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ABSTRACT

ON OBTAINING REGULAR, WEAKLY REGULAR AND NON-WEAKLY
REGULAR BENT FUNCTIONS OVER FINITE FIELDS AND RING OF
INTEGERS MODULO PM

Celik, Dilek
Ph.D, Department of Cryptography
Supervisor : Prof. Dr. Ferruh Ozbudak

August 2014, 47| pages

Bent functions over the finite fields of odd characteristics received a lot of attention of
late years. However, the classification and construction of bent functions seems quite
tough.

Over the finite fields with characteristic 2, a method is given to construct bent functions
using near-bent functions [[11]]. This method is then generalized to finite fields with p
elements for an odd prime p by Cesmelioglu et al. [3,4]]. The idea is constructing a bent
function F' by ’glueing’ the near-bent functions in such a way that Walsh spectrum of /'
do not include zero value. This can be achieved by combining the near-bent functions
having no common element in supports of their Walsh transforms and the union of
their support of Walsh transforms should be equal to domain of near-bent functions.
In this thesis, we aim to construct regular, weakly regular and non-weakly regular bent
functions. For this purpose, we first give an adaptation of the method given in [3]], to
the finite fields with p™ elements and ring of integers modulo p™, where m is a positive
integer greater than 1. Then, we generalize the method by using s-plateaued functions,
for an integer s > 1, instead of using near-bent functions over ring of integers modulo
p™. It is notable to emphasize that, we obtain completely different results in every
adaptation process.

To apply the method of construction, we compute the Walsh spectrum of quadratic
functions over finite fields with p™ elements and ring of integers modulo p™. We
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evaulate the quadratic Gauss sum over Z, to achieve the computation over the ring
of integers. Also, we give a technique to classify the constructed bent functions as
regular, weakly regular and non-weakly regular.

Keywords : Bent, Near-Bent, Plateaued Functions, Weakly Regular, Non-Weakly Reg-
ular, Finite Fields, Rings of Integers, Walsh Spectrum, Fourier Transform

viii



0z

SONLU CISIMLER VE SONLU TAM SAYI HALKALARI MODULO P
UZERINDE DUZENLI, ZAYIFCA DUZENLI VE ZAYIFCA OLMAYAN
DUZENLI BUKUK FONKSIYONLARIN URETILMES] UZERINE

Celik, Dilek
Doktora, Kriptoloji Boliimii
Tez Yoneticisi  : Prof. Dr. Ferruh Ozbudak

Agustos 2014, 47| sayfa

Son yillarda, karakteristigi tek olan sonlu cisimlerde tanimli biikiik fonksiyonlar lizerinde
yapilan ¢aligsmalar cok yayginlagsmustir. Fakat, biikiik fonksiyonlarin iiretimi ve siniflandirilmasi
oldukca zor goziikmektedir. Karakteristii 2 olan sonlu cisimler iizerinde yar1 biikiik
fonksiyonlar kullanarak biikiik fonksiyonlar iiretme metodu ortaya ¢ikarilmigtir [[11].

Daha sonra bu metot, p tek bir asal say1 olmak tizere, p elemanli sonlu cisimler tizerinde
calisacak sekilde gelistirilmistir [3]. Metodun anafikri, yar1 biikiik fonksiyonlari, iiretilecek
olan F' biikiik fonksiyonunun Walsh spektrumunda sifir bulundurmayacak sekilde yapistirmaktir.
Bu amaca, yan biikiik fonksiyonlarin Walsh doniisiimlerinin desteklerinde (support-
larinda) ortak eleman olmayacak ve Walsh doniisiimlerinin desteklerinin (support-

larinin) birlesimi yar1 biikiik fonksiyonlarin tanim kiimesi olacak sekilde secilmesiyle
ulagilabilir.

Bu calismada, diizenli, zayifca diizenli ve zayifca olmayan diizenli biikiik fonksiy-

onlar liretmeyi hedeflemekteyiz. Bu amag¢ icin oncelikle [3, 4] makalelerinde verilen

bazi ¢alismalar1 p™ elemanli sonlu cisimler ve tam say1 halkalar1t modulo p™ {izerine

adapte ettik. Ayrica, tam say1 halkalart modulo p™ iizerinde, metodu yar1 biikiik
fonksiyonlar yerine, s > 1 bir tam say1 olmak iizere, s-plato fonksiyonlar kullanarak
calisacak sekilde gelistirdik. Adaptasyon calismasinin her asamasinda farkli sonuclar

elde ettigimizi vurgulamak isteriz.

Biikiik fonksiyon iiretme methodunu ikinci dereceden fonksiyonlar kullanarak bir uygu-

lama yapmak amaciyla, p™ elemanli sonlu cisimler ve tam say1 halkalar1 modulo p™

X



tizerinde tanimli ikinci dereceden fonksiyonlarin Walsh spektrumunu hesapladik. Tam
say1 halkalar1 modulo p"’deki uygulamay1 yapabilmek icin, bu kiimede ikinci derece
Gauss toplamim hesapladik. Ayrica, iirettiimiz bu biikiik fonksiyonlarin, diizenli,
zayifca diizenli ve zayifca olmayan diizenli biikiik fonksiyonlar olarak siniflandirilabilmesi
i¢in bir yontem verdik.

Anahtar Kelimeler: Biikiik Fonksiyon, Yar1 Biikiik Fonksiyon, Sonlu Halka, Sonlu
Cisim, Zayifca Diizenli, Zayifca Olmayan Diizenli
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CHAPTER 1

INTRODUCTION

Boolean bent functions were first introduced by Rothaus in 1976 and played a signifi-
cant role in design theory, coding theory and cryptography due to having the maximum
Hamming distance to the set of all affine functions [15]. The general theory of the bent
functions over an arbitrary finite field is developed by Kumar, Scholtz and Welch [[10].
Ever since that time a lot of studies have been made and interesting results are obtained
through studying, for example, monomial, binomial, and quadratic functions. One can
study some of them [8], [7]], [9], [3], [6], [12], [1].

In 2009, Leander and McGuire has given a method for construction of bent functions
using near-bent functions over the finite fields with characteristic 2 [11]. By this, they
get the first examples of non-weakly regular bent functions in dimensions 10 and 12.
The idea is constructing a bent function F' by ’glueing’ the near-bent functions in such
a way that Walsh spectrum of F' do not include zero value. This can be achieved by
combining the near-bent functions which have no common element in supports of their
Walsh transforms and the union of their support of Walsh transforms should be equal
to the domain of near-bent functions.

The idea is later generalized to finite fields with odd characteristic by Cesmelioglu et al.
[3]. For an odd prime p, they give a method that uses a determined number of near-bent
functions defined from F)) to [}, to construct weakly regular and non-weakly regular
bent functions. Moreover, they give numerical illustrations using quadratic near-bent
functions. Afterwards, they develope the method in such a way that plateaued func-
tions are used instead of near-bent functions for construction [4].

The fundamental aim of this thesis is to give a method to construct regular, weakly-
regular and non-weakly regular bent functions over finite fields with p™ elements and
the ring of integers modulo p™, for an odd prime p and any integer m > 1.

For this purpose, we generalize some of the ideas that are given in [[L1], [3] and [4].
Using generalized near-bent functions from F}. to =, we present a method to con-
struct generalized bent functions by adding one more dimension. That is, using this
method of construction, we get bent functions from ]F;m X Fpm to Fpm.

To give concrete examples, we compute Walsh spectrum of all quadratic functions
defined from F}. to F,» and apply the construction method on these functions. A
process to decide whether the constructed bent function is regular, weakly regular or
non-weakly regular is explained in detail.

Then, we adapt this study over ring of integers modulo p™. This adaptation brings
some difficulties due to the zero divisors, nonexistence of suitable Lagrange interpo-



lation coefficients and need of the computation of Gauss sums for the ring Z,m. First,
we introduce a method that constructs bent functions over Z,~. Then, the Walsh spec-
trum of quadratic functions from Z,. to Z,» defined by dy27 + dyx3 + ... + dpp—s23_,
is computed to give numerical examples for the construction where d; € Z,» and
0 < s < n — 1. Using this computation, a simple method is given to obtain quadratic
near-bent functions with pairwise disjoint support of Walsh transforms. Also, we eval-
uate the quadratic Gauss sum over Z,~ for the computations. We apply the construc-
tion method on certain quadratic functions and obtain regular, weakly regular or non-
weakly regular bent functions. We emphasize that different results than the results of
the finite field case are obtained in every application process.

Lastly, we broaden this study over the ring of integers modulo p™ by giving a method
that uses s-plateaued functions instead of near-bent functions for a positive integer
s > 1. Using this method, one can obtain bent functions by adding s more dimensions.
That is using s-plateaued functions from Z,. to Z,~, we can construct bent functions
defined from ng X Z;m to Z,m. For illustrations, we use quadratic functions with a
determined form, Walsh spectrum of which we compute. Also, we explain how to use
these quadratic functions to obtain functions with disjoint support of Walsh transforms.
Then, a technique to identify the constructed bent functions as regular, weakly regular
and non-weakly regular is given.

The thesis is organized as follows. This first chapter is devoted to explain the pur-
pose of the thesis, give the necessary definitions and notation regarding functions with
special properties defined over finite fields with p™ elements and the ring of integers
modulo p™. In Chapter[2] we give a method to construct bent functions using near-bent
functions defined from I, to F;;». Then, we apply the method on quadratic functions
and classify the constructed bent functions as regular, weakly regular or non-weakly
regular. Chapter 3| generalizes the idea that is given in Chapter 2]to the ring of integers
modulo p™. In Chapter[d] we develop the method of construction that is given in Chap-
ter @ Instead of near-bent functions, we use s-plateaued functions to construct bent
functions, for a positive integer s > 1. It is notable to emphasize that the dimension
increases by s for this case.

1.1 Functions Over Finite Fields With Special Properties

This section is devoted to give some necessary notation and definitions restricted to the
scope of the thesis. Note that, the notation given in this section is valid for the whole
thesis.

Let p be a prime and ¢ = p™ for a positive integer m. Let w, = e%pﬁ be the complex
primitive p-th root of unity. Consider the finite extension I, of the finite field IF,,. This
extension is of order m and every element a in I, can be uniquely represented in the
form,

a = C1a1 + C2Q9 + + -+ + Cp Qs

where ¢1, ¢a, - - - ¢, € Fpand {ay, az,- - ,a,,} is a basis of F, over F,,.



Definition 1.1. For a € F,, the trace of a over I, is denoted and defined as
Tr(a) :=a+al+---+al""’

Definition 1.2. Let I denote the multiplicative group of I, which consists of nonzero
elements of F,. Lett € F; and ¢ € . Given a function f(z) : F} — F,, Walsh
transform (or Fourier transform) of f is defined by,

Flt,c) = Z wl T @ter)

z€Fy

/=1

2
where w, = e »  is the complex primitive p-th root of unity and ¢ - = denotes the
standard inner product of c and .

Definition 1.3. For a fixed ¢ € [}, the Walsh spectrum of f is denoted and defined

by spec(f) = {f(t,c) iCcE IF;} Also, the support of f is given by supp(f) :=
{ceFr: f(t,c)#0}.
The term generalized bent functions is used for various definitions. The natural gener-

alization of bent functions that we use in this thesis is first proposed in 1985 by Kumar
et al. [I10].

Definition 1.4. For a fixed ¢ € F, a function f : Fjy — F, is called a generalized bent

function if ‘f(t, c)’ = ¢"/% forall c € F7.

