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ABSTRACT

EFFECTS OF ATMOSPHERIC CORRECTION ON VEHICLE
CLASSIFICATION WITH SINGLE AND DUAL BAND INFRARED IMAGES

ÖZSARAÇ, SEÇKİN

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

August 2014, 155 pages

A vehicle classification system, which uses features based on radiometry, is developed
for both single band and dual band infrared (IR) image sequences. For classification
using dual band sequences, the process is divided into six components. These are
registration, fusion, moving vehicle detection, geometry estimation, atmospheric ef-
fects removal, and classification. In the single band case, registration and fusion steps
are not used. The first major novelty of the thesis is an atmospheric correction, i.e.
atmospheric effects removal, system that considers the spectral characteristics of the
detector, lens, and filter. In this system, an enhanced temperature calibration method
is developed and it is shown that the temperature accuracy for the dynamic range of
the IR camera is very close to the ultimate goal, i.e. Noise Equivalent Temperature
Difference (NETD) value of the camera. Furthermore, as the atmospheric effects vary
from pixel to pixel, a geometry estimation method is developed to estimate the Line
Of Sight (LOS) geometry for each pixel using only the Global Positioning System
(GPS) coordinates of the camera and a Point Of Interest (POI) in the scene. The
second major novelty of the thesis lies in the usage of the atmospherically corrected
radiance values as features to improve the classification performance of the detected
objects. The motivation is, each vehicle class has a discriminating radiance value that
originates from the source temperature of the object modified by the intrinsic charac-
teristics of the radiating surface. As a consequence, significant performance gains are
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achieved due to the use of radiance values in classification both for a single band and
a dual band measurement systems.

Keywords: Atmospheric Correction, Radiometric Camera Calibration, Line of Sight
Estimation, Vehicle Classification, Moving Vehicle Detection, IR Image Fusion, IR
Image Registration
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ÖZ

TEK VE ÇİFT BANT KIZILÖTESİ İMGELERLE ARAÇ SINIFLANDIRMAYA
ATMOSFERİK DÜZELTMENİN ETKİLERİ

ÖZSARAÇ, SEÇKİN

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Ağustos 2014 , 155 sayfa

Tek bant ve çift bant kızılötesi (KÖ) imge dizileri için, ışınım ölçümüne dayalı özni-
telikleri kullanan, bir araç sınıflandırma sistemi geliştirilmiştir. Süreç, çift bant dizi-
lerinde sınıflandırma için, altı bileşene bölünmüştür. Bunlar çakıştırma, kaynaştırma,
hareketli araç algılama, geometri kestirme, atmosferik etkileri giderme ve sınıflandır-
madır. Tek bant durumunda, çakıştırma ve kaynaştırma adımları kullanılmamaktadır.
Tezin getirdiği birinci ana yenilik, sezimci, lens ve süzgecin izgesel karakteristikleri-
nin hesaba katıldığı, atmosferik düzeltme yani etmosferik etki giderme sistemidir. Bu
sistemde, iyileştirilmiş bir sıcaklık kalibrasyon yöntemi geliştirilmiştir ve KÖ kame-
ranın dinamik çalışma aralığı için yöntemin sıcaklık doğruluğunun nihai hedefe yani
Gürültü Eşdeğer Sıcaklık Farkına (NETD) çok yakın olduğu gösterilmiştir. Ayrıca,
pikselden piksele atmosfer etkilerinin değişmesi sebebiyle, sadece kameranın Küre-
sel Konumlandırma Sistemi (GPS) ve sahnedeki bir İlgi Noktası (POI) koordinatlarını
kullanarak her pikselin Görüş Hattı (LOS) geometrisini kestirmek için bir geometri
kestirim yöntemi geliştirilmiştir. Tezin getirdiği ikinci ana yenilik, algılanmış nesne-
lerin sınıflandırma başarımını artırmak için atmosfer etkilerinden arındırılmış ışınırlık
değerlerinin öznitelik olarak kullanılmasında yatmaktadır. Buradaki güdülenme; her
araç sınıfının, nesnenin asıl sıcaklığının ışıma yapan yüzeyin içkin özellikleri ile de-
ğiştirilmesi sonucu oluşan, ayırıcı ışınırlık değerlerine sahip olmasıdır. Sonuç olarak,
tek bant ve çift bant ölçüm sistemleri için sınıflandırmada ışınırlık değerlerinin kulla-
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nılmasına bağlı olarak önemli başarım kazançları elde edilmiştir.

Anahtar Kelimeler: Atmosferik Düzeltme, Işınım ile İlgili Kamera Kalibrasyonu, Gö-
rüş Hattı Kestirimi, Araç Sınıflandırma, Hareketli Araç Algılama, KÖ İmge Kaynaş-
tırma, KÖ İmge Çakıştırma
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CHAPTER 1

INTRODUCTION

Infrared (IR) imaging equipment are widely used in various applications such as se-

curity, traffic control, surveillance, defense industry, automotive industry, building

diagnostics, automation, gas detection, electrical defect inspection, mechanical de-

fect inspection, and also as test and radiometric measurement tools.

For security, traffic control, and surveillance purposes; vehicle classification is an

important application area. Classification using videos captured with visible band

cameras is a well studied topic [1–21]. Besides, vehicle classification in IR image

sequences is proposed in [22–36]. However, to author’s knowledge there is no study

that uses the radiometry related information in vehicle classification. In this context,

a methodology is proposed to be used with either a single band IR camera system

or a dual band IR camera system. The novelty of the method is the usage of the ra-

diometric quantities in the classification. Moreover, to make the features geometry

independent, atmospheric effects removal1 method including the IR camera’s radio-

metric calibration is proposed, too.

1.1 Scope of the Thesis

In this thesis, two methods for vehicle classification is proposed. The first one is for

the single band IR camera case. In order to evaluate the performance of the proposed

method a reference system will be used and its flow chart is given in Fig.1.1. In this

1 Throughout the thesis, “atmospheric effects removal” and “atmospheric correction” terms are used inter-
changeably.
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setup, the digital data output of the IR camera is used as input. Digital data, which is

the raw output of the IR camera, is called Digital Number (DN ) values. DN data is

fed into a vehicle detection block so that the objects of interests are separated from

the background (BG) and vehicle blobs are obtained. Hence, the Region Of Interests

(ROI) for each blob are given at the output. ROI data is then fed into classification

process and the process outputs the class label of the object. The classes are limited

to vehicle types car, van, truck/bus, and BG clutter. In this setup, the only manual

operation is the selection of a line on the frame so that only a single vehicle blob

intersects with this line on the frame.

Figure 1.1: Reference Method for the Single Band Measurement System

To enhance the classification performance; the radiometric quantities, e.g. temper-

ature, radiance, etc., corresponding to the ROI data are proposed to be used in the

classification process. The flow chart of the proposed method for the single band

measurement case is shown in Fig.1.2. The raw output of the IR camera, that is DN ,

contains only the contrast information about the scene. DN values do not contain

any radiometric information if they are used alone. On the other hand, if DN data is

used together with a radiometric calibration process, DN data can be converted to ra-

diometric quantities. However, according to [37–40] these quantities strongly depend

on the atmospheric propagation conditions especially when the distance between the

IR camera and the ROI is large. Therefore, DN data and the prior information are

firstly used to find the geometry between the camera and the scene. Prior information

comprises Global Positioning System (GPS) of the camera, GPS of a predetermined

point in the scene, and also the FOV value of the camera. Then, the geometry data that

is the altitude (h), zenith angle (θ), and range (R) values are used in the atmospheric

effects removal process. At the output of the relative process, geometry independent

data that is called source radiance data is computed. Finally, the source radiance data

is used together with theROI data in the classification process. Hence, a performance

increase in the classification is expected since the source radiance contains discrimi-

2



Figure 1.2: Proposed Method for the Single Band Measurement System

natory features for each class. For example, the apparent temperature of the wheel of

a truck is relatively higher than the temperature of the wheel of a car. Therefore, the

source radiance distribution of a wheel of the object of interest is a valuable feature

for classification.

The second method is proposed for a dual channel system. The system may be either

a single camera responsive to two different IR bands or two different IR cameras. The

flow chart of the reference method for the dual band system is shown in Fig.1.3. In

this setup, DN data of the Middle Wave IR (MWIR) band and DN data of the Long

Wave IR (LWIR) band are used. Firstly, MWIR DN and LWIR DN are registered

for the case of two different cameras. Then the registered data are fed into the fusion

process. At the output of the fusion process, a single Fused DN data is obtained,

which is an enhanced image in terms of contrast. The rest of the system is the same

with the single band reference system.

Similar to the single band case, the radiometric quantities of dual band are proposed

to be used in the classification process. The flow chart of the proposed method for the

dual band system is shown in Fig.1.4. The difference between the reference system

is, the registered DN data is used to find the h, R, and θ data for each channel.

Actually, these data are the same for each channel but they are drawn separately

for completeness since atmospheric effects removal process uses these data together

with the DN data of the respective channels. Hence, geometry independent MWIR
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Figure 1.3: Reference Method for the Dual Band Measurement System

Source Radiance and LWIR Source Radiance are estimated and given as input to

the classification process. Finally, the source radiance data of two bands are used in

the classification process together with theROI data of the vehicle detection process.

Hence, a performance increase in the classification is expected similar to the single

band case. In the dual band case, a better performance gain is expected since the

source radiance of two different IR bands shall be more discriminative than the single

band case. This is because, according to Wien’s law hotter objects shall yield larger

contrast with respect to the background in the MWIR band, whereas colder objects

shall yield larger contrast in the LWIR band.

1.2 Outline of the Thesis

In Chapter 2 the registration process, which is used only for the dual band measure-

ment system, is given. Chapter 3 explains the details of the proposed atmospheric

correction system, which contains the geometry estimation and atmospheric effects

removal methods. In Chapter 4, data fusion, which is again used only for the dual

band measurement system, is explained. Literature review and also the utilized fusion

method are given in this chapter, too. Moving vehicle detection method is explained

in Chapter 5 again with a detailed literature review. The final stage of the system

is the classification method and it is given in Chapter 6 together with all the related

studies on vehicle classification. Chapter 7 presents both measurement setups used in

the thesis. In Chapter 8, the analysis results of each method are given and Chapter 9
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Figure 1.4: Proposed Method for the Dual Band Measurement System

concludes the thesis with a brief summary and potential future work.

In Appendix A, the basics of the infrared theory is given. Infrared theory is used in

the derivation of the atmospheric effects removal method. In Appendix B, the detec-

tor types are explained so that the characteristics of the IR cameras of measurement

setups can be tracked. Appendix C explains the geocentric earth radius used in the

geometry estimation method derivations. A brief review of multiresolution theory,

which is used in data fusion process, is given in Appendix D. The implemented soft-

ware, which is called Infrared Signature Analysis software (IRSA), is explained in

Appendix E. IRSA is used for starting from loading the IR image sequences until to

the end of feature extraction. Hence, all the processes in the flow chart of the system

except the classifier are handled by IRSA.
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CHAPTER 2

REGISTRATION

When multiple IR detectors are used, captured frames do not represent the same pro-

jection of the scene. Therefore, in the applications where the projection of the same

scene with various sensors is desired, registration process is used.

2.1 Affine Registration

In [41], IR images of a patient are captured. Then, using the special markers on

the body, patient movement is compensated using affine transformation for temporal

analysis purposes. The captured digital photo potentially yields a rotated, scaled,

shifted, and slightly sheared image of the area of the interest. The equation of the

affine transformation is,

x′
y′

 =

a11 a12

a21 a22

x
y

+

a13

a23

 (2.1)

where x and y are the image coordinates of the original frame. Primed coordinates

are the coordinates obtained by image registration. aij’s for i, j = 1, 2 are the pa-

rameters of the affine transformation that is to be estimated. a13 and a23 are the bias

coordinates. To estimate aij values, at least three non-collinear landmarks are needed.
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2.2 Perspective Registration

In [42], the perspective registration is given by,

x′ =
a11x+ a12y + a13

b11x+ b12y + 1
(2.2)

y′ =
a21x+ a22y + a23

b21x+ b22y + 1
(2.3)

where aij and bkl for i, k, l = 1, 2 and j = 1, 2, 3 are the parameters of the perspective

registration. Clearly, if bkl = 0 ∀k, l then the registration becomes an affine regis-

tration. In the proposal, the authors approximate the perspective transformation as

piecewise affine. The reference image is divided into tiles and an affine registration is

applied in order to find the best matching tiles in the registered image. Then, the esti-

mated optimum tiles are used to compute the global perspective transformation. The

parameters are computed iteratively using a variation of Levenberg-Marquardt non-

linear least squares optimization method. While the parameters of affine registration

is being evaluated, the search criterion is to minimize the sum of squared distances

between the two images. However, in the multi-band IR case, the pixel values are not

expected to be the same even for the same object (See Sec.3.2). In addition, images

corresponding to different IR bands clearly have dissimilar contrast. Therefore, the

mentioned perspective registration method is not suitable for our case.

In [43], a hierarchical image registration algorithm is proposed. Log-polar transform

is used in the spatial domain rather than in the frequency domain to cope with simi-

larity transformation consisting of rotation, scale, and translation. Then, the log-polar

transform is coupled with a non-linear least squares algorithm to estimate the perspec-

tive transformation parameters. The log-polar registration step aims to align the two

images using only rotation, scale, and translation. Hence, a fine initial estimate for

the following perspective registration step is obtained. Perspective registration step,

which is based on non-linear least squares optimization with Levenberg-Marquardt

algorithm, yields sub-pixel accuracy. However, the optimization problem is basically

the minimization of the difference between the pixel values of the reference and the

registered images. The assumption of the method is that there is an equality or a lin-

ear relationship between the pixel values of the two images. As a result, similar to the

previous work the proposed perspective registration method is not applicable to our
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case due to the constraints of the dual band IR imaging.

2.3 Utilized Registration Method

In this thesis, a controlled measurement setup has been used. A fair amount of ro-

tation, translation, scaling, and shearing is expected. Rotation exists because two

cameras are mounted on two separate tripods. A small translation is expected as

two different cameras are used. Although theoretical field of view (FOV) values of

the cameras are the same, they are different in reality and therefore there is a small

amount of scaling issue. Finally, as the center of rotation is not the same, shearing is

expected as well. Since all of these effects are minor, the linear affine transformation

is suitable for the registration process of the dual band case. Hence, a set of manually

chosen points in the MWIR band image that correspond to a set of points in the LWIR

band image are used for the estimation of transformation.

Adapting the method in [44], Eq.(2.1) is rewritten as,

x′
y′

 =

a11 a12 a13

a21 a22 a23



x

y

1

 (2.4)

With n number of manually chosen landmark points, the following linear system of

equations is obtained,

x′1 . . . x′n

y′1 . . . y′n

 =

a11 a12 a13

a21 a22 a23



x1 . . . xn

y1 . . . yn

1 . . . 1

 (2.5)

where xi and yi are the image coordinates of the ith sample in original frame. Primed

coordinates are the ones of the registered frame.
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Let the following matrix definitions be made as,

X ′ ,

x′1 . . . x′n

y′1 . . . y′n

 (2.6)

A ,

a11 a12 a13

a21 a22 a23

 (2.7)

X ,


x1 . . . xn

y1 . . . yn

1 . . . 1

 (2.8)

Then Eq.(2.5) becomes,

X ′ = AX (2.9)

The affine transform matrix can be estimated using the pseudo-inverse technique as,

Â = X ′X T
(
XX T

)−1
(2.10)

where Â is the least-squares estimate of the affine transform matrix, A.
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CHAPTER 3

ATMOSPHERIC CORRECTION SYSTEM

The captured data with IR detectors is affected by the atmospheric variations. Ac-

curate compensation of atmospheric effects of data captured by an IR camera is cru-

cial for several applications such as vegetation monitoring, temperature monitoring,

satellite images, hyperspectral imaging, simulation and modeling, surface properties

characterization, and IR measurement interpretation. Atmospheric effects depend

on the temporal changes, i.e. year, season, day, hour, etc., and on the Line Of Sight

(LOS) geometry between the camera and the measured scene. The orientation and the

optical depth of the camera significantly affect the variation of the geometry across

the pixels. Therefore, the removal of the atmospheric effects is an important task in

the above mentioned applications where IR data independent of temporal and spatial

variations is desired.

In [45], atmospheric compensation for satellite images in MWIR band is given, which

is based on user defined parameters. Hence, the method lacks physical modeling.

In [46], a physical approach to correct the atmospheric effects is proposed. Using

Modtran R© [47] with the measured meteorological parameters and the temperature of

a specific point in the scene, the surface brightness values for different times of a day

are estimated. For the LOS geometry, high resolution digital surface model (DSM)

is utilized. However, DSM is available only for a limited number of regions on the

world.

There are a number of atmospheric correction studies for satellite images. In [48], an

atmospheric correction method based on calibrated radiance measurements is given.

The meteorological parameters are measured and also the Temperature Independent
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Spectral Indices of Emissivity (TISIE) is computed using the night time field mea-

surements. Day time directional reflectivity values are computed using the TISIE

data. A Bidirectional Reflectance Distribution Function (BRDF) model is obtained

from these directional reflectivity values. Then, by combining all these data atmo-

spheric correction is applied with the help of Modtran R© and the surface brightness

temperature values are obtained. Since the method uses night time measurements to

obtain the BRDF model, it is impractical for applications where a field measurement

is not possible. In [49], an atmospheric correction method based on meteorologi-

cal measurements is proposed for the specific Landsat-5 Thematic Mapper (TM) and

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) bands. Since the method de-

pends on field measurements of the object being measured, it is again impractical.

A method based on vicarious calibration, which uses the output of the radiometric

calibration process as input, is given in [50] and the method yields atmospherically

corrected radiance values. The method is specialized to estimate the water-leaving ra-

diance values in the Near IR (NIR) and visible bands. Another atmospheric correction

method that is specific to Landsat 7 ETM+ band and depends on field measurements,

is proposed in [51]. The method uses the normalized spectral response of the sensor,

meteorological measurements and also the emissivity measurements of the object of

interest.

A novel atmospheric correction system is developed. The main advantage of the pro-

posed system is the accuracy due to the physical measurements and also the detailed

consideration of the radiometric relationships. On the other hand, the method does

require specific GPS and meteorological measurements as opposed to the user de-

fined modeling approach. Our atmospheric effects removal method is based on the

Radiative Transfer (RT) components, i.e. spectral atmospheric transmittance and path

radiance with scattering, for the specific LOS geometry of each pixel. However, there

is no DSM with an appropriate resolution for our measurement site in Ankara. There-

fore, as the first contribution, we propose a geometry estimation method in order to

be able to accurately compute the atmospheric profile. The geometry of each pixel

for the measured scene is computed using the proposed process, where only two GPS

coordinates are used. While obtaining the range and zenith angle of each pixel, the

shape of the earth is considered and the view vector of the camera is also found.
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Then the geometry data and the measured meteorological data are used to obtain the

spectral transmittance and path radiance with Modtran5 R©. Unlike most of the atmo-

spheric correction studies present in the literature, our method does not rely on any

measurement or knowledge of the intrinsic properties of the scene such as emissivity,

BRDF, temperature, etc. This is because, our primary goal is to output a radiometric

quantity, which is independent of temporal and spatial variations as much as possi-

ble. In addition, we aim to find a quantity, which requires low computation power.

Hence, we give a detailed derivation of the atmospheric correction with the radiomet-

ric relationships that considers the spectral characteristics of the detector, lens, and

filter. In order to have a complete system, we introduce an enhanced temperature cal-

ibration method for the IR cameras that reaches a temperature accuracy very close to

the ultimate goal, i.e. Noise Equivalent Temperature Difference (NETD) value of the

camera.

The proposed system mainly consists of two methods, which are the geometry estima-

tion and the atmospheric effects removal. Geometry estimation aims to find the range

and zenith angle values corresponding to each pixel together with the altitude of the

camera. Then, the output of the geometry estimation is fed into atmospheric effects

removal process. These variables are used to compute the pixel-wise atmospheric

transmittance and path radiance with scattering. Afterwards, these RT components

are removed from the apparent radiance values, which are obtained with the help of

proposed radiometric calibration method. The flow chart of the proposed system is

shown in Fig.3.1.

Figure 3.1: Flow Chart of the Atmospheric Correction System
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3.1 Geometry Estimation

To estimate the geometry between the camera and the points corresponding to each

pixel on a frame, it is assumed that two GPS data are available. These are the GPS

coordinate of the camera and the GPS coordinate of a Point Of Interest (POI). POI is

a predetermined point in the scene that is projected to a pixel on the frame.

In practice, almost all the GPS measurement devices output geodetic latitude rather

than geocentric latitude. Hence, we assume that there are two sets of geodetic latitude,

longitude, and altitude measurements. Let these values be latcam, loncam, and hcam

for the GPS of the camera and latPOI , lonPOI , and hPOI for the POI. In addition,

it is assumed that the horizontal and vertical FOV, FOVh and FOVv, of the camera

and also the horizontal and vertical frame sizes, m and n, are known. The camera is

located at a higher location than the measured scene, that is hcam > hPOI and also it

is directed downwards.

In order to derive the geometric equations, a coordinate system shall be defined. Let

the origin of the coordinate system be at the core of the earth, y be the axis that is

parallel to the tangential plane at the camera location, z be the axis increasing upwards

with respect to the ground and x be the corresponding perpendicular axis. Coordinate

system axes together with the image plane, angle, and distance definitions are shown

in Fig.3.2(a), Fig.3.2(b), and Fig.3.2(c).

