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ABSTRACT

DYNAMIC PRICING FOR AIRLINE REVENUE MANAGEMENT PROBLEM
WITH CANCELLATION POSSIBILITY

Selçuk, Ahmet Melih

Ph.D., Department of Operations Research

Supervisor : Assoc. Prof. Dr. Z. Müge Avşar

September 2014, 141 pages

In this study, dynamic pricing methods are developed for airline revenue manage-
ment problem. The bookings for a particular flight are considered in two classes as
restricted and flexible bookings representing whether the buyer can claim a refund
in case of a cancellation. The different classes of bookings are considered for the
same inventory to be sold at different prices. For pricing the restricted bookings, the
principle ideas in revenue management literature are adopted to maximize revenues
by managing the demand through price control and alternative mathematical models
are developed. For estimating the worth of the cancellationrefund claim, which is
the difference between flexible booking and restricted booking prices, the risk of can-
cellation is considered from the risk averse buyer’s point of view and corresponding
pricing methods are proposed. The proposed approach for pricing the refund claim is
not specific to airline sector and can also be used for similardynamic pricing prob-
lems where the bookings services that are sold in advance aresubject to cancellation.

Keywords: Revenue Management, Dynamic Pricing, Refund
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ÖZ

İPTALLERİN MÜMKÜN OLDU ĞU HAVAYOLLARI GEL İR YÖNETİMİ
PROBLEṀI İÇİN DİNAM İK FİYATLAMA

Selçuk, Ahmet Melih

Doktora, Yöneylem Araştırması Bölümü

Tez Yöneticisi : Doç. Dr. Z. Müge Avşar

Eylül 2014 , 141 sayfa

Bu çalışmada, havayolu gelir yönetimi problemi için dinamik fiyatlandırma yöntem-
leri geliştirilmiştir. Belli bir uçuş için yapılacak rezervasyonlar, müşterinin olası bir
iptal halinde ücret iadesi hakkının bulunup bulunmamasınagöre kısıtlı ve esnek re-
zervasyonlar olarak iki sınıf halinde ele alınmıştır. Farklı sınıftaki rezervasyonlar aynı
envanterin farklı fiyatla satılan farklı türleri olarak dü¸sünülmüştür. Kısıtlı rezervas-
yonları fiyatlandırmak için gelir yönetimi literatüründeki temel fikirler ele alınarak
talebin fiyatlandırma yoluyla yönetimini öngören, gelirinençoklanmasını amaçlayan
matematiksel modeller geliştirilmiştir. Esnek ve kısıtlı rezervasyonlar arasındaki fi-
yat farkına karşılık gelen iptal halinde ücret iadesi hakkının dĕgerinin tahmini için
iptal riski, riskten kaçınan bir müşterinin bakış açısıyla ele alınmış ve fiyatlandırma
yöntemleri buna göre oluşturulmuştur. ücret iade hakkının fiyatlandırılmasında öne-
rilen ve ele alınan bakış açısı havayolu sektörüne özgü değildir ve ön satışla ayırtılan,
iptali olası hizmet satışının olduğu benzer dinamik fiyatlandırma problemleri için de
uygulanabilir.

Anahtar Kelimeler: Gelir Yönetimi, Dinamik Fiyatlama, Ücret adesi
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CHAPTER 1

INTRODUCTION

Revenue management (RM) is the art of maximizing revenues by controlling the de-

mand for a good or service through effective pricing and/or capacity allocation strate-

gies. Basically, the process involves estimating the price-demand dynamics in time

and controlling the demand over the sales horizon by changing the price in order to

exploit the variations in willingness to pay for the same product among the customers

and during the time horizon. Pak and Piersma (2002) define RM asthe practice of

increasing revenues by selling each product to the right customer at the right time

for the right price emphasizing the importance of the relation between right time and

right price.

In this chapter, a general introduction to revenue management is presented. The first

section is on the origins of revenue management. In this part, the relevant ideas

from the economic theory of pricing, pioneering work on RM andthe problem en-

vironments where RM is applicable are discussed. The next section is devoted to

the history of airline RM and the emergence of RM is explained. Lastly, the sector

specific considerations, the objectives of airline RM and thesolution approaches are

discussed in the third section.

1.1 Economics of Revenue Management (RM)

Determining the price of a commodity is one of the oldest and most fundamental

questions of economic theory. Theoretically, in a perfect competition environment

where numerous suppliers present an identical commodity tothe market, the supply-
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demand balance in the market dictates the price to the firms and the seller is a price

taker and has no control on it. However, in real life there might be a few suppliers

in the market for a commodity and/or the commodities might be differentiated by

quality, brand and other specifications that in turn give suppliers the opportunity to

control the price.

The pricing problem is not limited to setting a unique fixed price for a commodity.

The same commodity might be offered to different customers at different prices in

which case the decision maker is responsible for determining all these prices. This

pricing strategy is called price discrimination since the customers who are charged

higher prices are discriminated. Price discrimination enables the seller to exploit the

differences in the valuation of customers for the offered commodities and increase the

revenues.

The studies on price discrimination date back to early twentieth century. Pigou (1920)

presents the first extensive analysis on price discrimination. In his work, he pro-

vides a classification for price discrimination according to the degree of discriminat-

ing power. First-degree (or perfect) price discriminationoccurs when every customer

is charged the maximum amount s/he is willing to pay; the hypothetical case of a

mind-reading sales agent who knows the upmost price for every individual demand.

Second-degree price discrimination involves offering alternatives or tariffs to the cus-

tomers and letting them decide; like an airline offering special discounts for round trip

bookings. Third-degree price discrimination occurs when the firm sorts the customers

into different groups based on some identifiable characteristics (age, location, occu-

pation etc.) and then sets a separate price for each group as in the case of student and

senior discounts. Another descriptive characteristic of aprice discrimination scheme

is the basis of discrimination; the difference among customers that is decisive for the

price they would be charged. The spatial differences (location of market), temporal

differences (time of sales), income differences (customer wealth) and quality differ-

ences (commodity difference) have been addressed by Phlips (1983) as the potential

grounds of price discrimination in a market. The pricing problem in RM mainly deals

with the temporal differences in the sales horizon of a perishable commodity. For

customers demanding the commodity at different times, different prices are given ac-

cording to the inventory level, expiry date of commodity andthe customer arrival

2



time, which can be an indicator of the customers’ willingness to pay. By controlling

the price, the seller in turn controls the demand during the sales horizon and attempts

to maximize the revenues.

Given the conceptual background of RM problem, one can infer the market conditions

under which RM can be beneficial. Talluri and van Ryzin (2005) provide a list of

conditions as Business Conditions Conducive to RM. Here, we mention the following

crucial conditions that make RM advantageous and operationally possible.

• Customer Heterogeneity:The core idea of RM is to exploit the potential vari-

ations in customers’ maximum willingness to pay, namely their reservation

price. If all customers value a product identically and exhibit similar purchase

behavior, then the potential to profit from the variations will be less. Thus, for

the applicability of RM in any field, there must exist customerheterogeneity.

Airline and hotel industries exhibit this characteristic,the customers have dif-

ferent reservation prices depending on when they will purchase the service and

how flexible their schedules are.

• Price Control Power:The differences in customers’ willingness to pay is not

always sufficient for the firm. For the implementation of RM, the firm must

have the power to control the prices. For example, if there isperfect competition

in the market, the firm would be price taker and would not have the chance to

set a price above the equilibrium price imposed by the market. Also, in some

industries, the firms can be restricted by certain regulations and might have no

chance to change their price over time.

• Inventory Inflexibility:Revenue management problems generally consider the

sales strategies for a limited inventory that is difficult or impossible to replen-

ish, like number of seats in a plane or rooms in a hotel. The inflexibility of

inventory throughout the sales horizon is not a prerequisite for a revenue man-

agement implementation. There are studies on multiperiod inventory problems

in which the inventory can be replenished and the seller makes joint inventory

and pricing decisions; the ordering quantity and sales price must be determined.

Nevertheless, complications about inventory replenishment motivate the seller

to look for more profitable ways of pricing to make the most outof the inventory

3



on hand.