Definition 1.5. For a fixed ¢ € F}, a function f : F} — F, is called a generalized
= ¢"t1)/2 or 0, forall ¢ € F7.

near-bent function if ‘f(t, c)

A Boolean function is bent (respectively near-bent) if all Walsh coefficients are equal
to 72"/2 (respectively 72("+1)/2 or ). Realize that, this coincides with the concept of
bent and near-bent functions over finite fields with odd characteristic. However, there
is an important difference which is Boolean bent (respectively near-bent) functions
exist only if the number of variables, n, is even (respectively odd).

Definition 1.6. Let f be a function defined from IF‘Z to F,. Fort € IF;, define f*

from I} to ¥, as f*(z) = Tr(tf(x)). Then, the Walsh transform of f* is Fi(c) =

f(@)+Tr(c
erFZIz w) (z)+Tr(c :c)

Let f* be a function from Fy to F,,. The normalized Fourier coefficients of a bent
function, f*, can be computed as follows [10} 5],

a2 Twl @, if (n is even) or (n is odd and p = 1 (mod 4))
q "7 e) = NI _
Fv—1lwp, 7, ifnisoddand p =3 (mod 4).



Definition 1.7. Let f* be a bent function defined as in the Definition[1.6] Then,

e f'is called regular, if for every ¢ € F7, a2 (e) = wl .
e f!is called weakly regular, if there exists a complex v which has unit magnitude
such that vg~"/2ft(¢) = wl ' forall c € 7.

e Otherwise, f!is called non-weakly regular.

1.2 Functions with Special Properties over Z,

In this section, we continue to give some necessary notation and definitions restricted
to the scope of the thesis. In Chapter 3] we adapt the study over finite fields that we
give in Chapter 2]to the ring of integers modulo ¢. So, the definitions and notation that
are given for the finite field case in the previous section, will be customized.

The following notation is valid for whole thesis.

p is an odd prime and ¢ = p™ for some positive integer m.
e Z4: The ring of integers modulo g.

e 77 The direct sum of n copies of Z,.

e 7. : The multiplicative group of Z,.

2w/ =1

e w: The complex primitive g-th root of unity, thatisw = e«

Note that, The multiplicative group (Z/rZ)* is cyclic if and only if r is 1, 2, 4, p™
or 2p™ ([14], pg. 83). Then, the multiplicative group of Z, is a cyclic group of order
o(p™) =p™ —p"

Definition 1.8. Let ¢ € Z7. Given a function f from Zj to Z,, the Walsh transform
(or Fourier transform) of f is denoted and defined by,

}'\(C) _ Z wf(x)fc-x’

TELY

where ¢ -  denotes the standard inner product of ¢ and .
Also, the Walsh spectrum of f is spec(f) := {f(c) Lc € ZZ} and the support of f is

supp(f) == {c € Z: f(c) # 0}.

Definition 1.9. A function f : Z" — Z, is called a bent function if ‘f(c)( — "2, for
all ¢ € 7.



Realize that, this concept coincides with the concept of a generalized bent function
given in Definition [I.4]

L2
Consider a function [ : Z; — Z, with a Walsh spectrum such that ‘ f (c)‘ =Qor0

A

2
forall c € Zj. As Zcezg f (c)‘ = ¢*" by Parseval’s identity, ) equals to ¢" ", for

some integer s with 0 < s < n. These functions are called s-plateaued functions and
the formal definitions are as follows.

Definition 1.10. Let s be a positive integer. A function f : Zj — Z, is called an
s-plateaued function if ‘f(c)‘ = q"9)/2 or 0, forall ¢ € Ly.

Definition 1.11. A function f : Z; — Z, is called a near-bent function if ‘fA(c)‘ =
q"t/2 or 0, forall ¢ € Zy.

Note that, near-bent functions are 1-plateaued functions, indeed.

Let f be a bent function and f be a function defined from Z; to Z,. Then, the normal-
ized Fourier coefficients of f can be computed as follows [10]].

Cnj2F N ;wf(c), if (n is even) or (n is odd and ¢ = 1 (mod 4)
(@)™ f(c) = O ifni =
Fv-—1w/'9, ifnisodd and ¢ = 3 (mod 4).

Definition 1.12. Let f be a bent function defined from Zj to Z,. Then,

e | is called regular, if for every c € Zj, g™ 2fA(c) — i

e [ is called weakly regular, if there exists a complex v which has unit magnitude
such that vg~"/% f(c) = w/(®) for all ¢ € Z!".

e Otherwise, f is called non-weakly regular.






CHAPTER 2

A CONSTRUCTION OF BENT FUNCTIONS OVER FINITE
FIELDS

2.1 Introduction

As this chapter can be seen as a generalization of the techniques given in the Article
[3]] to g-ary case. We would like to give the following list of contributions.

e First, we emphasize that we study over finite fields with p™ elements for an
integer m greater than 1 instead of finite fields with p elements.

e In [3], the authors compute the Walsh spectrum of quadratic functions defined
from F} to IF, in the form dy2} + doa3 + ... + dy_sx_, where d; € F and
0<s<n-—1.

We compute Walsh spectrum of all quadratic functions defined from [y to IF, and
obtained a different result than the one in [3]. Moreover, we use a completely
different technique for the computation.

e For the construction of bent functions, quadratic near-bent functions having pair-
wise disjoint support of Walsh transforms are needed. In [3], to show that a set
of functions have pairwise disjoint support of Walsh transforms, the authors used
the concept of linear structures. Instead of this, we used a simpler and shorter
method to demonstrate it.

e We give a comprehensive method to classify the constructed bent function as
regular, weakly regular or non-weakly regular.

e For a fixed p, more number of bent functions can be constructed compared to
[3]]. Besides, for a fixed p, the percentage of non-weakly regular bent functions
are greater than the percentage of regular and weakly regular bent functions.

This chapter is organized as follows. Section is devoted to give a method to con-
struct bent functions over finite fields with ¢ elements. In Section[2.3] we determine the
Walsh spectrum of g-ary quadratic functions. Then, we show how to obtain quadratic
near-bent functions with pairwise disjoint support of Walsh transforms. In section [2.4]
we give an application of the study over quadratic functions and so, construct bent
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functions. Then, we give a comprehensive explanation to classify these constructed
bent functions as regular weakly regular and non-weakly regular.

2.2 A Construction of Bent Functions Using Near-Bent Functions over Finite
Fields

—~ 2
Let f, : Fy — F,, for u € F, be near-bent functions. Then, ‘ fult, a)‘ =q¢"or0

for all a € ;. The idea is combining these functions in such a way that, for a fixed
t € I, the support of their Walsh transforms do not have a common element and the
union of their support of Walsh transforms should be equal to domain of these near-
bent functions. By this way, we construct a function F' : Fj x F, — F, such that

~ 2
‘F(t, (a, b))‘ = ¢"*!, forall (a,b) € F}' x IF,, which implies that F' is bent.

Lemma 2.1. Let f : Fj — F,. Then, for a fixed t € I,

2 P ife=y
%&V@@ _{0, if x # .

Proof.
—~ 2
3 [feoff = X5 3 wpesiti-cn
cely celFy z,yeFy
Tr(t(f(x)— Tr(c(x—
— Z w] t(f (@) —f W) pr (c:(z=y))
z,yefy cely

Realizing that,

Z wTr(c-(a:—y)) _ qn’ lfLE =Y
P 0, ifz#uy,

CEFZ}

we get the result. By this lemma, a special case of Parseval’s relation can be obtained
for g-ary case.

]

Theorem 2.2. For u € F,, let f, : ¥y — [, be near-bent functions such that

supp(ﬁ)ﬂsupp(fj) is empty fori,j € F,. Let&; be elements of ¥, fori € {0,1,...,q — 1}.
Then, the function F': Fjy x Fy — F, defined by

Flz,y)= (1)) v fo)(y(; 5_1)u>(y ~ o) Ju(z)

u€ly

is bent.



Proof. Lett € IF; be fixed. Using Lemma[2.1} we have

S |Ral =

ceFy

n+l _  2n
=4

’sum?(fu) q

supp(fu) = ¢"!. To complete the proof, we need to choose f, such that

Uuqu supp(fu) = 7. For the functions f,, to satisfy this property, g-many near-bent
functions are needed.

Hence,

Let (a,b) € Fy x ;. Then,

F\(t7 (CL, b)) _ Z wgr(tF(x,y)+a-x+by) _ Z wg’r(by) Z wgr(tF(:r,y)+a-:r)

z€lF7,yelyq yelF, z€Fy

) acrs a)tfy(@)+aa)
_ Z ,wTr by) Z w -1 acFg ¥

yel, zcFn

_ Z ’UJTT (by) Z wTr tfy(z)+a-x) Z wTr by)fy ¢, (Z)

yEFg z€Fy y€Fq

Each « is an element of exactly one supp( fy) because for u, v € F,, supp( fu)
supp(f,) is empty and User, supp( fa) = 7. So, we have

F(t,(a,b) = > wl™™ f (t,a) = wl"™ f,(t,a),

y€Fqy

2.3 Computation of Walsh Spectrum of Quadratic Functions over [,

To construct bent functions using Theorem we need near-bent functions with the
desired properties. For this aim, we study on Walsh spectrum of quadratic functions.
Every quadratic function f : Fjy — F, can be written as,

n
f(@1, @2, 20) = Z AijTilj,

,j=1



with a;; = aj;. Without loss of generality, we can omit the affine part of f because
the absolute value of the Walsh transform of f does not change when a constant value
is added to it. Then, f can be associated with a quadratic form as X AX T where A is
an n X n symmetric matrix with (i, j)th entry is a;;, X = [z122...25,] and X7 is the
transpose matrix of X.

One can transform a quadratic form by a linear substitution of indeterminates to find
a simpler form. This linear substitution can be expressed by a matrix relation. If the
square matrix used in this substitution is nonsingular, then we call this, nonsingular
linear substitution. Two quadratic forms are said to be equivalent if one can be trans-
formed to the other by means of a nonsingular linear substitution of indeterminates.
Any quadratic form over I, is equivalent to a diagonal quadratic form [13]. That is,
for each quadratic form, there exists dy, ds, ...,d,, € F, such that f(z1,29,...,2,) =
di2? + doxd + ... + dp22.

So, if we describe the Walsh spectrum of the quadratic form f,, ,,_ (21, 22, ..., z,,) =
diz?+dozi+...+d, 22 fors € {0,1,...,n — 1}, we determine the Walsh spectrum
of all quadratic functions.

Theorem 2.3. Let f,,_s : F;n — F, be defined by fr,n—s(x1, 72, ..., x,) := dia3 +
dot + ...+ d, 2% __fordy,dy, - ,d, s € F}. Let D = [];"} d; and s be an integer
such that 0 < s < n — 1. Let n) denote the quadratic character of IF,.

Forcy,cy,---c, € Fy, let

o v ="Tr(—(c)(4td,) ™" — (3)(4tdy) ™ — -+ — (2 _,)(4td,_s)71).
o v =Tr(—(c2)(4tdy) ™" — (3)(4tdy)™" — - — (c2)(4td,) ™).

The condition EQ is defined to describe the case when,
Tr(c,) =---=Tr(ch-s+1) =0,
and the condition NEQ is defined to describe the case when

(Tr(cn), Tr(cp-1), - ,Tr(cp—s+1)) # (0,0,---,0).

For a fixed t € F, and ¢ € F}, we have the following results.