To find the range and zenith angle for each pixel, the radius of the earth shall be used.

The earth is not a perfect sphere so effective radius (Reff ) of the earth or in other

words the radius of curvature at zero altitude shall be obtained. The effective earth

radius, whose derivation is given in App.C, is as follows

Reff =

√
R4
eq cos(latcam)2 +R4

pol sin(latcam)2

R2
eq cos(latcam)2 +R2

pol sin(latcam)2
(3.1)

where Req is the radius of the earth at the equator and Rpol is the radius at the pole.

Then, altitudes for each pixel shall be determined. In this context, it is assumed that

the points corresponding to each pixel on the frame lie on the same altitude with the

altitude of the POI, that is to say all the points are isoplanar. This assumption holds

as long as the scene is a nearly flat surface. However, structures such as buildings,
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(a) x and y axes (b) y and z axes

(c) Closer view of y and z axes (d) Geometry for the Range Equation

Figure 3.2: Coordinate System Definitions

hills, valleys, etc. decrease the accuracy of the proposed method’s output for the

corresponding pixels.

On an isoplanar surface, the altitude of a pixel, h(i, j), is given by

h(i, j) = hPOI (3.2)

where i and j are the respective horizontal and vertical frame coordinates on the

image plane. Thus, the scene is isoplanar with a radius of Reff + hPOI . Since the

optical depth of IR cameras is on the order of a few kilometers it can be assumed

that the isoplanar surface in the FOV of the camera lies on a sphere. Therefore, the

equality for a sphere is written as follows,

x2 + y2 + z2 = (Reff + hPOI)
2 (3.3)

15



Afterwards, the azimuth angle is simply written as,

ψ(i, j) = ψ(i) = arctan

(
x

y

)
∀j = 1, 2, ..., n (3.4)

The elevation angle is written as,

α(i, j) = α(j) = arctan

(
y

Reff + hcam − z

)
∀i = 1, 2, ...,m (3.5)

Combining Eqs.(3.3-3.5), we get the following equality.

y2 tan2 ψ(i) + y2 + [Reff + hcam − y cotα(j)]2 = (Reff + hPOI)
2 (3.6)

y2

[
1 + tan[ψ(i)]2 +

1

tan[α(j)]2

]
− 2 cot[α(j)](Reff + hcam)y+

h2
cam − h2

POI + 2Reff (hcam − hPOI) = 0 (3.7)

Let yr be the proper root of Eq.(3.7) and let the following vector definitions are made

C̄ , [0, 0, Reff + hcam] (3.8)

P̄ (i, j) , [yr tanψ(i), yr, Reff + hcam − yr cotα(j)] (3.9)

where C̄ and P̄ (i, j) are row vectors that hold the three dimensional (3D) coordinates

of the camera and the 3D coordinates of the projected point (i, j), respectively. Then,

the range between the camera and a point in the scene can be written as,

R(i, j) = ||C̄ − P̄ (i, j)||2 (3.10)

and the zenith angle is computed as,

θ(i, j) = π − arccos

[
hcam − hPOI
R(i, j)

]
(3.11)

Up to this point, azimuth and elevation angles are defined using the 3D coordinates

of the points in the scene as shown in Fig.3.2. Alternatively, they can be easily com-

puted using the two dimensional (2D) image plane coordinates, i and j, and also the

respective FOV value as,

ψ(i) =

(
i− m

2
− 1

2

)
FOVh
m

(3.12)

α(j) =

(
j − 1

2

)
FOVv
n

+ α0 (3.13)
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for i = 1, 2, ...,m and j = 1, 2, ..., n where α0 is the angle between the lower limit of

the FOVv and the z axis as shown in Fig.3.2(b).

The only unknown in Eq.(3.12) and Eq.(3.13) is α0 value, which can be found by

using the GPS coordinates of the camera and the POI in the FOV. Assume the POI is

projected to the indices (i′, j′) on the image plane, where the geometry is shown in

Fig.3.2(d). Then, the central angle between the two GPS coordinates is found by [52]

∆δ = arccos[sin latcam sin latPOI +

cos latcam cos latPOI cos(loncam − lonPOI)] (3.14)

and the range value for the POI is found using the cosine theorem with the following

equation.

R(i′, j′) = [(Reff + hPOI)
2 + (Reff + hcam)2 −

2(Reff + hPOI)(Reff + hcam) cos ∆δ]0.5 (3.15)

Once R(i′, j′) is found, we can write the elevation angle of the POI using the geomet-

rical identities as

α(j′) = arctan

[
R(i′, j′) sin θ(i′, j′) cosψ(i′)

hcam

]
(3.16)

Then, α0 is computed using Eq.(3.11), Eq.(3.12), Eq.(3.16), and Eq.(3.13) in the

given order after replacing i and j with the POI indices i′ and j′. At the end, since

all the unknowns are found, P̄ (i, j) vector can be calculated ∀i, j using Eq.(3.12),

Eq.(3.13), Eq.(3.6) and Eq.(3.9) in order. Then, using Eq.(3.10) and Eq.(3.11) range

and zenith angle values are estimated for each pixel.

3.2 Atmospheric Effects Removal

Once the LOS geometry between the camera and the measured scene is found, the

atmospheric correction method computation can be done. Our goal in this method is

to come up with a radiometric quantity, in which the influence of the atmosphere is

subtracted. Moreover, we seek a quantity, which is possible to compute with a very

low computational complexity. Consequently, we aim to compute the radiance of
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Figure 3.3: Flow Chart of the Atmospheric Effects Removal Method

the object of interest without atmospheric effects. The flow chart of the atmospheric

effects removal method is shown in Fig.3.3.

To start with, the well-known image irradiance equation [53] is written as,

E(i, j) = L(i, j)
π

4

(
d

f

)2

cos4 φ(i, j) (3.17)

where E is the irradiance [Wm−2], L is the scene radiance [Wsr−1m−2], d is the

aperture diameter of the imaging system [mm], f is the focal length of the imaging

system [mm] and φ is the angle subtended by the principal ray from the optical axis

[rad].

In [54, 55], the brightness of the image that the camera records is given with the

relation,

I(i, j) = E(i, j)texp (3.18)

where I is the image brightness and texp is the time that the detector is exposed to the

scene radiation, i.e. Integration Time (IT).

IR cameras measure the apparent pass-band integrated spectral scene radiance. Hence,
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Eq.(3.17) and Eq.(3.18) shall be written as a function of wavelength,

Ex(i, j, λ) = Lx(i, j, λ)
π

4

(
d

f

)2

cos4 φ(i, j) (3.19)

where λ represents the wavelength [µm], Ex is the spectral irradiance [Wm−2µm−1],

and Lx is the spectral radiance [Wsr−1m−2µm−1]. Subscript x denotes the compo-

nent being recorded, a car, a calibration source, etc.

Ix(i, j) =

∫ λhigh

λlow

Ex(i, j, λ)texpϕdet(i, j, λ)ϕlens(i, j, λ)ϕfilter(i, j, λ)dλ (3.20)

where ϕdet is the normalized spectral responsivity of the IR camera detector, ϕlens is

the spectral transmittance of the IR camera lens, ϕfilter is the spectral transmittance

of the filter used in the IR camera, λlow and λhigh are the respective lower and upper

wavelength limits that the responsivity of the IR camera is greater than zero.

Adapting from [46], the apparent spectral scene radiance can be computed with the

following relationship,

Lx(i, j, λ) = Lemis,x(i, j, λ) + Latm,x(i, j, λ) + Lref,x(i, j, λ) (3.21)

where Lemis,x is the self-emission of the recorded object, Latm,x is the path radiance

component in the recorded geometry, and Lref,x is the reflected radiance from the

object being recorded. Lemis,x is given by

Lemis,x(i, j, λ) , Lbb[λ, Tx(i, j)]εx(i, j, λ)τx[λ,Rx(i, j), hx(i, j), θx(i, j)] (3.22)

Tx is the surface temperature [K] of the object being recorded, εx is the spectral emis-

sivity of the object, τx is the spectral atmospheric transmittance between the object

and the IR camera depending on the range, altitude, and zenith angle geometry that are

Rx, hx, and θx respectively. Lbb is the spectral blackbody radiance [Wsr−1m−2µm−1]

computed using Planck’s Law given in Eq.(A.2).

Latm,x can be computed using

Latm,x(i, j, λ) , Lpath,x[λ,Rx(i, j), hx(i, j), θx(i, j)] (3.23)

where Lpath,x is the spectral atmospheric path radiance with scattering between the

object and the IR camera depending on Rx, hx, and θx for the environment condition

during recordings.
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For simplicity and feasibility, we assume Lref,x(i, j, λ) = 0 for every i ∈ [1,m],

j ∈ [1, n], and λ ∈ [λlow, λhigh]. This assumption holds as long as the measurements

are planned for the conditions with minimum reflections and the pass-band of the

camera is close to the thermal band rather than the NIR band.

As we have defined the building blocks of the radiometric relationships, we will con-

tinue with the derivation of the estimation of our objective quantity, i.e. object ra-

diance in the following subsection. Afterwards, both the RT computations and the

proposed temperature calibration, which are used in object radiance estimation, will

be given.

3.2.1 Object Radiance Estimation

To derive the object radiance estimation method, firstly let the spectral transfer func-

tion of the camera (ϕcam) be defined as,

ϕcam(i, j, λ) , ϕdet(i, j, λ)ϕlens(i, j, λ)ϕfilter(i, j, λ) (3.24)

and let the terms that do not depend on the incident radiance be defined as,

ξ(i, j) ,
π

4

(
d

f

)2

cos4 φ(i, j)texp (3.25)

With the above mentioned definitions, the brightness recorded by the IR camera can

be rewritten as

Ix(i, j) =

∫ λhigh

λlow

ξ(i, j)Lx(i, j, λ)ϕcam(i, j, λ)dλ (3.26)

Infrared cameras give DN at the output with a typical resolution of 14 to 16 bits.

According to [55], there is a nonlinear relationship between the digital number and

the brightness values. Therefore,

DNx(i, j) = f [Ix(i, j)] (3.27)

where f(.) is a monotonic increasing non-linear function. According to [55], cos4

effect is negligible since most modern visible camera lenses are designed to com-

pensate for this effect and provide a nearly constant mapping between radiance and

irradiance. However, this is not the case for IR cameras. To compensate this effect
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and also the highly non-uniform response characteristics of the detector elements,

Non-Uniformity Correction (NUC) process is applied in the IR cameras.

The NUC process linearizes the relation between the DNx and Ix values. Then,

without loss of generality, we can assume that f(.) is one-to-one as long as the quan-

tization errors are relatively small, which is the case for 14 to 16 bit resolution IR

cameras. Therefore, function f(.) can be treated as a linear invertible function as

long as an appropriate NUC is used.

When NUC is applied, cos4 effect in the image irradiance equation is removed and the

spatial uniformity of the camera’s transfer function is obtained due to linearization.

Hence, Eq.(3.26) simplifies to

Ix(i, j) =

∫ λhigh

λlow

ξLx(i, j, λ)ϕcam(λ)dλ (3.28)

For the rest of the thesis, it is assumed that an appropriate NUC is applied and the IR

camera works in the linear regime1. Hence, the terms that become independent of the

frame coordinates will be simply written without the i and j indices.

Since our aim is to remove the atmospheric effects, the output of the IR camera for

the measurements that is DNx=meas shall be used. Firstly, the following equalities

hold as long as the same ξ and ϕcam is used for both the radiometric calibration and

the measurement. This is the case when the same camera, lens, filter, IT, and NUC

table are used. As a result, the following equations are obtained.

DNx=meas(i, j) = DNx=cal(i, j) (3.29)

f [Ix=meas(i, j)] = f [Ix=cal(i, j)] (3.30)

Ix=meas(i, j) = Ix=cal(i, j) (3.31)

Ix=meas and Ix=cal are computed using Eq.(3.28). Then using Eq.(3.21), we can sim-

1 Linear regime is the interval, where DNx changes linearly with Ix.
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plify Eq.(3.31) as, ∫ λhigh

λlow

Lemis,x=meas(i, j, λ)ϕcam(λ)dλ+∫ λhigh

λlow

Latm,x=meas(i, j, λ)ϕcam(λ)dλ =∫ λhigh

λlow

Lemis,x=cal(i, j, λ)ϕcam(λ)dλ+∫ λhigh

λlow

Latm,x=cal(i, j, λ)ϕcam(λ)dλ (3.32)

τx and Lpath,x components present in Eq.(3.32) can be computed with a RT model

software, e.g. Modtran R© [46, 48, 49, 51]. Then, the right-hand side of Eq.(3.32) can

be computed since all the related parameters are known. So, the first term of the

left-hand side, which is the only component related to the object being measured, is

calculated.

If the spectral emissivity of the measured object is known or measured, the surface

temperature of the measured object can be computed iteratively. However, εx=meas

is usually unknown, in which case Tx=meas is impossible to find. On the other hand,

the product of the emissivity and the blackbody radiance at the temperature Tx=meas

is almost independent of the atmospheric conditions in the steady-state, which im-

plies the product does not depend on the geometry. Hence, the object radiance, Lobj

[Wsr−1m−2], which is the quantity that we are aiming to estimate is defined by,

Lobj(i, j) ,
∫ λhigh

λlow

Lbb[λ, Tx=meas(i, j)]εx=meas(i, j, λ)dλ (3.33)

A former approach for a similar aim, which does not take the spectral transfer func-

tion of the camera into account is given in [56]. Similarly, the dependency of the

atmospheric propagation on the altitude and zenith angle is not considered in the re-

lated work, too. A more adequate and advanced approach is proposed in this thesis.

Once the first term of the left hand-hand side of Eq.(3.32) is computed, the estimate

of Lobj that is called the source radiance estimate, Lsrc, is computed using,

Lsrc(i, j) =

∫ λhigh
λlow

Lemis,x=meas(i, j, λ)ϕcam(λ)dλ

τw(i, j)
(3.34)
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where

τw(i, j) ,
1

λhigh − λlow

∫ λhigh

λlow

τx=meas[λ,Rx=meas(i, j),

hx=meas(i, j), θx=meas(i, j)]ϕcam(λ)dλ (3.35)

It should be noted that Lsrc ≈ Lobj and the dependency of Lsrc on the frame coordi-

nates is only due to the object location in the scene. Lsrc does not depend on the ge-

ometry, e.g. Rx=meas, because the geometric dependencies and also the atmospheric

effects together with the influence of the camera’s transfer function are removed by

division with the weighted transmittance component, τw.

3.2.2 Radiative Transfer Computations

In order to be able to compute the source radiance estimates, the output of a RT model

output, i.e. spectral transmittance and path radiance with scattering, is needed. For

this purpose, we used Modtran5 R© RT model in which, atmosphere layers are con-

structed with the sea level air temperature, Relative Humidity (RH), and the pressure

measurements. In the aerosol model of the RT model, visibility value is critical but

we do not have the means to measure visibility. Therefore, visibility values are esti-

mated using the models given in Sec.3.2.2.1. The rest of the parameters are used as

the default values of the related MidLatitude Winter and MidLatitude Summer mod-

els depending on the measurement date. The flow chart of the RT computations is

shown in Fig.3.4.

Figure 3.4: Flow Chart of the Radiative Transfer Computations
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3.2.2.1 Visibility Estimation

According to [57], visibility depends on the temperature, humidity, solar zenith angle,

total cloud cover, wind speed, and wind direction. Visibility (visDMI) is computed

using these parameters so that only 2% of the light from the object is received at the

visibility distance. The coefficients in the equations are optimized for Denmark and

the dependency of the visibility on these parameters is non-linear.

In [58], visibility is computed usingRH . There are three different models to compute

the visibility. These are Rapid Update Cycle (RUC) model (visRUC), Alliance Icing

Research Study (AIRS) model (visAIRS), and Fog Remote sensing And Modeling

(FRAM) model (visFRAM ). The relationships are given as,

visRUC = 60 exp

[
−2.5

(RH − 15)

80

]
(3.36)

visAIRS = −0.0177RH2 + 1.462RH + 30.8 (3.37)

visFRAM = −41.5 ln(RH) + 192.3 (3.38)

where RH denotes the relative humidity.

The former work is specialized to Denmark and so it is not suitable for our mea-

surements in Ankara. Among the three models, AIRS model is valid only for a sub-

interval of the RH range. Moreover, RUC model is the output of a relatively old

study. Therefore, in this thesis we used the FRAM model to estimate the visibility

values.

3.2.3 Temperature Calibration with Radiometric Interpolation

In order to give radiometric meaning to the DN values, calibration is required. Cal-

ibration is usually done either as temperature calibration [59] or as radiance calibra-

tion [51, 60–67]. Irradiance calibration, flux calibration [68], and also reflectance

calibration [69–71] also exist in the literature. In this paper, an enhanced temperature

calibration method, which takes into account the computed in-band apparent radiance

values, is proposed. The aim of the proposed calibration is to match the DN values

with the known surface temperatures of a calibration device.
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The novelty of the proposed calibration method is that it considers the effect of the

atmospheric environment in the temperature calibration process, emissivity of the

calibration device, and also the spectral transfer function of the detector, lens, and the

filter used in the camera. Although the calibration is done at very close distances,

the spectral variation of the transmittance is effective due to CO2, ozone, and water

vapor absorption. Therefore, the environment is taken into account while calculating

the in-band apparent radiance values.

The temperature calibration outputs Tx=cal for DNx=cal values in the dynamic range

of the camera. But the related process yields temperature and DN pairs only for

a limited number of calibration points due to practical limitations such as time and

manpower constraints. A typical number of calibration points is 20, whereas the

dynamic range of DN values due to the scene radiance in the linear working regime

is on the order of 104. Therefore, the temperature values for the remaining DN

values, i.e. other than the calibration points, shall be obtained. A basic approach is

to use linear interpolation for the temperature values corresponding to the in-between

DN values. However, there is a non-linear relationship between the temperature and

the IR camera measurements. For this reason, a method that interpolates the required

values based on radiometric relationships is proposed. The core of the method is

based on the requirement that the IR camera works in the linear regime and also an

appropriate NUC process is applied. Once the related requirements are met, the image

brightness changes linearly with DN . In this case, using Eq.(3.27) and Eq.(3.28) the

following equality is written.

DNx=cal(i, j) = f

[∫ λhigh

λlow

ξLx=cal(i, j, λ)ϕcam(λ)dλ

]
(3.39)

Since the temperature calibration is typically done at very close distances, the varia-

tion of the range, altitude, and zenith angle across the pixels is very small and so this

variation has no practical effect on τx=cal and Lpath,x=cal. In addition, the calibration

device has an almost uniform surface so its surface temperature and spectral emissiv-

ity are assumed to be homogeneous and so independent of i and j. Therefore, without

loss of generality the equation is simplified to

DNx=cal = f [ξLapp,x=cal(Tx=cal)] (3.40)
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where

Lapp,x=cal(Tx=cal) ,
∫ λhigh

λlow

[
Lbb(λ, Tx=cal)εx=cal(λ)

τx=cal(λ,Rx=cal, hx=cal, θx=cal) +

Lpath,x=cal(λ,Rx=cal, hx=cal, θx=cal)
]
ϕcam(λ)dλ (3.41)

If Eq.(3.40) is examined, the linear relation between DNx=cal and the in-band appar-

ent calibration radiance (Lapp,x=cal) is seen since f(.) is a linear invertible one-to-one

function. That is,

DNx=cal ∝ Lapp,x=cal(Tx=cal) (3.42)

As DN changes linearly with the in-band apparent radiance, the temperature calibra-

tion for all the possible DN values in the linear working regime of the camera can be

found. Firstly, Lapp,x=cal values are computed using Eq.(3.41) for the DNx=cal and

Tx=cal pairs. Once the DNx=cal and Lapp,x=cal pairs are obtained, for any DN value

in the interval ranging from the minimum DNx=cal value to the maximum DNx=cal

value, the respective in-band apparent radiance value, Lapp,int, is found using linear

interpolation. Finally, the apparent temperature, Tint, for Lapp,int value is computed

using,

Tint = arg min
T
|Lapp,x=cal(T )− Lapp,int| (3.43)

3.2.3.1 Practical Issues

At the end, apparent temperature and DN pairs are obtained that are Tint and DN .

The pairs are obtained for each possible DN value in the dynamic range of the cam-

era. The search space of the temperature values in Eq.(3.43) are constructed so that

the temperature step is less than the NETD value of the camera. Hence, an appropriate

temperature accuracy is obtained. Moreover, temperature calibration with radiomet-

ric interpolation process is applied only once for an IR camera measurement. The

pairs are stored as a look-up table. Then, for each frame in the recording, the look-up

table is used to convert the DN values into apparent temperature values with a very

low computational complexity. That is temperature values are obtained simply by

getting the value in the look-up table using DN for the respective index.
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CHAPTER 4

DATA FUSION

The data from multiple sensors arises the question of which data to process. In this

thesis dual band IR measurements taken. To be able to detect the moving vehicles in

the image image for vehicle classification, one shall decide which frame to segment.

In this context, data fusion is used so that best properties of both frames are merged

in a single “super frame”.

Data fusion can be classified into 4 classes. These classes are symbol level fusion,

object level fusion, feature level fusion, and pixel level (image) fusion [72]. The

mentioned classes are given in the order from the highest level of abstraction to the

lowest.