• Technical Requirements:The estimation of demand response to price changes

is essential for the success of RM implementations. The firm requires storage

and processing of huge amounts of data to predict the demand and in certain

applications the system parameters like remaining inventory, demand rate, price

sensitivity of demand need to be updated very frequently. Thus, the firms can

make successful RM implementations only if they have powerful algorithms

and information systems to solve this problem over and over again instantly.

1.2 History of Revenue Management

The emergence and development of revenue management practice is closely con-

nected to airline industry. Since the first business implementations and academic

studies on RM are in this industry, it would not be unfair to discuss the historical

development of RM together with the last fifty years of airlineindustry.

The development of new business practices is motivated by the shortcomings of cur-

rent methods. In the air transportation sector, the seats ina certain flight are perishable

commodities that are worthless after the aircraft takes off. In this respect, each empty

seat is a missed opportunity to generate extra revenue and naturally carriers want to

increase theirload factor, the percentage of capacity being sold, to benefit from this

opportunity. Two main symptoms regarding the empty seats are unsold seat inventory

and the booked passengers who fail to show up at the time of flight, referred to here-

after asno-shows. In order to compensate no-shows, the decision makers came up

with the idea ofoverbooking; setting the sales quantity beyond the capacity of the air-

craft to generate extra revenue from the seats of no-shows. In U.S., the airlines started

to use overbooking in 1960s without acknowledging it publicly. Rothstein (1985) re-

ports that he "found much publicly available evidence that all the major airlines were

deliberately overbooking".

Overbooking proved its success in counterbalancing no-shows and booking cancel-

lations, however the inflexibility of aircraft capacity andticket price were still con-

stituting a potential threat for low load factor. In 1970s the price elasticity of air
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transport was recognized; with sufficiently low prices travellers switched from road

transport to air transport. In 1978, Airline Deregulation Act set the U.S. carriers

free to change their prices. Moreover, by the end of 1970s, the newly recognized

demand of price elastic passengers, who may switch from other means of transport

to air transport when prices are sufficiently low, motivated the low cost carriers and

charters to enter the market. Hence, the price flexibility introduced by deregulation

and the competition induced by opponents triggered the birth of revenue management

in air transportation.

Having faced the threat of low cost carriers, major airlineswere forced to develop

a strategy to recapture the price sensitive leisure passengers. To benefit from this

new demand potential, discount tickets to this new segment were introduced. For the

leisure travellerswho have lower reservation prices and more flexibility on their travel

dates, discounts were available for round trip bookings under advance-purchase and

Saturday-stay restrictions. In 1985, American Airlines made an attempt to compete

with low cost carriers and launched Ultimate Super Saver discount tickets. Smith

et al. (1992) notes that the Super Saver discount tickets hadpurchase restrictions;

they had to be purchased 30 days in advance of departure, werenonrefundable, and

required a seven-day minimum stay. The purchase restrictions were designated to

avoid business travellers taking advantage of low fare tickets. To protect the seats

for the business customers, who are expected to make their bookings later, capacity

restrictions were used and the number of discount seats offered in each flight was also

limited.

Meanwhile, theoretical studies on revenue management werealso initiated. Little-

wood (1972) studied two segment -discount and regular fee- price discrimination

scheme and proved that it is optimal to continue selling discount fare tickets as long as

the discounted fee is above thedisplacement cost; the expected loss of turning down

a possible regular fare customer. This method is accepted asthe earliest mathematical

method for quantity based revenue management and the study is a milestone in the

history of RM practice. Quantity based RM refers to the class ofRM implementa-

tions in which the inventory- or capacity-allocation decisions are utilized for demand

management. Price itself can be used as the primary tool for managing demand, this

type of RM implementations are classified as price based RM.
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After the success of American Airlines experience, other firms in the sector also

started implementing RM. Smith et al. (1992) reports that RM implementations re-

sulted in revenue improvements of 2% to 8% in comparison to pre-deregulation pe-

riod. The technological advances and scientific progress have led to improvement of

more sophisticated techniques in time. Today, RM is an essential practice for both

major and low cost carriers in the air transportation sector. Moreover, RM has been

utilized for pricing a variety of other commodities such as hotel rooms, rental cars,

concerts and game tickets, electricity and so on.

This thesis focuses on price based RM in airline sector. The contribution of this study

is twofold; firstly alternative methods are presented for pricing dynamically the single

leg bookings under the assumption of no cancellation and no overbooking. The ad-

vantages and shortcomings of the proposed methods are investigated and their perfor-

mances are analyzed on a comparative basis with existing dynamic pricing methods.

Dynamic pricing has become popular in airline RM very recently; the earlier imple-

mentations are based on capacity allocation principle. Hence, the research on price

based RM is not as extensive as quantity based RM and this is a strong motivation for

us to focus on this area.

The second part is devoted to an extension allowing cancellations and the problem of

pricing therefund premium, the additional amount a customer should pay for holding

a refund claim in case the booking is cancelled. This problemparticularly attracts our

attention since we have not encountered any study in the literature analyzing how this

price premium can be determined although it is a common practice in airline sector

to charge an additional amount for the refund claim. The comparison of restricted

and refundable ticket prices of major European airlines hasalso provided significant

evidence indicating the lack of thorough quantitative approaches for refund premium

pricing. With this motivation, we have developed a method for forecasting the cus-

tomers’ willingness to pay for holding a refundable ticket instead of a restricted one.

The customer preference is modeled as a decision problem andutilizing the relevant

ideas from the utility theory and the regret theory, the worth of a refund claim is esti-

mated. Based on this estimation, we propose a pricing strategy for refund premiums.

The ideas we have adopted are not specific to airline industry, thus the method can be

applicable to other service industries, like entertainment or accommodation in which
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the sellers offer advance bookings that can be refunded in case of a cancellation.

1.3 Preliminaries of Airline Revenue Management

The term airline RM refers to a broad field of research and different solution ap-

proaches have been proposed for different system environments and problem specifi-

cations. To understand the nature of problem, sector specific demand characteristics,

objectives of airlines for applying RM and market factors affecting the structure of

RM methodology should be investigated.

• Demand:In the air travel sector, it is predominantly accepted that the time of

booking is an indicator of a customer’s willingness to pay. It has been observed

that as the departure time of a flight approaches, the reservation prices of cus-

tomers increase. This is a distinguishing characteristic of airline RM problem

which describes the main tradeoff between selling the seat immediately or re-

serving the seat for a probable later sale at a higher price. Another common

assumption about demand is that the customer arrival rate increases as the de-

parture time approaches.

• Objectives:Identifying the objectives of the airline executives is a critical is-

sue in developing a successful RM technique. Maximizing the expected total

revenue is the primary target, however the company might have other tactical

concerns as well. For example, maintaining the load factor at a certain level

will be desirable if the airline has a market share target in terms of the total

number of passengers. Another critical factor for determining the objective is

risk attitude of the airline. In order to incorporate risk aversion, alternative

objectives like reducing the variance of total revenue or minimizing the proba-

bility of obtaining total revenue less than a minimum acceptable amount can be

utilized as in the studies due to Çetiner (2007) and Terciyanlı (2009). Barz and

Waldmann (2007) employ utility functions for incorporating the risk aversion

of the decision maker in the RM problem.

• Competition:Although, in the earlier studies on airline RM, the price posted

for the flight is considered as the only factor affecting the demand intensity, re-

7



cent studies argue that it is also essential to take into account the prices of other

airlines offering flights on the same route. The effect of an increase in com-

petitor price is reflected in the model as an increase the probability of sales for

an individual item and the effect would be reverse in case of a decrease. The

competitor prices are considered as external parameters for the pricing mod-

els developed according to this approach. There are also studies which han-

dle the problem in a game theoretic approach; competing airlines developing

and adapting their strategies in anticipation of the countermoves of their oppo-

nents. The pricing problem is modeled as a multiplayer game among rivals and

the pricing strategies are evaluated accordingly (See Netessine and Shumsky,

2005). Hence, the extent of competitive structure in the market is a critical issue

about the RM implementation.

