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ABSTRACT

AN INTEGRATED MODEL FOR PREVENTIVE MAINTENANCE AND SPARE
PART INVENTORY PLANNING

BÜLBÜL, PINAR
M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Z. Pelin Bayındır

Co-Supervisor : Assoc. Prof. Dr. İsmail Serdar Bakal

September 2014, 66 pages

The machine in any production environment is subject to failure. Although the fre-
quency of failures can be managed through preventive maintenance activities, it is
impossible to get out of failures entirely. Firms need to carry spare parts inventory to
cope with failure and ensure smooth operations through preventive maintenance. In
other words, preventive maintenance and uncertain failures can be considered as the
major reasons of spare part inventory. Therefore, planning preventive maintenance
activities and managing spare part inventory should be handled together. In this study,
we present a Dynamic Programming formulation of the joint problem of the preven-
tive maintenance and spare parts inventory planning. The aim is to minimize the
total expected cost over a finite planning horizon. Since the Dynamic Programming
formulation is computationally intractable for long planning horizons and a system
with a large number of machines, three heuristic approaches are proposed: (i) My-
opic approach, (ii) Stationary policy and (iii) Steady-State approximation. Through
computational analyses, effects of problem parameters on the performances of the
proposed heuristics are investigated.

Keywords: Preventive Maintenance, Preventive Replacements, Spare Part Inventory,
Joint Optimization
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ÖZ

KORUYUCU BAKIM VE YEDEK PARCA ENVANTERİ İÇİN TÜMLEŞİK BİR
MODEL

BÜLBÜL, PINAR
Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Z. Pelin Bayındır

Ortak Tez Yöneticisi : Doç. Dr. İsmail Serdar Bakal

Eylül 2014 , 66 sayfa

Üretimde kullanılan makineler bozulabilirler. Önleyici bakımlar ile bozulma sıklık-
ları yönetilebilmesine rağmen, bozulmaları tamamen önlemek olanaksızdır.Firmalar
bozulmalarda ve önleyici bakımlarda kullanmak için yedek parça tutmaya ihtiyaç du-
yarlar. Başka bir deyişle, önleyici bakım ve beklenmedik bozulmalar yedek parça
envanterinin temel nedenleridir. Bu yüzden önleyici bakım ve yedek parça envanteri
beraber ele alınmalıdır. Bu tez çalışmasında, önleyici bakım ve yedek parça envanteri
ortak problemi bir Dinamik programlama ile modellenmiştir. Amaç belirli dönemde
beklenen maliyeti en aza indirgemektir. Çok makineli üretim ortamları ve uzun peri-
yotlu maliyet hesapları için, Dinamik programlama modelinin hesaplanması zor ol-
duğundan, 3 sezgisel yaklaşım önerilmiştir: (i) Miyop yaklaşım, (ii) Sabit politika ve
(iii) Kararlı durum yaklaşımı. Problem değişkenlerinin önerilen yaklaşımlar üzerin-
deki etkileri araştırılmıştır.

Anahtar Kelimeler: Koruyucu Bakım, Koruyucu Değişim, Yedek Parça Envanteri,
Ortak Optimizasyon
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CHAPTER 1

INTRODUCTION

Maintenance is the set of activities to keep a component or machine in working condi-

tion. With maintenance activities, the life time of a machine increases. There are two

main ways of performing maintenance: preventive and corrective. Preventive mainte-

nance is the planned activities before failures occur, whereas corrective maintenance

is performed after failures.

Maintenance activities, preventive or corrective, require usage of spare parts. During

maintenance periods, spare parts must be available to use. More importantly, when

a failure occurs they should be accessed immediately. Shortages of spare parts and

idleness of the machine due to breakdown bears huge losses. In addition, spare parts

may have order lead times. Because of these, spare parts must be held in inven-

tory. However, they are usually too expensive to keep in inventory in large quantities.

Although the frequency of failures can be managed through preventive maintenance

activities, it is impossible or impractical to get out of failures entirely. Thus, mainte-

nance planning and spare part inventory planning are interrelated activities and they

must be considered together and optimized jointly.

In this study, we consider a manufacturing system that contains multiple identical and

independently operating machines. Each machine has a non-repairable critical part.

When a critical part fails, corresponding machine stops operating until the part is re-

placed. Failure rate of a critical part increases with its age. In order to replace the

critical parts during preventive and corrective replacement activities, spare parts must

be available in inventory. In this problem environment, we focus on joint optimiza-

tion of preventive replacements and spare part inventory planning. Both preventive
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replacements and inventory decisions are made at discrete points in time. The total

expected cost is minimized over a finite planning horizon. The main decisions to

make are whether to replace each critical part preventively or not and how much to

order. The total expected cost contains both replacement and inventory related costs.

We propose a Dynamic Programming formulation to find optimal replacement and

stocking decisions. However, it is hard to obtain the optimal solution for a long plan-

ning horizon and for systems with large number of operating units within a reasonable

time. Hence, we propose three heuristic approaches. These are (i) Myopic approach,

(ii) Stationary policy, (iii) Steady-State approximation. Myopic approach ignores the

impacts of the current decisions on the future events; it focuses only on minimiz-

ing the total expected cost of the immediate period. Under Stationary policy, we

restrict our attention to age-based replacement and base stock policy. We define two

policy parameters: On hand inventory at the beginning of a period after preventive

replacements as base stock parameter and the age limit to be replaced as age-based

replacement parameter. The third heuristic approach is based on approximating the

finite horizon problem by an infinite horizon for a single machine. In this heuristic,

the solutions of Markov Decision Process (MDP) model for the single machine case

is extended to multi-machine case ignoring the inventory pooling opportunity.

In the literature, the studies generally consider a given policy then try to find best

policy parameters. We do not impose any pre-determined preventive maintenance

or inventory control policy as in the literature. The main objective of this study is to

assess the performances of the proposed heuristic approaches under different problem

parameters with respect to the solution quality.

The rest of the study is organized as follows. In Chapter 2, we present general in-

formation on maintenance policies and the studies proposing joint approaches for

maintenance and spare parts inventory planning in the literature. In Chapter 3, prob-

lem definition and model assumptions are provided. Furthermore, the Dynamic Pro-

gramming formulation and the heuristic approaches are introduced. In Chapter 4,

we carry out an extensive computational analysis and present our findings. Finally,

we conclude in Chapter 5 by summarizing the findings and offering further research

directions.

2



CHAPTER 2

LITERATURE REVIEW

Preventive maintenance can be considered as a precaution against failure risk which

increases with the age of machine. Maintenance policies and failures create demand

for spare part inventories and availability of spare part inventory affects the feasibility

of maintenance policies. Spare parts may be costly and there is a risk of deterioration

or obsolescence during the waiting time in inventory. In addition, shortages of spare

parts may cause extra cost due to loss of production. Hence, spare part inventories

should be studied in detail. Kennedy et al. [15] and Rego et al. [18] provide two

reviews of the studies on spare parts inventory planning. Kennedy et al. [15] catego-

rize the studies into six: management issues, age-based replacement, multi-echelon

problems, obsolescence, repairable items and special applications. Rego et al. [18]

make a different classification. They investigate the studies under the categories of

demand forecasting, classification of spare parts, decision to stock or not to stock,

initial orders, inventory control models and obsolescence and final orders. These

reviews investigate the studies in terms of only spare part inventories. However, pre-

ventive maintenance and spare part inventories should be handled together since they

are interrelated.

In this study, we focus on the joint problem of preventive maintenance and spare part

inventory planning. Thus, the studies related to pure maintenance or pure spare part

inventory planning are not considered. In the rest of the chapter, we give general

information on maintenance policies in Section 2.1. Then we present papers that pro-

pose joint approaches for maintenance and spare parts inventory in detail in Section

2.2.
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2.1 General Information on Maintenance Policies

Maintenance is the set of activities to keep a component or equipment in proper con-

dition. For a component, being in proper condition means performing its function

appropriately [6]. Maintenance is made either planned (preventively) or un-planned

(correctively that is after the failures). The advantages of preventive maintenance

compared to corrective maintenance are summarized as follows:

i. Less cost and time [26].

ii. Reduced failure risk [9].

iii. Reduced break-down cost (since preventive maintenance is usually scheduled

on idle time) [19].

iv. Increased system life-time [9].

The studies in the literature consider both preventive and corrective maintenances.

Preventive maintenance is planned ahead whereas corrective maintenance is per-

formed when the machine or unit fails. In the literature, the units that are subject to

maintenance are two types: non-repairable and repairable. For non-repairable units,

maintenance is equivalent to the replacement of the unit. For repairable items, main-

tenance can be made in two ways; either replacement or repair.

Maintenance and replacement problems are discussed in many studies in the litera-

ture. Wang [21] provides a review of studies on maintenance policies. He classifies

the studies into two parts: one unit systems and multi unit systems. For one unit

systems, policies are categorized as age-dependent preventive maintenance, periodic

preventive maintenance, failure rate limit, sequential preventive maintenance, repair

cost limit and repair number counting and reference time. For multi unit systems, he

categorizes the policies as group maintenance and opportunistic maintenance. Garg

and Deshmukh [8] provide another review classifying the literature into six areas:

maintenance optimization models, maintenance techniques, maintenance scheduling,

maintenance performance measurement, maintenance information systems and main-

tenance policies.

4



In the maintenance planning literature, the following policies are the most common

ones:

• Age-based maintenance: Maintenance activities are made upon failure or at age

T whichever occurs first. T can be a constant or a dynamic variable. [5]

• Block maintenance: The unit is replaced at constant time periods independent

of the history of the unit. [5]

• Periodic replacement with minimal repair at failures: This policy is proposed

by Barlow and Hunter [4]. Minimal repair is performed at failures whereas

replacements take place at periodic replacement intervals. It is assumed that

after the repair at failures, the failure rate remains the same during periodic

replacement intervals.

• Sequential maintenance over a finite time span: The maintenance interval is not

constant. It is changed due to the remaining life time in a finite time span.

• Group maintenance: When components on the system have interactions with

each other, all components are replaced or repaired together [17].

• Condition-based maintenance: Components are monitored continuously and

maintenance decisions are made with respect to the state of the components. It

is also called predictive maintenance.

• Corrective maintenance: Maintenance activities are performed upon failures.

2.2 Joint Preventive Maintenance and Spare Parts Inventory Planning

Acharya et al. [1] study joint optimization of preventive replacement and spare part

ordering for a system composed of independent and identical equipment pieces. The

equipment pieces have increasing failure rates with time. They consider block re-

placement as the preventive maintenance policy and a base-stock inventory control

policy. Both inventory and replacement related costs, are considered, that is, inven-

tory holding, fixed ordering, backorder, failure replacement and preventive replace-

ment costs are taken into account. Replaced pieces are assumed to be as good as

5



new. Order lead time is neglected. They find optimal preventive replacement interval,

base stock level and ordering interval (the interval between two successive orders) in

order to minimize total cost. They investigate two situations on replacement and or-

dering intervals; (i) single-period model where replacement and ordering intervals are

equal and (ii) multi-period model where ordering interval is a multiple of preventive

replacement interval. They use an enumeration algorithm to find the joint optimal

solution. They use the following time to failure probability function proposed by

Yamada and Osaki [25] for numerical examples:

F (t) = 1− (1 + 4t)e−4t

where t is the time. In the numerical examples, it is shown that optimal replacement

interval in the multi-period model is much lower than optimal replacement interval

in the single period model. In addition, joint optimal replacement and spare ordering

interval is larger than optimal value of block replacement interval when only replace-

ment related cost is considered.