Apart from the classification given above, there exist other schemes. According to

[73], data fusion can be classified into 3 classes that are centralized data (information)

fusion, distributed data (decision) fusion, and feature fusion. According to [74], there

are 4 data fusion classes. These are symbol level fusion, feature level fusion, pixel

level (image) fusion, and signal level fusion. Saeedi et. al. [75] classifies data fusion

into decision fusion, feature fusion, and pixel level image (signal level image) fusion.

In this thesis, the classification of [72] is used. Moreover, it is clear from the given

classes above, information fusion is equivalent to symbol level fusion [76] and deci-

sion fusion is equivalent to object level fusion. Signal level fusion is not considered

as a class of data fusion.
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4.1 Symbol Level (Information) Fusion

Symbol level fusion or information fusion uses symbols to describe the information

in input images and uses these symbols for data fusion [77]. Symbol level fusion uses

the information from multiple sources at the highest level of abstraction [74].

4.2 Object Level (Decision) Fusion

Object level fusion or decision fusion is applied by defining and extracting certain,

predefined shapes like human faces or trees [72].

[78] proposes a Principle Component Analysis (PCA) method based face recognition

system. Two independent PCA systems are trained at first to get the eigenface images,

one with the front views and the other with the depth maps. In the test phase, the

front view and the depth map of the face of a test person is fed into two independent

systems. Each system returns the Euclidean distances of the test person to the persons

in the database. Then the distances returned by each system are multiplied. The

person in the database with the smallest distance is the classification result. Since

the two systems yield independent classification results and the final decision is given

after the fusion of the classification results; this system is an example of a decision

fusion system. According to [79], Fisherface methods improve the performance of

direct PCA approach by applying PCA for dimensionality reduction and then Fisher’s

Linear Discriminant Analysis (LDA). LDA extracts features that are more suitable for

classification purposes, i.e., most discriminating features, while eigenfaces find the

most expressive features, which are not necessarily helpful for recognition.

4.3 Feature Level Fusion

In feature level fusion, the given multiple feature sets are used to produce new fused

feature sets, which are more helpful in the final classification.

In [80], Generalized Karhunen Loéve Transform (GKLT) is introduced. With the use

of GKLT, two sets of different features are fused. The fused feature set is shown to
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have a superior performance than the one with uncombined feature sets. [73] is an ex-

tension of [80], where the classification with the fused features sets is called parallel

strategy and the classification with the uncombined feature sets is called serial strat-

egy. Similarly, it is shown through experiments on some databases, parallel strategy

is better than serial strategy.

Feature level fusion is subdivided into two categories, feature selection based and

feature extraction based fusion [73].

4.3.1 Feature Selection Based Fusion

In the feature selection based fusion, all feature sets are first grouped together and

then a suitable method is used for feature selection [73].

4.3.2 Feature Extraction Based Fusion

In the feature extraction based fusion, the multiple feature sets are combined into one

set of feature vectors that are input into a feature extractor for fusion [73].

4.4 Pixel Level (Image) Fusion

Image fusion methods are used to combine multiple pre-registered input images from

different sensors or from different exposures into a single fused image [77]. In [72],

image fusion is divided into non-multiscale decomposition and multiscale decompo-

sition (transform) based fusion categories. On the other hand, in [77], image fusion

is divided into space domain based, transform domain, and multiscale decomposi-

tion based fusion categories. Since the latter case is more general, in this thesis the

categorization of [77] is used.
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4.4.1 Space Domain Based Image Fusion

Space domain based methods perform image fusion in the space domain without us-

ing any transform or decomposition operator [77].

Pixel averaging, max-min method, color composite (false color), PCA method, and

entropy based fusion are the examples of the space domain based methods.

4.4.1.1 Pixel Averaging Based Image Fusion

Pixel averaging based image fusion is used in [81, 82]. In this method, the fused

image is simply obtained by averaging the input images. Fusion operation is done for

every pixel of the fused image independently.

If (x, y) =

∑N
i=1w(i)Ii(x, y)∑N

i=1w(i)
(4.1)

where If is the fused image, x and y are the row and column indices of the relevant

image respectively, N is the number of the input images, w is the weighting coeffi-

cients of the averaging, and Ii is the ith input image [72, 77].

4.4.1.2 Max-Min Method Based Image Fusion

Non-linear maximum or minimum operation is used in the Max-Min based image

fusion. The choice of maximum or minimum depends on the application. In the

Max-Min method, fused image is obtained by taking the maximum or minimum of

the respective images. Fusion operation is done for every pixel of the fused image

independently [72, 82].

If (x, y) = max [I1(x, y), I2(x, y), ..., IN(x, y)] (4.2)

or

If (x, y) = min [I1(x, y), I2(x, y), ..., IN(x, y)] (4.3)
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4.4.1.3 Color Composite (False Color) Based Image Fusion

In false color fusion techniques, raw or processed input images are assigned to one

of the three color channels (red, green, and blue) of the fused image. Therefore, false

color methods are limited to 3 input images maximum [72].

An example of the color composite based fusion algorithm is given in [72]. In this

algorithm minimum, maximum, and arithmetic average of the two input images is

computed. Minimum image is assigned to red channel, maximum image is assigned

to green channel and arithmetic average image is assigned to blue channel of the fused

image.

In [81], false color fusion is used. In this study, two input images are fused. First

input image is assigned to red channel of the fused image. Second input image is

assigned to both green and blue channels of the fused image.

4.4.1.4 PCA Method Based Image Fusion

In the PCA method based fusion, the optimal coefficients in terms of information

content and redundancy elimination are calculated using Karhunen - Loéve transform

of the intensities. The coefficients for each source image are obtained from the nor-

malized eigenvector associated with the largest eigenvalue of the covariance matrix

of the source images [72].

In [81], PCA method based fusion is used. From two input images, two PCA images

are obtained. Then, the first PCA image is assigned to red channel of the fused image.

First and second input images are assigned to green and blue channels of the fused

image, respectively.

4.4.1.5 Entropy Based Image Fusion

In entropy based fusion, input images are divided into blocks. The probabilities of

each pixel value is computed by the histogram of the input images. Then, the en-

tropy of each block of each input image is computed. The fused image is obtained by
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smoothing the combined blocks that have the greatest entropy values among respec-

tive input image blocks [77].

4.4.2 Transform Domain Based Image Fusion

Transform domain based methods perform image fusion in the transform domain

[77].

Discrete Cosine Transform (DCT) based image fusion is an example of the transform

domain based methods.

4.4.2.1 DCT Based Image Fusion

In DCT based fusion, 2D discrete cosine transforms of sub-blocks of each input image

is computed. Then the fused DCT domain image is obtained by fusing the DC and

AC coefficients of the cosine transforms of each block. The simplest approach is

fusing the DC coefficients by taking the average of the DC coefficients of the related

blocks of each input image. AC coefficients are computed by taking the maximum

AC coefficient of the related blocks of each input image for every pixel of the block.

Finally, the fused image is computed after taking the inverse 2D DCT [72].

In [72], a DCT based fusion algorithm for two input images is proposed. In the fusion

process, the DC coefficients are the arithmetic average of the related DC coefficients

of the input images. AC coefficients are computed by taking the weighted average of

the related AC coefficients of the input images. The weighting coefficients are the L2

norms of the respective blocks. The use of L2 norm prevents discontinuities at the

edges.

[77] proposes a similar DCT based fusion algorithm. DC coefficients are computed

the same way. AC coefficients are computed by taking the weighted average of the

related AC coefficients of the input images for each block. The weighting coefficients

are unity except the one with the maximum AC coefficient. The coefficient of the

block with the maximum is set to 3.
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4.4.3 Multiscale Decomposition Domain Based Image Fusion

In multiscale decomposition based methods input images are decomposed into mul-

tiscale representations. Then the fusion process is applied and the final fused image

is obtained by applying the inverse multiscale decomposition operator [77].

Pyramid transform based and wavelet transform based image fusion are the examples

of the multiscale decomposition domain based methods.

4.4.3.1 Pyramid Transform Based Image Fusion

Pyramid transform based fusion techniques are divided into 6 sub-classes. These are

Laplacian, Filter-Subtract-Decimate, Ratio (of Low Pass), Contrast, Gradient, and

Morphological Pyramid Transform based fusion techniques. In pyramid based fu-

sion, the input images are decomposed and then the fusion process is applied to the

decomposed images to get the decomposed fused image. The fused image is obtained

by taking the inverse transform of the decomposed fused image. In the fusion process,

mostly the mean value is used for the lowest level of the pyramids. For the remaining

levels of the pyramids, the maximum value is generally used [72].

In [83], a pyramid transform based fusion approach is proposed. Laplacian pyramids

are constructed using the Filter-Subtract-Decimate method. The proposed method

is used for extending the depth of field for color images and extending the dynamic

range for multiple color images.

4.4.3.2 Wavelet Transform Based Image Fusion

In wavelet transform based fusion, input images are transformed using either shift

variant or shift invariant wavelet transforms. For the lowest level Low-Low (LL)

component of the fused image in the wavelet domain, the mean value among all the

inputs is generally used for the fusion process. For the Low-High (LH), High-Low

(HL), and High-High (HH) components of the fused image in the wavelet domain

at a given layer, the pixel with the maximum value among all the inputs is selected.

Hence the LL components are calculated by the arithmetic average, whereas the other
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bands are calculated with the local maximum method. The fused image is obtained

by taking the inverse wavelet transform of the wavelet domain fused image [72]. The

same approach is used in [81, 84], too.

[74] proposes a wavelet transform based fusion algorithm. Wavelet transforms of

the input images are computed. Then the wavelet transform of the fused image is

obtained by taking the value with the maximum absolute value at each point. Hence,

the salient features such as edges, lines, and region boundaries in the input images are

preserved. Moreover, a modification is also proposed. In this approach, majority vote

in a local window is used to modify the fusion result if necessary. For instance, if the

surrounding pixels of the current pixel in the local window (3x3 or 5x5) come from

the first image but the current pixel come from the second image, as the majority vote

suggests, the current pixel value is changed with the one of the first image. Hence

the fusion algorithm is an area-based maximum selection rule with the consistency

verification step.

[85] proposes a wavelet transform based fusion algorithm. Especially, different ap-

proaches to merge the wavelet coefficients is given in order to get the fused image.

Merging strategies are grouped as activity-level measurement, coefficient grouping

method, and coefficient combining method. Moreover, coefficient combining method

is sub-divided into selection, general weighted average, adaptive weighted average,

fusion by energy comparison, region-based fusion by multiresolution feature detec-

tion, background elimination, and variance area based. As an example, fusion by

maximum value selection in [74] is a member of the selection sub-group of the coef-

ficient combining method group.

According to [86], the recognition performance depends on the utilized wavelet func-

tions. The performance of compactly supported wavelet is better than that of non-

compactly supported wavelet. The performance of symmetrical wavelet is better than

that of non-symmetrical wavelet. In addition, using wavelet with proper vanishing

moments could improve the recognition rate.

In [87], hyperspectral images are classified using Gabor feature extraction for each

pixel. Firstly, Gabor wavelet transforms of the hyperspectral images are computed

for different angles, scales, and spectral bands. Genetic algorithm is used to find the
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3D transform points. Pruning is applied in the search space. As the final step, the

obtained features are used for the classification. Support Vector Machines (SVM)

and 3 Nearest Neighbors (NN) classifiers are used.

[75] proposes a dual tree discrete wavelet transform based fusion algorithm. Dual

tree discrete wavelet transform of two input images are computed. The low frequency

components are fused with a population-based optimization rule that is either particle

swarm optimization or genetic algorithm. The high frequency components are fused

with a fuzzy-based approach. Fuzzy logic is used to integrate the outputs of three

fusion rules, which are weighted averaging, selection using pixel based decision map,

and selection using region based decision map. Hence, the advantages of pixel based

and region based approaches are utilized in a single scheme.

4.5 Utilized Data Fusion Method

In practice, data fusion is needed only to help the following moving vehicle detection

process. Therefore, in applications where computation time is critical, data fusion

step may be dropped assuming the vehicle detection is done directly with the MWIR

rather than fused frames. However, to simplify the vehicle detection problem and

also for the sake of completeness of the system, data fusion is utilized in this thesis.

The wavelet transform based image fusion method that is given in [74] is used with

Haar wavelets. The related method has a competitive performance and also it has a

moderate computational complexity.

Besides, we propose to use a normalization scheme before image fusion. As pointed

out in Sec.(3.2), DN values directly depend on the integration time being used at the

camera. For instance, assume that an object producesDNobj value at the camera using

an IT value, ITobj . If ITobj value is increased, DNobj value increases, too. Therefore,

to make the input frames of data fusion independent of the IT values being used on

the cameras, the input frames are normalized with the minimum and maximum DN

values corresponding to the radiometric calibration limits. Hence, a radiometric bond

between the cameras is obtained in terms of calibrated blackbody temperature and

apparent radiance values. Although, it has no effect on the sequential processes, the
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fused image, which has pixel values in [0, 1], is rescaled with the global maximum

and global minimum DN values of the radiometric calibration limits. The last step is

just for image visualization purposes.
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CHAPTER 5

MOVING VEHICLE DETECTION

To extract the features that will be used for vehicle classification, moving vehicle

blobs shall be obtained. For this purpose vehicle detection is used, which takes either

the DN or fused image as input. The process consists of background subtraction and

post-processing blocks and it outputs blobs that are in motion.

5.1 Background Subtraction

The initial step of the moving vehicle detection is the separation of the background

and the moving object(s). Basically, the input image is taken and a foreground mask is

yielded at the output. A literature review about the topic is given in the following sub-

sections together with the feasibility considerations of each method for our system.

5.1.1 Frame Differencing

In this method, background model is equal to the previous frame. The difference

between current frame and previous frame is thresholded and designated as the fore-

ground mask. That is,

M(x, y, t) =

1, if |I(x, y, t)− I(x, y, t− 1)| ≥ ξ

0, otherwise
(5.1)

where I is the image, x and y are the respective horizontal and vertical image indices,

t is the time, and ξ is the threshold. M is the foreground mask [2, 3, 6].
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The method has a very low computational cost. However, it cannot cope with multi-

modal distributions, illumination changes, IT changes, and periodic movements such

as the motion of the leaves of trees [88].

5.1.2 Moving Average Filtering

In this method, foreground mask is obtained by averaging previous N frames. That

is,

M(x, y, t) =

1, if |I(x, y, t)− Ibg(x, y, t)| ≥ ξ

0, otherwise
(5.2)

where Ibg is the background model and it is updated according to the following equa-

tion.

Ibg(x, y, t) = αI(x, y, t) + (1− α)I(x, y, t− 1) (5.3)

where α is the learning parameter and it determines how the background model adapts

to the changes in the scene [4, 7, 10, 11].

Although this method is superior to the frame differencing method, it cannot cope

with the multi-modal distributions, too. Moreover, threshold value is very critical on

the performance of the algortihm. Another drawback is that the method may produce

tails at the back of the moving objects due to the motion of the object in the previous

frames [88].

5.1.3 Single Gaussian

In this method, a Gaussian distribution is tried to fit to each pixel. The threshold value

is dynamically changed. The foreground mask is obtained with,

M(x, y, t) =

1, if |I(x, y, t)− µ(x, y, t)| ≥ 2.5σ(x, y, t)

0, otherwise
(5.4)
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where µ is the mean of the Gaussian distribution and σ is the standard deviation.

Parameters of the distribution is updated as,

µ(x, y, t) = (1− α)µ(x, y, t− 1) + αI(x, y, t) (5.5)

σ2(x, y, t) = (1− α)σ2(x, y, t− 1) + α[I(x, y, t)− µ(x, y, t)]2 (5.6)

where α is the learning rate. When α is high, recent pixel values have more influence

on the background model [13, 14].

The method is superior to the previous methods. However, it still cannot cope with

multi-modal distributions, since single Gaussian is not enough in these cases [88].

5.1.4 Mixture of Gaussians

In [5,17,18], Mixture Of Gaussians (MOG) is used to detect the vehicles. The method

can deal with periodic clutter, lighting, and IT changes at the cost of increased com-

putational complexity [88].

In [89], the number of Gaussian components for each pixel is the same and con-

stant over time. However, this approach is not optimal in terms of detection and

computation time. [90] proposes an online algorithm that estimates the parameters of

MOG and simultaneously selects the number of Gaussian components using Dirich-

let prior. Therefore, number of Gaussian components is dynamically adapted to the

multi-modality of each pixel [88]. Moreover, [90] solves the problem of initial weight

calculation [91].

In [90,92], a Gaussian Mixture Model (GMM) based background subtraction method

is proposed. The method aims to automatically adapt to the scene and chooses the

right number of components for each pixel based on a model selection criterion from

a Bayesian perspective.

In the following equations of the GMM method, the vector notations of the Red Green

Blue (RGB) color space is dropped since in this thesis the recordings are gray scaled.

Let x(t) be the value of a pixel at time t, then the Background (BG) and Foreground
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(FG) decision criterion is given as

p [BG|x(t)]

p [FG|x(t)]
=
p [x(t)|BG] p(BG)

p [x(t)|FG] p(FG)

x(t)∈BG
≷

x(t)∈FG
1 (5.7)

In the study, p [x(t)|FG] is assumed to be constant since there is no information about

foreground. Then the equation simplifies to

p [x(t)|BG]
x(t)∈BG

≷
x(t)∈FG

cthr (5.8)

where

cthr ,
p [x(t)|FG] p(FG)

p(BG)
(5.9)

If Ω denotes the training set for the background model, the estimated BG model is

p [x(t)|Ω, BG]. The study assumes no correlation between the adjacent pixels, which

means it is a pixel based approach. There are methods, which introduce correlation

e.g. Markov random field or filtering. These methods may improve the results but at

the cost of a slower performance [90, 92].

The mentioned GMM approach uses an adaptation period, namely T . Hence, the

training set becomes ΩT = {x(t), ..., x(t− T )}. For each new sample, ΩT is updated

and the density is re-estimated, i.e. p̂ [x(t)|ΩT , BG+ FG]. The estimated density is

assumed to be a mixture of Gaussian densities.

p̂(x|ΩT , BG+ FG) =
M∑
m=1

π̂mN (x; µ̂m, σ̂
2
m) (5.10)

where M is the number of Gaussian components, N (.) is the Gaussian probability

density function, π̂m is the estimated mixing weight, µ̂m is the mean estimate, and σ̂2
m

is the variance estimate of the mth component. In order to have a legitimate density,

the following constraints shall be satisfied [90, 92].

π̂m ≥ 0 ∀m (5.11)

and
M∑
m=1

π̂m = 1 (5.12)

The iterative update equations for the estimation of the mean and variance values of
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each component for every pixel, the following equalities are used.

π̂m ← π̂m + α[om(t)− π̂m] (5.13)

µ̂m ← µ̂m + om(t)
α

π̂m
[x(t)− µ̂m] (5.14)

σ̂2
m ← σ̂2

m + om(t)
α

π̂m
{[x(t)− µ̂m]2 − σ̂2

m} (5.15)

where α is the exponentially decaying envelope and it is suggested to be used as

α = T−1. om(t) is the ownership function of the mth component. om(t) is set to 1 for

the “close” component with the largest π̂m and others are set to 0. A sample is said

to be “close” to a component if the Mahalanobis distance from the mth component is

less than a threshold. The squared distance from the mth component is calculated as

D2
m(x(t)) =

[x(t)− µ̂m]2

σ̂2
m

(5.16)

If there are no “close” components, a new component is generated with π̂M+1 = α,

µ̂M+1 = x(t), and σ̂2
M+1 = σ2

0 where σ2
0 is an appropriate initial variance value. If

the maximum number of components is reached, the component with the smallest µ̂m

value is discarded [90, 92].

The density estimate in Eq.(5.10) contains models for both FG and BG. Usually,

the intruding FG objects are represented by some additional clusters with small π̂m

values. Hence, the density for the BG can be estimated using the first B largest

clusters that is

p̂(x|ΩT , BG) ≈
B∑

m=1

π̂mN (x; µ̂m, σ̂
2
m) (5.17)

If the components are sorted to have descending π̂m,

B = arg min
b

[
b∑

m=1

π̂m > (1− cf )

]
(5.18)

where cf is a measure of the maximum portion of the data that can belong to FG

objects without influencing the BG model [90, 92].

The update equation of the mixing weights in Eq.(5.13) is based on a Maximum

Likelihood (ML) estimate. In the study, a Maximum A Posteriori (MAP) estimate for

large T values is proposed. In this improved estimate,

π̂m ← π̂m + α[om(t)− π̂m]− αcT (5.19)
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where after each update mixing weights need to be normalized that is
∑M

m=1 π̂m = 1.

Moreover, the component m is discarded if π̂m < 0 [90, 92].

In summary, GMM background subtraction method is summarized as,

• Use Eq.(5.17) to classify the new sample as background if p̂ [x(t)|ΩT , BG] >

cthr.

• Use Eq.(5.19), Eq.(5.14), and Eq.(5.15) to update p̂(x|ΩT , BG+ FG).

• Use Eq.(5.18) to select the component of the GMM that belongs to the BG and

update p̂(x|ΩT , BG).

5.1.5 Non-parametric Approach

In [92], a second background subtraction method that is called non-parametric ap-

proach is proposed. The proposed method is an extension of the work [93]. In the

method, the authors use balloon variable-size kernel approach. In addition, they use

uniform kernels for simplicity.

