proposed a procedure to construct "the empirical likelihood
ratio confidence interval for the mean using a resampling method" which was ap-

plied to the interval censored data under normality assumption. Norwood et al.[29]
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developed a "willingness to pay" method to estimate the demand for livestock ma-
nure under the assumption of normality. Cook and McDonald [10] pointed at an
estimation procedure for the problem of distributional misspecification for cases with
interval censoring. In their example, they assumed that the variable of interest has a

normal distribution.

In literature, several studies have focused on interval censoring. These studies con-
sider nonparametric, semi-parametric as well as parametric approaches. Nonparamet-
ric methods are only reasonable when no assumption is made about the distribution
function of the variable of interest. However, no extrapolation of study results is
possible for the further research. Parametric modeling is known to have some advan-
tages over nonparametric modeling. For example, parametric methods help in finding
the influence of covariates on variable of interest. However, it is quite difficult to
deal with likelihood functions in order to obtain closed-form solutions of maximum
likelihood estimators. Since likelihood equations for interval censored data structure
do not admit explicit solutions when the random variable of interest is assumed to
come from a specific probability density function, researchers prefer to use iterative

algorithms to obtain maximum likelihood estimates of unknown parameters.

Finkelstein and Wolfe [13] assumed no parametric model for unobservable failure
time 7" for interval censored data and came up with a semi parametric model. In
an another study, Finkelstein [12] proposed a proportional hazards model in case of
interval censoring. Self and Grossman [37/]] considered linear rank statistics for test-
ing the differences between groups when we have a interval censored data. Flygare
et.al [14] provided an iterative solution for finding roots of likelihood equation where
they considered two parameter Weibull distribution for the failure time 7". Turnbull
[44]] proposed and algorithm to obtain the nonparametric estimator of the function
for the analysis of the censored and truncated data. This algorithm can be used for
problem of analysis of interval censored data. Gentleman and Geyer [15]] used con-
vex optimization technique to maximize the likelihood function. Groeneboom and
Wellner [[17] proposed convex minorant algorithm to obtain the nonparametric maxi-
mum likelihood estimator and their algorithm was shown to converge faster than the
Turnbull’s self consistency algorithm. Wei et al.[46] considered partial likelihood

estimators for regression parameters under the assumption of "the working indepen-



dence". Cai and Prentice [6] considered the same problem and developed methods for
the estimation of regression parameters. Huang [19] provided "efficient estimation"
for the proportional hazards model. Asymptotic variance of MLE of the regression
parameter was also considered. More recently, Goggins and Finkelstein [16] and
Kim and Xue [22] studied the maximum likelihood method for multivariate interval-
censored data. Kooperberg et.al [23] proposed spline-based method of estimating an
unknown density function. Bebchuk and Betensky [2] considered "multiple imputa-
tion approach" in case of interval censoring. In another study, Betensky et al. [3]
used a local likelihood method. Cai and Betensky [[7] considered "hazard regression"
for interval censored data with piecewise linear spline. Bogaerts et al. [4] considered

multivariate interval censored data and applied accelerated failure time model.

1.3 Motivation and Summary of Work

As can be seen from the previous part, a number of parametric and nonparametric
methods have been proposed to model interval censored data. The common problem
while using parametric approaches is that it is not possible to obtain closed form
solutions from the likelihood equations. This is one part of our motivation and we
propose a parametric method that provides closed form solutions of estimators for

unknown parameters in case of fixed interval censoring.

Consideration of random intervals in similar structures results in even more compli-
cated and difficult inference problems. This problem has not been enough addressed
in the literature and has been a motivation throughout the thesis. Random interval
censoring with parametric distributions leads to bivariate structures between random
inspection points. To handle difficulties arising from this dependency structure, we
utilize the Modified Maximum Likelihood (MML) estimation due to Tiku [41] and
Tiku and Suresh [43]. A special type of copula model is also considered for interval
censoring problems with random intervals. Monte Carlo simulations are performed to
check the accuracy of the approximations. Findings of copula approach for univariate
case is also extended to bivariate interval censoring with random interavals. We also
consider the estimation method of the association parameter of two dependent failure

variables in case of interval censoring.



Note that failure point is considered independent of censoring points in most studies
on interval censored data, in order to easily make an inference. We also have this

assumption throughout the thesis.






CHAPTER 2

UNIVARIATE INTERVAL CENSORING WITH FIXED
INTERVALS

In interval censored data, the only information we have for each individual is that
variable of interest is observed in an interval (L;, R;],i = 1,2,...,n. Interval cen-
sored data that include fixed intervals with both belonging to (—oo, 00), is referred
to as case I interval censored data throughout the study. In this section, the likeli-
hood model for case I interval censored data is presented and the proposed estimation

procedure is given. Thereafter, numerical results are provided.

2.1 Analysis of Case I Interval Censored Data

Let F}, ,(z) be a location and scale parametric family of a distribution given as,

x p—
FM,U(x) =F ( o Iu) Y URS (—OO, OO), >0 (21)
where [ is a cumulative distribution function (cdf) without parameter. Let 77,75, --- | T},
be independently identically distributed (iid) random variables with cdf ), ,. Exact
values of T} are not known but they are known to lie between two successive inspec-

tion points a; and b; (i = 1,2, ..., n).

Then, the likelihood function L based on fixed interval censored sample for ¢; €

(a;, b;) is given by
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Note that 7; (for some 7) might be observed either in (—o0, a;) or (b;, o). Let i and
¢ denote the values of p and o that maximize L (1, ). To determine these estimators,
one needs to take first partial derivative of the log likelihood function and equate them

to zero. By taking logarithms of likelihood L, we get the loglikelihood function as

InL (p,0) = Zln [F'(a;) — F (a})]

=D _nF(a)+ Y n[F )= Fa)l+ > in[l—F @)

i=ni1+1 i=ng+1

(2.3)

Here, n; and n — ny are the numbers of observations between (—o0, a;) and (b;, 00),

respectively. Maximizing InL (u, o) with respect to p and o, we get

OlnL (u,0) N (—1> fla7)
- v = + i
aﬂl o =1 J

(
- ’_i (_71) T‘(b*)b: =0 (2.4)



and

i=n1+1

—~ (=1\ _f)
* 3 () e = 2
i=ng2+1

respectively. It is clear that equations ([2.4) and ([2.5)) do not admit explicit solutions

because of the terms involving the functions g (a;) , g1 (a;, b;) and g2 (b;), where

9(a:) = ;:((Z)) , 2.6)
g1 (ai, b)) = ;Ez; — ;(g) , 2.7)

and
92 (b)) = % 2.8)

A typical way to maximize L (u, o) with respect to unknown parameters y and o
is to use self consistency algorithm proposed by Turnbull [44]]. This method is an
application of EM (Expectation Maximization) algorithm and iterates the likelihood
equation until convergence. Although this approach is easy to implement, it has a
very slow convergence rate. Since this algorithm is iterative, no closed form solution

for the MLE can be obtained.

In this study, we propose Modified Maximum Likelihood method (MML) to estimate
the unknown parameters in case of interval censoring. We utilize the modified max-
imum likelihood estimation method (Tiku, [41]]) that allows us to get closed form
solutions for the unknown estimators. It can be verified empirically that (Tiku, [41]])

the points satisfying




over an interval a < x < b of finite length lie very close to the line

g(x)=a+pz
where o) (@
_g(b)—ygla
=
and
a=g(a)—aB

By linearizing nonlinear functions in ([2.6), ([2.7) and ([2.8) with the equation g (z) =
a + [z, we are able to simplify the ML equations for estimating the mean p and
standard deviation o of a location - scale family distribution from an interval censored

sample. Then, we consider the following linear approximations:

g(a;) = -5 2 vy +vpa) (2.9)

i bi) = = b — a1 — Baal 2.10
91(a ) F(b:)—F( ;k> 052+/627J Q41 61al ( )
and
f ()
)= ——""—= bl . 2.11
g2 (bl) 1—F(b:<) V12+'U22b1 ( )

It is difficult to determine the values of (a1, 551, Vi1, vi1) and (ayz, Biz, Ui, Vin) since
a; and b} are not known. However the intervals, (@, (“U;k)> and ((b;—h)7 @)

are likely to contain the exact values of a; and b}, respectively where

and

Here, [ and ¢ are the initial estimators obtained from the midpoints of the closed
intervals. For the simplicity, we assume [ = 1 in our calculations. When the substitu-

tions are made, we get
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11



and

olnL (p,0) n 1 ! ‘ (e p a; — ju
Oo —_;_;[Z<Vﬂ+vﬂ< o o

=1

1 z (s (54)) (452)]
) (¢

1| & a; —
+; Z (Oéﬂ—i-ﬁil(

Li=n1+1

Q

n

> (umm(b““)) (bi_”)lzo L @13)
g st 1 g o

As a result, the MMLE’s are

= A+ Bo (2.14)
where
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Dot Vit 202, (B2 — Ba) — D, 4 V2
and
. —C++V/C?*+4nE
0= (2.15)
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and

E =0 Z Vi1 (CLZ‘ — A)2 — Z (OZZ‘Q (bZ — A)2 — 41 (CLZ‘ — A)2> + Z V;o (bz — A)2
i=1 i=n1+1 i=natl

A proof is available in Tiku et. al [1] that under some regularity conditions, MMLE’s
have exactly the same asymptotic properties as ML estimators. See also Cohen [9]
where ML estimators are obtained iteratively. As it is seen, MMLE’s have closed

form solutions and are easier to calculate.

Remark: For interval censoring with fixed and random intervals, it is quite difficult to
find a related data set since an important assumption needs to be held. It is necessary
to verify the parametric distributional structure of an interval censored data set by
conducting an appropriate goodness-of-fit. This needs some further investigations on
powerful goodness-of-fit tests. In fact, this area has started becoming more popular as
a variety of interval-censored data sets have been encountered in real life applications.
In order to be able to use a correct data set, a very powerful goodness-of-fit test, which
may not be available in the literature, is required. This is itself a new research problem

and causes us to proceed with simulated data sets rather than real life examples.

2.2 Simulation of Interval Censored Data

It is not possible to observe the subjects continuously in interval censoring. As a
result, interval points a; and b; can be certain predetermined points in real life ap-
plications. To illustrate how the method developed above can be applied to interval

censored data, we shall firstly deal with how to generate interval censored data.

While there are many studies about analyzing interval censored data, there are very
little on the methods of simulating them. Lawless and Babineau [24] described the
estimation process of the inspection points from a real interval censored data set. Lee
[25] proposed a method to estimate survival function S(¢) for interval censored data.
In his study, S(t) is assumed to be unknown and therefore, has to be estimated by
simulating interval censored data from a real data set. However, in some studies, the
inference about a real data set is not the main concern. The aim can be to develop

a new method for analyzing interval censored data and check the performance by

13



simulation. This is also the motivation for our study.

To simulate interval censored data, we need (t;, a;, b;) where (a;, b;) is defined as a
set of inspection points. It is also assumed that the subjects are under control at these
points. A variable of interest, 7;, can be generated via simulation from its distribution
function. For the simulation of the (a;, b;), we use a method proposed by Kiani and

Arasan [21]] which is explained in the next section.

