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ABSTRACT

RELATING UNDISTURBED BITS TO OTHER PROPERTIES OF
SUBSTITUTION BOXES

Makarim, Rusydi Hasan
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

July 2014, 37 pages

Recently it was observed that for a particular nonzero input difference to an S-Box,
some bits in all the corresponding output differences may remain invariant. This spe-
cific invariant bit is called undisturbed bit. Undisturbed bit can also be seen as a trun-
cated differential with probability 1 for an S-Box. The existence of undisturbed bits
was found in the S-Box of PRESENT and its inverse. A 13-round improbable dif-
ferential attack on PRESENT was provided by Tezcan (2013) and without using the
undisturbed bits in the S-Box an attack of this type can only reach 7 rounds. Although
the observation and the cryptanalytic application of undisturbed bits are given, its re-
lation with other properties of an S-Box remain unknown. This thesis presents some
results on mathematical properties of S-Boxes having undisturbed bits. We show that
an S-Box has undisturbed bits if any of its coordinate function has a nonzero linear
structure. The relation of undisturbed bits with other cryptanalytic tools such as differ-
ence distribution table (DDT) and linear approximation table (LAT) are also given. We
show that autocorrelation table is proven to be a more useful tool, compared to DDT, to
obtain all nonzero input differences that yield undisturbed bits. Autocorrelation table
can then be viewed as a counterpart of DDT for truncated differential cryptanalysis.
Given an n⇥m balanced S-Box, we state that the S-Box has undisturbed bit whenever
the degree of any of its coordinate function is quadratic.

Keywords : block cipher, substitution box, undisturbed bit, truncated differential
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ÖZ

RAHATSIZ EDİLMEMİŞ BİTLERİN DEĞİŞİM-KUTULARININ DİĞER
ÖZELLİKLERİ İLE İLİŞKİSİ

Makarim, Rusydi Hasan
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Temmuz 2014, 37 sayfa

Son araştırmalarda, bir değişim-kutusu (s-kutusu)’nun sıfırdan farklı girdi farkı için,
karşılık gelen çıktı farkındaki bazı bitlerin değişmeyebileceği gözlemlendi. Bu değişm-
eyen özel bitler rahatsız edilmemiş bitler olarak adlandırılır. Aslında bu bitler s-kutuları
için bir olasılıklı kesik diferansiyel olarak da görülebilir. PRESENT şifreleme algorit-
masında kullanılan s-kutularında ve bunların terslerinde rahatsız edilmemiş bitlerin
varlığı gösterilmiştir. Bu algoritmaya 13 döngülük olası olmayan diferansiyel atak
Tezcan (2013) tarafından uygulanmıştır. Bu atakta s-kutularının rahatsız edilmemiş
bitleri kullanılmadan en fazla 7 raunta kadar çıkılabildi. Rahatsız edilmemiş bitlerin
kriptografik uygulamaları verilmesine rağmen s-kutularına ait diğer özelliklerle olan
ilişkisi bilinmemektedir. Çalışmamızda, rahatsız edilmemiş bitlere sahip s-kutularının
matematiksel özellikleriyle ilgili bazı sonuçları sunuyoruz. S-kutularının herhangi bir
bileşeni (Boole fonksiyonu) lineer yapıya sahip ise bu s-kutularının rahatsız edilmemiş
bitlere sahip olduğunu gösterdik. Ayrıca, s-kutularının bu bitleri ile fark dağılım tablosu
(FDT) ve lineer yaklaşım tablosu (LYT) gibi diğer kriptografik araçların ilişkisi incelen-
miş ve verilmiştir. Rahatsız edilmemiş bitleri üreten sıfırdan farklı girdi farklarını
elde etmek için, FDT ile kıyaslandığında otokorelasyon tablolarının daha kullanışlı
olduğunu gösterdik. Otokorelasyon tabloları, kesik diferansiyel kriptoanaliz için FDT’
nin karşılığı olarak görülebilir. Verilen herhangi bir n ⇥ m dengeli s-kutusu için, bu
s-kutusunun herhangi bir bileşen fonksiyonunun derecesi kuadratik olduğu zaman bu
s-kutusunun rahatsız edilmemiş bitlere sahip olduğunu gösterdik.

Anahtar Kelimeler : blok şifreleme, değilim kutusu, rahatsız edilmemiş bitler, kesik
diferansiyel
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CHAPTER 1

INTRODUCTION

1.1 Cryptography and Cryptanalysis

Information transmission and storage are typical problems for any individual or orga-
nization, especially when its content should be kept confidential. Centuries ago various
ways and tools to protect information’s content have been developed, from pen-and-
paper methods, mechanical devices, and computational machines. The extensive re-
search of information protection leads to the invention of a new field of study on its
own, called cryptography.

Although there are numerous definitions, one of the elegant description of cryptog-
raphy was the one stated by Rivest : it is about communication in the presence of
adversaries [27]. However, the study of cryptography is not limited in the context
of information confidentiality but also data integrity, entity authentication, and non-
repudiation. The fundamental aim is to adequately address these areas in theory as
well as practice.

Cryptanalysis, on the other side, is a subject that deals with analyzing cryptographic
mechanism in order to recover partial or full information about the original informa-
tion. However, it is important to realize that cryptanalysis is not only targeting the
original text. Besides its purpose, cryptanalysis also improves the development of new
cryptographic methods that can withstand against known attack procedures. At the
same time, new cryptographic techniques may also lead to the invention of new crypt-
analytic approaches in the future. Both cryptography and cryptanalysis essentially
influence each other.

The basic idea of a cipher system is to conceal confidential information in such a way
that makes it look meaningless to any unauthorized party. The original information
that we want to encipher is called plaintext. The process of transforming a plaintext
into a secret message is known as encryption. The encrypted plaintext is called cipher-
text and the process of recovering a ciphertext into its original plaintext is decryption,
which is the inverse of encryption. In order to make the plaintext accessible only to
authorized parties, there is an additional information supplied into the encryption and
decryption algorithm known as key. We refer to the key used in encryption and de-
cryption algorithm as encryption key and decryption key, respectively. With the correct
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decryption key, the receiver of the ciphertext is able to obtain the original plaintext.
Hence, the secrecy of the key guarantees the confidentiality of the message from any
unauthorized entity.

One class of cryptographic function where the encryption key and decryption key can
be easily derived from each other, thus both must be kept secret and securely dis-
tributed, is called secret-key cryptography or symmetric-key cryptography. On the
other hand there exist cryptosystems that are designed in such a way that it is dif-
ficult for any adversary to obtain the decryption key from the encryption key, which
allow the encryption key to be publicly disclosed. Such mechanism is called public-key
cryptography or asymmetric-key cryptography.

Two main types of symmetric-key cryptography are block ciphers and stream ciphers.
As the name suggests, the encryption/decryption algorithm of a block cipher is per-
formed on a block of plaintext/ciphertext, typically with size 64-bit or 128-bit. Stream
ciphers operate with a time-varying transformation, usually on a single-bit of plaintext
digit. There are also some variant of stream ciphers that operate on a word or a sin-
gle byte. For more extensive study on stream ciphers, one may refer to the work of
Rueppel [28] and Golomb [14].

1.2 Block Ciphers

Let n be the size of plaintext as well as ciphertext block. Let k be the length of the key.
The encryption function E and decryption function D of a block cipher is defined as

E : {0, 1}n ⇥ {0, 1}k 7! {0, 1}n

D : {0, 1}n ⇥ {0, 1}k 7! {0, 1}n

where {0, 1}n, {0, 1}k denote the n-bit string and k-bit string of zeros and ones, respec-
tively . Choosing the value k (length of the key) is the most important consideration
when designing a block cipher. The reason is by using one plaintext and its associated
ciphertext, any attacker with sufficient computational power can obtain the correct key
by exhaustively searching through all elements in the key space {0, 1}k. This naive
attack method is known as exhaustive key search or brute force attack. The length of
the key must be determined in a way that it is computationally infeasible for current
processor technology to perform brute force within reasonable time period. However,
using the key length as the only criteria for proving the security of a block cipher is
certainly insufficient.

The construction of encryption functions in block ciphers come from the idea of prod-
uct cipher proposed by Shannon [30]. He suggested that one may build an encryption
function by combining two or more operations such that the resulting cipher (compo-
sition of operations) provides better security margin compared to its individual com-
ponents. He also suggested the notion of confusion and diffusion, two general design
principles for a practical cipher.

Confusion The statistics of ciphertext should depend on the plaintext statistics in such
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a way that it becomes too complicated to be exploited by the cryptanalyst. This
also means that the relationship between the ciphertext and key should be as
complex as possible.

Diffusion Each parity bit of a plaintext and a secret key should influence as many bit
in the ciphertext as possible. It is intended to spread out bits in the plaintext to
obscure any redundancy of plaintext which may appear later in the ciphertext.

The idea of product ciphers proposed by Shannon is applied by employing composition
of functions to achieve confusion and diffusion criteria. In practice, a designer of
block ciphers implements a nonlinear function to achieve the confusion property and
combines it with a linear function to achieve the diffusion criteria.

The encryption algorithm of a block cipher consists of iterative transformations of its
internal function called round. It is an r-round block cipher if the encryption function
repeatedly applies the round function for r times. Each round function consists of a
nonlinear function, a linear function, and a key mixing operation. The nonlinear func-
tion in a block cipher typically uses substitution operation and it is implemented using
a lookup table called substitution box or S-Box. The linear layer in a round function
is usually done by permuting the bits of the message. The key mixing in general uses
bitwise XOR on the internal state of the cipher with the round key. Some block ciphers
also use modular addition or modular multiplication instead of bitwise XOR in their
key mixing operation. Each round key is generated from the user-supplied key by a
key-schedule function.