Density estimation using a uniform kernel starts by counting the number of samples

k from the data set ΩT that lie within the volume V of the kernel. The volume V is a

hypersphere with diameter D

p̂N−P (x|ΩT , BG+ FG) =
1

TV

t∑
m=t−T

K
[
|x(m)− x|

D

]
=

k

TV
(5.20)

where K is the kernel and

K(u) =

1 if u < 0.5

0 otherwise
(5.21)

The volume V of the kernel is proportional to Dd where d is the dimensionality of the

data. In practice, kernel K has little influence but the choice of D is critical [92].

The so called “balloon estimator” adapts the kernel size at each estimation point x.

Instead of global optimum D, variable size D for each new point x is used so that

a fixed amount of data k is covered. Hence, smaller kernels at densely populated
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areas are obtained and vice versa. However, this estimate is not a proper density

since it does not sum up to one. Still, balloon estimate is often used for classification

problems as it is related to k-NN classification. In the study k = [0.1T ], where [.] is

round-to-integer operator, is used. cthr ∝ V −1 ∝ D−1 since in the balloon variable

kernel approach k is fixed and V is variable [92].

In practice, T is large and keeping all samples in ΩT requires too much memory.

Hence, a fixed number of samples K << T is used. The model is split into “short-

term” (Kshort samples from Tshort period) and “long-term” model (Klong samples

from Tlong period). Without proof of optimality, Kshort = Klong = 0.5K is used in

the study. The authors choose the “short-term” model to approximate the first 30% of

the information under the envelope, i.e. Tshort = log 0.7
log(1−α)

.

p̂N−P (x|ΩT , BG) =
1

TV

t∑
m=t−T

b(m)K
[
|x(m)− x|

D

]
(5.22)

where indicator b(.) is equal to 0 if the sample is assigned to FG and equal to 1 if

it is assigned to BG. Hence, the BG model considers only the samples assigned to

BG. If p̂N−P (x|ΩT , BG) > cthr, pixel is classified as BG. Eq.(5.20), in which all

samples (regardless of b(.)’s) are considered, is used to determine b(.) for the new

sample [92].

In summary, non-parametric background subtraction method is summarized as,

• Use Eq.(5.22) to classify the new sample x(t) as background if the condition

p̂ [x(t)|ΩT , BG] > cthr holds.

• Add x(t) to ΩT and remove the oldest sample to update p̂(x|ΩT , BG+ FG).

• If Eq.(5.20)> cthr set b(m) = 1 for the sample, i.e. use the new sample for

p̂(x|ΩT , BG), to update p̂(x|ΩT , BG).

If K is increased, better segmentation is obtained but at the cost of increased process-

ing time [92].

43



5.1.6 GraphCut

GraphCut combines the two already known approaches for image segmentation al-

gorithms based on colors (or more precisely gray-levels) and the contrast in different

regions of an image. For successful segmentation, the energy formulation

E(z) = P (z) + γC(z) (5.23)

has to be minimized. The weighting parameter γ controls the importance of one term

over the other. The fidelity term P (.) gives rise to a cost function, which penal-

izes false classification of a pixel z to the foreground (α = 1) or to the background

(α = 0). Since the user provides a so-called trimap, where two regions “sure fore-

ground” and “sure background” has to be defined, one can easily calculate a proba-

bility distribution and cost functions pz,α from the gray-valued pixels and the image

histograms of these two regions

P (z) =
∑
z∈I

pz,α (5.24)

where I is the image. Costs can be calculated from the negative log-likelihood of the

probability belonging either to the foreground or to the background.

A prior term C(.) representing the pairwise interactions between neighboring pixels

is calculated from the contrast between each two neighboring pixels z and ẑ with

C(z) =
∑

(z,ẑ)∈N

cz,ẑ (5.25)

where the neighborhood N is chosen such that only neighboring pixels around the

segmentation boundary are summed up. These are the only pixels, z and ẑ, belonging

to two different foreground/background maps: αz 6= αẑ. Only a 4-way neighborhood

is used in the study. Therefore, the minimization criterion is to find the shortest

possible segmentation border that gives the smallest sum over its contrast terms. The

contrast between neighboring pixels z and ẑ can be expressed as

cz,ẑ = exp

[
−(Iz − Iẑ)2

2σ2

]
(5.26)

where Iz is the gray-value of the pixel z in the range 0, ..., 1. The variance σ2 over all

differences in intensity can be seen as the noise floor present in the image. Choosing
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this parameter carefully lets the contrast term successfully switch between almost

zero for high contrast and one vice versa. However, other functions, separating noise

from real contrast in the same manner, are also possible. From these two properties

of each pixel - one belonging to the object or the background, the other being an

edge or not - an undirected graph is built. More precisely a so called S/T − graph
is built, where the two terminals S and T represent the object and the background,

respectively. Edges from and to these terminals are weighted with the corresponding

foreground/background costs pz,α. Neighboring pixels are connected with edges in 4-

way neighborhood, weighted with the corresponding contrast terms cz,ẑ. Finally using

a standard Minimum-Cut/Maximum-Flow (MCMF) algorithm has been proven to

give the optimal segmentation border in terms of the energy formulation E(.) defined

in Eq.(5.23). The segmentation border corresponds to the edges representing the

minimum cut in the graph [94].

Although GraphCut has competitive performance, its main drawback is the need of a

manual “sure background” and “sure foreground” selection.

5.1.7 GrabCut

GrabCut extends the GraphCut to color images. Instead of gray-level histograms, it

makes use of GMM. Background and foreground are each described with five full-

covariance Gaussian components Mz,k. So the fidelity term P (.) is now calculated

from the superposition of the Gaussian components

Mz,k =
1

2π
√

Σk

exp

[
−1

2
(Iz − µk)TΣ−1

k (Iz − µk)
]

(5.27)

where the term Iz reflects a three-valued RGB color of the pixel z. µk are the mean

color of each component and Σk are full-covariance matrices reflecting color depen-

dencies between the three color layers. Adaptation of the probability distributions

Mz,k to the RGB colors is carried out with the iterative Expectation Maximization

(EM) algorithm, according to a predefined trimap given by the user. Due to the 3D

color space, the contrast cz,ẑ is calculated as

cz,ẑ = exp

(
− ‖Iz − Iẑ‖

2

2σ2 ‖z − ẑ‖

)
(5.28)
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where the norm ‖Iz − Iẑ‖ is the Euclidean distance in RGB space and ‖z − ẑ‖ indi-

cates the spatial (Euclidean) distance between two neighboring pixels z and ẑ. Grab-

Cut uses a 8-way connectivity. In this manner, the whole algorithm is laid out in an

iterative way; after each EM iteration, an S/T − graph is built up like in the Graph-

Cut and solved with the minimum-cut algorithm. The resulting segmentation border

is used to update the trimap describing foreground and background regions. This new

trimap is used for the next EM iteration and so on. The alternating usage of EM

steps and MCMF solutions guarantees the proper monotonic energy minimization

over time. The amount of changes in the overall energy E(.) between two iterations

is used as the stopping criterion for the algorithm [94].

Similar to the GraphCut, the main disadvantage of GrabCut is again the need for the

user to select “sure background” and “sure foreground” regions.

5.1.8 GrayCut

[94] aims to segment the gray-valued IR images of a ship. Contrast and color in-

formation are combined into an energy minimization criterion. The advantages of

GraphCut, which is gray-level-based, and GrabCut, which uses an iterative optimiza-

tion scheme, algorithms are combined and named as GrayCut algorithm. As in Grab-

Cut, Gaussian mixture models are used, but only to find the distributions in the two

gray-scale histograms - the one for the user-defined background and the one for the

(unknown) rest. The possible range of values is reduced from the 3D space of RGB

colors to the purely one dimensional gray-scale histogram. Adaptation of the Gaus-

sian mixture models is carried out by EM, so the whole algorithm is of an iterative

nature. Starting with a random distribution for EM learning as in GrabCut is re-

ported to be not a good starting point for the segmentation task. Hence, the very first

EM step is applied before the whole algorithm starts. This guarantees a proper ini-

tial distribution of the mixture models, but also ensures the adaptation to changes in

the trimap based on intermediate segmentation results. Since the possible range of

values and the total number of components has been reduced, the overall algorithm

performance has been slightly increased. Moreover, less iterations are needed for the

Gaussian components to adapt the gray-level histogram. However, an important and
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critical manual step used in the algorithm is the requirement of the user to select the

background area.

5.1.9 Object-based Segmentation

Object-based segmentation methods are generally based on using 3D models of the

objects. The detection is done by comparing 3D models of the objects with the input

frames. Clearly, these methods have higher computational complexity [88]. [1,8] use

object-based segmentation to obtain the vehicle blobs.

5.2 Utilized Background Subtraction Method

In this thesis, GMM background subtraction method proposed in [92] is used. The

motivation is based on the results of the related work that GMM performs better

than the non-parametric approach for the traffic sequence. Moreover, GMM does

not need the background area selection by the user unlike GrayCut, GraphCut, and

GrayCut. GMM also needs a fair computation time while having a good performance,

when compared to the basic background subtraction methods such as moving average

filtering and also to the object-based segmentation methods.

5.3 Post-processing After Background Subtraction

The raw output of the background subtraction process may be noisy. In order to

remove the noise present in the foreground mask and also to prepare the data for

classification, morphological operations are applied.

In [91], first dilation then erosion, that is closing, operators are applied to the raw fore-

ground mask data. Then, median filtering is utilized. Finally, connected component

labeling is used.

In [88], first erosion then dilation, that is opening, operators are applied to the raw

foreground mask data. Connected component labeling is used to label the blobs. As
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the last step, area filtering is utilized to remove the residual noise. The area of each

label is thresholded with the predetermined average area of the scene.

5.3.1 Erosion

Erosion operator is utilized to get rid of the region boundaries of the foreground pix-

els. A structuring element such as the one given in the following equation can be

used.

SEeros =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1


(5.29)

At the end, the foreground pixels, which are not completely surrounded by other

foreground pixels, are relabeled as background pixels. Hence, small regions corre-

sponding to noise are eliminated [95].

5.3.2 Dilation

Dilation operator is utilized to enlarge the region boundaries of the foreground pixels.

A structuring element such as the one given in the following equation can be used.

SEdilat =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1


(5.30)

At the end, the background pixels, which are not completely surrounded by other

background pixels, are relabeled as foreground pixels. Hence, small holes due to the

background subtraction artifacts are filled back [95].
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5.3.3 Closing

Closing operator is the combination of dilation followed by erosion [95]. It is used to

fill the smaller holes than the structuring element in an object.

5.3.4 Opening

Opening operator is the combination of erosion followed by dilation [95]. It is used

to remove noise without affecting the object boundaries.

5.3.5 Connected Component Labeling

Connected component labeling assigns a unique label to each component after group-

ing the pixels in an image into components based on pixel connectivity. The algorithm

is as follows;

• Image is raster scanned.

• For each of the image pixels, if the current pixel is a foreground pixel

– If one of the pixels on the left, on the top, on the upper left or on the upper

right is already labeled, the respective label is assigned to the current pixel,

too. This scheme is called 8-connectivity.

– If two or more of the neighbors have a label, one of the labels is assigned

to the current pixel. All of the labels are marked as equal by forming an

equivalence table.

– If none of the neighbors has a label, a new label is assigned to the current

pixel.

• Once the raster scan is completed, labels corresponding to the same group of

pixels in the equivalence table are merged and replaced by a single label.

• Image is scanned once more to update the labels [96].
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5.4 Utilized Post-processing After Background Subtraction Method

In this thesis, in the post-processing first opening followed by closing operators are

applied to the FG mask. Then, using connected component labeling with 8 connect-

edness, unique labels are assigned to each component in the segmented image. Area

filtering, with a threshold appropriate for the scene of interest, is used to eliminate

the connected components, which are actually residual noise. Finally, for each of the

remaining connected component, the inner region of the component is filled. That is

achieved by updating the pixels, which lie within the outermost contour of the com-

ponent, as foreground.

As an example, each step of the moving vehicle detection method is analyzed using

a sample DN image captured by the LWIR camera of the dual band measurement

setup. The input image and also the segmented image are shown in Fig.5.1(a) and

Fig.5.1(b), respectively.

(a) DN Image (b) Segmented Image

Figure 5.1: A Sample Result for the Moving Vehicle Detection Method

The foreground mask obtained by the utilized BG subtraction method is given in

Fig.5.2(a). The opened and closed image masks are shown in Fig.5.2(b) and Fig.5.2(c),

respectively. The output of the connected component labeling is given in Fig.5.2(d),

where any color other than white represents a connected component. The image mask

obtained after area thresholding is shown in Fig.5.2(e). Finally, the last step of the al-

gorithm that is the filled image mask is given in Fig.5.2(f). Therefore, it is shown that
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the detection method can successfully separate BG from the moving vehicles with the

help of post-processing steps.

(a) Foreground Image Mask (b) Opened Image Mask

(c) Closed Image Mask (d) Connected Component Label Image

(e) Area Thresholded Image Mask (f) Filled Image Mask

Figure 5.2: A Sample Result for the Utilized Post-processing After Background Sub-

traction Method
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CHAPTER 6

CLASSIFICATION

Final step of the proposed system is classification. Classification is defined as the

assignment of a new instance to a class, which is a group of previously known in-

stances. Classification process mainly consists of feature extraction and classifier. In

feature extraction, information from the new instance, which is called feature, is ob-

tained. Then, a set of features are fed into a machine learning algorithm, which is the

classifier [88].

In [2] a metric, which is the ratio of the perimeter to the area of the vehicle blob,

is used for classification into the classes human, vehicle or background clutter. The

accuracy of the classification is 85%.

[6] uses length, [3,4,17] use both length and height of the vehicles for classification.

Height and length are obtained by using the 2D projections of the vehicles, where

information about camera parameters and camera location are needed. In [3], the

classes are truck and other vehicles. In [4], cars and non-cars classes are used. In

[6, 17], the classes are long vehicles and short vehicles. The classification accuracy

of [3] and [4] are 90% and 70%, respectively.

Size of the bounding box of the blobs and also velocity features are used in [5,9]. The

classes of [5] are vehicle and pedestrian whereas the classes of [9] are motorcycle/bi-

cycle, car, and bus/minibus.

In [7] pickup, sedan, van, van truck, truck, trailer, and bus classes are used. Area, size,

and length features are used in the classification in which 91% accuracy is obtained.
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Size and linearity features, a measure for the roughness of the vehicle silhouette,

is used in [12]. Car, minivan, van-truck/bus, and truck classes are used and 88%

accuracy is reported.

Blob features are used in [13,14] such as breadth, area, compactness, perimeter, elon-

gation, roughness, length, long and short axis of the fitted ellipse, centroid, and im-

age moments. LDA is used for dimensionality reduction. The classification accuracy

of [13] is 82.9% with the classes sedan, semi, and truck/SUV/van. The accuracy

of [14] is 74.4% when the sedan, truck, SUV, semi, van, truck/SUV/van, and moving

truck classes are used.

[10, 11, 19–21] use vehicle images for classification. [10, 19–21] use PCA and [11]

uses Independent Component Analysis (ICA) for dimensionality reduction of the fea-

ture space. Vehicle and non-vehicle classes are used in [19], [20], and [21] with 94%,

95%, and 93.04% classification rate, respectively. Passenger, car, van, and pick-up

classes are used in [10] and [11] with 50% and 75% respective classification preci-

sion.

Histogram of Oriented Gradients (HOG) features are used in [15, 97]. Car, van,

pickup-truck, and no vehicle classes are used in [15], where vehicle and non-vehicle

classes are used in [97]. Respective classification accuracies of [15] and [97] are

64.3% and 90%.

In [98], combination of gray-level features and continuity based image descriptors

are used. Private cars, mid-sized vehicles, and trucks classes are used and an average

correct detection score of 72.35% is achieved.

In [16], bounding boxes of the vehicles are obtained using edges. Then, bounding

boxes are verified with corner detection and symmetry inside the box. Vehicle and

non-vehicle classes are used in the study and 90% classification rate is reported.

[1, 8, 18] use 3D models of the vehicles for classification. Car and van classes are

used in [1] and 96% accuracy is obtained. Bicycle, lorry, motorcycle, van, car, extra-

urban bus, urban bus and unknown classes are used in [8] and 91.5% classification

rate is achieved. In [18], bus/lorry, van, car/taxi, and motorcycle/bicycle classes are

used and 90.4% recall at a precision of 87.9% is reported.
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In [22] DN values corresponding to the pre-segmented blobs are compared with the

image blocks in the codebook. An Automatic Target Recognition (ATR) is pro-

posed, which consists of cascaded Vector Quantizers (VQ) and Multilayer Percep-

trons (MLP). Ten different vehicles classes are used. 90.3% and 65.3% recognition

rates are reported for the respective moderately and highly cluttered scenarios.

[24, 25] use PCA to extract features from the DN images of both MWIR and LWIR

bands. Then MLP is utilized for target detection. It is concluded that combining

MWIR and LWIR band images before the eigenspace transformation yields better

detection results for the joint use of dual band data.

In [26], several ATR techniques are compared. These are Convolutional Neural Net-

works (CNN), PCA, LDA, Learning Vector Quantization (LVQ), Modular Neural

Network (MNN), The Hausdorff metric-based matching technique, and a geometric

hashing technique. Ten different vehicles classes are used. The respective recogni-

tion rates of the techniques are 66.1%, 52.17%, 50.32%, 75.12%, 75.58%, 62.86%,

and 50.09%.

In [27] tank, armored personnel carrier, and truck classes are used. Vehicle blobs

are found by thresholding on the histogram of the image and area filtering at various

ranges. Difference between maximum DN and median DN of the blob, blob size,

blob size difference after histogram modification, ratio of the vertical extent of the

blob to the horizontal extent, number of new blobs within the adjacency of the blob

after histogram modification, and the moving average of the median DN of the blob

features are used. 98% Probability of Detection (PD) and 2% Probability of False

Alarm (PFA) is reported. Classification is done by a fuzzy-inference system and the

classifier is “tuned by hand”, which means the training phase is fully manual.

In [28] a combination of a target detector that is based on the features extracted from

the DN image and an eigen-neural based clutter rejecter. Target detector correctly

locates 90% of all legitimate targets. 87.54% hit rate is reported for the clutter rejecter.

[29] uses PCA to perform dimensionality reduction and also a supervised MLP for

classification. Data fusion of dual band frames are done either at pixel level or at

feature level. Dual band DN frames correspond to 12 bit MWIR and LWIR frames.
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The authors conclude that both fusion schemes give similar results and so the dimen-

sionality reduction on dual band images can be performed independently.

In [99] PCA, subspace LDA, and ICA are compared for dimensionality reduction

of the DN frames. Moreover, nearest neighbor and LVQ classifiers are evaluated.

Truck, bus, van, minibus, and tanker classes are used. It is reported that ICA performs

the best among the feature extraction methods. Furthermore, among the classifiers

LVQ is reported to be the superior one based on the recognition rate results, which is

69.3% for LVQ.

[32] detects moving targets using temporal variance analysis. Then, combined track-

ing and classification is utilized using appearance model based particle filter. Four

different types of vehicles are the classes and a total accuracy of 89.07% is obtained.

In [33], vehicle blobs are used to extract HOG features. Orientations are computed in

a scale-space framework. Then, the features are matched with the learned templates

in a database using Multinomial Pattern Matching (MPM). Finally, to increase the

performance further, MPM scores from multiple frames are fused with Sequential

Probability Ratio Test (SPRT). In the classifier, vehicle and non-vehicle classes are

used. It is reported that while using a single frame for the classification, 52% PD with

0% PFA and 100% PD with 26% PFA is achieved.

In [36], anomaly detection with kernel wavelet Reed-Xiaoli (RX) method is proposed.

12 bit LWIR DN frames are used in the study. The wavelet transform of the image

is computed in a number of equal sub-bands. Then, all the sub-bands are arranged

into a sub-band image cube. In the image cube, the first band is the base-band where

the remaining bands are the sorted higher frequency sub-bands, where sorting is done

based on the energy content. Afterwards, the bands with low energy content are dis-

carded. Finally, kernel RX algorithm that is used for hyperspectral anomaly detection

is utilized using the dual-window approach.

[100] uses car, van, and truck classes. Firstly, vehicles are detected using a back-

ground subtraction algorithm based on MOG. Then, morphological operations are

utilized to cope with the artifacts of the detection. The morphological operations are

opening, closing, 8 connected component labeling, and thresholding with the pre-
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determined minimum number of pixels of a vehicle in the ROI. Afterwards, blob

features that are dimension-based descriptors and HOG features that are shape-based

descriptors are extracted. Blob features are area, width, and height of the bounding

box, ratio of the blob area to the bounding box area (extent), major and minor axis

lengths, and the ratio of foreground pixel number to background pixel number in the

bounding box. Then, a hierarchical supervised classifier, SVM, is used. A total accu-

racy of 80.6% and 96.4% total accuracy is achieved for two different scenarios. [88]

is an extended study of [100]. In this study, both a hierarchical and a multi-class su-

pervised classifier, SVM, are used. A total accuracy of 91.6% and 98.1% is reported

for two different scenarios.

Aside from the given vehicle classification literature, there are studies that evaluates

various classifier fusion schemes such as [23,30,31,34]. However, classifier fusion is

beyond the scope of this thesis.

6.1 Feature Extraction

Once the vehicle blobs are obtained, the following process is feature extraction that

ideally produces similar values for the instances of a class. In computer vision,

there are key point (feature) detectors like Harris [101], Hessian [102], Laplacian

Of Gaussians (LOG) [103], Difference Of Gaussians (DOG) [104], Canny [105],

Sobel [106], Prewitt [107], Shi and Tomasi [108], Features from Accelerated Seg-

ment Test (FAST) [109], Maximally Stable Extremal Regions (MSER) [110], Haar

wavelets [111], Hough transform [112–115], and fast radial symmetry transform

[116, 117].