2.2.1 Algorithm of the Simulation

Let T be a nonnegative random variable of interest and assume 7; € (a;, b;) with
P(a;<b;) =1;i=1,2,,--- ,n. To obtain a; and b;, a set of examination points
P = {p1,pa,- - ,pr} is generated. Also, a subject attendance probability ¢ to each
pj is defined; 0 < ¢ < landj = 1,2,3,---, k. Depending on the values of ¢, the

following interpretations can be made:
e ¢ = 1: subjects attend all of the p;’s

e ¢ = 0 : subjects do not attend any of the p;’s

e (0 < ¢ < 1: subjects attend some of the p;’s and miss others.

In this setup, each subject 7 (z = 1,2, 3, --- ,n) has its own set of actual examination
points A; = {a;1, iz, -+ , aim, } (A; € P) with the following assumptions:
e There are £ known potential inspection points.

e In order that the process starts, all subjects attend to the first inspection point

D1.

e Subjects attend to the test with probability q.

To generate (a;, b;), we propose the following procedure similar to that of Kiani et.al

[21]:

(i) Generate u; ~ Uniform (0, 1)

(i1) Define an indicator function

14



1 if subject attends the 7** inspection point p; (u; < q)
] =
0 if subject does not attend the ' inspection point p; (u; > q)

(iii) Steps 7 and 4¢ should be run for each p;; j = 2, ..., k.

(iv) We will obtain vector of attendance for all £ members of P and it will direct us
to a set of actual examination points A;. For example, for the first subject if P =
{1,1,0,1,0,0,1,1} then, Ay = {a11, a12, 13, @14, a15} = {p1, P2, Pa, D7, Ps} -

(v) a; is the largest member of A; which is less than ¢; and b; is the smallest member

of A; which is more than ¢, fori =1,2,--- ,n.

It is clear that

e 1, < a; — the observation is in left half open intervals
e t; < b; — the observation is in right half open intervals

e a; < t; < b, — the observation is in closed interval.

2.2.1.1 Simulation Results

To illustrate the concept, a Monte Carlo simulation with S = 10, 000 repetitions is
conducted under normal distribution with mean zero and variance one. Inspection
points are generated according to the algorithm given in previous section. Using the
data, the MML estimators are obtained iteratively as in Tiku and Stewart [42]: [ and
o are calculated from ([2.14) and (]2.13]) by using /2 and & obtained from the midpoints

of the closed intervals. In the first iteration, & and ¢ are replaced by /i and 6 and a

new pair of estimates (/i, ) calculated from ([2.14) and ([2.15).

Mean Square Error (MSE) values are also calculated to see the difference between the
estimators and their estimated values on the basis of bias. After computing (i1, - - - fis

and 0y, - - - g5, values in a simulation with 10, 000 runs, we compute the MSE’s as

1
MSE(p) = < Y (fis — p)° (2.16)



and

S
MSE(6) =< ) (6. —0)* . (2.17)

Table shows the estimated parameters for different attendance probabilities (¢)
and study periods (k). The proposed approach is easy to implement and has a very
fast convergence rate. It can be seen from Table that the mean length of intervals
decreases as subject attendance probability ¢ increases. Thus, smaller intervals con-
tains more information about the data on the basis of actual failure points ¢;. Hence,
the mean square error (MSE) is smaller. It can also be observed from the Table
that simulated MSE values decrease as we increase study period %, subject attendance
probability ¢ and sample size n. Simulated MSE values are small enough to conclude

that simulated data are produced from a stable and well designed simulation process.
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Table 2.1: Values of estimates for various study periods (k) and attendance probabil-
ities (¢) ; 7'~ N(0,1)

|samplesize | ¢ [ k| 4 [ 6 | MSE(n) | MSE(5) |
250 |06 | 12] 00592 [0.8302] 00441 | 0.0631
- 7136 ] 0.0361 | 0.8314 | 0.0353 | 0.0452
0g | 12| 0:0311 | 0.8401 | 00311 | 0.0531

736 | -0.0201 | 0.8421 | 0.0232 | 0.0362

12 [ 0.0411 [ 0.8413 [ 0.0112 | 0.0231

=100 1061561 00359 | 0.8445 | 00101 | 00132
0g | 12| 00241 | 0.8463 | 00104 | 0.0162

7136 00203 | 0.8511 | 0.0091 | 0.0131

12 [ 0.0383 [ 0.8413 [ 0.0092 | 0.0097

=200 1061561 00317 | 0.8514 | 0.0083 | 00079
0g | 12| 00072 [0.9043 | 00084 | 0.0073

7136 0034 | 09351 | 00062 | 0.0071

12| 0.0314 [ 0.8637 | 0.0032 | 0.0044

=300 100156 | 0.0226 | 0.8993 | 0.0013 | 0.0026
0g | 12| 00054 [0.9296 [ 0.0016 | 0.0031

7136 00023 | 0.9382 | 0.0009 | 0.0014

12| 0.0119 [ 0.9257 | 0.0008 | 0.0011
n=1000"1961 56 | 00186 | 09288 | 0.0006 | 0.0008
0g | 12| 00021 [ 09599 | 0.0003 | 0.0002

7136 0.0011 | 0.9803 | 0.0003 | 0.0001

17



18



CHAPTER 3

UNIVARIATE INTERVAL CENSORING WITH RANDOM
INTERVALS

Case Il interval censored data arise when we only know that 7', a nonnegative random
variable representing the failure time of a subject, has occurred within a random in-
terval. In this chapter, we consider two different models for case II interval censored
data. In section [3.I] we describe Model I based on two examination points. We in-
troduce the copula approach to write the likelihood function. Section [3.2]describes

Model II and related inference is made assuming ordered examination points.

3.1 Analysis of Case II Interval Censored Data with Two Examination Points

Let 73,75, --- ,T, beiid random variables with cdf F;. Let also 7; denote the failure
time of interest for subject 7 (z = 1,2,--- ,n). Suppose that interval censored data
on T;’s are observed in a random interval (U;,V;) (i = 1,2,--- ,n) with indicator

functions

and

We have joint density of the U = x1,V = 29, A1 = 0 and Ay = 1 — § as follows:
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g(x1,20) P(A1 =6,A=1-9),
P{U:l’l,V:[BQ,Al:5,A2:1—5}: (1 2) ( ! ? )

g(m1,x2)P(A1:6,A2:1_5)7

=g(x1,2) P(T <x1)0 4+ g(x1,229) P(11 <T < 3) (1 =)
=g (x1,29) Fr (1) 0 + g (x1,22) {Fr (x2) — Fr(z1)} (1 =6) . 3.1

where g (1, x2) is the joint density of U and V.

In this section, copula method is proposed for the estimation of a failure time data.
Copulas can be understood as bivariate or multivariate joint distributions with uniform
(0, 1) marginal distributions. They are dependency functions that are very useful in
applications of multivariate distribution models in many areas where the knowledge
about the structure of dependency between random variables is required. The basic

theorem in theory of copulas is the well known Sklar’s Theorem [28]].

Sklars Theorem: Let X and Y be random variables with joint distribution function

H and marginal distribution functions F' and G, respectively. Then, there exists a
copula C' such that
H(z,y) = C(F(x),G(y)) (3.2)

for all z, y in R. If F' and G are continuous, then C' is unique. Conversely, if C'is a
copula and F' and G are distribution functions, then the function H defined by ([3.2)

is a joint distribution function with marginals F' and G.

It is clear that if the joint distribution function of random variables X and Y is

H(z,y) = C(F(x),G(y)),

and

0=1
d0=20



then the joint probability density function of random variables X and Y is

f(x,y) = c(F(x),G(y)) f(x)g(y)

where F'(x),,G(y) and f(z), g(y) are the corresponding marginal distribution func-

tions and probability density functions of X and Y/, respectively.

Copula is a useful tool for expressing the joint distribution of random variables as
a functional of marginal distribution functions. Copulas can be interpreted as de-
pendency functions and help us to measure the dependence between random vari-
ables. Copulas are also very appropriate models for estimating the parameters of
distributions. The procedure allows us to use methods of estimation of parameters
for marginal distributions in the first step and then estimate the parameters of copula
in the second step. Such a two step method is referred as "inference functions for

margins" in the literature (see Joe and Xu [20]).

The family of Archimedian Copulas is very common in applications beacuse of its

analytical form expressed in terms of so called "generating" functions as follows:

Co (u,0) = xa {X3" (W) + X' (v)}, 0< w0 <1,

where 0 < x, < 1, X, < 0, X2 > 0. Here X/, (u) = dxa(u)/du and 7 (u) =
dx. (u)/du.

Archimedian copulas are appealing in studies on censoring because it allows for flex-
ibility and keeps the model mathematically tractable. For example, taking x,(u) =

(14 u)'/(1=%) the Laplace transformation of a gamma distribution, we have

Cy (u,v) = (70 4 =) —)l/=e) o > 1,

which is referred to as the Clayton family [8] which has a very simple form and easy

to apply.
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We write the likelihood function by using copula in our model as

fU17~-7Un7V17~~7Vn7A17A2 (ub U, ..y Up; V1, V2, .., Up; 57 1- 5)

H{f (wi, vi) Frr (ug) 0; + f (ui, v;) {FT (vi) = Fr (Uz)} (1— 51)}

n
i=1

C(FU (wi), By (Uz')) fo () fv (wi) Fr(u;) 6;

Il

@
I
—

(3.3)

_l’_
o
/N

Fy (w) . Fy (v)) fr (ws) fy () { Fr (v) = Fr (u) }(1 = 3))

I

@
Il
—

o(Fu (ws) Fy () for (us) fur ()

X [FT (u;) 6; + {Fr (vi) — Fr (w)} (1 — 52)]]

It appears that copulas describe the dependence structure of the model. All the infor-
mation about the dependency is contained in the copula function. Thus, the choice of

appropriate copula and the value of its dependence parameter are very important.

Let X, X5, ..., X,, bei.i.d. random variables with continuous distribution function F'.
Let U = min(Xy, Xy, ..., X,,) and V = max(X;, Xo, ..., X,,). Schmitz [36] derived a

copula of the joint distribution of U and V" as follows:

We propose in this study to use the copula of the minimum and maximum (Schmitz
[[36]) of n iid random variables. Since we have the condition U < V for our random

intervals, this copula, belonging to Clayton family, is very appropriate for our model.

The pdf of min-max copula is

1 1 1 1
rtur DR UZw® el (] — g)w < v
’U(’U%-i-(l—u)%—l)?(l_u) n ( )

cn (u,v) =
0, otherwise
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Note that n plays a role only as a parameter of the copula C,,(u, v), and is used for
modeling of dependence between two random variables U and V. To illustrate the

concept, assume, for example, n = 2. Then,

v—(Vv+/(1—u) =12 1—/(1—u) < v

v, otherwise

Co(u,v) =

and

——— 11—/l —u) <\
co(u,v) = v(1-u)

0, otherwise

To estimate the copula parameter n, we also propose a simple graphical procedure;
see the graphs of C),(u, v) and ¢, (u,v) for n = 2,10 and n = 20 in Figure
B3

2eH)f
1.5e-H7

Figure 3.1: Graphs of Cy(u, v) and cy(u, v)

It can be observed from the graphs that if one uses the copula of joint distribution
of extreme order statistics U and V' then it would be better to take large values of n,

which effects stability of probability density function about v = 1 and v = 1.