1. The Case n — s is even and s > (O:

- n(t”_sD)an“w;, ifp=1 (mod 4)and EQ
fam—s(t,c) = \/—1(nfs)mn(t"*5D)an+swz, ifp=3 (mod 4) and EQ
0, if NEQ.

2. The Case n — s is odd and s > 0:

. (—1)™ (" D)q"> w, ifp=1 (mod 4) and EQ
fam—s(t,c) = (—1)’”_1J—_l(n_s)mn(t”_sD)anﬂwz, ifp=3 (mod 4) and EQ
0, if NEQ.
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3. The Case s = 0:

n(t"D)qzw o ifnevenandp =1 (mod 4)

ﬂ(t, c) = (=1)m= (tnD) %’LUP ifnoddandp=1 (mod 4)
7 \/_nmn( t"D)qzw wy ifnevenandp=3 (mod 4)
)/ =1"n(t"D q2w;/, ifnoddandp =3 (mod 4).

Proof. Let v be the canonical additive character of F, and G(7, ) be the associated
Gaussian sum. Using [13, Theorem 5.33],

fl ) If C Z wTr (tdw?+cz) _ wT r(—c?(4td)~ (Ifd)G( w) )

z€lF,

The definition of Gauss sum over [, is given as [13],

(=), ifp=1 (mod 4)
G(nvw) - { (_1)m—1\/__1mq1/2’ lfp =3 (mOd 4)

This definition leads to,

o) = (—1)m—lghql et )(th{ ifp=1 (mod 4)
| (-)m /-1 q% I (), ifp=3  (mod 4).

Now, as ¢ = (c1, ¢, ..., ¢,) € Fyy consider

f21 t C § wTT(tf21 z)+cx) — § w td$1+01:E1+C2:E2)

z€lf2 z1,72€F,
_ Z wg’r(czm) Z wgr(tdx%+c1x1)
x2€F, z1€F,
(=)™ Ly(td) g+ 3 "D if Tr(c) =0andp=1 (mod 4)
—c2 -1 .
=3 (=)™ /=1"n(td) q“éw?( 70 e Tr(c;) =0andp =3 (mod 4)
0, if Tr(cy) # 0.

Now, consider

f3 ) t C § wTr(tfg 1(z)+cx) _ E wgr(td$§+c1$1+czx2+cga:3)

z€lF3 z1,22,x3€F,

11



_ E :wgr(03mg) § w]];r(@zg) E :wgr(tdz%—&—clzl)

z3€F, z2€F, z1€F,
(—1)m_177(td)q2+%wgr(fc%(“d)ill, B if Tr(cy) =Tr(cz) =0andp=1 (mod 4)
=93 (=)™ /=1 n(td)q”iwgr(*cl(“d) ) if Tr(ey) = Tr(cg) =0andp=3 (mod4)
0, if (T'r(c2), Tr(cs)) # (0,0).

Then, one can easily see that,

- (— 1) (td)g 5wl AHD™), ifp=1 (mod 4)and EQ
702 —1 .
fan(t,c) = (1)t =1"y(td)q" w,{r( (D7 i p =3 (mod 4) and EQ
0, if NEQ.

More concrete examples can be given but instead, we compute the last steps to com-
plete the proof.

E E : Tr(tdiz?+-+tdn_122_ +c1z1++cn®n)
fnn 1tC wTrtfnn 1(z)+ex) _ wy 1 172 _4 T,

J:E]F” xGIF{;

e E wgr(cnxn) g wgr(tdlx%+01$1) e w;—‘r(td" 1$n 1+C" 1Tn— 1)

InEFq 1 GIFq zn—lE]Fq

This leads to the followings,

e If n —1iseven:

- n(t"'D)q T w, ifp=1 (mod 4) and Tr(c,) =0
fan—1(0) =< /=17 1)mn(t” 1D)an+1wg, ifp=3 (mod 4)and Tr(c,) =0
0, if T'r(c,) # 0.
o If n —11isodd:
- (—1)m_1n(t”_1D)anHw;j, ifp=1 (mod4)andTr(c,)=0
fan-1(c) = (—1)'”_1\/—1(n_1)m77(t”_1D)anHw;, if p=3 (mod 4) and T'r(c,) =0
0, if T'r(c,,) # 0.

Lastly, we compute f,, ,,.

fnn t C § : wTr(tfnn z)+cx) E : wgr(td1z§+---+tdnx%+clx1+---+cn:pn)

zGIF" xGIF'{;
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_ § wTr(tdlac%Jrcl:pl) E wTr(tdgr%#»@zg) . § wTr(tdnx%+cnxn)
p p p

x1€F, z2€F, zn€lfy
n(t”D)q%w;/, ifnevenandp=1 (mod 4)

_ (—1)m*177(t"D)q%w; , ifnoddandp=1 (mod 4)
V —lnmn(t"D)q%w;j , , ifnevenand p =3 (mod 4)
(=)™ /=1"n(t"D)q*w? , ifnoddandp=3 (mod 4).

O

Lemma 2.4. Let f, : F} — F, be defined by f.(z1, %2, ..., x,) = diat + dja3 + ... +
di_ a7 ) + uxy, where u € Fyand dt, dy, - -+ ,di_ € ;. Foru, v € Fywithu # v,
the supports of the Walsh transforms of f,, and f, are disjoint.

Proof. Note that, by Theorem fu 1s a near-bent function because if a linear term is
added to a near-bent function it will again be a near-bent function.
Lett € [} be fixed and ¢ = (cy, ¢, ..., ¢,) € Fyy. Then,

~ . Tr(t(dba?+déa?+...+db_ a2 _ +uzy)+cx)
fu(t; C) _ § :wgr(tfu(m)—i-cm) _ E w, 171 Ta2 T3 n—1Tn—1 n

J:QIF{; acEIFg

Tr(t(d”fa:%—i—dé‘a:%—i—...+dzfla:%71)+clm1+...+cn,1xn71) Tr(utzn+cnin)
= 2w PR
Z1,...2n—1€Fg xn€lfy

The first sum in this product can be computed using Gauss sum and it can be seen that
it is nonzero by Theorem So, only the second sum, > Tr(uten tenen)

w
xn€lfy P
make this product zero. If utx,, + ¢,x,, is nonzero, then T'r(utx,, + c,x,) is linear, so
the sum is zero. Hence, fixing ¢ € IFZ we have,

, can

supp(]/“;) ={c=(c1,c0,....¢y) €F} cut = —¢,,  (mod q)} .

2.4 Conclusion and Examples

In Theorem [2.3] we compute Walsh spectrums of certain quadratic functions and in
Lemma [2.4] we show how to obtain quadratic functions with pairwise disjoint support
of Walsh transforms. Now, using this information we give an application of the con-
structed method that is given in Theorem Moreover, we classify these constructed
functions as regular bent, weakly regular bent and non-weakly regular bent.

Let f, : F} — F, bedefined by f,(z1, 22, ..., x) = diai+dya3+.. +di_ a2 +uxy,
where u € F,and d, dy,--- ,dy_, € F;. Let F : F;*' — [, be a bent function con-
structed by near-bent functions, f,,, using Theorem
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Let ¢ € F;. By Definition[1.6] F' : F; "' — I, is a function with F*(x) = Tr(tF(x))
and f} : F} — I, is a function with f}(x) = Tr(tf,(x)). Our aim is to determine the
cases for which F" is regular, weakly-regular or non-weakly regular, for a fixed ¢ € [y

Let (a,b) € F? x F,. At the end of the proof of Theorem we conclude that, for
each a € F and a fixed ¢ € F}, there exists exactly one u such that ‘ﬁ(t, (a,b)) ’ =

‘fAu(t, a)‘. This is equivalent to ‘ﬁ(a, b)’ = ]/”\t(a)) So, it is enough to investigate the

u
Fourier coefficients of f, given in Theorem [2.3| For this investigation, we study case
by case for the variables n, m and p.

First Case (n — 1 even) Assume n — 1 is even. By Theorem[2.3]

0, n(t”—lDu)q”T“wg*@} , ifp=1 (mod 4)

spec (fu) = n—1)m i1 g
0, v—1" "0t D) g "5 wl @}, ifp=3 (mod 4)

whereuw € Fy, D, = H;:ll dt, ce FZ and f* : ]FZ — IF,, is a function.

1. Assume p =1 (mod 4). Then, the result depends on the value of n(t"~'D,).

e If n(t"'D,) is 1 for all values of u € F,, then F" is regular.
o If n(t"'D,) is —1 for all values of u € F,, then F"* is weakly regular.
e If n(t"~'D,) attains both of the values 1 and —1, F" is non-weakly regular.

2. Assume p =3 (mod 4).

e If n — 1is equivalent to zero modulo 4, the result is the same with item 1.
e Ifn—1isequivalent to 2 modulo 4, we have two different results depending
on m.
When m is even, the same conclusion given in item 1 occurs.
When m is odd, a slightly different situation comprises. n(t"'D,) = —1
Vu € T, gives that F" is regular. n(t"'D,) = 1 Vu € F, gives that F"*
is weakly regular. Lastly, when n(t"~!D,,) attains both of the values, F" is
non-weakly regular.

Second Case (n — 1 odd) Assume n — 1 is odd. By Theorem[2.3]

0, (—1)"" n(tn—lpu)qu;f*(c)} , ifp=1 (mod 4)
0,(~1)"" —1(”‘1)mn(t”—1Du)qu£*<C>} , ifp=3 (mod4)



where u € F, D,, = H;:ll d¢,ce [Fy and e [y — T, is a function.

1. Assume p =1 (mod 4).

e For m — 1 even, we have three different results depending on the value
of n(t"*D,). If n(t"'D,) is 1 for all values of u € F,, F* is regular.
If n(t"*D,) is —1 for all values of u € F,, F" is weakly regular. If
n(t"~1D,) takes both of the values —1 and 1, F' is non-weakly regular.

e For m —1 odd, we have similar results to the case m—1 even. If n(¢"~'D,,)
is —1 for all values of u € F,, F"* is regular. If n(t"~'D,) is 1 for all values
of u € F,, F'is weakly regular. If n(¢"~' D,,) takes both of the values —1
and 1, F" is non-weakly regular.

2. Assume p = 3 (mod 4). Then, three different results are obtained depending on
the value of m.

e Assume m = 0 (mod 4). Then, the result is the same with the item 1,
(m — 1) odd case.

e Assume m = 2 (mod 4). Then, the result is the same with the item 1,
(m — 1) even case.

e Lastly, we investigate the case which is the same for m = 1 (mod 4) and
m = 3 (mod 4). For all u € F, if n(t"~'D,) is always 1 or always —1,
then F* is weakly regular. Otherwise, F" is non-weakly regular.

Remark 2.1. For a fixed p, greater number of bent functions are constructed compared
to [3] because the coefficients of near-bent functions are chosen from a set with major
number of elements.

Remark 2.2. For an odd prime p, there are equal numbers of quadratic residues and
quadratic non-residues in 7. On the contrary, the number of quadratic non-residues is
greater than the number of quadratic residues in F ... This leads to the situation that
the percentage of non-weakly regular bent functions of our construction is grater than
the percentage of non-weakly regular bent functions constructed in [3]].

Example 2.1. Let p = 3, n = 4 and ¢ = 3?. Choosing the minimal polynomial
2?2 4 22 + 2 and a to be a root of it to construct F32 over I3, we represent the field Fie
as {aa+ (o, € Fs}.

