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ABSTRACT

TRAJECTORY TRACKING OF A QUADROTOR UNMANNED AERIAL
VEHICLE (UAV) VIA ATTITUDE AND POSITION CONTROL

SUİÇMEZ, EMRE CAN

M.S., Department of Aerospace Engineering

Supervisor : Assist. Prof. Dr. Ali Türker Kutay

July 2014, 109 pages

In this thesis, trajectory tracking of a quadrotor UAV is obtained by controlling atti-
tude and position of the quadrotor simultaneously. Two independent control methods
are used to track desired trajectories accurately. One of these methods is a nonlin-
ear control approach called as "backstepping control". The other method is a more
unique optimal control approach called as "Linear Quadratic Tracking(LQT)". In ad-
dition, fixed-gain LQR controller which is widely used in literature is also used for
comparison analysis. First, nonlinear dynamic model of quadrotor is obtained by
using Newton’s equations of motion. Then, backstepping controller is obtained in
three steps and simulation model of the backstepping controller is formed. On the
other hand, time-varying optimal control gains of LQT controller are found offline
by solving matrix difference Riccati equation(DRE) backwards in time. Then, LQT
controller is modeled by using time-varying optimal control gains as a state feedback
controller. Several trajectories to be followed are generated in MATLAB and sent into
the simulation models as inputs. Finally, backstepping, LQT and LQR controllers are
simulated in MATLAB/Simulink environment, for inital validation. Several trajecto-
ries are tried to be followed by each controller and simulation results of controllers
are compared to each other. It is observed that, LQT controller could track relatively
complex trajectories more accurately and efficiently compared to backstepping and
LQR controllers. Other advantageous and disadvantageous characteristics of each
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control method are also analyzed in details. In this thesis, "AscTech Hummingbird"
quadrotor manufactured by Ascending Technologies is used. "AscTech Humming-
bird" quadrotor gives opportunity to test high level control algorithms generated in
MATLAB/Simulink environment. Therefore, complete validation of controllers ob-
tained in this thesis could be performed by real time experiments in future.

Keywords: UAV, Quadrotor, trajectory/path tracking, nonlinear control, optimal con-
trol, disturbance rejection, backstepping, LQT, LQR
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ÖZ

DÖRT ROTORLU BİR İNSANSIZ HAVA ARACININ (İHA) YÖNELİM VE
POZİSYON KONTROLÜ ARACILIĞIYLA YÖRÜNGE TAKİBİ

SUİÇMEZ, EMRE CAN

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Ali Türker Kutay

Temmuz 2014 , 109 sayfa

Bu tez çalışmasında, dört rotorlu bir İHA’nın yörünge/yol takibi, dört rotorlu’nun yö-
nelimi ve pozisyonu aynı anda kontrol edilerek elde edilmiştir. İstenilen yörüngelerin
yüksek doğrulukla takip edilmesi için, birbirinden bağımsız iki farklı kontrol yöntemi
kullanılmıştır. Bu yöntemlerden biri "geri adımlamalı kontrol" olarak adlandırılan
doğrusal olmayan bir kontrol yaklaşımıdır. Diğer yöntem ise "Linear Quadratic Trac-
king(LQT)" olarak adlandırılan daha özgün bir optimum kontrol yaklaşımıdır. Ayrıca,
literatürde yaygın olarak kullanılan sabit-kazançlı LQR(Linear Quadratic Regulator)
kontrolcü karşılaştırma analizlerinde kullanılmıştır. İlk olarak, dört-rotorlu’nun doğ-
rusal olmayan dinamik modeli Newton hareket denklemleri kullanılarak elde edil-
miştir. Sonrasında, geri adımlamalı kontrolcü üç aşamada elde edilmiştir ve geri-
adımlamalı kontrolcünün simülasyon modeli oluşturulmuştur. Diğer taraftan, LQT
kontrolcünün zamana göre değişen optimum kontrol kazançları matris DRE zamanda
tersine çözülerek çevrimdışı olarak elde edilmiştir. Sonrasında, LQT kontrolcü, za-
mana göre değişen optimum kazançları durum geribeslemeli kontrolcü olarak model-
lenmiştir. Takip edilecek olan çeşitli yörüngeler MATLAB kullanılarak oluşturulmuş
ve simülasyon modellerine girdi olarak gönderilmiştir. Son olarak, geri adımlamalı,
LQT ve LQR kontrolcülerin ilk doğrulanması amacıyla, kontrolcüler MATLAB/Si-
mulink ortamında benzetilmiştir. Çeşitli yörüngeler her bir kontrolcü tarafından ta-
kip edilmeye çalışılmıştır ve kontrolcülerin simülasyon sonuçları birbiriyle karşılaş-
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tırılmıştır. LQT kontrolcünün, görece kompleks yörüngeleri geri adımlamalı ve LQR
kontrolcülere göre daha doğru ve verimli olarak takip edebildiği gözlenmiştir. Ayrıca,
her bir kontrolcünün avantajlı ve dezavantajlı özellikleri detaylı olarak analiz edilmiş-
tir. Bu tez çalışmasında, "Ascending Technologies" firması tarafından üretilen "Asc-
Tech Hummingbird" dört rotorlu insansız hava aracı kullanılmıştır. "AscTech Hum-
mingbird" dört rotorlu hava aracı, MATLAB/Simulink ortamında oluşturulan yüksek
seviye kontrol algoritmalarının test edilebilmesine olanak sağlamaktadır. Bu nedenle
gelecek çalışmalarda, bu tez çalışmasında elde edilen kontrolcülerin tam anlamıyla
doğrulanması gerçek zamanlı deneyler aracılığıyla sağlanabilir.

Anahtar Kelimeler: İHA, Dört rotorlu, yörünge/yol takibi, doğrusal olmayan kontrol,
optimum kontrol, bozucu bastırma, geri-adımlama, LQT, LQR
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CHAPTER 1

INTRODUCTION

The aim and the motivation of this work is trajectory tracking of a quadrotor Un-

manned Aerial Vehicle(UAV) by controlling attitute and position of the quadrotor

simultaneously. Two different and independent control approaches will be used to

obtain trajectory tracking of the quadrotor. The first one is a continuous-time non-

linear control method called as "backstepping" and the second one is a discrete-time

optimal control method called as "Linear Quadratic Tracking(LQT)". In addition,

fixed gain LQR controller which is widely used in literature is also used for compar-

ison analysis. LQT control algorithm used in this thesis is a unique optimal control

approach that is specifically developed to track desired trajectories [1]. On the other

hand, backstepping control techniques have been used by many researchers in litera-

ture. However, most of these works deal with attitude control/stabilization or tracking

relatively simple trajectories. Therefore, in this thesis, backstepping controller is de-

signed to track relatively complex trajectories. Backstepping controller obtained in

this thesis is based on the method used by [2].

In this introductory chapter, first, general definitions and information about UAVs

will be given in Section 1.1 and 1.2. In Section 1.3, more detailed information

about quadrotors and the one used in this paper, "AscTech Hummingbird", will be

explained. In addition, in Section 1.3, a comparison between quadrotors and other

rotary wing UAVs will also be given since quadrotor is a rotary-wing UAV. In Sec-

tion 1.4, the motivation and aim of the study will be mentioned briefly. In Section 1.5

previous works about the control of quadrotor will be summarized. Finally, in Sec-

tion 1.6 the contribution and original results of this thesis will be explained.
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1.1 Unmanned Air Vehicles(UAV)

In the last twenty years, unmanned air vehicles(UAV) made a great impact on avia-

tion. As the name implies, "An UAV is a powered aerial vehicle that does not carry an

onboard crew, can operate with varying degrees of autonomy, and can be expendable

or reusable" as defined in [3]. The control of the vehicle can be obtained by a re-

mote pilot or onboard autonomous control systems [4]. Therefore, unlike manned air

vehicles, UAVs could avoid risking human lives especially for dangerous situations

such as, search and rescue at damaged disaster areas, military operations, firefight-

ing etc.. Performing these hazardous tasks without direct human interaction is highly

valuable [5].

In addition, UAVs can be very small in size compared to manned air vehicles since

additional space and weight considerations for human crew are not included to the air

vehicle. With the latest development of Micro Electro Mechanical Systems(MEMS)

technology, human crew with large weight and space can be replaced with very small

electronic devices in UAVs [6]. Therefore, for specific operations/missions that re-

quire small size aerial vehicles, UAVs can be very effective.

UAVs can be categorized into several groups according to their configurations and

abilities. In section 1.2, the basic types of UAVs will be discussed in more details.

1.2 UAV Types

Unmmanned Air Vehicles can be basically categorized into three main groups which

are [3, 7]:

-Fixed-wing UAVs

-Rotary-wing UAVs

-Hybrid(convertible) configuration UAVs

These are the most general categories of UAVs and each of them will be explained in

the following subsections. However, there are also some other types of UAVs such as
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blimps, flapping wing UAVs, etc. which are briefly mentioned in [3].

1.2.1 Fixed-wing UAVs

As the name implies, fixed-wing UAVs have fixed-wings at a certain place which pro-

duce lift by using the forward speed of the vehicle. Lift generated is basically related

to the shape of the wings. Therefore, fixed-wing UAVs need a runway to take-off

and land or use some systems for launching and safe landing such as catapult launch

mechanisms or parachute landing. In literature, to express the usage of runways for

take-off and landing, acronym CTOL(Conventional Take-off and Landing) is used.

The main advantages of fixed-wing UAVs are long endurance and high cruise speeds

since they are aerodynamically more efficient [3, 8]. Moreover, they are relatively

more simple to design compared to rotary-wing or hybrid designs. On the other hand,

since fixed-wing UAVs require runways or launch systems to take-off and land, they

are disadvantageous compared to rotary wing UAVs which have Vertical Take-off

and Landing(VTOL) ability [3, 7, 8]. Fixed-wing UAVs are also more prone to be

damaged during landing compared to VTOL UAVs. Summary of the comparison

between fixed-wing UAVs with CTOL ability and rotary-wing UAVs with VTOL

ability can be seen in Table 1.1.

Table 1.1: General comparison between UAVs with VTOL and CTOL abilites.

Advantages Disadvantages
VTOL UAVs
(rotary-wing)

-No need for runways
-Hovering ability
-High maneuverability

-Short range and endurance
-Limited speed and altitude
flights
-More complex mechanism
-High energy consumption

CTOL UAVs
(fixed-wing)

-Long range and endurance
-High speed and altitude
flights
-More simple mechanism
-Energy efficient

-Requires runways
-No hovering
-Less maneuverability
-More prone to be damaged
during landing
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Fixed-wing UAVs are mainly classified as: "tailplane aft", "tailplane forward" and

"tailless". For detailed information about these specific types of fixed-wing UAVs, [7]

can be examined.

1.2.2 Rotary-wing UAVs

Rotary-wing UAVs use rotors instead of fixed-wings to provide lift and thrust force.

Rotary-wing UAVs don’t require long and smooth runways for take-off and landing

since they can vertically take-off and land. Therefore, their main advantage is VTOL

ability which enables to operate in complicated and limited environments which are

not appropriate for fixed-wing UAVs [9]. Another important advantage of rotary-

wing UAVs compared to fixed-wing ones is hovering ability. Hovering is important if

operation requires to stay in the air at a specific location, such as mapping, aerial pho-

tography, surveillance, etc.. Moreover, rotary-wing UAVs are highly maneuverable

compared to fixed-wing UAVs [3]. Therefore, for specific type of missions rotary-

wing UAVs can be very advantageous. On the other hand, rotary-wing UAVs are

not as aerodynamically efficient as fixed-wing UAVs; therefore, they don’t have long

flight time and they couldn’t reach high speeds and altitudes compared to fixed-wing

UAVs [7, 8]. Therefore, rotary-wing UAVs are generally advantageous for short range

and low speed flights when no runway is available [7, 8].

Configurations of VTOL UAVs could change according to their rotor number or po-

sitions basically. The most common example is helicopters with one main rotor and

a tail rotor. Rotary wing UAVs generally can be classified as: single rotor, coaxial

rotor, tandem rotor and multi-rotors [3, 7].

"AscTech Hummingbird" [10] quadrotor used in this thesis is also a rotary-wing

VTOL UAV. In section 1.3, a more detailed information about quadrotors and "As-

cTech Hummingbird" will be given and a comparison between other rotary-wing

VTOL UAVs will be discussed.
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1.2.3 Hybrid(convertible) configurations UAVs

As discussed in Subsections 1.2.1 and 1.2.2, both fixed-wing UAVs with conventional

take-off and landing(CTOL) and rotary-wing UAVs with vertical take-off and land-

ing(VTOL) have its own advantageous and disadvantageous properties. VTOL UAVs

are not efficient for long range and high speed flights compared to fixed-wing ones.

On the other hand, fixed-wing UAVs with CTOL requires runways and couldn’t per-

form hovering ability which is invaluable for specific type of missions. Therefore,

for several years, engineers and researchers have been searching for an UAV design

which could both have long range and endurance flights with high aerodynamic effi-

ciency and VTOL ability [7].

At this point, hybrid(convertible) designs have appeared. Hybrid design UAVs gener-

ally have both wings and rotors at the same time. They could perform VTOL and hov-

ering by tilting their rotors, wings or body and with the help of their wings they could

have long range and endurance with high speed flights [7]. Although, convertible de-

signs have advantageous properties of both fixed-wing and rotary-wing UAVs, they

are mechanically and aerodynamically very complex due to tilting mechanisms [14].

Therefore, design and maintenance costs are very high compared to other UAV types.

Hybrid designs can be generally classified as: convertible rotor, tilt-wing, tilt body,

ducted fan and jet life aircrafts. More detailed information about each configuration

can be obtained in [7].

1.3 Quadrotor and comparison with other rotary-wing UAVs

Quadrotor is a small rotary-wing UAV with vertical take-off and landing(VTOL) abil-

ity. Figure 1.1, shows the "AscTech Hummingbird" quadrotor used in this thesis [10].

As can be seen in Figure 1.1, "AscTech Hummingbird" quadrotor has four brush-

less motors attached to the body in cross configuration. Each motor is connected

to fixed-pitch propellers which provide thrust force independently if coupling effects

between propellers are assumed to be negligible. There are also four ESC(Electronic

Speed Control) units to control motors. Moreover, "AscTech Hummingbird" has sev-
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Figure 1.1: "AscTech Hummigbird" quadrotor used in this thesis [13].

eral sensor units such as IMU, GPS, barometer, etc. to obtain feedback information.

The mainboard of "AscTech Hummingbird" has two ARM7 microprocessors called

as LowLevel(LL) and HighLevel(HL) processors which could be used for different

tasks [12]. One could test own control algorithms by flashing the algorithm into HL

processor which could run at 1KHz [12]. First, control algorithms(models) generated

in MATLAB/Simulink is build as a C++ code. Then, C++ code is flashed(embedded)

into the HL processor by using "Eclipse" program. There is also a LL processor

which has a well proven attitude control algorithm that is already embedded by pro-

ducer. It is possible to switch between LL and HL processors during flight as a safety

backup [12]. The communication between "AscTech Hummingbird" and a ground

PC is also obtained by a wireless serial link called as "XBee" [12]. It can be con-

cluded that, one of the main advantages of "AscTech Hummingbird" quadrotor is op-

portunity to test own high level control algorithms generated in MATLAB/Simulink

environment with a very fast rate of 1KHz.

There are also several quadrotor producers for research/experiment and civil use. Fig-

ure 1.2 shows some of the most popular quadrotors in the field produced by aerospace

companies or universities [15, 16, 17, 18, 19, 20, 21, 22].

The main difference of quadrotors compared to other conventional VTOL UAVs
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(a) Parrot AR. Drone (b) DraganFlyer X4

(c) ETH Zurich project: Quadrotors build a wall

(d) UPenn GRASP Lab.: Swarm of nano quadrotors

(e) MIT: Variable-pitch quadrotor

Figure 1.2: Some of the popular quadrotors and research projects
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such as helicopters is using fixed-pitch propellers to control the quadrotor instead

of variable-pitch propellers which are generally used in helicopters. As the name im-

plies, fixed pitch-propeller systems could not change the pitch angle of the propeller,

instead, control problem can be handled by changing the angular velocities of each

propeller properly. [23]. On the other hand, in variable-pitch propellers, control of the

vehicle could be achieved by changing the pitch angle of the propeller [24]. Variable-

pitch propeller systems used in conventional helicopters require very complex swash

plate or mechanical transmission mechanisms to change the pitch angle of the pro-

pellers properly [14]. However, fixed-pitch propeller systems don’t require swash

plates or any other mechanical transmission systems [7, 14]. Therefore, fixed-pitch

propeller systems are more robust and reliable in terms of design and maintenance due

to mechanical simplicity. In addition, cost of production and maintenance of fixed-

pitch propellers are very low compared to the variable pitch propellers. Aerodynamic

complexity of fixed-pitch propellers are also relatively low compared to variable-pitch

ones. However, although variable pitch propellers are more complex and fragile, they

can handle aggressive maneuvers more efficiently with the help of increased control

bandwidth and efficient reverse thrust [23]. The control limitations of fixed-pitch

propellers could limit very aggressive maneuvers for large size quadrotors(above 2

Kg) [23]. However, in literature, it is seen that for small size quadrotors, like "As-

cTech Hummingbird"(0.48 Kg) used in this thesis, control bandwidth doesn’t restrict

aggressive maneuvers significantly [23, 25, 26]. Table 1.2 gives a detailed compari-

son of fixed-pitch and variable-pitch propellers and it can be concluded that, for small

size quadrotors like "AscTech Hummingbird", fixed-pitch propellers could provide

sufficient control inputs with simple dynamics and low cost design and maintenance,

even for relatively aggressive maneuvers [23].

According to these information, one can conclude that, the basic difference and ad-

vantage of quadrotors compared to other VTOL UAVs with variable-pitch propellers

is the removal of complex mechanical transmission mechanisms that complicates

both structural and aerodynamic design [7]. In literature, there are also some pio-

neer quadrotor designs that use variable-pitch propellers [23, 27]. However, most of

the quadrotors in use have fixed-pitch propeller mechanisms due to mechanical and

aerodynamic simplicity [7, 14, 23].
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Table 1.2: Comparison between fixed pitch and variable pitch propellers.

Advantages Disadvantages
Fixed Pitch
Propellers

-Mechanical simplicity
-Simple dynamics
-Robust and reliable
-Easy and low cost design
and maintenance

-Less maneuverability due to
control limitations

Variable Pitch
Propellers

-Efficient reverse thrust
-Increased control band-
width
-Aggressive and aerobatic
maneuverability

-Complicated mechanical
systems
-Complex dynamics
-Fragile
-Difficult and high cost
design and maintenance

On the other hand, the basic disadvantages of quadrotors are high energy consump-

tion, low speed flight and short range and endurance. However, other VTOL UAVs

(except hybrid designs) are also inefficient in terms of energy consumption and have

short range and endurance with limited flight speeds according to Table 1.3 prepared

by [9]. Therefore, it is more reasonable to claim that, quadrotors consume high en-

ergy and they have short range and endurance with low flight speeds compared to

fixed-wing UAVs, as can be seen in Table 1.1.

A complete and very detailed comparison of small quadrotors and other types of small

VTOL configurations can be seen in Table 1.3, prepared by [9].

According to Table 1.3, quadrotor is one of the most advantageous small VTOL UAV

concept. Therefore, it is not extraordinary that quadrotor UAVs are very popular and

have been worked by many researchers and organizations in the last decade [10, 15,

16, 17, 18, 19, 20, 21].