Once the features are detected, a local image patch around the feature can be ex-

tracted using feature descriptors like MPEG-7 [118], Scale Invariant Feature Trans-

formation (SIFT) [119], Speeded Up Robust Features (SURF) [120], HOG [121],

Oriented FAST and Rotated BRIEF (ORB) [122], Gradient Location and Orienta-

tion Histogram (GLOH) [123], covariance matrix descriptors [124], and Gabor fil-

ters [125]. Among these descriptors, SIFT is a popular one. Its parameters can be

modified for individual tasks. This modification is done by the HOG descriptor so
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that HOG is more suitable for generic object recognition [98, 124]. HOG algorithm

is relatively invariant to local geometric and photometric transformations. This is be-

cause rotation and translation do not affect HOG values and illumination invariance

is achieved through normalization [88]. Generally as the number of pixels in a cell

decreases, the performance tends to increase. However, the size of the HOG feature

vector and so the computation time increases, too. Hence there is a trade-off between

the computation time and the performance [126]. Moreover, when the HOG feature

vector size increases, the computation time of the classifier generally increases, as

well. For this reason HOG features are beyond the scope of this thesis.

The classifiers directly depend on the extracted features. Hence, for both training

and testing of the classifiers (classification of vehicles), feature vectors are used. In

the proposed algorithm, two types of features are used, which are blob features and

radiometric features.

6.1.1 Blob Features

One of the discriminative features among vehicle classes are their sizes and appear-

ances. Therefore, for each of the vehicle blob that has a connected component label,

the following blob features are extracted.

• Area of the blob

• Ratio of the area of the blob to the area of the bounding box of the blob

• Major axis length, which is a scalar specifying the length (in pixels) of the

major axis of the ellipse that has the same normalized second central moment

as the blob

• Minor axis length, which is a scalar specifying the length (in pixels) of the

minor axis of the ellipse that has the same normalized second central moment

as the blob

• Ratio of the number of background pixels to the foreground pixels in the bound-

ing box
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• Width of the bounding box

• Height of the bounding box

6.1.2 Radiometric Features

As the source radiance estimate of the ROI is given as input to the classification

process (See Fig.(1.2) and Fig.(1.4)), the radiometric features are extracted. The ra-

diometric features are,

• Mean value of the source radiance estimate frame in the ROI computed using

µrad =
1

N

∑
(i,j)∈ROI

Lsrc(i, j) (6.1)

where µrad is the mean value, N is the number of pixels in the ROI, and i and

j are the respective row and column frame indices.

• Standard deviation value of the source radiance estimate frame in the ROI com-

puted using

σrad =

√
1

N − 1

∑
(i,j)∈ROI

[Lsrc(i, j)− µrad]2 (6.2)

where σrad is the standard deviation value.

• Skewness value of the source radiance estimate frame in the ROI computed

using

ςrad =
1
N

∑
(i,j)∈ROI [Lsrc(i, j)− µrad]3{√

1
N

∑
(i,j)∈ROI [Lsrc(i, j)− µrad]2

}3 (6.3)

where ςrad is the skewness value.

• Kurtosis value of the source radiance estimate frame in the ROI computed using

κrad =
1
N

∑
(i,j)∈ROI [Lsrc(i, j)− µrad]4{

1
N

∑
(i,j)∈ROI [Lsrc(i, j)− µrad]2

}2 (6.4)

where κrad is the kurtosis value.
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• Entropy value of the source radiance estimate frame in the ROI computed using

Hrad = −
K∑
k=1

hLsrc(k) log2 hLsrc(k) (6.5)

where Hrad is the entropy value, hLsrc is the normalized histogram of the ROI

of the source radiance frame and K is the number of bins in the histogram.

• Maximum value of the source radiance estimate frame in the ROI

• Minimum value of the source radiance estimate frame in the ROI

6.2 Classifiers

Classifiers assign a new instance to a class by using the extracted feature vector. The

assignment relies on training data in supervised learning methods. Machine learn-

ing algorithms output classifiers by using the training data, which contains extracted

feature vector and the class labels of a known instance set [88].

6.2.1 Nearest Neighbor Classifier

In nearest neighbor classifier, the distance between each vector of the training set and

the new feature vector is calculated. The class label of the training vector correspond-

ing to the smallest distance is assigned to the new instance. Although any distance

measure can be used, generally Euclidean distance is used that is

d(x̄, ȳ) = ||x̄− ȳ||2 =

√√√√ m∑
i=1

(xi − yi)2 (6.6)

where x̄ and ȳ are the feature vectors in <m [88].

6.2.2 k-nearest Neighbor Classifier

k-nearest neighbor classifier is an extension to the nearest neighbor classifier. It clas-

sifies a feature vector by assigning it to the label that is most frequently used among

the k nearest samples [88].
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Both nearest and k-NN classifiers do not scale well for large training sets. When

the training size increases, the size of the distance vector to be computed for a new

instance increases as well. Therefore, computation time increases with the training

size [88].

6.2.3 Support Vector Machines

Support vector machines are machine learning method for classification, regression,

and other learning tasks. A typical use of SVM for classification consists of two

steps, namely training and testing [127]. In the training phase, a data set of the known

instances is used to obtain the model .Then, the testing data set is given to the model in

order to predict the instances. To achieve the best performance of SVM, the parameter

selection is a critical step.

Given training vectors x̄i ∈ Rn for i = 1, 2, ..., l in two classes and an indicator vector

yi ∈ Rl such that yi ∈ {−1, 1}, the following optimization is solved

min
w̄,b,ξ̄

1

2
w̄T w̄ + C

l∑
i=1

ξi (6.7)

subject to yi
[
w̄Tφ(x̄i) + b

]
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., l

where l is the size of the testing data set, φ(x̄i) maps x̄i into a higher-dimensional

space and non-negative C is the regularization parameter. Since the vector w̄ may

have high dimensionality, usually the following dual problem is solved

min
ᾱ

1

2
ᾱTQᾱ− ēT ᾱ (6.8)

subject to ȳT ᾱ = 0,

0 ≤ αi ≤ C, i = 1, 2, ..., l

where ē = [1, ..., 1]T is the vector of all ones, Q is an l × l positive semi-definite

matrix, Qij , yiyjK(x̄i, x̄j), and K(x̄i, x̄j) , φ(x̄i
T x̄j) is the kernel function [127–

129].
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Once Eq.(6.8) is solved, the optimal support vector w̄ satisfies the following relation

w̄ =
l∑

i=1

yiαiφ(x̄i) (6.9)

and the decision function is

sgn
[
w̄Tφ(x̄) + b

]
= sgn

[
l∑

i=1

yiαiK(x̄i, x̄) + b

]
(6.10)

where yiαi ∀i, b, the label names, support vectors, and kernel function parameters

obtained after training are stored in the model and used for prediction [127].

6.2.3.1 Multi-class SVM

A direct extension of the standard two-class SVM to multi-class classification is the

“one-against-all” approach. In this approach, the problem is considered as a set of k

two-class problems, where k is the total number of classes. The decision is the argu-

ment of the optimal discriminant function with the maximum value. The discriminant

function is (w̄i)Tφ(x̄) + b where w̄i is the support vector of the ith class. This tech-

nique may lead to indeterminate regions, where more than one discriminant function

is positive, which contradicts with the design constraint of the “one-against-all” ap-

proach. Moreover, each binary classifier deals with asymmetric problem such that

training is carried out with many more negative values than positive examples. This

is more serious when k is relatively large [129].

Other methods are available for the multi-class SVM classification other than the

“one-against-all” approach. Among these approaches, “one-against-one” approach is

adopted in [127] due to its competitive performance. In this approach, k(k − 1)/2

classifiers are constructed for a total of k classes and each classifier trains data from

two classes. For the training of the ith and jth classes, the following two-class classi-

fication is solved.

min
w̄i,j ,bi,j ,ξ̄i,j

1

2
(w̄i,j)T w̄i,j + C

∑
t

(ξi,j)t (6.11)

subject to (w̄i,j)Tφ(x̄t) + bi,j ≥ 1− (ξi,j)t, if x̄t is in the i
th class

(w̄i,j)Tφ(x̄t) + bi,j ≤ −1 + (ξi,j)t, if x̄t is in the j
th class

(ξi,j)t ≥ 0
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In the classification, voting mechanism is utilized. Each binary classification result

is considered as a vote where votes can be cast for all data points. The final decision

is given on the basis of majority vote. In the case that two classes have exactly the

same number of votes, the first class is designated as the final decision for the sake of

simplicity [127, 129].

Standard SVM training algorithms have O(m3) computational time and O(m2) com-

putational space complexity, where m is the number of training data [124, 129].

Therefore, with a large size of training data Radial Basis Function (RBF) kernel is

preferred due to its lower computational cost with respect to the linear and polyno-

mial kernels. Moreover, with the linear and polynomial kernels, the regularization

parameter C can not be adjusted optimally due to the high computational cost [124].

Therefore, in this thesis RBF kernel is used, where RBF kernel takes the following

form

K(x̄i, x̄) = exp

(
−||x̄i, x̄||

2
2

γ2

)
(6.12)

where γ is the kernel parameter of the Gaussian RBF [130].

6.3 Utilized Classification Method

In this thesis, a multi-class SVM classifier with Gaussian RBF kernel is used. SVM

is a state of the art classifier and frequently used in vehicle recognition applications.

For the reference system only blob features, which is a vector with 7 elements, are

extracted and used in the classifier. For the proposed system both blob and radiometric

features are extracted and used in the classifier. Hence, in the case of single band

system, the feature vector contains 14 elements, whereas it contains 21 elements in

the case of dual band system.

6.4 Performance Metrics

The metrics used to evaluate the performance of the proposed classification system

are confusion matrix, precision, recall, and accuracy.
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6.4.1 Confusion Matrix

Confusion matrices are used to show the number of instances of the predicted and

actual classes in the respective columns and rows of the matrix [131]. An example of

a confusion matrix for a system with two classes is given in Table 6.1.

Table 6.1: Confusion Matrix Example

Prediction

Class-1 Class-2

Real
Class-1 10 3

Class-2 5 7

6.4.2 Precision

Precision for class i, in a system with a total k number of classes, is computed using

Precision(i) =
A(i, i)∑k
j=1A(j, i)

(6.13)

where A is the confusion matrix and precision of class i is the percentage of data

points predicted as class i, whose real class label is indeed i [131].

6.4.3 Recall

Recall for class i, in a system with a total k number of classes, is computed using

Recall(i) =
A(i, i)∑k
j=1A(i, j)

(6.14)

where A is the confusion matrix and recall of class i is the percentage of data points

with real class label i, which were correctly predicted in that class [131].
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6.4.4 Accuracy

Accuracy is computed using

Accuracy =

∑k
i=1A(i, i)∑k

i=1

∑k
j=1A(i, j)

(6.15)

where A is the confusion matrix and accuracy is the percentage of data that has been

correctly predicted [131]. In other words, accuracy is a measure of the overall correct

decision rate of the classifier.
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CHAPTER 7

MEASUREMENT SETUP

Two setups are used in the thesis, one for the single band and one for the dual band

system.

7.1 Single Band Measurement Setup

A micro bolometer (See App.(B.3)) LWIR camera is used for the single band case.

The spectral range of the camera is from 7.5µm to 13µm. No filter is used in the

camera. The horizontal and vertical frame size is 320 by 240, respectively. Moreover,

a 122mm lens is used so that horizontal and vertical FOV value is 7 by 5.25 degrees.

The camera has 16 bit resolution in the DN values.

7.2 Dual Band Measurement Setup

A cooled photo voltage (See App.(B.2)) MWIR and a cooled Mercury Cadmium

Telluride (HgCdTe) LWIR camera are used for the dual band case. The spectral

range of the MWIR and LWIR cameras are from 1.5µm to 5.1µm and from 7.7µm to

11.9µm, respectively. A high pass filter with cut-on frequency at 3µm and a 8−12µm

band pass filter are used in the respective MWIR and LWIR cameras. The horizontal

and vertical frame sizes are 320 by 256 for both cameras. Moreover, 200mm lenses

are used such that FOVh and FOVv values are 2.75 by 2.2 degrees. Both cameras

have 14 bit resolution in theDN values. Spectral transfer functions of the MWIR and

LWIR cameras are shown in Fig.7.1(a) and Fig.7.1(b), respectively.
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(a) MWIR Camera (b) LWIR Camera

Figure 7.1: Spectral Transfer Functions of the Dual Band Measurement Setup

The cameras are located and aligned so that the need for registration is kept at min-

imum. In addition, to guarantee that the captured frames are synchronous in time,

both cameras are triggered with the same square pulse signal generated by a signal

generator.

The GPS coordinates of the cameras and also a predetermined location in the scene

are measured using a hand-held GPS receiver.

In addition, to accurately estimate the atmospheric profile; air temperature, relative

humidity, and pressure are measured using a meteorological data measurement sys-

tem during the recordings for the dual band measurement system. For the single band

measurement system; air temperature, relative humidity, and pressure are obtained

from the measurements of [132]. For the visible scene, the measurement data are

used directly in RT model. To construct the upper and lower atmospheric layers in

RT model except the visible scene, the meteorological data are converted to sea level

parameters using the models in [133, 134] and scaled accordingly. As expected, the

GPS coordinates of the system are also taken into account in the construction of the

layers.
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CHAPTER 8

ANALYSIS RESULTS

Analysis results corresponding to each component of the proposed system are given

in the following sections. Two sets of measurements are taken for each measurement

setup. The first set of measurements are the ones where the scene is relatively close

to the camera(s) and called near scenario. The second set of the measurements are the

ones where the scene is relatively far away from the camera(s) and called far scenario.

8.1 Registration Results

Clearly, registration analyses have been made only for the dual band measurement

setup. For a sample frame of the near scenario, the base image image is shown in

Fig.8.1(a). In this figure and also for the rest of the thesis, in the gray scaled image

visualizations the maximum and minimum values are mapped to the colors white

and black, respectively. Hence, in-between values are gray scaled due to the linear

mapping. The unregistered image and the registered image are shown in Fig.8.1(b)

and Fig.8.1(c), respectively. Pixel indices of the base and the unregistered images

differ for the same object. However, if the base and registered images are examined

closely, it is seen that the pixel indices of both images correspond to almost the same

objects in the scene.

Similarly for a sample frame of the far scenario, the base image image is shown in

Fig.8.2(a). The unregistered image and the registered image are shown in Fig.8.2(b)

and Fig.8.2(c), respectively. Although registration problem is harder in the far sce-

nario case than the near scenario case, the affine registration algorithm yields satis-
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(a) Base Image - MWIR Camera (b) Unregistered Image - LWIR Camera

(c) Registered Image - LWIR Camera

Figure 8.1: Dual Band Measurement Setup Registration Results - Near Scenario

factory results especially in the middle part of the image.

8.2 Geometry Estimation Results

8.2.1 Geometry Estimation Results for the Single Band Measurements

Two sets of measurements are taken with the single band measurement setup. The

output of the geometry estimation process for the near scenario, which are the range

and zenith angle values for each pixel, are shown in Fig.8.3(a) and Fig.8.3(b), respec-

tively. The camera altitude in this case is h = 985.97m. The range values in the
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(a) Base Image - MWIR Camera (b) Unregistered Image - LWIR Camera

(c) Registered Image - LWIR Camera

Figure 8.2: Dual Band Measurement Setup Registration Results - Far Scenario

frame are estimated to be in the interval from 250m to 390m. Corresponding zenith

angles are in 104o to 98o interval.

The output of the geometry estimation process for the far scenario, which are the

range and zenith angle values for each pixel, are shown in Fig.8.4(a) and Fig.8.4(b),

respectively. The camera altitude is again h = 985.97m. As expected the range

values are larger in the far scenario, which are in 750m to 2km interval. In addition,

corresponding zenith angles are from 98o to 93o.
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(a) Range Values (b) Zenith Angle Values

Figure 8.3: Single Band Measurement Setup Geometry Estimation Results - Near

Scenario

(a) Range Values (b) Zenith Angle Values

Figure 8.4: Single Band Measurement Setup Geometry Estimation Results - Far Sce-

nario

8.2.2 Geometry Estimation Results for the Dual Band Measurements

Two sets of measurements are taken with the dual band measurement setup. The out-

put of the geometry estimation process for the near scenario, which are the range and

zenith angle values of each pixel, are shown in Fig.8.5(a) and Fig.8.5(b), respectively

for the MWIR camera. The range and zenith angle values for the LWIR camera are

shown in Fig.8.5(c) and Fig.8.5(d), respectively. The camera altitude is h = 985.97m

for both of the cameras. Range and zenith angle values across MWIR and LWIR

cameras are very close to each other since the cameras are located side by side and

oriented towards almost the same area in the scene. Range values are from 270m

72



(a) MWIR Camera Range Values (b) MWIR Camera Zenith Angle Values

(c) LWIR Camera Range Values (d) LWIR Camera Zenith Angle Values

Figure 8.5: Dual Band Measurement Setup Geometry Estimation Results - Near Sce-

nario

to 335m. Corresponding zenith angles are from 102o to 100o. Clearly, these inter-

vals are narrower compared to the single band case since the FOV values of the dual

band measurement system is smaller than the FOV value of the single band system.

Moreover, since the resolution of the standard GPS receivers is on the order of a few

meters, the cameras are assumed to have the same position.

The output of the geometry estimation process for the far scenario, which are the

range and zenith angle values for each pixel, are shown in Fig.8.6(a) and Fig.8.6(b),

respectively for the MWIR camera. The range and zenith angle values for the LWIR

camera are shown in Fig.8.6(c) and Fig.8.6(d), respectively. The camera altitude is

h = 985.97m for both of the cameras. Range values are estimated to be in the interval
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(a) MWIR Camera Range Values (b) MWIR Camera Zenith Angle Values

(c) LWIR Camera Range Values (d) LWIR Camera Zenith Angle Values

Figure 8.6: Dual Band Measurement Setup Geometry Estimation Results - Far Sce-

nario

from 900m to 1350m. Corresponding zenith angles are in the interval from 96.5o to

94o. Again, range and zenith angle values are very close to each other for MWIR and

LWIR cameras. Moreover, the intervals are narrower compared to the far scenario

measurements of the single band system.

8.3 Atmospheric Effects Removal Results

In the atmospheric effects removal, Riemann sum is used to numerically compute the

respective continuous integral expressions. In the related equations the wavelength

step size, ∆λ, is used to compute the Riemann sums. ∆λ value is obtained according
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to,

∆λ =
(λhigh − λlow)

999
(8.1)

which means that the spectral computations are done at 1000 points.

8.3.1 Radiative Transfer Computations Results

RT computations for the output values of the geometry estimation are made using

Modtran R©. The effect of the range on the spectral transmittance and the path radi-

ance are shown in Fig.8.7(a) and Fig.8.7(b), respectively by using sample Modtran R©

outputs. Moreover, the effect of the zenith angle on the spectral transmittance and the

(a) Spectral Transmittance (b) Spectral Path Radiance

Figure 8.7: Effect of the Range on the Radiative Transfer

path radiance are shown in Fig.8.8(a) and Fig.8.8(b), respectively. The range value

(a) Spectral Transmittance (b) Spectral Path Radiance

Figure 8.8: Effect of the Zenith Angle on the Radiative Transfer
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variations have a serious effect on the transmittance and path radiance for the mea-

surement scenarios. However, zenith angle variations seem to have a very small effect

on the RT model output. This is because our measurements are taken with lenses that

have small FOV values. For geometries such as θ ∈ [100o, 140o], zenith angle has

considerable impacts on both transmittance and path radiance, which is the case for

cameras with larger FOV values.

8.3.2 Temperature Calibration with Radiometric Interpolation Results

8.3.2.1 Temperature Calibration with Radiometric Interpolation Results for

the Single Band Measurements

For the analyses, temperature calibration of the camera is a critical step. Therefore,

firstly the validity of the proposed calibration method is investigated. In this context,

a calibration with 17 points is done for the LWIR camera of the single band mea-

surement setup. Half of these calibration points are selected as training pairs. The

rest of the points are used to test the reference linear interpolation and the proposed

radiometric interpolation methods.

The training and test pairs together with the results of the linear and radiometric

interpolation methods are shown in Fig.8.9(a). The calibration error that is the tem-

(a) Temperature Calibration (b) Calibration Error

Figure 8.9: Single Band Measurement Setup - Justification of the Temperature Cali-

bration Method

perature difference between the test point and the result of each method are shown
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in Fig.8.9(b). The average absolute error of the methods are shown on the legend of

the figure, as well. The average absolute error of the linear interpolation is 532mK,

whereas it is 136mK for the proposed method. The typical NETD value of the cam-

era that is used in these measurements, is specified to be 80mK at 30oC. Therefore,

the results show that the proposed method performs better and yields calibration error

values close to the NETD of the camera. Moreover, once we use all the calibration

pairs rather than half of the data, the error performance is expected to improve further.

Temperature calibration with linear interpolation and also the proposed calibration

method using all the calibration pairs are shown in Fig.8.10(a). The temperature dif-

(a) Temperature Calibration (b) Temperature Difference

Figure 8.10: Single Band Measurement Setup - Radiometric Calibration

ference between the reference and the proposed methods is also given in Fig.8.10(b).