Foru € Fs2, ¢, € Fi; and x = (21, 2o, 3, 4), the functions f, : F3, — Fs2 defined by
fu(x) = cyx? + 2%+ 2% + ux, are near-bent functions with pairwise disjoint support of
Walsh transforms. Now, consider the following identified near-bent functions defined
from F3, to Fao.

fo(z) = 2:13‘% + x% + a:§
fi(zx) ::vf+as§+:v§+as4
fo(z) = 207 + 23 + 23 + 214

fa(z) = 2% + 23 + 23 + axy
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for1(z) = 227 + 25 + 25 + (a + 1)z4
fara(w) = 21 + 25 + 25+ (a + 2)z4
foa(x) = 222 + 25 + 25 + (2a)74
J2at1 xf + x% + x§ + (2a + 1)xy
o]+ 25 + 23 + (20 + 2)74

T

()
()

f 2a+2(T

By Theorem 2.2} F'(x1, 2, 3, 24, y) defined from F3, to F52 and given by,

—1)(y—2)(y—a)(y—(a+1 —(a+2 —2a)(y—(2a+1 —(2a+2
Zu€F32 yy—D(y=2)(y—a)(y—(a+1))(y (g(’ju)))(y )(y—(2a+1))(y—(2a+ ))fu(JC)

= 822 — g + ay® + a2yS1? + aSyTzy + adyT + Yz + a0 + yla? + ayPry +
a’y® + a®yP + 23 — ylag + ayt + aPyPa?d + aSyxy + @By + aTya? + yPay + aSy? +
x? — x5 — 13+ ayzry + a’y,

is a bent function with algebraic degree 10.

Let F' : F3, — F3 with F'(z) = Tr(tF(z)). Lett € F, be fixed. If t = 1, then, F" is
a regular bent function because 1 is a quadratic residue of Fj,. If t = a + 2, then, F"* is
weakly regular bent function because (a + 2)® = 2a is a quadratic non-residue of F..
Actually, F'* being regular, weakly regular or non-weakly regular does not depend on
the value of t. This is because multiplying D, by t"~! does not change the situation
whether 7(t" ' D,,) is stable or variable for all values of u € F,. Actually, this depends
on the reason that the product of two residues or two non-residues is a residue, whereas
the product of a nonresidue and residue is a nonresidue.

In addition, if we choose at least one of the ¢, from the set of quadratic non-residues of
I3, namely {a,2a,a + 2,2a + 1}, and at least one of the ¢, from the set of quadratic
residues of F,, namely {1,2,a+ 1,2a + 2}; then F" is a non-weakly regular bent
function for all values of ¢t € Et)g.
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CHAPTER 3

A CONSTRUCTION OF (NON)-WEAKLY REGULAR BENT
FUNCTIONS OVER THE RING OF INTEGERS MODULO p™

3.1 Introduction

This chapter is devoted to adapting the methods over finite fields with odd character-
istic given in Chapter 2]to the ring of integers modulo p™. Studying over rings brings
some difficulties due to the reasons that rings have zero divisors, there is a need of
special type of coefficients for Lagrange interpolation and computation of Gauss sums
over rings.

In Section [3.2] we give an adaptation of the construction method given in Theorem
In [3], the authors use polynomials as coefficients for Lagrange interpolation.
However, for our case we prove that the functions which can be used as coefficients
for Lagrange interpolation cannot be representible as polynomials using the paper of
Carlitz [2].

Consider the quadratic functions of the form dyz? + doz3 + ... + d,_s22_, where

d; € Z; and 0 < s < n—1. In Section , we determine the Walsh spectrum of these
functions when they are defined over Z,> by a method that is different from the one that
is used in [3]]. Then, we study the same concept over Z,3 in Section The results
are different from each other and to achieve these results, we compute quadratic Gauss
sum over Z, and Z,s. In Section 3.5} we generalize the idea of Section[3.3]and Section
The Walsh spectrum of quadratic functions that are described at the beginning of
this paragraph give different results for odd m and even m when they are defined from
Zyym 10 Zyym . Note that, to reach the results we computed quadratic Gauss sums for each
case. Moreover, we present a simple technique to obtain quadratic near-bent functions
with pairwise disjoint support of Walsh transforms.

In Section[3.6] we conclude the chapter by giving examples to generate regular, weakly
regular and non-weakly regular bent functions. For the examples, we use quadratic
functions to construct a bent function over Z,~. If m is even, then all constructed
bent functions are regular. If m is odd, the great majority of the constructed bent
functions are non-weakly regular similar to [3], but there exists some distinctions. To
illustrate, for each p, we can construct further bent functions and the percentage of
non-weakly regular bent functions is greater. Also, as p and m increase for an odd m,
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this percentage of non-weakly regular gets greater.

3.2 A Method to Construct Bent Functions Using near-bent Functions

To combine near-bent functions for constructing a bent function, we study the La-
grange interpolation principle on integers modulo n because we cannot use the same
coefficients that are used in [3]].

The reason is that Z;; has zero divisors, that is, for every value u € {0,1,...,q — 1}, the
(y—1)...(y—(g=1))

coefficient ¥ ) becomes zero for each y € Z,. The original coefficients

given in the classical definition of Lagrange interpolation cannot be used either because
of the same reason. Moreover, we show that one cannot find new coefficients for the
construction over the ring of integers using some of the methods in [2].

Proposition 3.1. Let u € Z,. The functions h,, : Z, — Z, which are defined by

a, ifr=u
hul2) :{ 0. iz

where a # 0 (mod p), cannot be represented in a polynomial form.

Proof. For any polynomial, g(z), it is a fact that g(z 4+ p) = g(x) (mod p). However,
h., does not satisfy this equation for x = u which implies %, (x) cannot be represented
as a polynomial [2]]. 0

Proposition 3.2. For w € Z,, the functions h, : Z
follows

p2 — Ly2 which are defined as

_ ) fr=u
hu(“’)_{o, ifr# u.

cannot be represented as a polynomial.

Proof. Note that, a function f(z) over Z,» can be represented by a polynomial over
Zy2 if and only if >0 (=1)"(") f(s) = 0 (mod p*"”) for 0 < r < p? where
v(r) = min(2, u(r)) and p(r) is the highest power of p that divides r! [2].

Let j = u (mod p). Now, consider "_(—1)""*(")hy(s) for the case when r =
2p + j. Since r > 2p, p? divides r!. So, v(r) = 2. Then,

2pz+j(_1)2p+j—s (219 + j) ho(s) = (—1)2+0 <2P + j) h(t) = (—1)2 (229 + j)p.

S u u
s=0
This is not divisible by p? as (*’}7) is not divisible by p. Therefore, the sum is not

equivalent to zero modulo p?, which implies h,, () cannot be representible in polyno-
mial form. 0
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Remark 3.1. Let L.(x) be defined from Z, to Z, and given by L.(x) = (1 — (x — Py

Carlitz suggested that this polynomial can be used for Lagrange interpolation formula
[2]. Actually, the values of the function can be easily computed as:

_ [ 1, ifz=c (mod p)
o= |} e ot

~

Fori € {0,1,...,q}, letting f; : Zi — Z, be near-bent functions with supp( fi)Nsupp( )
is empty for ¢ # j, one can consider the following construction: F': Zy X Z, — Z,

defined as
p—1
T,y) = Z fi(z)L
i=0

However, using this construction, one can combine p-many near-bent functions and
so, F' cannot be a bent function. Actually, this result is not suprising because in the
Theorem [3.3] we explain that we need ¢- many near-bent functions to obtain a bent

function. Some values of F' are zero as UPZ, supp( fz) is equal to Z. Example 3.1is
given to illustrate this.

Example 3.1. Let f;, f; and f5 be near-bent functions with disjoint support of Walsh
spectrums and defined from Zg to Zg. For ¢ = 0, 1, 2, let the functions L; : Zg — Zg
be defined by

|1, ifr=c¢ (mod 3)
Le(w) = { 0, ifx#c (mod 3).

Then, construct the function F' which is defined from Z3 x Zg to Zg as F(z,y) =
S22 o fe(@)Le(y). Thatis,
F(z,y) = fo(z)Lo(y) + fi(z)L1(y) + fo(z)La(y)

Then, for a € Z3 and b € Zg, we have

= Z Z wh@y)—ae—by _ Z w Z wF@y)—a

w€Z§ YLy y€ZLo zeZ

— Z w- Z wfo@LoW)+f1(2) L (y)+f2(2)L2(y))—a-x

YyEZLg €LY
_ 0 —3b —6b fo(z)—
(0 4+ w™ + w™®) Z w
IEZé
wfb+wf4b_'_w77b wfl(x)fa-x_i_ w72b+w75b+w78b wfg(x)faz
( )% ( )%
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Note that,

0 —3b —6b __ 3, ifb=0 (mod 3)
Wi w A w —{o,ﬁb¢o(mm3)

3, ifb=0
wl+w 4w ™= —1.5-25/=1, ifb=3o0rb=6
0, ifb#0 (mod 3).
3, ifb=0
—2b —5b —8b __ —15+25\/—1, lfb: 3
wAw W = 595/, ifb=6
0, ifb£0 (mod 3).
Using these results, we have
3(fo(a) + fila) + fala), o ifb=0
Fla,b) = 3fo(a) + (=1.5 = 25V/=1) fi(a) + (=15 + 2.5V/=1) fo(a), ifb=3
3fo(a) + (—=1.5 — 2.5v/=1)(f1(a) + fa(a)), ifb=6
0, ifh#0

Obviously, F' is not a bent function.

Remark 3.2. Using the same notation and data in Remark another construction
using g-many near-bent functions can be considered as follows:

q—1

F(z,y) =Y fi(x)Li(y),

=0

where j = ¢ (mod p). However, one can see that F is not bent using the definition
easily since for each value of y, F depends p™~! many f; functions. To illustrate,
consider the following example.

Example 3.2. Let fy, f1,- - - fs be near-bent functions with disjoint support of Walsh
transforms and defined from Z§ to Zg. For ¢ = 0, 1, 2, let the functions L, : Zg — Zg
be defined by

|1, ifzr=c¢ (mod 3)
Le(x) = { 0, ifx#Zc (mod 3).

Then, construct the function F' which is defined from Z‘g1 X Zg to Zg as F(x,y) =
Z?:o fi(x)L;(y) where j =4 (mod p). Then, we have
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ﬁ(aa b) = Z Z wh@y)—aw—by _ Z w™ Z wF@y)—az

w€Z§ YLy Y€y zeZg

= Z w™ Y Z w(2§:0 fi@)L;(y))—a=

YEZLg TEZY

= (wo + w3 + w_Gb) Z w(fo(fﬂ)+f3(fﬂ)+f6(cc))+—a~z+

eré

(w—b + w4 + w—?b) Z w(ﬁ(a:)+f4(a:)+f7(x))—a~x+

4
T€Ly

(w—2b + w4 w—Sb) Z w(fg(w)+f5(ﬂc)+f8($))—“‘l"7

4
TEZLg

which gives F' is not a bent function.

Theorem 3.3. For u € Z, let f, : Zj — Z, be near-bent functions such that

supp(ﬁ) N supp(ﬁ,) is empty for u,v € Z, Let h, be a function defined from Z,
to Z4 and given by,

_ L, fe=u
h“(x>_{ 0, ifx # u.

Then, the function F : Z; X Z, — Z, defined by

F(x,y) = Z hu(y) fu(),

UELyq

is bent.