Kabir and Al-Olayan [11] consider a system which has a single operating unit and

multi spare parts in inventory. They introduce a policy for stocking and age based pre-

ventive replacement with a form of (t1, s, S). In this policy, preventive replacement is

made at a predetermined age t1 and continuous review (s, S) type of inventory policy,

where S is the maximum allowable stock level and s is the reorder point, is used.

Preventive replacement is performed when the age of the equipment becomes t1 if a

spare part is available, otherwise it is made as soon as the spare part becomes avail-

able. Similarly the failure replacement is made immediately if a spare is available.

Otherwise the failed unit waits until the spare part becomes available. An order for

(S - s) spare units are placed when the inventory level falls to the level of s. The time

between two successive replacements is defined as a cycle. There is no inventory and

no outstanding order is placed at time zero. If the operating unit fails at first cycle,

emergency order is placed. Emergency order is placed only at first cycle. Weibull dis-

tribution is used in modeling both the order lead time and the lifetime of the unit. Both

regular and emergency orders have the same lead time parameters and costs. The ob-

jective is to find the optimal policy parameters (t1, s, S) by minimizing expected total

cost. Expected total cost is composed of replacement and inventory related costs. Re-

placement related costs are failure replacement cost and preventive replacement cost.

6



Inventory related costs are emergency and regular ordering costs, inventory holding

cost and shortage cost. A simulation model is developed. The simulation model runs

for all predetermined t1, S and s ∈ [0, S − 1] values. For all alternative policies,

multiple simulation runs are performed. For all t1 values, minimum cost combination

of (t1, s, S) is determined. They compare results with the age replacement policy

introduced by Barlow and Prochan [5]. Barlow-Prochan age policy is supported by

the optimal (s, S) inventory policy which is of jointly optimal policy to compare the

expected total cost. They argue that the jointly optimal policy gives less cost than

the Barlow-Prochan age replacement policy. The maximum saving compared to the

Barlow-Prochan policy is 75.25%. In addition, for a large order lead time, the jointly

optimal policy gives more cost savings over Barlow-Prochan policy. In their follow-

ing work [12], they extend this work to include multiple identical operating units.

They again compare the results of their policy with the Barlow-Prochan age replace-

ment policy supported by the optimal (s, S) inventory policy. Their results show that

the Barlow-Prochan policy has higher cost values than their policy. They claim that

the combination of Barlow-Prochan policy and the optimal (s, S) inventory policy

does not give global optimality with reference to their simulation results.

Kabir and Farrash [13] study the same environment as studied by Kabir and Al-

Olayan [12] except that emergency ordering is not allowed. Only the regular orders

are placed: if the inventory level drops to the level s, an order is placed to raise in-

ventory level to the maximum allowable stock, S. The results are compared to the

combination of Barlow-Prochan age replacement policy and the optimal (s, S) inven-

tory policy. Interpretations of the results are the same as the studies of Kabir and

Al-Olayan [11-12].

Kabir and Farrash [14] study the joint optimization of age replacement and spare or-

dering for an operating system with multiple identical units. They introduce fixed

interval ordering for the joint optimization of age-based replacement policy and spare

part ordering. They consider a periodic review policy for inventory control and age-

based replacement policy for maintenance. They consider a policy with a form of

(t0, q, t1) where t0 is the inventory review interval, q is the order lot size and t1 is

the preventive replacement age. They develop a simulation model in order to find

minimum expected total cost per unit time. The cost components are costs for fail-

7



ure replacement, preventive replacement, ordering, inventory holding and shortage

costs. Distributions for lifetimes of the units and order lead times are assumed to fol-

low Weibull distribution. In the computational study, different instances that differ in

the number of operating units, shape and scale parameters of unit lifetime and order

lead time distributions and the cost parameters are considered. Results are compared

to the stocking policy proposed by Kabir and Al-Olayan [12]. Proposed policy per-

forms 5% to 28% worse when the system consists of 3 operating units and the shape

parameter of failure distribution is low. With 5 operating units, fixed interval ordering

shows savings between [-6.48%, 9%] with low values of shape parameter of failure

distribution. However, with the increase in shape parameter of failure distribution,

the fixed interval ordering policy shows savings up to than 5% for some parameter

sets even for the 3-unit situation. With 5 operating units, if shape parameter of failure

distribution is high, fixed interval ordering policy gives significant savings at least

16.66%. They conclude that the fixed interval ordering policy performs better when

the system consists of large numbers of operating units and the shape parameter of

failure distribution is high.

Armstrong and Atkins [2] study age-based replacement and ordering decisions for a

system with a single operating unit and a single spare part. The order is placed only

at scheduled times and there is no emergency order option. A spare part cannot be

ordered if one is already in stock or on order. The order lead time is constant. The

failure rate is assumed to be increasing with time. Replacement time is neglected.

Replacements are assumed to be perfect; that is, the operating unit is as good as new

after replacements. The objective is to minimize the expected system cost per unit

time. The decision variables are the scheduled replacement times and the scheduled

time to order. Time between two replacements is defined as a cycle. The expected

system cost consists of expected replacement, failure, shortage and inventory holding

costs. Procurement cost is not taken into account. In the numerical examples, Weibull

distribution is used for distribution of time to failure of the operating unit. They

show that the cost function is pseudo convex. To illustrate the benefits of the joint

optimization, they perform calculations on both sequential and joint optimization for

135 different parameter instances. In 16 of these instances, sequential optimization

gives expected system cost greater than 10%. In 110 instances, the differences are

8



smaller than 1%. Armstrong and Atkins [3] extend this work to the environment

where the replacement cost depends on the age of the operating unit, there is an age

dependent operating cost and a fixed time for replacement actions. They also add

service constraints on the maximum expected waiting time and minimum expected

fill rate. They characterize the corresponding cost functions incorporating emergency

orders and random lead times where the emergency order is placed if the installed

unit fails before the scheduled ordering times. They do not provide any numerical

studies.

Elwany and Gabraeel [7] extend the study of Armstrong and Atkins [2]. They replace

fixed life time distributions used in [2] with sensor driven remaining life time distri-

butions. Sensor driven remaining life time distributions are derived by degradation

states of the individual component. Replacement and inventory decisions are updated

with the real time states of the component. They propose a sensor driven dynamic up-

date model for equipment replacement and spare part inventory management. Their

model calculates the optimal time to replacement and optimal time to order at each

specific time with an updating remaining life time distribution. This update process

continue according to some defined stopping rules in their numerical studies. They

show that the sensor-driven decision policy gives no failures over nine cycles, whereas

traditional decision policy gives three failures. Hence, updating remaining life time

distribution provides better replacement and inventory decisions than traditional fixed

life time distributions.

Sarker and Haque [19] study maintenance and spare part inventory planning for a

system with multiple identical units. Block replacement and a continuous review in-

ventory control policy are considered. Block replacement does not consider the unit’s

age or failure history. They use Weibull distribution for order lead time and lifetime

of the units, and Gamma distribution for replacement durations. An emergency order

is placed when the inventory level decreases to zero or below, otherwise a regular

order is placed when the inventory level drops to the reorder level. A numerical study

is carried out where the emergency order cost is taken to be three times of the regular

order cost and the parameter values of Weibull distribution for the order lead times are

the same for both regular and emergency orders. The objective is to minimize the ex-

pected total cost over a finite planning horizon. The cost components in the expected
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total cost are block replacement, failure replacement, regular and emergency order,

inventory holding and shortage costs. Decision variables are the reorder level, the

order-up-to level and the interval for block replacements. They develop a simulation

model for joint optimization. They compute system down time and work-in-process

inventory as performance measures in addition to total expected cost. In the numer-

ical study, separately optimized (s, S) and T policies are considered as a benchmark

to compare the cost effectiveness of the joint optimized policy. For the 10 test prob-

lem instances, separated optimized policy have higher cost in the range of [ 2.81% ,

8.77%]. These results show that joint optimized policy gives less cost values than the

combination of the separately optimized policy. However, when investigating the ef-

fects of the parameters, it is observed that separately optimized policy performs better

for some instances. When shape parameters of the lifetime and failure replacement

cost per unit are low, separately optimized policy gives less cost values.

Vaughan [20] considers a system with multiple identical and independent compo-

nents. He considers condition based maintenance policy where maintenance activi-

ties are performed at every T period. Spare part inventory is reviewed continuously.

Lead times for orders and replacements are neglected. Failure distribution of the com-

ponents is Exponential; that is, the components have constant failure rate over time.

Hence, total demand for the spare parts due to failures during any period is a Poisson

random variable. Each unit is detected and replaced at preventive maintenance activ-

ities with a certain probability, so the number of the units to be replaced at preventive

maintenance activities is assumed to be Binomial. Costs for ordering and inventory

holding and penalty for shortages are considered. Replacement related costs are not

taken into account. A stochastic dynamic programming formulation is developed to

minimize the total expected cost of the system over a finite horizon. Decision vari-

ables are the re-order point and the maximum stock level. In the computational study,

preventive maintenance period, T , is taken to be 100 and the length of recursive evalu-

ation, t, is taken to be 499, that is the evaluation is made for five successive preventive

maintenance intervals. In order to prevent the end of horizon effects, a cyclical sta-

tionary optimal policy is proposed. In this approach, the policy depends only on k

which is the number of periods until the next preventive maintenance activity. For

all values of k, the cyclical stationary optimal policy with the form of (s(k), S(k))
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are enumerated. He reports that (s(k), S(k)) policy converges to a stationary (s, S)

policy when k becomes large.

Giri et al. [9] consider replacement and ordering decisions together for a single unit

system. The unit is replaced upon failures and the replaced unit is as good as a new

one. Both regular and emergency orders are used. The order lead times are fixed.

The lead time of emergency order is less than the lead time of regular order and

on the contrary emergency order cost is higher than regular order cost. The unit in

concern has an increasing failure rate. If the unit fails before the regular ordering

time, an emergency order is placed and failed unit is replaced by an emergency order.

However, if the unit fails between regular order time and replenishment of the regular

order, the units are replaced when the order is replenished, an emergency order is not

placed. A spare is held in inventory until unit fails or a defined time limit of waiting

in inventory passes. Time between two replacements is defined as a cycle. Only

inventory related costs; inventory holding, shortage, ordering costs, are taken into

account. The expected total discounted cost is minimized over an infinite time horizon

where the decision variables are regular ordering time and time limit of waiting in

inventory for spare parts. This two dimensional problem is reduced to a simple one-

dimensional one by giving zero and infinite values to the time limit of waiting in

inventory for spare parts. That is, there are two situations: (i) no replacement until

the original unit fails and (ii) replacement as soon as the spare part is replenished. The

life time and failure rate of the unit follows discrete Weibull distribution proposed by

Nakagawa and Osaki[16]. In the numerical example, when the failure rate is low, the

time limit of waiting in inventory is selected as zero, otherwise, no limit for waiting

in inventory is selected.