Clearly, the temperature difference values are equal to zero at the calibration points.

Besides, it is observed that the linear interpolation method always overestimates the

temperature values in between the calibration points. This is due to the slope of the

Planck curve for the temperature and pass-band of the camera.

8.3.2.2 Temperature Calibration with Radiometric Interpolation Results for

the Dual Band Measurements

The same analysis is repeated for the dual band measurement setup. The validity

of the proposed calibration method for both cameras is investigated. In this context,

a calibration with 11 and a calibration with 17 points are done for the MWIR and

LWIR cameras, respectively. Half of these calibration points are selected as training
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pairs. The rest of the points are used to test the reference linear interpolation and the

proposed radiometric interpolation.

The training and test pairs together with the results of the linear and radiometric in-

terpolation methods are shown in Fig.8.11(a) for the MWIR camera. The calibration

(a) Temperature Calibration - MWIR Camera (b) Calibration Error - MWIR Camera

(c) Temperature Calibration - LWIR Camera (d) Calibration Error - LWIR Camera

Figure 8.11: Dual Band Measurement Setup - Justification of the Temperature Cali-

bration Method

error that is the temperature difference between the test point and the result of each

method are shown in Fig.8.11(b) for the MWIR camera. Similarly, the calibration and

the error graphs for the LWIR camera are shown in Fig.8.11(c) and in Fig.8.11(d), re-

spectively. The average absolute error of the methods are shown on the legend of the

figures, as well. For the MWIR camera, the average absolute error of the linear inter-

polation is 748mK, whereas it is 80.8mK for the proposed method. For the LWIR

camera, the respective values are 292mK and 19.6mK. The typical NETD value of

both MWIR and LWIR cameras are specified to be 20mK at 25oC.
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For the LWIR camera, the proposed method performs almost perfectly. This is due to

the fact that the spectral variations in the LWIR band is smoother than the variations

in the MWIR band. On the other hand, for the MWIR camera the proposed method

also performs much better than the linear interpolation method but the average error

value of the proposed method is slightly higher than the NETD value. However, once

we use all the calibration pairs rather than half of the data, the error performance

tends to improve. Moreover, 80.8mK is so small that it is negligible in the analyses.

Hence, it is shown that the proposed radiometric interpolation method yields very

efficient results. In addition, both the performance and the performance gain is better

for the dual band cameras than the single band camera. This is because, single band

system camera has a non-cooled micro bolometer detector. However, the cameras

of the dual band system have cooled detectors, which means they are much more

sensitive measurement devices.

Temperature calibration with linear interpolation and also the proposed calibration

method using all the calibration pairs are shown in Fig.8.12(a) for the MWIR camera.

The temperature difference between the reference and the proposed methods is also

given in Fig.8.12(b) for the MWIR camera. Similarly, calibration and the difference

graphs for the LWIR camera are shown in Fig.8.12(c) and in Fig.8.12(d), respectively.

Although the dynamic range of the MWIR camera is less than the dynamic range

of the LWIR camera, the difference between the two methods is larger in the MWIR

band. This is mainly because the spectral variations in the MWIR band is greater than

the variations in the LWIR band, especially due to the molecular absorptions.

8.3.3 Atmospheric Effects Removal Results for the Single Band Measurements

A sample frame of the near scenario is analyzed. The DN image captured by the

LWIR camera and the result of the temperature calibration for the respective images

are shown in Fig.8.13(a) and Fig.8.13(b), respectively. According to the radiometric

calibration, the contents of the scene in terms of calibration temperature are in the

interval approximately from 25oC to 62oC. The second term of the left hand side of

Eq.(3.32), which is the weighted path radiance component is shown in Fig.8.13(c). In

addition, τw is shown in Fig.8.13(d).
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(a) Temperature Calibration - MWIR Camera (b) Temperature Difference - MWIR Camera

(c) Temperature Calibration - LWIR Camera (d) Temperature Difference - LWIR Camera

Figure 8.12: Dual Band Measurement Setup - Radiometric Calibration

The apparent radiance that is the left hand side of Eq.(3.32) is shown in Fig.8.14(a).

The distribution of the apparent radiance image is shown in Fig.8.14(b). The es-

timated source radiance computed using Eq.(3.34) and the image distribution are

given in Fig.8.14(c) and Fig.8.14(d), respectively. As clearly seen, the distribu-

tion of the image is changed due to the removed atmospheric effects. Moreover,

the blackbody radiance image, which is the radiance computed with the assump-

tion of a blackbody object (εx=meas(i, j, λ) = 1 ∀i, j, λ) in an ideal atmosphere

(τx=meas(i, j, λ) = 1 ∀i, j, λ) with an ideal camera (ϕcam(λ) = 1 ∀λ), is given in

Fig.8.14(e). The distribution of the blackbody image is shown in Fig.8.14(f).

A sample frame of the far scenario is also analyzed. The DN image captured by the

LWIR camera and the result of the temperature calibration for the respective images

are shown in Fig.8.15(a) and Fig.8.15(b), respectively. The contents of the scene in

terms of calibration temperature are in the interval approximately from 20oC to 60oC.

The weighted path radiance component and also τw are shown in Fig.8.15(c) and in
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(a) DN Image (b) Apparent Temperature Image

(c) Weighted Path Radiance Map (d) Weighted Transmittance Map

Figure 8.13: Single Band Measurement Setup Atmospheric Effects Removal Analysis

Results - Near Scenario

Fig.8.15(d), respectively.

The apparent radiance image is shown in Fig.8.16(a). The distribution of the apparent

radiance image is shown in Fig.8.16(b). The estimated source radiance and the image

distribution are given in Fig.8.16(c) and Fig.8.16(d), respectively. Similar to the near

scenario, the distribution of the image is changed due to the atmospheric correction.

Moreover, the blackbody radiance image is given in Fig.8.16(e). The distribution of

the blackbody image is shown in Fig.8.16(f).

In addition to the single frame analyses, a global analysis has also been made for all

the recordings of the single band measurements. Among these measurements first

measurements in time are the far scenarios, whereas the second measurements are

the near scenarios. For the far scenarios, there are 11 recordings. For each recording

a ROI, which is 9 × 8 pixels wide, is specified. The ROI is a region corresponding
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(a) Apparent Radiance Image (b) Apparent Radiance Image Distribution

(c) Estimated Source Radiance Image (d) Estimated Source Radiance Image Distribu-

tion

(e) Blackbody Radiance Image (f) Blackbody Radiance Image Distribution

Figure 8.14: Single Band Measurement Setup Atmospheric Effects Removal Radi-

ance Images - Near Scenario

only to the asphalt in the scene. In these recordings 100 frames are determined such

that there is no other object occluding the asphalt. For the near scenarios, there are

6 recordings. For each recording a ROI, which is 31 × 4 pixels wide, is specified.
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(a) DN Image (b) Apparent Temperature Image

(c) Weighted Path Radiance Map (d) Weighted Transmittance Map

Figure 8.15: Single Band Measurement Setup Atmospheric Effects Removal Analysis

Results - Far Scenario

The ROI is again a region corresponding only to the asphalt in the scene. In these

recordings 100 frames are determined such that there is no other object occluding

the asphalt. Then the apparent radiance, blackbody radiance, and also the estimated

source radiance values for each of these pixels in the determined frames are computed

similar to the single frame analysis. The temporal and spatial average and also the

standard deviation of each scenario is computed and shown as an error bar plot in

Fig.8.17.

The apparent radiance values are similar to the blackbody and estimated source ra-

diance values. This is because, the system transfer function of the camera is not

available, so it is assumed to be ideal within the pass-band of the camera.

ROIs are chosen such that they contain only asphalt because according to spectral

library in [135], asphalt behaves almost like a blackbody. The spectral directional
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(a) Apparent Radiance Image (b) Apparent Radiance Image Distribution

(c) Estimated Source Radiance Image (d) Estimated Source Radiance Image Distribu-

tion

(e) Blackbody Radiance Image (f) Blackbody Radiance Image Distribution

Figure 8.16: Single Band Measurement Setup Atmospheric Effects Removal Radi-

ance Images - Far Scenario

hemispherical reflectance of the asphalt in the spectral pass-band of the camera is

given in Fig.8.18. The average directional hemispherical reflectance in the band of

interest is approximately 0.05 and the spectral deviation is around 0.015. Therefore,
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Figure 8.17: Single Band Measurement Setup Atmospheric Effects Removal Results

Figure 8.18: Spectral Reflectance of the Asphalt for the Single Band Measurement

Setup

reflections from asphalt surface can be neglected. Moreover, the air temperature mea-

surements are the same for the respective times. Hence, the dominant difference

between the blackbody radiance and the estimated source radiance values are consid-

ered to be because of the atmospheric effects. In other words, if there were an ideal

atmosphere; the blackbody and estimated source radiance values are expected to have

almost the same values.

The difference between the two times is minimum for the estimated source radiance

since the atmospheric effects are removed. The remaining difference is due to the
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solar energy absorption of the asphalt. Therefore, with the help of atmospheric cor-

rection method, the variation of the radiance between the recordings corresponding

to different times is decreased as expected.

8.3.4 Atmospheric Effects Removal Results for the Dual Band Measurements

A sample frame of the near scenario for the MWIR camera is analyzed. The DN im-

age captured by the MWIR camera and the result of the temperature calibration for the

respective image are shown in Fig.8.19(a) and Fig.8.19(b), respectively. According to

(a) DN Image (b) Apparent Temperature Image

(c) Weighted Path Radiance Map (d) Weighted Transmittance Map

Figure 8.19: Dual Band Measurement Setup Atmospheric Effects Removal Analysis

Results - MWIR Camera - Near Scenario

the radiometric calibration, the contents of the scene in terms of calibration tempera-

ture are in the interval approximately from 5oC to 41oC. The weighted path radiance

component for the MWIR camera is shown in Fig.8.19(c). In addition, τw for the

MWIR camera is shown in Fig.8.19(d).
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The apparent radiance is shown in Fig.8.20(a). The distribution of the apparent ra-

(a) Apparent Radiance Image (b) Apparent Radiance Image Distribution

(c) Estimated Source Radiance Image (d) Estimated Source Radiance Image Distri-

bution

(e) Blackbody Radiance Image (f) Blackbody Radiance Image Distribution

Figure 8.20: Dual Band Measurement Setup Atmospheric Effects Removal Radiance

Images - MWIR Camera - Near Scenario

diance image is shown in Fig.8.20(b). The estimated source radiance and the image

distribution are given in Fig.8.20(c) and Fig.8.20(d), respectively. As clearly seen, the
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distribution of the image is changed due to the removed atmospheric effects. More-

over, the blackbody radiance image is given in Fig.8.20(e). The distribution of the

blackbody image is shown in Fig.8.20(f).

A sample frame of the near scenario for the LWIR camera is analyzed, too. The DN

image captured by the LWIR camera and the result of the temperature calibration for

the respective image are shown in Fig.8.21(a) and Fig.8.21(b), respectively. The con-

(a) DN Image (b) Apparent Temperature Image

(c) Weighted Path Radiance Map (d) Weighted Transmittance Map

Figure 8.21: Dual Band Measurement Setup Atmospheric Effects Removal Analysis

Results - LWIR Camera - Near Scenario

tents of the scene in terms of calibration temperature are in the interval approximately

from 3oC to 55oC. Since these values are not the surface temperatures but the appar-

ent temperatures, the values of the MWIR and LWIR cameras are not similar. The

weighted path radiance component for the LWIR camera is shown in Fig.8.21(c). In

addition, τw for the LWIR camera is shown in Fig.8.21(d).

The apparent radiance image is shown in Fig.8.22(a). The distribution of the appar-
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(a) Apparent Radiance Image (b) Apparent Radiance Image Distribution

(c) Estimated Source Radiance Image (d) Estimated Source Radiance Image Distri-

bution

(e) Blackbody Radiance Image (f) Blackbody Radiance Image Distribution

Figure 8.22: Dual Band Measurement Setup Atmospheric Effects Removal Radiance

Images - LWIR Camera - Near Scenario

ent radiance image is shown in Fig.8.22(b). The estimated source radiance and the

image distribution are given in Fig.8.22(c) and Fig.8.22(d), respectively. Similar to

the MWIR camera case, the distribution of the image is changed due to the removed
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atmospheric effects. Moreover, the blackbody radiance image is given in Fig.8.22(e).

The distribution of the blackbody image is shown in Fig.8.22(f).

A sample frame of the far scenario for the MWIR camera is also analyzed. The DN

image captured by the MWIR camera and the result of the temperature calibration for

the respective image are shown in Fig.8.23(a) and Fig.8.23(b), respectively. The con-

(a) DN Image (b) Apparent Temperature Image

(c) Weighted Path Radiance Map (d) Weighted Transmittance Map

Figure 8.23: Dual Band Measurement Setup Atmospheric Effects Removal Analysis

Results - MWIR Camera - Far Scenario

tents of the scene in terms of calibration temperature are in the interval approximately

from 10oC to 39oC. The weighted path radiance component for the MWIR camera is

shown in Fig.8.23(c). In addition, τw for the MWIR camera is shown in Fig.8.23(d).

The apparent radiance is shown in Fig.8.24(a). The distribution of the apparent ra-

diance image is shown in Fig.8.24(b). The estimated source radiance and the im-

age distribution are given in Fig.8.24(c) and in Fig.8.24(d), respectively. As clearly

seen, the distribution of the image is changed due to the removed atmospheric effects.
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(a) Apparent Radiance Image (b) Apparent Radiance Image Distribution

(c) Estimated Source Radiance Image (d) Estimated Source Radiance Image Distri-

bution

(e) Blackbody Radiance Image (f) Blackbody Radiance Image Distribution

Figure 8.24: Dual Band Measurement Setup Atmospheric Effects Removal Radiance

Images - MWIR Camera - Far Scenario

Moreover, the blackbody radiance image is given in Fig.8.24(e). The distribution of

the blackbody image is shown in Fig.8.24(f).

A sample frame of the far scenario for the LWIR camera is analyzed, too. The DN
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image captured by the LWIR camera and the result of the temperature calibration for

the respective image are shown in Fig.8.25(a) and Fig.8.25(b), respectively. The con-

(a) DN Image (b) Apparent Temperature Image

(c) Weighted Path Radiance Map (d) Weighted Transmittance Map

Figure 8.25: Dual Band Measurement Setup Atmospheric Effects Removal Analysis

Results - LWIR Camera - Far Scenario

tents of the scene in terms of calibration temperature are in the interval approximately

from 0oC to 47oC. Again, these values are apparent temperatures, not surface tem-

peratures. Therefore, the temperature values of the MWIR and LWIR cameras are

not expected to be the same values. The weighted path radiance component for the

LWIR camera is shown in Fig.8.25(c). In addition, τw for the LWIR camera is shown

in Fig.8.25(d).

The apparent radiance is shown in Fig.8.26(a). The distribution of the apparent ra-

diance image is shown in Fig.8.26(b). The estimated source radiance and the im-

age distribution are given in Fig.8.26(c) and Fig.8.26(d), respectively. Similar to the

MWIR camera case, the distribution of the image is changed due to the removed at-
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(a) Apparent Radiance Image (b) Apparent Radiance Image Distribution

(c) Estimated Source Radiance Image (d) Estimated Source Radiance Image Distri-

bution

(e) Blackbody Radiance Image (f) Blackbody Radiance Image Distribution

Figure 8.26: Dual Band Measurement Setup Atmospheric Effects Removal Radiance

Images - LWIR Camera - Far Scenario

mospheric effects. Moreover, the blackbody radiance image is given in Fig.8.26(e).

The distribution of the blackbody image is shown in Fig.8.26(f).

In addition to the single frame analyses, a global analysis has also been made for all
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the recordings of the dual band measurements. Among these measurements first, sec-

ond and the last measurements in time are the far scenarios, whereas the remaining

two measurements are the near scenarios. For the far scenarios, there are 16 record-

ings. For each recording a ROI, which is 23×8 pixels wide, is specified. The ROI is a

region corresponding only to the asphalt in the scene. In these recordings 100 frames

are determined such that there is no other object occluding the asphalt. For the near

scenarios, there are 11 recordings. For each recording a ROI, which is 23 × 8 pixels

wide, is specified. The ROI is again a region corresponding only to the asphalt in the

scene. In these recordings 100 frames are determined such that there is no other ob-

ject occluding the asphalt. Then the apparent radiance, blackbody radiance and also

the estimated source radiance values for each of these pixels in the determined frames

are computed similar to the single frame analysis. The temporal and spatial average

and also the standard deviation of each scenario for the MWIR and LWIR cameras

are computed and shown as an error bar plot in Fig.8.27 and in Fig.8.28, respectively.

Figure 8.27: Dual Band Measurement Setup Atmospheric Effects Removal Results -

MWIR Camera

The apparent radiance values for both cameras are much lower than the blackbody
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Figure 8.28: Dual Band Measurement Setup Atmospheric Effects Removal Results -

LWIR Camera

and estimated source radiance values. This is clearly due to the fact that, the system

transfer function of the camera lets approximately half of the incident energy on the

lens pass to the detector. As the apparent radiance values contain significant effects

of the lens, filter, and the detector; they can be misleading when we consider the

scene radiance alone, but not with the sensor. Hence, the apparent radiance values are

contained in the graphs just for the illustration of the behavior of the system, but not

for the atmospheric effects removal analyses.

ROIs are chosen such that they contain only asphalt because according to spectral

library in [135], asphalt behaves almost like a blackbody. The spectral directional

hemispherical reflectance of the asphalt in the pass-band of the MWIR and LWIR

cameras are given in Fig.8.29(a) and in Fig.8.29(b), respectively. The average di-

rectional hemispherical reflectance values in both pass-bands of the cameras are ap-

proximately 0.05 and the standard deviation values are around 0.01. Therefore, the

reflections from asphalt surface can be neglected. Moreover, the air temperature mea-

surements for the respective times are shown in Fig.8.30. Hence, the dominant differ-

ence between the blackbody and the estimated source radiance values are because of
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(a) Pass-band of the MWIR Camera (b) Pass-band of the LWIR Camera

Figure 8.29: Spectral Reflectance of the Asphalt for the Dual Band Measurement

Setup

Figure 8.30: Air Temperature Measurements for the Dual Band Measurement Setup

the atmospheric effects. Similar to the single band system case, if there were an ideal

atmosphere, the blackbody and the estimated source radiance values are expected to

have almost the same values.

In the LWIR band, all the values have the same trend as a function of time and also

possess a high correlation with the air temperature measurements. However, in the

MWIR band the correlation of the values are lower, especially at the last time slot.

During the measurements of the last two time slots, i.e. at 17:40 and 18:15 local

times, effectively there isn’t any energy coming from neither the sun nor the moon.

That means the solar and lunar irradiance values are negligible at these times. As

mentioned above, the asphalt behaves almost like a blackbody and so it is a very

good absorber and also a radiator. Since there isn’t any effective energy source in

the scene at the last two time slots, the radiation of the asphalt is not expected to
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increase. Moreover, in the steady-state it is expected that the surface temperature of

the asphalt and air temperature be close to each other due to the convection. However,

according to the blackbody radiance value, the radiation increases at the last time slot

with respect to the previous time slot. As the self emission of the asphalt can not

increase, the increase can be explained such that it is due to the increase in the path

radiance or increase in the atmospheric transmittance. Once the atmospheric effects

are removed, it is seen in the estimated source radiance values that the radiation of

the asphalt in the last time slot is lower than the previous time slot as expected. As

a result, the atmospheric effects removal yields consistent estimates with the diurnal

cycle of the extraterrestrial energy both in the MWIR and LWIR bands, whereas the

blackbody radiance computations fail to.

8.4 Data Fusion Results

Obviously, data fusion analyses have been made only for the dual band measurement

setup. A sample frame of the near scenario is analyzed. The base MWIR image,

shown in Fig.8.31(a) and also the registered LWIR image, shown in Fig.8.31(b) are

used to obtain the fused image. The fused image is given in Fig.8.31(c). As expected,

the fused image contains discriminatory information from both images. For example,

the guardhouse on the bottom right corner of the LWIR image cannot be seen in the

MWIR image but it is clearly seen in the fused image. Similarly, the light of the car

in the bottom left corner of the MWIR image cannot be seen in the LWIR image but

it is clearly seen in the fused image. Therefore, the fusion process applied yields an

image that has more contrast with respect to the base and registered images.

A sample frame of the far scenario is analyzed, too. The base MWIR image, shown

in Fig.8.32(a) and also the registered LWIR image, shown in Fig.8.32(b) are used to

obtain the fused image. The fused image is given in Fig.8.32(c). As expected, the

fused image contains discriminatory information from both images. For example, the

truck on the top right corner of the LWIR image cannot be clearly seen in the MWIR

image but it is clearly seen in the fused image. Similarly, the fence in the bottom

part of the MWIR image cannot be seen in the LWIR image but it is clearly seen in

the fused image. Therefore, the fusion process applied yields an image that has more
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(a) Base Image - MWIR Camera (b) Registered Image - LWIR Camera

(c) Fused Image

Figure 8.31: Dual Band Measurement Setup Data Fusion Results - Near Scenario

contrast with respect to the base and registered images.