• Airline Network Structure:There are not necessarily direct flights between

any two nodes in an airline network and the travellers often take successive

flights. Most airlines offer their customers connecting flights and the antici-

pated marginal revenue of a seat in any one of these connecting flights is not

the same as that of a point-to-point flight. Thus, RM applications for such net-

work flight structures require more sophisticated analysisthan the single leg

flights.

Revenue management is classified as price based RM or quantity based RM depend-

ing on the type of tactical level decision strategy. After studying the aforementioned

characteristics of the RM problem under consideration, the suitable control strategy

should be determined. Incapacity allocationpractice, there are different fare classes

which are offered to customers until a boundary condition on the remaining inventory

and/or time to expiry is reached. Talluri and van Ryzin (2005) explain this as "opti-

mally allocating capacity of a resource to different classes of demand". In the airline

example, a two fare sales policy, which controls sales of theseats in a flight with full

and discount rates is an example of capacity allocation practice.

In real life implementations, reservation systems providedifferent mechanisms for

controlling the capacity allocation. Booking limits set boundaries on the amount that

could be sold for each fare class; whereas a protection levelspecifies the amount of
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capacity to reserve for a particular fare class for future sales. Thus, booking limits or

protection levels are static control tools that are determined when the sales start and

can be used throughout the entire sales horizon. On the otherhand, bid price control

is based on the idea of finding a minimum acceptable price and using it as a threshold;

the requests for lower fare classes are rejected and higher fare classes are accepted.

The bid price must be recalculated at each booking request, so the control mechanism

is dynamic.

The idea of determining and updating the minimum acceptableprice in bid price

control is similarly adopted in developing price based controls, also referred to as

dynamic pricing. In quantity based approach, the seller has to determine theprice for

each fare class prior to the capacity allocation and if theseprices are poorly selected,

desired revenue level cannot be attained no matter how efficiently the capacity is

allocated to the classes. Dynamic pricing is advantageous in this respect. In dynamic

pricing, price itself is the control variable and instead ofdetermining the availability

of different fare classes, the decision maker has to decide on the price to be posted.

Dynamic pricing is as old as commerce itself. Auctions, price negotiations, mark-

downs and other forms of dynamic pricing are utilized to increase revenues: the style

goods are discounted at the end of season, special offers and markdowns are occa-

sional for fast moving perishable goods to deplete excessive inventories, seasonal

commodities have lower prices during the periods when the consumption is less. The

key point for any dynamic pricing implementation is to understand the relation be-

tween demand and price. If the customers’ response to price variations can be es-

timated, the demand can be managed effectively and it will be possible to increase

the revenues. Dynamic pricing has become popular in the airline industry very re-

cently. Due to Talluri and van Ryzin (2005) the dominance of quantity based controls

in the earlier implementations of airline RM is due to the advertising and managerial

constraints; managers used to publish their fares in media and tried to simplify price

management process. With the old technology, updating the price would have been

much slower than deciding which fare classes to sell and timeis the one thing that

seller does not have in airline sector since the passengers demanding different flights

arrive frequently and expect the seller to post the price immediately. Since it is easier

to keep track of sales and seat inventory rather than calculating the optimal price at
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a certain time and inventory position, in airline industry booking limit and protection

level controls were preferred to dynamic pricing for quite along time. However, with

the recent advances in the information technology, it has become possible to execute

complex algorithms and deliver prices to customers within seconds and now dynamic

pricing is widely used in airline RM.

An important issue in pricing airline bookings is about the possibility of refund and/or

rescheduling in case of cancellation. In practice, when a customer wants to reschedule

his/her booking, the amount to be refunded due to cancellation ofthe original book-

ing is deducted from the fee of the new booking and customer pays the difference in

between. In this respect, rescheduling can be modeled as a cancellation succeeded

by a new booking without loss of generality; hence we focus oncancellation refunds

only. In general, the airlines offer their lowest fare restricted tickets without any pos-

sibility of cancellation and the flexible tickets, which canbe rescheduled or refunded

upon cancellation requests, are offered at higher prices. Accordingly, in seat inven-

tory control applications the booking classes with higher fares are refundable and in

dynamic pricing refundable tickets can be booked by paying an additional premium.

Different types of refunding policies are adopted by airline companies. Proportional

refunds offer a certain percentage of the ticket fee in case of cancellation and in partial

refunds the ticket fee is paid back after deducting a cancellation penalty. Full refunds

is a specific case of partial refunds where the cancellation penalty is set to zero. Due

to our observations, the most commonly utilized refunding policy in airline sector

is partial refunding and the cancellation penalty is calledthe service and booking

expenses, which is a considerably small amount compared to ticket price. In this

study, the partial refunding policy is considered and the constant cancellation fee can

be set to zero to represent the case of full refunding.

In dynamic pricing perspective, the price difference between nonrefundable and re-

fundable bookings for the same service represents the priceof the right to claim a

specified portion or the entire amount spent on a service reservation in case the reser-

vation is cancelled before the cancellation deadline. In this study, this right is named

asrefund optionand is considered as a separate commodity offered for the passengers

who book for the flight. Accordingly, the pricing process is treated as a two-phase
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problem consisting of determining the price of the service,the air travel, and the price

of the refund option. Although this framework is developed for the case of airline RM,

it would also be applicable for other sectors in which the prepaid service reservations,

like concert or sports game tickets, hotel reservations etc., are subject to cancellation.

Evidently, refund options are desirable for the passengersdue to the possibility of

cancellation without significant monetary loss if none at all. On the other hand, the

airlines can also utilize refunds as an opportunity to obtain extra profit and competi-

tive advantage. Next, the conditions that motivate airlines to offer refund options are

mentioned briefly.

1.3.1 Motivations for Offering Refund Options

The refund options can be considered as additional commodities for the firms per-

forming revenue management applications. Xie and Gerstner(2007) report that, un-

der certain conditions, offering refunds can be profitable for the firm even when no

extra charge is requested for it. How does the firm profit from customer cancellations?

This question is addressed below.

• Multiple selling of limited capacity:Customer cancellation refunds are in gen-

eral partial refunds; the seller either charges a "cancellation hassle cost" and

deducts this amount from the refund or offers a proportional refund in which

case a certain percentage of the ticket price is refunded. These revenues col-

lected from customers who cease to take the service would generate additional

profit if the left seats could be resold. This strategy is sound in the case of any

service sale with limited capacity.

• Higher late sales price:As mentioned for the RM applications in the airline

industry, it is observed that the late coming customers are willing to pay higher

for the flight. Hence, if a previously sold and cancelled ticket is resold to the

late comer, the latter customer would possibly be charged a higher price. In

such cases, when the reservation price of customers tends toincrease during

the sales horizon of a commodity, offering refunds can bring a by-profit by

selling the same service at a higher price.
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• Reduced uncertainty:The service providers generally encounter no-show situ-

ations when the advance sold services offer no refund opportunity for cancel-

lation. The refunds give customers a motivation to inform the service provider

that they cease to take the service and the capacity reservedfor them could be

resold.

No-shows motivate the service provider for overbooking, which could be sim-

ply considered as selling over capacity (See Smith et al., 1992). When the

overbooked capacity is below the no-shows, there is no problem for the firm.

On the other hand, if the number of no-shows is less than overbooked capacity,

then some service requests will be denied and the company will be faced both

with legal penalties stated in the related regulations and also loss of prestige.

These service denials resulting from the overbooking uncertainty are hence un-

desired. Offering refund options would decrease the no-shows, which in turn

would decrease the uncertainty the company would be facing.

• Fairness and Acceptance:The major opposition against RM applications is

that providing the same good/service at different prices would conflict with

the customers’ perception of fairness. Talluri and van Ryzin(2005) mention

that in some real life implementations RM raised huge customer dissatisfaction

since the pricing was interpreted as unfair. Thus, RM is in general a risky

implementation and proposing refund options can legitimize it.

The refund policies of prepaid service providers are different from that of re-

tailers since a refund guarantee for a product aims to createconfidence in the

quality of the good to be sold. For example, for some productsthe sellers offer a

money pay back guarantee for a trial period after sale in caseof dissatisfaction.