Now consider, the joint pdf of U, V, Ajand A; which we use in the likelihood function
lb Assume that the copula of the joint distribution of U and V' is Cy(u, v). Then,

the likelihood function is
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Figure 3.3: Graphs of Cy(u, v) and cao(u, v)

fov.ana,(u,v,0) = c(Fy(u), Fv(v)) fu(u) fv(v) Fr(u)d
+c(Fy(u), Fyv(v)) fu(u) fv () [Fr(v) — Fr(u)](1 = 9). (3.4)

For the exponential distribution function with parameter A = 1, we provide the graphs

of likelihood function, denoted by f{;y A, a,(u, v,0); see Figures B.5and

Graphical analysis shows if one uses the maximum likelihood method for estimat-
ing parameters of distributions of U,V an T using observed data Uy, Us,--- ,U,,
Vi, Va, -+, V, and 9, the proper model is seem to be copula model based on extreme

order statistics with large values of n. Graphical representations show that, if n > 10
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Figure 3.4: Graphs of f;y 4, a,(u,v,6) forn =2

Figure 3.5: Graphs of f;y 4, a,(u,v,6) forn =10

the likelihood function becomes more regular in the sense that the corresponding

derivatives can be calculated.

Figure also shows the value of f7;y, 4, a,(u,v,d) for different values of n; u and
v being fixed.
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Figure 3.6: Graphs of fy, A, a,(u,v,6) for n = 20

025

n_-lllllllll
2 4 6 8 1012 14 16 18 A

m
Figure 3.7: Value of f{;y; 5, a,(u,v,0) for different values of n; u and v fixed

3.2 Analysis of Case II Interval Censored Data with Ordered Examination

Points

Consider n independent and identical components or patients put on a test. Let Y; =

(Y1, Yio, ..., Yin,) be ordered examination times for patient ¢ where,

0<Yy<VYn<... <Y, <00, 1=1,2,.... k. 3.5
If 7T} is defined to be the ‘" patient’s unobservable failure time, then this model is
called as general interval censoring scheme.

Assume that, the failure occurred before the first examination time. Then let,
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Now, consider the failure occurred between a pair of examination times (Y, Y;r)
where Y;; is the last examination time preceding 7; and Y;p is the first examination

time following 7;. Then let,

(
1 if Yy <Ti<Yp
0 =
0 if ow.
\
(
1 if Y <T;<Yy
dip =
0 if ow.
\
1 if }/i'r—l < Tyz < }/ir
5ir—1 =
0 if o.w.
1 if Y;mfl < I-IL < Y;m
5@'711'71 =

0 if ow.

If we consider that the failure did not occur, then define



Suppose that the ordered examination times for patient 7 follows an exponential dis-
tribution with parameter A. Exponential distribution is one of the commonly used
model used to describe the properties of the life time distributions. The life testing
experiments often deal with interval censored samples and our goal is to estimate the

parameters involved in an exponential distribution.

Then, the pdf of the lifetime of the component 7" and ordered examination time Y

takes the following forms, respectively:

f(t) =0 (3.6)

and

gly) = e . (3.7)

The likelihood function based on the random interval censored sample can be written

as

...... [F(m ) — F(Yi,_l)] (3.8)

3.9
...... + 52.712__1[”(6*992'”171 — e—eyini) + 5iniln(6_0ymi)

+ l?’L(TL') + ln()\"l) - )\yzl - )\yzg — e — )\yznz}
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1— 6—9%1) il (6—9%’1 — 6—9yi2>

k
oL(0 Oyirg), Oyizg). — O¥iy,
<>:Z{%(e yo L ey — iy,

0y; 0yir—
e yzryz,r — e Yir 1yi7’—1
(6_0yir—1 — e—f)yir)

T (3.10)

i ying — iy iy,

...... + 5ini—1

By using the above likelihood, we can not obtain a closed form for the expression of
the ML equation and numerical integration is needed to evaluate it. Turnbull [44] de-
rived self-consistency equations for a very general censoring scheme which includes
interval censoring as a special case. This yields an EM algorithm for computing the
NPMLE. Groeneboom’s Iterative Convex Minorant algorithm can also be used for
computing the NPMLE. As suggested in Groeneboom and Wellner [17/]], the Iterative
Convex Minorant (ICM) algorithm is considerably faster than the EM algorithm, es-
pecially when the sample size is large. Finkelstein [12] and Rabinowitz et al. [33]
considered estimation in the proportional hazards model and in the linear regression
model for general interval censoring, respectively. Large sample properties of their

estimators are, however, unknown.

To solve this problem, let,

e AN
9o (Z(i)l) T 1 _e o1

e 202

g1 (Z(i)la Z(i)2) =

b

e Rl — g7 A(i)2

e AN

92 (Z(i)la Z(i)Q) =

e EM — e~ Rz ]

e *r

gr—1 (Z(z‘)rfla Z(i)r) - e E@r—1 — o= Z(i)r

and
e_Z(i)rfl

9r (-1 200) = =0
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Consider the standardized exponential distribution with pdf

fz)=e7 0<z2<

with the expected value of the 7 order statistic (in a sample of size n)

r

1
rim — - ) :172a"'7
fir: Z(n—H—l) " "

=1

Since complete sums are invariant to ordering [1], we can write

olnL
“a = 2 9Gw) =0, 2 =0
i=1

(3.11)

Realizing that the function g(z) is almost linear in a small interval a < z < b ([1]])

and z(;) is located in the vicinity of w;) = ji,., at any rate for large n, we obtain the

following linear approximations of g(z(;)) by using the first three terms of a Taylor

series. Then,

e R
90 (2(1) = [

go (2an)
0z

= 0o (w(i)1> + (21 — wen)

= ayo + Bioz(in

e_z(i)Q

g1 (Z(i)17z(i)2) - efz(i)l _ e*z(i)Q

dg1 (Z(i)1, 2(1’)2)
82@)2

= g1 (wan, wa) + (202 — wee)

o9 (Z(i)h Z(i)2)
aZ(Z)l

+ (Z(i)l - w(i)l) |w(i)1vw(i)2

= i1 + Binzay2 + vizan
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|w(i) 1:W(5)2

(3.13)

(3.12)



e )2

g2 (Z(i)laz(i)Q) = e AL — e R(i)2

o (Z(i)h Z(i)Q) |
W(i)1,W(i)2

=0 (w(i)l, w(i)2> + (262 — w(i)z) 022
i (3.14)

o1 (Z(i)h Z(i)Z)
az(i)l

+ (2@ — win)

|w(i)1 YW(i)2

= iz + Bi2z(iy2 + VieZin

e_z(z)r

gr—1 ( O 172(1)7“) 21 _ e=Zr

09,1 (Z(i)T_1, Z(i)r)
0z (i)r

= gr—1 (Weiyr—1, Weiyr) + (WG — tayr)

‘w(i)'rfl YW(i)r

0gr-1 (2(iyr—1, %))
aZ(Z’)'r—l

+ (2(@)yr-1 — Wiyr-1)

’w(i)v‘fl YW(i)r

= Qor—3 + Bizr—32(i)r + Vizr—32(iyr—1

(3.15)

e_z(i)'rfl

Z . _ . pu—
Gr ( (i)r—1, Z(z)r) e~ -1 — e~ %)r

99r (2(yr—1, 2(iyr)
aZ(i)T

= 9r (w(i)r—la w(i)T) + (Z(i)T - w(i)r)

‘w(i)rfl YW(i)r

8gr (Z(i)r—l ) Z(i)r)
aZ(i)’/‘—l

+ (2(@)yr—1 — Wiyr-1)

|w(i)7‘71 YW(i)r

= Qor—2 + Bizr—22(i)r + Yizr—22(iyr—1

(3.16)
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e Fliyn;

9n;—1 (Z(i)ni—h Z(i)"i) = e Ain—1 _ o~ A(i)n;

= O9n;—1 (w(i)nifla w(z)nz)
agmq (Z(i)m-—la Z(z’)ni)

+ (2(yn: — Weyns)

aZ(i)n- W(i)n;—1>W(i)n;

OGn;—1 (Z(i)n-—b Z(i)n')
+ (Z(i)ni—1 — W(iyn;—1 : : = Jwiym, -1y,
(2 (ni-1) Dz im (=12,

= Qon,—2 + Bion,—22(iyn; + Vizn,—22(iyni—1

(3.17)
Incorporating ([3.12]- [3.17) in ([3.10), the MMLE is obtained as
k ni—l
Z{(SioYhOﬁo + Z 0ij (Yzj@i(zj—l) - Yvijfloéi(Qj)) + 5in¢Y;ni}
A =1 j=1
0 — - — . (3.18)
Z{@oyﬁﬁio + Z 055 Bi2j—1) (Yij—1 — Yz")2 }
i=1 j=1

As can be seen, it is a closed form solution and there is no need to carry out a numer-

ical study.

3.2.1 Fisher Information Number

In this section, we study Fisher Information (FI) for Case II interval censored samples
from exponential distribution. There are four main purposes for studying the FI in

censored samples:

e To obtain the asymptotic variance of MLE

— It is known that MLE’s are asymptoticaly efficient under regularity con-
ditions. We can find the asymptotic variance of MLE using the FI if the
MLE exists.

e To determine the optimal sample size for life testing experiments

Il ,,,,, im

— One can compare B

for 1 < r < m < n and call this quantity FI

per unit time for the life testing experiment. The quantity measures which
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censored sampling mechanism is more efficient in terms of the amount
of FI acquired per unit time during the experiment. The censored sample
with more FI in less duration is assumed to have the better performance

in life testing experiment.
e To evaluate MLEs from large censored samples

— Let us denote, the MLE’s HAT and én from interval censored sample and
MLE from complete sample respectively. For r/n — p as n 1 oo where
0 < p < 1, the asymptotic relative efficiency (ARE) is given by

PO 1,(6
ARE(6,,0,) = ﬁ

where I,(6) and I(6; X, Y") are FI numbers for a censored and complete

samples, respectively.

e To evaluate the relative efficiencies of unbiased estimators in finite censored

sample

— Cramer Lower Bound provided by the Fisher Information measure can
be used to examine the finite sample efficiencies of unbiased estimators

based on censored samples.

A few studies have focused on Fisher information on censored data in the presence of
right censoring since the censoring mechanism for interval censoring is much more
complicated than that of right censoring. Escobar and Meeker [11] shows how to
compute the "Fisher information matrix and the asymptotic covariance matrix for
maximum likelihood estimators" for a wide class of parametric models that include
combinations of censoring, truncation and explanatory variables. Ortega et al.[30]
gave influence diagnostics for the Weibull case with censored data. They state that "it
is not possible to compute Fisher information matrix". Qian [32] considers the "three
parameter exponentiated Weibull family under type II censoring". He proposes an
algorithm for computing the maximum likelihood estimator and derives the Fisher

information matrix.