8.5 Moving Vehicle Detection Results

GMM based BG subtraction method is implemented with a maximum number of

Gaussian components equal to 10 and the method needs a number of frames in order

to adapt the GMM to the scene. Hence, in the subsequent analyses first the train-

ing phase of the GMM background subtraction algorithm is completed and then the

respective analysis is made.
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(a) Base Image - MWIR Camera (b) Registered Image - LWIR Camera

(c) Fused Image

Figure 8.32: Dual Band Measurement Setup Data Fusion Results - Far Scenario

8.5.1 Moving Vehicle Detection Results for the Single Band Measurements

A sample frame of the near scenario is analyzed. The DN image, where there are 4

different moving cars in the scene, is shown in Fig.8.33(a). The segmented image is

given in Fig.8.33(b). In the segmented image, all the moving cars are successively

separated from the background.

A sample frame of the far scenario is analyzed, too. The DN image is shown in

Fig.8.34(a). The segmented image is given in Fig.8.34(b). As the range between

the camera and the road is relatively high compared to the near scenario case and

the lens on the camera is not big enough, the problem becomes quite difficult even
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(a) DN Image (b) Segmented Image

Figure 8.33: Single Band Measurement Setup Moving Vehicle Detection Results -

Near Scenario

(a) DN Image (b) Segmented Image

Figure 8.34: Single Band Measurement Setup Moving Vehicle Detection Results -

Far Scenario

with a manual segmentation. However, the algorithm successfully separates 8 moving

vehicles from the background. The vehicles that could not be separated are the ones,

which are relatively far away from the camera and occupy only a few tens of pixels

on the captured frame. Therefore, they are treated as noise in the algorithm.

8.5.2 Moving Vehicle Detection Results for the Dual Band Measurements

A sample frame of the near scenario is analyzed. The fused image is shown in

Fig.8.35(a), where there are 2 different moving cars in the scene. The segmented
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(a) Fused Image (b) Segmented Image

Figure 8.35: Dual Band Measurement Setup Moving Vehicle Detection Results - Near

Scenario

image is given in Fig.8.35(b). In the segmented image, all the moving cars are suc-

cessfully separated from the background.

A sample frame of the far scenario is analyzed, too. The fused image is shown in

Fig.8.36(a), where there are 8 different moving vehicles in the scene. The segmented

(a) Fused Image (b) Segmented Image

Figure 8.36: Dual Band Measurement Setup Moving Vehicle Detection Results - Far

Scenario

image is given in Fig.8.36(b). Although the lens on the camera is bigger than the one

in the single band case, the problem is still difficult even with a manual segmentation

since the range between the camera and the road is relatively high. However, the

algorithm separates 7 moving components from the background. The moving vehicle
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that could not be separated is the one, which is relatively far away from the camera

and has very similar brightness values with the background. Moreover, due to the

increased range, the boundaries of the components are not extracted as good as the

boundaries of the near scenario case.

8.6 Classification Results

Four different classes are designated that are car, van, truck/bus, and BG clutter. BG

clutter class is used for blobs such as more than one human-being very close to each

other that is occluded human and segmentation artifacts due to GMM adaptation to

sudden brightness changes like frame drops. Then, all the moving vehicle detection

output is labeled manually to one of these classes so as to construct the ground truth

class labels. As suggested in [127], obtained feature vectors are normalized to [0, 1].

For instance the major axis length of the blob feature vector is normalized among

all the feature instances so that the minimum and maximum value of the major axis

lengths are 0 and 1, respectively.

Once the ground truth data is obtained and features are normalized, 5-fold cross val-

idation is applied using all the feature vector instances and ground truth data. As a

result the optimum regularization and Gaussian RBF kernel parameters are obtained.

While searching the optimum parameters, both regularization and RBF kernel param-

eters took values in the search space 2i, where i = −10,−9, ..., 0, ..., 9, 10. Hence,

cross validation is evaluated in a 2D grid with 21 × 21 = 441 points. The optimum

parameter pair is designated as the point with the highest accuracy value.

After finding the optimum SVM parameters, the feature vector instances are randomly

separated into two disjoint sets for training and test. While separating the feature

vectors, occluded vehicle feature vectors are not included in the training set but they

are used in the test set. Hence, the failure of the moving vehicle detection step to

discriminate a vehicle from another vehicle or background is taken into account in

the performance evaluations, which is the case in practice. Then, the feature vector

instances and the respective ground truth data of the training set is used to train an

SVM model with the optimum parameters of the cross validation step. Afterwards,
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SVM model is tested with the test data. To increase the accuracy of the statistical

distribution, 100 Monte Carlo runs are executed for the data separation, training and

test steps. At the end of Monte Carlo runs, all the results are merged as a confusion

matrix. Then, accuracy metric, precision metric for each class, and recall metric for

each class are computed using the confusion matrix. Clearly, while implementing

the above methodology for the reference and the proposed systems, both systems are

evaluated using the same randomly selected data set. The only difference of the two

systems is that they use different features and as a result they have different optimum

parameters.

In all the measurements, the representative data of each class are unbalanced. Num-

ber of cars are much larger than the total number of the rest of the classes. Therefore,

using the strategy in [127], different regularization parameters are assigned to each

class both in the cross validation and training steps. The reported optimum regulariza-

tion parameters in the following subsections correspond to the parameter of the class

with the largest number of instances. Hence, the parameters of the remaining classes

are obtained by weighting this regularization parameter inversely proportional to the

number of instances. That is the regularization parameter of class i, Ci, is computed

using the following equalities

Ci = wiC (8.2)

where the weight factor of class i, wi, is calculated with

wi =

[
maxiNi

Ni

]
(8.3)

where Ni is the number of samples of class i and [.] is round-to-integer operator.

In the following subsections, to emphasize the need for a radiometric calibration,

classification with source radiance estimate features and classification with DN fea-

tures are given first. Then, to motivate the use of atmospherically corrected data

rather than uncorrected data, classification with source radiance estimate features and

classification with blackbody radiance features are compared. In the following two

subsections, the performance of the proposed system is compared with the reference

system. In the reference system only blob features are used, whereas both blob and

radiometric features are used in the proposed system. The results obtained with the
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single band measurement system and also the results obtained with the dual band

measurement system are given. Finally, to clarify the effect of moving vehicle detec-

tion performance on classification, all the experiments are repeated without using any

occluded samples in the tests.

8.6.1 Effects of Radiometric Calibration on Vehicle Classification

In order to assess the effects of radiometric calibration on vehicle classification, two

systems for the single band measurement system are used. In the first system, the

features are obtained from the DN frames. Similar to the radiometric features mean,

standard deviation, skewness, kurtosis, entropy, minimum, and maximum value of the

DN frames are extracted as the features of the first system and called DN features.

In the second system, only the radiometric features are used.

The average and the standard deviation of the normalized DN feature instances are

calculated. Statistics of each component of the DN feature vectors are given as error

bar plot in Fig.8.37(a) for the single band measurement setup. All instances of the nor-

malized DN features are also shown in Fig.8.37(b). Similarly, the statistics and also

(a) Normalized DN Features Statistics (b) Normalized DN Features

Figure 8.37: Single Band Measurement Setup DN Feature Extraction Results

all the instances of the radiometric features are shown in Fig.8.38(a) and Fig.8.38(b),

respectively. Furthermore, in order to have a closer look at the distribution of the

features, a sample member that is the mean component of the DN and radiometric

features are chosen for the van class. The average and the standard deviation of the
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(a) Normalized Radiometric Features Statistics (b) Normalized Radiometric Features

Figure 8.38: Single Band Measurement Setup Radiometric Feature Extraction Results

normalized mean of DN image and also the normalized mean of source radiance es-

timate image instances are calculated. Statistics of the respective normalized feature

components are given as an error bar plot in Fig.8.39(a). Moreover, all instances of

the respective normalized feature components are also shown in Fig.8.39(b). Since

(a) Normalized Features Statistics for Van (b) Normalized Features for Van

Figure 8.39: Single Band Measurement Setup DN vs Radiometric Feature Compari-

son for the Van Class

the measurements in this setup are taken using three different IT values, the variance

of the DN features are larger than the variance of the radiometric features. As a

result, a performance gain is expected with the radiometric features.

For the first system, the optimum regularization parameter is found to be C = 256

and the optimum Gaussian RBF kernel parameter is found to be γ = 128, where the

related search space and accuracies are shown as a surface plot in Fig.8.40(a). The
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(a) First System (b) Second System

Figure 8.40: Classification with DN vs. Radiometric Features Cross Validation Re-

sults

confusion matrix is given in Table 8.1. The precision and recall metrics obtained for

each class and also the accuracy of the system are given in Table 8.2 together with the

standard deviation values among Monte Carlo runs.

Table 8.1: Classification with DN Features Confusion Matrix

Prediction

Car Van Truck/Bus BG clutter

Real

Car 221150 4527 165 250

Van 1278 18251 0 170

Truck/Bus 173 1 1683 9

BG clutter 16418 5584 2153 28321

Table 8.2: Classification with DN Features Performance Metrics

Car Van Truck/Bus BG clutter

Precision 92.52% 64.35% 42.06% 98.51%

σprec 0.78% 3.98% 28.52% 29.02%

Recall 97.81% 92.65% 90.19% 53.97%

σrec 0.26% 2.43% 17.74% 20.84%

Accuracy 89.76%

σacc 0.4553%
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For the second system, the optimum regularization parameter is found to be C = 64

and the optimum Gaussian RBF kernel parameter is found to be γ = 32, where the

related search space and accuracies are shown in Fig.8.40(b). The confusion matrix is

given in Table 8.3. The precision and recall metrics obtained for each class and also

the accuracy of the system are given in Table 8.4 together with the standard deviation

values among Monte Carlo runs.

Table 8.3: Classification with Radiometric Features Confusion Matrix

Prediction

Car Van Truck/Bus BG clutter

Real

Car 219439 4860 169 1624

Van 1333 18323 0 43

Truck/Bus 137 5 1723 1

BG clutter 12793 2231 195 37257

Table 8.4: Classification with Radiometric Features Performance Metrics

Car Van Truck/Bus BG clutter

Precision 93.9% 72.08% 82.56% 95.71%

σprec 0.48% 4.75% 7.85% 9.57%

Recall 97.06% 93.01% 92.34% 71%

σrec 0.45% 1.83% 10.21% 12.85%

Accuracy 92.21%

σacc 0.53%

The use of radiometric calibration in classification clearly improves the overall clas-

sification accuracy with respect to the case with raw data, i.e. DN features. The

second system is more successful in terms of recall in the classification of all the

classes except car class. In terms of precision, the second system is better for all the

classes. When the entries of the confusion matrices are investigated, it is seen that

the correct predictions of the second system is more for all the classes except the car

class. However, the decrease of correct predictions of car class is negligible when the

increase of the other classes are considered.
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A naive look to the results would be the use of only DN features are quite good.

However, in the newly emerging IR cameras the IT value used during the measure-

ments are started to be dynamically adapted to the scene. That is, the IT value for

each frame is adjusted depending on the scene. For instance, if a very hot entity, e.g

the plume of a truck, enters the FOV of the camera, the IT value of the camera is

decreased so that no saturation from upper DN limit occurs. Similarly, if a very cold

entity, e.g. a car with snow on top of it, enters the FOV, the IT value is increased so

that no saturation from lower DN limit occurs. Therefore, in such a configuration

the value of DN changes from frame to frame and so DN values cannot be trusted in

classification. However, once all these DN values are mapped to a physical quantity

like radiance with the help of radiometric calibration, the consistency of the value for

the same object within frames is obtained. Thus these radiometric quantities can be

used in the classification. Similarly, the discussion above is valid for the case of IR

cameras that change the neutral density (energy limiting) filters adaptively during the

measurements. When a very hot entity enters the FOV, a neutral density filter with

a relatively lower transmittance characteristic is dynamically put on the camera. In

this situation, as the energy is decreased to prevent saturation from upper DN limits,

the DN values of the scene decreases as is the case with IT adaptation. However, the

effect of dynamic filter adjustment on the frame data can be drastically decreased by

mapping the DN values to radiance values with the help of radiometric calibration.

To conclude, the proposed method has the potential to be used for vehicle classifica-

tion with IR cameras that has the IT adaptation and/or neutral density filter adaptation

capabilities.

8.6.2 Effects of Atmospheric Correction on Vehicle Classification

In order to evaluate the effects of the proposed atmospheric correction method on ve-

hicle classification, two systems for the single band measurement system are used. In

the first system, the features are obtained from the blackbody radiance frames. Simi-

lar to the radiometric features mean, standard deviation, skewness, kurtosis, entropy,

minimum, and maximum value of the blackbody radiance frames are extracted as

the feature vector of the first system and called blackbody radiance features. In the

second system, only the radiometric features are used.
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The average and the standard deviation of the normalized blackbody feature instances

are calculated. Statistics of each component of the blackbody feature vectors are given

as error bar plot in Fig.8.41(a) for the single band measurement setup. All instances

of the normalized blackbody features are also shown in Fig.8.41(b).

(a) Normalized Blackbody Features Statistics (b) Normalized Blackbody Features

Figure 8.41: Single Band Measurement Setup Blackbody Feature Extraction Results

For the first system, the optimum regularization parameter is found to be C = 16

and the optimum Gaussian RBF kernel parameter is found to be γ = 64, where the

related search space and accuracies are shown as a surface plot in Fig.8.42(a). The

(a) First System

Figure 8.42: Classification with Blackbody Radiance vs. Radiometric Features Cross

Validation Results

confusion matrix is given in Table 8.5. The precision and recall metrics obtained for

each class and also the accuracy of the first system are given in Table 8.6 together

with the standard deviation values among Monte Carlo runs.
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Table 8.5: Classification with Blackbody Radiance Features Confusion Matrix

Prediction

Car Van Truck/Bus BG clutter

Real

Car 222167 3785 117 23

Van 1478 18213 0 8

Truck/Bus 287 0 1579 0

BG clutter 23470 1177 0 27829

Table 8.6: Classification with Blackbody Radiance Features Performance Metrics

Car Van Truck/Bus BG clutter

Precision 89.8% 78.59% 93.1% 99.89%

σprec 0.57% 3.09% 6.3% 7.1%

Recall 98.26% 92.46% 84.62% 53.03%

σrec 0.29% 1.62% 16.06% 18.24%

Accuracy 89.89%

σacc 0.53%

For the second system, the results are the same with the ones in Sec.8.6.1. Hence, the

optimum regularization parameter is found to be C = 64 and the optimum Gaussian

RBF kernel parameter is found to be γ = 32, where the related search space and

accuracies have already been shown in Fig.8.40(b). The confusion matrix has been

given in Table 8.3. The precision and recall metrics obtained for each class and also

the accuracy of the second system have already been given in Table 8.4 together with

the standard deviation values among Monte Carlo runs.

The use of atmospherically corrected radiance data in classification clearly improves

the overall classification accuracy with respect to the case with uncorrected radiance

data, i.e. blackbody radiance features. The second system is more successful in

terms of recall in the classification of all the classes except car class. The situation

with the precision values is the exact opposite of the situation with the recall values.

When the entries of the confusion matrix corresponding to the BG clutter class are

considered, it is seen that the second system is much more successful in terms of
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correct prediction. This is explained in a way that the atmospheric effects distribution

on the frame cannot be neglected. Since the samples of BG clutter class may have

blobs that spread in a large area on the frame, the distribution of the atmospheric

effects on the blob becomes important. Hence, the number of correct predictions of

the samples of BG clutter class are greater with the second system. In other words,

if no atmospheric correction is applied, the distribution of the blackbody radiance

are less discriminative than the distribution of the atmospherically corrected radiance

data, i.e. source radiance estimate. Similar arguments apply to the van and truck/bus

classes since the second system performs better in terms of correct prediction of the

respective classes. The increase of the correct predictions for these three classes

come with a decrease in the correct prediction of car class. However, the decrease

is negligible when the increase of the other classes are considered.

Although a performance gain is obtained with the proposed atmospheric correction

approach, it shall be noted that only the blackbody radiance values even yield high

overall accuracy. To the current knowledge of the author, this thesis is the first that

uses the blackbody radiance values in vehicle classification like it is also the first that

uses the source radiance estimate values in vehicle classification. In terms of com-

putational complexity, the difference between the blackbody radiance computation

and source radiance estimation is a single subtraction and a division for each pixel in

the blob. Clearly, the subtracted value is the weighted path radiance component that

can be precomputed and stored in the memory. Similarly, the divisor is the weighted

transmittance value and again transmittance values can be precomputed. As a result,

there is a tradeoff between the overall accuracy performance and computational com-

plexity for the proposed systems. However, if the computational complexity is not

critical, the atmospheric correction may be favored since it possesses higher accuracy

and also if there is any additional step following the classification, atmospherically

corrected radiance data has the high potential to become very valuable for the sequen-

tial tasks.
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8.6.3 Classification Results for the Single Band Measurements

For the single band measurements, the near scenario is executed according to the

aforementioned classification procedure. The reference system that is shown in Fig.1.1

is used. In the reference system, only blob features are used. In the proposed system,

both blob and radiometric features are used.

The average and the standard deviation of the normalized blob feature instances are

calculated. Statistics of each component of the blob feature vectors are given as error

bar plot in Fig.8.43(a) for the single band measurement setup. All instances of the

normalized blob features are also shown in Fig.8.43(b).

(a) Normalized Blob Features Statistics (b) Normalized Blob Features

Figure 8.43: Single Band Measurement Setup Blob Feature Extraction Results

The optimum regularization parameter of the reference system is found to be C = 16

and the optimum Gaussian RBF kernel parameter is found to be γ = 32, where the

related search space and accuracies are shown as a surface plot in Fig.8.44(a). The

confusion matrix is given in Table 8.7. The precision and recall metrics obtained

for each class and also the accuracy of the reference system are given in Table 8.8

together with the standard deviation values among Monte Carlo runs.

The proposed system that is shown in Fig.1.2 is used. The optimum regularization

parameter is found to be C = 1024 and the optimum Gaussian RBF kernel parameter

is found to be γ = 16, where the related search space and accuracies are shown

in Fig.8.44(b). The confusion matrix is given in Table 8.9. The precision and recall
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(a) Reference Method (b) Proposed Method

Figure 8.44: Single Band Measurement Setup Cross Validation Results

Table 8.7: Single Band Measurement Setup Reference Method Confusion Matrix

Prediction

Car Van Truck/Bus BG clutter

Real

Car 202573 16449 414 6656

Van 913 18726 0 60

Truck/Bus 394 0 1468 4

BG clutter 9855 1729 0 40892

Table 8.8: Single Band Measurement Setup Reference Method Performance Metrics

Car Van Truck/Bus BG clutter

Precision 94.78% 50.74% 78% 85.89%

σprec 2.14% 9.94% 13.14% 9.22%

Recall 89.6% 95.06% 78.67% 77.93%

σrec 5.27% 3.9% 9.67% 9.1%

Accuracy 87.85%

σacc 2.88%

metrics obtained for each class and also the accuracy of the proposed system are given

in Table 8.10 together with the standard deviation values among Monte Carlo runs.
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Table 8.9: Single Band Measurement Setup Proposed Method Confusion Matrix

Prediction

Car Van Truck/Bus BG clutter

Real

Car 222420 3601 71 0

Van 1103 18596 0 0

Truck/Bus 185 0 1681 0

BG clutter 21528 1160 0 29788

Table 8.10: Single Band Measurement Setup Proposed Method Performance Metrics

Car Van Truck/Bus BG clutter

Precision 90.7% 79.62% 95.95% 100%

σprec 0.76% 4.53% 4.26% 5.28%

Recall 98.38% 94.4% 90.09% 56.76%

σrec 0.59% 1.65% 16.16% 18.33%

Accuracy 90.79%

σacc 0.75%

The proposed system clearly improves the overall classification accuracy with respect

to the reference system. The proposed system is more successful in terms of recall

in the classification of the car and truck/bus classes. On the other hand, it performs

almost the same for the van class and performs worse for the BG clutter class. This is

because, BG clutter class contains a broad group of objects such as occluded human,

segmentation artifacts, noise, etc. As a result, the distribution of these objects show

a broad range in terms of radiance as their characteristics are much more different.

Therefore, the inclusion of the radiometric features decreases the classification per-

formance for the BG clutter. However, in practice the most critical classes are the

remaining three classes and the proposed method is shown to be superior for these

classes. This is explained as, these specific classes have similar radiance distribution

within the same class and so the radiometric features help to increase the performance.

Some examples of the misclassifications of the reference method are given in Fig.8.45.

In Fig.8.45(a) and Fig.8.45(b), the car is occluded with a van in the scene. Hence, the
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(a) Occluded Car Predicted as Van (b) Occluded Car Predicted as Truck

(c) Poorly Segmented Truck Predicted as Van

Figure 8.45: Single Band Measurement Setup Misclassification Examples

system that uses only blob features classifies these blobs as van and truck, respec-

tively. This is simply because the occlusion makes the blob appear larger than the

blob of a non-occluded car. In Fig.8.45(c), rear part of the truck is designated as

background in the vehicle detection step. Hence, the truck appears smaller than its

real size. As a result, the reference method classifies the blob of the truck as a van.

On the other hand, the proposed method that uses blob features together with the ra-

diometric features classifies all the three examples correctly. This fact highlights the

accuracy gain obtained with the use of radiometric features on vehicle classification.
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8.6.4 Classification Results for the Dual Band Measurements

For the dual band measurements, the near scenario at local time 15:00 is executed

according to the aforementioned classification procedure. The reference system that

is shown in Fig.1.3 is used. In the reference system, only blob features are used. In

the proposed system, both blob and radiometric features are used.