Nevertheless, this situation could be misused by the customers who purchase

the product for using it during the trial period only and returning afterwards

without any real complaint about the product. This possibility of misuse is

a major opposition for offering refund guarantees for products. On the other

hand, for a prepaid service, the refund opportunity would only prevent the pos-

sible loss in the situation the buyer fails to get the serviceand by its nature it is

not open to that sort of unfair use.
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With the aforementioned motivations, many airline companies offer flexible book-

ings in addition to the nonrefundable economy tickets. In Figure??, the flexible and

economy ticket prices oḟIstanbul-London flights of two major European airlines in

eight consecutive weeks are presented. In both graphs, it observed that the flexible

ticket prices are constant although the economy ticket prices vary, indicating that the

dynamic pricing policy applied to economy tickets but not considered for flexible

tickets. Another remarkable observation is that the flexible ticket price for the same

flight is substantially higher than the economy ticket, up toseven times more and it

is questionable that if anyone would prefer paying a £567 premium to eliminate the

cancellation risk of a £85 economy ticket.

Figure 1.1: Price comparison forİstanbul-London flights

There is no doubt that these leading airline companies put great effort to find ways

of effectively pricing the economy tickets with RM implementations to manage the

13



demand; however, it seems unlikely that they implement similar sophisticated dy-

namic pricing policies for flexible tickets. We have repeated the same price inquiry

for Turkish Airlines on August 5,2014 and observed that the pricing scheme is very

similar to the case 5 years ago, flexible ticket price is fixed at £400 while the restricted

booking price varies between £150 and £310 (since British Airways changed policy

on refundability of economy tickets, a fair comparison is not possible). Although the

excessive cost of booking refundability is less in more recent price inquiry, the policy

of keeping flexible booking price fixed while the economy ticket price changesis still

the same. Flexible tickets offer the seller the opportunity to sell refund options and

generate additional revenue using the risk aversion of customers and offering these

tickets at disproportionately high prices compared to economy tickets would be miss-

ing that opportunity. We believe that the anticipated cost of ticket flexibility for the

firm must be estimated carefully and the pricing of refundable bookings should be

studied accordingly.

1.3.2 Assumptions for Refund Options and Cancellations

In this thesis, mathematical models for pricing the restricted and flexible bookings are

proposed. The valuation of refund options is critical for determining the difference

between refundable and nonrefundable ticket prices. The general assumptions on air

transport demand are mentioned in other studies on airline RMproblem and these

will be taken into account in our pricing models.

On the other hand, the refund options we are considering in this study are cancellation

claims having specific properties. The following assumptions for refund options and

cancellations are made parallel to the findings of prior studies on cancellations in RM

and our observations on airlines selling flexible and restricted tickets. Hence, before

using the refund option pricing methods that we propose, thevalidity of following

assumptions should be verified:

• Freedom of Choice:Refund options are offered with a price premium and the

customer decides whether it is worth to pay the additional price for holding this

claim. Hence, it is assumed that, the nonrefundable and refundable tickets are
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available during the entire sales horizon.

• Partial Refunding: Only partial refunds (the total price charged at booking)

are under consideration. In the formulations, a fixed cancellation hassle cost is

introduced as the deductable part of amount to be refunded. This assumption

is in accordance with the practices of most airline companies; the booking and

service fees are nonrefundable in general. This penalty term can be set to zero

if the seller implements a full refund policy. An important remark about this

penalty term is that it must be less than the restricted ticket price; otherwise

proposing refund options would not be logical.

• Maturity: Cancellation requests of refundable ticket owners are accepted (and

the booking fee is refunded) until a prespecified deadline that is announced to

the buyer at the time of sales. Thus, the refund option has a certain maturity

date and it expires after this time point. If seller accepts all cancellation requests

before the flight, this case can be modeled by setting the cancellation deadline

to the time of departuret = 0.

• Exogeneity of Cancellation:The airline tickets are booked in advance and the

buyers may cease to take the flight due to conflicts, changes inplans, health

issues etc. We assume that the probability that the buyer ceases to take the

flight is determined by those exogenous random factors and isindependent of

the amount to be refunded. Hence, in the airline’s point of view, it is equally

likely for flexible and restricted booking holders to show upat the time of flight

departure.

1.4 Specifications of the Dynamic Pricing in Airline Sector

In order to designate a dynamic pricing method for determining the price of a com-

modity, the nature of the sales process should be studied carefully. In most cases,

the seller is expected to post a price on the requests of potential buyers but the time

frame for making this decision depends on the commodity to besold. When the sale

of a dozen aircrafts is considered, an airline company can wait for the manufacturer

to post the price for a couple of weeks or even more whereas a passenger would not
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be willing to wait more than a couple of seconds for the airline to set the price for the

seat in a desired flight. Thus, dynamic pricing of airline tickets requires immediate

retrieval of seat inventory information, estimation of other relevant parameters and

rapid determination of price with regard to all these factors.

We are interested in the pricing of the restricted (non-refundable) and the flexible

(refundable) tickets and we assume that all passengers get the same level of service

during the flight. In case a certain proportion of the seats are reserved for first class or

business class, these seats could be treated as different commodities and can be priced

independently since the service provided is not identical.Thus, within the scope of

this work, the sales agent is responsible for posting the price for restricted and flexible

bookings in the desired flight in at most a few seconds.

The sales is considered as a two stage process; firstly the customer decides whether it

is worth to make a nonrefundable booking at the given pricep. At the second stage of

sales the sales agent is supposed to offer the passenger the price of the refund option

q. The research on the first stage subproblem is quite new due tothe difficulty of

solving the dynamic pricing algorithms instantly with the older technology. After

reviewing the studies on airline RM and other sectors, which are discussed in Chapter

2, we develop methods for finding the ticket price,p under certain assumptions on

demand-price relations.

The second stage subproblem is determining the price of the refund option,q, for the

ticket price,p, obtained in first stage. The passenger would be eligible to upgrade

the nonrefundable ticket to a refundable one by purchasing the refund option. Refund

option is not an actual service or product, it is a claim on a prepaid service agreement

and therefore instead of a generic demand-price relationship, we consider this phase

of pricing as a decision problem for the passenger involvingthe risk of cancellation.

In case the decision problem involves uncertain outcomes, the attitude of the decision

maker is essential. Different individuals can make different decisions under the same

conditions due to their personal assessment of risk. The generally accepted risk at-

titude is risk aversion, in which case the individuals prefer certain gains or losses to

risky, uncertain alternatives with higher expected returns. The risk aversion of indi-

viduals increase their willingness to pay for refund options, causing refundable ticket
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sales more profitable for airlines. The effect of customers’ risk attitude on pricing the

refund options is further analyzed in Chapter 5.

All in all, the contribution aimed with this work can be stated as follows:

• Despite the profound research on seat allocation practicesin airline RM, there is

limited work on dynamic pricing applications and this studypresents a dynamic

pricing methodology for airline RM and compares its performance with other

credible methods in this field.

• We did not come across any study on how to determine the price difference be-

tween the refundable and nonrefundable tickets. The pricing method suggested

in this work proposes a solution for this problem that is applicable not only for

the airline RM problem but also for other possible applications at which presold

services are subject to cancellation.

• The alternative formulations of certain parameters could be useful for airline

RM problems in general. For instance, the way we define expected marginal

value of a seat can be adopted in other dynamic pricing or seatallocation control

methods as well. The analysis on the estimation of parameters is also impor-

tant for airline personnel who are responsible for these estimations in real life

implementations.