Proof. We first determine the number of near-bent functions that is needed to construct
a bent function. For this aim, we obtain a special case of the Parseval’s relation. Let
f: ZZ — Zg,and a € ZZ. Then,

}{:‘j%a)r:: SN wf@rerGhmen = §7 (@160 3 e,

acZ? a€L? x,yeLr T, yeL? aczZ?
q q q q q

Realizing that,

a(y—x) __ qn’ lf.flj':y
D v —{o, if z # y,

aEZg

we have

> |Fa

acLy

2 g, ifr=y
Y0, ifz#y.
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Then, for a near-bent funtion f, we have

> |Fla

acZy

2 ~
_ n+l __ 2n
_‘ q _q )

supp(f)

~

since ’f(a)‘ = 0 or ¢"™/2 for all a € Z?. By this, one gets ‘supp(f)‘ = ¢ L.

We need to combine the near-bent functions using the principle of Lagrange interpo-
lation. The idea is constructing a function F' by ’glueing’ the near-bent functions in
such a way that Walsh spectrum of F' do not include zero value. This can be achieved
by combining the near-bent functions having no common element in supports of their
Walsh transforms and the union of their support of Walsh transforms should be Zj.

Hence, the number of near-bent functions that is needed is ¢ as ’supp(f)‘ =q" L

Let f, : ZZ — L, for u € Z, be near-bent functions. Then,
alla € Zy.

—~ 2
fu(a)‘ = ¢"" or 0 for

Let (a,b) € Z{ X Z, and w be the g-th root of unity. Then,

ﬁ(a, b) = Z wF@y)—az—by _ Z w Z wF@y)—ae

TELY YELq YEZq TELy

— Z w—by Z w(zueZq hu(y) fu(z))—a-x — Z w—by Z w(ho(y)f()(x)+"'+hq_1(y)fq_1(x))—a~x _

YEZLq TELY YEZLq TELY
UJO E wfo(x)—a-x+w—b E wfl(z)—a~:c_|__ i __|_w—(q—1)y E wfq_l(z)—a~a: — § w_byfy(a,).
TELY TELy TELy YEZLq

Since supp(f,) N supp(f,) is empty and Usez, supp(fa) = Zy, each a is an element

of exactly one fy So, we have

Fla.b)] = | Y w @] = o f @) = "

YEZLq

3.3 Walsh Spectrum of quadratic Functions over Z,.

In the whole section, ¢ is p® and w denotes the ¢-th root of unity, that is w = 2™V ~1/7’.
To construct bent functions using Theorem [3.3] we need near-bent functions with the
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desired properties.
In this section, we determine Walsh spectrum of quadratic functions, f,, ,,—s := dy x% +
Aty +...+dp sz, defined from Z7 to Z, for s € {0,1,...,n — 1} and dy, dy, - -+ ,dp—s €
7>,

q

Lemma 3.4. Let ¢ = p? d € Z; and c € Z,. The quadratic Gauss sum over Z,,

2 _ 2
namely y ;. W = equals to pw=¢ /4,

Proof. A change of variables will be helpful, so replacing = with y + « for o = ¢/2d
we have,

2 2 2
Sy Cap©

de—cx:d(y—l—oz)z—c(y—i-a):dy2+cy+4d—cy—ﬁ:dy I

Hence, 3, w™ =" = w /430w, For x € Z,, there exists a, a1 € Z,
such that x = ag + a;p. Then,

E u)d:z?2 _ E /‘ wd(ao+a1p)2 _ E /‘ wda5+2daoa1p+da%p2

TELq ag,a1 €Ly ag,a1 €Ly
27/ *Mda%) 27/ =1(dagay)
= g e p? E e p =p,
agE€ZLyp a1€ZLy
2m/—=1(dagay) . .
because e P is p for ap = 0 and zero otherwise as d € Z*. OJ
ail eZp 0 q

Theorem 3.5. Let g = p*. Let frn— : Z — Zg be defined by
Jam—s(T1, @2, 1) = dia} + doa3 + ..+ dp_sx}h_ where dy,dy, - dn_s € LY.
Let w be the g-th root of unity, that is w = e*™v =1/ P’ Then,

+ C% C% C37,75
_— nts e o e .
fn,n—s(c) = gz w 't s fe, =Cpyp = = Cpogp1 =0
0, if otherwise,
where s is a positive integer with0 < s <n — land c = (¢, ¢a,- -+ , ) for ¢; € Ly

Moreover; for s = 0, the result is simply f, ,(c) = qzw &~ ",

Proof. 1t is useful to compute the Walsh spectrum of f; ;(z) = da?, first. Then, ﬁ\l
is obtained and this leads to the determination of the general form. Using Lemma[3.4]
we have

rn x2—cz —CZ
f171(C) _ Z wd —w /4dq1/2.

T€Lq

Then,
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Lf{z-\l(c) — Z wfz,l(x)—c.x _ Z wdx%—clzl_cﬂz

r€Z2 x1,22€Zq

3/2,,—c2/4d _
_ —cax2 dz?—ciz1 __ g’ w 1 s if Cy = 0
= 2w ) w _{o, if 3 # 0.

T2EZq T1E€EZq

Similarly,

f/'i);(c) = E wlr@—cz _ § : wdxffqu@mfchg

CCEZ% wl,:vz,:v3€Zq

— E w763$3 2 :wfcycg 2 :wd:r%fclxl

T3E€EZLq T2E€Zg T1€Zq

PR ey =3 =0
10, if otherwise.

Then, ﬁ\l(c) can be easily computed as,

7\1(0) = { q%wfcf/%l’ if Cp =Cp—1 =" =0C = 0
n7

0, if otherwise.

Now, consider f, ,. We have,

fanlc) = E wlnn@—cr _ E whrit el —c1m = —cpan

:BEZZL ‘TGZZ]L

— § wd1$%—01$1 E wdga:%—cza:z § : wdnz%—cnxn

T1€Zq T2E€Zg Tn€Zlqg

Next, we consider f,, ,,_1. We have,

f/\l(c) — wfn,nfl(x)fc'x — wdlx%+"'+dnflx%_1701-'517"'7077.-'571
n,n— - § = g

zT€ly €LY

_ § wdw%—qxl E wdnqx%,l—cnqwnq E:w—cnmn

T1€2Zq Tn—1€ZLq Tn€Zq
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The general case can be achieved, similarly.

3.4 Walsh Spectrum of Quadratic Functions over Z,s

In this section, we give an adaptation of the study given in Section[3.3] That is, for ¢ =
p?, we determine the Walsh spectrum of quadratic functions f,, ,_s := dlx% + deg +
oo + dp_sx}_, defined from Z7' to Zg, for s € {0,1,....,n — 1} and dy,ds, ..., dn—s €
ZX

-
Lemma 3.6. Let g = p®, d € ) and c € Zg. Then, the quadratic Gauss sum over Z,
is as follows.

N e Y
w2 (d) /=1, ifp=3 (mod 4).

TELg

Proof. For simplicity, replace x with y + « for « = ¢/2d. Then,

2 2 2
dz® —cx = d(y + a)* — c(y + o) = dy? —|—cy+4—d—cy—§—d—dy ~ 1

We have Z, = Z,5 = {ao + pa1 + p*as : ag, a1, a2 € Zy}.

§ wd:v2 _ 2 : wd(a0+a1p+a2p2)2 — § wdag+2da0a1p+(2da0a2+da%)p2

TE€ZLq a0,a1,a2€Zyp ao,a1,a2€Zyp

27r\/7(da0) 27r\/7(da1)

27y/—1(2dagag)
=2 ¢ 7 D e doe o =p) e

ag€Zp a1€Zp a2€Zp a1E€Zyp

27/ — (2da0a1p+dalp )

The last equality comes from the fact that d € Z, and

Z €2ﬁ\/jl(??da0a2) . p7 lf ag = O
| 0, ifotherwise.

as EZP

Using [[13, Theorem 5.33] and the definition of the Gauss sum over finite fields with p
elements, we conclude that

Z 6277\/:(,1,11) _ 3/27](d) ifp=1 (mod 4)
p T PP(d)v/=1, ifp=3 (mod 4).

aleZp
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Theorem 3.7. For q = p?, let f,, s Ly — Lq be defined by fr,n—s(T1, 72, -+ ,1,) =

dix + doxy + ... + dn_sxl_, for d; € Y. Let 1) be the quadratic character of Z, and
w be the g-th root of unity, that is w = e2™V=1/ P’ Then, for a positive integer s such

that 0 < s < n — 1, we have,

. q 2 w'n(D), ifp=1 (modd4)andc,=c,1="=¢Cps41=0
Jnn—s(c) = qngs w”n(D)\/—ln_s, ifp=3 (mod4)andc,=c,1="=¢Cps41=0
0, if otherwise,
2 2 c?
where D = didy -+ dp—s, v = — - — g andc = (c1,€0,++ ,Cp) such
that ci,ca, -+ ,cp € Zy.
Moreover, for s = 0 the result becomes
T = { (D), ifp=1 (mod 4)
w qzw'n(D)v—-1", ifp=3 (mod4).
Proof. We use very similar arguments that we used previously to prove Theorem
So, we do not give much detail. For ¢ € Z,, we have the following fact using Lemma
3.6l
- 1/2,,,—c?/4d : —
_ dx?—cx __ q'w U(d)7 lfp =1 (HlOd 4)
frale) = % v B { q"2w=y(d)/=1, ifp=3 (mod 4).
TClg
The Walsh spectrum of f,, ; can be computed as,
- ¢ w4y (d), ifp=1 (mod4)andc,=c, 1=-=c;=0
faa(e) =9 ¢"= w4y (d)/=1, ifp=3 (mod4)andc,=cp 1 =--=c3=0
0, if otherwise.
To obtain the general form, one can find some of the results as follows.
1.
.][/‘2\2(6) _ Z wfgyz(x)—c-m _ Z wdlz%—kdgm%—clml—(:gxg
mGZZ $1,$2€Zq
2 2
1 )
_ Z whri—em Z yeri—ers _ ) AW Ady adz n(dydy), ifp=1 (mod 4)
N N _d g 2 .
x1€Zq w2€7q quw %1 3z (dydy)y/—17, ifp=3 (mod 4).
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r o xr)—cxT diz2+dox2 —ci121—Cora—c3x
f3’2(C>—§ wf32(@) — E whritdezs—c1e1—cazz—csa3

€L} 1,22,L3€ZLq

— E w703$3 E wdlm%ergmgfclxlfczxg

T3ELg T1,L2€2%q
q2w*£T1f;Tan(dld2)7 ifp=1 (mod4)andc3 =0
2 2
w1 s (didy)y/—1, ifp=3 (mod 4)and c; =0
0, if c3 # 0.

.][/.3\3(6) _ § :wf3,3(m)—c-x _ E : wdlrf—l—dgz%—l—dgmg—clzl—02m2—03:p3

€L} 1,22,T3E€2Lq

— § :wdlx%—clxl § wdgm%—czxg E :wdgmg—c;;mg

T1€Zq T3E€ZLg T3E€ELq

C% C% C2

@3/ Hh A @T](dldgdg), ifp=1 (mod 4)
C2 C2
¥/ 2w T 1 T3y (dydods)/— 10, ifp=3 (mod 4).

3.5 Walsh Spectrum of Quadratic Functions over Z,~

Lemma 3.8. Let d € Z; and c € Z, for ¢ = p™. Let 1 be the quadratic character of
Zq. Then, the quadratic Gauss sum over Zq is as follows.