This design of a block cipher that employs substitution, permutation, and key mixing
operation is known as substitution-permutation network or SPN. One of the prominent
example of block ciphers having SPN structure is Rijndael [11], which was chosen as
Advanced Encryption Standard (AES). Note that when designing an SPN cipher, each
function has to be invertible in order to make decryption operation possible.

Another design principle of block ciphers is Feistel cipher. The model was originally
proposed by Horst Feistel in the Lucifer algorithm [31]. Initially, n-bit plaintext is
divided into two equal size blocks, each with length n/2-bit, called L0 and R0. Suppose
the algorithm runs for r number of rounds, then the ciphertext is obtained by repeatedly
apply the following

L

i

= R

i�1 8i = 1, . . . , r � 1

R

i

= L

i�1 � F (K
i

, R

i�1) 8i = 1, . . . , r � 1

L

r

= L

r�1 � F (K
r

, R

r�1)

R

r

= R

r�1

The ciphertext C is obtained by C = L

r

k R

r

where k denotes bit concatenation. No-
tice that in the last round, the swapping of left and right block is omitted since it does
not give any cryptographic significance. The core of the encryption function lies in
the function F where substitution, permutation, and key mixing operation are imple-
mented. The keys K

i

used in each round are generated from the key-schedule function.
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An advantage of Feistel ciphers over substitution-permutation networks is the function
F need not to be invertible to make decryption possible. This means that the imple-
mentation of the decryption function will use the same function as encryption, except
for the key used in the decryption will be executed in reverse order. One disadvantage
of Feistel ciphers is that in each round the confusion and diffusion operation can only
be applied on half of the block size. It then requires more rounds to achieve complete
diffusion on the whole plaintext.

1.3 Substitution Boxes

Many nonlinear functions in block ciphers use substitution operations, implemented
using S-Boxes. The role of S-Boxes in the security of block ciphers plays a very
crucial part. Recall that a block cipher as a product cipher is composed of a nonlinear
and a linear mapping. The behavior of a linear mapping can be easily predicted due
to its linear properties. Nonlinear mapping, on the other hand, is the main source of
security for a block cipher. We will see later that some cryptanalysis techniques for
block ciphers turn into probabilistic methods due to nonlinear mappings. A ”good”
S-Box yields a good cipher that resists against various cryptanalytic attacks. However,
designing a good S-Box turns out to be not a trivial task. It involves the study of
Boolean functions. S-Boxes used in block ciphers must satisfy different criteria and
there are tradeoffs among these criteria.

Size of an S-Box is determined by the number of its input and output bits. For an
S-Box with n input bits and m output bits, we call it n ⇥m S-Box. The choice of an
S-Box is influenced by the design goal of that particular block cipher. For instance, a
block cipher intended for lightweight devices uses small S-Boxes (e.g. 3⇥3 and 4⇥4)
in order to reduce the cost of memory and power consumption in the implementation.
Some general purpose block ciphers may use larger S-Boxes (e.g. Rijndael [11] uses
an 8⇥ 8 S-Box).

1.4 Attack Models and Cryptanalysis of Block Ciphers

In a block cipher, the most important component that should be kept secure from the
adversaries is the key used for encryption/decryption. Although the details of the ci-
pher can also be kept secret, this paradigm of security does not provide long-term
security assurance. It is more plausible to assume that adversaries can obtain details
of the encryption system at anytime without inconvenience. Hence, the secrecy of in-
formation relies totally on the secrecy of the key. This requirement of encipherment
design is known as Kerckhoffs’ principle [15].

The list of some possible attacks against an encryption system in general can be clas-
sified into different models as follows.

• Ciphertext-Only Attack : The scenario assumes that an attacker has only infor-

4



mation about ciphertexts. In this case, the attacker’s only ability is listening to
the encrypted communications without having any idea about the corresponding
plaintext.

• Known-Plaintext Attack : The attacker has access to plaintexts and their cor-
responding ciphertexts. These information are used to recover the key of the
encryption system.

• Chosen-Plaintext Attack : In this case, an attacker can choose a specific desired
plaintext and has access to the corresponding ciphertext after encryption.

• Chosen-Ciphertext Attack : This case is similar with chosen-plaintext attack,
but instead of having access to the plaintext, an attacker can choose the cipher-
texts and obtain their corresponding plaintexts through decryption function.

• Adaptively Chosen-Plaintext Attack : It is a type of chosen-plaintext scenario
in which an attacker has an ability to select a plaintext as input to encryption
function based on the previous chosen-plaintext query.

• Adaptively Chosen-Ciphertext Attack : This scenario is the opposite of adap-
tively chosen-plaintext attack. It belongs to the class of chosen-ciphertext attack,
in which an attacker has an ability to choose a specific ciphertext to the decryp-
tion function based on the previous chosen-ciphertext query.

If an adversary could recover some partial or full information about the key, then she
can also recover the content of the plaintext. Other than brute force technique, an
attacker can exploit the statistical properties of the cipher to distinguish its behaviour
from a random permutation. Most of the techniques in the cryptanalysis of block
ciphers are based on such approach.

The two most important techniques in cryptanalysis of block ciphers are differential
cryptanalysis [4] and linear cryptanalysis [23]. Differential cryptanalysis uses the
relation of two different plaintexts and its propagation during the encryption. The aim
of differential cryptanalysis is to find a high probability differences in the plaintext and
ciphertext, so that it can be used to distinguish the cipher from a random permutation.
Linear cryptanalysis employs different strategy compared to differential cryptanalysis
by finding a linear relation between parities of bits in plaintexts, ciphertexts, and keys.
In other words, linear cryptanalysis tries to obtain a linear expression between plaintext
bits, ciphertext bits, and key bits such that the probability that the equation holds is
bounded away from 1/2.

1.5 Differential Cryptanalysis of Block Ciphers

Differential cryptanalysis is a powerful method of cryptanalysis technique for block
ciphers which belongs to the type of chosen-plaintext attack. It was first applied against
Data Encryption Standard by Biham and Shamir [4].
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For a fixed encryption key K, let P denote a plaintext and C be its corresponding
ciphertext, i.e. C = E

K

(P ). We also let P 0 and C

0 be another plaintext and its corre-
sponding ciphertext encrypted using K, C 0 = E

K

(P 0). The difference in the plaintext
is defined as �P = P � P

0 and for the ciphertext as �C = C � C

0. Differential
cryptanalysis studies the propagation of differences throughout the encryption rounds
and various operations in the cipher. Usually the differences considered are in the form
of XOR operation, since many ciphers perform key mixing with the intermediate data
using XOR operation. However this may not always be the case. The most important
observation is that the differences considered must allow the propagation of differences
to be defined independently from the round keys.

A linear function in the cipher, such as bit permutation, does not affect the differences
or they can be predicted with probability equal to one. For a nonlinear layer, the propa-
gation of differences can be studied by exhaustively observing all the input differences
and their possible output differences. The main result here is that the output differences
of a nonlinear function may not be uniformly distributed.

The possible propagation of differences during an encryption process is defined by
differential characteristic. Every characteristic has a plaintext difference that is used
to predict the difference in the following round. The probability that a characteristic
succeeds to predict the differences depends on the probability affecting nonlinear layer
in each round. By assuming that the occurence of difference in each round are inde-
pendent, the total probability is then computed as the product of the probabilites of
various operations.

The key recovery process is done by exploiting the expected difference for interme-
diate data before the last round or some rounds near the last round of encryption.
The attacker requests sufficient number of pair of plaintexts selected according to the
plaintext difference and their corresponding ciphertext pairs. The attacker then guesses
some portion of the last-round key, performs partial decryption with the ciphertext, and
checks if the output difference in the characteristic is satisfied. For the correct guess
of the key, the difference is expected to appear for a fraction of p or more, where p

denotes the probability of the occurence of characteristic. If the probability p is not
too low, the correct subkey is the one which yields the highest occurence satisfying the
characteristic.

1.5.1 Truncated Differential Cryptanalysis

Truncated differential cryptanalysis [16] is a relaxation of differential cryptanalysis
where the difference need not to be fully specified for every bit. It clusters several
differentials together and this has been effectively applied to some word-oriented ci-
phers such as SAFER [19]. The specification of a truncated differential can be done by
fixing some bits in the input/output differential and allowing the remaining bits to vary
arbitrarily. Truncated differential cryptanalysis plays an important role in some exten-
sions of differential cryptanalysis such as impossible differential cryptanalysis [1] and
boomerang attack [35].
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1.5.2 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis exploits a differential characteristic in a cipher
that never occur, or with probability zero. The term impossible differential was intro-
duced by Biham et al. in the cryptanalysis of SKIPJACK [1]. However the concept
of impossible differential was used by Knudsen earlier in the proposal of block cipher
DEAL [17].

A straightforward method to obtain a differential with probability equal to zero is by
encrypting sufficiently many plaintext pairs for a pre-specified input difference and ob-
serve the output difference that never occur. However, this method is clearly infeasible
due to large search space. One practical way to obtain an impossible differential is by
using the miss-in-the-middle approach [2]. This technique combines two (truncated)-
differential with probability one so that they conflict in the middle after concatenation.
The key recovery attack is done by guessing some parts of the last-round key and per-
form partial decryption. Using sufficiently many plaintext-ciphertext pairs, an attacker
can obtain the correct key by taking the key that never yields the output difference in
the ciphertext.