The organization of this thesis is as follows: An extensive review of literature on

airline RM, dynamic pricing in RM and other fields with relevantpricing problems

is given in Chapter 2. Chapter 3 briefly outlines the pricing problem we study in this

thesis and the analytical models are presented. In our analysis pricing problem is

disintegrated into two main parts. First part, finding the restricted (non-refundable)

booking price ignoring cancellations is studied in depth inChapter 4. In Chapter 5

our approach to the second part of the pricing problem, finding the price of refund

premium for given restricted booking price is presented andmathematical models are

introduced. Results of simulation studies are given in Chapter 6 and Chapter 7 covers

our conclusive remarks.
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CHAPTER 2

LITERATURE REVIEW

The research on airline RM problem can be classified into two groups depending on

the type of control mechanism. In the first approach called "seat allocation control",

the capacity is allocated to the classes with different terms and conditions and sales

prices and the seller controls the availability of seats foreach class throughout the

sales horizon. The earlier studies in the field of airline RM are on seat allocation

control. Later, price was used explicitly as the control variable over the sales horizon

in airline RM. This approach called "dynamic pricing" focuseson how to determine

the optimal price for a commodity depending on the inventorylevel and the time to

expiry - the time of departure for the airline example. Although dynamic pricing

strategies are proposed in this thesis, crucial ideas from seat allocation control litera-

ture have also been adopted and therefore pioneering studies on seat allocation control

are summarized firstly in Section 2.1. Then, the research on dynamic pricing in air-

line industry and also in other sectors is reviewed in Section 2.2. Section 2.3 briefly

introduces ideas in airline RM concerning ticket refundability and studies assuming

possibility of cancellation. Literature review is concluded with the discussion on the

similarities and differences between pricing of financial options and pricing of refund

option premiums in Section 2.4.

2.1 Milestones in the Emergence of RM

The first attempt of utilizing mathematical models for seat allocation control is due to

Littlewood (1972). The problem he studies is the allocationof the seats in a flight to
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two fare classes (discount-low and full-high fare) so that the revenue is maximized.

He develops an optimal rule for accepting low fare requests at inventory levelx as

long as:

Farelow ≥ FarehighPr(Demandhigh ≥ x).

The termFarehigh Pr(Demandhigh ≥ x) expresses the opportunity cost of accepting

the low fare request at inventory levelx. In other words, this term is the expected

marginal revenue of reserving thexth seat for future high fare demand. The rule given

by Littlewood (1972) is limited to the problems with two fareclasses. Belobaba

(1987) develops the Expected Marginal Seat Revenue (EMSRa) heuristic for multi-

ple fare-class problem based on the same opportunity cost approach. Although its

performance depends on the demand distribution, EMSRa heuristic has shown good

performance in simulation studies. Belobaba (1987) furthermodifies the method and

develops EMSRb, which is reported to have close to optimal results for finding book-

ing limits. In this method, the expected marginal seat revenue of a fare class is ob-

tained asf are× spill, where spill is defined as the probability that the demand fora

particular fare class will exceed the number of seats allocated to that class. The ac-

curacy of spill estimation is of great importance for the optimality of seat allocation

when any variation of EMSR is implemented. Belobaba and Farkas (1999) indicate

this fact and study different methods for spill estimation and compare their perfor-

mances. The studies of Littlewood (1972) and Belobaba (1987)had great impact on

the airline RM research and therefore these pioneering studies on seat allocation con-

trol practice have been introduced in this section briefly. Noticing the significance of

numerous other studies in the literature, the discussion onseat allocation control is

concluded here since this thesis focuses on the dynamic pricing implementations in

airline RM.

Seat allocation practices have been dominant in the field of airline RM at the begin-

ning and dynamic pricing has been introduced to this field more recently. Yet, there

are earlier studies on dynamic pricing applications in other fields. To the best of our

knowledge, the study of Kincaid and Darling (1963) appears to be the earliest work

on dynamic pricing. The model given by the authors mainly considers sales of a per-

ishable stock with a specified disposal date to potential buyers arriving according to

a Poisson process and two variants of seller’s decision problem are studied. In the
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first model, the seller posts prices for each customer arrival. In a variant of the model,

the seller evaluates the bids of potential buyers with accept-reject decisions. For both

cases, the structural properties of optimal strategies arepresented. Gallego and van

Ryzin (1994) study the same generic dynamic pricing problem for the price posting

case and obtain the following structural monotonicity results for optimal price to be

posted by the seller:

• At any fixed time point, the optimal price decreases as the number of available

items in the inventory increases.

• For any fixed number of items in the inventory, the optimal price decreases as

time to disposal increases.

These results are in accordance with the monotonicity results for bid price policy in

the seat allocation control.

2.2 Dynamic Pricing

Dynamic pricing has a broad scope of application area and attracted attention of re-

searchers from different fields. It has been used in manufacturing and retail industries

as well as service sector (See Talluri and van Ryzin (2005) fora detailed review of

dynamic pricing literature and real-life implementations). The structure of pricing

problem varies among different fields of application; while the capacity of an air-

plane for a particular flight or the number of available roomsof a hotel are fixed, in

manufacturing and retail industries the inventories can bereplenished and the seller

should consider joint optimization of inventory and price.In the inventory litera-

ture, supply-price management problem has been studied under the heading of multi-

period problems with variable price for different settings (finite/infinite production

capacity, deterministic/stochastic demand, finite/infinite horizon etc.). The extensions

of base stock policies and the conditions under which these policies are optimal have

been extensively studied. Federgruen and Heching (1999) and Chen and Simchi-Levi

(2006) study the optimality conditions of a base stock list price policy (s,S, p); order

up toS when inventory is belows and set pricep. For a detailed review on dynamic
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pricing studies within the context of manufacturing and retail systems, the reader is

referred to Elmaghraby and Keskinocak (2003).

The possibility of inventory replenishment is a critical factor for the dynamic pricing

problem. On the other hand, there are other aspects that alsorequire careful assess-

ment. The following classification of dynamic pricing problems is due to Elmaghraby

and Keskinocak (2003):

1. Replenishment vs. No Replenishment of Inventory,

2. Dependent vs. Independent Demand Over Time,

3. Myopic vs. Strategic Customers.

The airline dynamic pricing problem has been studied so far under the assumptions

that the inventory cannot be replenished and the demand rateand reservation price

are both time-dependent. Talluri and van Ryzin (2005) noticethat, due to the nature

of air travel demand, the reservation prices of customers tend to increase as the date

of flight approaches and therefore prices generally follow an increasing trend during

the booking period. Thus, it is reasonable to assume that thepassengers would follow

myopic behavior, they would immediately buy the ticket if itis under their reservation

price without any considerations about future prices. Thisis also the best decision for

a strategic customer when the prices are expected to get higher.

Both Kincaid and Darling (1963) and Gallego and van Ryzin (1994) use a time ho-

mogenous demand model; the customer arrival rate is assumedto be a time-independent

function of price, and due to the aforementioned characteristics of air travel demand,

this demand model is not particularly appropriate for airline RM. In most of the RM

literature, the arrival process of customers is assumed to be a Poisson process. If

the customer arrival process is non-stationary, as in the case of airline RM, the time-

dependence of arrivals is handled by modeling the arrivals by a Nonhomogenous

Poisson process where the Poisson rateλ varies in time. Bitran and Mondschein

(1997) and Bitran et al. (1998) consider Nonhomogenous Poisson arrivals to repre-

sent the temporal demand fluctuations in the dynamic pricingproblem of seasonal

goods.
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Lin (2006) gives an important result about Poisson customerarrivals. He shows that

if λ follows Gamma distribution, then the total demand follows aNegative Binomial

distribution. He also refers to the extensive research on the use of Negative Binomial

demand distribution in marketing science and reports evidence supporting that Nega-

tive Binomial can be a good fit in certain industries. The studyof Agraval and Smith

(1996) on the demand in retail industry is an example for significantly better fit of

Negative Binomial than that of the Poisson or Normal distribution.

Zhao and Zheng (2000) study a more general case where both customer arrival rate

and reservation price distribution are time-dependent. They indicate the conditions

under which the monotonicity results obtained by Gallego and van Ryzin (1994) hold

true for time-dependent reservation prices and arrival rates. In our study, the customer

arrival rate and reservation price distributions are assumed to be time-dependent.