1.3.1 Control of the quadrotor

As stated earlier, since quadrotors have generally fixed-pitch propellers, control of

the vehicle is obtained by adjusting angular velocity of each rotor. Then, as can be

seen in Figure 1.3, four rotors provide four thrust force(F1, F2, F3, F4) to the system.
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Table 1.3: Comparison between several VTOL configurations [9]. (1=Worst, 4=Best)

A B C D E F G H
Power cost 2 2 2 2 1 4 3 3
Control cost 1 1 4 2 3 3 2 1
Payload/volume 2 2 4 3 3 1 2 1
Maneuverability 4 2 2 3 3 1 3 3
Mechanical simplicity 1 3 3 1 4 4 1 1
Aerodynamics complexity 1 1 1 1 4 3 1 1
Low speed flight 4 3 4 3 4 4 2 2
High speed flight 2 4 1 2 3 1 3 3
Miniaturization 2 3 4 2 3 1 2 4
Survivability 1 3 3 1 1 3 2 3
Stationary flight 4 4 4 4 4 3 1 2
TOTAL 24 28 32 24 33 28 22 24

A:Single rotor, B:Axial rotor, C:Coaxial rotors, D:Tandem rotors, E:Quadrotor,
F:Blimp, G:Bird-like, H:Insect-like.

Front and rear rotors rotate rotate clockwise while right and left rotors rotate counter-

clockwise as can be seen in Figure 1.3. Therefore, torques generated by front and rear

rotors are in the opposite direction with the torques generated by left and right rotors.

By this way, the net torque generated by four propellers are balanced and yaw motion

is automatically stabilized.

The total thrust is the sum of four thrust forces F1, F2, F3, F4. Therefore, the motion

in z direction is directly related to the total force generated. On the other hand, the

motion in x and y directions occur by changing the pitch(θ) and roll(φ) angles prop-

erly. Pitch motion(θ) is obtained by increasing/reducing the angular velocity of the

rear rotor while reducing/increasing the angular velocity of the front rotor [14]. Sim-

ilarly, roll motion(φ) is obtained by increasing/reducing the angular velocity of the

right rotor while reducing/increasing the angular velocity of the left rotor [14]. Yaw

motion(ψ) is obtained by increasing /decreasing the angular velocity of the front and

rear motors while decreasing/increasing the angular velocity of the right and left ro-

tors. Therefore, heading of the quadrotor can be adjusted by changing yaw angle(ψ)

of the quadrotor. Then, four control inputs U1, U2, U3, U4 used to control quadrotor

are defined as in Equation 1.1.
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Figure 1.3: Forces and torques generated by each propeller.

U1 = F1 + F2 + F3 + F4

U2 = F4 − F2

U3 = F3 − F1

U4 = T2 + T4 − T1 − T3


(1.1)

According to Equation 1.1, U1 is the total force generated by four propellers and

directly related to the motion in z direction, whereas U2, U3 and U4 are related to roll,

pitch and yaw motion respectively. As explained earlier, motion in x and y directions

occur by changing pitch(θ) and roll(φ) angles which tiltU1 in corresponding direction.

A more detailed information about the control of the quadrotor is given in Section 2.1

of Chapter 2.

As defined in Equation 1.1, there are four independent control inputs(U1, U2, U3, U4)

and six degrees of freedom to be controlled(x, y, z, φ, θ, ψ) [2, 14, 28, 29]. There-
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fore, quadrotor is an under-actuated system and it is also dynamically unstable which

makes it difficult to control [2, 28, 29, 30]. However, under-actuated control prob-

lem can be solved efficiently by using θ and φ as additional virtual control inputs to

control the motion in x and y directions [30].

To conclude, quadrotor is an under-actuated system with highly nonlinear, unstable

and coupled dynamics. [1, 2, 28, 29, 35] Therefore, the aim of this study is obtain-

ing trajectory tracking of a quadrotor via attitude and position control since it is a

challenging and motivating task.

1.4 Motivation and Aim of This Work

As can be seen in Table 1.3, quadrotor UAV is a very advantageous VTOL con-

cept especially in terms of aerodynamic and mechanical simplicity [2, 28, 29, 30].

However, control of the vehicle is not straightforward and requires solving some

problems due to under-actuated, highly nonlinear and unstable dynamics of the vehi-

cle [28, 29, 30, 34, 36]. Therefore, it is really motivating, challenging and satisfying

to design and test autonomous control systems for quadrotor UAVs.

In this thesis, the aim is obtaining trajectory tracking of a quadrotor UAV by con-

trolling attitude and position simultaneously. Two different control methods are used

independently. One of the control method is a nonlinear control technique called

as "backstepping" and it has been used by various researchers and experimentally

proven control methodology for quadrotors [2, 34, 36, 38]. The other method is an

optimal control algorithm called as "Linear Quadratic Tracking(LQT)", and it is a

more unique approach and hasn’t been used and experimentally verified on quadro-

tors by other researchers yet. As stated earlier, the backstepping method have been

used by many researchers in literature, however, in this thesis some modifications are

added to the control system for more accurate and efficient tracking of relatively com-

plex trajectories. These contributions will be explained particularly in Section 1.6.

On the other hand, LQT control algorithm proposed by [1] could be considered as

a more unique approach and original results obtained by using optimal LQT control

technique will be also explained in Section 1.6.
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1.5 Previous works

Since autonomous control of quadrotor UAV is a challenging and motivating task,

there are a lot of works in literature related to this area. Most of the works in lit-

erature focus on the attitude control/stabilization of the quadrotor since it is a basis

for the complete control of the quadrotor. On the other hand, trajectory/path tracking

of the quadrotor requires simultaneous control of both attitude and position, there-

fore, it is more complicated and the number of works related to trajectory tracking

of the quadrotor is not very much compared to the works related to attitude control/

stabilization.

Since the topic of this thesis is trajectory tracking of the quadrotor, the literature re-

view will be focused on this content. However, works related to attitude control/ stabi-

lization will be also briefly mentioned. In literature, autonomous control of quadrotor

UAV is tried to be achieved by using various control approaches. These approaches

could be basically divided into three groups which are linear control techniques, non-

linear control techniques and intelligent/adaptive/robust control techniques.

The most common linear control techniques are PID and LQR control. It is seen

that, since quadrotor is a highly nonlinear, coupled and under-actuated system, classi-

cal PID control approaches couldn’t give satisfactory results for quadrotors [37, 38].

Therefore, some researchers combined classical PID control with intelligent control

methods and some nonlinear techniques to handle the insufficiency of classical PID

control [38, 39, 40, 41]. In [42], complex trajectory tracking of a quadrotor is ob-

tained successfully by using feedback linearization for attitude control as inner loop

and classical PID control for position control as outer loop.

The other most common linear control approach used by researchers is LQR which is

an optimal control method. In LQR method, a quadratic cost function(performance

index) is tried to be minimized to obtain optimum control gains [37]. To solve LQR

algorithm, linear dynamic model of the system is required. Therefore, nonlinear dy-

namic model of the system have to be linearized around a trim condition such as hov-

ering. LQR control could be advantageous to satisfy some design requirements since

these requirements could be defined and constrained in cost function. In literature,
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LQR control have been used by some researchers as a regulator to stabilize the atti-

tude of the quadrotor [29, 37, 38, 43]. On the other hand, for trajectory tracking of the

quadrotor, LQR methods have been also used by some researchers [29, 37, 44, 45, 46].

Linear Quadratic Gaussian(LQG) control approach is also used in literature to obtain

trajectory tracking and collision avoidance [44, 45]. In some of the works, integral ac-

tion is also added to the system to decrease steady-state errors [37, 45]. These works

generally use fixed(time-invariant) optimal control gain "K" as a state feedback con-

trol [37, 38, 43, 44, 45]. Only some of the works use different optimal control gains

for different trim conditions which can be considered as gain scheduling. [46]. The

LQT control algorithm used in this thesis [1] uses time-varying optimal control gains

that are calculated offline instead of fixed gain LQR which is widely used in litera-

ture [37, 38, 43, 44, 45]. The advantageous and disadvantageous properties of using

time-varying and offline calculated optimal control gains will be explained in details

in Section 1.6.

As opposed to linear control methods, there have been so many works related to

nonlinear control of quadrotor UAV. The most common nonlinear control techniques

used to control quadrotor are backstepping, integral backstepping, sliding-mode con-

trol, feedback linearization and combination of these methods [2, 11, 28, 29, 30,

34, 36, 42, 47, 48, 49, 50, 51, 52, 53, 54]. There are also some works that use

adaptive and intelligent control methods such as nonlinear H∞ control, L1 adap-

tive control, Adaptive Integral Backstepping Controller(AIBC), intelligent fuzzy con-

trol [35, 37, 39, 55, 56, 57, 58, 59]. More unique approaches are also tried by some

researchers such as geometric tracking control [59], minimum snap trajectory gener-

ation [60], visual feedback control systems [61, 63] and balancing an inverted pen-

dulum on top of a quadrotor [62]. Most of these works deal with the attitude con-

trol/stabilization of the quadrotor or trajectory tracking of relatively simple trajecto-

ries [2, 11, 29, 34, 39, 47, 48, 50, 51, 53, 55, 56]. On the other hand, more complex

trajectory tracking have been used by relatively fewer researchers due to increased

complexity [42, 54, 58, 60, 64].

As stated earlier, in this thesis, backstepping and LQT approaches are used to obtain

trajectory tracking of quadrotor. In addition a fixed-gain LQR controller is obtained

for detailed comparison analysis. The contributions of both LQT and backstepping
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approaches are mentioned particularly in Section 1.6.

1.6 Contributions of This Work

In this section, original results obtained by using LQT approach and modifications

added to backstepping method will be explained in details.

The main difference or uniqueness of the LQT algorithm [1] used in this paper can

be explained as follows: in LQT algorithm, offline calculated optimal control gains

are time-varying unlike the time-invariant(fixed) control gain obtained in classical

LQR control that is widely used in literature. In other words, time-varying control

gains of LQT are optimized to track desired trajectory specifically. It is observed that,

using time-varying control gains optimized to track desired trajectory results in de-

creased energy consumption compared to the fixed gain LQR control and backstep-

ping. In addition, trajectory tracking errors decreased significantly in LQT control

compared to the fixed-gain LQR control. Also, for sharp maneuvers like step com-

mands, LQT control could react before the input is commanded. By this way, control

inputs changes more slowly and motors do not saturate. The decrease in energy con-

sumption is also related to this behavior of the LQT algorithm.

Then, three main advantages of variable gain LQT control algorithm used in this

thesis compared to fixed-gain LQR control could be summarized as following:

1) Decreased energy consumption especially for trajectories that involve sharp ma-

neuvers.

2) Decreased tracking errors.

3) Saturation of motors is automatically avoided.

More detailed analysis of the advantageous results of LQT controller are explained in

Subsection 4.5.3.4.

It is also important to mention the main drawback of LQT controller. As explained

in Section 3.2, LQT algorithm calculates time varying control gains offline and these

gains are the inputs of the LQT control system as can be seen in Figure 3.3. In other
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words, time varying control gains of LQT are specific for commanded trajectory and

have to be calculated separately for each trajectory. This behavior of LQT controller

could be interpreted as a disadvantage compared to fixed-gain LQR and backstepping

controllers. However, it should be also mentioned that, backstepping and fixed-gain

LQR controllers require desired trajectory information directly as inputs, as can be

seen in the yellow blocks of Figures 4.2 and 3.4. That means if the quadrotor is de-

sired to be flown to a specific location, an algorithm is required to produce a suitable

trajectory to take the quadrotor from its current position to the final destination. This

step requires an online guidance algorithm, or an offline trajectory generator. In this

thesis, desired trajectory information are given to the backstepping and fixed-gain

LQR controllers offline. On the other hand, as can be seen in Figure 3.3, LQT con-

troller use time varying optimal control gains as inputs of the controller and doesn’t

require desired trajectory information since offline calculated control gains are al-

ready optimized to track desired trajectory and possess desired trajectory information.

Therefore, time-varying control gains of LQT controller could be considered as the

offline trajectory input of fixed-gain LQR and backstepping controllers.

To conclude, the main drawback of LQT controller is the offline calculation of control

gains for each trajectory specifically. In other words, an online guidance algorithm

couldn’t be used in LQT controller. Therefore, the drawback of LQT controller comes

out if desired trajectory is given to the controllers by using an online guidance algo-

rithm instead of an offline trajectory generator.

As mentioned previously, the other method used in this thesis which is called as

"backstepping" has been used by various researchers [2, 29, 34, 47, 48, 50, 53, 55, 56]

and most of these works focus on tracking relatively simple trajectories(ex:step in-

puts) [2, 29, 34, 50, 55]. However, the backstepping controller used in this thesis

designed in such a way that more complex trajectories could be tracked accurately. It

is important to remind that, backstepping controller designed in this thesis is based

on the work proposed by [2]. In this thesis, the following modifications are added to

the backstepping controller proposed by [2]:

1) A basic drag model is added to the controller to obtain more realistic results.

2) Second order derivatives of desired trajectory are added to the controller to increase
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accuracy.

3) A command filter is used to track trajectories that involve sharp maneuvers.

4) A simple and reasonable flight approach is obtained by adjusting the heading of

the quadrotor and direction of motion in x− y plane.

More detailed information about the design, formulation and contribution of the back-

stepping controller obtained in this thesis are explained in Section 3.1 of Chapter 3.

The contributions and results of both backstepping and LQT controllers could be seen

in Chapter 3 and Chapter 4 with more details. Moreover, a detailed comparison anal-

ysis among backstepping, LQT and LQR controllers is also made in Subsection 4.7.3.

After this intoductory part, first, dynamic model of the quadrotor is obtained in Chap-

ter 2. Then, backstepping, LQT and fixed-gain LQR methods are explained and ob-

tained in Chapter 3. In Chapter 4, simulation results of each control system are illus-

trated and detailed comparison analysis are made. It is important to remind that all

of the simulations, algorithms, codes and optimizations are performed and solved by

using MATLAB environment. Finally, a conclusion of this thesis work and possible

future works are presented in Chapter 5.
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CHAPTER 2

DYNAMIC MODEL

In this chapter, dynamic model of the quadrotor will be derived by using Newton’s

equations of motion for translational and rotational dynamics. First, the control inputs

U1, U2, U3, U4 will be defined, and their relation with the motor dynamics will be ex-

plained in Section 2.1. Then, reference frames used in this thesis and transformation

matrices between them will be defined in Section 2.2. After that, external forces and

moments act on quadrotor body will be explained in Section 2.3. Finally, a fully non-

linear dynamic model of the quadrotor will be obtained by using Newton’s equations

of motion in Section 2.4. This model will be used to test the controllers designed in

Chapter 3 via simulation. In addition, the nonlinear dynamic model obtained will be

simplified to use in the derivation of control laws that are explained in Chapter 3.

In this chapter, following assumptions are made before deriving the dynamic model

of the quadrotor [29, 55, 65].

Assumptions:

1) Quadrotor is a rigid body and mass distribution is symmetrical.

2) Propellers are rigid.

3) Center of gravity and body fixed frame origin coincides.

4) Earth’s gravitational field (g), mass of the quadrotor (m) and body inertia matrix

of the quadrotor(J) are constants.

5) Thrust factor(kn) and torque factor(km) of motors are constants.
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6) Inertia of motors and rotors are neglected.

7) Aerodynamic drag force is assumed to be proportional with translational velocity.

8) Rotation of the Earth relative to distant stars is negligible.

It is also noted that, mathematical symbols used in the derivation of dynamic model

are defined in Table 2.1.

2.1 Definition of Control Inputs

As can be seen in Figure 1.1, "AscTech Hummingbird" quadrotor used in this the-

sis, has four rotors connected to propellers. The quadrotor used in this thesis has

"fixed-pitch propellers" instead of "variable-pitch propellers" which are used mostly

in commercial or military helicopters. For fixed-pitch propellers, angle of attack of

propellers are constant and thrust force produced by each propeller changes by adjust-

ing the angular velocity of corresponding rotor. On the other hand, for variable-pitch

propellers, angle of attack of propellers could be changed properly. [24] The basic

advantages of using fixed-pitch propellers are mechanical and aerodynamic simplic-

ity. Production and maintenance costs of fixed pitch propellers are also very low

compared to variable-pitch ones. On the other hand, variable-pitch propellers are me-

chanically more complex but they can handle aggressive maneuvers more effectively

with the help of increased control bandwidth and reverse thrust abilities. [23, 24].

However, for small quadrotors like the one used in this thesis, it is seen that ag-

gressive maneuvers could also be achieved with fixed-pitch propellers [23]. This is

because rotors of small quadrotors have low inertias and hence they could be acceler-

ated at fast rates, yielding a sufficiently high control bandwidth. To conclude, control

of the quadrotor used in this thesis is achieved by adjusting the angular velocity of

each propeller.

Before obtaining control inputs mathematically, the relation between the angular ve-

locity of propellers and thrust and torque generated by propellers need to be defined.

Let Fi represents the thrust generated by ith propeller and ωi represents the angular

velocity of ith propeller. Then, for "AscTech Hummingbird" quadrotor used in this
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Table 2.1: Symbols used in the derivation of dynamic model and abbreviations

Symbol Definition
Fi Force generated by ith rotor
Ti Torque generated by ith rotor
ωi Angular velocity of ith rotor
kn Constant that relates Fi and ωi
km Constant that relates Fi and Ti

U1, U2, U3, U4 Control inputs
FE Earth fixed reference frame
FB Body fixed reference frame
m Mass of the quadrotor

Ix,Iy,Iz Body inertia in x, y, z directions
J Body inertia matrix
g Gravitational acceleration
d Level arm
φ Roll angle
θ Pitch angle
ψ Yaw angle

φ, θ, ψ Euler angles
p, q, r Body angular velocities

ξ Position vector of quadrotor expressed in FE
η Orientation vector of quadrotor expressed in FE

VB Translational velocity vector of quadrotor expressed in FB
ω Rotational velocity vector of quadrotor expressed in FB

LBE Transformation matrix from FE to FB
LEB Transformation matrix from FB to FE
LR Transformation matrix between [p, q, r] and [φ̇, θ̇, ψ̇]

Kt Aerodynamic drag matrix for translational motion
In×n nth order identity matrix
RHS Right hand side
LHS Left hand side
c(·) Cosine function
s(·) Sine function

ḟ (·) First order time derivative

f̈ (·) Second order time derivative
× Cross product
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Figure 2.1: Rotor configuration, force and torque generated by each propeller of the

quadrotor, reference frames FB and FE .

thesis, relation between thrust and angular velocity of the propeller is obtained as

follows [66]:

Fi = knω
2
i , [N ] (2.1)

In Equation (2.1), kn is a constant that relates angular velocity and thrust generated

by propellers. Value of kn is calculated at [66] as kn = 5.7 · 10−8 N/rpm2.

Relation between thrust and torque generated by propellers also have to be defined.

Let Ti represent the torque generated by ith propeller. According to [66], torque

generated by ith propeller is defined as follows:

Ti = kmFi, [N ·m] (2.2)

In Equation (2.2), km is a constant that relates thrust and torque generated by pro-

pellers. Value of km is found at [66] as km = 0.016 m. Since km and kn are

constants, it can be concluded that, relation between thrust and torque generated by

propellers and angular velocity of propellers is quadratic. Force(Fi) and torque(Ti)

generated by each propeller are illustrated Figure 2.1.