1.5.3 Improbable Differential Cryptanalysis

Besides high probability and zero probability differentials, low probability differentials
can also be used to distinguish a cipher from random permutation. Referring to the
work of Tezcan [33], differential cryptanalysis that uses a low probability differential
is called improbable differential cryptanalysis. Similar approach was also mentioned
independently in the work of Mala, Dakhilalian, and Shakiba [22].

Tezcan introduced a way to construct improbable differential by miss-in-the-middle
like technique, called almost miss-in-the-middle. After two truncated differential with
probability one that contradict in the middle of encryption are found, an attacker can
expand the impossible differential using (truncated)-differential in the outer part of
the impossible differential. This technique has been applied to attack reduced-round
CLEFIA [33] and PRESENT [34].

1.6 Motivations

With more usage of mobile and ubiquotous devices in the recent time, the security
and privacy issue have become the primary concerns. Cryptographic community has
started developing encryption systems that can be efficiently implemented in terms of
memory and power consumption, while at the same time maintaining the security level
of the cryptosystem.

PRESENT [5] is one of the block ciphers designed specifically for lightweight devices.
It supports 80-bit and 128-bit key length with 64-bit block size. The cipher has 31
rounds and each round consists of an 4⇥ 4 S-Box, bitwise permutation, and XOR key
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addition. PRESENT has been analysed and so far the the best attack is the multidimen-
sional linear cryptanalysis on 26 rounds [9].

In [34] Tezcan observed that for some nonzero input differences to the S-Box of
PRESENT, there exist some bits that remain the same in all possible corresponding
output differences. These specific invariant bits are called undisturbed bits. For in-
stance, with the input difference 9 = (1, 0, 0, 1) the least significant bit of every pos-
sible corresponding output difference is undisturbed and its value is equal to zero. He
also observed that undisturbed bits appear in the inverse of S-Box of PRESENT. The
existence of undisturbed bits can also be equally seen as a truncated differential with
probability one for a given S-Box. This allows an attacker to have longer truncated
differentials for bit-oriented ciphers. In [34], a 13-round improbable differential attack
was provided for PRESENT and without using undisturbed bits the best attack of this
type can only reach 7 rounds.

Proving the exact security bound of a block cipher against differential cryptanalysis is
a challenging task. Typically the designer of a block cipher would perform computer-
aided search to find the best differential characteristic on reduced-round version of
the cipher. One obvious way to improve the complexity of the searching algorithm
is by reducing the search space. In a separated work Sun et al. [32] used the undis-
turbed bits in the S-Box of PRESENT as additional constraints for searching the best
differential in related-key settings. The existence of undisturbed bits removes some
differential patterns that never occur and, hence, reduces the search space of the differ-
ential characteristics. The undisturbed bits are then converted into linear inequalities
for Mixed-Integer Linear Programming (MILP) model. The term conditional differen-
tial propagation is used by the authors to describe this behaviour.

Although previous works have discussed the observations on undisturbed bits and its
cryptanalytic applications, the relation of undisturbed bits with other properties of an
S-Box remains unknown. The goal of this thesis is to address this open problem and
presents the relation of undisturbed bits with other properties of an S-Box.

We breakdown our aim into several subproblems. Firstly, one may ask the implication
of undisturbed bits to the component functions of an S-Box. Specifically, we would
like to focus on the component functions of an S-Box where the undisturbed bits oc-
cur. Secondly, we want to see the notion of undisturbed bits from the point of view
of two well-known cryptanalytic tools: difference distribution table (DDT) and linear
approximation table (LAT). Thirdly, we ask whether there exists a dedicated cryptana-
lytic tool, similar to DDT and LAT, for the case of undisturbed bits. Lastly, we would
like to see other properties of an S-Box that can be used to indicate the existence of
nonzero input difference which has undisturbed bits in its corresponding output differ-
ences.

1.7 Contribution of the Thesis

We begin this thesis by providing the main background and properties of Boolean func-
tions in Chapter 2. We investigate further the notion of undisturbed bits and provide
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our main results in Chapter 3. We will show that the occurence of undisturbed bits is
related with the existence of nonzero linear structures in the coordinate functions of an
S-Box. We also propose autocorrelation table as a dedicated tool to obtain all nonzero
input differences of an S-Box which may yield undisturbed bits in the output differ-
ences. Autocorrelation table can then be seen as a counterpart of DDT for truncated
differential cryptanalysis. In the same chapter, we also prove that by using algebraic
degree of coordinate functions and balancedness property of an S-Box, the existence
of input difference that yield undisturbed bits in the corresponding output difference
can be shown for an n ⇥ m S-Box. The conclusions of our work and some possible
open problems are presented in Chapter 4.
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CHAPTER 2

BOOLEAN FUNCTIONS AND SUBSTITUTION BOXES

The aim of this chapter is to provide all necessary tools in order to understand the
structures and properties of Boolean functions in the context of cryptography. Boolean
functions are essentially the basic building blocks of various cryptographic primitives
such as block ciphers, stream ciphers, hash functions, message authentication codes,
etc.

We begin the first part by giving the definition of Boolean functions, its representations
in terms of truth table and algebraic normal form, together with some important tools
such as Walsh-Hadamard transform and autocorrelation. The concept of autocorrela-
tion and linear structures of a Boolean function constitute the main tools that we will
use to study S-Boxes with undisturbed bits. Several cryptographic criteria related with
the concept of autocorrelation will also be defined in this section.

Generalization of Boolean functions in terms of vectorial Boolean functions, which is
called Substitution Boxes in cryptography literature, is described in the second section.
We start with the definition of an S-Box, followed by description of balanced S-Boxes.
The two well-known cryptanalytic tools for an S-Box, which are difference distribution
table (DDT) and linear approximation table (LAT), will also be introduced.

Note that this chapter only covers elementary topics about Boolean functions. For
more extensive discussion on Boolean functions, S-Boxes, and other related topics,
the reader may consult [10].

Notations

We define the set of integers Z = {0,±1,±2,±3, . . .} and the set of natural num-
bers N = {1, 2, 3, . . .}. Let F2 = {0, 1} be a finite field with two elements and
Fn

2 = {(x
n�1, . . . , x1, x0) | x

i

2 F2, 0  i  n � 1} be an n-dimensional vector
space over F2. The elements of Fn

2 will be denoted x = (x
n�1, . . . , x1, x0) where x

i

are the components or coordinates of x̄. Note that in this thesis every vector is con-
sidered as a column vector, but we will continue writing it in row-wise manner. The
subscript indexing is reserved to refer to the components of a vector except for the case
of standard basis in Fn

2 . The symbol � is used to denote the addition in F2 and Fn

2 .
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One way to represent an elements of Fn

2 is by using integer/decimal representation via
the mapping ' : Fn

2 7! Z such that for any x 2 Fn

2 we have

x = '(x) = '(x
n�1, . . . , x1, x0) =

n�1X

i=0

x

i

2i

The associated integer representation of vector x is written using boldface type font x.
The lexicographical ordering of the elements of Fn

2 is defined as follows : x  y if and
only if '(x)  '(y). The standard basis of Fn

2 is denoted by

e

n�1 = (1, 0, . . . , 0), e

n�2 = (0, 1, 0, . . . , 0), · · · , e0 = (0, . . . , 0, 1)

We call the vector e
i

2 Fn

2 as the i-th standard basis of Fn

2 . The integer representation
of each i-th standard basis of Fn

2 is given by 2i. For arbitrary x 2 Fn

2 , we may write
x as x = x

n�1en�1 � · · · � x0e0. The elements (0, . . . , 0) and (1, . . . , 1) of Fn

2 , i.e.
the zero-vector and one-vector, are denoted 0 and 1 respectively. The complement of
x 2 Fn

2 is denoted ¬x where ¬x = (x
n�1 � 1, . . . , x0 � 1) = x� 1.

Example 2.1. Let x = (1, 0, 0, 0, 1) 2 F5
2. We can write x as x = 17 2 Z in the

integer/decimal representation.

Let x, y 2 Fn

2 , the inner product of x and y is defined as

x · y =
n�1M

i=0

x

i

y

i

The Hamming weight of a vector x, wt(x), is defined as the number of nonzero com-
ponents of x. The set Supp(x) contains the index of nonzero components of the vector
x, i.e. Supp(x) = {i | x

i

6= 0}. It can be easily seen that |Supp(x)| = wt(x).

2.1 Boolean Functions

Definition 2.1. Let n 2 N. An n-variable Boolean function f is defined as f : Fn

2 7!
F2 that is a mapping from n-dimensional vector space over F2 into F2.

We denote Bn as the set of all n-variable Boolean functions. One way to represent a
Boolean function is by exhaustively listing down the possible values of f(x) for every
x 2 Fn

2 and order it lexicographically. The vector (f(0), . . . , f(2n � 1)) is called the
truth table of f . The complement of a Boolean function ¬f is the complement of its
truth table. For f 2 Bn, its truth table has 2n components in which for every x 2 Fn

2 ,
f(x) has two possible values in F2. This leads to the following proposition of the
number of n-variable Boolean functions.