It is known that 6 is approximately distributed N (6, I=2(0)) for large n where I~(6)

is the variance covariance matrix of the unknown parameter 0; I(6) being Fisher
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information. In the case of single parameter 6, the Fisher information number is

given by

2
O*InL(X, 9)) (3.19)

16) = _E( 092

The variance of 6 for Model II, can be estimated by the observed Fisher information
number. For this, one needs the second partial derivative. Second partial derivative of

the log likelihood function can be found as

82lnL(X, (9) - b 5 y?le_eyil 5 (in — yi1)2€_gyi2€_9yi1
562 - Zl - iO( — .2 Vil (3*9%1 — e*9y¢1>2 —
s g e et
ir—1 (e—(’y"—l _ e—@yi,«)Q

(ymz - yini—l)Ze_Gyi"i e_eyinifl
—0Yin;—1 _ p=0yin; )2 :
(e e )

- 6znl -1

Fisher information number for a single parameter is then obtained as

D?InL(X, 9))

1(0) = —E( o (3.20)
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where

PInL(X,0 b 92nL(X, 0
E(%) _ ZE(% | (Yir, Yz, o Yin,))

i=

Gyzl
yz €
- Z/ 10 L 29<yz(1))dyzl

—0yi2 ,—0yi1
yz2 yzl €
+ Z// il (e=0vir — e—9yzl) g(yi(l)ayi(2))dyildyi2

yw Yir— 1) e~ 0Yir c=0yir—1
+Z / / ir—1 ———9(Yitr—1), Yi(r)) Wir 1Y

_eyzr 1 — e_gyw‘)

yml yml_l) @—Gymie—eymrl
+ Z// Oin;—1 —Gyml _ e—@ymi)Q g<yi(”i_1)’yi(ni)>dyinﬁ1dymi
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(ML)

— e Y1)

( yzle_eyil
/‘51'0(1—29(%(1))@@’1

+// 0; _efgyﬂy g(yi(l)ayi(Z))dyildin

(e*ayn

(yir - yir_1>2670y"679yz‘r—1
’ // Oir-1 g(yi(r—l), yi(r)>dyi7._ldyir

(6_9?/’”*1 _ 6—9%,.)2

in, — Yi 26— 0Yin; o= 0Yin;—1
+ 61,”‘7 (ymi yzm—l) € ie i
\ // it (e_eyi”i—l — e~ in, )2 g(yi(ni—1)7 yi(ni)>dyini71dymi
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(1)

(

y‘21€_0yi1
/ F(yil)(l_e—_gyﬂpg(yi(l))dyil

4 / / l[F(yz-z) — F(yu)] (‘%Ee__ezfi )ieeizf):yﬂ]

Xg(yi(l), yi(z))dyudyiz

+ / / {[F(yw) — F(yir_1)] (Yir (;ygy_l)%-::ye_;y}

X G(Yitr—1ys Yi(r)) Wir—1dYsr

(yznl - yini—l)ze_eyi"i e_eyini—l
+// |:[F(yml> o F<yml_1)] (e—éymi—l _ e—eyini)2

X g(yl(nzfl) ) yz(m))(1%7szle/17"0Z

where g(y;(1)) is the probability function of the first order statistics and g(y;(r—1), ¥i(r))

is the joint probability density function of the (r — 1)“" and r** order statistics.

Let yi1 = Y1, Yi2 = Y2, * , Yin, = Yn. Then,
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( y%e—ﬁm \
/ F(yl)(l_e—_gwg(y(l))dyl

] [ e

% g(y), Ye2))dyrdys

(P

N / / {[F(yr) Pl & (;ye;?i) _>]

X9(Yer-1) Yor)) AYr—1dYy

. / / {[F(yn) — F(ya1)] (y”<;_y92:1)2i_:z§n_)92yn_1}

L X9(Yn-1) Yn)) AYn—1dYy, )

Then, E/ (%) takes the following form:

( yie” ™
/F(yl)(l — 79(y))dy

6_91/1)

ST

—l—ZZf // [[F(yz+1) — F(y)] (Yis1 — y;)2e Oir1e= 0%

(@—9%‘ — e yit1 )2

X 9(Ya), Y1) dYidyit

For the simplicity, let us assume ¥; .1 = y» and y; = y;. Bu using the joint probability

density function of the two order statistics we obtain
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( o _ y% ?/% —bu1 —Ayi1n—1 —Ay1
0?InL(X,0)
E — k o 26—9yze—9y1
( 062 ) ta(n—1) // [F(ys) — F(y)] (yze_ez;)_ iy 9(y1)9(y2)

\ J
( o0 2,—0y1 )
_—0y? yic€ —Ay1n—1 A1
/o (1 —e%) 0o [e™ M e M dy
- k ( _ )2 9y2 9y1
_|_n<n _ 1) // (6 Oy2 e*9y1) y2 yl € € )\26 O0y1 Oy2

\ [e=%2 + 1 — e~ " 2dy, dys, )
( oo 2,—0y1 )
- Yi€ —Ayrin—1y ,—A
n 1 Oyt nle Y e id
[ ey "
k —0y2 o—0y1 >

n _ 1 // —9y2 _ —9y1

39

(Y2 — yl)

( —0ya _ e—9y1)

— e ]2 dy dys

6—9(y1 +y2)




1

p 0
A 2 ( 0+nX)y1 d
=k —0y2 ,—0y1
+n(n _ 1)/\2 // (6—93/2 _ 6—9y1) <y? —O?j/;)_ 6_0;) 6_0(3114-2,’2)
\ x[em2 +1 — e~ 2dy, dys
n)\/ 3/1 (—0+nA)y1 {Z 9y1 }dyl
=k
(Y2 — y1)%e”2e”
n(n — 1)\ e—Gyl) 2 J1 e~ 0Wi+y2)
( —Oy2 _ e~ 91/1)
\ 79y2 + 1— 79y1]n72dy1dy2
n\ Z;i(] 0 26(79+n/\+]’9)y1 dyl
=k
2 00 n—2 (T — 2 j (—1)3+1 J 1
+n(n — 1))\ Zk:o {ijo < j > g:O (2A+0+3X) l (9+)\+l9+)\l)3
o8] 1
nAY im0 GrR
=k

n—2 j i+t [ J 1
j 1=0 @X+015) \ ] ) GTAHETAD

By using power series in our derivation, we obtain Fisher information number as,

+n(n — A0, {z;f;é

N 1
I@) :k[nAZ (0 + nA + j6)?

S ) S (et |

=0 7 =
(3.21)

The equation has a very simple form. Thus, I () can be obtained using any statistical

software for different values of 6.
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3.2.2 Simulation Results

To illustrate the concept, a Monte Carlo simulation with 10, 000 repetitions is con-
ducted under exponential distribution with parameter § = 1 where f is calculated
from equation ( [3.18)). Table shows the estimated parameters for different at-
tendance probabilities (¢) and study periods (n). The proposed approach is easy to
implement and has a very fast convergence rate. We can clearly see from Table [3.1]
that the simulated variance and the simulated MSE values decrease as we increase

study period n, subject attendance probability ¢ and sample size k.

Table 3.1: Values of estimates for various study periods (n) and attendance probabil-
ities (¢); T'~ Exp(1)

|samplesize | ¢ | n | 6 | MSE(®) | Var(d) | (1(6))" |

k=50 0.6 12 1 0.825 | 0.0571 | 0.0251 | 0.0266
B 1360839 | 0.0553 | 0.0270 | 0.0278
0.8 12 | 0.855 | 0.0501 | 0.0233 | 0.0246
1360861 | 0.0483 | 0.0219 | 0.0237

12 1 0.862 | 0.0479 | 0.0189 | 0.0208

k=100 06 36 | 0.870 | 0.0476 | 0.0182 | 0.0196
0.8 12 1 0.863 | 0.0469 | 0.0187 | 0.0194
1360872 | 0.0461 | 0.0177 | 0.0189

12 | 0.887 | 0.0433 | 0.0132 | 0.0143

k=200 06 36 | 0.890 | 0.0424 | 0.0128 | 0.0136
0.8 12 1 0.894 | 0.0421 | 0.0124 | 0.0133
1360899 | 0.0419 | 0.0120 | 0.0128

12 1 0903 | 0.0316 | 0.0119 | 0.0124

k=500 06 36 | 0.909 | 0.0269 | 0.0116 | 0.0119
0.8 12 |1 0911 | 0.0251 | 0.0115 | 0.0117
1360916 | 0.0229 | 0.0103 | 0.0108

12 1 0.920 | 0.0207 | 0.0086 | 0.0093

k=1000 06 36 | 0.931 | 0.0119 | 0.0078 | 0.0085
0.8 12 1 0.945 | 0.0108 | 0.0074 | 0.0078
1360964 | 0.0102 | 0.0066 | 0.0073
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3.3 Convergence Rate of the MMLE

Since the estimator 6 in ( D is obtained by using MML method, we know its
consistency and asymptotic normality from the previous works; see Tiku [41], Tiku
and Akkaya [1] and Senoglu and Tiku [38]]. To discuss the rate of convergence of the

estimator, write

lim  sup P{ekie Sx}

k=00 _so<z<oo

1 r —t2
Non(e) = 7= / e dt (3.22)

where 0 = 0y, is the MLE and se(6;) = \/Var(0;,)). That is,

0, — 0
v _ 3.23
se(60) Ck (3.23)

d . . . e
where ¢, — (, and ( is a random variable having the standard normal distribution;

see Wasserman [435]].

It is known that

se(0) = — (3.24)
We can write from ([3.21)) that

~

I.(0y) = kC (3.25)

where £ is the sample size and C' is a constant with respect to k. By applying the

result given in ([3.22)), we conclude that

0, — 6
L —g S (3.26)

I (0k)
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where ( is a random variable having the standard normal distribution. Then, it is

straightforward to write

6, — 0
k 1 =G Sc . (3.27)
kC
It follows that,
k(6 — 0) = (k@ 2) 50 when k — oo (3.28)

where 0 < a0 < % In other words, one can easily denote the convergence rate as

A 1
b —0=0,(k™), 0<a<g (3.29)

since

(6, — 0)
k;—a

1
20 when, k— oo; 0<04<5 . (3.30)

This means that the MMLE converges to the true value but has a smaller convergence
rate compared to the regular MLE. In fact, convergence rate of the ML estimators can
be slower than the usual vk convergence rate for censored data. Detailed discussion

can be found in Sun [39]].
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CHAPTER 4

EXTENDING THE THEORY TO BIVARIATE INTERVAL
CENSORING WITH RANDOM INTERVALS

Bivariate interval censored failure time data can be seen mostly in clinical exami-
nation tests where failure time is known to lie within an interval instead of being
observed directly and each subject has bivariate events [[18]. In the literature, many
authors have analyzed bivariate failure time data in case of right censoring. Examples
of such studies are Cai and Kim [3]], Cai and Prentice [6]], Li and Lagakos [26], Lin
and Ying [27]. The main difficulty of analyzing bivariate interval censored data is due
to the "correlation structure" between two related variable of interest. In this chap-
ter, "estimation of the association parameter" between two related failure variables is

discussed [39]].