In dynamic pricing problems, the control tool of the seller for managing the demand

is the price and the objective is to decide the optimal price as a function of time and

other relevant factors. Alternatively, Lin (2004) defines adifferent decision variable

to determine thepolicy of the seller: the probability of selling successfully one item

to the current customer. Under the assumption that the reservation price distribution

of the customer is known, the probability of sale can be represented as a function of

posted price. Letv denote the probability of selling one item,p denote the posted

price and the random variableP denote the reservation price of the customer. Then,

v = Pr(P ≥ p) = 1− FP(p). (2.1)

With this definition of policy, Lin uses dynamic programmingformulation and derives

structural properties of optimal policy using the optimality equations. The optimal

expected revenue as a function of seat capacity and random demand is proven to be

supermodular. Using supermodularity, he has shown the following:

• If the demand function gets stochastically larger, the optimal probability of

selling one item gets smaller (correspondingly the price gets higher) at a fixed

inventory level.

• The incremental contribution of one item in the inventory isdecreasing in the
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inventory level; that is for the same demand function, the value of an additional

item increases as the inventory level decreases.

• For a given fixed demand function, probability of selling oneitem gets smaller

as the available inventory decreases.

Lin (2004) also covers exact and approximate algorithms forderiving optimal policy

for different customer arrival distributions. For obtaining an upper bound on the ex-

pected revenue, he studies the case of a clairvoyant sales agent that has the knowledge

of future customer arrivals and, therefore, is expected to generate a higher revenue

than the regular seller. Increased information on the future of the process ensures

that the revenue estimate for the clairvoyant seller is an upper bound on the actual

expected revenue and also it makes estimating the expected revenue function easier.

Talluri and van Ryzin (2005) introduce a practical linear programming (LP) formula-

tion for dynamic pricing by maximizing the expected revenuesubject to the constraint

that the anticipated sales at selected price levels should be less than or equal to avail-

able capacity. The termd(t, p(t)) denotes the demand rate in discrete time periodt

when the price in this period isp(t), C denotes the available capacity andr(t,d(t, p(t)))

denotes the corresponding expected revenue for that period. Below, a compact for-

mulation of the optimization problem is given. Here, the price, p(t), is the decision

variable. This system can be reduced to a linear programmingmodel if the demand,

d(t, p(t)), and the expected revenue,r(t,d(t, p(t))), are linear functions.

max
∑T

t=1 r(t,d(t, p(t))) (2.2)

subject to
∑T

t=1 d(t, p(t)) ≤ C (2.3)

d(t, p(t)) ≥ 0. (2.4)

Lin (2006) incorporates real-time demand learning into thedynamic programming

formulation he gives in 2004. The formulation for the updateof demand distribution

in real time is provided and numerical experiments for the developed algorithms are

presented to understand the effects of demand learning and update frequency. Exten-

sions regarding the cases of batch demand, discrete price levels and time-dependent

customer arrival rate are also included in this study. Şen and Zhang (2009) also facili-

tate demand learning for dynamic pricing of style goods. They use sales observations
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to refine the estimates of the customer arrival rate and the form of the demand-price

relationship.

Anjos et al. (2004) propose a method for defining the price-demand relationship quan-

titatively and employ constrained optimization for pricing. They model the probabil-

ity of selling one seatt days before flight at pricey(t) as a function of days to departure

and price,p(t, y(t)). The functional forms ofp(t, y(t)) and the time dependent demand

f (t) are determined empirically by examining the booking behavior of customers.

Expectation values of revenue and the number of seats to be sold are obtained using

price, sales probability and demand estimations similar tothe LP model due to Talluri

and van Ryzin (2005) in (2.2) as seen below.

max R=
∫ τ

0
f (t)y(t)p(t, y(t))dt (2.5)

subject to
∫ τ

0
f (t)p(t, y(t))dt ≤ C. (2.6)

The functionR to be maximized is the expected revenue for a remaining capacity

of C seatsτ days before departure. It is also mentioned that this model was used

by a major British airline company for dynamic pricing. Later, the airline company

indicated the absence of competition in the model developedby Anjos et al. (2004)

as a shortcoming. Currie et al. (2008) propose an improved version of this model that

incorporates the competition by taking the competitor’s price into account. The prob-

ability of selling one seatτ days before flight is modeled in this study as a function of

number of days to departure, the ticket price and the competitor airline’s ticket price

and the prior model due to Anjos et al. (2004) is revised accordingly.

2.3 Cancellation and Refundable Bookings in Airline RM

The advance sales of commodities separate the purchase and consumption and create

uncertainty for the buyer about the utility of actual consumption. Shugan and Xie

(2000) study advance pricing of services and argue that the reservation price of buyer

at purchase depends on the expected utility from the expected consumption state.

They exemplify the risks about future consumption in case ofbuying a ticket for a

concert in advance, like probable health issues, expected conflicts, mood etc. and

emphasize the impact of these risks on the valuation of buyers. Similarly, booked
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passengers may change their mind about the travel before theflight and they are faced

with the risk of paying for an unused service if the ticket is not refundable.

The uncertainty of the presence of booked passengers at the flight is considered as

an opportunity to sell over the capacity by airline companies and overbooking prac-

tices are adopted accordingly. Consequently, in the airlineRM literature, the stud-

ies considering no-shows and cancellations are mostly on overbooking policies (See

Rothstein, 1971; Bierman and Thoman, 1975 and Bodily and Pfeifer, 1992). Alter-

natively, Talluri and van Ryzin (2005) mention class dependent cancellation refunds

briefly. They notice that the seller can charge an extra fee for the expected refund at

the time the reservation is accepted. This approach is insightful for understanding the

price difference between restricted and refundable bookings.

The prices of flexible tickets are significantly higher than non-changeable, nonrefund-

able economy tickets. Mason (2006) attributes this difference to overbooking policies

of airline companies. Increased flexibility on buyers’ sideinduces increased uncer-

tainty for the seller about the number of booked passengers who will show-up at the

time of flight. Accordingly, overbooking becomes more riskyfor the airline company

due to possible denied-boarding losses and to counterbalance the associated losses,

airlines charge higher prices for flexible tickets.

Determination of the price difference between flexible and economy tickets is one of

the major problems considered in this work. Although sales of economy and flexible

tickets for the same flight at different prices is a common practice in airline sector,

there is not much work in the literature about determinationof this price premium.

All we know is that in seat allocation control, the ticket flexibility in terms of can-

cellation refunding should be available to higher fare classes only. The next section

covers similar pricing problems dealing with pricing of claims whose future value is

uncertain to the buyer and the seller.

2.4 Pricing of Financial Options and Insurance Contracts

Insurance is a means of hedging the risks by partially or fully transferring the possible

losses of an uncertain future outcome to a third party with a contract. For example,
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a standard automobile insurance contract covers the repairexpenses, health expenses

of drivers and/or passengers and the compensation for casualties or permanent dis-

abilities in case of an accident. The insurance companies cannot charge a fixed price

of such a contract for all customers since individuals carrydifferent risks and the

monetary risk they want to hedge is not identical.

Insurance pricing is in general based on classic risk theory. The probabilities reflect-

ing the actual likelihood of loss events are used to calculate the loss expectation. Kull

(2003) represents the insurance premium as follows:

premium=
1

1+ r
EP(X) + S(X). (2.7)

In this formulation,X denotes the losses to be covered by the contract andEP(X)

is the loss expectation under the real probability measureP. r is the risk free rate

of return and the first term on the right hand side of the multiplication denotes the

discounted expected loss which can be interpreted as the expected cost of the contract

for the insurance company.S(X) is the risk premium the customer pays to discard the

risks and is the expected profit on this contract on the company’s side.

In practice, the insurance companies cannot go through an extensive research for

each customer to estimate the probability measureP. Instead, the customers are clas-

sified into risk groups according to certain criteria, e.g.,record of previous accidents,

mileage per year and driving experience are important indicators for an automobile

insurance contract. Likewise, in case of life insurance, age, current and previous

diseases, smoking and other addictions can be utilized for risk assessment.

A cancellation refund option is similar to an insurance contract in the sense that the

passenger hedges the risk of losing the money spent on the ticket in case of a cancella-

tion by paying an additional premium at the time of booking. The ticket refundability

is useless if the passenger takes the flight, like the case of having no accidents during

the coverage of insurance. Although this similarity motivates using the same ideas in

refund option pricing, the airlines lack the information for classifying the customers

according to their risk of cancellation so it is not likely touse this approach in prac-

tice. The only data known to the seller is time of booking, which provides very limited

information about the customer. If an airline implements customer loyalty programs
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and stores information about the passengers, then the insurance pricing approach may

be useful.