Hu et al. [10] study maintenance and inventory decisions for a system containing mul-

tiple identical operating units. They propose a joint strategy (T, s, S) where T is the

preventive replacement age, s is the reorder level and S is the maximum stock level.

Inventory is reviewed continuously. If no spare part is available at the preventive re-

placement time, the unit continues to operate until the spare part becomes available. It

is assumed that the corresponding unit does not fail during this delay. Weibull distri-

bution is used for the life-time distribution and the order lead time. A discrete event

simulation model is developed. Total cost includes failure and preventive replace-
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ments, procurement, storage and inventory holding costs. In the simulation, they use

the same parameters as used in the study of Kabir et al. [12] and results are compared

with [12. Optimal values of (T, s, S) policy are different from [12]. Average cost

reduction when compared to [12] is 3.61%.

Wang [22] considers a system with a large number of identical items. He utilizes

a Condition-based preventive replacement policy where replacements are performed

according to inspection results. Inventory is periodically reviewed and the order lead

time is fixed. Cost components are ordering, inventory holding and replacement costs.

There are four types of replacement costs; (i) preventive replacement cost with spares

on stock, (ii) preventive replacement cost without spares on stock, (iii) failure cost

with spares on stock and (iv) failure cost without spares on stock. If there is no stock

available, an emergency order with a lead time of zero is placed. Thus no shortage is

allowed. It is assumed that a random number of items are found defective and should

be replaced at preventive maintenance activities. As a large number of identical op-

erating units are considered, homogeneous Poisson Process approximation is used

for the number of the units to be replaced between preventive maintenance activities.

A Stochastic Dynamic Programming(SDP) model is developed to minimize the total

expected cost per unit time over a finite time horizon. Decision variables are order in-

terval, order quantity and preventive maintenance interval. The SDP algorithm finds

only the optimal order quantity. For the optimal order interval and preventive main-

tenance interval, enumeration with a discrete step size is conducted. It is shown that

while the rate of the arrival of defective items is increasing, a smaller order interval

and more frequent preventive maintenance is needed.

Xu et al. [24] consider a multi-component system. The lifetimes of the components

are identically distributed and independent. Group replacement policy is used where

all operating units are replaced at fixed preventive maintenance intervals. If a unit

fails, only that unit will be replaced. Weibull distribution is used for failure distribu-

tion. Inventory is reviewed periodically. An order is placed up to level S. A Monte-

Carlo simulation model is presented for joint optimization of preventive maintenance

and inventory control. The goal is to find total cost per unit time with optimal preven-

tive replacements period T and order up to point S. The total cost consists of failure

replacement, group replacement, stock out, ordering and storage costs. An iterative
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algorithm by using Monte Carlo simulation method is used for computations. The

results of proposed policy are compared to the results of separately optimized group

replacement and periodic review inventory policy. The proposed policy reduced the

cost values by [3.41%, 10.47%]. They claim that the amount of cost saving might

depend on maintenance and replacement costs and spare support costs. In addition,

when failure cost increases, saving of the proposed policy reduces.

2.3 Our Contribution to The Existing Literature

We study preventive replacements and inventory planning for a system that consists

of multiple machines that are identical and independent. Each machine has a non-

repairable critical part to operate. If the critical part fails, corresponding machine

stops operating until the critical part is replaced. Failure probability increases with

age of the critical part. We assume that the machine is as good as new after preven-

tive replacement. The critical parts have a finite life time. End-of-life parts have to

be replaced at the beginning of the periods. In order to ensure smoothness of the op-

erations, spare parts are ordered and held in inventory. We consider a periodic review

inventory model where the order lead time is assumed to be zero. The cost compo-

nents that we consider are procurement, inventory holding, replacement, failure and

shortage costs. Both preventive replacements and inventory decisions are made at

discrete points in time. Decisions that we make in each period are order quantity and

to replace or not decisions for each part.

We propose a Dynamic Programming formulation that minimizes the total expected

cost over a finite planning horizon. However, it is hard to obtain the optimal solution

for long planning horizons and systems with a large number of machines. Hence, we

propose three heuristic approaches: (i) Myopic approach, (ii) Stationary policy, (iii)

Steady state approximation.

The papers that are most relevant to our study are listed in Table 2.1. These studies

consider a given policy for preventive maintenance and for spare part inventory plan-

ning and then optimize policy parameters such as preventive maintenance interval or

age for preventive replacement. We do not impose any pre-determined preventive
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maintenance and inventory control policy as in the literature. As stated before, crit-

ical parts at any age can be replaced preventively. This is our major contribution to

the literature. Furthermore, we propose three heuristic approaches that are easy to

implement.
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CHAPTER 3

MODELS

In this chapter, we provide the mathematical models that we propose for the integrated

maintenance and spare parts inventory planning. Section 3.1 provides the problem

definition and assumptions. In Section 3.2, Dynamic Programming formulation is

given. Section 3.3 covers three heuristic approaches that we propose: Myopic ap-

proach, Stationary policy and Steady-State approximation.

3.1 Problem Definition

We consider replacement and spare parts inventory planning in a manufacturing en-

vironment that consists of multiple machines. These machines are identical and they

independently operate. Each includes a critical part. If the critical part fails, the cor-

responding machine does not function. The critical parts are non-repairable and they

must be replaced when they fail. The failure probability increases with the age of the

critical part. In order to ensure smoothness of the operations, spare parts are ordered

and held in inventory. We consider a periodic review inventory model where the order

lead time is assumed to be zero.

In such an environment, our aim is to characterize the optimal preventive replacement

policy together with the optimal spare parts inventory policy that minimizes the total

expected cost in a finite planning horizon. Total cost consists of five components:

procurement, inventory holding, replacement, failure and shortage costs. The pro-

curement, failure and replacement costs are incurred per unit basis whereas inventory

holding and shortage costs are incurred per unit per period basis. There is no fixed
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order cost or quantity discounts for procurements.

Preventive replacement can be described as the replacement of a critical part in work-

ing condition to decrease its failure probability. The critical part and the correspond-

ing machine are assumed to be as good as new after a replacement. Replacement

time is negligible. At the end of each period, we need to decide which critical parts

to replace at the beginning of next period. Such a replacement may be profitable as

the expected cost from system downtime due to failures decreases when a new part

is installed. When a critical part fails, it is replaced if a spare part is available. Oth-

erwise, the corresponding machine has to wait until a spare part becomes available.

The failures are detected immediately. If a critical part fails during a period and it

is replaced, we assume that it will not fail in the same period again. The spare parts

are ordered only at the end of the each period and order is received at the beginning

of the next period. That is, order lead time is negligible. Emergency order is not

allowed. We assume that all failed parts at the end of a period are to be replaced at

the beginning of the next period.

The notation that we use throughout this study is provided in Table 3.1.

Table 3.1: Used Notation

Sets
T Length of the planning horizon
t Index for periods, t = 1, 2, . . . , T

M Number of machines installed
i Index for the critical parts that placed in machines, i = 1, 2, . . . ,M

Parameters
N Maximum age (life-time) of a critical part
cs Unit shortage cost per period
cr Unit replacement cost
cf Unit failure cost
cp Unit procurement cost
ch Unit inventory holding cost per period
Fi,t Random variable representing whether part i fails in period t or not,

Fi,t ∈ {0, 1} . 0 means that part i does not fail during period t and 1
means that it fails

Kt Number of failed critical parts during period t, Kt =
∑

i∈M Fi,t

p(a) Failure probability at age a
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Used Notation (cont’d)

Parameters(cont’d)

Pkt(
~́
At) Probability that all kt parts fail during period t for given ages ~́

At where
kt ∈ {0, 1, . . . ,M}

State Variables
Ai,t Age of part i at the beginning of period t before preventive replace-

ments, Ai,t = −1, 1, 2, . . . , N . Age -1 means that the corresponding
part is failed in the previous period and it is not replaced.

~At Vector of Ai,t’s, ~At=(A1,t, A2,t , . . . , AM,t)
Ái,t Age of part i at the beginning of period t after preventive replacements,

it is called in-period-age of the part, Ái,t = 0, 1, . . . , N − 1
~́
At Vector of Ái,t’s, ~́

At=(Á1,t, Á2,t , . . . , ´AM,t)
It Net inventory level at the beginning of period t before preventive re-

placements and before order is received, It = −M, . . . ,M

I+
t On hand inventory level at the beginning of period t before preventive

replacements, I+
t =max(It, 0)

I−t Backorder level at the beginning of period t, I−t =max(0,−It)
Ít

+
On hand inventory level at the beginning of period t after preventive
replacements

Decision Variables
Qt Order quantity that is placed at end of period t− 1 to be received at the

beginning of period t, Qt = 0, 1, . . . , 2M

Ri,t Decision variable for replacement, Ri,t ∈ {0, 1}. 0 means that part i is
not replaced at the beginning of period t and 1 means that it is replaced

~Rt Vector of Ri,t’s, ~Rt=(R1,t, R2,t , . . . , RM,t)
Φt Set of all possible decisions of replacements and order quantities at the

end of the period t− 1 for the period t

ft(It, ~At) Minimum total expected cost from period t to T when the initial in-
ventory level is It and the initial ages of the critical parts are given by
~At

In each period, the sequence of events occur as Figure 3.1.

1. At the beginning of the period, the replenishment order placed at the end of
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Figure 3.1: Sequence Of Events

previous period is received and preventive replacements that are determined at

the end of the previous period are performed.

2. Procurement and replacement costs are incurred.

3. During the period, failures occur depending on the ages of the critical parts and

corresponding failure costs are incurred.

4. If available inventory is sufficient when a critical part fails, it is replaced and a

replacement cost is incurred. Otherwise, the part is scheduled to be replaced at

the beginning of the next period and a shortage cost is incurred. Unit shortage

cost is assumed to be greater than or equal to the sum of unit procurement cost

and unit replacement cost. If a spare part is available, a failed part will definitely

be replaced. That is, the system is not allowed to have shortage and positive

inventory at the same time.

5. At the end of the period, on hand inventory is calculated inventory holding cost

is incurred.

6. The transformations for ages of the critical parts and net inventory level are
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made.

7. Preventive replacements are determined at the end of the period. The critical

parts that complete their lifetimes N have to be replaced. Hence all parts at age

N have to be scheduled to be replaced at the beginning of the next period.

8. The number of spare parts to order is determined and the order is placed. The

order quantity includes the spare parts for preventive replacements at the begin-

ning of the next period and on hand inventory level for the next period.

3.2 Dynamic Programming Formulation

Considering the problem environment described in Section 3.1, our objective is to

minimize the total expected cost in a finite planning horizon. For this purpose, we first

introduce a Dynamic Programming (DP) formulation to determine the order quantity

and replacements in each period in the planning horizon. Note that this formulation

does not impose any restriction on either the replacement policy or inventory policy.

Stages, decision and state variables of DP are defined as follows:

Stages: Time periods in the planning horizon, t = 1, 2, . . . , T .

Decision Variables: Whether to replace or not for each critical part at the beginning

of period t, Ri,t, and how much to order, Qt, for period t.

State Variables and Transformations: The state variable is a vector including the net

inventory level at the beginning of the period and the age vector of the critical parts.