By using Equations (2.1) and (2.2), control inputs can be defined. There are four

control inputs which are expressed symbolically as U1, U2, U3, U4. The mathematical
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definitions of U1, U2, U3, U4 are as follows:

U1 = F1 + F2 + F3 + F4 (2.3)

U2 = F4 − F2 (2.4)

U3 = F3 − F1 (2.5)

U4 = T2 + T4 − T1 − T3 (2.6)

As can be seen in Equation (2.3) and Figure 2.1, U1 is the total force generated by

four propellers, therefore, it is directly related to the motion in z direction(altitude).

In other words, U1 is the force that overpowers gravity and make the quadrotor to stay

in the air. Moreover, to move the quadrotor in x and y directions, orientation of U1 is

adjusted according to desired direction by changing roll(φ) and pitch(θ) angles.

As can be seen in Equation (2.4), U2 is the differential force between the left and right

propellers, therefore, it is directly related to the "roll motion" and angle φ. Similarly

according to Equation (2.5), U3 is the differential force between the front and rear

propellers, therefore, it is directly related to the "pitch motion" and angle θ. In ad-

dition, the motion in x and y directions mainly occurs by changing angles φ and θ,

respectively. By changing angles φ and θ, contribution of U1 in x and y directions

change and motion in x and y directions occur.

By analyzing Equation (2.6), one can see that, unlike U1, U2 and U3 which are forces

and have the units of [N ], U4 is torque so that has the units of [N ·m]. U4 is the net

torque generated by four propellers of the quadrotor. Therefore, it is related to the

"yaw motion" and angle ψ. As can be seen in Figure 2.1, front and rear propellers

rotate clockwise, while right and left propellers rotate counterclockwise. Therefore,

contributions of front and rear propellers(T1, T3) are subtracted from the contributions

of right and left propellers(T2, T4) to obtain the net torque generated.

The control inputs defined in Equations (2.3), (2.4), (2.5) and (2.6) will be used in

Section (2.3) while defining forces and moments generated by the propeller system.
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2.2 Reference Frames and Transformation Matrices

Before deriving the dynamic model of the quadrotor, reference frames have to be

identified. In this section reference frames and transformation matrices between them

will be defined.

Two reference frames will be used in this thesis, these are Earth fixed reference frame,

FE and body fixed reference frame, FB.

2.2.1 Earth Fixed Reference Frame, FE

Earth fixed reference frame is fixed to the Earth and it can be defined such that the

position of the quadrotor on the earth surface (x, y, z coordinates) can be expressed in

Earth fixed reference frame [65]. As can be seen in Figure 2.1, OExE points North,

OEyE points West and OEzE points opposite direction to the center of the Earth.

To derive dynamic model of any physical system, an inertial reference frame have

to be defined at first. Newton’s second law, ~f = m~a, is valid for inertial reference

frames. Here, ~f represents net external forces acting on the particle and ~a represents

acceleration of the particle relative to inertial reference frame [65].

Earth fixed reference frame can be considered as an inertial reference frame since

the rotation of the Earth relative to distant stars (inertial reference frame) can be ne-

glected [65]. This is a very reasonable assumption since quadrotors typically have

ranges on the order of few kilometers and flight times on the order of minutes. There-

fore, in the derivation of dynamic model of the quadrotor, Earth fixed reference frame

is assumed to be inertial.

The position and orientation vector (ξ, η) of the quadrotor relative to the Earth surface

are defined as follows, respectively:

ξ , [x, y, z]T (2.7)

η , [φ, θ, ψ]T (2.8)

In Equation (2.7), [x, y, z]T represents the position of the quadrotor relative to Earth
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fixed reference frame FE and also expressed in FE .

Likewise, Equation (2.8) represents the orientation of the quadrotor about its center

of mass, expressed in Earth fixed reference frame. To clarify, [φ, θ, ψ] are called as

"Euler angles" or roll, pitch and yaw angles, respectively [67, 68].

To conclude, by using the vectors defined in Equations (2.7) and (2.8), one can deter-

mine the position and orientation of the quadrotor relative to the Earth surface.

2.2.2 Body Fixed Reference Frame, FB

Body fixed reference frame is fixed to the quadrotor body and it translates and rotates

with the body [67]. The origin of the body fixed reference frame coincides with the

COG of the quadrotor. As can be seen in Figure 2.1, OBxB points front rotor, OByB

points left rotor andOBzB points the direction such that the orthogonal triad and right

hand rule are satisfied [69].

As mentioned previously, body fixed reference frame moves and rotates with the

quadrotor. By using traditional notation, rotational and translational velocities of FB

relative to our inertial frame of reference FE are defined as follows, respectively [65]:

ω , [p, q, r]T (2.9)

VB , [u, v, w]T (2.10)

In Equations (2.9) and (2.10), ω and VB represent the rotational and translational

velocities of quadrotor relative to Earth fixed reference frame FE and expressed in

body fixed reference frame FB.

2.2.3 Transformation Matrices

As defined previously, two reference frames(FB and FE) will be used in the derivation

of dynamic model. To find the components of a vector in both of the frames, transfor-

mation matrices have to be formulated at first. By making successive rotations around

corresponding axis, one can move from one frame to another.
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2.2.3.1 Transformation of Translational Velocities

To relate the translational velocity of quadrotor in the components of body fixed frame

and Earth fixed frame, we have to make three sequence of rotations [69]. The order of

rotations are important and in this thesis, the common order of yaw, pitch, roll(ψ, θ, φ)

will be used [70].

By making three successive transformations, we can find the transformation matrix

LBE that transforms FE to FB as follows [65]:

LBE = L(φ)L(θ)L(ψ) =


1 0 0

0 c(φ) s(φ)

0 −s(φ) c(φ)



c(θ) 0 −s(θ)
0 1 0

s(θ) 0 c(θ)



c(ψ) s(ψ) 0

−s(ψ) c(ψ) 0

0 0 1


(2.11)

For notational simplicity, trigonometric functions cosine() and sine() are shortened

as c() and s(). By extending Equation (2.11), final form of LBE is obtained as fol-

lows [65]:

LBE =


c(θ)c(ψ) c(θ)s(ψ) −s(θ)

s(φ)s(θ)c(ψ)− c(φ)s(ψ) s(φ)s(θ)s(ψ) + c(φ)c(ψ) s(φ)c(θ)

c(φ)s(θ)c(ψ) + s(φ)s(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ) c(φ)c(θ)

 (2.12)

Let’s VB and VE be the components of the translational velocity of quadrotor in frames

FB and FE , respectively. Then by using transformation matrix obtained in Equa-

tion (2.12), one can obtain VB as follows:

VB = LBEVE (2.13)

It is important to note that, transformation matrix LBE is nonsingular, therefore in-

verse of LBE exists. By multiplying both sides of Equation (2.13) with L−1BE , one can

also obtain VE as follows:

VE = L−1BEVB (2.14)
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By using the same terminology as in Equation (2.13), we can define LEB (transfor-

mation matrix that transforms FB to FE) as following:

VE = LEBVB (2.15)

Then, from Equations (2.14) and (2.15), one can find that:

LEB = L−1BE (2.16)

To obtain LEB more easily , instead of finding inverse of LBE , one can use the or-

thogonality property of transformations. In Equation (2.11), all of the transformation

matrices are orthogonal, then the product LBE is also orthogonal. Therefore, fol-

lowing property of orthogonal matrices can be used to find the inverse of LBE more

easily [71]:

L−1BE = LTBE (2.17)

Then, by using Equations (2.16), (2.17) and (2.12), LEB which transforms FB to FE

is obtained as following:

LEB =


c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ) + s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ) + c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)
−s(θ) s(φ)c(θ) c(φ)c(θ)

 (2.18)

By differentiating Equation (2.7) with respect to time, VE can be expressed as in

equation 2.19. VE is translational velocity of quadrotor relative to reference frame FE

and expressed in reference frame FE .

VE = ξ̇ = [ẋ, ẏ, ż]T (2.19)

Then, by using Equations (2.15), (2.18), (2.19) and (2.10), kinematic equation for

translational motion can be obtained as follows:

ξ̇ = LEBVB (2.20)
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2.2.3.2 Transformation of Angular Velocities

First, by taking derivative of Euler angles defined in equation (2.8) with respect to

time, rate of change of Euler angles are defined as following:

η̇ = [φ̇, θ̇, ψ̇]T (2.21)

To find the transformation between body angular velocities [p, q, r] and rate of change

of Euler angles [φ̇, θ̇, ψ̇], a similar approach used in previous Subsection (2.2.3.1) can

be used. However, transformation is not straightforward since the rate of change of

Euler angles expressed in Equation (2.21) are not directly defined in reference frame

FE .

By using transformations defined in Equation 2.22, one can obtain body angular ve-

locities [p, q, r] as follows [72]:
p

q

r

 = L(φ)L(θ)L(ψ)


0

0

ψ̇

+ L(φ)L(θ)


0

θ̇

0

+ L(φ)


φ̇

0

0

 (2.22)

Transformation matrices L(φ), L(θ) and L(ψ) are already defined in Equation (2.11).

By putting L(φ), L(θ) and L(ψ) into Equation (2.22), final form of Equation (2.22)

is obtained as follows:


p

q

r

 =


1 0 −sin(θ)
0 cos(φ) sin(φ)cos(θ)

0 −sin(φ) cos(φ)cos(θ)



φ̇

θ̇

ψ̇

 (2.23)

Transformation matrix found in Equation (2.23) is defined as LR:

LR ,


1 0 −sin(θ)
0 cos(φ) sin(φ)cos(θ)

0 −sin(φ) cos(φ)cos(θ)

 (2.24)

By multiplying both sides of Equation (2.23) by L−1R , rate of change of Euler angles

can also be found as follows:
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
φ̇

θ̇

ψ̇

 =


1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)
0 sin(φ)/cos(θ) cos(φ)/cos(θ)



p

q

r

 (2.25)

By integrating Equation (2.25), Euler angles can be obtained. However, as can be

seen in Equation (2.25), at θ = ∓ 90◦, there exists a singularity. For some inertial

measurement systems, this singularity could cause the phenomenon called as "gimbal

lock" [72]. To avoid this problem, pitch angle θ is constrained between (−89◦,+89◦)

which is a reasonable limitation.

To conclude, by using Equations (2.23), (2.24), (2.21) and (2.9), kinematic equation

for rotational motion is obtained as follows:

ω = LRη̇ (2.26)

In Equation (2.26), ω represents body angular velocities [p, q, r]T and η̇ represents

rate of change of Euler angles [φ̇, θ̇, ψ̇]T , as explained previously.

2.3 Defining External Forces and Moments

In this section external forces and moments act on quadrotor body will be defined.

Some of the forces and moments will be neglected for simplicity. The most domi-

nant forces and moments defined in this section will be used to derive the nonlinear

dynamic model in Section (2.4). While deriving the dynamic model in Section (2.4),

the forces and moments are used such that they are expressed in body fixed refer-

ence frame(FB). Therefore, the final forms of the forces and moments defined in this

section are expressed in FB.

2.3.1 Gravitational Force

As explained previously, gravitational field is assumed to be constant. Then, gravi-

tational acceleration is taken as g = 9.81 m/s2. Gravity acts at the center of grav-

ity(COG) of the quadrotor. Then, gravitational force expressed in FE , Fgrav,E can be
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written as follows:

Fgrav,E = −m


0

0

g

 (2.27)

By using transformation matrix LBE obtained in Equation (2.12), gravitational force

expressed in FB, Fgrav,B can be written as follows:

Fgrav,B = −LBE m


0

0

g

 (2.28)

As mentioned previously, in the derivation of dynamic model, Equation (2.28) which

is expressed in FB will be used.

2.3.2 Force Generated by Propeller System

As explained previously, quadrotor has four propellers. The total force generated by

four propellers defined in Equation (2.3) as control input, U1. In Equation (2.3), U1 is

expressed in FB. U1 is in the direction of OBzB that is illustrated in Figure 2.1 and

has no contributions in OBxB and OByB axes. Then, force generated by propeller

system expressed in FB, Fprop,B can be written as follows:

Fprop,B =


0

0

U1

 (2.29)

2.3.3 Aerodynamic Drag Force

The effect of aerodynamic drag is considered for translational dynamics only. Ac-

tually, as a basic knowledge in aerodynamics, aerodynamic drag force is propor-

tional to the square of velocity. However, most of the works related to small size

quadrotors like "AscTech Hummingbird" used in this thesis, assume that the relation

between aerodynamic drag force and translational speed could be taken as propor-

tional [30, 31, 32, 34]. Therefore, in this thesis, it is also assumed that aerodynamic
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drag force for translational motion is proportional to translational velocities [u, v, w]T .

This assumption is also tested by simulations in Chapter 4 and it is seen that the

aerodynamic drag force could be approximated as in Equation (2.30), instead of a

quadratic relation. The reason for this behavior might depend on small scale of "As-

cTech Hummingbird" quadrotor and low translational speeds (5-10 m/s) [32, 33].

Then, aerodynamic drag force for translational motion expressed in FB, Faero,B is

defined as following:

Faero,B = −KtVB = −Kt


u

v

w

 (2.30)

Kt is a matrix with constant diagonal entries which are taken as in Equation (2.31)

according to previous works on small size quadrotors [30, 31, 32, 34]:

Kt =


Kx 0 0

0 Ky 0

0 0 Kz

 =


0.1 0 0

0 0.1 0

0 0 0.1

 (2.31)

Diagonal entries of Kt matrix could be found and updated by using a more accurate

drag model in future works.

2.3.4 Moment Generated by Propeller System

By using Equations (2.4), (2.5) and (2.6), moment generated by propellers system

expressed in FB, Mprop,B can be written as follows:

Mprop,B =


U2d

U3d

U4

 (2.32)

In Equation (2.32), d represents the moment arm (distance between propeller and

COG of the quadrotor) which can be seen in Figure 2.1. U2, U3 and U4 are control

inputs and they are defined in Equations (2.4), (2.5) and (2.6), respectively.
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In Equation (2.32), the term "U2d" is differential moment generated between left

and right propellers and it is in the direction of OBxB. Similarly, the term "U3d"

is differential moment generated between front and rear propellers and it is in the

direction of OByB, whereas U4 is the net torque generated by all of the propellers in

the direction of OBzB. The directions of OBxB, OByB and OBzB are illustrated in

Figure 2.1.

2.4 Obtaining The Nonlinear Dynamic Model

In this section, the nonlinear dynamic model of the quadrotor will be derived by

using Newton’s equations of motion. As stated earlier, Newton’s equations of motion,
~f = m~a, is valid for inertial reference frames. However, in this thesis, Newton’s

equations of motion will be written in body fixed reference frame FB which is not an

inertial frame of reference. Therefore, additional terms are included into ~f = m~a.

Then, Newton’s law for translational and rotational motion written in the reference

frame FB can be obtained as follows, respectively [34]:

∑
Fext = mV̇B + ω × (mVB) (2.33)∑
Mext = Jω̇ + ω × (Jω) (2.34)

In Equations (2.33) and (2.34),
∑
Fext and

∑
Mext represent the net force and mo-

ment acting on quadrotor body expressed in body fixed reference frame FB, respec-

tively. Then,
∑
Fext and

∑
Mext are expressed as follows:

∑
Fext = Fgrav,B + Fprop,B + Faero,B (2.35)∑

Mext =Mprop,B (2.36)

By substituting Equations (2.28), (2.29), (2.30) and (2.32) into Equations (2.35) and

(2.36), extended form of
∑
Fext and

∑
Mext which are written in body fixed frame
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FB can be obtained as follows:

∑
Fext = −LBE m


0

0

g

+


0

0

U1

−KtVB (2.37)

∑
Mext =


U2 d

U3 d

U4

 (2.38)

2.4.1 The Nonlinear Dynamic Model for Translational Motion

In the derivation of the nonlinear dynamic model for translational motion, Equa-

tion (2.33) will be used as a basis. LHS of Equation (2.33) is obtained in Equa-

tion (2.37). On the other hand, RHS of Equation (2.33) includes the term V̇B which

can be obtained by differentiating kinematic Equation (2.20) with respect to time as

following:

ξ̈ = L̇EBVB + LEBV̇B (2.39)

In Equation (2.39) , time derivative of transformation matrix LEB can be obtained

as in Equation (2.40) by using the orthogonality property of transformation matrix

LEB [67].

L̇EB = LEB ω̃ (2.40)

where:

ω̃ =


0 −r q

r 0 −p
−q p 0

, ω̃S = ω × S, S ∈ R3 (2.41)

In Equation (2.41), the term "×" represents "cross product", ω defined in Equa-

tion (2.9) represents the angular velocity of quadrotor defined in body fixed frame

FB and S is any vector in R3.

By substituting Equations (2.40) and (2.41) into Equation (2.39), one can obtain:

ξ̈ = LEB(ω × VB) + LEBV̇B (2.42)

Then, rearranging Equation (2.42), V̇B can be obtained as follows:

V̇B = L−1EB ξ̈ − (ω × VB) (2.43)
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Then, substituting Equations (2.43) and (2.37) into Equation (2.33), following form

can be obtained.

− LBE m


0

0

g

+


0

0

U1

−KtVB = m(L−1EB ξ̈ − (ω × VB)) + ω × (mVB) (2.44)

In Equation (2.44), the last term ω × (mVB) can be rearranged as m(ω × VB) since

m is a constant. Also the term (KtVB) can be written as (KtL
−1
EB ξ̇) by using Equa-

tion (2.20). Then, Equation (2.44) can be rewritten as follows:

− LBE m


0

0

g

+


0

0

U1

−KtL
−1
EB ξ̇ = m(L−1EB ξ̈ − (ω × VB)) +m(ω × VB) (2.45)

Multiplying both sides of Equation (2.45) by LEB from left and by making simplifi-

cations Equation (2.45) is rewritten as follows:

− LEBLBE m


0

0

g

+ LEB


0

0

U1

− LEBKtL
−1
EB ξ̇ = LEBmL

−1
EB ξ̈ (2.46)

In Equation (2.46), the matrix product (LEBLBE) equals to I3×3 since LEB = L−1BE

according to Equation (2.16). The term (LEBKtL
−1
EB ξ̇) can be rewritten as (LEBL−1EB

Ktξ̇) since Kt is an identity matrix multiplied with a constant. In addition, the term

(LEBmL−1EB) can be rewritten as (mLEBL−1EB) since m is a constant. After simplifica-

tions, Equation (2.46) can be rearranged as following:

ξ̈ = −


0

0

g

+ LEB


0

0

U1/m

− (Kt/m)ξ̇ (2.47)

Replacing ξ̈ = [ẍ, ÿ, z̈]T and ξ̇ = [ẋ, ẏ, ż]T into Equation (2.47), final form of the

translational equations of motion can be obtained as follows:
ẍ

ÿ

z̈

 = −


0

0

g

+ LEB


0

0

U1/m

− (Kt/m)


ẋ

ẏ

ż

 (2.48)
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where LEB is found in Equation (2.18) as following:

LEB =


c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ) + s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ) + c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)
−s(θ) s(φ)c(θ) c(φ)c(θ)


In Equation (2.48), the position(x, y, z) of quadrotor is defined in Earth fixed inertial

reference frame FE , as stated earlier. Therefore, Equation (2.48) can be directly used

in simulations to find the position of quadrotor expressed in Earth fixed reference

frame FE .