In economics and finance, the term option also refers to a claim that is useless if not

exercised. A financial option is an instrument that gives theholder the right, but not

the obligation to buy or sell some financial asset at a predetermined price at or before

a predetermined expiry date. If we consider a call option, which gives its holder the

right to buy one unit stock at pricec, the value of being able to exercise this claim at a

future time pointt will be max{0, s(t)− c} wheres(t) denotes the value of the stock in

the stock market. The fundamental problem in this context isto determine the price

of the option at a given time point, considering the uncertain nature of stock price.

A natural way of dealing with the option pricing problem is toconsider the expecta-

tion using the real probabilities, similar to the method discussed for insurance pricing

herein. However, this expected value using real probability measures approach in

general leads toarbitrage, a transaction that offer risk-free profit. The possibility

of arbitrage indicates that the price is unfair and theoretically individuals can make

money out of nothing for this option price. To calculate the arbitrage-free, fair price

of a future stochastic cash flowX, Black-Scholes-Merton theory of option pricing

(also referred to as Black-Scholes theory) suggests calculating the expectation with

respect to equivalent martingale measureQ instead of real probability measureP.

price=
1

1+ r
EQ(X). (2.8)

Ismail (2001) explains the independence of option price from real probabilities by a

two state stock/bond economy example. Accordingly, the future states of theecon-

omy att = T are defined asUp andDown, and the stock, whose value att = 0 is $100

will be worth either $150 or $100 with probabilitiesPU p and 1− PU p, respectively.

On the other hand, the bond offer a risk free return for the investor at a rate ofr, so

$1 invested in bond returns $erT . According to this problem setting, the arbitrage-free

price of call option that gives its holder the right to buy thestock at $100 att = 0 is

as follows:

Option price= 100× (1− e−rT ) provided thate−rT >
100
150
. (2.9)
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The price of the option is the same forPU p = 0.001 orPU p = 0.999, so the actual

probabilities about the future state of the economy is irrelevant in financial option

pricing. In our case, the booking cancellation options are not means of investment

but they are solely intended for avoiding the losses in case the pre-booked flight is not

taken and therefore the price of this claim must be directly related to the future state

of the booking, whether it will be cancelled or not. Since purchasing a flight ticket

is not an actual investment, it is not reasonable to determine the price of a refund

option disregarding the real probabilities and using such acomparison with payoffs

of alternative investment strategies.

The solution approaches proposed for insurance premium valuation and financial op-

tion pricing problems are not applicable for the pricing of airline booking cancellation

options. Thus, a new approach based on utility functions in decision theory is devised

in this work to estimate the behavior of customer reservation price for the booking

cancellation option. Once the reservation prices are estimated, the option price is

determined with the objective of expected total revenue maximization, which is the

main objective in RM.
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CHAPTER 3

PROPOSED ANALYTICAL MODELS

The existing dynamic pricing models developed for airline RMproblem basically

deal with dynamic pricing of a perishable commodity (seats on a particular flight)

considering the nonhomogeneous nature of reservation prices of customers over time.

The systems allowing cancellations and overbooking are generally avoided in these

existing studies since such extensions amplify the complexity of the problem. That is,

the revenue maximization problem with a single decision variable, the booking price,

is considered in the literature.

In this thesis, a two dimensional revenue optimization problem is considered; the

seller determines the price of the restricted booking and also the price of the refund

option. Throughout this thesis, the dynamic pricing problem is studied for single leg

flights. The network considerations like pricing of connected flights can be revisited

by working with the results obtained for single leg problem.

Having mentioned the relevant work in the literature in the previous chapter, the math-

ematical models developed for simulating the real-life system and the approximations

considered for reducing the immense complexity are discussed in this chapter.

3.1 Optimization of Nonrefundable and Refundable Ticket Prices

The pricing problem under our consideration deals with finding the optimal prices

for restrictedandrefundablebookings for a particular flight. We define our decision

variablesp as the price of a restricted ticket andq as the premium that should be paid

31



in addition to the restricted ticket price to get a refundable ticket.

As the name implies, dynamic pricing takes into account certain dynamical factors;

factors that are subject to change throughout the sales horizon. Therefore, the optimal

values ofp andq depend on thestateof the sales process. Since the single leg flights

are considered in this work, we restrict our attention to thesale of the seats on a flight

between a specific origin-destination pair at a given date. The state of this process

can be represented by the triplet (s, t,n) denoting the inventory level (the number

of remaining available seats),s, time to departure,t, and the number of refundable

tickets sold so far,n. The variablet is defined in a backward fashion such thatt = T

denotes the start of sales horizon andt = 0 denotes the time of flight. The initial seat

inventory level (the value ofs at t = T) is denoted byS.

The objective of the seller at a given state (s, t,n) is to maximize the expected revenue

that could be generated through the remaining sales horizon. Accordingly, we define

vt(s,n) as the optimal value function of the Dynamic Programming (DP) formulation

we give in this section.vt(s,n) is the optimal expected revenue-to-go when the current

state is (s, t,n) wheres is the number of seats available for the flight (seat inventory),

t is the time to departure andn is the number of refundable bookings sold so far.

The optimization is considered for the decision variablesp andq. p is the price of a

restricted ticket andq is the additional charge for a restricted-to-refundable booking

upgrade. The decision variables in the sales process are thetwo prices to be posted by

the firm, but naturally there are other elements that determine the expected revenue-

to-go. The sales would occur ifPt is greater than the posted pricep. Pt is reservation

price of the restricted booking, i.e., the maximum price that the customer arriving at

time t is willing to pay for nonrefundable booking. In airline RM, the passengers’

willingness to pay changes along the sales horizon; accordingly Pt is considered to

be a time dependent random variable.

The sale of a refundable ticket is considered in two steps: sale of a restricted ticket

with pricep and the sale of the refund option for that passenger at priceq. The sale of

refund option would depend onQt(p) which is the reservation price of the customer

for refund option at timet, the additional amount that the customer arriving at timet

is willing to pay for the refund option. Similar toPt, Qt(p) is considered as a time-
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dependent random variable since the passengers’ arriving at different times in the

sales horizon have differences in valuation as mentioned before. Besides, the refund

option reservation price depends on the price of the restricted ticket posted by the

seller. Refundability of a reservation will have greater value as the ticket price gets

higher and this fact is taken into consideration in the estimation of Qt(p). Keeping

this dependence in mind, we will represent the refund optionreservation price asQt

in our formulations for the sake of notational convenience.

Remark 3.1.1 McGill and van Ryzin (1999) note that the low-before-high fare book-

ing arrival pattern is prominent in the seat inventory control literature. For instance,

in the simplest two-class example, customers are classified as (early-coming) leisure

and (late-coming) business customers and it is assumed thatleisure customers de-

mand lower fare class tickets whereas business customers demand higher fare class.

Under the strict low-before-high fare arrival assumption, the customers of successive

fare classes are assumed to arrive in non-overlapping time intervals; hence, we can

consider an upward shift in the customer reservation prices at the end of each time

interval throughout the sales horizon. In the models we propose in this thesis, we do

not restrict ourselves to this demand characteristic of theairline RM problem. As a

special case, we can consider the temporal change in the restricted ticket reservation

price, Pt, assuming that the reservation price tend to increase stochastically as we

move forward along the sales horizon; i.e. Pt+1 ≤st Pt. Thus, the proposed demand

frame allows us to consider a gradual increase in the willingness to pay for the air

travel service instead of classifying the customers into different segments.�

In the formulation we present, a probable sales transactionis considered in a small

time period [t, t − ǫ], over which customer arrivals occur due to (Nonhomogeneous)

Poisson arrival process. Whenǫ is sufficiently small, we could assume that at most

one customer could arrive over this interval with probability ρt = ǫλt, whereλt de-

notes the time-variant rate parameter of Nonhomogenous Poisson arrival process. The

recursive DP formulation obtained under these assumptionsis presented next.
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vt(s,n) = ρt max
p,q































Pr(Pt < p)[∆svt−1(s,n) + ∆nvt−1(s− 1,n)]

+Pr(Pt ≥ p,Qt < q)∆nvt−1(s− 1,n)

+Pr(Pt ≥ p)p+ Pr(Pt ≥ p,Qt ≥ q)q































(3.1)

+(1− ρt)[∆svt−1(s,n) + ∆nvt−1(s− 1,n)] + vt−1(s− 1,n+ 1),

v0(s,n) = 0 for all (s,n),

vt(0,n) = 0 for all (t,n),

where∆svt(s,n) = vt(s,n) − vt(s− 1,n) and∆nvt(s,n) = vt(s,n) − vt(s,n+ 1).