From one period to the next, net inventory evolves as follows:

It+1 = It + Qt −
∑
i∈M

Ai,t 6=−1

Ri,t −
∑
i∈M

Fi,t (3.1)

If on hand inventory after preventive replacements is not enough to cover the failures

during the period,
∑

i∈M Fi,t > Ít
+

, there is a shortage. In this case, net inventory

level at the beginning of the next period will be less than zero. Since preventive re-

placement decisions,
∑

i∈M Ri,t, already include failed critical parts, the replacement

decisions of failed critical parts, Ai,t = −1, are extracted from the term
∑

i∈M Ri,t
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when calculating net inventory level at the beginning of the next period before pre-

ventive replacements and order is received.

Other component of the state vector is the ages of the critical parts at the beginning

of the period before preventive replacements, ~At. Transitions from one period to the

next are governed by decisions and realization of random events during that period

(see Figure 3.1). If critical part i is not replaced at the beginning of period t (Ri,t = 0),

and it does not fail during period (Fi,t = 0), its age increases by one. If part i fails

(Fi,t = 1) during period and a spare part is available (Ít
+
≥

∑i
kt=1 Fkt,t), then, it is

replaced and its age is 1 at the beginning of the next period. Otherwise, its age will

be -1 at the beginning of the next period. Age transitions are summarized in Figure

3.2.

Figure 3.2: Ages Transformation of The Critical Parts

Recursive Function: Recursive function is the minimum total expected cost from

period t to period T when inventory level is It and ages of critical parts are given

by ~At. The objective in DP is to find the minimum total expected cost from the first

period to end of the planning horizon, f1(I1, ~A1).
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ft(It, ~At) = min
~Rt,Qt∈Φt



cr
∑
i∈M

Ri,t + cpQt + cf

M∑
kt=1

ktPkt(
~́
At)

+cr(
Ít

+∑
kt=1

ktPkt(
~́
At) +

M∑
kt=Ít

+

Ít
+
Pkt(

~́
At))

+cs

M∑
kt=Ít

+

(kt − Ít
+

)Pkt(
~́
At) + ch

Ít
+∑

kt=1

(Í+
t − kt)Pkt(

~́
At)

+E[ft+1(It+1, ~At+1)]


∀t ∈ {1, · · · , T}

(3.2)

where Φt is defined by the following constraints:

Ri,t ≥ −min{Ai,t, 0} ∀i ∈M, t ∈ T (3.3)

Ri,t ≥ Ai,t − (N − 1) ∀i ∈M, t ∈ T (3.4)

Ái,t = Ai,t(1−Ri,t) ∀i ∈M, t ∈ T (3.5)

Ít
+

= It + Qt −
∑
i∈M

Ai,t 6=−1

Ri,t ∀i ∈M, t ∈ T (3.6)

Ri,t ∈ {0, 1} ∀i ∈M, t ∈ T (3.7)

Qt ≥ 0 ∀t ∈ T (3.8)

Ít
+
≥ 0 ∀t ∈ T (3.9)

The first term in the recursive function (3.2) calculates the cost of preventive replace-

ments. The second term is for the cost of procurements. The third term corresponds

to the expected total failure cost of the current period. Next three terms are the ex-

pected costs for replacements of failed critical parts, shortages and inventory holdings

for the current period. The last term in the recursive function is for the total expected

cost from period t + 1 to period T .

Recall that the term Pkt(
~́
At) is the probability that exactly k out of M parts fail during

period t when the ages of the critical parts after preventive replacement activities are
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given by ~́
At, as described in Table 3.1. Since critical parts at different ages have non-

identical probability of failure, the number of the parts that fail in a period, kt, is the

sum of nonidentical and independent Bernoulli random variables, Fi,t. We enumer-

ate all possible values kt’s and calculate the associated probability in the numerical

experiments as follows:

Pkt(
~́
At) =

∑
∀Mkt

l ∈Lkt

(
∏

i∈Mkt
l

p(Ai,t))(
∏

j∈(M−Mkt
l )

(1− p(Ai,t)))

where Lkt is the set of all size k subset of M and Mkt
l ∈ Lkt .

The feasible region for the decision variables is described by constraints (3.3) to (3.9).

Constraint (3.3) forces the failed units in the previous period to be replaced at the

beginning of the period. Constraint (3.4) guarantees that critical parts at the end of

their lifetimes are replaced. Constraint (3.5) is to find the set of in-period-ages of

the critical parts after preventive replacement activities. The set of in-period-ages

is required since the age of a critical part can change after preventive replacements

and the failure probability of a critical part depends on its age. By Constraint (3.6),

on hand inventory after preventive replacements is calculated. Since net inventory

level at the beginning of the period, It, is less than zero if there are failed critical

parts at the end of previous period and preventive replacement decisions,
∑

i∈M Ri,t,

already include failed critical parts, the replacement decisions of failed critical parts,

Ai,t = −1, are extracted from the term
∑

i∈M Ri,t when calculating on hand inventory

after preventive replacements.

If there are failed critical parts at the end of the planning horizon, if net inventory

level at the end of the planning horizon is less than zero, they are replaced by placing

a final order. If there are left-overs in inventory, they are sold at the original unit

procurement cost. Therefore, the boundary condition for the recursive function can

be presented as follows:

fT+1(IT+1, ~AT+1) = (cr + cp)I
−
T+1 − cpI

+
T+1 (3.10)
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3.3 Heuristic Approaches

The DP formulation presented in Section 3.2 seeks the optimal solution to the in-

tegrated maintenance and inventory planning problem without imposing any restric-

tions on the policies. However, it is time-consuming to apply the optimal solution for

long planning horizons and for a system with a large number of machines. Run times

and number of states for DP with different number of machines installed and lengths

of planning horizon are in Table 3.2. Because of this computational intractability

of the DP formulation, we develop three heuristic models; (i) Myopic approach, (ii)

Stationary policy and (iii) Steady-State approximation, that are discussed in Section

3.3.1, 3.3.2 and 3.3.3, respectively.

Table 3.2: Run Time and Number of States for DP with Different M and T

M T Number of States Run Time (Minutes)

2 5 86 0.0242
2 10 86 0.0542
2 15 86 0.0860
3 5 591 0.8234
3 10 591 1.9161
3 15 591 3.0641
4 5 3796 27.3319
4 10 3796 67.8662
4 15 3796 116.6422
5 5 23401 964.1517
5 10 23401 2486.6591
5 15 23401 4027.5571

3.3.1 Myopic Approach

Myopic approach solves a single period problem with the same terminating condi-

tions; that is selling on hand inventory at the original unit procurement cost, procure-

ments of required amount of spare parts for replacements of failed critical parts and

replacements of these parts at the end of the period. It ignores the impacts of the cur-
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rent decisions on future events and expected costs, and focuses only on minimizing

the total expected cost of the immediate period. Decisions depend on only the state of

the current period. That is, MA gives the same solution for the same state regardless

of the period within the planning horizon. Since there is no penalty cost for order-

ing more than needed other than holding cost, it is expected that more procurements

are made under this approach. This heuristic is easy to implement for systems with

a large number of machines and for long planning horizons. Actually length of the

planning horizon does not affect complexity of Myopic approach formulation since it

solves only one period problem.

The expected cost to minimize in this approach can be constructed by incorporating

the terminating conditions in Equation (3.10) into the DP formulation in Equation

(3.2):

min
~Rt,Qt∈Φt

G( ~Rt, Qt) =



cr
∑
i∈M

Ri,t + cpQt + cf

M∑
kt=1

ktPkt(
~́
At)

+ cr(
Ít

+∑
kt=1

ktPkt(
~́
At) +

M∑
kt=Ít

+

Ít
+
Pkt(

~́
At))

+ (ch − cp)
Ít

+∑
kt=1

(Ít
+
− kt)Pkt(

~́
At)

+ (cs + cp + cr)
M∑

kt=Ít
+

(kt − Ít
+

)Pkt(
~́
At)



(3.11)

subject to Φt

Note that the constraint set is the same as the one in DP formulation.

The problem described in Equation (3.11) only delivers the optimal solution to a

single period. To calculate the corresponding cost of the entire planning horizon, one

needs to solve (3.11) for all possible states, then the recursive function of the DP (3.2)

is evaluated with the decisions of the Myopic due to state of the periods within the

planning horizon.
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3.3.2 Stationary Policy

In this policy, we restrict our attention to the age-based preventive maintenance and

an order up-to level inventory control policy. Such a policy can be characterized by

two policy parameters as follows:

Ś On hand inventory at the beginning of a period after preventive replacements

ALR The age limit for age-based replacement

Under this policy, at the end of each period, all machines with critical parts that are

older than ALR are planned to be replaced and an order to raise the inventory level

after the preventive replacements to Ś is placed.

Note that Ś should be less than M since lead times are ignored and we assume that a

part that is replaced correctively does not fail again in the same period. Similarly, the

age limit for preventive replacements, ALR ,should be within the interval [1,N ] due

to assumption that parts with an age of N should be replaced.

In order to find the optimal (Ś, ALR) pair, we search all possible combinations of (Ś,

ALR) pairs within the ranges Ś ∈ {0, · · · ,M}, ALR ∈ {1, · · · , N}. Generating all

possible states and using the recursive function given (3.2), we select the best pair.

Note that while using (3.2), the decisions are set such that Ri,t = 1 if Ai,t ≥ ALR

otherwise Ri,t = 0 and Qt = Ś − I+
t +

∑
i∈I Ri,t.

Under this policy, we restrict amount of on hand inventory for all periods to be the

same. However it is intuitively appealing, easy to implement and gives good results

for stable environments. On the other hand, it is computationally intractable like the

DP formulation as for all generated policies, the recursive function of DP formulation

is solved then the optimal policy is determined.

3.3.3 Steady-State Approximation – A Markov Decision Process Model

The third heuristic approach is based on approximating the finite horizon problem

by an infinite horizon version. Additionally, we consider a single machine problem

and extend its solution to multi-machine case ignoring inventory pooling opportunity.

We expect that this approximation will give good results for long planning horizon
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problems since decisions are made under infinite horizon. However deciding inven-

tory level for each machine yields overstock. A single machine problem over infinite

planning horizon can be modeled as a Markov Decision Process (MDP).

We make decisions based on two state variables; (i) the inventory level at the begin-

ning of the period, I , and (ii) the age of the critical part, A. The age of a part can be

from −1 to N except 0 at the beginning of the each period and the inventory level at

the beginning of the period can be −1, 0 and 1. The state space of the period has a

form of (I , A).

There are two actions for all possible states: (i) whether to replace or not, R, and (ii)

whether to hold a spare part for corrective replacement during the period, S. R can

be 0 or 1; 0 means that the part is not replaced and 1 means that it is replaced. Again

S can be 0 or 1. 0 means that an extra spare part is not held for the part and 1 means

that an extra spare part for possible corrective replacements during the period is held.

The courses of actions have the form (R, S). There are 4 different possible actions

for a critical part; (i) (1, 0), replace but not hold a spare part, (ii) (1, 1), replace and

hold a spare part, (iii) (0, 0), not replace and not hold a spare part and (iv) (0, 1), not

replace but hold a spare part.