Proposition 2.1. Let n 2 N. The number of n-variable Boolean functions is 22n , i.e.
|Bn| = 22

n
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The associated sign function b
f(x) for every Boolean function f is defined by b

f(x) =
(�1)f(x) = 1 � 2f(x), whose values belong to the set {�1, 1}. The corresponding
vector for the sign function b

f represented by ( bf(0), . . . , bf(2n � 1)) is called polarity
truth table. The wt(f), weight of a Boolean function f , is the weight of its truth
table. The support of f is defined to be Supp(f) = {x 2 Fn

2 | f(x) 6= 0}. A Boolean
function f 2 Bn where wt(f) = 2n�1 is called a balanced function, i.e. there are equal
number of zeros and ones in its truth table. For every x 2 Fn

2 , the Boolean function
f where f(x) = c for a fixed c 2 F2 is called a constant function. The distance of
two Boolean functions f, g is defined as the number of entries in which they differ, i.e.
dt(f, g) = |{x 2 Fn

2 | f(x) 6= g(x)}|. It is trivial to check that dt(f, g) = wt(f � g).

The second representation of Boolean functions is using algebraic expression intro-
duced by Zhegalkin in 1927 [12].

f(x) = f(x
n�1, . . . , x1, x0) =

M

u2Fn
2

a

u

x

un�1
n�1 · · · xu0

0 =
M

u2Fn
2

a

u

x

u (2.1)

The coefficient a
u

is obtained by a

u

=
L

x�u

f(x) where x � u means that x
i

 u

i

for
all 0  i  n � 1 (we say that u covers x). We refer to the expression given in Equa-
tion 2.1 as the algebraic normal form (ANF) of f . We call the product xun�1

n�1 · · · xu0
0 a

monomial and we refer to a

u

x

un�1
n�1 · · · xu0

0 as a term. For u = 0 we indicate its associ-
ated term as the constant term. The degree of a Boolean function, deg(f), is defined
as the maximal monomial degree in its ANF representation. The following proposition
gives an upper bound for the degree of balanced functions.

Proposition 2.2 ([29]). For a balanced n-variable Boolean function with n � 2,
deg(f)  n� 1

An affine function is a Boolean function such that its ANF is of the form ! · x � ✏ =
!

n�1xn�1 � · · ·� !0x0 � ✏ for ! = (!
n�1, . . . ,!0) 2 Fn

2 and ✏ 2 F2. The vector ! is
the coefficient vector of the affine function. We denote An as the set of all n-variable
affine functions.

An element of the subset Ln ✓ An where ✏ = 0, i.e. ! · x, is called a linear function.
We also denote the linear function ! · x using notation l

w

(x).

Let a, b 2 Fn

2 and l

!

: Fn

2 7! F2 be a linear function with coefficient vector ! =
(!

n�1, . . . ,!0). The linear Boolean function has the following properties

l

!

(a)� l

!

(b) = (! · a)� (! · b)
= (!

n�1an�1 � · · ·� !0a0)� (!
n�1bn�1 � · · ·� !0b0)

= !

n�1an�1 � !

n�1bn�1 � · · ·� !0a0 � !0b0

= !

n�1(an�1 � b

n�1)� · · ·� !0(a0 � b0)

= ! · (a� b) = l

!

(a� b)

Thus we may see a linear Boolean function as a group homomorphism from Fn

2 into
F2. We define a nonzero linear function as a linear function with nonzero coefficient
vector. Using the homomorphicity of linear Boolean functions, we can now prove the
following result.
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Theorem 2.3. Every nonzero linear Boolean function is balanced.

Proof. Suppose l

!

: Fn

2 7! F2 is a nonzero linear Boolean function. For every a, b we
have l

!

(a�b) = l

!

(a)�l

!

(b) which makes us able to see l
!

as a group homomorphism
from Fn

2 into F2 with respect to � operation in Fn

2 and F2. Let Ker
l! = {x 2 Fn

2 |
l

!

(x) = 0} be the kernel of l
!

and Im
l! = {l

!

(x), 8x 2 Fn

2} be the image of l
!

. From
the first group isomorphism theorem, the quotient group Fn

2/Ker
l! is isomorphic to the

set Im
l! .

For every a 2 Fn

2 we have l

!

(0) = l

!

(a � a) = l

!

(a) � l

!

(a) = 0 and since l

!

is a
nonzero linear function, then there exists a b 2 Fn

2 such that l
!

(b) 6= 0. It follows that
l

!

is onto/surjective function. We may then deduce that Im
l! = F2. Since |Fn

2 | = 2n

and |Im
l! | = |F2| = 2, it implies that |Ker

l! | = 2n�1. Clearly, l
!

is balanced.

Corollary 2.4. Every affine function with nonzero coefficient vector is balanced. If the
coefficient vector is zero vector, the affine function is a constant function.

Proof. Let ! · x � ✏ be an affine function. The case when ! 6= 0 and ✏ = 0 follows
from Theorem 2.3. The case for ! 6= 0 and ✏ = 1 follows from the fact that ! · x � 1
is complement of ! · x, and hence, it is also balanced. The case when ! = 0 is
obvious.

Corollary 2.5. If ! 2 Fn

2 then we have

X

x2Fn
2

(�1)!·x =

⇢
2n if ! = 0
0 otherwise

Proof. The proof for ! = 0 is trivial. The case for ! 6= 0 follows immediately from
Theorem 2.3

The relation between two Boolean functions can be seen from the point of view of
cross-correlation, which is a real-valued function. We define cross-correlation between
two Boolean functions f and g below.

Definition 2.2 (Cross-correlation). Let f, g 2 Bn be n-variable Boolean functions.
The cross-correlation of f and g at ! 2 Fn

2 is defined as

C

f,g

(!) =
X

x2Fn
2

(�1)f(x)(�1)g(x�!) =
X

x2Fn
2

b
f(x)bg(x� !)

Intuitively, cross-correlation tries to relate the function f with permutation of function
g where ! acts as the permutation parameter for g. We may see that for ! = 0, it gives
an identity permutation and cross-correlation obviously shows the relation of f and the
original function g. From this perspective, the notion of correlation is introduced.
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Definition 2.3 (Correlation). Let f, g be n-variable Boolean functions. The correlation
of f and g is defined as

C
f,g

= C

f,g

(0) =
X

x2Fn
2

(�1)f(x)(�1)g(x)

=
X

x2Fn
2

b
f(x)bg(x)

Theorem 2.6. Let f, g 2 Bn be n-variable Boolean functions. The relation of C
f,g

and
the distance of f and g is given as

C
f,g

= 2n � 2 · dt(f, g)

Proof. For some u 2 Fn

2 , the case when f(u) = g(u) implies that b
f(x)bg(x) = 1. For

some v 2 Fn

2 , the case when f(v) 6= g(v) implies that b
f(x)bg(x) = �1. From the

Definition 2.3, the number of �1 in the summation is equal to |{x 2 Fn

2 | f(x) 6=
g(x)}| = dt(f, g). Similarly, the number of +1 in the summation can be expressed as
2n � dt(f, g). Clearly we have

C
f,g

= (2n � dt(f, g))� dt(f, g) = 2n � 2 · dt(f, g)

2.1.1 Walsh-Hadamard Transform

In the analysis of a Boolean function, Walsh-Hadamard transform is an important tool
that can determine various properties of the function. We give the following definition
of Walsh-Hadamard transform as well as its inverse transform.

Definition 2.4 (Walsh-Hadamard Transform). The Walsh-Hadamard Transform of f
at ! 2 Fn

2 is defined by

W
f

(!) =
X

x2Fn
2

(�1)f(x)(�1)!·x =
X

x2Fn
2

b
f(x)(�1)!·x

The inverse transform is defined by

b
f(x) = 2�n

X

!2Fn
2

W
f

(!)(�1)x·!

The vector (W
f

(0), . . . ,W
f

(2n�1)) is called the Walsh spectrum of f .

One of the properties of a Boolean function that can be determined from the Walsh
value is balancedness. Note that W

f

(0) =
P

x2Fn
2
(�1)f(x) and if f is a balanced

function, clearly W
f

(0) = 0. The converse is also true.

Proposition 2.7. A Boolean function f is balanced if and only if W
f

(0) = 0.
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2.1.2 Autocorrelation and Derivative

Another important tool in the analysis of a Boolean function, which will also be used
to study S-Boxes with undisturbed bits throughout this thesis, is the idea of autocorre-
lation.

Definition 2.5 (Autocorrelation). The autocorrelation of an n-variable Boolean func-
tion f at ↵ 2 Fn

2 is defined by

r

f

(↵) =
X

x2Fn
2

(�1)f(x)(�1)f(x�↵) =
X

x2Fn
2

(�1)f(x)�f(x�↵)

.

We refer to the vector (r
f

(0), . . . , r
f

(2n�1)) as the autocorrelation spectrum of f .
The relation of autocorrelation and Walsh-transform is given by the following theorem.

Theorem 2.8 (Wiener-Khinthcine [25]). The expression of autocorrelation in terms of
Walsh value is equal to

r

f

(↵) = 2�n

X

!2Fn
2

W2
f

(!)(�1)↵·!

and the inverse relation is given by

W2
f

(!) =
X

↵2Fn
2

r

f

(↵)(�1)!·↵

The derivative of f at ↵ 2 Fn

2 is defined as D
↵

f(x) = f(x)�f(x�↵). The derivative
of f at any point in Fn

2 can also be treated as an n-variable Boolean function. The
autocorrelation of a Boolean function can then be expressed in terms of its derivative
as r

f

(↵) =
P

x2Fn
2
(�1)D↵f(x). The following proposition gives an upper bound to the

degree of the derivative of a function.

Proposition 2.9 ([21]). If f is an n-variable Boolean function and ↵ 2 Fn

2 , then
deg(D

↵

f)  deg(f)� 1.