The average and the standard deviation of the normalized blob feature instances are

calculated. Statistics of each component of the blob feature vectors are given as

error bar plot in Fig.8.46(a) for the dual band measurement setup. All instances of

the normalized blob features are also shown in Fig.8.46(b). Similarly, the statistics

(a) Normalized Blob Features Statistics (b) Normalized Blob Features

Figure 8.46: Dual Band Measurement Setup Blob Feature Extraction Results

and also all the instances of the radiometric features are shown in Fig.8.47(a) and

Fig.8.47(b), respectively.

The optimum regularization parameter of the reference system is found to beC = 128

and the optimum Gaussian RBF kernel parameter is found to be γ = 64, where the

related search space and accuracies are shown as a surface plot in Fig.8.48(a). The

confusion matrix is given in Table 8.11. The precision and recall metrics obtained

for each class and also the accuracy of the reference system are given in Table 8.12

together with the standard deviation values among Monte Carlo runs.

The proposed system that is shown in Fig.1.4 is used. The optimum regularization

parameter is found to be C = 16 and the optimum Gaussian RBF kernel parameter
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(a) Normalized Radiometric Features Statistics (b) Normalized Radiometric Features

Figure 8.47: Dual Band Measurement Setup Radiometric Feature Extraction Results

(a) Reference Method (b) Proposed Method

Figure 8.48: Dual Band Measurement Setup Cross Validation Results

Table 8.11: Dual Band Measurement Setup Reference Method Confusion Matrix

Prediction

Car Van Truck/Bus BG clutter

Real

Car 103100 8351 7955 9071

Van 3906 14544 2636 4485

Truck/Bus 430 0 6278 57

BG clutter 8515 491 5964 9895

is found to be γ = 2, where the related search space and accuracies are shown in

Fig.8.48(b). The confusion matrix is given in Table 8.13. The precision and recall

metrics obtained for each class and also the accuracy of the proposed system are
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Table 8.12: Dual Band Measurement Setup Reference Method Performance Metrics

Car Van Truck/Bus BG clutter

Precision 88.92% 62.19% 27.5% 42.09%

σprec 7.08% 7.66% 28.77% 4.63%

Recall 80.25% 56.88% 92.8% 39.79%

σrec 8.05% 4.86% 4.94% 13.77%

Accuracy 72.07%

σacc 5.05%

given in Table 8.14 together with the standard deviation values among Monte Carlo

runs.

Table 8.13: Dual Band Measurement Setup Proposed Method Confusion Matrix

Prediction

Car Van Truck/Bus BG clutter

Real

Car 112185 10216 3974 2102

Van 2891 18920 1218 2542

Truck/Bus 104 45 6616 0

BG clutter 2068 1883 743 20171

Table 8.14: Dual Band Measurement Setup Proposed Method Performance Metrics

Car Van Truck/Bus BG clutter

Precision 95.68% 60.91% 52.71% 81.29%

σprec 2.14% 6.36% 19.49% 4.34%

Recall 87.32% 73.99% 97.8% 81.12%

σrec 2.6% 7.22% 1.95% 12.76%

Accuracy 85.04%

σacc 1.98%

The proposed system improves the overall classification accuracy substantially with
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respect to the reference system. The proposed system is more successful in terms of

recall in the classification of all the classes. Moreover, the precision is better for all

the classes except the van. However, the decrease in the precision for the van class

is negligible when compared to the achievements for the rest of precision and recall

values. In addition, the accuracy improvement is much more compared to the single

band case as expected. Clearly, the dual band measurement system is more complex

as it requires one more camera and additional registration and fusion steps in the

algorithm pipeline. Therefore, it is concluded that when selecting between the single

band and dual band proposed systems, there is a tradeoff between the performance

and both computational and hardware complexities.

Some examples of the misclassifications of the reference method are given in Fig.8.49.

In Fig.8.49(a), the car is occluded with another car in the scene and so the blob appears

(a) Occluded Car Predicted as Van (b) Occluded Car Predicted as Truck

(c) Occluded Van Predicted as Truck (d) Occluded Van Predicted as Car

Figure 8.49: Dual Band Measurement Setup Misclassification Examples
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larger than the blob of a non-occluded car. Hence, the reference method misclassi-

fies the blob as if it were a van. In Fig.8.49(b), the car is occluded with another car

in the scene and also occluded with some noise above the car due to BG adaptation

transients of the GMM algorithm. As a result the blob appears much larger than the

blob of a car and the reference method predicts the class label of the blob as a truck.

In Fig.8.49(c), a van is occluded with a car at the left side of the image and also oc-

cluded with a human at the bottom side of the image. Therefore, the blob size of this

occluded van is larger than its size in reality. Therefore, the class label prediction of

the reference method is a truck for this blob. In the last example shown in Fig.8.49(d),

a van has just entered the FOV of the cameras and has been occluded with a car. It

can be argued that the respective blob could be designated as a car occluded with a

van. However, in this thesis the ground truth labels are designated based on the class

of the object, which is the closest to the camera(s). Hence, both methods misclas-

sify the blob as if it were a car. Other than the last example, the proposed method

classifies the first three examples correctly. For this reason, it is concluded that the

radiometric features obtained with the source radiance estimate values, improves the

overall classification accuracy with respect to the reference method.

8.6.5 Effects of Occlusion on Vehicle Classification

The moving vehicle detection clearly affects the classification performance. This is

because the implemented method outputs occluded blobs from time to time. There-

fore, in order to assess the performance of the classification method only, all the

experiments have been repeated but this time the occluded blobs have not been used

in the tests.

Firstly the effect of radiometric calibration and also the effect of atmospheric correc-

tion experiments are done without occluded samples. The first system that uses only

DN features yields an accuracy of 98.94%. The system with the blackbody radiance

features yields an accuracy of 99.06%, whereas the system with radiometric features

has the highest accuracy, which is 99.2%. Therefore, in the case of an almost ideal

vehicle detection method, the proposed radiometric features has a very high overall

classification accuracy.
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Secondly the reference system with the blob features and also the proposed system

with both blob and radiometric features are investigated under the tests without oc-

cluded samples. For the single band measurement setup, the accuracy of the reference

and proposed systems are 98.44% and 99.6%, respectively. The use of radiometric

features is better than the use of blob features in terms of accuracy. Moreover, the use

of radiometric features together with the blob features is even better again in terms of

classification accuracy.

Thirdly, similar experiment is done for the dual band measurement setup. The accu-

racy of the reference and proposed systems are 98.16% and 99.34%, respectively. As

expected, for the dual band measurement setup the proposed system with blob and

radiometric features possesses higher accuracy than the reference system with blob

features.

As a conclusion, all the results show that the use of the proposed radiometric features

in vehicle classification significantly enhances the overall classification accuracy both

in a practical system with occluded samples and also in a system with almost ideal

vehicle detection block.
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CHAPTER 9

CONCLUSION

A novel method that extracts radiometric features with atmospheric correction is pro-

posed. The proposal is applied to vehicle classification both for a single and a dual

band IR camera system. The proposed system has six major components that are

registration, geometry estimation, atmospheric effects removal, data fusion, moving

vehicle detection, and classification.

In this context, a literature search has been done for registration and a simple but

effective registration process has been implemented. Since the effect of the atmo-

sphere is different for each pixel in the frame, the geometric relation between the

measured scene and the image plane is investigated with the proposed geometry es-

timation method so that the line of sight is estimated and used in the atmospheric

correction. Then an atmospheric correction system is proposed, which considers the

spectral characteristics of the detector, lens, and filter of the IR camera. In this pro-

cess, an enhanced temperature calibration method is developed, too. The main con-

tribution of the system is the accuracy due to the physical measurements and also

the detailed consideration of the radiometric relationships. Literature search has been

done for data fusion and a wavelet transform based data fusion process has been im-

plemented. Similarly, a literature search has been done for vehicle detection process

and a Gaussian mixture model based process is implemented. Finally, a literature

search concentrated on SVM for the classification has been done. As the last but

not the least contribution, the source radiance estimates are used in vehicle classifi-

cation, which are the output of atmospheric correction process. To our knowledge

this is the first attempt in the literature that radiometric quantities are used in vehicle
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classification.

The proposed system is analyzed using two systems. First system consists of a sin-

gle non-cooled LWIR camera and the second system consists of two cooled MWIR

and LWIR cameras. With both systems, controlled measurements are taken. In the

case of second system the measurements with both cameras are taken synchronously

and the cameras are collocated. These records are analyzed in detail with the im-

plemented methods. The temperature calibration method is shown to present a high

accuracy, which is close to the NETD value of the cameras. Furthermore, it is shown

that the atmospheric correction method removes the transmittance and path radiance

effects from the measured data with the help of the proposed geometry estimation

method and yields source radiance estimates. Then, the obtained radiance data are

used in classification and it is seen that the proposed classification method increases

the classification accuracies both for the first and second systems. As expected, the

performance gain obtained with the dual band camera system is more than the one ob-

tained with single band camera system at the cost of additional computational steps,

which are registration and data fusion.

In the future, it is planned to improve the temperature calibration method by con-

sidering the reflected energy from the calibration device. Moreover, the output of

geometry estimation can be utilized to extract features that represent physical quanti-

ties, e.g. physical width of a blob rather than pixel width. Another extension is to use

different combinations of features in the classifier. For instance, the performance of a

system with radiometric, blob, and also HOG features may be investigated. Finally,

other classifiers than SVM, in the context of radiometric features, is an additional

topic to be investigated.
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APPENDIX A

INFRARED THEORY

A.1 Planck’s Radiation Law

Any object whose temperature is above absolute zero Kelvin emits radiation at a rate

and with a distribution of wavelengths, λ. This wavelength distribution is dependent

on the temperature of the object and its spectral emissivity, ε. The spectral emissivity,

which may also be considered as the radiation efficiency at a given wavelength, is in

turn characterized by the radiation emission efficiency based on whether the object is

a blackbody, graybody or selective radiator. The blackbody is an ideal body. It is a

perfect absorber that absorbs all incident radiation and as a consequence of Kirchoff’s

law is conversely a perfect radiator. According to Kirchoff’s law; good absorbers

are also good radiators and vice versa. This implies that a blackbody absorbs and

emits the maximum theoretically possible energy at a given temperature. The spectral

emissivity;

• ε(λ) = 1 ∀λ for a blackbody

• ε(λ) = c ∀λ where 0 < c < 1 for a graybody

• 0 ≤ ε(λ) ≤ 1 for a selective radiator

The radiative power [Wm−2µm−1] as a function of wavelength and temperature is

given by Planck’s radiation law;

W (λ, T ) =
2πhpc

2

λ5

[
exp

(
hpc

λkT

)
− 1

]−1

(A.1)

where;
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• hp is Planck’s constant h = 6.6256× 10−34Js

• c is the velocity of light in vacuum c = 2.9979× 108ms−1

• k is Boltzmann’s constant k = 1.38054× 10−23WsK−1

• λ is the wavelength in µm

• T is the temperature in K

The absorptivity α of any material at a given temperature is equal to its emissivity ε

at that temperature that is α(λ, T ) = ε(λ, T ) [41, 136, 137].

The spectral blackbody radiance, Lbb of an object [Wsr−1m−2µm−1] is computed

with,

Lbb(λ, T ) =
W (λ, T )

π
=

2hpc
2

λ5

[
exp

(
hpc

λkT

)
− 1

]−1

(A.2)

when the object is assumed to radiate into a hemisphere in a homogeneous manner.

A.2 Wien’s Displacement Law

The spectral density has a maximum at a certain wavelength for each temperature

value. As the temperature increases, the wavelength of the maximum value decreases.

This is the reason of the change in color of a glowing body as the temperature varies.

Wien’s displacement law states the inverse relationship between the wavelength of

the peak of the emission of a blackbody and its temperature as [41]

Tλmax = 2898µmK (A.3)

A.3 Stefan-Boltzman Law

Stefan-Boltzman law helps to calculate the total radiant emittance. The infrared cam-

era measures and images the emitted IR radiation from an object. The radiation is

a function of the object surface temperature and so the temperature variations can
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be calculated and displayed on the camera. This is done via the sensitive Stefan-

Boltzman law, ∫ ∞
0

ε(λ, T )W (λ, T )dλ ∝ T 4 (A.4)

The result of the integral is essentially the area below the Planck curve. As a con-

sequence of Kirchoff’s law, the radiation measured by the camera does not solely

depend on the temperature of the object but is also a function of the emissivity [41].

141



142



APPENDIX B

INFRARED DETECTORS

The development of the infrared detectors goes back to the 1950s, where the aim

was to use the detectors in military applications. IR detectors can be classified as

thermal detectors and photon detectors based on the functional characteristics. Photon

detectors rely on the interaction between the radiation quanta and the atoms of the

material. On the other hand, thermal detectors rely on the temperature changes in the

detector material. For temperature difference registering purposes, photon detectors

are superior than the thermal detectors [138].

Photon detectors can be divided into five categories; namely photo conductive, photo

voltage, photo emissive, photo magnetic, and quantum well. The most common ma-

terials used in the IR detectors are Gallium Arsenide (GaAs), Indium Antimonide

(InSb), and HgCdTe. To minimize the thermal noise, which may exceed the detector

signal caused by the photons, photon detectors are typically cooled to 77K to 80K.

In extrinsic semi-conductive detectors, even lower temperature values are required.

Moreover, cooling process introduces a functional delay in the system. On the other

hand, thermal detectors do not need cooling. There are two types of thermal detectors

developed for industrial applications; bolometer and pyroelectric matrix detectors.

These detectors approach the sensitivity of the photon detectors [138]. The most

common detectors are given in the following sections.

B.1 Quantum Well Detectors

Quantum Well Infrared Photodetectors (QWIP) are one of the most sensitive detec-

tors, which reach under 20mK NETD values. GaAs and similar materials are used in
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QWIP detectors. Hence, QWIP detectors are thermally stable and radiation resistant.

They have standard quality and high uniformity between detector elements. Their

quantum efficiency1 is between 1−12.5%. Moreover, these detectors can be adjusted

to different wavelengths [138].

B.2 Photo Voltage Detectors

Photo Voltage (PV) detectors are the most advanced IR detectors, which reach under

18mK NETD values. InSb materials are used in PV detectors. PV detectors are

maximally responsive to 3 − 5µm band and have quantum efficiency up to 90%.

Thermal noise of PV detectors are decreased by cooling [138].

B.3 Micro Bolometer Detectors

Micro Bolometer (MB) detectors are non-cooled and so there is not any additional

delay due to the cooling process. MB detectors have lower sensitivity than QWIP and

PV detectors but almost an even response is achieved in a wide IR band. MB detectors

may achieve 40mK NETD values when the f-value2 is equal to one. HgCdTe and

InSb materials are commonly used in MB detectors [138].

1 Quantum efficiency is a compromise between detector material, pixel residual non-uniformity versus signal
to noise ratio.

2 f-value is the ratio between the focal distance and the aperture diameter.
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APPENDIX C

GEOCENTRIC EARTH RADIUS

In [52], n-vector is given as,

n̄E =


sin(λ)

sin(µ) cos(λ)

− cos(µ) cos(λ)

 (C.1)

where λ is the geodetic latitude, µ is the longitude and n̄E is the n-vector relative to

the earth frame, E. In addition, the position vector of a point using the n-vector at an

altitude h is given in [52] as,

p̄EEB =
b√

sin2(λ) + a2

b2
sin2(µ) cos2(λ) + a2

b2
cos2(µ) cos2(λ)

sin(λ)

a2

b2
sin(µ) cos(λ)

−a2

b2
cos(µ) cos(λ)

+ hn̄E (C.2)

where a and b are the semi-major and semi-minor axes of the ellipsoid model corre-

sponding to the equatorial and polar radius values of the earth, respectively. p̄EEB is

the position vector from the origin of frame E to the origin of body frame, B, relative

to the earth frame. Then, if we set the altitude to zero and compute the L2 norm of the

position vector, we get the following equation for the geocentric earth radius, Reff .

Reff = ||p̄EEB(h = 0)||2 (C.3)

Reff =

√
b4 sin2(λ) + a4 cos2(λ)

b2 sin2(λ) + a2 cos2(λ)
(C.4)
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APPENDIX D

MULTIRESOLUTION THEORY

In multiresolution theory, images are represented and analyzed at more than one res-

olution. This is because, features that can not be detected at one resolution, may be

detected easily at another resolution. If an object in an image is small in size or low

in contrast, it is analyzed at higher resolutions. If an object is large in size or high

in contrast, it is enough to analyze the object at a lower resolution. If both small and

large objects, low and high contrast objects are present in an image, analyzing the

image at several resolutions would be beneficial [139].

D.1 Wavelet Transform

Wavelet transform of an image produces four sub-band coefficients, which are ap-

proximation, horizontal detail, vertical detail, and diagonal detail coefficients. If f(.)

is any square integrable function, the Continuous Wavelet Transform (CWT) of f(t)

with respect to a wavelet Ψ(t) is defined as;

W (a, b) ,
∫ ∞
−∞

f(t)
1√
a

Ψ∗
(
t− b
a

)
dt (D.1)

where a is a real number referred to as scale or dilation variable. b is a real number

and represents the time shift or translation. ∗ denotes the complex conjugation [139].

CWT has a redundant representation of the signal since the entire support of W (a, b)

is not needed to recover the original f(t). Hence, a non-redundant wavelet represen-

tation of the signal is;

f(t) =
∞∑

k=−∞

∞∑
l=−∞

d(k, l)
1√
2

Ψ(2−kt− l) (D.2)
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where d(k, l) is called the Discrete Wavelet Transform (DWT). The equation does not

involve a continuum of dilations and translations, instead it uses discrete values of a

and b [139].

The Haar basis is obtained with a multiresolution of piecewise constant functions.

The scaling function is φ = 1[0,1]. The impulse response of the filter h[n] is,

h[n] =


1√
2
, if n = 0, 1

0, otherwise
(D.3)

The Haar wavelet is,

Ψ(t) =


−1, if 0 ≤ t < 1

2

1, if 1
2
≤ t < 1

0, otherwise

(D.4)

where Haar wavelet is not well adapted to approximating smooth functions since it

has only one vanishing moment [139].
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APPENDIX E

INFRARED SIGNATURE ANALYSIS SOFTWARE

Infrared Signature Analysis software is an object-oriented software developed with

Matlab R© [140], which handles almost all the methods given in the thesis. IRSA is

used to load the single or dual band binary image sequence files, apply registration

if necessary, estimate the LOS geometry, compute all types of radiance values using

radiometric calibration, apply data fusion if necessary, segment the images and finally

extract all types of features mentioned throughout the thesis. At the last step, IRSA

records all the extracted features into unique files together with the related meta data.

The only method that is beyond the scope of IRSA is the classifier. As explained

in the thesis multi-class SVM classifier is used and it is implemented as a separate

software, which is capable of loading any feature recorded by IRSA and then yielding

classification analysis results.

The Graphical User Interface (GUI) of IRSA is shown in Fig.E.1. In the Options

menu the user has the option to choose the GUI language using Fig.E.2. When the

user chooses the language as Turkish, GUI is seen as shown in Fig.E.3. In both

Primary Frame Sequence and Secondary Frame Sequence fields of Fig.E.1, the re-

spective frames are displayed. Clearly, in the single band case Secondary Frame

Sequence field is not used. The sliders are used to display any desired frame in the

sequence. Frame Time shows the local time of the computer on which the IR se-

quence is recorded. It shall be noted that as mentioned before signal generator is used

to synchronize the cameras in the dual band measurement case, so the time difference

between the respective frames is not an issue. Status Message field is used to inform

the user if any unexpected behavior happens, e.g. the file containing GPS information

cannot be found, etc. Load Camera Record File is used to load any binary sequence
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Figure E.1: GUI of IRSA

Figure E.2: GUI of Language Selection

Figure E.3: GUI of IRSA in Turkish
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file recorded with any IR camera used in the thesis. In the Image Type selection,

the user chooses which type of the image to analyze. The image types are DN Im-

age, Apparent Temperature Image, Apparent Radiance Image, Blackbody Radiance

Image, Source Radiance Estimate Image, Range Values Image, Zenith Angle Values

Image, Weighted Transmittance Map, Weighted Path Radiance Map, Fused Image,

and Segmented Image. When the user chooses apparent temperature, GUI is shown

in Fig.E.4. Similarly, when the user chooses segmented frame, GUI is shown in

Figure E.4: GUI of IRSA - Apparent Temperature Selection

Fig.E.5. In this case, Fused Frame Sequence field becomes visible and the segmented

frame is displayed in this field. Moreover, the proposed normalization method for

data fusion is selected in this field, too. In the Record field, the user chooses to play,

pause, and stop the sequence. In addition, the user has the option to save the contents

of the displayed image sequence. Registration field is used whether to apply regis-

tration or not in the case of dual band image sequences. Frame Lock field is used by

the user again in the dual band case to offset any frame difference in between the se-

quences. Offset is required whenever more than a single number of frames during the

start of the recording is dropped. Frame drops may be due to a reason, e.g. network

congestion, etc. Atmospheric Correction button in the Analysis field runs the global

analyses. When the button is pressed, all the respective image sequences are executed

one by one and the global analysis results are recorded. Primary ROI and Secondary
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Figure E.5: GUI of IRSA - Segmented Image Selection

ROI fields are used in the global atmospheric correction analysis, to designate the

ROI with asphalt region only in an interval of 100 frames. Feature Extraction field

is used to record the extracted features. Single Band and Dual Band buttons execute

the respective single and dual band image sequences one by one. Ground Truth field

is used by the user to construct the ground truth labels manually for all the connected

components corresponding to each extracted feature vector.
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