2.4.2 The Nonlinear Dynamic Model for Rotational Motion

Equation (2.34) will be used as a basis to derive the nonlinear dynamic model for

rotational motion. LHS of Equation (2.34) is expressed in Equation (2.38). The

terms used in RHS of Equation (2.34) are body inertia matrix J and body angular

velocity vector ω and its time derivative ω̇. ω is defined in Equation (2.9) and its

time derivative is defined as follows:

ω̇ = [ṗ, q̇, ṙ]T (2.49)

In addition, body inertia matrix J is defined as follows:

J =


Ix 0 0

0 Iy 0

0 0 Iz

 (2.50)

By substituting Equations (2.38), (2.9), (2.49) and (2.50) into Equation (2.34), fol-

lowing equation can be obtained:


U2d

U3d

U4

 =


Ix 0 0

0 Iy 0

0 0 Iz



ṗ

q̇

ṙ

+


p

q

r

×


Ix 0 0

0 Iy 0

0 0 Iz



ṗ

q̇

ṙ


 (2.51)

Rearranging Equation (2.51), the following form is obtained for rotational dynamic
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model of quadrotor:


ṗ

q̇

ṙ

 =


(Iy − Iz)qr/Ix
(Iz − Ix)pr/Iy
(Ix − Iy)pq/Iz

+


U2d/Ix

U3d/Iy

U4/Iz

 (2.52)

Equation (2.52) is written in terms of body angular velocities [p, q, r]. Therefore,

to obtain the orientation of the quadrotor relative to the Earth surface, Euler angles

[φ, θ, ψ] have to be calculated.

To calculate Euler angles, first, [ṗ, q̇, ṙ] obtained in Equation (2.52) are integrated and

body angular velocities [p, q, r] are obtained. Then, by using transformation between

body angular velocities [p, q, r] and rate of change of Euler angles [φ̇, θ̇, ψ̇] which is

defined in Equation (2.25), one can obtain [φ̇, θ̇, ψ̇] as following;


φ̇

θ̇

ψ̇

 =


1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)
0 sin(φ)/cos(θ) cos(φ)/cos(θ)



p

q

r

 (2.53)

Finally, [φ̇, θ̇, ψ̇] obtained in Equation (2.53) are integrated to obtain Euler angles

[φ, θ, ψ]. As explained earlier, in Equation (2.53), at θ = ∓ 90◦ a singularity occurs.

Therefore, to avoid this problem, pitch angle θ is constrained between (−89◦,+89◦)

which is a reasonable limitation.

2.4.3 The Simplified Nonlinear Dynamic Model for Rotational Motion

As explained earlier, dynamic model of the quadrotor is used to obtain control meth-

ods in Chapter 3. To simplify the control laws and algorithms, we can simplify the

dynamic model used in the derivation of control laws. Since, translational dynamics

obtained in Equation (2.48) is not very complex, no simplification is needed. How-

ever, for rotational dynamics obtained in Equation (2.52) simplification is required

since transformation between [ṗ, q̇, ṙ] and [φ̈, θ̈, ψ̈] is very complex and involves so

many trigonometric terms and derivatives, as can be seen in Equation (2.53).
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Therefore, rotational dynamic model obtained in Equation (2.52) can be simplified

by making the assumption that body angular velocities [p, q, r] and rate of change of

Euler angles [φ̇, θ̇, ψ̇] are equal if perturbations from hover condition are small [29].

To clarify this assumption, we can examine tranformation matrix LR defined in Equa-

tions (2.23) and (2.24). For small φ and θ, LR can be taken as I3×3. Then, relation

between body angular velocities and rate of change of Euler angles become as fol-

lowing: 
p

q

r

 =


φ̇

θ̇

ψ̇

,

ṗ

q̇

ṙ

 =


φ̈

θ̈

ψ̈

 (2.54)

Substituting the relations defined in Equation (2.54) into Equation (2.52), the simpli-

fied nonlinear dynamic model for rotational motion is obtained as follows:
φ̈

θ̈

ψ̈

 =


(Iy − Iz)θ̇ψ̇/Ix
(Iz − Ix)φ̇ψ̇/Iy
(Ix − Iy)φ̇θ̇/Iz

+


U2d/Ix

U3d/Iy

U4/Iz

 (2.55)

While deriving control laws in Chapter 3, for rotational dynamics, simplified form

obtained in Equation (2.55) will be used. The simplification is based on the assump-

tion defined in Equation (2.54). The simulation results obtained in Chapter 4 show

that this assumption is valid even if Euler angles are not small. According to the

simulation results obtained in Chapter 4, for Euler angles up to ∓60◦, control sys-

tems work properly. It is important to note that, to validate the assumption made in

Equation (2.54), the non simplified equations of motion which are obtained in Equa-

tions (2.52) and (2.53) are used as rotational dynamic model, while testing control

systems by simulations.

To conclude, the nonlinear equations of motion which are not simplified and obtained

in Equations (2.48), (2.52) and (2.53) are used in simulations as dynamic model of the

quadrotor. However, while obtaining controllers in Chapter 3, simplified rotational

equations of motion obtained in Equations (2.55) are used for simplicity, whereas

translational equations motion obtained in Equation (2.48) are used without simplifi-

cation.
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CHAPTER 3

CONTROL METHODS

In this chapter, theory of backstepping, LQT and fixed-gain LQR controllers are ex-

plained and each control system are formulated and modeled in MATLAB/Simulink.

3.1 Backstepping Controller

In this section, a nonlinear backstepping controller will be designed based on the

method described in [2]. The aim of the controller is tracking of a desired trajectory

asymptotically.

To get more accurate results, the effects of aerodynamic drag for translational motion

and the second order derivatives of desired trajectory are added into the control law.

In addition, a simpler flight approach is obtained by controlling the yaw angle such

that the heading of the quadrotor and the direction of motion are along the same line.

To achieve good tracking performance for relatively complex trajectories, a command

filter is also added to the controller.

The backstepping control method can be explained in three steps. First step is the

attitude control of the quadrotor. In this step, control inputs U2, U3, U4 which are

directly related to the attitude of the quadrotor, are formulated. Second step is about

the position control of the quadrotor. In this step, control input U1 and functions ux

and uy related to the orientation of U1, are formulated. In the third step, desired "Euler

angles" (desired orientation) which are used to find control inputs U2, U3 and U4 are

found by using the functions ux, uy formulated in the position control.
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It is also important to note that, one of the most difficult and important part of back-

stepping controller design is the selection of control parameters. The backstepping

controller obtained in this thesis has 12 control parameters(α1, α2, ...α11, α12) to be

determined. Therefore, "MATLAB Optimization Toolbox" is used to obtain control

parameters that give satisfactory results.

The simplified nonlinear dynamic model of the quadrotor obtained in Equations (2.48)

and (2.55) of Chapter 2, rewritten in a complete form in Equation (3.1). Complete

nonlinear dynamic model of the quadrotor expressed in Equation (3.1) is used in the

formulation of backstepping controller [2].



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

ẋ12



=



φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈

ẋ

ẍ

ẏ

ÿ

ż

z̈



=



x2

x4x6a1 + b1U2

x4

x2x6a3 + b2U3

x6

x4x2a5 + b3U4

x8

uxU1/m−Kxx8/m

x10

uyU1/m−Kyx10/m

x12

−g + (cos(x1)cos(x3))U1/m−Kzx12/m



(3.1)

where:

a1 = (Iy − Iz)/Ix

a3 = (Iz − Ix)/Iy

a5 = (Ix − Iy)/Iz

b1 = d/Ix

b2 = d/Iy

b3 = 1/Iz
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ux = (cos(x1)sin(x3)cos(x5) + sin(x1)sin(x5))

uy = (cos(x1)sin(x3)sin(x5)− sin(x1)cos(x5))

The terms a1, a3, a5 and b1, b2, b3 are defined according to Equation (2.55) which is the

final form of the simplified nonlinear dynamic model for rotational motion. Similarly,

the terms ux and uy are defined according to Equations (2.48) and (2.18) which is the

final form of the nonlinear dynamic model for translational motion. In addition, U1,

U2, U3,U4 and Kx, Ky, Kz are control inputs and aerodynamic drag coefficients for

translational motion, respectively. All of the other parameters of Equation (3.1) are

defined in Table 3.1 and in Chapter 2.

The symbols and parameters used for the backstepping controller design are defined

in Table 3.1.

Table 3.1: Symbols used in backstepping controller.

Symbol Definition
φ Roll angle
θ Pitch angle
ψ Yaw angle

Euler angles φ,θ,ψ
x1d,x3d,x5d Desired roll,pitch,yaw angles
x7d,x9d,x11d Desired x,y,z coordinates
U1,U2,U3,U4 Control inputs

α1, α2, ..., α11, α12 Control parameters
Kx,Ky,Kz Aerodynamic drag coefficients for translational motion

m Mass of the quadrotor
Ix,Iy,Iz Body inertia terms

g Gravitational acceleration
d Level arm

ḟ (·) First order time derivative

f̈ (·) Second order time derivative

3.1.1 Step 1: Attitude Control

In this part, control inputs U2, U3, U4 are formulated to obtain desired orientation or

"Euler Angles" of the quadrotor.
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First, error term for "Euler angle" φ(x1) is defined as:

z1 = x1d − x1 (3.2)

Here x1d represents the desired value of angle φ. By choosing a Lyapunov function of

z1 which is positive definite itself and has negative semi-definite first order derivative

with respect to time, error term z1 converges to zero [73]. Then, Lyapunov function

is chosen as:

V (z1) = (1/2)z21 (3.3)

First order derivative of V(z1) with respect to time is found as:

V̇ (z1) = z1ż1 = z1(ẋ1d − ẋ1) (3.4)

By using Equation (3.1), we can replace ẋ1 by x2. Then Equation (3.4) becomes:

V̇ (z1) = z1(ẋ1d − x2) (3.5)

Here, if x2 is taken as, x2 = ẋ1d+α1z1, then V̇ (z1) is negative semi-definite for α1>0.

In other words, x2d(desired x2) is chosen as following:

x2d = ẋ1d + α1z1 for α1 > 0 (3.6)

To clarify, by controlling x2 (φ̇), desired φ (x1d) can be obtained.

Second, it is obvious that, x2 in Equation (3.5) is coming from quadrotor dynamics

defined in Equation (3.1). Therefore, to obtain desired x2(x2d) which is defined in

Equation (3.6), we need another error term which converges to zero.

Then, error term z2 related to x2(φ̇) is defined as following:

z2 = x2d − x2 (3.7)

To obtain x1d and x2d, we want both of the error terms z1 and z2 converge to zero.

Therefore, another Lyapunov function which is positive definite itself and has nega-

tive semi-definite first order derivative with respect to time, have to be defined.

This new Lyapunov function is chosen as follows:

V (z1, z2) = (1/2)(z21 + z22) (3.8)
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By differentiating Equation (3.8) with respect to time, V̇ (z1, z2) is obtained as:

V̇ (z1, z2) = z1ż1 + z2ż2 (3.9)

We need ż1 and ż2 to replace into Equation (3.9). By using Equations (3.6) and (3.7),

z2 can be written as:

z2 = ẋ1d + α1z1 − x2 (3.10)

In Equation (3.10) we can replace ż1 with the term (ẋ1d−x2) by using Equation (3.5).

Then z2 becomes:

z2 = ż1 + α1z1 (3.11)

From Equation (3.11), ż1 is found as:

ż1 = z2 − α1z1 (3.12)

In addition by differentiating Equation (3.10) with respect to time, ż2 is obtained as:

ż2 = ẍ1d + α1ż1 − ẋ2 (3.13)

By replacing Equations (3.12) and (3.13) into Equation (3.9), V̇ (z1, z2) is obtained

as:

V̇ (z1, z2) = z1(z2 − α1z1) + z2(ẍ1d + α1ż1 − ẋ2) (3.14)

In Equation (3.14), ẋ2 comes from quadrotor dynamics and can be replaced by the

term (x4x6a1 + b1U2) by using Equation (3.1).

By replacing ẋ2 with (x4x6a1+b1U2) and rearranging the terms, final form of V̇ (z1, z2)

is obtained as:

V̇ (z1, z2) = z1z2 − α1z
2
1 + z2ẍ1d + z22α1 − α2

1z1z2 − z2x4x6a1 − z2b1U2 (3.15)

In Equation (3.15), U2 represents the control input. One can choose U2 such that

V̇ (z1, z2) is negative semi-definite, therefore, error terms z1 and z2 converge to zero

according to the Lyapunov theory [73].

The effect of the second order derivatives of desired angles(ẍ1d, ẍ3d, ẍ5d) can be

neglected for attitude control, then, the term ẍ1d in Equation (3.15) is taken as zero.

However, for position control explained in Subsection 3.1.2, second order derivatives

of desired positions are included into the control law for better tracking performance.
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Then, control input U2 is chosen as:

U2 = (1/b1)(z1 + α1z2 − α2
1z1 − x4x6a1 + α2z2), for α1 > 0, α2 > 0 (3.16)

By substituting Equation (3.16) into Equation (3.15), V̇ (z1, z2) becomes:

V̇ (z1, z2) = −α1z
2
1 − α2z

2
2 < 0, for α1 > 0, α2 > 0 and z1 6= 0, z2 6= 0 (3.17)

In other words, if control input U2 is chosen as Equation (3.16), V̇ (z1, z2) is negative

semi-definite and convergence of error terms z1 and z2 are guaranteed [73].

By using the same method, control inputs U3 and U4 related to θ and ψ respectively,

are found as following:

U3 = (1/b2)(z3 + α3z4 − α2
3z3 − x2x6a3 + α4z4), for α3 > 0, α4 > 0 (3.18)

U4 = (1/b3)(z5 + α5z6 − α2
5z5 − x4x2a5 + α6z6), for α5 > 0, α6 > 0 (3.19)

The terms ẍ3d and ẍ5d are also taken as zero while finding U3 and U4.

Error terms used in Equations (3.18) and (3.19) are defined as follows:

z3 = x3d − x3 (3.20)

z4 = x4d − x4 (3.21)

z5 = x5d − x5 (3.22)

z6 = x6d − x6 (3.23)

where, x3d, x4d, x5d, x6d are desired θ, θ̇, ψ, ψ̇, respectively. In Equations (3.21)

and (3.23), x4d and x6d are also chosen such that the first order derivative of Lyapunov

functions with respect to time are negative semi-definite.

x4d = ẋ3d + α3z3 for α3 > 0 (3.24)

x6d = ẋ5d + α5z5 for α5 > 0 (3.25)

In Equations (3.2), (3.20) and (3.22), desired Euler angles x1d(desired φ), x3d(desired

θ), x5d(desired ψ) are obtained in Subsection 3.1.3.

3.1.2 Step 2: Position Control

In this part, first, control input U1 will be obtained by using the same method ex-

plained in Subsection 3.1.1. Control input U1 is the total force generated by four
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propellers of quadrotor. Therefore, it is directly related to the motion in translational

directions(x, y, z), which can be clearly seen in the dynamic model of quadrotor de-

fined in Equation (3.1). Moreover, by considering the dynamic model that is defined

in Equation (3.1), one can see that motion in x and y directions are also effected by

ux and uy, respectively. Therefore, in the first part of position control, altitude control

will be obtained by choosing U1 properly and in the second part, motion in x and y

directions will be obtained by choosing ux and uy properly.

As mentioned before, in the first part of position control, U1 will be obtained such

that the error between desired and actual altitude converges to zero according to the

Lyapunov theory [73].

The error term for altitude is defined as:

z11 = x11d − x11 (3.26)

A Lyapunov function of z11 is chosen as V (z11) = (1/2)z211, such that it is positive

definite.

Then, by using Equations (3.26) and (3.1), first order derivative of V (z11) with respect

to time is obtained as:

V̇ (z11) = z11ż11 = z11(ẋ11d − ẋ11) = z11(ẋ11d − x12) (3.27)

If, V̇ (z11) is negative semi-definite, error term z11 converges to zero according to the

Lyapunov theory [73]. Then, if x12 is chosen as, x12 = ẋ11d + α11z11 for α11>0,

then V̇ (z11) defined in Equation (3.27) is negative semi-definite and error term z11

defined in Equation (3.26) converges to zero. Therefore, desired x12(x12d) is defined

as follows:

x12d = ẋ11d + α11z11, for α11 > 0 (3.28)

To obtain x12d defined in Equation (3.28), one can control x12(ż) which comes from

quadrotor dynamics defined in Equation (3.1)

Therefore, to obtain x12d, another error term z12 is defined as following:

z12 = x12d − x12 = ẋ11d + α11z11 − x12 (3.29)

We want both of the error terms z11, z12 defined in Equations (3.26) and (3.29) re-

spectively, converge to zero. Then, a Lyapunov function of z11 and z12 is chosen
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as:

V (z11, z12) = (1/2)(z211 + z212) (3.30)

If, first order derivative of V (z11, z12) with respect to time is negative semi-definite,

then convergence of error terms z11 and z12 are guaranteed [73]. By taking first order

derivative of Equation (3.30) with respect to time, V̇ (z11, z12) is obtained as:

V̇ (z11, z12) = z11ż11 + z12ż12 (3.31)

ż11 and ż12 are required to replace into Equation (3.31). By taking first order deriva-

tive of Equation (3.26) with respect to time and using Equation (3.1) , one can obtain:

ż11 = ẋ11d − ẋ11 = ẋ11d − x12 (3.32)

By replacing ż11 found in Equation (3.32) into Equation (3.29), final form of ż11 is

obtained as:

ż11 = z12 − α11z11 (3.33)

In addition, by differentiating Equation (3.29) with respect to time, ż12 is obtained as:

ż12 = ẍ11d + α11ż11 − ẋ12 (3.34)

By replacing Equations (3.33) and (3.34) into Equation (3.31), one can obtain:

V̇ (z11, z12) = z11(z12 − α11z11) + z12(ẍ11d + α11ż11 − ẋ12) (3.35)

In Equation (3.35), ẋ12 comes from quadrotor dynamics and can be replaced by

the term (−g + (cos(x1)cos(x3))U1/m −Kzx12/m) by using Equation (3.1). After

replacing ẋ12 and making rearrangements, final form of V̇ (z11, z12) is obtained as:

V̇ (z11, z12) = z11z12 − α11z
2
11 + z12ẍ11d + z212α11 − α2

11z11z12 + z12g

−z12(cos(x1)cos(x3))U1/m+ z12Kzx12/m
(3.36)

In Equation (3.36), one can choose control input U1 such that V̇ (z11, z12) is negative

semi-definite. Then, proper choose of U1 is defined as:

U1 = (m/(cos(x1)cos(x3)))(z11 + ẍ11d + α11z12 − α2
11z11 + g

+Kzx12/m+ α12z12), for α11 > 0, α12 > 0
(3.37)

As can be seen in Equation (3.37), the effect of second order derivative of desired

altitude(ẍ11d) is added to the controller for better tracking performance. This effect

was neglected while driving attitude controller in Subsection 3.1.1.
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By choosing U1 as in Equation (3.37), V̇ (z11, z12) which is defined in Equation (3.36)

becomes:

V̇ (z11, z12) = −α11z
2
11 − α12z

2
12 < 0, for α11 > 0, α12 > 0

and z11 6= 0, z12 6= 0
(3.38)

Then, it can be clearly seen that in Equation (3.38), V̇ (z11, z12) is negative semi-

definite. Besides, Lyapunov function V (z11, z12) was defined in Equation (3.30) as

V (z11, z12) = (1/2)(z211 + z212) which is positive definite. Then, according to Lya-

punov theory, error terms z11 and z12 which are defined in Equations (3.26) and (3.29)

converge to zero [73].