. 2_ _ a2
e The Case m is even: 3, ;. Wi e = g/ 2=/,

o The Case m is odd:

i [P0, gp=1 (o g
w2y (d)/=T, ifp=3 (mod 4).

TELq

Proof. In Lemma[3.4)and Lemma 3.6, we give detailed proofs for m = 2 and m = 3.
Now, for simplicity, we continue to give detailed proofs for m = 4 and m = 5. Then,
the generalizations get easier to understand.

A change of variables will be helpful. Hence we replace x with y + « for o = ¢/2d to
have

2 2 2
? oy ©

de—cx:d(y+a)2—c(y+a):dy2+cy+4d—cy—Q—d:dy v
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Assume that m = 4. Let € Z,. As we have
Zy = Ly = {ao + par + p*as + pPaz : ag, a1, as, a3 € Z,}, there exist some ag, ay, as, az €
Z,, such that

2 = ak + a2p® + 2apa1p + 2apa2p? + 2apasp® + 2aia0p®  (mod p?).

2my/—1(22) 27/ — (ao) 27/ — (alp +2agayp)

27w/ — (2a0a2p +2a1a2p ) 2myv/—1(2agag3)
doe M=) e T Y e ) e ; 2 e 7

T€Z vl ag€Zp a1E€Zp a2€Zp a3€Zp

2m/—1(2a1a9) 9
=p) e ) e v =p

a1€Zyp a2€Zp

27/ — (alp )

To write the last two equalities, we used the following two facts, respectively.

Z Qﬁﬁ;2a0a3) o p’ lf ao — 0
€ — 00, ifag#0

as EZP

and
3 avTeme) [ p,ifa; =0
€ o O, 1fa1750

aQEZp
Now, assume m = 5. Let € Z,s. Then, there exists some ao, a1, az, az, ay € Zj, such
that * = ag + a1p + asp? + azp® + asp*. This implies,
r® = ag+aip’+asp*+2a0a1p+2a0a:p* +2a0a3p® +2a0asp*+2a1a2p’ +2a1asp*  (mod p°)
Let A = a2p? + 2apa1p, B = 2apasp® + 2a1a9p® + aip* and C = 2apazp® + 2a,a3p*.

27r\/7(z ) 27/ — (ﬂ0> 27\'\/714 27r\/73 2wy/—1C 2w/ —=1(2agay)
doe mo=) e T YT Y e Y e T ) e v
€L 5 aoEZLyp a1€Zp a2€Lyp as€lp aq4€lp
2rv— a’l 27V — (‘12) 2m/— 20,1113) 2my/— (a2)
=p E e 0 E e P E e = p E € P
aleZp aQEZp agEZp aQEZp

Using [13, Theorem 5.33], the definition of the Gauss sum over finite fields with p
elements, and considering the fact that d € Z;s, we have

> e > oD [ pP(d), ifp=1 (mod4)
=v L pn(d)v—1, ifp=3 (mod 4)

z€Z b5 a2€Zp

where 7) is the quadratic character of Z,,.
Now, letz € Z, = Zym. As Zpmn = {ag +pa; + -+ p" a1 : ag, a1, ,am-1 € Zyp},

there exist ag, a1, - - , @m—1 € Zy such that z = ag + a1p + aop? + - A1 P
m_y
i\ 2
i (aip’)” + 2p(agar) + 2p*(agaz) + 2p°(aoas + araz) + 2p*(apas + aras)+
i=0

28



+2p° (apas+aias+azag)+ - -+2p" (Ao 101 Gyt - +am_jan) (mod p™)--- (%)

There are two cases depending on m.

1. Assume m is even. Then, the sum (x) does not include the square of the sum-
mands a; such that ¢ > m/2. The result is ql/ 2, since we get p as a factor for
each of these summands.

2. Assume m is odd. Note that, for each of the (mT_l)-many summands which do
not appear in (x), we get p as a factor. [13] Theorem 5.33] and the definition of
the Gauss sum over finite fields with p elements leads to the following result.

Z e w‘cz/4dq1/2 (d), ifp=1 (mod 4)
w4 2y (d)\/=1, ifp=3 (mod 4).

T€Lq

]

Theorem 3.9. Let ¢ = p™ and m be an even integer. Let [y, : Ly — Z, be defined
by fon—s(T1, @0, ,2,) i= dy2? + doxd + ... + dyy_s22_ fordy,dy, - ,d, 4 € Zy.

Then, for a positive integer s such that 0 < s < n — 1 and ¢ = (¢1,¢o,- - ,¢,) With
c1,C2, "+, Cyp € Ly we have,
o nbs 1B fnos
fan—s(c) =< ¢ 2w Al s e, =cp = = Cpesy1 = 0
0, if otherwise.

Moreover; for s = 0, the result is simply f, ,(c) = qzw ™ &~ adn

Proof. By Lemma|[3.8] we have
f/.ld\l(c) _ Z wda:27cx _ wfc2/4dpm/2 _ w702/4dq1/2.
TEZq

Realize that, this assertion is exactly the same with the one in the proof of Theorem
3.5l Applying the same method, the result can be achieved, easily.

]

Theorem 3.10. Let g = p™ and m be an odd integer. Let f, s : Z; — 7L, be defined
by fon—s(T1, @0, ,2,) i=dyw? + doxd + ... + dyy 22 _ fordy,dy, - ,d, s € Zy.
Let 1) be the quadratic character of Z,. Then, for a positive integer s such that 0 <

s<n—1landc=(ci,co,- ,¢,) suchthat cy,cq, -+ ,c, € L, we have,

- ¢ w'n(D), ifp=1 (mod4)andc,=cp1="=¢Cps541 =0

fon—s(©) =4 ¢"Fwn(D)V=1"", ifp=3 (mod4)andcy,=cp 1= =chsi1=0
0, if otherwise,
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2 2
Cn—s

2
_ I
where D = dyds - - - d,,_s and v = T ig e

Moreover, for s = 0 the result becomes

— [ ¢wn(D), ifp=1 (mod 4)
fan(c) = q%wv"?(D)\/?ln7 ifp=3 (mod 4).

Proof. Using Lemma[3.8] we have the following,

— —c?/4d 1/2 e
d _ di?—cx _ ) W q'*n(d), ifp=1 (mod 4)
fiale) = Z v N { w_c2/4dq1/277(d)\/—1, ifp=3 (mod 4).

T€Lq

Then, the result can be achieved by following the steps given in proof of Theorem
[

Lemma 3.11. Let f, : Z} — Zg4 be defined by fy(x1, %3, ...,x,) = diz] + dyz3 +
o+ dE_ 22+ uxy,, where u € Z, and dY € Ly for 1 <i < n — 1. Then, the set
{fu(z) : w € Z,} gives a set of near-bent functions having pairwise disjoint support of
Walsh transforms.

Proof. By Theorem and Theorem [3.10] f, is a near-bent function. Note that,
adding a linear term to a near-bent function, it will again be a near-bent function.
Letc = (c1,¢2,...,¢n) € Zy.

]/C\(C) _ § : wle@—cz _ § ' w Al tdyadt 2l tuzn)—crzi——cnan
u
TELY I <Y/

_ Z w(di‘x%+d%x%+"'+dz,l$i,1)—61J31—~~~—cn_1xn_1 Z WiEn—CnTn

T1,..Tn—1€2Lq Tn€2lq

The first sum in this product is nonzero by Theorem [3.9|and Theorem [3.10] So, only
the second sum, Zmn ez, w*n=*n - can make this product zero. If uz, — c,z, is

nonzero, then the sum is zero. Hence, we have
Supp(fu):{cz(017027”' 7Cn)€ZZ:uECn (HlOd Q)}a

which gives supp(ﬁ) N supp(fj) is empty, for ¢, j € Z, and i # j.
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3.6 An Application on Quadratic Functions

In this section, we give an application of the study of this chapter on quadratic func-
tions. In Theorem [3.9|and Theorem |3.10, we determine the Walsh spectrum of certain
quadratic functions. Using these theorems, we can obtain necessary number of near-
bent functions with desired properties to construct bent functions by Theorem [3.3]
We also give a simple technique to determine whether the constructed bent functions
using these quadratic near-bent functions are regular, weakly regular or non-weakly
regular.

Let f, : 2 — Z, be defined by f,(x1, 22, ..., x,) = diai+dyas+.. +di_ x5 +uxy,,
where u € Zg and dif € Z) for 1 <i <n —1. Let F : Z;‘“ — Z, be the bent func-
tion constructed by Theorem [3.3|using these near-bent functions. Recall that, for each

fula)

observe the Fourier coefficients of f,, for 0 < u < ¢ — 1, to determine whether F' is
weakly regular or not.

a € Zy, there exists exactly unique u such that ’ﬁ (a, b)’ =

. S0, it is enough to

3.6.1 A Classification of the Constructed Bent Functions When m is Even

Let ¢ = p™ such that m is even. By Theorem spec(fy) = {0, q"“/wa(C)} where

f is the function from Zj to Z, and ¢ € Z;. For this case, all constructed bent functions
using Theorem [3.3]are regular by the first item of Definition[I.12]

3.6.2 A Classification of the Constructed Bent Functions When m is Odd

Let ¢ = p™ such that m is odd. Then, by Theorem [3.10}

0, Tn(Du)wﬂc)}, ifp=1 (mod 4)
spec (fu) = 0

q
7quf~(C)17(Du)\/—1n_l} , ifp=3 (mod 4)
where D,, = djdy---d*_,, f is the function from Ly to g and ¢ € Zy.

The Case p =1 (mod 4):

e 1(D,) = 1forallu € Z, = F is aregular bent function.

n(
e 1(D,) = —1forallu € Z, = F is a weakly regular bent function.
® 7

(D,) attains both of the values {—1,1} = F is a non-weakly regular bent
function.
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The Case p = 3 (mod 4):

1. Assumen — 1 =0 (mod 4).

e 1(D,) = 1forall u € Z, = F is aregular bent function.
e 1(D,) = —1forall u € Z, = F is a weakly regular bent function.
e 1)(D,) attains both of the values {—1, 1} = F'is a non-weakly regular bent
function.
2. Assumen — 1 =2 (mod 4).

e 1(D,) = —1forall u € Z, = F is aregular bent function.
e 1(D,) = 1forallu € Z, = F is a weakly regular bent function.
e 1)(D,) attains both of the values {—1, 1} = F’is a non-weakly regular bent
function.
3. Assumen —1=1 (mod 4) orn — 1 =3 (mod 4).

e No regular bent function is constructed.

e 1(D,)=1forallu € Z, orn(D,) = —1 for all u € Z, implies that F'is a
weakly regular bent function.

e 1)(D,) attains both of the values {—1, 1} = F'is a non-weakly regular bent
function.

Remark 3.3. Great majority of the constructed bent functions using Theorem [3.3] are
non-weakly regular. As p and m get greater, the percentage of non-weakly regular bent
functions increases.

Example 3.3. For v € {0,1,---,26}, let f, : Z3, — Zy; be near-bent functions
defined as

w2 u,.2 w2 w2
fulzy, o, 3, 24, T5) = dia] + dyxs + dias + dyjxi + uxs,

where dY, dY, dy, dy € Z3;.

The set of quadratic residues of Z;; is QR :=
set of quadratic non-residues of Z5; is QnR :
be functions defined from Zy; to Zy; such that,

_ )L ify=u
hu(y) = { 0, if otherwise.