In this approach, a probability transition matrix is constructed for each possible ac-

tions. Under each possible action, the probability transition matrix is different since

with the preventive replacements, the age of any critical part reduces to zero and the

failure probability of the critical part depends on the age of that part. In addition, the

next period age of a critical part and the inventory level of the next period depend on

the availability of a spare part during the period. That is, if the critical part fails and

a spare part is available, it is replaced and the age of this part is 1, the inventory level

is 0 at the beginning of the next period. Else if, its age and the inventory level are -1.

If the critical part does not fail and there is spare part on stock, its age increases by 1

and the inventory level is 1.

Linear programming for this MDP is constructed as follows [23]:
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Sets

J State space as a form of (I, A), j =

(−1,−1), (0, 1), · · · , (0, N), (1, 1), · · · , (1, N)

D Action space as a form of (R, S), D =

(1, 0), (1, 1), (0, 0), (0, 1)

Parameters

p(A) Failure probability of a critical part if its age is

A

cj(d) j ∈ J, d ∈ D Cost of the period which has the state variables

as in state j under action d

pj,k(d) j, k ∈ J, d ∈ D Probability that the state will be k in the next

period while it is j in the current period under

action d

Variables

xj(d) j ∈ J, d ∈ D Steady-state probability of being in state j and

taking action d

Objective function

Minimize z =
∑
d∈D

∑
j∈J

cj(d)xj(d) (3.12)

subject to :
∑
d∈D

xk(d) =
∑
e∈D

∑
j∈J

xj(d)pj,k(e) ∀k ∈ J (3.13)

∑
d∈D

∑
j∈J

xj(d) = 1 (3.14)

xj(d) ≥ 0 ∀j ∈ J, d ∈ D (3.15)

Costs of a period under any action consist of preventive replacement, procurement,

expected failure, shortage and inventory holding costs. The period costs are calculated
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based on the state of the period and the replacement and inventory holding decisions

of that action and the expected failure, shortage and inventory holding costs. The

calculation of the costs, cj(d), and transition probabilities are follows:

• State (-1,-1)

– Action (1,0): Under this action, next state is (−1,−1) with probability

p(0) and (0, 1) with probability 1− p(0).

c(−1,−1)(1, 0) = cp + cr + p(0)× (cf + cs)

– Action (1,1): Under this action, next state is (0, 1) with probability p(0)

and (1, 1) with probability 1− p(0).

c(−1,−1)(1, 1) = 2cp + cr + p(0)× (cf + cr) + (1− p(0))× ch

– Action (0,0): This action is not feasible for this state.

c(−1,−1)(0, 0) = M

– Action (0,1): This action is not feasible for this state.

c(−1,−1)(0, 1) = M

• State (0,A)

– Action (1,0): Under this action, next state is (−1,−1) with probability

p(0) and (0, 1) with probability 1− p(0).

c(0,A)(1, 0) = cp + cr + p(0)× (cf + cs), A = 1, · · · , N

– Action (1,1): Under this action, next state is (0, 1) with probability p(0)

and (1, 1) with probability 1− p(0).

c(0,A)(1, 1) = 2cp + cr + p(0)× (cf + cr) + (1− p(0))× ch,

A = 1, · · · , N

– Action (0,0): Under this action, next state is (−1,−1) with probability

p(A) and (0, A + 1) with probability 1 − p(A). If A = N , this action is

not feasible.

c(0,A)(0, 0) = p(A)× (cf + cs), A = 1, · · · , N − 1

c(0,N)(0, 0) = M
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– Action (0,1): Under this action, next state is (0, 1) with probability p(A)

and (1, A + 1) with probability 1 − p(A). If A = N , this action is not

feasible.

c(0,A)(0, 1) = cp + p(A)× (cf + cr) + (1− p(A))× ch,

A = 1, · · · , N − 1

c(0,N)(0, 1) = M

• State (1,A)

– Action (1,0): Under this action, next state is (−1,−1) with probability

p(0) and (0, 1) with probability 1− p(0).

c(1,A)(1, 0) = cr + p(0)× (cf + cs), A = 1, · · · , N

– Action (1,1): Under this action, next state is (0, 1) with probability p(0)

and (1, 1) with probability 1− p(0).

c(1,A)(1, 1) = cp + cr + p(0)× (cf + cr) + (1− p(0))× ch,

A = 1, · · · , N

– Action (0,0): This action is not feasible for this state.

c(1,A)(0, 0) = M, A = 1, · · · , N − 1

– Action (0,1): Under this action, next state is (−1,−1) with probability

p(A) and (0, A + 1) with probability 1 − p(A). If A = N , this action is

not feasible.

c(1,A)(0, 1) = p(A)× (cf + cr) + (1− p(A))× ch, A = 1, · · · , N − 1

c(0,N)(0, 1) = M

where M is a sufficiently large number .

Constraint (3.13) is steady-state balance equation and (3.14) ensures that the total

probability equals to 1. Constraint (3.15) is the non-negativity constraint for the prob-

abilities. If MDP gives xj(d) > 0, the action d is decided to take for state j.
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Under this heuristic, the decision variables are whether to replace or not and whether

to hold a spare part or not for corrective replacement. The decisions depend on the

age of the critical part and the inventory level of the period. Since the failure rate

of a critical part is increasing with its age, it is certain that a part is not replaced at

preventive replacement activities if there is an older part that is not planned to be

replaced. Likewise, an extra spare part is not held for a younger part if there is an

older part for which no spare is held. A noteworthy point is that if a critical part is

replaced then its age will be zero. If this heuristic decides to replace and to hold an

extra spare part for an age, it decides to hold a spare part for a 0-aged critical part and

the age limit to hold spare part will be 0. Hence, we can represent this policy with

two variables: (i) the age limit to hold spare part, ALS , and (ii) the age limit to be

replaced at preventive replacement activities, ALR.

After finding the optimal pair of (ALS , ALR), the recursive function given (3.2) is

evaluated to calculate the entire planning horizon cost for comparison. Note that

while using (3.2), the decisions are set such that Ri,t = 1 if Ai,t ≥ ALR otherwise

Ri,t = 0 and Qt = Ít
+
− I+

t +
∑

i∈I Ri,t where the Ít
+

is equal to the number of the

critical parts that are older then ALS .

In this approach, on hand inventory amount is evaluated by the age limit to hold spare

part. Therefore, differently from Stationary policy, on hand inventory at the beginning

of a period after preventive replacements can be different under different states.
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CHAPTER 4

COMPUTATIONAL STUDY

The main objective of the computational study is to assess the performances of the

heuristic approaches under different problem parameters with respect to the solution

quality. The main performance measure used in evaluating the performances of the

heuristics is percent cost deviation from the optimal cost. For a given problem in-

stance, percent cost deviation from the optimal, %∆, under a certain heuristic can be

expressed as:

%∆ =
Z − Z∗

Z∗
× 100

where Z and Z∗ are the objective function values under the heuristic and the optimal

solution, respectively.

Our computational study consists of two parts. First we investigate the main effects

of the parameters on %∆ values of the heuristic approaches by performing sensitiv-

ity analysis. Then, a full factorial experiment is performed in order to investigate

the parameter instances that give the best and worst performances of the heuristic

approaches.

As stated in Chapter 3, the failure probability of a critical part increases with its

age. We consider convex increasing failure probability for the computational study

as given in Equation (4.1). With this formulation, brand new critical parts, Ai,t = 0,

also have a positive failure probability.
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p(Ai,t) =
1

(N + 1)− Ai,t

(4.1)

The algorithms to find maintenance and inventory policies are implemented in Mi-

crosoft Visual C] and the computational study is carried out on an Intel(R) Core(TM)

i7-3537U CPU@2.00GHz processor and 8 GB of RAMS computer.

The notation for the problem parameters used in this study is provided in Table 4.1.

Table 4.1: The Problem Parameters

Parameters Notation

Unit Shortage Cost cs
Unit Failure Cost cf
Unit Replacement Cost cr
Unit Procurement Cost cp
Unit Inventory Holding Cost ch
Lifetime of The Critical Parts N

Length of The Planning Horizon T

Number of Critical Parts Installed M

Initial Ages of The Critical Parts ~A1

Initial Inventory Level I1

Throughout this chapter, we will use the following abbreviation for the solution ap-

proaches.

• DP : Dynamic Programming Formulation

• MA : Myopic Approach

• SP : Stationary Policy

• SSA : Steady-State Approximation

The rest of the chapter is organized as follows: we discuss the results of the sensitivity

analysis in Section 4.1. In Section 4.2, findings from full factorial experiment are
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discussed. Section 4.3 concludes this chapter with a general evaluation of the heuristic

approaches.

4.1 Sensitivity Analysis

To perform sensitivity analysis, we first construct a base scenario assigning values for

all parameters. Then, to analyze the effects of an individual parameter, we change

the value of that parameter and keep the values of other parameters unvaried as in the

base scenario. The values of problem parameters under the base scenario are given in

Table 4.2.

Table 4.2: Parameter Values of the Base Scenario

cs cf cr cp ch N T M ~A1 I1

50 10 3 5 1 5 10 3 (2,3,4) 0

Under DP formulation, decisions are made depending on the state variables and the

period. Thus, at all stages or under different states, the decisions under DP can

change. That is, the optimal solution under DP cannot be represented by a well-

defined policy. In MA, we solve a single period problem so it does not take the length

of the planning horizon into account. The decisions under MA are made depending

on the state variables. That is, the decisions can change for different state variables

although they are the same for different stages. Hence, we cannot report well-defined

policies under DP formulation and MA.

Under SP, we restrict ourselves to a policy with two stationary parameters: (i) amount

of on hand inventory at the beginning of a period after preventive replacements, Ś, and

(ii) age limit to be replaced, ALR. When presenting results, we represent the policy

under SSA with two variables: (i) the age limit to hold spare part, ALS , and (ii) the

age limit to be replaced at preventive replacement activities, ALR. Decisions in each

period are made corresponding to the policy parameters and state variables of the
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periods under these two approaches. With the age limit to be replaced, which critical

parts to be replaced are decided. After determining the preventive replacements, order

quantity is calculated by taking into account the policy parameters Ś under SP and

ALS under SSA.

While presenting the results of the computational study, we report the following: (i)

the objective function values of DP and the heuristic approaches, (ii) percent cost

deviations of three heuristic approaches, %∆, (iii) the best policies under SP and

SSA.