4.1 Estimation of the Association Parameter

Let 7} and 15 be two correlated failure times. The association of 7} and 75 is the main
concern for studies on analysis of bivariate failure time data. A number of approaches
have been presented for the analysis of the association for right censored data. Copula
model is one of the common approaches for modelling the joint distribution of the 7}
and T5. The advantage of using copula method is that it provides a convenient way to
express the joint distribution of two or more random variables. One can find detailed

information about these approaches in Sun [39].

In this study, the association between 7} and 75 is modeled using the copula method.

The proposed model is more general than Sun [39] for making inference about the
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association in interval censoring.

4.1.1 The Copula Model and the Likelihood Function

Let F(t) and F3(t) be the marginal distribution functions of 7 and T, respec-
tively and F'(¢,t5) be their joint distribution function. A copula model assumes that

F(tq,t2) can be expressed as

F(ti,t2) = Co(Fi(th), Fa(t))

where C, is a distribution function on the unit square and o € R is a global asso-
ciation parameter. Assume that there are two pairs of random variables (X, X 2))
and (Y1) Y?)) showing the inspection points for 7} and T5, respectively. The exact
values of T} and T, are not known but they fall into some intervals (X, X)) and

(YD) y @),

Let us define the indicator functions as

1 if Ty <X®
AP =T (T, < XW)) = ' ,

1 if XM)<Ty<X®

1 if Ty >X®
Aj=1(T> X¥) = U =1-ar-ay
0 if ow.

1 if To,<YW

0 if o.w.
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1 if YO)<T,<Y®
A =T(YV) < T <Y®) = )<

0 if ow
and
1 if T,>Y®
AY=1(Ty>Y®) = ’ —1-AY— Al
0 if ow.

The we have the following conditions

L (le(l),a:(z),y(l),y@),éfﬁf, 55’53’?75%’53’5%) —

F(aW 2@ ) @) p {T1 <2W T, < y(l)} , =10 =1

F, 2@ yO yOVPIT, <20y < Ty < y®@} | o7 =168 =1
f(x(l)’x@)’y(l)7y(2))]3 {Tl <zW Ty > y(2)} ’ 6 =1,00=1
F@®, 2@ g0 y@VP L) < Ty < 2® Ty <y s =1,60=1

= FaD,a® g0 yOVP [0 < Ty < 2@y < Ty < 4@}, G5 =1,60=1
F@®, 2 50 y@)P {0 < Ty < 2@ Ty >y, s =1,60=1
£, 2@, yM) yOVP LTy > 20, T, < O} e =1,60=1
£, 2@ y0) yOVP LTy > 2Dy < Ty <@} =168 =1

\ f(x(l)’x@)?y(l))’y(?))p {T1 > M T, < y(l)} ’ 6 =1,0=1

The likelihood function is guven by
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L (62,24, y®), 67, 67,65, 85, 67, 63, 63) =

ﬁ{ 002 000 (o9 0
=1
b 1,224 4 LBy (294 — (o9, ) 52
A a2 ) (B (o) © By (o 42))
x 01 (1 — 6, — 03;)
+ f@, 2y ) {FT (xﬁl),yi(l)) — Fr ( 2! )>}
X 05,07,
+ (e ! ,yf”{ (20,97) = Fr («,5®)
— Fr (a,9") = Fr (7, 52) bos,
A (o) B ()
~ Fr, (a! ) Fr (o) Jo501 - ot - o)
(2

+ [ 2Py P {FT< ) (5)7315))}

X (1= &Y, — 63,)0;

DA o () (a4
_FT2<y7, ) FT(EQ)ayz )>}

X (1 55151 - 5;)51211

+ fal?, 52),315)73/52)){1—1? (52),@/5 ))}

x (1 —d7; — 05;)(1 = 6F; — 531)} . 4D

Let,

Fufa,z,y) = Fr (o, 5") = (P "), Pre™) .
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( 0, >> b (xgw,yw)

Fio(a,z,y) =
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oo ) = P () = (5, f7) = i (4) 5 1 (57,7)
:FT2 (yz(l) _C<FT1( 52)) FT2<yz(2 )

) )
= Fr, (47) + C(Pr, @), Pr (")
and

F33(aax7y):1_F < z()ay£2)>

=1 C(Pr ), Pry(y")

Substituting Fi1, Fia, Fi3, Fo1, Fae, Fos, Fy1, F3o and F3 in (F.1) we get

L (02,2, y®, 4,67, 617, 67, 05, 5, 6, 6 ) =

{fZ,l,¢%¢bﬂﬂmxw$%@+ﬂ@%d%@%%%ﬂxmxwﬁ%y

=1

+f(1,§”wp,@53da&Wﬁ?ﬂ—5@ o5))
+ a2yt y?) For(a, x,y) 0500 + fat) 2yt y?) Fao (o, x,y) 08565
+ f@ 2y ) Fag(a, x,y) o5 (1 - 68 — 60)
+ fa 2y yP) Fy (axy) (1 - 60— 68))61Y
+ fa, 2y, yP) Fra(a,xy) (1 — 85 — 05))a5)

+ (2D, 2Py D) Figa, X,y)5<w><1_5§g>_5§g>)} . (4.2)

The simplified form of the likelihood function ([4.2)) is obtained as
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L (6., %y<2>,5@,agwxag@,5;@,5@,5&&55,”) _
_ Hf (M) L@ 0 0 >{Fn(a x,y)5@) 5

+ Fis(a, x,ymg(sgg + Fig(o, x,y)00 (1 — 6 — 6) + For(a, x,y)05 51
+ Foo (0, %,y) 85 080 + Fog (0, x,y) 052 (101 —050) 4 P (o, ) (1047 — 657 ) 6

+ Py, x,y) (1 — 68 — 6569 4 Fyg (o, x,y)857 (1 — 61 — 61 )} . (4.3)

Given the likelihood function ([4.3)), one can assume any copula functions with ap-
propriate marginal distribution functions, which leads to various types of bivariate
interval censored models. In this chapter, we will not focus on any specified copula
functions as well as marginal distributions so as to let readers do this as a further
application. The common way to obtain the MLE of dependency parameter « is to

maximize the likelihood function

L (9@(1)7 2@ g0 @ 5@ 5@ 5@ 5@ 5w 50 5§y>> 7

with respect to unknown parameters of F7, and Fp, and «, simultaneously. How-
ever, this method with complex mathematical expressions results in longer run times.
On the other hand, it is quite simpler to deal with copula approach that allows us to
separately estimate unknown parameters of specified marginal distributions and as-
sociation parameter of copula. In practice, this can easily be achieved by estimating
unknown parameters of marginal distributions first, followed by estimation of depen-

dency parameter a.
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CHAPTER 5

CONCLUSION AND FURTHER RESEARCH

Estimation of unknown parameters of statistical distributions based on interval cen-
sored data is one of the most important problems facing in medical and health studies,
reliability and life testing studies. Interval censoring often occurs when individuals
or components in a study are inspected intermittently so that variable of interest is

observed to lie between successive points.

Two types of interval censoring that commonly occur in practice, are considered
in this study. We have proposed using Modified Maximum Likelihood Estimation
(MML) and Copula Methods for the estimation procedure of unknown parameters
of variable of interest in case of interval censoring. To evaluate how accurate the
approximations are and to see whether the applied method is correct or not, some
numerical calculations are done for numerous attendance probabilities and study pe-
riods for interval censored data with fixed and random intervals. The results from
Monte Carlo simulation runs are used to examine the MSE values of the parameter
estimates. It appears that estimates are easily obtained and proposed methods seem
to provide fairly accurate estimates. As a conclusion, it seems to be reasonable to use

the MML and Copula model for computing the parameter estimates.

It is also important to decide the choice of the copula. In this thesis, the min-max
copula is proposed for the estimation due to the structure of the model. We present
a simple way of assessing the value of the dependence parameter of the min-max

copula.

We also considered bivariate interval censored data. Bivariate interval censoring can
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occur when the outcomes are not directly observable but are detected from periodic
examination points. In bivariate interval censoring, each subject may experience bi-
variate events. To estimate the association between two variable of interest we focus

on the situation where they follow a copula model.

For skewed interval censored data structures, estimation for unknown parameters of
variable of interest can be considered as a further research. This problem can also
be extended to multivariate distributions. In addition to these, inference based on
copula models can be an interesting research topic for both univariate and multivariate

interval censoring.
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APPENDIX A

MML ESTIMATORS BASED ON FIXED INTERVAL
CENSORED DATA
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where

b; —
a; = and b = K
o o

On taking logarithms of likelihood L, we get

InL (p,0) =Y In[F () = F(a})]

- Zan @)+ > m[F®)—F)+ Y. n[l—F (@)

i=ni1+1 i=no+1
Then,
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- (252 5wl (452) 5557

i=ni1+1

+ zn: ln[l—F(bi;Mﬂ =0

i=na+1

Here, n; and n — ny are the numbers of observations between (—oo, a;) and (b;, o)

respectively.

Maximizing InL (u, o) with respect to 1 and o we get,

e £

o | F
- ._zn: (_71) 1 L—fg()b;) =0

and

dlnL (u,0) noo~ -1\ f(a) ,

o o (7>F<a:>“i
(-1 FB b~ T (6 a;
*Z(_) F ) — F (a})

N f) .