By using the same method, functions ux and uy which are directly related to the

motion in x and y directions are found as following:

ux = (m/U1)(z7 + ẍ7d + α7z8 − α2
7z7 +Kxx8/m+ α8z8)

for α7 > 0, α8 > 0
(3.39)

uy = (m/U1)(z9 + ẍ9d + α9z10 − α2
9z9 +Kyx10/m+ α10z10)

for α9 > 0, α10 > 0
(3.40)

In Equations (3.39) and (3.40) error terms are defined as follows:

z7 = x7d − x7 (3.41)

z8 = x8d − x8 (3.42)

z9 = x9d − x9 (3.43)

z10 = x10d − x10 (3.44)

In Equations (3.26), (3.41) and (3.43), the terms x11d(desired z),x7d(desired x) and

x9d(desired y) are given to the system as inputs that define desired trajectory.

In addition, terms x8d and x10d defined in Equations (3.42) and(3.44) are also chosen

such that the first order derivative of Lyapunov functions with respect to time are

negative semi-definite.

x8d = ẋ7d + α7z7 for α7 > 0 (3.45)

x10d = ẋ9d + α9z9 for α9 > 0 (3.46)
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Figure 3.1: Top view of the quadrotor, motion in x-y plane.

The functions ux and uy which are obtained in Equations (3.39) and (3.40) respec-

tively, are not directly control inputs, instead they will be used to find desired Euler

angles x1d and x3d which will be the inputs of attitude controller explained in Sub-

section 3.1.1.

3.1.3 Step 3: Obtaining Desired Angles

In this part, desired Euler angles x1d, x3d and x5d which are the inputs of attitude

controller, will be obtained.

First, desired yaw angle(x5d) will be obtained such that quadrotor’s heading and di-

rection of motion in x− y plane are on the same line.

By using Figure 3.1 and basic trigonometry, desired yaw angle(x5d) can be obtained

as follows:

x5d = arctan[(x9d − x9)/(x7d − x7)] (3.47)

In Equation (3.47), x7 and x9 represent the actual position in x-y plane whereas, x7d

and x9d represent the desired position in x-y plane. Therefore, x7d and x9d are given

to the system as inputs that define desired trajectory to be followed.

Once the desired yaw angle(x5d) is obtained from Equation (3.47), desired roll(x1d)

and desired pitch(x3d) angles can be obtained by using following equations which are
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defined in quadrotor dynamic model, equation (3.1):

ux = (cos(x1)sin(x3)cos(x5) + sin(x1)sin(x5)) (3.48)

uy = (cos(x1)sin(x3)sin(x5)− sin(x1)cos(x5)) (3.49)

Multiply both sides of Equation (3.48) by sin(x5) and multiply both sides of Equa-

tion (3.49) by cos(x5).

uxsin(x5) = (cos(x1)sin(x3)cos(x5)sin(x5) + sin(x1)sin
2(x5)) (3.50)

uycos(x5) = (cos(x1)sin(x3)sin(x5)cos(x5))− sin(x1)cos2(x5)) (3.51)

Subtract Equation (3.51) from Equation (3.50):

(uxsin(x5)− uycos(x5)) = sin(x1)(sin
2(x5) + cos2(x5)) (3.52)

By using the fact [sin2(x5)+ cos
2(x5)] = 1, desired roll angle (x1d) is obtained from

Equation (3.52) as:

x1d = arcsin[uxsin(x5d)− uycos(x5d)] (3.53)

In Equation (3.53), value of x5d is obtained from Equation (3.47) and functions ux

and uy are obtained from Equations (3.39) and (3.40) respectively.

By using a similar approach desired pitch angle(x3d) is obtained as;

x3d = arcsin[(uxcos(x5d) + uysin(x5d))/cos(x1d)] (3.54)

In Equation (3.54), value of x1d, x5d, ux and uy are obtained from Equations (3.53),

(3.47), (3.39), (3.40), respectively.

By analyzing Equation (3.53) and Equation (3.54), it can be seen that no singular-

ity exists for Equation (3.53). However, in Equation (3.54), for x1d = kπ where

k = ∓1, 3, 5, ..n, singularity exist. To overcome this problem, value of x1d obtained

from Equation (3.53) is limited between (−89◦,+89◦) by using a saturation function.

Limiting desired roll angle (x1d) between (−89◦,+89◦) is a reasonable approach.

To sum up, in this step, desired roll, pitch and yaw angles(x1d, x3d, x5d) are obtained

in Equations (3.53),(3.54) and (3.47) respectively. Desired angles obtained in this

step are used as inputs for the attitude controller explained in Subsection 3.1.1.
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Figure 3.2: Each part of the bacsktepping controller with its inputs and outputs. Green

blocks represent the backstepping controller and red block represents the nonlinear

quadrotor dynamics.

Finally, backstepping controller to track desired trajectories is obtained in three steps.

Figure 3.2 shows each part of the backstepping controller with its inputs and outputs

to clarify the design process.

As mentioned previously, optimized control parameters of backstepping controller

are found by using "MATLAB Optimization Toolbox" and illustrated in Table 3.2.
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Table 3.2: Optimized control parameters of backstepping controler.

Parameter Optimized value Parameter Optimized value
α1 13.6185 α7 4.3529
α2 0.5994 α8 0.0533
α3 13.6185 α9 4.3529
α4 0.5994 α10 0.0533
α5 9.412 α11 3.9018
α6 12.213 α12 0.2734

Moreover, results obtained in Chapter 4 shows that performance of the backstepping

controller is directly related to the selection of control parameters. Therefore, opti-

mization of control parameters is one of the most important and time consuming part

of backstepping controller design.

3.2 Linear Quadratic Tracking(LQT) Control

In this section, our second and more unique control approach which is called as Lin-

ear Quadratic Tracking(LQT) will be explained. In this thesis, LQT controller is

obtained by solving discrete-time optimal control algorithm defined in [1]. As ex-

plained previously, LQT is a discrete-time optimal control approach and hasn’t been

used widely in literature unlike fixed-gain LQR control which has been used by many

researchers. LQT is similar to the classical fixed gain LQR control, however, the main

difference and advantage of the LQT control is time varying control gains which are

optimized to track desired trajectory in an offline way. Therefore, LQT control could

be advantageous in some ways compared to fixed gain LQR control which uses time-

invariant(fixed) control gains.

This section focus on obtaining time-varying optimal control gains of LQT controller

by solving a discrete-time optimal control algorithm defined in [1]. The advantageous

and disadvantageous properties of LQT control could be seen in details in Chapter 4.

First, the nonlinear quadrotor dynamics obtained in Chapter 2 will be linearized and

expressed as a discrete time state space form in Subsection 3.2.1. Then, discrete

time performance index(cost function) and state and control weight matrices will be

defined in Subsection 3.2.2. Finally, discrete-time LQT algorithm which is solved to
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obtain time-varying optimal control gains will be explained in Subsection 3.2.3.

3.2.1 Obtaining Discrete-Time State Space Equations

The LQT algorithm requires linear dynamic model of the system. Therefore, first the

nonlinear dynamic model of the quadrotor obtained in Equations 2.48 and 2.55 for

translation and rotational motion, have to be linearized around a trim (equilibrium)

condition. The simplified nonlinear dynamic model of the quadrotor is expressed as

a complete form in Equation 3.1.

Equation 3.1 is linearized around trim condition which is hovering at an altitude of

1 meter. Then, at trim condition, x1 = x2 = x3 = x4 = x5 = x6 = x7 = x8 =

x9 = x10 = x12 = 0, only z coordinate, x11 = 1 meter. Linearization is performed in

a MATLAB code by using "MATLAB Symbolic Toolbox" which calculates Jacobian

of the nonlinear system obtained in Equation 3.1 at hover condition.

Then, dynamic model of the quadrotor is linearized around hover condition and ob-

tained as a continuous time state space form as following:

Ẋ = AX +BU

Y = CX

 (3.55)

X =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12



=



φ

φ̇

θ

θ̇

ψ

ψ̇

x

ẋ

y

ẏ

z

ż



, U =


U1

U2

U3

U4

, Y =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12


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In Equation (3.55), A, B and C are state, input and output matrices of the linearized

state space system and X , U and Y are state, input and output vectors, respectively.

As mentioned previously, linearized A, B and C matrices are found by using "MAT-

LAB Symbolic Toolbox" and are not explicitly expressed due to the large size of

matrices.

The state space form of the quadrotor dynamics obtained in Equation 3.55 is con-

tinuous time, however, LQT algorithm is solved in discrete-time as can be seen in

Equation set (3.60). Then, continuous time state space equations obtained in Equa-

tion (3.55) is discretized by choosing 0.01 seconds time interval. Discrete time state

space equations obtained by using MATLAB are defined as following:

X(k + 1) = AdX(k) +BdU(k)

Y (k) = CdX(k)

 (3.56)

In Equation (3.56), Ad, Bd and Cd are discrete time state, input and output matrices

respectively. "k" represents discrete time step i.e. k = 1, 2, ......, kf , such that k ∈ Z+.

3.2.2 Defining Performance Index

To obtain time-varying optimal control gains, a performance index(cost function)

have to be defined and tried to be minimized. Performance index is defined in discrete

time and it possess desired trajectory information at each time step since the aim is

tracking a desired trajectory. Then, discrete time performance index Jd is defined as

following [1]:

J =
1

2
[CdX(kf )− r(kf )]TF [CdX(kf )− r(kf )]

+
1

2

kf−1∑
k=k0

(
[CdX(k)− r(k)]TQ[CdX(k)− r(k)] + UT (k)RU(k)

) (3.57)

In Equation (3.57), r(k) is a 12 × 1 vector that represents the desired state vector at

time step k such that the first six rows are related to desired orientation and the last

six rows are related to desired position. In other words, r(k) contains information
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about desired trajectory to be followed, at each time step k. Cd is discrete time output

matrix and equals to 12 × 12 identity matrix. X(k) and U(k) are state and input

vectors at time step k and defined in Equation (3.55).

Boundary condition at time step zero, X(k0) = X0 is initial hover condition defined

in Subsection 3.2.1. At final time kf , X(kf ) is free and kf is fixed so that F is taken

as 12× 12 zero matrix.

In equation (3.57), Q and R matrices are state weight and control weight matrices

respectively. Diagonal elements ofQ andR matrices are chosen as in Equation (3.58)

by trial and error such that good tracking performance is achieved while satisfying the

constraints due to mechanical limits of the quadrotor.

Q = diag[100, 50, 10, 5, 0, 0, 100, 1, 100, 1, 1000, 0.1]

R = diag[10, 0, 0, 0]

 (3.58)

It is also important to remind that, LQT controller is obtained by using the simplified

and linearized dynamics which is approximation of the nonlinear dynamic model in

the vicinity of the hover condition. Therefore, it is also preferable to satisfy con-

straints on Euler angles defined in equation (3.59) to get more accurate results in

simulations which are performed by using the nonlinear dynamic model as plant [74].

−20◦ < φ < 20◦, −20◦ < θ < 20◦, −20◦ < ψ < 20◦ (3.59)

Therefore, in the selection ofQ andRmatrices, satisfying constraints on Euler angles

defined in Equation (3.59) is also considered. However, it should be also noted that,

according to the results obtained in Chapter 4, LQT controller works properly for

Euler angles up to ∓60◦ for short periods of time (4-5 seconds). Therefore, it can

be concluded that, robustness level of LQT controller could compensate the errors

between linearized and true nonlinear dynamics [74].
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3.2.3 Optimal Control Algorithm

To solve the optimal control problem, Equation set (3.60) defined in [1] is used.

P (k) = ATdP (k + 1)[I + EP (k + 1)]−1Ad + V

V = CT
d QCd

E = BdR
−1BT

d

g(k) = [ATd − ATdP (k + 1)[I + EP (k + 1)]−1E]

g(k + 1) + CTQr(k)

X∗(k + 1) = [Ad −BdL(k)]X
∗(k)+

BdLg(k)g(k + 1)

L(k) = [R +BT
d P (k + 1)Bd]

−1BdP (k + 1)Ad

Lg(k) = [R +BT
d P (k + 1)Bd]

−1BT
d

U∗(k) = −L(k)X∗(k) + Lg(k)g(k + 1)



(3.60)

As stated earlier, Equation set (3.60) is in discrete-time and our aim is finding time-

varying optimal control gains L, Lg and g offline. By using the boundary conditions

defined in Equation (3.61), Equation set (3.60) can be solved by integrating back-

wards in time.

P (kf ) = CT
d FCd

g(kf ) = CT
d F r(kf )

 (3.61)

Then, by generating and running a MATLAB code, time-varying optimal control

gains L, Lg, g and optimal control input U∗ can be obtained at each time step k.

The size of L and Lg matrices are 4 × 12 and size of g matrix is 12 × 1 at each time

step. On the other hand, as defined in Equation set (3.55), optimal control input U∗ is

4× 1 vector at each time step since there are four control inputs.
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Figure 3.3: The LQT control system as a state feedback control with time-varying

and offline calculated optimal control gains L, Lg and g [74].

It is important to note that r(k) represents the information about the desired trajectory

to be followed. Desired trajectories are generated in MATLAB at each time step k

before solving Equation set (3.60). In Equation set (3.60), it can be seen that only

optimal control gain g includes the term r(k). The results obtained in Section 4.5

also showed that, optimal control gain g varies in proportion to the desired trajectory

to be followed and therefore it is time-varying. On the other hand, according to the

results of Section 4.5 , optimal control gains L and Lg are not directly related to the

desired trajectory and they can be approximately considered as time-invariant(fixed)

optimal control gains. Then, one can conclude that tracking desired trajectory is actu-

ally achieved by using time-varying optimal control gain g while calculating optimal

control input U∗ in the last equation of Equation set (3.60).

It should be also reminded that, desired trajectory information is given to the LQT

algorithm offline. Therefore, it is stated that, optimal control gains of LQT algorithm

are calculated offline.

Figure 3.3 shows the basic simulink model of LQT controller [74]. As can be seen
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in Figure 3.3, time-varying control gains L, Lg and g that are optimized to track

desired trajectory are found by using the MATLAB code and sent into the Simulink

model by using "From Workspace" blocks. However, simulation step size is variable

although optimal control gains are found by using a fixed step size of 0.01 seconds.

This problem is solved by using interpolation and extrapolation to find the values of

L, Lg and g at time steps which are not exact multiple of 0.01, for example at time

steps 0.0116 or 0.0282 [74].

It is also important to remind that, as can be seen in Figure 3.3, desired trajectory

information is not included into the LQT controller since offline calculated control

gains of LQT are already optimized to track desired trajectory and possess desired

trajectory information.

Finally, LQT control system is obtained the results of the LQT controller and com-

parison with fixed-gain LQR controller are presented in Chapter 4.

3.3 Linear Quadratic Regulator(LQR) Control

As stated earlier, LQT controller with time-varying control gains used in this thesis

will be compared to fixed-gain LQR controller in Chapter 4. The detailed theory of

fixed gain LQR control is not given in this thesis since it is a widely known optimal

control technique. On the other hand, it is noted that, fixed gain matrix of LQR

controller which is defined as K is obtained by using the "lqr" function of MATLAB.

"lqr" function tries to find the value of optimal control gain K such that the state

feedback law u = −KX minimizes the cost function defined in Equation (3.62) [75].

Ju =

∫ ∞
0

(XTQX + uTRu)dt (3.62)

which subject to the state space model of Ẋ = AX +Bu, Y = CX .

In Equation (3.62), Q and R matrices are equal to the ones used in LQT controller to

make reasonable comparisons between LQT and LQR controllers. The values of Q

and R matrices can be seen in Equation (3.58). Moreover, the state space model used

in LQR controller, in other words A, B and C matrices, are also the same as the one
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Figure 3.4: The LQR control system as a state feedback control with fixed(time-

invariant) optimal control gain K.

used in LQT controller which are defined in Equation (3.55).

To conclude, to obtain reasonable comparison results between LQT and fixed-gain

LQR controllers in Chapter 4, same Q and R matrices and state space models are

used in both controllers.

Figure 3.4 shows the basic Simulink model of fixed-gain LQR controller. As can be

seen in Figure 3.4, unlike LQT controller illustrated in Figure 3.3, optimal control

gain K is a 4 × 12 constant matrix and desired trajectory to be followed is given

into the LQR controller offline. Yellow block in Figure 3.4 represents the desired

states(Xd), in other words the desired trajectory to be followed. Similar to the op-

timal control gains of LQT(L,Lg, g) controller which are calculated offline, desired

trajectory information have to be given to the fixed-gain LQR controller offline since

optimal control gain of LQR(K) is not optimized to follow desired trajectory specifi-

cally.

LQR controller is also designed to follow a desired trajectory instead of regulating

the system, as can be seen in Figure 3.4. Therefore, the control law u is expressed as

following:
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u = −K(X −Xd) (3.63)

In Equation (3.63), X represents the state vector and Xd represents the desired state

vector which contains information about the desired trajectory to be followed.

As stated earlier, fixed-gain LQR controller is used to compare the results of LQT

control system obtained in this thesis. The advantageous and disadvantageous prop-

erties of LQT controller are explained in details in Chapter 4.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, controllers obtained in Chapter 3 will be tested by simulations and

results will be analyzed. In other words, initial validation of the controllers by simu-

lations will be performed.

First, the equations of the nonlinear dynamic model of quadrotor obtained in Chap-

ter 2 will be repeated since this model is used in simulations as the dynamic model

of quadrotor. Then, motor model of "AscTech Hummingbird" quadrotor will be de-

fined in Section 4.2. A converter will be defined in Section 4.3 to switch between

angular velocity of propellers and control inputs. Then, in Section 4.4, simulation

results of backstepping controller will be given and analyzed. In Section 4.5, results

of LQT controller will be presented and comparison analysis between LQT and LQR

controllers will be performed. In Section 4.6, disturbance rejection characteristics of

each control system will be observed. Finally, a detailed comparison analysis among

backstepping, LQT and LQR controllers will be made in Section 4.7.

4.1 The Nonlinear Dynamic Model of the Quadrotor

It is important to note that, to obtain more realistic results, simulations are performed

by using the nonlinear dynamic model which is not simplified by assuming that per-

turbations from hover condition are small. The nonlinear dynamic model for trans-

lational and rotational motion are obtained in Equations (2.48), (2.52), (2.53) and

repeated as following:
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Figure 4.1: Simulink block of the nonlinear dynamic model of quadrotor with its

inputs and outputs.
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ÿ

z̈

 = −


0

0

g

+ LEB


0

0

U1/m

− (Kt/m)


ẋ
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Equation (4.1) represents the nonlinear dynamic model for translational motion and

Equations 4.2 and (4.3) represent the nonlinear dynamic model for rotational motion.

Since, trajectory tracking of quadrotor is tried to be achieved, position and orientation
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of the quadrotor relative to and expressed in Earth surface are needed. Then, as can

be seen in Equation (4.1), translation motion is expressed in Earth fixed reference

frame FE . On the other hand, for rotational motion, Equation (4.2) gives the body

angular velocities p, q, r and they are expressed in body fixed reference frame FB.

However, to obtain orientation of the quadrotor, Euler angles φ, θ, ψ are needed. To

obtain φ, θ, ψ transformation Equation (4.3) is used. To obtain more realistic results in

simulations, as can be seen in Equation (4.3), transformation matrix between φ̇, θ̇, ψ̇

and p, q, r is not taken as identity matrix to simplify the equations.