4.1.1 Unit Shortage Cost per Period, cs

Recall that if there is no on hand inventory when a critical part fails, the failed machine

waits until the beginning of the next period and a shortage cost is incurred. For

shortages, the required spare parts are ordered at the end of the period and the order

is received at the beginning of the next period since order lead time is assumed to be

zero. To analyze the effects of the unit shortage cost, its value is changed between 10

and 500 and other parameters are kept unvaried as in the base scenario. The summary

of the results for the problem instances considered are provided in Table 4.3.
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Table 4.3: Summary of Results for Unit Shortage Cost Analysis

DP Myopic Stationary Steady-State

cs f1 f1 %∆
Policy

(Ś, ALR)
f1 %∆

Policy
(ALS , ALR)

f1 %∆

10 181.0 184.2 1.79 2;4 182.1 0.65 0;4 190.9 5.51
20 182.6 186.4 2.09 2;4 183.5 0.48 0;4 190.9 4.58
30 183.9 188.2 2.32 2;4 184.8 0.46 0;4 190.9 3.82
40 185.2 189.4 2.25 2;4 186.1 0.48 0;4 190.9 3.11
50 186.3 190.2 2.71 2;4 187.4 1.19 0;4 190.9 2.48
70 188.1 191.2 2.63 2;4 190.0 1.98 0;4 190.9 1.50
90 189.1 191.8 1.94 3;4 190.9 1.50 0;4 190.9 0.96
110 189.6 192.0 1.54 3;4 190.9 0.96 0;4 190.9 0.73
130 189.8 192.1 1.36 3;4 190.9 0.73 0;4 190.9 0.62
150 189.9 192.2 1.27 3;4 190.9 0.62 0;4 190.9 0.57
200 189.9 192.2 1.22 3;4 190.9 0.57 0;4 190.9 0.56
250 189.9 192.2 1.21 3;4 190.9 0.56 0;4 190.9 0.56
300 189.9 192.2 1.21 3;4 190.9 0.56 0;4 190.9 0.56
400 189.9 192.2 1.21 3;4 190.9 0.56 0;4 190.9 0.56
500 189.9 192.2 1.21 3;4 190.9 0.56 0;4 190.9 0.56

Our observations with respect to an increase in cs are as follows:

• Under SP, the amount of on hand inventory after preventive replacements, Ś,

increases whereas the age limit to be replaced, ALR, does not change. Under

SSA, inventory is held for all machines even if cs is low and the policy does not

change as cs gets larger. That is, SSA holds more spare parts compared to other

approaches since it does not consider the benefits of inventory pooling. Hence

it performs worse when cs is small and its performance improves quickly as cs

gets larger. In addition, the total expected cost of SSA does not change (Table

4.3) since there is no shortages. The policies under SP and SSA are exactly the

same when cs ≥ 90. Under SP, the age limit to be replaced is 4 and the spare

parts are held as many as the number of the installed machines. Again under

SSA, the age limit to be replaced is 4 and the spare parts are held for all aged

critical parts. Hence, they give same objective function value.

• When cs is considerably high, a spare part is held for each critical part under
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all approaches to decrease possible shortages. Hence the heuristics come closer

to each other in terms of their %∆ values (Figure 4.1). The total expected cost

values, f1, of the all approaches does not change after some constant values of

cs while cs increases (Table 4.3). The reason is that by holding a spare for all

machines, it makes sure that stock out does not occur so an increment in cs does

not affect the total expected cost.

Figure 4.1: % cost deviations when cs increases

4.1.2 Unit Failure Cost, cf

The failure probability of a critical part increases with its age. When a critical part

fails, a unit failure cost, cf , is incurred. To analyze the effects of the unit failure cost,

its value is changed between 5 and 50 and other parameters are kept unvaried as in

the base scenario. The summary of the results for the problem instances considered

are provided in Table 4.4.
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Table 4.4: Summary of Results for Unit Failure Cost Analysis

DP Myopic Stationary Steady-State

cf f1 f1 %∆
Policy

(Ś, ALR)
f1 %∆

Policy
(ALS , ALR)

f1 %∆

5 147.5 147.6 0.06 3;5 149.5 1.38 0;5 149.5 1.38
10 186.3 190.2 2.08 2;4 187.4 0.57 0;4 190.9 2.48
15 222.2 232.8 4.78 2;4 222.9 0.33 0;4 226.5 1.95
20 256.7 258.3 0.63 2;4 258.5 0.70 0;4 262.1 2.11
30 321.0 329.4 2.64 2;3 322.5 0.48 0;3 328.2 2.25
40 383.8 400.6 4.37 2;3 384.7 0.25 0;3 390.5 1.74
50 445.3 447.0 0.37 2;3 447.0 0.37 0;3 452.7 1.66

Our observations with respect to an increase in cf are as follows:

• With preventive replacements, age of the critical part installed on an machine is

reset, as a result the failure probabilities decrease. Hence, in order to decrease

the expected failures, the age limit to be replaced, ALR, decreases under both

SP and SSA (Table 4.4) as cf increases.

• For all cf values considered, SP performs better than the Steady-State approxi-

mation (Figure 4.2). When only cf = 5 and cf = 20, MA performs better than

others. Although both SP and SSA restrict the decisions with two policy pa-

rameters, the policies under SSA is decided based on no inventory pooling and

infinite horizon as opposed to the SP. Hence, we expect SP to perform better

than SSA under most problem instances.
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Figure 4.2: % cost deviations when cf increases

4.1.3 Unit Replacement Cost, cr

When a critical part is replaced preventively or correctively, a unit replacement cost is

incurred. If you reduce the number of preventive replacements, the failure probability

increases, i.e, need for corrective replacement increases. Hence, there is a trade off

between preventive replacements and corrective replacements. To analyze the effects

of the unit replacement cost, its value is changed between 0.5 and 10 and other pa-

rameters are kept unvaried as in the base scenario. The summary of the results for the

problem instances considered are provided in Table 4.5.
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Table 4.5: Summary of Results for Unit Replacement Cost Analysis

DP Myopic Stationary Steady-State

cr f1 f1 %∆
Policy

(Ś, ALR)
f1 %∆

Policy
(ALS , ALR)

f1 %∆

0.5 156.6 163.5 4.44 2;4 157.2 0.37 0;4 160.7 2.61
1 162.7 168.9 3.78 2;4 163.2 0.30 0;4 166.7 2.46

1.5 168.6 174.2 3.30 2;4 169.3 0.37 0;4 172.8 2.46
2 174.5 179.5 2.87 2;4 175.3 0.44 0;4 178.8 2.46
3 186.3 190.2 2.08 2;4 187.4 0.57 0;4 190.9 2.48
4 198.1 200.9 1.39 2;4 199.5 0.69 0;4 203.0 2.49
5 209.8 211.5 0.80 2;4 211.6 0.82 0;5 213.5 1.75

10 264.7 264.9 0.08 3;5 266.9 0.84 0;5 266.9 0.84

Our observations with respect to an increase in cr are as follows:

• Recall that MA solves a single period problem ignoring the impacts of the cur-

rent decisions on the future events and the expected costs of remaining periods.

We observe that instead of performing preventive replacement and reducing the

age of a critical part, under this policy, inventory is held for corrective replace-

ment. To show in more detail, for different initial state variables, ie, the ages of

the critical parts, we give the initial order quantity and preventive replacement

decisions of DP and MA in Table 4.6. All other parameters are set as in the base

scenario. Recall that the maximum lifetime of a critical part is 5 and a critical

part must be replaced when it reaches to the end of its lifetime. Hence, the parts

at the age of 5 under all approaches must be replaced at preventive replacement

activities. As seen, under MA, no other preventive replacement is made while

under the optimal policy there are preventive replacements for the critical parts

that are of age 4. The performance of MA improves as cr increases. When cr

is considerably high, its performance converges to that of the optimal policy

(Figure 4.3).
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Table 4.6: Initial Decisions of DP and MA Under Different Parameter Instances

DP Myopic

~Ai,1 Q1
~R1 Q1

~R1

1;1;1 2 0;0;0 2 0;0;0
1;2;3 2 0;0;0 2 0;0;0
1;3;3 3 0;0;0 3 0;0;0
1;3;4 3 0;0;1 3 0;0;0
1;4;4 4 0;1;1 3 0;0;0
2;2;2 2 0;0;0 2 0;0;0
2;3;4 3 0;0;1 3 0;0;0
2;4;5 4 0;1;1 4 0;0;1
3;3;3 3 0;0;0 3 0;0;0
3;4;5 4 0;1;1 4 0;0;1
4;4;4 5 1;1;1 3 0;0;0
4;4;5 5 1;1;1 4 0;0;1

• The age limit to be replaced increases under both SP and SSA while cr in-

creases (Table 4.5). Under SP, on hand inventory after preventive replacements

increases when cr is considerably high whereas under SSA, a spare is kept for

failures for all ages under all cr values considered.

• SP performs better when cr is low in contrast to the other heuristics (Figure

4.3). In addition, the policies under SP and SSA become similar when cr is

considerably high, they are exactly the same when cr = 10. In this case, under

SP, no preventive replacement is made and the spare parts are held as many as

the number of installed machines. Similarly, under SSA, no preventive replace-

ment is made for any age and spare parts are held for all aged critical parts.

Hence, SP and SSA are identical when cr = 10 in terms of both the objective

function value and the decisions.

• Under SSA, the least number of preventive replacements are made when cr ≥ 5

(Table 4.5). Thus, the performance of SSA improves while cr increases after

that point.
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Figure 4.3: % cost deviations when cr increases

4.1.4 Unit Procurement Cost, cp

To analyze the effects of the unit procurement cost, its value is changed between 3

and 20 and other parameters are kept unvaried as in the base scenario. The summary

of the results for the problem instances considered are provided in Table 4.7.

Table 4.7: Summary of Results for Unit Procurement Cost Analysis

DP Myopic Stationary Steady-State

cp f1 f1 %∆
Policy

(Ś, ALR)
f1 %∆

Policy
(ALS , ALR)

f1 %∆

3 162.7 168.9 3.78 2;4 163.2 0.30 0;4 166.7 2.46
5 186.3 190.2 2.08 2;4 187.4 0.57 0;4 190.9 2.48
7 209.8 211.5 0.80 2;4 211.6 0.82 0;5 213.5 1.75

10 243.1 243.5 0.19 3;5 245.5 1.02 0;5 245.5 1.02
15 296.8 296.9 0.01 3;5 298.9 0.70 0;5 298.9 0.70
20 350.1 350.2 0.01 3;5 352.3 0.61 0;5 352.3 0.61
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Our observations with respect to an increase in cp are as follows:

• While constructing MA, we treat the single period as the last period of the plan-

ning horizon. Since the left-overs are salvaged at the original unit procurement

cost, the decisions under MA are not affected by cp. In Table 4.8, we report dif-

ferent cost items in the total expected cost. As cp increases, only total expected

procurement cost increases, while the other cost items do not change.

Table 4.8: Total Expected Cost Items in Total Expected Cost of Myopic Approach for
Unit Procurement Cost Analysis

Myopic Approach

cp

Total
Expected

Inv.
Holding

Cost

Total
Expected

Procurement
Cost

Total
Expected
Preventive

Replacement
Cost

Total
Expected
Failure
Cost

Total
Expected
Failure

Replacement
Cost

Total
Expected
Shortage

Cost

3 16.6 36.9 6.6 85.3 25.4 3.0
5 16.6 61.5 6.6 85.3 25.4 3.0
7 16.6 86.2 6.6 85.3 25.4 3.0

10 16.6 123.1 6.6 85.3 25.4 3.0
15 16.6 184.6 6.6 85.3 25.4 3.0
20 16.6 246.2 6.6 85.3 25.4 3.0

• As MA disregards the procurement cost, it fails to take advantage of low pro-

curement costs. That is, its performance gets worse as cp gets lower. As cp gets

larger, preventive replacement becomes more expensive and it becomes better

to hold inventory for corrective replacement. Hence, the effects of disregard-

ing the procurement cost diminish. When cp is considerably high, MA gives

almost the optimal solution. Such an approach becomes more favorable when

cp increases.