» (5) Erami =

g9(a;) = ]J;((Zi)) =va +vag;
[ (Gi, bi) = ;;EZ::% : §<(a;k*)) = Qg + 51'2[9? - Q41 — ﬁilaf

*
= Vjo + Ujob;]



Then,

olnL (p,0) 2

9 = Z (v +vnna;) + Z (g + Biab; — cix — Bunay)
H i=1 i=n1+1
— Z (1/72 + Ulzb ) 0
i=ng+1

+ Z (oo + Bia(bi — i) — ocu — Bi(a; — )

1=n1+1
= Y (ovia+va(bi—p) =0
i=ng+1
no n
=0 [Z Vi1 + Z Qg — 041) — Z Vm]
i=ni1+1 i=no—+1
— [ Z Vi1 + Z (Bi2 — Bin) — Ui2]
i=ni1+1 1=n1+1
szlaz+ Z (Bizbi — Bina;) — Z Uz’Qbi]
i=n1+1 i=no+1

The MML estimator /i is obtained to be

= A+ Bo (A.1)

where,

Yot vaa; + Yo ni+1 (Biobi — Baa;) — > i npt1 Vi2bi

A= .
> ity Vit Zz’:nlJrl (Biz — Bin) — Ei:anrl Vi2

vy — (g — 1) — Z?:nz—&-l Via

B = =
D ity Vi + Zi:nl—i-l (Bi2 — Bin) — Zi:ng—l-l Ui2
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Bl () (55
2| 3 (e (® a“))(lau)]
S8 o (5 (45

=0 (A.2)

£ o) (5

Li=na+1

:naz—l—aZVﬂ( — A— Bo) 4 vy (a; — A — Bo)®

+0 Y ap(bi—A-Bo)+ Y Bal(bi—A-Bo)

inl—‘rl in1+1
—0 g a;1 (a; — A— Bo) + E Bir (a; — A — Ba)
i=ni1+1 1=n1+1

—O'ZVZ‘Q([)Z'—A—BO’)—i‘UiQ(bi—A—BO’)Q

=1

Then the MML estimator ¢ is found to be

. —C++VC?+4nFE
o= ™ (A.3)

where

n2

C:U[ZV“<CL¢—A)— Z (OéiQ(bi—A)—O(Zl Z 1/12 b —

i=n1+1 i=ngo+1

n1 na .
he [Z vala; = AP = Y (an (bi = AP —an (0= A°) + D v (b = A’
= i=ni+l —
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APPENDIX B

MML ESTIMATORS BASED ON RANDOM INTERVAL

CENSORED DATA AND FISHER INFORMATION NUMBER

B.1 MML ESTIMATORS

The first partial derivative of the log likelihood function is,

OL(0) & | . .
_a(e - ;{%ma — €M) + 0ln(e — TR
...... + 57;7‘_1[77/(6_9%7"—1 €—9yir) e
...... + Oim,_ In(e” Wit — = %ini) 4§, In(e”%mni)
+ In(n!) + In(N") — Ay — A\ysg — -+ — )\ymi}
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k O O v,
OL(0) Z 5o_€ Yilyi ey — ey,
i0 (1 — e_eyil) i (e_eyil — e—eyn)
0 ir 0 ir—
eV Yir — VT Y

..... 0 (e=fvir—1 — e=0vir) Fo (B.2)

...... + 51’711'71

eeyini yznz _ eeyiniilyini_l 5 69ymi yznz
(efGymi,l _ e—@ymi) R (enymi)

e Fn
90 (21) = 1_e2on

990 (21) B.3
=90 (w(z)l) + (Z(i)l - w(z)l) 82 Z(i)1=W(i)1 ( )
= o + Pioz(in

e~ (02
g1 (Z(i)l’ Z(iﬂ) - e )1 — e #()2
o (Z(i)l, Z(i)Q)
= g1 (Waiy1, weyz) + (22 — We2) 9o luwgiy102
( ) 2 (B.4)
dg1 Z(i)15 2(3)2
+ )1 — 7 W(3)1,W(5
(Z( )1 W )1> 82(,’)1 | ()1 W(5)2
= a1 + Birzgy2 + Yz
e ()2
9 (2o 202) = ==
on (Z(i)h Z(i)Z)
= g1 (W, wee) + (292 — wee) =5 — [
(6)2 (B.5)

Og (2(1)1, Z(i)z)
+ (Z(i)l - w(i)l) 82’(-)1 |w(i)1,w(¢)2

= o + Bioz(i)2 + Vi
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e_z(i)r

gr—1 (Z(i)rflyz(i)r) = o~ Ar—1 — o—Z(0)r

agrfl (Z(i)'r—l ) Z(z’)r)
Oz(iyr

= gr—1 (Wayr—1, wey) + (Wayr — tayr)

agrfl (Z(i)r—l ) Z(i)r)
0z(iyr—1

|w(i)7‘71 YW(5)r

+ (Z(i)r—l - w(i)r—l)

= Qigr—3 + Bizr—32(i)r + Vizr—32(i)r—1

(B.6)

e_z(i)r—l

gr (Z(i)r—lyz(i)r) - e_z(i)r—l . e—Z(i)T

09 (Z(iyr—1, 2(iyr)
8Z(i)r

|w(i)r717w(i)r

= gr (W(iyr—1, Weiy) + (2 — Weiyr)

dgr (Z(i)rfla Z(i)r)
az(i)rfl

+ (Z(i)r—l - w(i)r—l)

|w(i)7'7 1LW(i)r

= Qigr—2 + Bizr—22(i)r + Vizr—22(i)r—1

(B.7)

e Rlin;

1\ (D=1 R(Dns | =
In; 1( (i)n;—1> (z)nl) e Zmi-1 _ g Emg

= Gni—1 (Weymi—1, Wiipn,)

)agni—l (Z(’i)m—b Z(i)ni)
32(2-)7”

+ (2()n; — Weyn,

|’w(z)n2 -1 7w(z)nl

An,—1 (2015 Z(iyn,)
OZ(iyn,—1

+ (Z(i)ni—l - w(i)ni—l)

‘w(z)nz -1 7“7(7,)77.2

= Qon,—2 + Bion,—22(iyn; + Vizn,—22(iyni—1

(B.8)
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Incorporating ([B.3]- [B.8)) in ([B.2)) we get,

oL() &
o6 ;{%Z(m (evio + Biozan)

+ i [Z(z‘)z (041'1 + Bz + ’Yilz(z‘)l) — Z(i)1 (%2 + Biazgy2 + %’22(2')1)}
+ 0i2 [Z(i)?) (%’3 + Bisz(i)3 + ’Yz‘sz(z‘)Q) — Z(i)2 (%‘4 + Biaz )3 + %’42(1‘)2)]

+ Oir—1[2()r (Oéz'2r—3 + Bizr—32(i)r + %zr—sz(i)rA)

— Z(i)r—1 (ai2r72 + ﬁi2r72z(i)r + P)/i2r72z(i)r71)]

+ Oiny_, [2()ns (ai2ni—3 + Bion,—32(@iyn; + Vizni—sz(z‘)n,-,l)

— Z(i)ni_q (%‘2711-—2 + Bioni—22(iyn; + %2n,~—22(i)nz-,1)]

+ Oin, [Z(i)m (aiQni—l + 52‘27“—12(1‘)1”)] }

(B.9)
k n;—1
2{5103/%10@‘0 + Z 0ij (Yijauoj—1 — Yij_10ugj) + 5miYmi}
h=""— = (B.10)
Z{@oyﬁﬁio + Z 0ijBinj—1 (Yij—1 — Vi) }
i=1 j=1
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B.2 FISHER INFORMATION NUMBER

. <a2an(X, 9)> _ i . <a2an(X, 0)

062 002 ‘ (Elanm---,ymi))

i=

6'yzl
yl €
- Z/ 0 L 9y1 29(?/1(1 )dyzl

92,/12 —9y21
yZQ yzl €
+ Z// 0i1 (e=byir — 6—9%1) Q(yi(1),yi(z))dyi1dyi2

—Oyir Oy
yl’l‘ yzr 1) e yzre Yir—1
+ Z// Oir—1 == 9(Yitr—1), Yi(r)) Wir—1dYir

—0Yin; o—0Yin; -1
yznl yznl—l) € i€ 4
+ § // in;—1 _gyml — e_eyini )2 g(?ﬁ(n,——lﬁ yz(nl) )dyzm—ldyzm
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(ML)

— e Y1)

( yzle_eyil
/‘51'0(1—29(%(1))@@’1

+// 0; _efgyﬂy g(yi(l)ayi(Z))dyildin

(e*ayn

(yir - yir_1>2670y"679yz‘r—1
’ // Oir-1 g(yi(r—l), yi(r)>dyi7._ldyir

(6_9?/’”*1 _ 6—9%,.)2

in, — Yi 26— 0Yin; o= 0Yin;—1
+ 61,”‘7 (ymi yzm—l) € ie i
\ // it (e_eyi”i—l — e~ in, )2 g(yi(ni—1)7 yi(ni)>dyini71dymi
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(1)

(

y‘21€_0yi1
/ F(yil)(l_e—_gyﬂpg(yi(l))dyil

4 / / l[F(yz-z) — F(yu)] (‘%Ee__ezfi )ieeizf):yﬂ]

Xg(yi(l), yi(z))dyudyiz

+ / / {[F(yw) — F(yir_1)] (Yir (;ygy_l)%-::ye_;y}

X G(Yitr—1ys Yi(r)) Wir—1dYsr

(yznl - yini—l)ze_eyi"i e_eyini—l
+// |:[F(yml> o F<yml_1)] (e—éymi—l _ e—eyini)2

X g(yl(nzfl) ) yz(m))(1%7szle/17"0Z

where g(y;(1)) is the probability function of the first order statistics and g(y;(r—1), ¥i(r))

is the joint probability density function of the (r — 1)“" and r** order statistics.

Letyii = vy1, Y2 = Y2, ", Yin, = Yn. Then,
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( y%e—ﬁm \
/ F(yl)(l_e—_gwg(y(l))dyl

] [ e

% g(y), Ye2))dyrdys

(P

N / / {[F(yr) Pl & (;ye;?i) _>]

X9(Yer-1) Yor)) AYr—1dYy

. / / {[F(yn) — F(ya1)] (y”<;_y92:1)2i_:z§n_)92yn_1}

L X9(Yn-1) Yn)) AYn—1dYy, )

Then, E/ (%) takes the following form:

( yie” ™
/F(yl)(l — 79(y))dy

6_91/1)

ST

—l—ZZf // [[F(yz+1) — F(y)] (Yis1 — y;)2e Oir1e= 0%

e— 0y — g—0yit1)2
( )

X 9(Ya), Y1) dYidyit

For the simplicity, let ;.1 = vy, and y; = y;. By using following joint probability

density function of the two order statistics, binomial theorem and power series
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gi,i+1<yi> ?/i+1) =

we obtain,

2
. <a InL(X,0)

06?

\

n!

(G T = Glu)]" 9w 9(in)

Din—i—1)
—9 .
== (17 7Y G0 L Gl gl

(B.11)
(a+b)" = <”) Ay (B.12)

m=0 m

1 2
Tzl‘i‘l"i‘x“‘ """ (B13)

2 —0y1 )
/F(y1><1?h€—9w)2n[1 — Gy " g(yr)d

):k

yre
/F(y1)(1_6 ey%)n

v i

Let: — 1 = j, then,

2
. <a InL(X,0)

06?