As can be seen in Equations (4.1) and (4.2), the inputs of the nonlinear dynamic

model are U1, U2, U3 and U4 which are defined in Equations (2.3), (2.4), (2.5), (2.6)

of Chapter 2.

To sum up, as can be seen in Figure 4.1, the inputs and outputs of the nonlinear

dynamic model are (U1, U2, U3, U4) and (φ, θ, ψ, φ̇, θ̇, ψ̇, x, y, z, ẋ, ẏ, ż), respectively.

According to Figure 4.2, the outputs of the nonlinear dynamic model goes to the

controllers and the inputs of the nonlinear dynamic model comes from the motor

model which will be defined in Section 4.2.

4.2 Dynamic Model of the Motor

As stated earlier, AscTech Hummingbird quadrotor is powered by four electric mo-

tors [10]. Since control of the quadrotor is obtained by changing the angular velocities

of each propellers, the effect of the motor, motor controller and propeller dynamics

should be included into the simulations to obtain more realistic results.

For AscTech Hummingbird quadrotor used in this thesis, a simple dynamic model of

the motor as a first-order differential equation is found in [5] as following:

dwi
dt

= kg(wi,des − wi) (4.4)

Then, as a motor model in simulations, relationship expressed in Equation (4.4) will

be used. In Equation (4.4), kg represents the time delay of the motors and it is defined

as motor gain. The numerical value of kg is found as 20 s−1 for AscTech Humming-

bird quadrotor [5]. In Equation (4.4), wi,des represents the desired angular velocity of
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the propellers and determined by the control system, on the other hand, wi represents

the angular velocity of the propellers generated by motors.

The relation between the force,torque generated by each propeller and the angular

veloctiy of each propeller is also required to complete motor model and obtain control

inputs U1, U2, U3, U4. For AscTech Hummingbird quadrotor used in this thesis, these

relations are expressed in Equations (2.1) and (2.2) of Chapter 2 and repeated as

following [66]:

Fi = knω
2
i , [N ] (4.5)

Ti = kmFi, [N ·m] (4.6)

Moreover the relation between the control inputs U1, U2, U3, U4 and Fi, Ti are defined

in Equations (2.3), (2.4), (2.5), (2.6) of Chapter 2. By using Equations (4.5), (4.6), (2.3),

(2.4), (2.5), (2.6), control inputs U1, U2, U3, U4 can be obtained.

To sum up, as can be seen in the blue block of Figure 4.2, the inputs and outputs of the

motor model are desired angular velocities(wi,des) and control inputs (U1, U2, U3, U4),

respectively. According to Figure 4.2, the inputs of the motor model(wi,des) are de-

termined by the controllers and their values are found by using the angular speed

converter which will be expressed in Section 4.3. On the other hand, the outputs of

the motor model (U1, U2, U3, U4) goes to the nonlinear dynamic model of quadrotor

as control inputs.

4.3 Angular Speed Converter

As can be seen in Figure 4.2, output of the control systems designed in Chapter 3

are the control inputs U1, U2, U3, U4. In other words, control systems don’t pro-

vide desired angular velocities(wi,des) directly. Therefore, control inputs have to be

converted into desired angular velocities to input into the motor model expressed

by Equation (4.4). Conversion can be done by using Equations (4.5), (4.6), (2.3),

(2.4), (2.5), (2.6).

As can be seen in the white block of Figure 4.2, inputs and outputs of the angu-

lar speed converter are U1, U2, U3, U4 and desired angular velocities w1,des, w2,des,
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Figure 4.2: Simulink model of the backstepping controller.
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w3,des, w4,des, respectively. The outputs of the angular speed converter go to the mo-

tor model(dynamics) and inputs of the angular speed converter come from controllers,

as can be seen in Figure 4.2.

4.4 Simulation Results of Backstepping Controller

In this section, simulation results of the backstepping controller obtained in Sec-

tion 3.1 will be expressed and analyzed. As defined in Section 3.1, backstepping

controller consists of three parts which are attitude control, position control and ob-

taining desired angles. Figure 4.2 shows the simulink model of the backstepping

control system. Green blocks represent the each part of the backstepping controller

and yellow blocks represent the desired trajectory generated in Equation set 4.7 which

is given to the system as inputs. Red, blue and white blocks of Figure 4.2 represent

the nonlinear dynamic model of the quadrotor, motor dynamics and angular speed

convertor blocks, respectively.

4.4.1 Desired Trajectory A

As stated in Section 1.4, the aim is tracking desired trajectories accurately. Therefore,

a trajectory have to be generated at first. In this subsection, desired trajectory A will

be defined.

Desired trajectory A is generated and used as inputs for the backstepping controller as

can be seen in Figure 4.2. In Figure 4.2, yellow blocks represent the desired trajectory,

in other words, desired x, y, z coordinates(x7d, x9d, x11d).

Desired trajectory A is defined for 60 seconds and formulated as following:
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Ts = 0.01

Tfinal = 60

ti = 0 : Ts : Tfinal = [0, 0.01, 0.02, ..., Tfinal], for i = 1, 2, ...6001

x7d,i = ti

x9d,i = 2ti

x11d,i = 1 + sin(ti/4)



(4.7)

In Equation set 4.7, Ts represents the time interval and it is taken as 0.01 seconds.

Tfinal is the final time which is 60 seconds and i represents the time step. x7d,i, x9d,i

, x11d,i that defines desired trajectory A at corresponding time step i. As can be seen

in Equation set 4.7, our desired trajectory A involves sinusoidal motion in z direction

(altitude), and linear motions in x and y directions with different speeds.

It is important to note that desired trajectory A obtained in Equation set 4.7 is filtered

for each coordinate(x7d, x9d, x11d) by using a second order filter defined as follows:

xd,filtered =
ω2
n

s2 + 2ζωns + ω2
n

xd (4.8)

The second order filter is used to track relatively complex trajectories without blowing

up the simulations. Therefore, this problem could be solved by smoothing desired

trajectory via filtering. By trial and error, damping factor (ζ) and natural frequency

(ωn) of command filter defined in Equation 4.8 are chosen as 0.7 and 10, respectively.

Therefore we can conclude that, the actual desired trajectory A is filtered by a second

order filter and all of the error analysis in Subsection 4.4.2 will be done according to

the filtered desired trajectory A obtained in Equation 4.8.

4.4.2 Results of Backstepping Controller

As can be seen in Equation set 4.7, desired trajectory is relatively complex since it

involves sinusoidal motion in z direction and linear motion in x and y directions with

different translational velocities.
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Figure 4.3: 3D plot of desired trajectory A.

Figure 4.4: x, y, z coordinates of desired trajectory A and x, y, z coordinates obtained

by backstepping controller.
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It is important to remind that the actual desired trajectory is filtered by using equa-

tion 4.8. Therefore, the actual desired trajectory used in simulations as inputs to the

position controller(yellow blocks in Figure 4.2 is filtered by using equation 4.8 for

each coordinate(x7d, x9d, x11d) and illustrated in Figure 4.3.

Figure 4.4 shows the tracking results of backstepping controller obtained in MAT-

LAB/Simulink. According to Figure 4.4, desired trajectory is accurately tracked. To

see the accuracy of the controller more clearly, Figure 4.5 can be examined which

shows the results of the error between desired and obtained trajectory. The error

functions obtained in Figure 4.5 for x, y, z coordinates are defined as follows:

error(t) = xd,filtered(t)− xobtained(t) (4.9)

Figure 4.5: Error between x, y, z coordinates of desired trajectory A and x, y, z coor-

dinates obtained by backstepping controller.

According to Figure 4.5, for the motion in x and y directions the value of the error

terms at steady state are 7.38 ·10−5 and 1.22 ·10−4 meters which correspond to 0.0738

and 0.122 millimeters, respectively. Moreover, the maximum value of the error for

the motion in x and y directions are 0.147 and 0.229 meters. On the other hand, as can

be seen in Figure 4.5, the error terms for the motion in z direction has more higher
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values and can be approximated as a sinusoidal function since desired trajectory is a

more complex sinusoidal function. However , maximum values of the error term for

z coordinates is 0.1225 meters which is still reasonable. To sum up, the error analysis

show that desired trajectory is followed with high accuracy.

As mentioned previously, Euler angles φ and θ are responsible for the motion in x and

y directions, respectively. The Euler angles obtained are plotted in Figure 4.6. As can

be seen in Figure 4.6, quadrotor moves in both x and y directions simultaneously by

only using pitch angle(θ) of 2.74◦ although roll angle(φ) is zero. The reason for this

kind of motion is explained previously in Figure 3.1. As can be seen in Figure 3.1,

quadrotor adjusts its yaw(ψ) angle such that quadrotor’s heading and direction of

motion in x − y plane are on the same line. Then, yaw angle(ψ) equals to 63.44◦

during flight as can be seen in the last plot of Figure 4.6. By this way, by only

changing pitch angle(θ), quadrotor can translates both in x and y directions and a

more simpler flight approach can be obtained.

Figure 4.6: Euler angles obtained by backstepping controller while tracking desired

trajectory A.

It is also important to analyze control inputs U1, U2, U3, U4 since these control inputs
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Figure 4.7: Control input U1 obtained by backstepping controller while tracking de-

sired trajectory A.

are related to force and torque generated by propellers which are constrained by motor

dynamics defined in Equations (4.4), (4.5) and (4.6). Figure 4.7, shows the values of

U1 and it can be seen that U1 changes sinusoidally since it is directly related to motion

in z direction which is defined as a sine function in Equation (4.7). Another result

is that maximum U1 value is 5.7986 N which is reasonable according to the limits

of motors defined in Equation (4.5). In Figure 4.8, values of other control inputs

U2, U3, U4 are also plotted. To sum up, control inputs are found reasonable for desired

trajectory A and constraints due to motor dynamics are satisfied.

Figure 4.9 shows the translational velocities of the quadrotor along x, y, z directions.

It is observed that translational velocities in x and y directions are 1 m/s and 2 m/s

respectively. On the other hand, velocity in z direction changes sinusoidally as ex-

pected.

To conclude, backstepping controller could track desired trajectory A accurately while

satisfying the limits of the quadrotor.
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Figure 4.8: Control inputsU2, U3, U4 obtained by backstepping controller while track-

ing desired trajectory A.

Figure 4.9: Translational velocities obtained by backstepping controller while track-

ing desired trajectory A.
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4.5 Simulation Results of LQT Controller and Comparison with LQR Con-

troller

In this section, simulation results of LQT controller designed in this thesis will be pre-

sented and compared with classical fixed gain LQR control. Theory of both LQT and

fixed-gain LQR control methods are explained in Sections 3.2 and 3.3, respectively.

As mentioned previously, LQT control approach uses time varying and offline cal-

culated control gains that are optimized to track desired trajectory, unlike fixed gain

LQR control. Therefore, it is expected to see some advantageous properties of LQT

controller compared to fixed gain LQR controller.

4.5.1 Desired Trajectory B

Before presenting the results of LQT controller, a trajectory to be followed will be

generated in a MATLAB code as similar to the desired trajectory A generated in

Section 4.4.1. As can be seen in Figure 4.10, desired trajectory B consists of cruise

flight between 0-15 seconds, climb between 15-30 seconds, sharp turn at 30 seconds

(step input of 5 meters in y coordinate), descent between 30-45 seconds and ends with

cruise flight between 45-60 seconds. Desired trajectory is generated in discrete time

by using a sample time of 0.01 seconds and final time is 60 seconds.

Desired trajectory B is chosen in this way to observe different behaviors of LQT and

LQR controllers for several types of flight/motion.

4.5.2 Results of LQT Controller

In this subsection, simulation results of LQT control system will be presented. As

stated earlier, the aim is tracking desired trajectory B defined in Subsection 4.5.1.

3-dimensional plot of desired trajectory B can also be seen Figure 4.10.

As can be seen in Figures 4.11 and 4.12 , tracking performance of LQT controller is

very accurate. According to Figure 4.12, steady state error for x coordinate is 0.01

meters or 1 cm. Besides, error for the motion in z direction are 0.0001 for cruise
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Figure 4.10: 3D plot of desired trajectory B.

Figure 4.11: x, y, z coordinates of desired trajectory B and x, y, z coordinates ob-

tained by LQT controller.
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flights (0-15 and 45-60 seconds) and 0.0101 meters for climb (15-30 seconds) and

descent (30-45 seconds).

Figure 4.13 shows Euler angles obtained while tracking desired trajectory B. Since

quadrotor translates in x direction and there exist an aerodynamic drag force, pitch

angle (θ) remains a constant value during cruise flight,climb and descent. However,

roll angle (φ) which is related to the motion in y direction equals to zero during the

whole flight regime except for 28 -32 seconds when a step input of 5 meters for

y coordinate is commanded. Yaw angle(ψ) is also equals to zero except for 28-32

seconds. This result is also expected since a specific yaw motion is not desired at

first while defining desired trajectory B. To conclude, according to Figure 4.13, LQT

controller gives expected results in terms of Euler angles.

Figure 4.12: Error between x, y, z coordinates of desired trajectory B and x, y, z co-

ordinates obtained by LQT controller.

As can be seen Figure 4.14, translational velocities are also consistent with desired

trajectory B. An interesting result is that, although a step input is commanded at 30

seconds for y coordinate which can be seen in Figure 4.11 , LQT controller reacts to

this step command before 30 seconds according to the second plot of Figure 4.11. The

reason for this behavior is that optimal control gains of LQT controller are optimized
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Figure 4.13: Euler angles obtained by LQT controller while tracking desired trajec-

tory B.

Figure 4.14: Translational velocities obtained by LQT controller while tracking de-

sired trajectory B.
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for desired trajectory to be followed and calculated off-line. This kind of behavior

can not be obtained in fixed-gain LQR controller as explained in Subsection 4.5.3.

As can be seen Figure 4.15 optimal control inputU1 is also as expected. To remind, U1

is defined as the total force generated by four rotors. Therefore it is directly related

to the motion in z direction. According to Figure 4.15, for climb (15-30 seconds),

U1 is slightly higher than weight of the quadrotor and for descent (30-45 seconds),

U1 is slightly less than weight of the quadrotor. For cruise flights (0-15 and 45-60

seconds) U1 is equal to the weight of the quadrotor and translational motion in x and

y directions occur by changing Euler angles accordingly as can be seen in Figure 4.13.

Figure 4.15: Optimal control input U1 obtained by LQT controller while tracking

desired trajectory B.

Finally, angular velocities of each rotor is presented in Figure 4.16 and results show

that maximum values of angular velocity reach to 7163 rpm which is in the limits of

"AscTech Hummingbird" quadrotor used in this thesis.

To conclude, according to the simulation results, LQT controller gives accurate track-

ing performance for desired trajectory B which can be considered as a relatively com-

plex trajectory.
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Figure 4.16: Angular velocities (ω1, ω2, ω3, ω4) obtained by LQT controller while

tracking desired trajectory B.

4.5.3 Comparison Between LQT and LQR Controllers

In this subsection, simulation results of LQT controller will be compared to fixed

gain LQR controller. As mentioned earlier, LQT controller used in this thesis is a

more unique approach since it uses time varying and offline calculated control gains

which are optimized to track desired trajectory. Therefore, a comparison between

fixed gain LQR control that is widely used in literature would be meaningful to see

the advantageous and disadvantageous characteristics of LQT control method used in

thesis.

Before presenting comparison results, reminding theoretical differences of LQT and

LQR controllers could be beneficial. As stated in Section 3.2, desired trajectory is

given to the LQT algorithm defined in Equation set 3.60 and optimal control gains

of LQT controller are found offline. Then, these time-varying optimal control gains

are used as a state feedback controller as can be seen in Figure 3.3. Therefore, for

LQT controller, desired trajectory is not given to the system as inputs since control

gains are already optimized to follow desired trajectory and possess information about

78



desired trajectory. However, as can be seen in Figure 3.4, for fixed gain LQR control,

desired trajectory have to be given to the system as inputs since constant LQR gain

K is not optimized to follow desired trajectory specifically. Therefore, in fixed gain

LQR controller, desired trajectory is given to the controller offline.

To conclude, the main difference between LQT and fixed gain LQR controllers is

that LQT controller uses time-varying and offline calculated control gains that are

optimized to follow a specific trajectory, whereas, fixed gain LQR controller uses a

fixed gain of K which is not optimized to follow a specific trajectory.

It is also noted that, to make reasonable comparisons, same dynamic model and cost

functions are used to find the optimal control gains of LQT and LQR controllers.

Moreover, LQT and LQR controllers are simulated by using the same nonlinear dy-

namic model as a plant. Basic simulation models of LQT and LQR control systems

can be seen in Figures 3.3 and 3.4 respectively.

4.5.3.1 Comparison of Energy Consumption

First, energy consumption rates of each controller are analyzed. To find energy con-

sumption rates the following equation can be used:

Pi = Tiωi for i = 1, 2, 3, 4 (4.10)

In Equation (3.40), Pi represents power consumption of ith motor and Ti and ωi rep-

resent torque and angular velocity of ith rotor. It is noted that, ωi in Equation (4.10)

is in the units of rad/sec such that Pi is in the units of joule/sec.

By using Equation (4.10), power consumption values at each time instant are calcu-

lated for both LQT and LQR controllers and illustrated in Figure 4.17. According to

Figure 4.17, especially between 28-34 seconds, LQT controller consumes less energy

than LQR controller. To calculate total energy consumed by four motors between

28-34 seconds, power consumption of each motor found by using Equation (4.10) are

integrated and summed for both controllers as following:
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Figure 4.17: Total power consumed by four motors of quadrotor for LQT and LQR

controllers at each time instant while tracking desired trajectory B.

Elqt =
4∑
i=1

∫ 34

28

Plqt,i dt = 210.2405 [joule] (4.11)

Elqr =
4∑
i=1

∫ 34

28

Plqr,i dt = 227.7995 [joule] (4.12)

According to the values obtained in Equations 4.11 and 4.12, LQT controller con-

sumes 8.3519 % less energy between 28-34 seconds when a sharp maneuver occurs.

If a trajectory involves more than one sharp maneuvers, the energy efficiency of LQT

controller compared to LQR controller would be more dominant and significant.

The reason for this behavior can be seen more clearly in Figure 4.18. As can be

seen in Figure 4.18, a step input of 5 meters is commanded to the system at 30

seconds for y coordinate and LQT controller can respond to this command before 30

seconds unlike LQR controller. Then, LQT controller could track step command by

consuming less energy compared to LQR controller. Figure 4.20 also shows angular

velocities of each rotors and it is observed that angular velocities obtained by LQR
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Figure 4.18: Desired y coordinate and y coordinates obtained by LQT and LQR con-

trollers while tracking desired trajectory B.

controller peaks to 13283 rpm at 30 seconds unlike LQT controller.

Then, it can be concluded that, LQT controller is advantageous since it consumes less

energy than LQR controller while tracking trajectories that involve sharp maneuvers

like a step input. The main reason of this behavior can be explained as follows: time-

variant control gains of LQT controller are optimized and calculated off-line to follow

a specific trajectory, while LQR controller uses a fixed optimal control gain to follow

any kind of trajectory. At this point, it can be also concluded that, LQT controller

is disadvantageous since optimal control gains should be calculated off-line for every

specific trajectory. However, it should be also stated that, desired trajectory have to be

given to the LQR controller as inputs for each time step as can be seen in Figure 3.4

since the nature of LQR control is regulating the system instead of tracking a desired

trajectory.
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Figure 4.19: Error between x, y, z coordinates of desired trajectory B and x, y, z co-

ordinates obtained by LQT and LQR controllers while tracking desired trajectory B.