6,19,22,25} and the

,4,7,10,13,
5,8,1 7,20,23,26}. Let h,,

{1 3,1
{2,5,8,11,14,1

)

Let F : Z3, X Zy; — Zyr be defined by F(z,y) = 3.2 fu(x)hu(y). Then, by
Theorem[3.3] I is a bent function.

e For each u, if even number of {dY, dy, dj, d} are chosen from the set QnR, then
F is a regular bent function.

e For each u, if odd number of {dY}, d4, dy, d}} are chosen from the set QnR, then
F' is a weakly regular bent function.
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e If at least for one u, odd number of {dY{, dy, dy, d}} are chosen from the set QnR
and at least for one u, even number of {d{, dy,d4, d}} are chosen from the set
QnR, then F'is a non-weakly regular bent function.

To be more clear, we will give some numerical illustrations.

1. For u € Zy; if we choose f,, as in the following way, then F' is a weakly regular
bent function.

fo(z) = 522 + 222 + Tx? + 82 fra(z) = 222+ 1925+ 1325 +5 + 145
fis(7) = 252742225 +234+2625+1525

2623 + 213 + 53 + x5 + 1675

fi(x) = 427 + 1023 + 723 + 225 + x5
T
()

fo(x) = 23 + 2323 + 223 + 227 + 275 S
fol2) = @ 11722+ 22 4 o3+ 3oy J17(®) =TT+ 2505 s+ 23+ 175
fa(z) = x7 + 1023 + 83 + 2227 + 4w fis(z) = 2027 +1123+825+1923+ 185

(
f5(
(
(

S~

(z) =
(z) =
(z) =
(z) =
(z) =
) () =
r) = 1122 4 823 + 522 4 422 + 55 10(2) = 27 +1325 42205 +14275 41925
r) = 203 + 40 + 522 + 822 + 625 f20(2)
) (z)
()
(z)
(z)
(z)
(z)

fo z) = 1027+ 1725+ 1425+ 1423 +2025
fo(x) = 223 + 822 42022 + 722 + Tay, S (2) = Tt +Tag+ T3+ 8u3+ 215
fa(x) = 22 4+ 422 + 722 + 222 4+ 8z5  f(z) = T} + 515 + 5a3 + 5af + 2215
fo(z) = Sxf + x% + 490% + 4952 +9x5  Jfaz(w) = 4x1+23x2+2x3+23x4+23x5
fro(x) = 1at+ 1423+ a2 +203 41025 fas(w) = SaT+4a3+1323+2207 42425
fu(z) = 222 4+ 202 4 422+ 222 4 11as  fos(w) = 27+1125342023+262542575
fro(w) = 23 + 1025 + 8x3 + a5 + 1225 fog(x) = 2325 +2525+1105+225+2625
2

2. For u € Zo; if we choose f, as in the following way, then F' is a non-weakly
regular bent function.

fr(x) = 23273 + 422 + 502 + 422 + Tas
fo(z) = 23 + 235 + 223 + T} fs(@) = $1+7$2+7$3+7$4+89€5
fo(x) = 4a% + 23 + 25 + 227 + 95

fi(x) = 427 + 23 + 823 + 25 + x5 (z)
fo(x) = 2% + 25 + 25 + 27 + 225 Fu(2)
fa(z) = x§+10x§+11x§+20xi+3x5 Fio(@)
fa(z) =af+as+ag+ai+dns fy()
(z) = 2x] + 5z + 2323 + x5 + 515 f14(2)
(z) = 1007+ 1125 +1425+2325+675  fi5(7)

57 + 2625 + x5 + x5 + 10z5
o]+ x5+ 1123+ 1427 + 115
207 +4x5+8x3+ 1627 + 1275
r3 4+ 5254 T2+ 1122 4+ 135
1322+ 1725+ 1923+2325 + 1475
2627 + 15 + 23 + 277 + 1575

X

xz

f5
fo

T

xZ

X
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fi6(z) = 1la74+225+1625+2225+ 1625 for(x
fir(z) = 2207 + 23 + 23 + 25 + 17w5 Fos(z
fis(z) = 27 + x5 + 25 + 25 + 185

()
()
Fro(x) = 22 + 2002 + Ta2 + 422 + 1925 fu(2)
()
’ (x)

)
Foo(@) = 2024222241622 4502+ 2025 125(&
1 2 3 4
for(z) = 42? + 25+ 1323 + 423 +21x5  fos(x

2

= 22 + 125+ 115 + 25 + 2275

= 1727 + x5 + 1323 + 27 + 2375

=23 + 25 + 1725 + 75 + 2475

= 1622 4+19234+1923+2223+2575

= 1123 +17254+22234-2323 42675

Remark 3.4. In Example by different choices of f,,, we can construct

e (8 x 94)27 many regular bent functions.

o (8 X 94)27 many weakly regular bent functions.

o (16 x 9%)°" — 2(8 x 9%)°" many regular bent functions.
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CHAPTER 4

A TECHNIQUE TO OBTAIN WEAKLY AND NON-WEAKLY
REGULAR BENT FUNCTIONS USING S-PLATEAUED
FUNCTIONS

4.1 Introduction

A method to construct regular and (non)-weakly regular bent functions over the ring
of integers modulo p™ using near-bent functions is given in Chapter[3] Note that, near-
bent functions are 1-plateaued functions, indeed. In this chapter, we broaden this study
such that it uses s-plateaued functions for a positive integer s > 1. For this purpose,
the number of functions to produce a bent function is increased but there is no problem
to obtain that number of s-plateaued functions.

One of the most important differences of this construction to the one in Theorem [3.3]
is that the dimension increases by s, instead of 1.

In Section 4.2}, we explain how to achieve s-plateaued functions with pairwise disjoint
support of Walsh transforms and give a method of construction of bent functions using
these s-plateaued functions. Also, we prove that the function h,, that is used for con-
struction, cannot be represented in a polynomial form.

Section4.3|studies an application of the construction method using quadratic s-plateaued
functions. Moreover, a technique is given to classify the bent functions as regular,
weakly regular and non-weakly regular.

4.2 A Construction of Bent Functions Using s-Plateaued functions

In this section, our aim is to expand the method that is given in Theorem @ Recall
that, in that theorem, we indicate a method that constructs a bent function using a
determined number of 1-plateaued functions, namely near-bent functions. Now, we
aim to construct a bent function using s-plateaued functions for a positive number s
greater than 1.

The idea is to construct a bent function, F', by combining the s-plateaued functions in
such a way that Walsh spectrum of F' do not have zero value. This can be achieved by
combining the s-plateaued functions having no common element in supports of their
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Walsh transforms and the union of their support of Walsh transforms should be Z7.

Theorem 4.1. Let s be a positive integer and u € Zgs such that u = u1q* ' +ugq* 2+
-+ 4 ug with u; € Zg. For each u € Zgs, let f, be an s-plateaued function defined

from Z to Z,. Assume, supp(ﬁ) N supp(ﬁ) is empty for u,v € Zg and u # v.
Then, the function F': Zj x Z; — 7, defined by

F(%Qla?ﬂf" 7y8) - Z hu(y17y2;"' 7ys)fu(x),

uGqu
is bent where h,, is function defined from Z; to Z, and given by,

_ L ifu=pe T ety
hu<ylay27 ’ys) - { 0, ifotherwise.

Proof. Recall that, a special case of Parseval’s identity is computed for the proof of
Theorem Hence, for ¢ € Z;; we have,

> |7t

cELy

2 ¢ ifr=y
10, ifx#uy.

Then, we have

2 ~
> ‘fu(C)‘ = ‘Supp(fu) =g,
ceLy
since fu(c) = 0or¢"/2 forall ¢c € Zy. So, supp(fu) = ¢"%. Therefore, the

number of s-plateaued functions that is needed to construct a bent function is ¢°.

Let (a,b) € Zi x Z;. Then,

F\(a, b) = Z wF@y)—as=by _ Z wtY Z wF@y)—ao

el et yeLy zELD
= g wY E wzuEqu ha(y) fu(z)—a-x _
YyeLy x€LY
- Z w § :w(ho(y)fo(x)+"'+hqs—l(y)qu—l(x))fa-x — E w—b'yfy’(a)7
yEZZ erg yezg

where ¥ = y1¢° + v2¢* 2 + - + ys for y = (y1,92,-- - ,ys) and each y; € Z,.
Since supp( fi) N supp(f;) is empty and ,;, supp(fi) = Zy, each a is an element of
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exactly one f;. So, we have

Fla.b)] = |3 v fia)| = o™ Fyfa)

yELY

‘ n+s

O

To apply Theorem 4.1| on quadratic functions, we need g-many quadratic s-plateaued
functions with pairwise disjoint support of Walsh transforms and the union of their
Walsh transforms is Z;. In Chapter [3| we determine the Walsh spectrum of certain
quadratic functions from Z to Z,. These quadratic functions can be shown to be s-
plateaued functions.The Walsh spectrum depends heavily on whether m is even or odd
(see Theorem [3.9and Theorem [3.10). The following Lemma [{.2]is given to seperate
the Walsh spectrum of these quadratic s-plateaued functions.

Lemma4.2. Forn > 2,n > s> 0,andm > 1, letd},dy,--- ,d,_, € Z;. Foru €
Lgs, we consider the correponding uniquely determined elements uy,us, - -+ ,us € Zy

with u = u1¢* "' + usq* 2 + - - - + u, and we define the function f, : Ly — ZLq Dy,

w2 w2 u 2
fulzy, xoy oy xy) = dixy +dyxs+ ...+ dy x4 U Ty g1 F ULy g0+ F UsT.

For u,v € Zg with uw # v, the supports of the Walsh transforms of f,, and f, are
disjoint.

Proof. Using the method of the proof of Lemma [3.11] we obtain that,

fu(017027 T 7cn) 7é 0= (Cn—s—l—l;Cn—S—I-Qa e 'Cn) = (u17u27 T 7us)~

Therefore, the supports of the Walsh transforms of f, and f, intersect if and only if
there exists (¢, ¢, - -+, ¢,) € Zjy with,

(Cn*8+17 Cn—s42," " Cn) = (u17u27 o 7u8> = (Ula Uy + - 7US)7
which is not possible as (uy, ug, -+ ,us) # (v1, V2, , V). ]

Using Lemma we can easily obtain necessary number of quadratic s-plateaued
functions with desired properties in order to construct bent functions using Theorem
which is a generalization of Theorem In Theorem we use the idea of La-
grange interpolation and explain that the coefficients used for the interpolation cannot
be represented as polynomials using the paper of Carlitz [2]]. The same study is valid
for this case. In the following Proposition 4.3 we show that the function that is used
for the construction in Theorem . 1| cannot be representible as a polynomial.
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Proposition 4.3. For u € Zs, let h, be a function defined from 7 to Z, and given by,

_ a, l'fu:.rlqs_l_|_x2qs—2+..,+xs
hu(xhl?; 7x5) - { 07 l.](‘OtherWise,

where a # 0 (mod p). Then, h,, cannot be represented in a polynomial form.