)=k

\

oo ffir

(2 - 1) X (G ) L = G gy, var))dyidys

[1-

G

(yz

"g(y1)dy

yl) 0y2 e

(y2 —_ y1)26_9y26_6y1
(e*eyz _ 6*9?/1)2

V

1

(e

—0y2 _ e~ 0y1)2

— Gy )" " g(un) 9(y2) dyrdys

/oo(l — e_ey%) y%6—0y1
0 (

1 — etui)

(i)

nle” I \e M dyy

—0 —0
y1> Y2 e Y1

e=0vz — e=0u1)2 9(y1)9(v2)

2 ) )
) G, L — Gym“} dyydys




=k

o ffie

o

—o9y2 +1—

Y

( n)\/
0

x[e~0v2

n)\/oooye
o e

—0y2

o0
nA Z;io ;

bl - 0¥ 2, { 8

1 — e~01)

efeyl) (y2 —y)%e

—9y2 + 1—

( nA /000(1 — eey%)(

1 — e~01)

(e’ey2 —e

yie ™ Ay n—1y ,—A
nle " Ae” M dy,

—0y2 ,—0y1
€ —0y2

2 _—0
(e _ o—0ur)2 Ae e

e~ 2 dy, dys

yie ™ Ay n—1y —A
nle " Ae” M dy,

(y2 — y1)%e "2e”

(e Oy __ e~ 9y1)
e~ 2dy, dy,

— e ) —0(y1+y2)

1

(=0+nN)ys _ ~
(1 —e-bw)

€ dy

<y2 yl) —0y2 6—9y1
(e—9y2 — e—9y1)

e~ "2 dy, dy,

Hyl } dy:

_— (y2 — y1)%e e
( —0y2 _ 79y1)2

+ 1 — e "] 2dy;dy,

fGyl) —0(y1+y2)

+1-

—0+nA)y1 {

(e 9]

2 (e

Jj=0

—0(y1+y2)

y%e(—6+n>\+j9)y1 dy,

n—2 j (—1)7+1
j =0 (2X+0+35))
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e8] 1
nA Zj:O (0+nr+j0)3

=k

0 n—2 (N — 2 j (=1)7+1 j 1
+n(n — DA77, {ijo ( ] ) =0 (2A+0+jX) <l) (9+/\+l9+kl)3}

By using power series in our derivation, we obtain Fisher information number as,

= 1
I@) :k[mjzo 0+ nX + 76)3

nln - )EY {i (n j 2) ljo (2A(:Llé?jilj/\) (]l> 6+ o M)’ H |

=0 \ j=0
(B.14)
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APPENDIX C

MATLAB CODES FOR SIMULATION OF INTERVAL
CENSORED DATA AND MODIFIED MAXIMUM
LIKELIHOOD ESTIMATION

# SIMULATION OF INTERVAL CENSORED DATA AND
MMLE FOR FIXED INTERVALS

function [1,r] =
data_generate_tez_531_simo_last (n, mu, sigma, g,

k, ¢, p_artis, simoCount)

muler dizisi = [];

sigmalar_dizisi = [];

for simoIndex=1:simoCount

simoIndex
i = 0;
y = normrnd (mu, sigma, [1 n]);

dizi_enkucukler = [];
dizi_ortadakilerL = [];
[

dizi_ortadakilerR =
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dizi_enbuyukler = [];

for i=1:n

u = zeros(l,k);

u = unifrnd (0, 1, [1 k]1);

p = zeros(l,k);

p(l) = c;
deg = ¢ + p_artis;
for 7 = 2:k
p(J) = deg;
deg = deg + p_artis;

end

I = zeros(1l,k);
AT = [];

I(l) = 1/

AT (1) = p(1);
for 3=2:k

AT

for j=1 : length (AT)
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if y (i) < min (AT)

dizi_enkucukler = [dizi_enkucukler ,

min (AT) ];
elseif y (i) > max (AT)

dizi_enbuyukler = [dizi_enbuyukler ,

max (AT) ];
else
diziTempKucukler = [];

diziTempBuyukler = [];

for tempIndex = 1 : length (AT)
if y(i) > AT (tempIndex)
diziTempKucukler =
[diziTempKucukler, AT (tempIndex)];
else
diziTempBuyukler =
[diziTempBuyukler, AT (tempIndex)];
end
end
dizi_ ortadakilerR =
[dizi_ortadakilerR, min (diziTempBuyukler) ];
dizi_ ortadakilerl =

[dizi_ortadakilerl, max(diziTempKucukler)];

end
break;
end

end

dizi_enkucukler
dizi_ortadakilerL

dizi_ortadakilerR

77



dizi_enbuyukler

ort_y = mean (y)

std_dev_y = std(y,0)

ky = 0;
hy = 0;
ky = ort_y - (std_dev_y / sqrt(n));

hy = ort_y + (std_dev_y / sgrt(n));

ky;

hy;

beta_eleman_sayisi = length(dizi_ortadakilerLl);
Beta_1l = zeros( 1, beta_eleman_sayisi);

for x=1l:beta_eleman_sayisi

fli_k = normpdf ((dizi_ortadakilerL(x) - ky)/std_dev_y);
Fri_k = normcdf ((dizi_ortadakilerR(x)- ky)/std_dev_y);
Fli_k = normcdf ((dizi_ortadakilerL(x) - ky)/std_dev_y);

ust_sol = fli_k / ( Fri_k - Fli_k );

fli_h = normpdf ((dizi_ortadakilerL(x) - hy)/std_dev_y);
Fri_h = normcdf ((dizi_ortadakilerR(x)- hy)/std_dev_y);
Fli_h = normcdf ((dizi_ortadakilerL(x) - hy)/std_dev_y);

ust_sag = fli_h / (Fri_h - Fli_h);

alt = (hy-ky) / std_dev_y;

Beta_1l(x) = (ust_sol - ust_sag) / (alt);

end
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Beta_1

alpha_eleman_sayisi = length(dizi_ortadakilerl);

Alpha_1 = zeros(l, alpha_eleman_sayisi);

for x=l:alpha_eleman_sayisi

fli_h = normpdf ((dizi_ortadakilerL (x) - hy)/std_dev_y);
Fri_h = normcdf ((dizi_ortadakilerR(x) - hy)/std_dev_y);
Fli_h = normcdf ((dizi_ortadakilerL(x) - hy)/std_dev_y);
li_h = (dizi_ortadakilerL(x) - hy) / std_dev_y;
Alpha_1(x) = ( fli_h / ( Fri_h - Fli_h ) )

- ( Beta_1l(x) = 1li_h ) ;
fli_h;
Fri_h;
Fli_h;
1i_h;

end

Alpha_1

w_eleman_sayisi = length(dizi_enkucukler);

W_1 = zeros(l,w_eleman_ sayisi);

for x=1:w_eleman_sayisi

fli_k = normpdf ((dizi_enkucukler (x) - ky)/std_dev_y);
Fli_k = normcdf ((dizi_enkucukler (x) - ky)/std_dev_y);
fli_h = normpdf ((dizi_enkucukler (x) - hy)/std_dev_y);
Fli_h = normcdf ((dizi_enkucukler (x) - hy)/std_dev_y);
alt = (hy-ky) / std_dev_y;
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W_1(x) = ((fli_k / Fli_k) - (fli_h / Fli_h )) / ( alt );

end

dizi_enkucukler;

w_1
v_eleman_sayisi = length(dizi_enkucukler);
V_1 = zeros(l,v_eleman_sayisi);

for x=1l:v_eleman_sayisi

fli_h = normpdf ((dizi_enkucukler (x) - hy)/std_dev_y);
Fli_h = normcdf ((dizi_enkucukler (x) - hy)/std_dev_y);
li_h = (dizi_enkucukler (x) - hy) / std_dev_y;
V_1(x) = (fli_h / Fli_h) - ( W_1(x) * 1li_h);

end

dizi_enkucukler;

v_1
beta_eleman_sayisi = length(dizi_ortadakilerR);
Beta_2 = zeros(l,beta_eleman_sayisi);

for x=l:beta_eleman_sayisi

fri_k = normpdf ((dizi_ortadakilerR(x) - ky)/std_dev_y);
Fri_k = normcdf ((dizi_ortadakilerR(x)- ky)/std_dev_y);
Fli_k = normcdf ((dizi_ortadakilerL(x) - ky)/std_dev_y);
ust_sol = fri k /(Fri_k — Fli_k);

fri_h = normpdf ((dizi_ortadakilerR(x) - hy)/std_dev_y);
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end

Fri_h = normcdf ((dizi_ortadakilerR(x)- hy)/std_dev_y);
Fli h

normcdf ((dizi_ortadakilerL(x) - hy)/std_dev_y);

ust_sag = fri_h / (Fri_h - Fli_h);

alt = (hy-ky) / std_dev_y;

Beta_2(x) = (ust_sol - ust_sag) / alt;

dizi_ortadakilerl;

dizi_ortadakilerR;

Beta_2

alpha_eleman_sayisi = length(dizi_ortadakilerR);

Alpha_2 = zeros(l,alpha_eleman_sayisi);

for

end

x=1:alpha_eleman_sayisi

fri_h = normpdf ((dizi_ortadakilerR(x) - hy)/std_dev_y);
Fri_h = normcdf ((dizi_ortadakilerR(x)- hy)/std_dev_y);
Fli_h = normcdf ((dizi_ortadakilerL(x) - hy)/std_dev_y);
ri_h = (dizi_ortadakilerR(x) - hy ) / std_dev_y ;
Alpha_2(x) = (fri_h / ( Fri_h - Fli_h ))

- (Beta_2(x) x ri_h) ;

dizi_ortadakilerR;

Alpha_2
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w_eleman_sayisi = length(dizi_enbuyukler);

W_2 = zeros(l,w_eleman_sayisi);

for x=1:w_eleman_sayisi

fri_k normpdf ( (dizi_enbuyukler (x) - ky) / std_dev_y);

Fri_k = normcdf ((dizi_enbuyukler (x)- ky) / std_dev_y);

fri_h = normpdf ((dizi_enbuyukler (x) - hy) / std_dev_y);
Fri_h = normcdf ((dizi_enbuyukler (x)- hy) / std_dev_y);
alt = (hy-ky) / std_dev_y;

W 2(x) = ((fri_k / (1 - Fri_k))
- (fri_h / (1 - Fri_h))) / ( alt );

end

dizi_enbuyukler;

W_2

v_eleman_sayisi = length(dizi_enbuyukler);

V_2 = zeros(l,v_eleman_sayisi);

for x=1l:w_eleman_sayisi

fri h

normpdf ( (dizi_enbuyukler (x) - hy) / std_dev_y);
Fri_h = normcdf ((dizi_enbuyukler(x)- hy) / std_dev_y);
ri_h = (dizi_enbuyukler(x) - hy) / std_dev_y;

V_2(x) = (fri_h / (1 - Fri_h )) - ( W_2(x) * ri_h );

end
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V_2

dizi_enbuyukler;

A = 0;

Il
(@)
~e

pay_bir
pay_iki = 0;

pay_uc = 0;

payda_bir = 0;
payda_iki = 0;
payda_uc = 0;

sol_eleman_sayisi = length(dizi_enkucukler);
orta_eleman_sayisi = length(dizi_ortadakilerR);
sag_eleman_sayisi = length(dizi_enbuyukler);

for x=1:s0l_eleman_sayisi

pay_bir = pay_bir + (V_1(x) * dizi_enkucukler (x));

end

for x=l:orta_eleman_sayisi

pay_iki = pay_iki + ( (Beta_1l(x) = dizi_ortadakilerR(x))

- (Beta_2(x) * dizi_ortadakilerL(x))) ;

end

for x=1l:sag_eleman_sayisi
pay_uc = pay_uc + (V_2(x) x dizi_enbuyukler (x))

end

for x=1:so0l_eleman_sayisi
payda_bir = payda_bir + (V_1(x)) ;

end
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for x=1l:orta_eleman_sayisi

payda_iki = payda_iki + (Beta_l(x) - Beta_2(x))

end

for x=l:sag_eleman_sayisi

payda_uc = payda_uc + (V_2(x)) ;

end

A = (-pay_bir - pay_iki + pay_uc )