If D
↵

f(x) is a constant function, then ↵ is a linear structure of f [20] [13]. The zero
vector 0 2 Fn

2 is a trivial linear structure since D0f(x) = 0 for all x 2 Fn

2 . We say that
the function f has a linear structure if there exists a nonzero vector ↵ 2 Fn

2 such that
D

↵

f(x) is a constant function. The notation LS
f

is used to define the set of all linear
structures of f . The set of all n-variable Boolean functions that has linear structure is
denoted by LS(n). From the point of view of autocorrelation, a vector in Fn

2 is a linear
structure if it satisfies the following proposition.

Proposition 2.10. The vector ↵ 2 Fn

2 is a linear structure of f if and only if r
f

(↵) =
±2n.

Proposition 2.11. Any vector in Fn

2 is a linear structure of every affine function.
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Proof. Let ↵ 2 Fn

2 . Recall that we can represent an affine function as ! · x � ✏ with
! 2 Fn

2 and ✏ 2 F2. The derivative of the affine function ! · x� ✏ at ↵ is equal to

(! · x� ✏)� (! · (x� ↵)� ✏) = (! · x� ✏)� ((! · x� ! · ↵)� ✏)

= ! · ↵

This implies that the derivative of the affine function ! · x � ✏ at ↵ is equal to ! · ↵
for all x 2 Fn

2 and, hence, is a constant function. Clearly, ↵ is a linear structure of
! · x� ✏.

2.1.2.1 Related Cryptographic Criteria

A cryptographic criteria which is closely related to autocorrelation is Strict Avalanche
Criterion (SAC). An n-variable Boolean function f satisfies SAC if changing any one
of the n bits in the input results in the output of the function being changed with
probability 1/2. It is clear that the following proposition follows from the definition of
SAC and could be treated as an equivalent definition.

Proposition 2.12. An n-variable Boolean function f satisfies SAC if and only if the
function f(x)� f(x� ↵) is balanced for every ↵ 2 Fn

2 with wt(↵) = 1. Equivalently,
the function f satisfies SAC if and only if r

f

(↵) = 0, with wt(↵) = 1.

An n-variable Boolean function is said to satisfy propagation criterion of degree k,
PC(k), if changing any i (1  i  k) of the n bits in the input results in the output
of the function being changed for half of the times. This definition generalizes the
notion of SAC, which is clearly equal to PC(1) function. The following proposition is
analogous to the one given in Proposition 2.12.

Proposition 2.13. An n-variable Boolean function f satisfies PC(k) if and only if

r

f

(↵) =
X

x2Fn
2

(�1)f(x)(�1)f(x�↵) = 0, 1  wt(↵)  k

We can also restate Proposition 2.13 in terms of the derivative of f as follows.

Proposition 2.14. An n-variable Boolean function f satisfies PC(k) if and only if
D

↵

f(x) is a balanced function for each 1  wt(↵)  k.

2.2 Substitution Boxes

An n ⇥ m substitution box (or S-Box in short) is a mapping S : Fn

2 7! Fm

2 . The
internal structure of an S-Box can be decomposed into Boolean functions. Let y =
(y

m�1, . . . , y0) 2 Fm

2 and y = S(x). The component of y can be computed by y

i

=
h

i

(x) for each i 2 {0, . . . ,m� 1}. The functions h
i

: Fn

2 7! F2 are called the coordi-
nate functions of the S-Box S. The component functions of the S-Box S are the map-
ping b ·S(x) for all nonzero b 2 Fm

2 . The component functions are essentially general-
ization of coordinate functions of an S-Box by considering its linear combinations, i.e.
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for nonzero b = (b
m�1, . . . , b0) 2 Fm

2 we have b·S(x) = b

m�1hm�1(x)�. . .�b0h0(x).
It follows that the coordinate function h

i

(x) = e

i

· S(x) where e

i

is the i-th standard
basis of Fm

2 .

An n ⇥ m S-Box S is balanced (or regular) if it takes every value of Fm

2 the same
number 2n�m of times. The following proposition characterizes a balanced S-Box
from the balancedness of its component functions.

Proposition 2.15 ([6]). An n ⇥ m S-Box is balanced if and only if its component
functions are balanced, that is if and only if for every nonzero b 2 Fm

2 , the Boolean
function b · S(x) is balanced.

The notion of linear structures in Boolean functions can be extended for the case of S-
Boxes. The definition of an S-Box that has linear structure was originally proposed by
Chaum [8] and Evertse [13]. They defined that an S-Box has linear structure by con-
sidering the existence of nonzero linear structures in any of the component functions
of the S-Box.

Definition 2.6 (S-Box with linear structures [8][13][24]). An n⇥m S-Box S is said to
have a linear structure if there exists a nonzero vector ↵ 2 Fn

2 together with a nonzero
vector b 2 Fm

2 such that b · S(x) � b · S(x � ↵) takes the same value c 2 F2 for all
x 2 Fn

2 .

Proposition 2.16. An n⇥m S-Box S is said to have a linear structure if there exists a
nonzero vector ↵ 2 Fn

2 together with a nonzero vector b 2 Fm

2 such that r
b·S(↵) = ±2n.

In the cryptanalysis of block ciphers, the two most important cryptanalytic tools to
analyse properties of an S-Box are difference distribution table (DDT) [4] and linear
approximation table (LAT) [23].

Let x, x0 2 Fn

2 be two inputs to S-Box S and y = S(x), y

0 = S(x0) be their cor-
responding outputs. We refer to the difference in the input x � x

0 = ↵ as the input
difference to S. Similarly y � y

0 = � is the output difference of S correponding to
input difference ↵. DDT examines how many times a certain output difference of an
S-Box occurs for a given input difference. The definition of DDT is given as follows.

Definition 2.7. For an n⇥m S-Box S, the entry in the row s 2 Fn

2 and column t 2 Fm

2

(considering their integer representation) of difference distribution table of S is defined
by DDT(s, t) = |{x 2 Fn

2 | S(x)� S(x� s) = t}|.

The probability of an input difference ↵ yielding the output difference � is then defined
by

Pr
S

[↵ ! �] = 2�n|{x 2 Fn

2 | S(x)� S(x� ↵) = �}|
= 2�n · DDT(↵,�)

On the other hand, LAT is used to find the best linear approximation for an S-Box
involving the parity bits of its input and output. The definition of linear approximation
table is given below.

18



Definition 2.8. For an n ⇥ m S-Box S, the linear approximation table of S at row
s 2 Fn

2 and column t 2 Fm

2 (considering their integer representation) is defined as

LAT(s, t) = |{x 2 Fn

2 | s · x = t · S(x)}|� 2n�1
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CHAPTER 3

UNDISTURBED BITS

One of the earliest techniques of block cipher cryptanalysis was due to Biham and
Shamir, called differential cryptanalysis [3]. Let E

K

be an encryption function with
a fixed key K. Let P1, P2 be two different plaintexts that lead to the ciphertexts
C1 = E

K

(P1) and C2 = E

K

(P2) after applying E

K

. The goal of differential cryptanal-
ysis is to find a relation �P = P1 � P2 that leads to �C = C1 � C2 with probability
higher than a random permutation. The pair (�P,�C) is called a differential. The
strategy to obtain �P that leads to �C with high probability is by combining differ-
ential characteristics, a sequence of input and output differences to the round function
in a block cipher.

In [16] Knudsen improved the previous differential cryptanalysis using truncated dif-
ferentials. In classical differential cryptanalysis, the differential is fully specified for
every bit, whereas truncated differentials provide a way to significantly improve the
differential cryptanalysis by specifiying only some part of the differentials.

During the last decades, extensive usage of ubiquitous devices as well as low-end de-
vices such as RFID, leads to dramatic needs for security and privacy of data stored
in such devices. The main challenges to design encryption mechanisms suitable for
low-end devices are the limited memory and power available. Some of the lightweight
block ciphers such as PRESENT [5] and RECTANGLE [36] are designed in bit-oriented
fashion. This is due to the efficiency of bit-level operations for hardware implementa-
tion.

In order to mount truncated differential cryptanalysis on a bit-oriented block cipher,
the only part which should be examined closely is the nonlinear operation, usually
done by substitution boxes. In [34] Tezcan provided observations on the S-Box of
PRESENT that help achieving longer truncated differentials. For a particular nonzero
input difference to the S-Box of PRESENT, there exist some bits that remain equal
in all the possible corresponding output differences. These specific bits are called
undisturbed bits.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

Table 3.1: The 4⇥ 4 S-Box of PRESENT.
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As a brief example, let (1, 0, 0, 1) = 9 be an input difference to the S-Box of PRESENT.
By looking at its DDT, all the possible correponding output differences are the vectors
2,4,6,8,12,14. Notice that in binary form, the rightmost bit value remains invariant
for all the possible output differences, which is equal to zero (See Table 3.2).

Input Difference Possible Output Differences Probability
9 = (1, 0, 0, 1) 2 = (0, 0, 1, 0) 2�3

4 = (0, 1, 0, 0) 2�2

6 = (0, 1, 1, 0) 2�3

8 = (1, 0, 0, 0) 2�3

12 = (1, 1, 0, 0) 2�3

14 = (1, 1, 1, 0) 2�2

(⇤, ⇤, ⇤, 0) 1

Table 3.2: Example of undisturbed bit in the PRESENT’s S-Box. The symbol ⇤ denotes
arbitrary value of zero and one.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0
10 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
11 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
12 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
13 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
14 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
15 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

Table 3.3: DDT of the S-Box of PRESENT.

Moreover, in [34] similar occurrences in the rightmost bit of the output difference
vector is also observed for input differences 1 and 8, but with undisturbed bit value
equal to 1. In the same paper, the author also shows the existence of undisturbed bits
in the inverse of PRESENT’s S-Box. However, it is sufficient to study the notion of
undisturbed bits in terms of mapping from Fn

2 to Fm

2 . For a bijective S-Box, the results
from this chapter can be applied to its inverse.