Proof. In Proposition (3.1, we have shown this for s = 1 using the arguments in [2]].
The generalization can be achieved easily. ]

4.3 Examples and Classification of the Constructed Bent Functions

In this section, we give an application of Theorem [4.1| on certain quadratic functions.
For this purpose, we use the functions and their Walsh spectrums that are given in The-
orem [3.10/and Theorem [3.9] Then, we show how to classify the constructed functions
as regular, weakly regular and non-weakly regular bent functions. The notation given
as follows is valid for the whole section. For a positive integer s such thatn > s > 0,
let f, : Zi — Z, be defined by

w,.2 w,.2 U 2
fulzy, zoy oy ) = dixy +dyxs+ ...+ di_xr AU Ty g1 FUTp—syo+ o+ UsTp,

where u = u1¢* ' +upq* +- - Fug forug, up, - - us € Zgand dy, dy, - di_, € L.
Then, by Theorem (3.9 and Theorem [3.10} f, is an s-plateaued function. Note that, if
we add a linear term to an s-plateaued function, it will again be an s-plateaued func-
tion.

Also, by Lemmaf4.2|the set { f,,(x) : u € Z-} consists of s-plateaued functions having
pairwise disjoint support of Walsh transforms.

Let F': Z;”rs — 74 be the bent function constructed by Theorem @4.1|using these func-
tions. According to the last part of the proof of Theorem Fl;f‘, for each a € Zy, there
exists exactly unique u such that ‘ﬁ (a, b)‘ = ’fu(a) ‘ Thus, it is enough to observe the
Fourier coefficients of f, in order to determine whether F' is regular, weakly regular or
non-weakly regular.

Remark 4.1. Let m be even. According to Theorem spec(fy) = {0,¢""*?w"}
for v € Z,. This gives all the constructed bent functions using f, are regular by the
first item of Definition

Remark 4.2. Let m be odd and p = 1 (mod 4). Then, by Theorem [3.10} spec (f,) =
{q%sn(Du)w”}, forv € Zy and D, = ddy ---d;;_,. Let F : Z;** — 7Z, be the bent

function constructed by Theorem using f, for v € Z,. Then, using Definition
.12,

e 1(D,) = 1forallu € Z,» = F is aregular bent function.
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e 1(D,) = —1forallu € Z,» = F is a weakly regular bent function.

e 1)(D,) attains both of the values {—1,1} = [ is a non-weakly regular bent
function.

Remark 4.3. Let m be odd and p = 3 (mod 4). Using Theorem [3.10, we have
spec(fy) = {0, g w”n(Du)\/—lnﬂ} where v is a determined element of Z, and
D, = didy---dy_,. Let F': 77" — 7, be the bent function constructed by Theorem
.1 using the s-plateaued functions f,. Then,

1. Assumen —s =0 (mod 4).

e 1(D,) = 1forall u € Z,» = F is a regular bent function.

e 1(D,) = —1forallu € Z, = F is a weakly regular bent function.

e 1)(D,) attains both of the values {—1, 1} = F'is a non-weakly regular bent
function.

2. Assumen — s =2 (mod 4).

e 1(D,) =—1forall u € Z,» = F is aregular bent function.

e 1(D,)=1forallu € Z,» = F is a weakly regular bent function.

e 7(D,) attains both of the values {—1, 1} = F'is a non-weakly regular bent
function.

3. Assumen — s =1 (mod 4) orn — s =3 (mod 4).

e No regular bent function is constructed.

e 1(D,) =1forallu € Z, orn(D,) = —1 forall u € Z,- implies that F is
a weakly regular bent function.

e 1)(D,) attains both of the values {—1, 1} = F'is a non-weakly regular bent
function.

Example 4.1. Let u € Zyr2 and u = 27u; + uy for uy, ug € Zoy. Let by, : Z3, — Zoy
be functions defined as

1 ifu =27y +
ha(yr,y2) = { 0, if otherwise.

For each u, the 2-plateaued functions, f, : Z§7 — Zo7 are defined as

u, .2 w, .2
fu($1,$2,$3, 1‘4) = dlfL'l + d2$2 + U123 + ULy,

where d¥, d% € Z5,. Then, F : Z3, x 72, — Zy; defined by

F(x,y1,10) = Zu62272 fu()ho(y1,y2) is a bent function by Theorem

The set of quadratic residues of 27 is QR = {1,4,7,10, 13,16, 19,22, 25} and the set
of quadratic non-residues of 27 is QnR = {2,5,8,11,14,17,20,23,26}. F can be
classified by investigating the coefficients, d and d5.
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e For each f,, if d} and d} are chosen from the same set, QR or QnR, then F'is a
weakly regular bent function.

e For each f,, if d} is chosen from QR and d is chosen from QnR, or vice versa,
then F' is a regular bent function.

e If for some f, we choose d} and d} according to the first item and for the rest
of f,, the choice is done according to the second item, then F' is a non-weakly
regular bent function.

In the light of this information, a numerical example is given. For z = (x1, x2, T3, x4),
let f, be defined as follows
fulz) = { x% + x% 4+ U3 + usxy, ifus =20

22 4 203 + uy 3 + uswy, if uy # 0.

Then, F(x,y1,y2) = 2%2272 fu(x)hu(y1,ye) is a non-weakly regular bent function

defined from ZS, to Zy; using the arguments given by Remark Realize that,
F(x,y1,y2) = f,(z) which implies

2 2 :
) xi sty ey, iy =0
F(gjaylayQ)_ { $%+23§%+y1$3+y23§4, lny#O
Example 4.2. For u € Zos3, let f, : ng — Zo5 be 3-plateaued functions defined as

2 2
fulzy, o, 3, x4, x5) = dixy + dyxs + uixs + usxy + usxs,

where u = 125u; + 25uy + ug for uy, us, us € Zgs and dy, dy € Zs;.
Define, h,, : Z3s — Zos as

1, if u= 125y1 + 25y2 +y3

ho(y1, Y2, y3) = { 0, if otherwise.

For all choices of dY, dy, F : Z3; x Z3s — Zos defined by,

F(z,y1,02,93) = D ful@)hu(yr, 92, )

’LLGZ253

is a regular bent function by Remark 4.1]

40



CHAPTER 5

CONCLUSION

Bent functions are significant tools as they have the maximum Hamming distance to
the set of all affine functions and they are connected into various areas of mathematics
and computer science. It is crucial to study bent functions over the finite fields of odd
characteristics due to the interesting results.

The idea of construction of bent functions using near-bent functions or construction
of near-bent functions using bent functions is first considered in [11]. The study is
over finite fields with characteristic 2. Let [, be an n-dimensional vector space over
[F5. As near-bent functions exist over I with n odd and bent functions exist over [y
with n even, it is possible to get one from another by either decreasing or increasing
the dimension by one. All the four cases are considered. The case of the study in
[11], we are especially concerned in this thesis is to get a bent function using near-
bent functions by increasing the dimension. We would like to mention this part briefly
because it summarizes the idea of our construction methods in a simple manner.
Let fi, fo be near-bent functions from F} to F, with the property that supp(f1) N

supp(f2) = 0 and J,_, , supp(f;) = F3. Then, F(z,y) from F} x F to F, defined by

F(x,y) = yfi(z) + (y + 1) fa(z),

is bent. It is very easy to show this, actually. Let A be a linear functional on F} x [Fs.

Then,
F(\) = Z (—1)F@+r@)

(z,y)€FY xFo

_ 1) @+A@0) ERAVACOROYER)
(=1 + (=1)

(x,0)€FY xFy (z,1)€FT xFy

= F(\) = AN + h(Y).

Since supp(fl) and supp(fg) partition F%, we have ﬁ()\) — 2" . Hence F is bent.

This construction method is then adapted to the finite fields with characteristic p [3].
They joint the near-bent functions using the Lagrange interpolation formula and obtain
a bent function by increasing the dimension by p. Let IF, be the finite field with p
elements and ) be an n-dimensional vector space over IF,. To give examples, they
compute the Walsh spectrums of all quadratic functions defined from F) to . The
Walsh spectrum of quadratic functions defined over IF, and the ring of integers modulo
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q gives completely different results than the results in [3]. Then, they develope their
construction method such that the method uses s-plateaued functions instead of near-
bent functions and apply on quadratic functions.

In this thesis, we give an adaptation of some of the studies given in [3} 4, [11]. Over
finite fields with ¢ elements, we give a method to obtain bent functions using near-bent
functions (see Theorem [2.2)). Then, we compute the Walsh spectrum of all quadratic
functions defined from F} to [, (see Theorem . This ensures us to apply the con-
struction method on quadratic functions. Moreover, we adapt the method of construc-
tion to the ring of integers modulo ¢. Then, we generalize the method in such a way
that it uses s-plateaued functions instead of near-bent functions. Consider the quadratic
functions dx? + dox3 + ... + d_sx?_, for dy,do, -+ ,d,_s € Z;. We compute the
Walsh spectrum of these quadratic functions. Thus, we give examples of constructions
using these quadratic functions. To classify the constructed bent functions as regular,
weakly regular and non-weakly regular, we give detailed explanations.

Let h(z) be a monic, basic irreducible polynomial of degree & in Z,[x]. Then, the ring
R = Z,[z]/(h(z)) is a commutative ring with identity. It is proven that R is a Galois
ring by showing the principal ideal (p + h(x)) consists of all zero divisors and zero.
Actually, R is shown to be a Galois ring with ¢* elements and characteristic ¢ [16].
Therefore, the studies given in Chapter [3]and Chapter ] are also valid on Galois rings.

Now, we would like to give a summarized list of contributions.

e We give the first adaptation of some of the studies in [3, 4} [11] to the finite fields
with ¢ elements and the ring of integers modulo gq.

e The functions that are used as a Lagrange coefficient in Theorem [3.3|and Theo-
rem[4.1] cannot be represented as polynomials. We demonstrate this using some
of the arguments given in [2]. Moreover, we show that there is no alternative of
a polynomial to use for Lagrange interpolation formula.

e Consider the functions dy 23 + dox3 + ... + dp_sz)_ fordy,do, - ,dp_s € Z
and 0 < s < n—1. We compute the Walsh spectrum of these quadratic functions
over Z, and all quadratic functions over [F,. The results and techniques used for
the computations are completely different than the ones in [3]].

e We compute the Gauss sum over Z,. That ensures us to obtain the Walsh spec-
trum of the quadratic functions, defined as dya? + dox3 + ... + d,,_s22_, for
dl,dg,"' adn—s EZ; and0<s<n-—1

e To apply the construction theorems (Theorem [2.2) Theorem [3.3| Theorem [.TJ),
we need functions having pairwise disjoint support of Walsh transforms. So, we
give a technique to determine quadratic functions with pairwise disjoint support
of Walsh transforms.

e In the application parts, we explained how to classify the constructed bent func-
tions as regular, weakly regular and non-weakly regular in detail. (see Sections

2.4.61F.3).

In Section [2.4] we construct bent functions using near-bent functions over F,.
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When p is fixed, the percentage of the non-weakly regular bent functions is
greater than the percentage of regular and weakly regular bent functions. Also,
the number of bent functions we constructed is greater than the number of bent
functions constructed in [3] for a fixed p.

In Section and Section 4.3 we give applications using near-bent functions
and s-plateaued functions over Z, = Z,~. For these cases, if m is even all
the constructed bent functions are regular. If m is odd great majority of the
bent functions are non-weakly regular. Moreover, we construct more bent func-
tions compared to [3] and the percentage of non-weakly regular bent functions is
greater. For an odd m, as p or m increases this percentage of non-weakly regular
functions gets greater.

To construct bent functions, we use the idea of Lagrange’s interpolation formula. As
a future work, one can search for any other idea to joint the s-plateaued functions to
obtain bent functions.

In [[11]], different ideas are given to obtain a bent function from near-bent functions
or obtain a near-bent function from bent functions. Generalizing these ideas to the
characteristic p case might be interesting.
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