4.5.3.2 Comparison of Error Terms

Second comparison analysis is made for the error between desired trajectory and tra-

jectory obtained by LQT and LQR controllers. Error terms z7, z9, z11 for x, y, z co-

ordinates are previously defined in Equations (3.41), (3.43) and (3.26), respectively.

Figure 4.19 shows the values of error terms z7, z9, z11 for both LQT and LQR con-

trollers.

According to Figure 4.19, error terms of LQT and LQR controller at steady state

are 0.01 and 0.6 meters for x coordinates, respectively. Then, for the motion in x

direction, LQT controller has approximately 60 times less steady state error.

As can be seen in Figure 4.19, for the motion in y direction, error terms of LQT

controller are approximately two times smaller than LQR controller for the sharp

maneuver (step input) commanded at 30 seconds. As can be seen in Figure 4.18,

since time variant gains of LQT are optimized for desired trajectory, it could respond

to step command before it is applied at 30 seconds. On the other hand, LQR controller
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Figure 4.20: Angular velocities (ω1, ω2, ω3, ω4) obtained by LQT and LQR controllers

while tracking desired trajectory B.

uses a fixed optimal control gain K and couldn’t respond to the step command before

it is applied. For this reason LQT controller has smaller tracking errors compared to

LQR controller for the sharp maneuver commanded at 30 seconds.

For the motion in z direction, LQT controller has 0.0101 meters error during climb

(15-30 seconds) and descent (45-60 seconds), while error values of LQR controller

are 0.3103 meters as can be seen in Figure 4.19. ,

To conclude, compared to fixed gain LQR controller, LQT controller track desired

trajectory more accurately since it uses time-variant control gains optimized to follow

desired trajectory specifically.

4.5.3.3 Saturation of Motors

In this part, the saturation of motors would be considered for both LQT and LQR

controllers. As explained in Sections 3.2 and 3.3, both LQT and LQR methods are

linear control techniques and optimal control gains of both controllers are obtained by
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Figure 4.21: Optimal control input U1 obtained by LQT and LQR controllers while

tracking desired trajectory B.

using linearized and simplified dynamic model defined in Equation (3.55). Therefore,

adding nonlinearities (ex: saturation) to LQT and LQR control systems are undesir-

able and could deteriorate the performance of both controllers. For this reason both

LQT and LQR controllers are simulated without using any kind of saturations in mo-

tor dynamics.

As mentioned previously, Figure 4.20 shows the angular velocities of each rotor while

tracking desired trajectory B by using LQT and LQR controllers. According to Fig-

ure 4.20, angular velocity of rotors could reach to 13283 rpm for LQR controller,

while the maximum angular velocity for LQT controller equals to 7163 rpm. This

result also shows that LQR controller is not applicable in reality without saturating

motor dynamics since the safe limits of AscTech Hummingbird quadrotor is around

8000 rpm for each rotor [10].

To conclude, LQT controller could be used without using any saturations which is ad-

vantageous since both LQT and LQR are linear control methods and addition of any

kind of nonlinearity could worsen the performance of both controllers. It is important
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Table 4.1: Summary of the comparison between LQT and LQR controllers.

Advantages Disadvantages
LQT
(time-variant
control
gains)

-Decreased energy consump-
tion.
-More accurate tracking.
-Saturation of motors are
automatically avoided.
-Optimized control gains
already contain information
about desired trajectory.

-Each trajectory requires off-
line calculation of time-variant
control gains.

LQR
(fixed control
gain)

-Fixed control gain K can be
used for each trajectory.

-Increased energy consump-
tion.
-Less accurate tracking.
-Motor dynamics have to be
saturated.
-Desired trajectory informa-
tion have to be given as inputs.

to note that, by changing the control weight matrix (R) of LQR controller, limitation

on control inputs and angular velocities could be adjusted as desired. However, this

would also cause a slower response time and worsen the performance of the con-

troller. Therefore, to make reasonable comparisons, both LQT and LQR controllers

are compared by using the same Q and R matrices defined in Equation (3.58).

4.5.3.4 Summary of the comparison between LQT and LQR controllers

According to the comparison results, the advantageous and disadvantageous proper-

ties of LQT controller compared to LQR can be summarized as in Table 4.1. It is

important to note that energy efficiency of LQT controller becomes more significant

for trajectories that involve sharp maneuvers like a step input.

Since advantageous properties of LQT controller are already discussed in Subsec-

tion 4.5.3, in this paragraph, drawback of LQT controller would be explained in de-

tails. As can be seen in Table 4.1, LQT controller requires to calculate time-variant

control gains off-line for each trajectory. Therefore, it could be interpreted as a disad-

vantage of LQT controller. However, it is also important to note that, LQR controller
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requires desired trajectory information as input as can be seen in Figure 3.4, whereas

LQT controller doesn’t require desired trajectory as input since optimized control

gains already possess this information, as can be seen in Figure 3.3. Therefore, off-

line calculated control gains of LQT controller could be considered as desired trajec-

tory input of LQR controller. It is also noted that, run time of off-line calculation of

LQT control gains and generation of desired trajectory are almost equal.

To conclude, compared to fixed gain LQR control used in literature widely, LQT con-

troller could be advantageous to track a specific trajectory since it uses time-variant

control gains optimized to track desired trajectory.

4.6 Disturbance Rejection Properties of Backstepping, LQT and LQR Con-

trollers

In this section, disturbance rejection characteristics of backstepping, LQT and LQR

controllers are analyzed and compared to each other. Disturbances are added to the

translational quadrotor dynamics obtained in Equation (2.48).


fdistx

fdisty

fdistz

 =


ẍ

ÿ

z̈

 = −


0

0

g

+ LEB


0

0

U1/m

− (Kt/m)


ẋ

ẏ

ż

+


dx

dy

dz

 (4.13)

As can be seen in Equation (4.13), disturbances are symbolized as dx, dy, dz and

added to the system as unit forces in the units of [N/Kg]. In Equation (4.13), fdistx,

fdisty, fdistz represent net unit forces act on x, y, z directions when disturbances are

added to the system. To clarify, fdistx, fdisty, fdistz are net unit forces when simula-

tions are run with additional disturbance terms, dx, dy, dz.

Figures 4.22, 4.23 and 4.24 shows the numerical values of pure disturbances dx, dy, dz

and net unit force terms fdistx, fdisty, fdistz defined in equation 4.13. fdistx, fdisty,

fdistz terms are also plotted to see the strength of disturbances. It is noted that, values

of fdistx, fdisty, fdistz are obtained from the nonlinear dynamic model block of LQT

controller simulated in MATLAB/Simulink. Since all of the controllers are tested by

using the same nonlinear dynamic model block, similar fdistx, fdisty, fdistz values are
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obtained in simulations for backstepping, LQT and LQR controllers.

Figure 4.22: Pure disturbance dx added between 5-5.02 seconds and net unit force

fdistx obtained by simulations with additional disturbances.

Figure 4.23: Pure disturbance dy added between 10-10.02 seconds and net unit force

fdisty obtained by simulations with additional disturbances.
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Figure 4.24: Pure disturbance dz added between 20-25 seconds and net unit force

fdistz obtained by simulations with additional disturbances.

As can be seen in Figures 4.22 and 4.23, strong impulse disturbances are added to

the system in x and y directions at 5 and 10 seconds, respectively. According to

Figures 4.22 and 4.23, disturbances dx and dy could be considered as strong impulse

disturbances since they change the total unit net forces fdistx,fdisty considerably and

acts for 0.2 seconds only. On the other hand, dz which acts on z direction is a Gaussian

distributed random disturbance with mean and variance equal to 0 and 1, respectively.

dz acts between 20-25 seconds as can be seen in Figure 4.24.

In the following sections disturbance rejection properties of backstepping, LQT and

LQR controllers are analyzed. To make reasonable comparisons, same disturbance

models presented in Figures 4.22, 4.23 and 4.24 are added to each controller. In addi-

tion, each controller tries to track "desired trajectory A" defined in Subsection 4.4.1.

However, simulations are performed for 30 seconds to see the effects of disturbances

more clearly.
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Figure 4.25: Tracking errors of each controller when disturbances are added to the

system.

4.6.1 Disturbance Rejection Comparison of Backstepping, LQT and LQR con-

troller

As stated earlier, each control system are simulated in MATLAB/Simulink with same

disturbance models added to the nonlinear dynamic model of quadrotor.

Figure 4.25 shows tracking errors for x, y, z coordinates, in other words, the error

terms z7, z9, z11 defined in Equations (3.41), (3.43), (3.26), respectively. To com-

pare the disturbance rejection properties according to Figure 4.25, the change in error

terms should be analyzed when disturbances are added to the system at 5,10 and

25 seconds. According to the results plotted in Figure 4.25, backstepping controller

could not respond to disturbances as fast as LQT and LQR controllers. On the other

hand, LQT and LQR controllers show similar disturbance rejection properties. In

Figure 4.25, it is also possible to obverse that, LQT controller has less steady state

error compared to LQR as explained in Subsection 4.5.3.2. However, both LQR and
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Figure 4.26: Euler angles obtained by each controller when disturbances are added to

the system.

LQR controllers show very similar disturbance rejection properties, since the change

in error terms is important while analyzing disturbance rejection characteristics.

As mentioned in Section 2.1, translational motion of quadrotor basically occurs by

changing Euler angles. Therefore, when an external disturbance is present, quadrotor

tries to cancel it out by changing Euler angles properly. Euler angles are also adjusted

by changing the control inputs U1, U2, U3, U4 which are responsible for the desired

angular speed (rpm) of each rotors. Therefore, to understand the mechanism of dis-

turbance rejection, Figures 4.26 and 4.27 which show Euler angles and control inputs

obtained by controllers when disturbances are present could be analyzed.

As can be seen in Figures 4.26 and 4.27, at 5 and 10 seconds when strong impulse

disturbances are added to the system, each controller adjust its control inputs and

change Euler angles properly to reject disturbances. By this way, quadrotor try to

return to its desired trajectory and error terms shown in Figure 4.25 decreases. On the

other hand, for the Gaussian distributed disturbance added between 20-25 seconds in
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Figure 4.27: Control inputs obtained by each controller when disturbances are added

to the system.

z direction, disturbances are rejected by adjusting control input U1 which is directly

responsible for the motion in z direction. First plot of Figure 4.27 shows that between

20-25 seconds each controller adjust U1 properly to reject the disturbance added in z

direction.

In the last plot Figure 4.26 yaw angle(ψ) or heading of the quadrotor is given. Accord-

ing to Figure 4.26, yaw angle is not effected by disturbances since it is not directly

related to the motion in x, y, z directions. At this point, a basic difference between

the backstepping and LQT,LQR controllers could be observed such that the backstep-

ping controller adjusts its heading according to the direction of motion in x−y plane,

unlike LQT,LQR controllers. Therefore, as can be seen in Figure 4.26, yaw angle

(ψ) for backstepping controller is 63.5 degree while the values for LQT and LQR

controllers are 0 degree, at steady state.

The reason of the slow response time of backstepping controller could also be seen

in Figure 4.26. According to Figure 4.26, when disturbances are added to the sys-
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tem at 5 and 10 seconds, backstepping controller could not adjust the Euler angles

as fast as LQT and LQR controllers. Therefore, LQT and LQR controllers reject

disturbances faster than backstepping controller as can be seen in Figure 4.25.

To conclude, it is observed that LQT and LQR controllers have better disturbance

rejection characteristics compared to the backstepping controller. It is also seen that

both LQT and LQR controllers have almost identical disturbance rejection proper-

ties. At this point, relatively poor disturbance rejection characteristics of backstep-

ping controller could be related to the parameter selection of backstepping controller.

As explained in Section 3.1, performance of backstepping controller is directly re-

lated to some control parameters. Although these parameters are optimized by using

"MATLAB Optimization Toolbox" and illustrated in Table 3.2, another parameter

set could give better results in terms of disturbance rejection. Therefore, it could be

concluded that, finding optimized parameters for different cases is one of the most

important drawback of backstepping controller.

4.7 Comparison of Backstepping, LQT and LQR Controllers

In Subsection 4.5.3 a comparison analysis between LQT and LQR controllers is per-

formed to observe the differences between two optimal control approach. On the

other hand, in this section, backstepping controller which is a nonlinear control tech-

nique is also compared with optimal control techniques LQT and LQR. Therefore,

results obtained in this section could give a more complete comparison analysis that

include each of the controllers used in this thesis. Before presenting comparison re-

sults, desired trajectory to be followed is defined in the following subsection.

4.7.1 Desired Trajectory C

Desired trajectory C is similar to the desired trajectory A defined in Subsection 4.4.1

and defined as in Equation set 4.14.
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Figure 4.28: x, y, z coordinates of desired trajectory C.

Ts = 0.01

Tfinal = 60

ti = 0 : Ts : Tfinal = [0, 0.01, 0.02, ..., Tfinal], for i = 1, 2, ...6001

x7d,i = ti

x9d,i = 2ti

x11d,i = 1 + sin(2ti)



(4.14)

In Equation (4.14), x7d,i, x9d,i, x11d,i represent the x, y, z coordinates of desired tra-

jectory C at time step i, respectively. Then, as can be seen in Figure 4.28, quadrotor is

desired to make linear motion in x and y directions with different velocities and sinu-

soidal motion in z direction with increased frequency compared to desired trajectory

A.
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Figure 4.29: Tracking errors of backstepping, LQT and LQR controllers while track-

ing desired trajectory C.

4.7.2 Comparison Results

First, tracking error terms which represent the error between desired and obtained

x, y, z coordinates are compared. As can be seen in Figure 4.29, for the motion in x

and y directions, backstepping controller could not respond as fast as LQT controller

at first, however, tracking errors of backstepping controller converges to zero at steady

state. Steady state errors of LQT controller are also very close to zero (0.01 meters),

unlike LQR controller which has considerably high steady state errors (0.6 and 1.8

meters) compared to LQT and backstepping controllers. For the motion in z direction,

LQT controller has approximately 10 times smaller error compared to backstepping

and LQR controllers.

Table 4.2 shows the exact values of tracking errors for each controller. Then, it can be

concluded that LQT controller is more accurate than backstepping and LQR con-

trollers. The reason for this behavior could depend on the usage of time-variant
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control gains optimized to track desired trajectory in LQT controller. According to

Table 4.2, it could be also concluded that, backstepping controller tracks relatively

simple trajectories more accurately such as the linear motion in x and y directions.

However, LQT controller is the most accurate one while tracking relatively complex

trajectories such as high frequency sinusoidal motion in z direction.

Table 4.2: Steady state tracking errors of backstepping, LQT and LQR controllers
while tracking desired trajectory C.

Error x (m) Error y (m) Error z (m)
Bacstepping 0.002 0.005 0.494

LQT 0.032 0.087 0.044
LQR 0.622 1.805 0.638

Figure 4.30: Total power consumed by four motors of quadrotor for backstepping,

LQT and LQR controllers while tracking desired trajectory C.

Second comparison analysis is related to the energy consumption values. As ex-

plained in Subsection 4.5.3.2, LQT controller consume approximately 7.7 % less

energy compared to LQR controller while tracking a sharp maneuver such as a step

input. However, while tracking desired trajectory C, total energy consumption values
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does not vary significantly. Figure 4.30 shows the power consumption values at each

time step for each controllers. Total energy consumed while tracking desired trajec-

tory C are calculated by integrating power consumption values over the whole flight

as in Equations (4.15), (4.16), (4.17). According to the values obtained in Equa-

tions (4.15), (4.16), (4.17), LQT seems to be most efficient controller although the

difference is very small. Therefore, it can be concluded that, the energy efficiency of

LQT controller is more significant when trajectory involves sharp maneuvers (ex:step

input) as explained in Subsection 4.5.3.1

Elqt =
4∑
i=1

∫ 60

0

Plqt,i dt = 2219 [joule] (4.15)

Elqr =
4∑
i=1

∫ 60

0

Plqr,i dt = 2240 [joule] (4.16)

Eback =
4∑
i=1

∫ 60

0

Pback,i dt = 2259 [joule] (4.17)

Third, Euler angles obtained by each controller, in other words, orientation of the

quadrotor during flight is compared. According to Figure 4.31, LQT and LQR con-

trollers have very similar results, however, backstepping controller has its own char-

acteristics. As can be seen in the third plot of Figure 4.31, yaw angle(ψ) equals to

zero for LQT and LQR controllers, however, backstepping controller has yaw angle of

63.43 degree during flight. As explained in Subsection 3.1.3, backstepping controller

is designed in such a way that quadrotor’s heading(ψ) and direction of motion in x−y
plane are on the same line. By this way, quadrotor could translate in both x and y di-

rections by changing only pith angle(θ) as can be seen in Figure 4.31. Therefore,

complexity of flight and coupling effects between roll and pitch motion are avoided.

Another advantage is that if visual feedback is used in controllers instead of sensors,

camera mounted on quadrotor is automatically adjusted in the direction of motion in

x− y plane. It is important to note that, LQT and LQR controllers could not perform

at high Euler angles for long time since they are derived by using linearized quadrotor

dynamics which is valid near hover condition. Therefore, adjusting heading and di-

rection of motion is not possible for LQT and LQR controllers for yaw angles higher

than 15 degrees. To conclude, compared to linear control techniques LQT and LQR,
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Figure 4.31: Euler angles obtained by each controller while tracking desired trajec-

tory C.

backstepping controller has a more simple and advantageous flight approach since it

is a nonlinear control method.

Figure 4.32 shows translation velocities during flight for each controller. As can be

seen in the first and second plots of Figure 4.32, ẋ and ẏ are more steady for backstep-

ping controller unlike LQT and LQR controllers which have more oscillatory values

although amplitude of oscillations are very low (0.08 meters). Finally, Figure 4.33

shows angular velocity values in the units of rpm and it can be concluded that, rpm

values for all controllers, stay in the constraints of quadrotor.

4.7.3 Summary of Comparison Results

Table 4.3 sums the comparison results of backstepping, LQT and LQR controllers.

As can be seen in Table 4.3, LQT controller is advantageous especially for tracking

relatively complex trajectories. In addition, as explained in Subsection 4.5.3.1, LQT
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Figure 4.32: Translational velocities obtained by each controller while tracking de-

sired trajectory C.

Figure 4.33: Angular velocities of rotors obtained by each controller while tracking

desired trajectory C.
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controller is energy efficient especially for trajectories that involve sharp maneuvers

such as step inputs.

As can be seen in Table 4.3, backstepping controller has a highly complex structure

compared to LQT and LQR. This could result in several problems to be solved while

experimentally validating backstepping controller. It is also observed that, perfor-

mance of backstepping controller is directly related to control parameters. One set

of optimized parameters could not give satisfactory results for all cases. Therefore,

obtaining a global optimized set of control parameters is really hard and requires so

much computational time. Based on these observations, simplicity and applicability

of backstepping controller is ranked as lower than LQT and LQR controllers.

According to the results obtained in Subsection 4.6.1, disturbance rejection charac-

teristics of LQT and LQR controllers are satisfactory and very similar. However,

backstepping controller could not reject disturbances as effective as LQT and LQR

controllers.

Table 4.3: Summary of the comparison among backstepping, LQT and LQR con-
trollers, 1=Best, 3=Worst.