In this chapter, we further study the undisturbed bits and give more mathematical treat-
ment on the subject. The definition of undisturbed bits and its connection with the
concept of linear structures in Boolean functions are given in the first section. The re-
lation of difference distribution table and linear approximation table with undisturbed
bits are presented in Section 3.2. Autocorrelation table is introduced in Section 3.3, as
a tool to analyse an S-Box in order to obtain nonzero input differences that may yield
undisturbed bits in the S-Box. In Section 3.4, we recall some results from [7] about
the existence of nonzero linear structures in balanced quadratic Boolean functions and
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use it to prove the existence of undisturbed bits for balanced n ⇥ m S-Boxes with
quadratic coordinate functions. The result is also used as an alternative proof for the
proposition given by Tezcan in [34] about the existence of undisturbed bits in bijective
3⇥ 3 S-Boxes. We summarize and conclude the results of this chapter in Section 3.5.

3.1 Undisturbed Bits and Linear Structures

In this section we recall the definition of undisturbed bits and provide its relations with
autocorrelation, derivative, and linear structure of coordinate functions in an S-Box.
The notation S = (h

m�1, . . . , h0) will be used consistently for the rest of this chapter
to denote an n ⇥ m S-Box S : Fn

2 7! Fm

2 with coordinate functions h

m�1, . . . , h0,
where h

i

: Fn

2 7! F2.

Definition 3.1 (Undisturbed Bits). Let ↵ 2 Fn

2 be a nonzero input difference to the
S-Box S and ⌦

↵

= {� = (�
m�1, . . . , �0) 2 Fm

2 | Pr
S

[↵ ! �] > 0} be the set of all
possible output differences of S corresponding to ↵. If �

i

= c for a fixed c 2 F2 and
for all � 2 ⌦

↵

with i 2 {0, . . . ,m � 1}, then the S-Box S has undisturbed bits. In
particular, we say that for input difference ↵, the i-th bit of the output difference of S
is undisturbed (and its value is c).

Example 3.1. For PRESENT’s S-Box with input difference 1, the least significant bit
(rightmost) of all possible output differences is equal to 1. Following Definition 3.1,
we say that for input difference 1, the 0-th bit of the output difference of PRESENT’s
S-Box is undisturbed and its value is 1. Similarly, for input difference 9, the 0-th bit of
the output difference of PRESENT’s S-Box is undisturbed and its value is 0.

Recall that any output of an S-Box as the element of Fm

2 can be computed component-
wisely using coordinate functions of the S-Box. If Pr

S

[↵ ! �] > 0, then there exists
a v 2 Fn

2 such that S(v)� S(v � ↵) = �. It follows that the component of the output
difference vector � = (�

m�1, . . . , �0) can be computed by �

i

= h

i

(v) � h

i

(v � ↵).
The following result is an implication from this observation.

Theorem 3.1. For a nonzero input difference ↵ 2 Fn

2 and i 2 {0, . . . ,m� 1}, the i-th
bit of the output difference of S is undisturbed if and only if D

↵

h

i

(x) = h

i

(x)�h

i

(x�
↵) is a constant function.

Proof. Suppose for an input difference ↵, the i-th bit of the output difference of S is
undisturbed. Let ⌦

↵

= {� = (�
m�1, . . . , �0) 2 Fm

2 | Pr
S

[↵ ! �] > 0} be the set of
all possible output differences of S corresponding to ↵. Definition 3.1 tells us that for
all � = (�

m�1, . . . , �0) 2 ⌦
↵

the component �
i

= c for a fixed c 2 F2. Since �

i

=
h

i

(v)� h

i

(v � ↵) for some v 2 Fn

2 and because the computation of output differences
in ⌦

↵

runs through all the elements of Fn

2 , clearly D

↵

h

i

(x) = h

i

(x) � h

i

(x � ↵) = c

for all x 2 Fn

2 . Hence D

↵

h

i

(x) is a constant function. The converse part of the proof
can be done by reversing the previous step.
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The value of undisturbed bits can then be deduced whether the constant function
D

↵

h

i

(x) is equal to zero or one, for each x 2 Fn

2 . Because D

↵

h

i

(x) is a constant
function, then the nonzero vector ↵ is a linear structure of the coordinate function h

i

.
Equivalently, since ↵ is a nonzero vector, then h

i

is a function with linear structure.
This result shows that a particular S-Box has undisturbed bits if any of its coordinate
function has nontrivial linear structures. In order to see if an S-Box has undisturbed
bits, it is then sufficient to check the derivative of each coordinate function at every
nonzero element of Fn

2 .

Theorem 3.1 also relates an S-Box which has undisturbed bits with Definition 2.6
about an S-Box with linear structures. It shows that an S-Box that has undisturbed bits
belongs to a special class of S-Boxes with linear structures by only considering the
existence of linear structures in its coordinate functions. This can be described by the
following proposition, and it can be treated as an equivalent definition for an S-Box
that has undisturbed bits.

Proposition 3.2. An n ⇥ m S-Box S is said to have an undisturbed bit if there exists
a nonzero vector ↵ 2 Fn

2 together with a nonzero vector b 2 Fm

2 with wt(b) = 1 such
that b · S(x)� b · S(x� ↵) takes the same value c 2 F2 for all x 2 Fn

2 .

In other words, if an S-Box S has undisturbed bits, then S has a linear structure. How-
ever, the converse is not true in general. Thus, Definition 2.6 can be seen as a general-
ization of undisturbed bits.

The existence of undisturbed bits in an S-Box may also be used to describe the un-
satisfiability of the corresponding coordinate functions against SAC. We state it in the
following remark.
Remark 3.1. Let I

i

= {↵ 2 Fn

2 , ↵ 6= 0 | h
i

(x)� h

i

(x� ↵) is a constant function} be
the set such that for any ↵ 2 I

i

the i-th bit of the output difference of S is undisturbed.
Equivalently I

i

is the set of all nonzero linear structures of the coordinate function h

i

,
i.e. I

i

= LS
hi \ {0}. We set

d = min
↵2Ii

wt(↵)

If d = 1, then from Proposition 2.12 it follows that the coordinate function h

i

does not
satisfy Strict Avalanche Criterion (SAC).

For input difference 1, 8, and 9, the 0-th bit of the output difference of PRESENT’s
S-Box is undisturbed. Here we have d = 1 and it follows that the coordinate function
h0 of PRESENT’s S-Box does not satisfy Strict Avalanche Criterion (SAC).

Note that when a coordinate function of an S-Box does not satisfy SAC, this does not
mean that the S-Box has undisturbed bits. This remark also can not be generalized
for d > 1. The reason is because if there exists a d

0 with 1  d

0
< d such that

the coordinate function does not satisfy PC(d0) then d is not a proper bound for the
unsatisfiability condition.

A trivial lemma can be derived from Theorem 3.1 to indicate whether an S-Box has
undisturbed bits from the autocorrelation of its coordinate functions. We will use the
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following lemma to show the relation of other cryptanalytic tools with undisturbed
bits.

Lemma 3.3. For a nonzero input difference ↵ 2 Fn

2 , the i-th bit of the output difference
of S is undisturbed if and only if

r

hi(↵) = ±2n

for i 2 {0, . . . ,m� 1}.

Proof. Suppose for a nonzero input difference ↵ 2 Fn

2 , the i-th bit of the output dif-
ference of S is undisturbed. From Theorem 3.1 the vector ↵ is a linear structure of the
coordinate function h

i

. It follows that from Proposition 2.10 we have r

hi(↵) = ±2n.
The converse can be proven by reversing the previous steps.

Lemma 3.3 tells us that one can observe the existence of undisturbed bits in an S-Box
by computing the autocorrelation spectrum of each coordinate function of the S-Box.
This approach gives a more straightforward way to find nonzero input differences that
yield some bits in its corresponding output difference undisturbed.

3.2 Undisturbed Bits, LAT, and DDT

Recall that DDT of an n⇥m S-Box S at row a and column b is defined by DDT(a, b) =
|{x 2 Fn

2 | S(x) � S(x � a) = b}|. The following theorem given in [37] provides
a relation between DDT and autocorrelation of the component functions of an S-Box.
Using Lemma 3.3 the relation of undisturbed bits and DDT can be easily shown in
Corollary 3.5.

Theorem 3.4 ([37]). The relation between difference distribution table and the auto-
correlation of the component functions of S is given by

r

j·S(↵) =
X

v2Fm
2

DDT(↵,v)(�1)j·v

for ↵ 2 Fn

2 and j 2 Fm

2 .

Proof. See [37].

Corollary 3.5 (DDT and Undisturbed Bits). For a nonzero input difference ↵ 2 Fn

2 ,
the i-th bit of the output difference of S is undisturbed if and only if

X

v2Fm
2

DDT(↵,v)(�1)ei·v = ±2n

for i 2 {0, . . . ,m� 1} and e

i

is the i-th standard basis of Fm

2 .
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Proof. Suppose for a nonzero input difference ↵ 2 Fn

2 , the i-th bit of the output dif-
ference of S is undisturbed. From Lemma 3.3 we have r

hi(↵) = ±2n. Since r

hi(↵) =
r

ei·S(↵) it follows from Theorem 3.4 that
P

v2Fm
2
DDT(↵,v)(�1)ei·v = ±2n. The

converse can be trivially proved by reversing the previous steps.