• As cp gets larger, both the age limit to be replaced and on hand inventory after

preventive replacements increases under SP. Since no preventive replacement

is performed when cp is high, the failure probabilities are high. SP prevents

shortages by holding more spare parts. That is, as cp gets large, inventory is
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held for corrective replacement instead of performing preventive replacement.

Even though its performance gets worse under moderate cp values in general,

SP performs very close to the optimal solution for all values of cp considered.

• As cp gets larger, the age limit to be replaced increases under SSA like SP. How-

ever age limit to hold an extra spare part does not change when cp gets higher

since the policy under SSA holds already a spare part for all aged critical parts.

Hence, the policies under SP and SSA becomes identical and the performance

of SSA improves as cp gets larger (Figure 4.4).

Figure 4.4: % cost deviations when cp increases

Above analysis is conducted with a constant inventory holding cost. Next, we keep

the holding cost rate constant (20% as in the base case) while cp increases. The

summary of the results for the problem instances considered are provided in Table

4.9.
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Table 4.9: Summary of Results for Unit Procurement Cost Analysis When Inventory
Holding Rate is 20%

DP Myopic Stationary Steady-State

cp ch f1 f1 %∆
Policy

(Ś, ALR)
f1 %∆

Policy
(ALS , ALR)

f1 %∆

3 0.6 156.5 161.9 3.44 3;4 157.6 0.66 0;4 157.6 0.66
5 1 186.3 190.2 2.08 2;4 187.4 0.57 0;4 190.9 2.48
7 1.4 215.3 217.6 1.05 2;4 216.8 0.68 0;5 222.1 3.16

10 2 257.1 257.7 0.22 2;5 258.1 0.38 0;5 267.0 3.84
15 3 322.9 322.9 0.01 2;5 323.1 0.05 0;5 341.8 5.87
20 4 388.0 388.0 0.00 2;5 388.0 0.01 0;5 416.7 7.41

Our observations with respect to an increase in cp when holding rate is 20% are as

follows:

• Under these problem instances, MA has the same behavior as cp gets larger.

However, all cost items in the total expected cost change in this case (Table

4.10) since unit inventory holding cost increases as well as cp.

Table 4.10: Total Expected Cost Items in Total Expected Cost of Myopic Approach
for Unit Procurement Cost Analysis When Inventory Holding Rate is 20%

Myopic Approach

cp ch

Total
Expected

Inv.
Holding

Cost

Total
Expected
Procure-

ment
Cost

Total
Expected
Preventive

Replacement
Cost

Total
Expected
Failure
Cost

Total
Expected
Failure

Replacement
Cost

Total
Expected
Shortage

Cost

3 0.6 11.6 37.8 6.5 85.3 25.5 1.0
5 1 16.6 61.5 6.6 85.3 25.4 3.0
7 1.4 20.3 84.4 6.7 85.2 25.2 5.4
10 2 26.7 119.5 6.8 85.2 25.1 7.3
15 3 35.6 177.8 7.0 85.1 24.9 10.6
20 4 47.2 236.8 7.0 85.1 24.9 10.9
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• As cp gets larger, the age limit to be replaced increases but on hand inventory

after preventive replacements decreases under SP in this case. Similar to the

previous analyses, SP performs very close to the optimal solution for all values

of cp considered.

Figure 4.5: % cost deviations when cp increases and inventory holding rate is constant

and equals to 0.2

• The policies under SSA are the same as the previous case. However, the per-

formance of SSA gets worse as cp increases (Figure 4.4) since the policy under

SSA holds inventory for all aged critical parts and ch increases as well as cp.

4.1.5 Unit Inventory Holding Cost per Period, ch

For replacements after failures, required spare parts are held in inventory during the

period. Inventory holding cost is incurred for leftovers. To analyze the effects of

the unit inventory holding cost, its value is changed between 0.05 and 2 and other

parameters are kept unvaried as in the base scenario. The summary of the results for

the problem instances considered are provided in Table 4.11.
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Table 4.11: Summary of Results for Unit Inventory Holding Cost Analysis

DP Myopic Stationary Steady-State

ch f1 f1 %∆
Policy

(Ś, ALR)
f1 %∆

Policy
(ALS , ALR)

f1 %∆

0.05 168.3 171.8 2.08 3;4 169.2 0.55 0;4 169.2 0.55
0.1 169.4 172.9 2.03 3;4 170.3 0.55 0;4 170.3 0.55
0.15 170.5 173.9 1.98 3;4 171.5 0.55 0;4 171.5 0.55
0.2 171.7 175.0 1.93 3;4 172.6 0.55 0;4 172.6 0.55
0.3 174.0 177.1 1.83 3;4 174.9 0.56 0;4 174.9 0.56
0.5 178.2 181.3 1.73 3;4 179.5 0.71 0;4 179.5 0.71
1 186.3 190.2 2.08 2;4 187.4 0.57 0;4 190.9 2.48

1.5 193.1 197.7 2.38 2;4 193.9 0.43 0;4 202.4 4.82
2 199.6 204.4 2.42 2;4 200.4 0.40 0;4 213.8 7.12

Our observations with respect to an increase in ch are as follows:

• The performances of both MA and SP are robust to an increase in ch.

• The policy under SSA does not change under all values of ch considered. The

spare parts for all aged critical parts are held so the performance of SSA gets

worse (Figure 4.6) similar to the analysis of constant inventory holding cost

rate (Figure 4.5). For small values of ch, the policies under SP and SSA are

identical so they give the same objective function value (Table 4.11). As ch in-

creases beyond 0.5, SP reacts by decreasing the spare part inventory. However,

the policy under SSA does not change. As a result, SP performs better when

compared to SSA.
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Figure 4.6: % cost deviations when ch increases

4.1.6 Length of the Planning Horizon, T

We next analyze the impacts of the length of the planning horizon on the objective

function values. To analyze the effects of the length of the planning horizon, its

value is changed between 3 and 100 and other parameters are kept unvaried as in the

base scenario. The summary of the results for the problem instances considered are

provided in Table 4.12.
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Table 4.12: Summary of Results for Length of Planning Horizon Analysis

DP Myopic Stationary Steady-State

T f1 f1 %∆
Policy

(Ś, ALR)
f1 %∆

Policy
(ALS , ALR)

f1 %∆

3 59.5 62.0 4.17 2;4 60.4 1.55 0;4 61.7 3.66
5 95.0 96.8 1.87 2;4 96.3 1.43 0;4 98.1 3.30
7 131.8 135.0 2.48 2;4 132.7 0.71 0;4 135.2 2.65

10 186.3 190.2 2.08 2;4 187.4 0.57 0;4 190.9 2.48
15 277.2 283.0 2.08 2;4 278.3 0.40 0;4 283.7 2.32
20 368.2 375.7 2.03 2;4 369.5 0.33 0;4 376.5 2.25
25 459.2 468.4 1.99 2;4 460.6 0.29 0;4 469.4 2.21
30 550.3 561.1 1.96 2;4 551.7 0.26 0;4 562.2 2.18
40 732.3 746.4 1.93 2;4 733.9 0.23 0;4 747.9 2.14
50 914.3 931.8 1.91 2;4 916.2 0.20 0;4 933.7 2.12
75 1369.3 1395.2 1.89 2;4 1371.7 0.17 0;4 1397.9 2.09

100 1824.4 1858.6 1.88 2;4 1827.3 0.16 0;4 1862.2 2.08

We present our observations with respect to an increase in T as follows:

• All heuristics perform better as T gets larger.

• SP gives the best results as compared to the other heuristics and SSA gives the

worst cost values (Figure 4.7).

• The policies under neither SP nor SSA changes (Table 4.12). However, these

heuristics give better objective function values as T increases. SP takes the

length of the planning horizon into account but SSA solves an infinite horizon

problem. Thus it is expected that the policy under SSA does not change with

different T values and SSA gives better results for long planning horizons.
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Figure 4.7: % cost deviations when T increases

4.1.7 Number of Units Installed, M

To analyze the effects of the number of the machines or equivalently the number of

the critical parts installed, M , we increase the number of the machines one by one up

to 4. While investigating the effects of M , the initial ages of all critical parts are taken

as 3 to eliminate the effects of the initial ages of the critical parts. The summary of

the results for the problem instances considered are provided in Table 4.13.

Table 4.13: Summary of Results for Number of The Critical Parts Installed Analysis

DP Myopic Stationary Steady-State

M f1 f1 %∆
Policy

(Ś, ALR)
f1 %∆

Policy
(ALS , ALR)

f1 %∆

1 63.5 64.2 1.08 1;4 64.0 0.70 0;4 64.0 0.70
2 127.0 128.4 1.08 2;4 127.9 0.70 0;4 127.9 0.70
3 187.1 190.5 1.78 2;4 189.2 1.12 0;4 191.9 2.53
4 246.1 250.2 1.66 3;4 247.7 0.67 0;4 255.8 3.95
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We present our observations with respect to an increase in M as follows:

• Recall that SSA considers a single machine and inventory pooling is not consid-

ered. This disadvantage from no inventory pooling increases with the number

of the critical parts (Figure 4.8) so the performance of SSA gets worse while

M increases.

Figure 4.8: % cost deviations when M increases

4.2 Analysis of Full Factorial Experiment

A full factorial experiment is performed with the parameter values given in Table

4.14. Each problem is solved using all approaches. In total, 324 problem instances

are considered.

The aim of the full factorial experiment is to investigate the problem instances that

give the best and the worst %∆ values of the proposed heuristics and the individual

effects of the parameters on the %∆ values of the heuristics. Average %∆ values with

respect to each level of the parameters are provided in Table 4.15.
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Table 4.14: Parameter Values Used in Full Factorial Experiment

Factor cs cf cr cp ch N T M ~A1 I1

Levels
20 10 2 5 0.2 5 5 3 (2,3,4) 0
50 20 5 10 0.5 10

100 15 1 20

Table 4.15: Average %∆’s of The Heuristic Approaches

Myopic Stationary Steady-State

cs
20 1.390 0.460 1.703
50 1.429 0.544 0.957
100 1.370 0.438 0.586

cf
10 0.572 0.329 0.834
20 2.221 0.632 1.330

cr
2 1.488 0.525 1.133
5 1.305 0.436 1.031

cp
5 2.081 0.631 1.518

10 1.551 0.390 0.792
15 0.557 0.421 0.936

ch
0.2 1.495 0.428 0.569
0.5 1.389 0.459 0.880
1 1.306 0.554 1.797

T

5 1.357 0.734 1.486
10 1.459 0.439 0.974
20 1.373 0.269 0.786
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Table 4.16: The Best and Worst %∆ Values of Myopic Approach

Problem Instances

%∆ cs cf cr cp ch T M

Best 0.000 50 10 5 10 0.2 5 3
Best 0.000 100 10 5 10 0.2 5 3
Best 0.000 100 10 5 10 0.5 5 3
Best 0.000 20 10 5 10 1 5 3
Best 0.000 50 10 2 15 0.2 5 3
Best 0.000 100 10 2 15 0.2 5 3
Best 0.000 50 10 5 15 0.2 5 3
Best 0.000 100 10 5 15 0.2 5 3
Best 0.000 100 10 2 15 0.5 5 3
Best 0.000 100 10 5 15 0.5 5 3
Best 0.000 20 10 2 15 1 5 3
Best 0.000 20 10 5 15 1 5 3
Best 0.000 50 10 2 15 0.2 10 3
Best 0.000 100 10 2 15 0.2 10 3
Best 0.000 50 10 5 15 0.2 10 3
Best 0.000 100 10 5 15 0.2 10 3
Best 0.000 100 10 2 15 0.5 10 3
Best 0.000 100 10 5 15 0.5 10 3
Best 0.000 50 10 2 15 0.2 20 3
Best 0.000 100 10 2 15 0.2 20 3
Best 0.000 50 10 5 15 0.2 20 3
Best 0.000 100 10 5 15 0.2 20 3
Best 0.000 100 10 2 15 0.5 20 3
Best 0.000 100 10 5 15 0.5 20 3

Worst 5.402 20 20 5 5 0.2 10 3
Avg 1.397

The average %∆ over all problem instances and the parameter instances that give the

best and the worst %∆ values of MA are provided in Table 4.16. For 24 instances

out of 324, MA gives the optimal solution. Its average %∆ value over all problem

instances is 1.397. As stated in the sensitivity analysis, MA performs better under

high values of cp (Table 4.15 and Table 4.16).
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The number of the problem instances that %∆ values of MA is better (or equal or

worse) compared to other heuristics are provided in Table 4.17. MA performs better

than SP for 112 instances out of 324 and equal to SP for 60 instances out of 324.