/ ( —payda_bir - payda_iki + payda_uc );
A

B = 0;

pay_bir = 0;

pay_iki = 0;
pay_uc = 0;
payda_bir = 0;

Il
o
~e

payda_iki
payda_uc = 0;

sol_eleman_sayisi = length(dizi_enkucukler);
orta_eleman_sayisi = length(dizi_ortadakilerR);
sag_eleman_sayisi = length(dizi_enbuyukler);

for x=1l:so0l_eleman_sayisi
pay_bir = pay_bir + (W_1(x));

end
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for x=l:orta_eleman_sayisi
pay_iki = pay_1iki + ( Alpha_2(x) - Alpha_1(x)) ;

end

for x=1l:sag_eleman_sayisi
pay_uc = pay_uc + (W_2(x)) ;

end

for x=1:so0l_eleman_sayisi
payda_bir = payda_bir + (V_1(x)) ;

end

for x=l:orta_eleman_sayisi
payda_iki = payda_iki + (Beta_l(x) - Beta_2(x)) ;

end

for x=1l:sag_eleman_sayisi

payda_uc = payda_uc + (V_2(x)) ;

end

B = (- pay_bir - pay_iki + pay_uc )

/ ( — payda_bir - payda_iki + payda_uc );
B

Cc = 0;

pay_bir = 0;
pay_iki = 0;

pay_uc = 0;

payda_bir = 0;
payda_iki = 0;
payda_uc = 0;
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sol_eleman_sayisi = length(dizi_enkucukler);
orta_eleman_sayisi = length(dizi_ortadakilerR);

sag_eleman_sayisi = length(dizi_enbuyukler);

for x=1:so0l_eleman_sayisi
pay_bir = pay_bir + (W_1(x) * ((dizi_enkucukler (x)-A)));

end

for x=l:orta_eleman_sayisi

pay_iki = pay_1iki + ((Alpha_2(x) * (dizi_ortadakilerR(x)-A))

- ((Alpha_1(x) * (dizi_ortadakilerL(x)-A7A))));

end

for x=l:sag_eleman_sayisi

pay_uc = pay_uc + (W_2(x) * (dizi_enbuyukler (x)-34)) ;

end

C = (- pay_bir - pay_iki + pay_uc);
C

E=0;

pay_bir = 0;

pay_iki = 0;

sol_eleman_sayisi = length(dizi_enkucukler);
orta_eleman_sayisi = length(dizi_ortadakilerR);
sag_eleman_sayisi = length(dizi_enbuyukler);

for x=1l:sol_eleman_sayisi

pay_bir = pay_bir + (V_1(x) % ((dizi_enkucukler (x)-A)"2));
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end

for x=l:orta_eleman_sayisi

pay_iki = pay_1iki + ((( Beta_2(x)) =

((dizi_ortadakilerR(x)—-A)"2))

- ((Beta_1l(x) * ((dizi_ortadakilerL (x)-A)"2))));

end

for x=1l:sag_eleman_sayisi
pay_uc = pay_uc + (V_2(x) * ((dizi_enbuyukler(x)-A)"2)) ;

end

E = (- pay_bir - pay_iki + pay_uc);

dizi_enkucukler;
dizi_enbuyukler;
dizi_ortadakilerR;

dizi_ortadakilerL;

sigma_hat= 0;
var_hat = 0;

mu_hat = 0;

sigma_hatl (=C + sqgrt ((C"2) + (4*xn+*E)));

sigma_hat?2 (= (sqrt (2+(n) »(n=-2))));

sigma_hat = sigma_hatl / sigma_hat2 ;

mu_hat = (A + (B % sigma_hat);
mse = sum

sigma_hat
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mu_hat

muler_dizisi = [muler_dizisi, mu_hat];
sigmalar_dizisi = [sigmalar_dizisi, sigma_hat];
ms = [dizi, msesimo]

mse = [];

for j =1 : length

ms = (muler _dizisi - mu_hat)/simo
end

mu_ort = mean( muler_dizisi )

sig_ort = mean (sigmalar_dizisi)
end

# SIMULATION OF INTERVAL CENSORED DATA AND
MMLE FOR RANDOM INTERVALS

function [1l,r] = data_generate_tez_531_simo_teta

(n, teta, gq, k, ¢, p_artis, simoCount)

muler _dizisi = [];

sigmalar_dizisi = [];

for simoIndex=1:simoCount

simoIndex

i = 0;

y = exprnd(teta, [1 nl);

dizi_enkucukler = [];
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dizi_ortadakilerLl

dizi_ ortadakilerR

Il
—
—
~

dizi_enbuyukler = [];

for i=1:n

u = zeros(l,k);

u = unifrnd (0, 1, [1 kI1);

p = zeros(l,k);

p(l) = c;
deg = ¢ + p_artis;
for §J = 2:k
p(j) = deg;
deg = deg + p_artis;

end

I = zeros(l,k);
AT = []/

I(l) = 1;

AT (1) = p(1);
for j=2:k
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for j=1 length (AT)
if y (i) < min (AT)

dizi_enkucukler

min (AT) ];

elseif y (i) > max (AT)

dizi_enbuyukler =

max (AT) ];

else
diziTempKucukler
diziTempBuyukler

for tempIndex =

[dizi_enkucukler ,

[dizi_enbuyukler ,

(1
(17
length (AT)

if y(i) > AT (tempIndex)

diziTempKucukler = [diziTempKucukler,

AT (tempIndex) ];

else

diziTempBuyukler = [diziTempBuyukler,

AT (tempIndex) ];

end

end

dizi_ ortadakilerR

[dizi_ ortadakilerR,

min (diziTempBuyukler) ];

dizi_ortadakilerL

[dizi_ortadakilerl,

max (diziTempKucukler) ];

end
break;

end
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end

dizi_enkucukler
dizi_ortadakilerL
dizi_ortadakilerR

dizi_enbuyukler

v_eleman_sayisi = length(dizi_meanler);

V_2 = zeros(l,v_eleman_sayisi);

for x=1:w_eleman_sayisi

fri_h normpdf ( (dizi_enbuyukler (x) - hy) / std_dev_y);

Fri_h = normcdf ((dizi_enbuyukler (x)—- hy) / std_dev_y);

ri_h = (dizi_enbuyukler (x) - hy) / std_dev_y;

pay_bir = 0;

Il
(@)
~e

pay_iki
pay_uc = 0;

payda_bir = 0;
payda_iki = 0;
payda_uc = 0;

sol_eleman_sayisi = length(dizi_enkucukler);
orta_eleman_sayisi = length(dizi_ortadakilerR);
sag_eleman_sayisi = length(dizi_enbuyukler);

for x=1:so0l_eleman_sayisi
pay_bir = pay_bir + (V_1(x) = dizi_enkucukler(x));

end
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for x=1l:orta_eleman_sayisi

pay_iki = pay_iki + ( (or_1(x) = dizi_ortadakilerR(x))

- (or_2(x) * dizi_ortadakilerL(x))) ;

end

for x=1l:sag_eleman_sayisi
pay_uc = pay_uc + (V_2(x) * dizi_enbuyukler(x)) ;

end

for x=1:so0l_eleman_sayisi
payda_bir = payda_bir + (V_1(x)) ;

end
for x=l:orta_eleman_sayisi
payda_iki = payda_iki + (or_1l(x) - or_2(x)) ;
end
for x=1l:sag_eleman_sayisi
payda_uc = payda_uc + (V_2(x)) ;
end

D = (-pay_bir - pay_iki + pay_uc ) /

( -payda_bir - payda_iki + payda_uc );

D

Zz = 0;
pay_bir = 0;
pay_iki = 0;
pay_uc = 0;

payda_bir = 0;
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payda_iki = 0;
payda_uc = 0;

sol_eleman_sayisi = length(dizi_enkucukler);
orta_eleman_sayisi = length(dizi_ortadakilerR);
sag_eleman_sayisi = length(dizi_enbuyukler);

for x=1:s0l_eleman_sayisi
pay_bir = pay_bir + (W_1(x));

end

for x=l:orta_eleman_sayisi
pay_iki = pay_iki + ( Alpha_2(x) - Alpha_1(x)) ;

end

for x=l:sag_eleman_sayisi
pay_uc = pay_uc + (W_2(x)) ;

end

for x=1:s0l_eleman_sayisi
payda_bir = payda_bir + (V_1(x)) ;

end
for x=1l:orta_eleman_ sayisi
payda_iki = payda_iki + (or_1(x) - or_2(x)) ;
end
for x=l:sag_eleman_sayisi
payda_uc = payda_uc + (V_2(x)) ;

end

Z = (- pay_bir - pay_iki + pay_uc ) /
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( - payda_bir - payda_iki + payda_uc );

Z
G = 0;
pay_bir = 0;

pay_iki = 0;

pay_uc = 0;

payda_bir = 0;
payda_iki = 0;
payda_uc = 0;

sol_eleman_sayisi = length(dizi_enkucukler);
orta_eleman_sayisi = length(dizi_ortadakilerR);
sag_eleman_sayisi = length(dizi_enbuyukler);

for x=1:s0l_eleman_sayisi
pay_bir = pay_bir + (W_1(x) * ((dizi_enkucukler (x)-27)));

end

for x=l:orta_eleman_sayisi

pay_iki = pay_iki + ((Alpha_2 (x)

* (dizi_ortadakilerR(x)-A))

- ((Alpha_1(x) * (dizi_ortadakilerL(x)-A))));

end

for x=l:sag_eleman_sayisi
pay_uc = pay_uc + (W_2(x) * (dizi_enbuyukler (x)-34)) ;

end

G = (- pay_bir - pay_iki + pay_uc);
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F=0;

pay_bir 0;
pay_iki = 0;

pay_uc = 0;

sol_eleman_sayisi = length(dizi_enkucukler);
orta_eleman_sayisi = length(dizi_ortadakilerR);
sag_eleman_sayisi = length(dizi_enbuyukler);

for x=1:so0l_eleman_sayisi

pay_bir = pay_bir + (V_1(x)

* ((dizi_enkucukler (x)-A)"2));

end

for x=l:orta_eleman_sayisi

pay_iki = pay_iki + ((( or_2(x)) =

((dizi_ortadakilerR(x)-A)"2))

- ((or_1l(x) #* ((dizi_ortadakilerL(x)-A)"2))));

end

for x=1l:sag_eleman_sayisi

pay_uc = pay_uc + (V_2(x) * ((dizi_enbuyukler (x)-A)"2)) ;

end

F = (- pay_bir - pay_iki + pay_uc);
teta_hat = 0;

teta_hat = (F + G + D)/ ((or » G)+ Z);
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tetalar_dizisi = [tetalar_dizisi, teta_hat];

mse = [dizi, msesimo]

mse = [];
for 3 = 1 : length

ms = (tetalar_dizisi - teta_hat)/simo
end

teta = mean(tetalar_dizisi )

end
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