LAT, on the other hand, is used as a counterpart of DDT in the domain of linear crypt-
analysis. For an n ⇥ m S-Box S, the entry of LAT of S at row a 2 Fn

2 and column
b 2 Fm

2 is defined as LAT(a, b) = |{x 2 Fn

2 | a · x = b · S(x)}| � 2n�1. Although
undisturbed bits are useful in constructing truncated differentials for a bit-oriented ci-
pher, one may also indicate the existence of undisturbed bits from LAT. We will use a
well-known relation of LAT and the Walsh value of component functions of an S-Box
in Lemma 3.6. Together with Theorem 2.8 (Wiener-Khintchine) and Lemma 3.3, the
relation of LAT and undisturbed bits can be established. The main result is given in
Theorem 3.7.

Lemma 3.6. The relation between linear approximation table of S and the Walsh value
of the component functions of S is given by

LAT(a, b) =
1

2
W

b·S(a)

for a 2 Fn

2 and b 2 Fm

2 .

Proof.

LAT(a, b) = |{x 2 Fn

2 | a · x = b · S(x)}|� 2n�1

= |{x 2 Fn

2 | l
a

(x) = b · S(x)}|� 2n�1 = (2n � dt(l
a

, b · S))� 2n�1

= 2n�1 �
✓
2n�1 � 1

2
C
la,b·S

◆
=

1

2
C
la,b·S =

1

2
W

b·S(a)

Theorem 3.7 (LAT and Undisturbed Bits). For a nonzero input difference ↵ 2 Fn

2 , the
i-th bit of the output difference of S is undisturbed if and only if

22�n

X

a2Fn
2

LAT(a,2i)2(�1)↵·a = ±2n

for i 2 {0, . . . ,m� 1}.

Proof. Firstly, we claim that 22�n

P
a2Fn

2
LAT(a, b)2(�1)↵·a = r

b·S(↵). The proof of
the claim is as follows:
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22�n

X

a2Fn
2

LAT(a, b)2(�1)↵·a

= 2�n

X

a2Fn
2

22 · LAT(a, b)2(�1)↵·a

= 2�n

X

a2Fn
2

(2 · LAT(a, b))2(�1)↵·a

= 2�n

X

a2Fn
2

W
b·S(a)

2(�1)↵·a from Lemma 3.6

= r

b·S(↵) from Theorem 2.8

Clearly we have

22�n

X

a2Fn
2

LAT(a,2i)2(�1)↵·a = r

ei·S(↵) = r

hi(↵) = ±2n

where e

i

is the i-th standard basis of Fm

2 . Immediately from Lemma 3.3, for nonzero
input difference ↵ the i-th bit of the output difference of S is undisturbed.

Conversely, if for a nonzero input difference ↵ the i-th bit of the output difference of
S is undisturbed, Lemma 3.3 implies that r

hi(↵) = ±2n. From our claim we can have
±2n = r

ei·S(↵) = 22�n

P
a2Fn

2
LAT(a,2i)2(�1)↵·a.

3.3 Autocorrelation Table

One way to check the existence of undisturbed bits in an S-Box is by taking a nonzero
input difference and seeing whether there are some bits in all the corresponding output
differences that remain invariant. This can be done by observing the DDT of an S-
Box. However, this indirect approach can be improved if one is able to find a dedicated
cryptanalytic tool for the case of undisturbed bits.

In this section, we extend the result from Lemma 3.3 and provide a tool called autocor-
relation table, which was also appeared previously in [37]. Though it was introduced
earlier, the application of autocorrelation table for cryptanalysis of block ciphers was
not mentioned. We will show that an autocorrelation table is proven to be a more useful
tool, compared to DDT, to check if an S-Box has undisturbed bits. Moreover, we will
be able to obtain all nonzero input differences that have undisturbed bits in its corre-
sponding output differences. Because undisturbed bits are also truncated differentials
of probability one in an S-Box, autocorrelation table can be viewed as a counterpart of
DDT in the domain of truncated differential cryptanalysis.

Definition 3.2 (Autocorrelation Table [37]). For a 2 Fn

2 and b 2 Fm

2 , we define
autocorrelation table of an S-Box S, denoted as ACT, where the entry in the row a and
column b is equal to

ACT(a, b) = r

b·S(a)
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Proposition 2.16 provides an equivalent description of an S-Box that has linear struc-
tures from the the autocorrelation of its component functions. Autocorrelation table
can then be used to determine if an S-Box has linear structures.

Theorem 3.8. An S-Box S has a linear structure if and only if there exists a nonzero
↵ 2 Fn

2 and a nonzero b 2 Fm

2 such that ACT(↵, b) = ±2n.

Proof. This is an immediate consequence of Definition 2.6 and Proposition 2.16.

Remark 3.2. Let ↵ be an input difference to S and let

⌦
↵

= {� 2 Fm

2 | Pr
S

[↵ ! �] > 0}

be the set of all possible output differences of S corresponding to the input difference
↵. If ACT(↵, b) = +2n (resp. �2n), for b 2 Fm

2 , then b · � = 0 (resp. 1) for all
� 2 ⌦

↵

.

To determine if an S-Box has undisturbed bits, it is sufficient to observe all nonzero
row entries in each column of the autocorrelation table that correspond to the auto-
correlation spectrum of coordinate functions of the S-Box, i.e. the column 2i

, i 2
{0, . . . ,m� 1}. The result is given as the following corollary.

Corollary 3.9. For a nonzero input difference ↵, the i-th bit of the output difference of
S is undisturbed if and only if ACT(↵,2i) = ±2n, for i 2 {0, . . . ,m� 1}.

Proof. From Theorem 3.1, the vector ↵ is a linear structure of the coordinate function
h

i

. Clearly this is a direct consequence of Theorem 3.8.

The autocorrelation table of the S-Box of PRESENT is provided in Table 3.4. Some
input differences that have undisturbed bits in its corresponding output differences can
be observed in the column 1, which is the autocorrelation spectrum of the rightmost
coordinate function. One may see in the row entries 1, 8, and 9 at column 1 have value
±24 = ±16. Note that the row index represents the input difference and the column
index represents the component functions of the S-Box. The magnitude of the entry
indicate the value of the undisturbed bits, where the sign ”+” and ”�” correspond to
the undisturbed bit value equal to zero and one, respectively.

In Table 3.4 one may also find component functions, other than the coordinate func-
tions, that have linear structures. For instance, the component functions in the S-Box
of PRESENT represented by 10 · S(x) and 11 · S(x) have nontrivial linear structures
(this can be seen in column 10 and 11 in Table 3.4 where some of the nonzero row
entries are equal to ±2n). The implication of this result was given in Remark 3.2. How-
ever, it remains unknown whether the existence of linear structures in the component
functions of an S-Box other than the coordinate functions could improve or lead to
a new approach in (truncated)-differential cryptanalysis of bit-oriented block ciphers.
We leave it as an open problem.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 �16 0 0 0 0 0 0 0 0 �16 16 0 0 0 0
2 16 0 0 �8 �8 0 �8 8 0 �8 0 0 0 0 0 8
3 16 0 �8 0 0 �8 0 0 8 0 0 0 �8 �8 8 0
4 16 0 0 �8 �8 0 0 0 0 �8 0 0 �8 8 0 8
5 16 0 8 0 0 �8 �8 �8 �8 0 0 0 0 0 8 0
6 16 0 �8 8 0 0 0 0 �8 8 0 �16 0 0 0 0
7 16 0 0 0 0 0 8 �8 0 0 0 �16 8 �8 0 0
8 16 �16 �8 8 0 0 0 0 �8 8 0 0 0 0 0 0
9 16 16 0 0 �8 �8 0 0 0 0 0 0 0 0 �8 �8
10 16 0 0 �8 0 8 �8 8 0 �8 0 0 0 0 �8 0
11 16 0 8 0 8 0 0 0 �8 0 0 0 �8 �8 0 �8
12 16 0 0 �8 0 8 0 0 0 �8 0 0 �8 8 �8 0
13 16 0 �8 0 8 0 �8 �8 8 0 0 0 0 0 0 �8
14 16 0 0 0 0 0 0 0 0 0 �16 0 0 0 0 0
15 16 0 0 0 �8 �8 8 �8 0 0 16 0 8 �8 �8 �8

Table 3.4: Autocorrelation table of the S-Box of PRESENT.

Example 3.2. Let 1 = (0, 0, 0, 1) be an input difference to the PRESENT’s S-Box. All
the possible output differences correspond to input difference 1 are 3 = (0, 0, 1, 1),
7 = (0, 1, 1, 1), 9 = (1, 0, 0, 1), 13 = (1, 1, 0, 1) (See Table 3.3). The entry ACT(1,11)
in the autocorrelation table of PRESENT’s S-Box is equal to 16. One can trivially check
that 11 · � = (1, 0, 1, 1) · � = 0 for all possible output differences � correspond to
input difference 1.

3.4 Existence of S-Boxes with Undisturbed Bits

Recall from Theorem 3.1 that an S-Box has undisturbed bits if the derivative of any of
its coordinate function at a nonzero vector in Fn

2 is a constant function. The existence
of an S-Box that has undisturbed bits can then be reduced into a question whether any
of the coordinate functions of the S-Box has a nonzero linear structure.

So far the known Boolean functions that have nonzero linear structures are affine func-
tions (from Proposition 2.11). If an S-Box has an affine coordinate function, then
definitely the S-Box has undisturbed bits. However, this is unlikely to occur in real
case. The reason is because it will lead to a linear approximation that involves in-
put and output bits of the S-Box with probability one, and clearly does not serve the
purpose of an S-Box as a nonlinear layer for block ciphers.