MA performs better than SSA for 164 instances out of 324 and equal to SSA for 36

instances out of 324. It performs better than both SP and SSA for 112 instances out

of 324 and three heuristics have same %∆ value for 36 instances out of 324.

Table 4.17: The Number of Problem Instances That MA Performs Better (or Equal or
Worse) Compared to Other Heuristics

Myopic Approach

Better Than Equal To Worse Than
Stationary Policy 112 60 152
Steady-State Approximation 164 36 124
Both Stationary Policy and
Steady-State Approximation

112 36 124
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Table 4.18: The Best and Worst %∆ Values Stationary Policy

Problem Instances

%∆ cs cf cr cp ch T M

Best 0.000 50 10 5 10 0.2 5 3
Best 0.000 100 10 5 10 0.2 5 3
Best 0.000 100 10 5 10 0.5 5 3
Best 0.000 50 10 2 15 0.2 5 3
Best 0.000 100 10 2 15 0.2 5 3
Best 0.000 50 10 5 15 0.2 5 3
Best 0.000 100 10 5 15 0.2 5 3
Best 0.000 100 10 2 15 0.5 5 3
Best 0.000 100 10 5 15 0.5 5 3
Best 0.000 50 10 2 15 0.2 10 3
Best 0.000 100 10 2 15 0.2 10 3
Best 0.000 50 10 5 15 0.2 10 3
Best 0.000 100 10 5 15 0.2 10 3
Best 0.000 100 10 2 15 0.5 10 3
Best 0.000 100 10 5 15 0.5 10 3
Best 0.000 50 10 2 15 0.2 20 3
Best 0.000 100 10 2 15 0.2 20 3
Best 0.000 50 10 5 15 0.2 20 3
Best 0.000 100 10 5 15 0.2 20 3
Best 0.000 100 10 2 15 0.5 20 3
Best 0.000 100 10 5 15 0.5 20 3

Worst 1.723 50 10 5 5 1 5 3
Avg 0.481

The average %∆ over all problem instances and the parameter instances that give the

best and the worst %∆ values of SP are provided in Table 4.18. For 21 instances out of

324, SP gives the optimal solution. Its average %∆ value over all problem instances is

0.481. In addition, its %∆ value is only 1.723 even in the worst case. SP gives nearly

the optimal solution in most instances however as stated before it is computationally

intractable for a large number of machines and long planning horizons. When the

level of T increases, the improvement is observed easily (Table 4.15).
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The number of the problem instances that %∆ values of SP is better (or equal or

worse) are provided in Table 4.19. SP performs better than MA for 152 instances out

of 324 and equal to MA for 60 instances out of 324. SP performs better than SSA for

143 instances out of 324 and equal to SSA for 181 instances out of 324. It performs

better than both MA and SSA for 58 instances out of 324. Its performance is not

worst under any parameter instance considered.

Table 4.19: The Number of Problem Instances That SP Performs Better (or Equal or
Worse) Compared to Other Heuristics

Stationary Policy

Better Than Equal To Worse Than
Myopic Approach 152 60 112
Steady-State Approximation 143 181 0
Both Myopic Approach and
Steady-State Approximation

58 36 0
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Table 4.20: The Best and Worst %∆ Values Steady-State Approximation

Problem Instances

%∆ cs cf cr cp ch T M

Best 0.000 50 10 5 10 0.2 5 3
Best 0.000 100 10 5 10 0.2 5 3
Best 0.000 50 10 2 15 0.2 5 3
Best 0.000 100 10 2 15 0.2 5 3
Best 0.000 50 10 5 15 0.2 5 3
Best 0.000 100 10 5 15 0.2 5 3
Best 0.000 100 10 5 10 0.5 5 3
Best 0.000 100 10 2 15 0.5 5 3
Best 0.000 100 10 5 15 0.5 5 3
Best 0.000 50 10 2 15 0.2 10 3
Best 0.000 100 10 2 15 0.2 10 3
Best 0.000 50 10 5 15 0.2 10 3
Best 0.000 100 10 5 15 0.2 10 3
Best 0.000 100 10 2 15 0.5 10 3
Best 0.000 100 10 5 15 0.5 10 3
Best 0.000 50 10 2 15 0.2 20 3
Best 0.000 100 10 2 15 0.2 20 3
Best 0.000 50 10 5 15 0.2 20 3
Best 0.000 100 10 5 15 0.2 20 3
Best 0.000 100 10 2 15 0.5 20 3
Best 0.000 100 10 5 15 0.5 20 3

Worst 5.188 20 10 2 5 1 5 3
Avg 1.082

The average %∆ over all problem instances and the parameter instances that give the

best and the worst %∆ values of SSA are provided in Table 4.20. For 21 instances

out of 324, SSA gives the optimal solution. Its %∆ is 5.188 in the worst case and

1.082 on the average. It is observed in Table 4.15 that under high values of cs, it gives

better results as stated in Section 4.1. Under high values of T , it performs better. As

opposed to T , under high values of ch, it performs worse.

The number of the problem instances that %∆ values of SSA is better (or equal or
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worse) are provided in Table 4.21. SSA performs better than MA for 124 instances

out of 324 and equal to MA for 36 instances out of 324. SSA does not perform better

than SP for any instance considered and equal to SSA for 181 instances out of 324.

That is, SSA is weakly dominated by SP. It performs worse than both MA and SSA

for 113 instances out of 324.

Table 4.21: The Number of Problem Instances That SSA Performs Better (or Equal
or Worse) Compared to Other Heuristics

Steady-State Approximation

Better Than Equal To Worse Than
Myopic Approach 124 36 164
Stationary Policy 0 181 143
Both Myopic Approach and
Stationary Policy

0 36 113

4.3 General Evaluation of the Heuristic Approaches

According to results of the sensitivity analysis and the full factorial experiment, we

observe some explicit features of the heuristics. Our findings are as follows:

• MA performs better than the other heuristics when cr or cp is considerably high.

In addition, MA is easy to implement for any problem instance.

• The performance of SP weakly dominates SSA under most problem instances

considered since it makes inventory pooling as opposed to SSA. In addition, it

dominates MA in many problem instances. Its performance gets worse as cr

increases in contrast to the other two heuristics. However, it is computationally

intractable for a large number of machines and long planning horizons as DP

formulation.

• The SSA performs worse when cs is low or ch is high. In addition, its perfor-

mance gets worse when there is a large number of machines. It gives moderate
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quality solution under most problem instances. It is easy to implement for any

problem instance.

• Under considerably high values of cs and long planning horizons, all heuristics

give closer results to the optimal solution. However, under high values of cs,

SSA performs better than MA and for long planning horizons, MA performs a

little bit better than SSA.
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CHAPTER 5

CONCLUSIONS

The machine in any production environment is subject to failure. Firms need to carry

spare parts inventory to cope with failure and ensure smooth operations through pre-

ventive maintenance. In other words, preventive maintenance and uncertain failures

can be consider as the major reasons of spare part inventory. Spare parts are usually

expensive pieces and there is a risk of deterioration or obsolescence during the wait-

ing period in inventory. In addition, shortages of spare parts may cause extra cost

due to loss of production. Therefore, planning preventive maintenance activities and

managing spare part inventory should be handled together.

In this study, we focus on the problem of integrated planning for preventive mainte-

nance and spare part inventory. We consider a system that consists of multiple ma-

chines that are identical and independent. Each machine has a non-repairable critical

part to operate. If the critical part fails, the corresponding machine stops operating

until the critical part is replaced. The failure probability increases with the age of the

critical part.

In the literature, there are several papers that consider the joint problem of preventive

maintenance and spare part inventory planning. These studies generally consider a

given policy then try to find best policy parameters. We do not impose any pre-

determined preventive maintenance or inventory control policy as in the literature.

We propose a Dynamic Programming formulation for the integrated planning for pre-

ventive replacement and spare part inventory planning. The objective is to minimize

total expected cost over a finite planning horizon. Decisions that we make in each
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period are the amount of order quantity and whether to replace or not decisions for

each part. This formulation provides optimal solution over a finite planning horizon.

However, it is hard to obtain the optimal solution for a long planning horizon and

for systems with large number of operating units. Hence, we propose three heuristic

approaches. Those are (i) Myopic approach, (ii) Stationary policy, (iii) Steady state

approximation. MA ignores the impacts of the current decisions on the future events.

Under SP, we restrict our attention to age-based replacement and base stock policy.

The third heuristic approach is based on approximating the finite horizon problem by

an infinite horizon for a single machine.

By computational study, we investigate the performances of the proposed heuristic

approaches under different problem parameters with respect to the solution quality.

Our analyses reveal the following findings:

• MA is a favorable approach when cr or cp is considerably high since it performs

better than the other heuristics and it is easy to implement. In addition, SP

performs better than the other heuristics under long planning horizons and large

number of the machines but it is computationally intractable for a large number

of machines and long planning horizons. Hence MA is favorable since it gives

better solutions than SSA.

• SP performs better than the other heuristics under most problem instances. It is

computationally intractable for a large number of machines and long planning

horizons. Hence it is a favorable approach for systems with a few number of

machine and small planning horizons.

• The policy under SSA is easy to obtain but inventory pooling is not taken into

consideration and infinite horizon problem is solved. Hence, it is not favorable

for systems under long planning horizons and large number of the machines.

However, under high cs values, such an approach is favorable.

This thesis can be extended by considering replenishment lead time and relaxing in-

stantaneous replacements of the critical parts. In such a setting, we need to define two

more state variables to keep track of the replenishment lead time for outstanding order

and equipment pieces in the process of replacement. Hence, the state space and the
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complexity of the problem increase. In addition, unit replacement cost can be taken

based on the age of the corresponding unit. Furthermore, a better solution approach

for Stationary policy can be sought rather than complete enumeration.
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