Backstepping LQT LQR
Tracking relatively complex
trajectories accurately

2 1 3

Tracking simple
trajectories accurately

1 2 3

Energy consumption 3 1 2
Simplicity/Applicability 3 2 1
Disturbance Rejection 3 1 1

Although backstepping controller has some drawbacks as can be seen in Table 4.3,

it could perform well for high Euler angles since it is a nonlinear control method.

For example, backstepping controller could adjust its heading(ψ) according to the

direction of motion in x − y plane. By this way, a more practical flight approach

could be obtained as explained in Subsection 4.7.2. On the other hand, for large

periods of time, LQT and LQR controllers could not perform well at high Euler angles

since LQT and LQR are linear control methods which are valid near hover condition.
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However, according to the results of Subsection 4.6.1, for short periods of time, LQT

and LQR controllers are valid even for high Euler angles up to 60 degrees.

It is also important to note that, for backstepping and LQR controllers, desired trajec-

tory is given to the controller as direct inputs as can be seen in the yellow blocks of

Figures 4.2 and 3.4. However, in LQT controller desired trajectory is indirectly given

to the controller by using time-variant gains g, Lg, L which are calculated off-line by

solving LQT algorithm defined in Equation set 3.60. Therefore, LQT controller could

be disadvantageous since time-variant control gains of LQT have to be calculated off-

line for each trajectory. However, it is also important to remind that, the code written

in this thesis solves LQT algorithm very fast. Therefore, calculating time-variant

control gains of LQT does not take significant computational time.

To conclude, according to the comparison results, LQT control technique which is a

more original approach compared to backstepping and LQR could be advantageous

for tracking relatively complex trajectories accurately and efficiently.
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CHAPTER 5

CONCLUSION

Quadrotor UAV is very popular and advantageous VTOL concept especially for spe-

cific type of missions/operations and autonomous control of the vehicle has been

worked by many researchers and organizations for the last decade. Although quadro-

tor have many advantageous properties, it has a highly nonlinear, coupled and under-

actuated dynamics. Therefore, control of the vehicle is not straightforward and many

researchers interested in designing and verifying control methods for quadrotors.

In this thesis, trajectory tracking of a quadrotor is obtained by using two independent

control methods called as "nonlinear backstepping control" and "optimal LQT (Linear

Quadratic Tracking) control". In addition, a fixed-gain LQR controller is also used to

compare backstepping, LQT and LQR control methods. Compared to backstepping

and LQR, LQT control method is a more original approach and it is an optimal control

technique specialized to track desired trajectories. LQT controller uses time-varying

control gains optimized to track desired trajectories, unlike fixed-gain LQR control.

On the other hand, backstepping controller has been used by many researchers in

literature, however, a complete study of tracking relatively complex trajectories by

using backstepping controller hasn’t been tried widely.

Throughout the thesis, first, dynamic model of the quadrotor is derived by using New-

ton’s equations of motion. Then, each control methods are formulated and designed

by using MATLAB/Simulink environment. Finally, initial validation of control sys-

tems are obtained by simulations in MATLAB/Simulink and control systems are com-

pared to each other. First, LQT controller is compared to fixed-gain LQR controller

since they are both optimal control techniques with different approaches. Then, a
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more detailed comparison analysis is made among backstepping, LQT and LQR con-

trollers.

According to the comparison results, it could be stated that, LQT controller could

track relatively complex trajectories with high accuracy compared to backstepping

and LQR controllers. In addition, energy consumption of LQT controller is lesser

than LQR and backstepping controllers especially for trajectories that involve sharp

maneuvers. A summary of the positive and negative characteristics of each controllers

are also summarized in Subsection 4.7.3.

The quadrotor used in this thesis, "AscTech Hummingbird", is designed and manu-

factured by "Ascending Technologies" company. "AscTech Hummingbird" quadrotor

gives opportunity to develop and test high level control algorithms by embedding al-

gorithms into the board of the quadrotor via MATLAB/Simulink and C++ conversion.

Therefore, "AscTech Hummingbird" is a good choice for the purpose of this thesis

which is designing and validating high level control algorithms for a quadrotor.

Although simulations give good and motivating results, to achieve a complete valida-

tion, controllers have to be verified by real time experiments. Therefore, experimental

validation of obtained control algorithms could be performed as a future work. In ad-

dition, dynamic model of the quadrotor can be detailed to obtain more realistic and

accurate results and performance of controllers could be increased by making some

modifications.
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[11] E. Altuğ, J. P. Ostrowski and R. Mahony, "Control of a Quadrotor Helicopter
Using Visual Feedback", Proceedings of the IEEE International Conference on
Robotics & Automation, Washington, DC, USA, May 2002, pp. 72-77.

[12] Ascending Technologies, http://www.asctec.de/downloads/
flyer/AscTec_RESEARCH_Catalogue.pdf, last visited on June 2014

103

http://www.aticourses.com/sampler/unmanned_aircraft_systems_coursesampler.pdf
http://www.aticourses.com/sampler/unmanned_aircraft_systems_coursesampler.pdf
http://www.asctc.de/uav-applications/research/products/asctec-hummingbird/
http://www.asctc.de/uav-applications/research/products/asctec-hummingbird/
http://www.asctc.de/uav-applications/research/products/asctec-hummingbird/
http://www.asctec.de/downloads/flyer/AscTec_RESEARCH_Catalogue.pdf
http://www.asctec.de/downloads/flyer/AscTec_RESEARCH_Catalogue.pdf


[13] AscTech Hummingbird quadrotor, https://pixhawk.ethz.ch/dev/
non_public/hummingbird, last visited on June 2014

[14] P. Castillo, R. Lozano, A. E. Dzul, Modelling and Control of Mini-Flying Ma-
chines, Springer-Verlag London Limited, USA, 2005.

[15] Parrot AR. Drone, http://www.parrot.com/usa/, last visited on June
2014

[16] Draganfly Innovations Inc., http://www.draganfly.com/
industrial/products.php, last visited on June 2014

[17] Syma Technology Co., Limited, http://www.symatoys.com/, last vis-
ited on June 2014

[18] Institute for Dynamic Systems and Control, ETH Zurich, http://www.
idsc.ethz.ch/people/staff/hehn-m, last visited on June 2014

[19] University of California at Berkeley, STARMAC project, https://hybrid.
eecs.berkeley.edu/, last visited on June 2014

[20] University of Pennsylvania, GRASP Lab., http://www.upenn.edu/
spotlights/penn-quadrotors-ted, last visited on June 2014

[21] Massachusetts Institute of Technology, Aerospace Controls Laboratory,
Variable-Pitch Quadrotor Project, http://acl.mit.edu/projects/
vpitch_quad.html, last visited on June 2014

[22] G. M. Hoffmann, H. Huang, S. L. Waslander and C. J. Tomlin, "Quadrotor heli-
copter flight dynamics and control: Theory and experiment", Proceedings of the
of the AIAA Guidance, Navigation, and Control Conference, Hilton Head, SC,
USA, August 2007.

[23] M. Cutler, N. Kemal Ure, B. Michini and J. P. How, ”Comparison of Fixed and
Variable Pitch Actuators for Agile Quadrotors", Proceedings of the AIAA Guid-
ance, Navigation, and Control Conference(GNC), Portland, OR, USA, August
2011.

[24] M. J. Cutler, "Design and Control of an Autonomous Variable-Pitch Quadro-
tor Helicopter", M.Sc. thesis, Massachusetts Institute of Technology, Mas-
sachusetts, USA, 2012.

[25] S. Lupashin, A. Schollig, M. Sherback and R. D’Andrea, ”A simple learn-
ing strategy for high-speed quadrocopter multi-flips", Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Anchorage,
Alaska, USA, May 2010, pp. 1642-1648.

104

https://pixhawk.ethz.ch/dev/non_public/hummingbird
https://pixhawk.ethz.ch/dev/non_public/hummingbird
http://www.parrot.com/usa/
http://www.draganfly.com/industrial/products.php
http://www.draganfly.com/industrial/products.php
http://www.symatoys.com/
http://www.idsc.ethz.ch/people/staff/hehn-m
http://www.idsc.ethz.ch/people/staff/hehn-m
https://hybrid.eecs.berkeley.edu/
https://hybrid.eecs.berkeley.edu/
http://www.upenn.edu/spotlights/penn-quadrotors-ted
http://www.upenn.edu/spotlights/penn-quadrotors-ted
http://acl.mit.edu/projects/vpitch_quad.html
http://acl.mit.edu/projects/vpitch_quad.html


[26] D. Mellinger, N. Michael and V. Kumar, ”Trajectory generation and control
for precise aggressive maneuvers with quadrotors", Proceedings of the Inter-
national Symposium on Experimental Robotics, New Delhi & Agra, India, De-
cember 2010.

[27] M. J. Cutler, "Design and Control of an Autonomous Variable-Pitch Quadrotor
Helicopter", M.Sc. thesis, MA, USA, 2012.

[28] R. Xu and U. Ozguner, ”Sliding mode control of a quadrotor helicopter", Pro-
ceedings of the IEEE 45th Conference on Decision & Control, San Diego, CA,
USA, December 2006, pp. 4957-4962.

[29] S. Bouabdallah, "Design and control of quadrotors with application to au-
tonomous flying", Ph.D. thesis, Ecole Polytechnique Federale de Lausanne,
Lausanne, France, 2007.

[30] S. H. Lee, S. H. Kang and Y. Kim, ”Trajectory tracking control of Quadrotor
UAV", Proceedings of the ICCAS International Conference on Control, Automa-
tion and Systems, Gyeonggi-do, Korea, October 2011, pp. 281-285.

[31] L. Derafa, T. Madani and A. Benallegue, ”Dynamic modelling and experimental
identification of four rotors helicopter parameters ", Proceedings of the IEEE
International Conference on Industrial Technology, Mumbai, India, December
2006, pp. 1834-1839.

[32] M. Bangura and R. Mahony, ”Nonlinear dynamic modeling for high perfor-
mance control of a quadrotor ", Proceedings of Australasian Conference on
Robotics and Automation, Wellington, New Zealand, December 2012, pp. 1-10.

[33] Ascending Technologies, AscTech Hummingbird http://www.
asctec.de/downloads/datasheets/AscTec-Hummingbird_
Safetydatasheet.pdf, last visited on June 2014

[34] T. Madani and A. Benallegue, ”Backstepping control for a quadrotor heli-
copter", Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Beijing, China, October 2006, pp. 3255-3260.

[35] D. Lee, C. Nataraj, T. C. Burg and D. M. Dawson, ”Adaptive tracking control
of an underactuated aerial vehicle", Proceedings of the American Control Con-
ference, San Francisco, CA, USA, June-July 2011, pp. 2326-2331.

[36] Y. Li and S. Song, ”A survey of control algorithms for quadrotor unmanned he-
licopter", Proceedings of the IEEE fifth International Conference on Advanced
Computational Intelligence(ICACI), Nanjing, Jiangsu, China, October 2012, pp.
365-369.

[37] Y. Li and S. Song, "A Survey of Control Algorithms for Quadrotor Unmanned
Helicopter", Proceedings of the IEEE International Conference on Advanced

105

http://www.asctec.de/downloads/datasheets/AscTec-Hummingbird_Safetydatasheet.pdf
http://www.asctec.de/downloads/datasheets/AscTec-Hummingbird_Safetydatasheet.pdf
http://www.asctec.de/downloads/datasheets/AscTec-Hummingbird_Safetydatasheet.pdf


Computational Intelligence(ICACI), Nanjing, Jiangsu, China, October 2012, pp.
365-369.

[38] Y. M. Al-Younes, M. A. Al-Jarrah and A. A. Jhemi, ”Linear vs. nonlinear control
techniques for a quadrotor vehicle", Proceedings of the ISMA10 International
Symposium on Mechatronics and its Applications, Sharjah, UAE, April 2010,
pp. 1-10.

[39] M. Santos, V. Lopez and F. Morata, "Intelligent Fuzzy Controller of a Quadro-
tor", Proceedings of the IEEE International Conference on Intelligent Systems
and Knowledge Engineering (ISKE), Hangzhou, China, November 2010, pp.
141-146.

[40] J.Su,P.Fan and K.Cai, "Attitude Control of Quadrotor Aircraft via
Nonlinear PID", .in Journal of Beijing University of Aeronautics and
Astronautics.37,9,pp.1054-1059,9.2011.

[41] M. Ö. Efe, "Neural Network Assisted Computationally Simple PIλDµ Con-
trol of a Quadrotor UAV", .in IEEE Transactions on Industrial Informat-
ics.Vol.7,No.2,May 2011.

[42] Q. L. Zhou, Y. Zhang, C. A. Rabbath and D. Theilliol, "Design of Feedback Lin-
earization Control and Reconfigurable Control Allocation with Application to a
Quadrotor UAV", Proceedings of the Conference on Control and Fault Tolerant
Systems, Nice, France, October 2010, pp. 371-376.

[43] B. Panomrattanarug, K. Higuchi and F. Mora-Camino, ”Attitude control of a
quadrotor aircraft using LQR state feedback controller with full order state
observer", Proceedings of the SICE Annual Conference 2013, Nagoya, Japan,
September 2013, pp. 2041-2046.

[44] J. Berg, D. Wilkie, S. J. Guy, M. Niethammer and D. Manocha, ”LQG-obstacles:
Feedback control with collision avoidance for mobile robots with motion and
sensing uncertainty", Proceedings of the IEEE International Conference on
Robotics and Automation, Saint Paul, Minnesota, USA, May 2012, pp. 346-353.

[45] L. D. Minh and C. Ha, "Modeling and Control of Quadrotor MAV Using Vision-
based Measurement", Proceedings of the International Forum on Strategic Tech-
nology, Ulsan, Korea (South), October 2010, pp. 70-75.

[46] E. Reyes-Valeria, R. Enriquez-Caldera, S. Camacho-Lara and J.
Guichard, "LQR Control for a Quadrotor using Unit Quaternions: Mod-
eling and Simulation", Proceedings of the International Conference on
Electronics, Communications and Computing (CONIELECOMP), Puebla,
Mexico, March 2013, pp. 172-178.

106



[47] F. Hoffmann, N. Goddemeier and T. Bertram, "Attitude Estimation and Control
of a Quadrocopter", Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems , Taipei, Taiwan, October 2010, pp. 1072-1077.

[48] L. Tan, L. Lu and G. Jin, "Attitude Stabilization Control of a Quadrotor Heli-
copter using Integral Backstepping", Proceedings of the International Confer-
ence on Automatic Control and Artificial Intelligence , Xiamen, China, March
2012, pp. 573-577.

[49] T. Madani and A. Benallegue, "Control of a Quadrotor Mini-Helicopter via Full
State Backstepping Technique", Proceedings of the IEEE Conference on Deci-
sion & Control, San Diego, CA, USA, December 2006, pp. 1515-1520.

[50] S. Nadda and A. Swarup, "Control of a Quadrotor Mini-Helicopter via Full State
Backstepping Technique", Proceedings of the IEEE International Colloquium
on Signal Processing & its Applications (CSPA2014), Kuala Lumpur, Malaysia,
March 2014, pp. 10-13.

[51] Z. Fang, Z. Zhi, L. Jun and W. Jian, "Linearization and Continuous Sliding
Mode Control for a Quadrotor UAV", Proceedings of the Chinese Control Con-
ference, Kunming, Yunnan, China, July 2008, pp. 349-353.

[52] Q. Geng, H. Shuai and Q. Hu, "Obstacle avoidance approaches for quadrotor
UAV based on backstepping technique", Proceedings of the Chinese Control
and Decision Conference (CCDC), Guiyang, China, May 2013, pp. 1-10.

[53] Z. Zuo, "Trajectory tracking control design with command-filtered compensa-
tion for a quadrotor" .in IET Control Theory & Applications. Vol. 4, Iss. 11, pp.
2343–2355,2010.

[54] S. A. Al-Hiddabi, "Quadrotor Control Using Feedback Linearization with Dy-
namic Extension", Proceedings of the International Symposium on Mechatron-
ics and its Applications (ISMA09), Sharjah, UAE, March 2009, pp. 1-3.

[55] Z. Fang and W. Gao, "Adaptive Integral Backstepping Control of a Micro-
Quadrotor", Proceedings of the International Conference on Intelligent Control
and Information Processing , Harbin, China, July 2011, pp. 910-915.

[56] Y. Al-Younes, M. A. Jarrah, "Attitude Stabilization of Quadrotor UAV Us-
ing Backstepping Fuzzy Logic & Backstepping Least-Mean-Square Con-
trollers", Proceedings of the International Symposium on Mechatronics and its
Applications, Amman, Jordan, May 2008.

[57] S. Bouabdallah and R. Siegwart, "Full Control of a Quadrotor", Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, San
Diego, CA, USA, October-November 2007, pp. 153-158.

107



[58] G. V. Raffo, M. G. Ortega and F. R. Rubio, "Backstepping/Nonlinear H∞ Con-
trol for Path Tracking of a QuadRotor Unmanned Aerial Vehicle", Proceedings
of the American Control Conference, Seattle, Washington, USA, June 2008, pp.
3356-3361.

[59] T. Lee, M. Leok and N. H. McClamroch, "Geometric Tracking Control of a
Quadrotor UAV on SE(3)", Proceedings of the IEEE Conference on Decision
and Control, Atlanta, GA, USA, December 2010, pp. 5420-5425.

[60] D. Mellinger and V. Kumar, "Minimum Snap Trajectory Generation and Control
for Quadrotors", Proceedings of the IEEE International Conference on Robotics
and Automation, Shanghai, China, May 2011, pp. 2520-2525.

[61] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer and M. Pollefeys, "Autonomous
Obstacle Avoidance and Maneuvering on a Vision-Guided MAV Using On-
Board Processing", Proceedings of the International Conference on Robotics
and Automation, Shanghai, China, May 2011, pp. 2472-2477.

[62] M. Hehn and R. D’Andrea, "A Flying Inverted Pendulum", Proceedings of the
IEEE International Conference on Robotics and Automation, Shanghai, China,
May 2011, pp. 763-770.

[63] S. Gupte, P. I. T. Mohandas and J. M. Conrad, "A Survey of Quadrotor Un-
manned Aerial Vehicles", Proceedings of the Southeastcon 2012 of IEEE, Or-
lando, FL, USA, March 2012, pp. 1-6.

[64] D. Cabecinhas, R. Cunha and C. Silvestre, "Experimental Validation of a Glob-
ally Stabilizing Feedback Controller for a Quadrotor Aircraft with Wind Dis-
turbance Rejection", Proceedings of the American Control Conference(ACC),
Washington, DC, USA, June 2013, pp. 1024-1029.

[65] B. Etkin, Dynamics of Atmospheric Flight, Dover Publications, New York,
USA, 2005.

[66] M. Achtelik, "Nonlinear and adaptive control of a quadcopter", Dipl.-Ing. Dis-
sertation, Lehrstuhl für Flugsystemdynamik, Technische Universität München,
Garching, Germany, 2010.

[67] A. A. Shabana, Dynamics of Multibody Systems, Cambridge University Press,
New York, USA, 2005.

[68] M. V. Cook, Flight Dynamics Principles, Butterworth-Heinemann publications,
Great Britain, 2007.

[69] D. McLean, Automatic Flight Control Systems, Prentice Hall International (UK)
Ltd, Cambridge, Great Britain, 1990.

108



[70] A. Tewari, Atmospheric and Space Flight Dynamics: Modeling and Simulation
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