In order to find Boolean functions with linear structures, Proposition 2.9 restricts our
attention to the Boolean functions of low degree. The following result is due to Car-
let [7] and will be extended in Theorem 3.13 to show that an S-Box with at least
one quadratic coordinate function has undisturbed bits. The main result is given in
Lemma 3.12, and the proof depends on the results from Lemma 3.10 and Lemma 3.11.

Lemma 3.10 ([7]). Let f be an n-variable Boolean function. We have the following
relation:

W2
f

(0) =
X

b2Fn
2

W
Dbf

(0).
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Proof.

X

b2Fn
2

W
Dbf

(0) =
X

b2Fn
2

2

4
X

x2Fn
2

(�1)Dbf(x)(�1)0·x

3

5 =
X

b2Fn
2

2

4
X

x2Fn
2

(�1)Dbf(x)

3

5

=
X

b2Fn
2

r

f

(b) =
X

b2Fn
2

r

f

(b)(�1)0·b = W2
f

(0)

Lemma 3.11 ([7]). If f is an n-variable Boolean function with deg(f) = 2 then

W2
f

(0) = 2n
X

b2LSf

(�1)Dbf(0)
.

Proof. Since the degree of f is equal to 2, it follows from Proposition 2.9 that for every
b 2 Fn

2 we have deg(D
b

f)  1. Clearly D

b

f is affine, hence from Corollary 2.4 it is ei-
ther balanced (for nonzero coefficient vector) or constant function (for zero coefficient
vector). Consequently, for the case where D

b

f is balanced, we have W
Dbf

(0) = 0
from Proposition 2.7. Using the result from the Lemma 3.10, then

W2
f

(0) =
X

b2Fn
2

W
Dbf

(0) =
X

b2LSf

W
Dbf

(0) =
X

b2LSf

2

4
X

x2Fn
2

(�1)Dbf(x)

3

5

= 2n
X

b2LSf

(�1)Dbf(0)

Lemma 3.12 ([7]). If f is a balanced n-variable Boolean function with deg(f) = 2,
then there exists a nonzero ↵ 2 Fn

2 such that D
↵

f(x) = f(x) � f(x � ↵) = 1 for all
x 2 Fn

2 .

Proof. Let f be a balanced n-variable Boolean function with deg(f) = 2. Since f is
balanced, then W

f

(0) = 0 and consequently W2
f

(0) = 0. The result from Lemma 3.11
implies that the sum

P
b2LSf

(�1)Dbf(0) must be equal to zero. We know that the zero
vector 0 2 Fn

2 is a trivial linear structure because D0f(x) = 0 for all x 2 Fn

2 . Clearly
0 2 LS

f

. Using the existence of zero vector in the set of linear structures of f , then
there must exist a vector ↵ 2 Fn

2 , ↵ 6= 0 such that D
↵

f(x) = 1 for all x 2 Fn

2 .

Remark 3.3. Another result that we can conclude from Lemma 3.12 is that, any linear
structure of a balanced quadratic Boolean function comes in pairs. For every linear
structure � 2 Fn

2 of f such that D
�

f(x) = 0, there exists a �

0 2 Fn

2 , �
0 6= � such that

D

�

0f(x) = 1. So the total number of linear structures of a balanced quadratic Boolean
functions is always even (multiple of 2).
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Theorem 3.13. Let S be a balanced n⇥m S-Box and let h
m�1, . . . , h0 be its coordinate

functions. If there exists a coordinate function h

i

with deg(h
i

) = 2 then the S-Box S

has undisturbed bits. More precisely, there exists a nonzero ↵ 2 Fn

2 such that for input
difference ↵, the i-th bit of the output difference of S is undisturbed and its value is 1.

Proof. From Proposition 2.15, for every nonzero b 2 Fm

2 all the component functions
b · S(x) are balanced Boolean functions, including the coordinate functions of S. If
there exists a coordinate function h

i

with deg(h
i

) = 2, Lemma 3.12 says that there is
a nonzero ↵ 2 Fn

2 such that D
↵

h

i

(x) = 1 for all x 2 Fn

2 . Theorem 3.1 implies that for
the input difference ↵, the i-th bit of the output difference of S is undisturbed and its
value is 1.

Corollary 3.14. If S is a balanced n ⇥m S-Box with n = 3, then S has undisturbed
bits. Moreover, for every i 2 {0, . . . ,m � 1} there exists a nonzero ↵ 2 Fn

2 such that
for input difference ↵, the i-th bit of the output difference of S is undisturbed and its
value is 1.

Proof. Since S is a balanced S-Box, based on Proposition 2.2 then deg(b · S)  2 for
all nonzero b 2 Fm

2 . It follows that every coordinate function of S is of degree  2.
The result follows immediately from Theorem 3.13 and Proposition 2.11.

In [34] the author stated that every bijective 3 ⇥ 3 S-Box has undisturbed bits. The
alternative proof we provide below can be seen as an immediate implication from
Corollary 3.14.

Corollary 3.15 ([34]). Every 3⇥ 3 bijective S-Box has undisturbed bits.

Proof. Since bijective 3 ⇥ 3 S-Boxes are balanced S-Boxes, the result follows from
Corollary 3.14.

3.5 Conclusions

In this chapter we defined the notion of undisturbed bits and their properties. In the
beginning, we showed that an S-Box which has undisturbed bits is related with the ex-
istence of a nonzero linear structures in its coordinate functions. We recalled previous
work on the S-Boxes with linear structures and showed that S-Boxes with undisturbed
bits can be treated as a special class of S-Boxes with linear structures by only consid-
ering the nonzero linear structures in its coordinate functions.

We also established relations between undisturbed bits in an S-Box with its DDT and
LAT. In addition to that, we proposed autocorrelation table as a tool to obtain all
nonzero input differences to an S-Box that may yield some bits in the correspond-
ing output differences undisturbed. Since the existence of undisturbed bits is useful to
construct truncated differentials for a block cipher, autocorrelation table can be seen as
a counterpart of DDT in the domain of truncated differential cryptanalysis.
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The main result in Section 3.4 is that a balanced n ⇥ m S-Box with a quadratic co-
ordinate function will definitely has undisturbed bits. This general result for n ⇥ m

S-Boxes is used to provide an alternative proof for the proposition on the existence of
undisturbed bits for every bijective 3⇥ 3 S-Boxes.

32



CHAPTER 4

CONCLUSIONS AND OPEN PROBLEMS

Cryptanalysis of block ciphers remain as a challenging task since the design of a secure
block cipher is already well-understood. The security of a block cipher relies heavily
on the quality of its nonlinear layer, in particular the substitution box. This chapter
concludes our work and describes some possible open problems.

4.1 Conclusions

The main contributions of our work are given in Chapter 3. In the beginning, the first
step we took was to formally define the notion of undisturbed bits. The structure of an
S-Box can be decomposed into coordinate functions. Any output vector from an S-Box
can be computed component-wisely using the coordinate functions. Similarly, for any
output difference vector corresponding to a specific input difference, the components
can also be computed in similar fashion. This observation leads us to put our first result
that the existence of a nonzero input difference that yields undisturbed bits in an S-Box
is related to the existence of a nonzero linear structure in the coordinate functions of
the S-Box. We showed that an S-Box that has undisturbed bits belongs to a special
class of S-Boxes with linear structures, by only considering nonzero linear structures
in its coordinate functions.

The relation of an S-Box with undisturbed bits can also be characterized from its dif-
ference distribution table and linear approximation table. We established this result
from the fact that if ↵ is a linear structure of an n-variable Boolean function, then au-
tocorrelation of the function at ↵ is equal to ±2n. Autocorrelation table of an S-Box,
that essentially examines autocorrelation spectrums of each component function of the
S-Box, can then be used as a tool to observe whether the S-Box has undisturbed bits.
Even though the main concern is the autocorrelation spectrums of coordinate functions
of an S-Box, autocorrelation spectrums of other component functions of the S-Box are
also defined in autocorrelation table for the sake of completeness.

The last result of this thesis is that a balanced S-Box has undisturbed bits if it has a
quadratic coordinate function. An alternative proof that every 3 ⇥ 3 bijective S-Box
has undisturbed bits is an immediate consequence of this theorem.
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4.2 Open Problems

We suggest some possible open problems and directions that may be useful for future
research on undisturbed bits.

1. Chaum and Evertse introduced the concept of linear structures in a block ci-
pher [8] [13] earlier before Biham and Shamir proposed differential cryptanal-
ysis technique to attack block ciphers [3]. Knudsen’s proposal for truncated
differential cryptanalysis was published in 1994 [16]. Generalizing the notion of
undisturbed bits for a block cipher and establishing its relation with (truncated)-
differential cryptanalysis will give a better understanding on how these three
different concepts are related to each other.

2. Definition of an autocorrelation table includes the autocorrelation spectrum of
all component functions of an S-Box. While the notion of undisturbed bits is
related to the existence of nonzero linear structures in the coordinate functions
of an S-Box, one may also find other component functions of the S-Box which
may have nonzero linear structures. It remains unknown whether this property
in an S-Box could improve or lead to a new approach in cryptanalysis of bit-
oriented block ciphers.

3. S-Boxes used in symmetric key encryptions can be randomly generated or con-
structed using mathematical functions satisfying various cryptographic proper-
ties. For example, AES’ S-Box is constructed using composition of inversion in
finite field F28 with an affine transformation. This S-Box has high nonlinearity
as well as low differential uniformity. One possible open problem is to study
some method for S-Boxes construction and see whether it will eventually yield
an S-Box with undisturbed bits.
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