Derivation. The recursion along the time for the expected revenue-to-gofunction is

obtained by evaluating every possible state at the time point t − 1. We begin our in-

vestigation by considering all scenarios regarding the customer arrival and formulate

the corresponding expected revenue-to-go functionsvt−1(. , . ).

Case 1: No customer arrives or the arriving customer does not purchase the ticket

since the reservation price is less than the announced pricefor the restricted ticket;

the revenue-to-go function after the transaction isvt−1(s,n).

Case 2: The customer purchases a nonrefundable ticket; the customer’s reservation is

greater than the announced restricted ticket price and the reservation price of the re-

fund is less than the refund premium, the revenue-to-go function after the transaction

is vt−1(s− 1,n).

Case 3: The customer purchases a refundable ticket, the customer’s reservation prices

of both restricted ticket and refund option are larger than the respective prices an-

nounced by the seller; the revenue-to-go function after thetransaction isvt−1(s −

1,n+ 1).

According to this analysis, the following recursive formulation is obtained:

vt(s,n) = max
p,q































[ρtPr(Pt < p) + (1− λt)]vt−1(s,n)

+ρtPr(Pt ≥ p,Qt < q)[p+ vt−1(s− 1,n)]

+ρtPr(Pt ≥ p,Qt ≥ q)[p+ q+ vt−1(s− 1,n+ 1)]































. (3.2)
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The boundary conditions follow trivially; when there is no remaining seats for sale

or when the sales horizon ends with unsold seats on hand, the expected revenue-to-go

equals 0. The terms in (3.1) are rearranged to obtain the formin (3.1).�

The recursive formulation in (3.1) is rewritten in terms of difference terms∆svt−1(s,n)

and∆nvt−1(s− 1,n) since these could be useful for understanding and analyzing the

behavior of marginal contribution of an additional seat to revenue and the expected

future loss in revenue due to selling an extra refund option.

3.2 Ignoring Cancellation: Finding Nonrefundable Ticket Price

The optimization problem in (3.1) needs to be solved in the two dimensional decision

space (p,q). Evidently, this problem is much more complex compared to single vari-

able dynamic pricing problems studied in the literature; example formulations with

single decision variable are given by Lin (2004) and Anjos etal. (2004).

The possibility of cancellation is mostly disregarded in the airline RM literature and

the problem is studied under the assumption of no cancellations. Similarly, if the

ticket refundability and cancellations are not consideredin our model, the formulation

in (3.1) reduces to the following:

vt(s) = ρt max
p
{Pr(Pt < p)∆svt−1(s) + Pr(Pt ≥ p)p}

+(1− ρt)∆svt−1(s) + vt−1(s− 1)

= ρt max
p
{Pr(Pt ≥ p)[p− ∆svt−1(s)]}

+∆svt−1(s) + (1− ρt)∆svt−1(s) + vt−1(s− 1), (3.3)

where∆svt(s) = vt(s) − vt(s− 1).

This reduced formulation is particularly useful for proving certain structural prop-

erties regarding the restricted ticket pricep, and the expected revenue-to-go,vt(s).

Kincaid and Darling (1963) develop the continuous time version of this formulation

(albeit taking the reservation price distribution and the Poisson arrival rate time in-

dependent) and conclude that it is possible to find the closedform solution of the

optimal price only if the reservation price,Pt, follows exponential distribution.
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Rearranging the terms, we obtain the optimality equation in (3.2). The recursive

model obtained with the boundary conditions is referred to as the Dynamic Pricing

model with the acronym DP.

vt(s) − vt−1(s) = ρt max
p
{Pr(Pt ≥ p)[p− ∆svt−1(s)]} .

vt(0) = 0

v0(s) = 0. (3.4)

[p − ∆svt−1(s)] can be interpreted as the net earning in case of sale; the difference

between the ticket price obtained in case of sale and the expected future contribution

of not selling the ticket to the expected revenue-to-go. If the seat is sold in the current

period, we start the next period,t − 1, with s− 1 seats instead ofs seats. Note that

∆svt−1(s) is independent ofp, which is the ticket price announced by the seller at time

t; ∆svt−1(s) is determined by the ticket price posted in the beginning ofthe next period

[t−1, t−2]. ∆svt−1(s) is the expected amount lost by selling a ticket (seat "s") in period

t. In other words,∆svt−1(s) is the expected amount we earn if we do not sell the seat

"s" in periodt. The left-hand-side of (3.2) is nonnegative (with a longer sales horizon,

the seller cannot do worse); hence, it can be directly observed that the optimal price

must be larger than the marginal value of the seat∆svt−1(s). In the quantity-based RM

literature, comparison ofp and∆svt−1(s) tells us what to do ("sell" or "do not sell") as

in the case of Littlewood’s rule, static and dynamic single-leg models.

The discrete-time models are studied in depth in the forthcoming parts of this the-

sis. Yet at this point, we shift our focus to the analysis of a compatible continuous-

time problem. We compare the univariate discrete-time model studied so far with the

continuous time dynamic pricing model studied in the seminal work of Kincaid and

Darling (1963). Noticing the similarity of models, we extend their results on optimal

pricing policies.

3.2.1 Closed Form Solution

The model we are investigating is based on the assumption that a single customer

request can be received and handled during a very small time period [t, t− ǫ]. Assum-

ing that the time interval is infinitesimal (in other words,ǫ → 0+), the model can be
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presented in continuous time fashion as follows:

vt(s) − vt−ǫ(s) = ǫλtmax
p
{Pr(Pt ≥ p)(p− ∆vt−ǫ(s))}. (3.5)

Kincaid and Darling (1963) study a particular reservation price distributionPt ∼

EXP(1), whereEXP(1) stands for the exponential distribution with parameter1. For

this demand setting, they derive a closed form representation for the optimal price

function, p∗st. Their model ignores the customer arrival rate and its time dependence

(λt = 1) and they restrict the demand function by fixing the exponential distribution’s

mean.

In this part it is assumed that the reservation price exponential, Pt ∼ EXP(α) with an

arbitraryα in an attempt to find an exact solution to the model provided in(3.5) for

a particular demand setting. In this case, the complementary cdf termPr(Pt ≥ p) =

e−αp and the optimality equation forp∗ is;

p∗st = argmax
p
{e−αp(p− ∆vt−ǫ(s))}. (3.6)

Notice that the term∆vt−ǫ(s) stands for the difference in optimal value function ins

at time (t − ǫ); when the current customer leaves the system. Hence this difference is

independent of pricep set at the current state (s, t). Accordingly, differentiation with

respect top yields the first order optimality equation as follows:

− αe−αp∗st(p∗st − ∆vt−ǫ(s)) + e−αp∗st = 0. (3.7)

Rearranging (3.7), we obtain−αe−αp∗st(1− αp∗st + α∆vt−ǫ(s)) = 0. Sinceα ande−αp∗st

cannot be 0, we have 1− αp∗st + α∆vt−ǫ(s)) = 0 yielding p∗st = ∆vt−ǫ(s) + 1
α
. Having

obtained optimal price, the recursive formulation in (3.5)can be reduced as follows:

vt(s) − vt−ǫ(s) = ǫλt

[

e−α(∆vt−ǫ (s)+ 1
α

) 1
α

]

. (3.8)

Rearranging the terms and taking the right-limit asǫ goes to 0 we obtain the following

optimality equation:

lim
ǫ→0+

vt(s) − vt−ǫ(s)
ǫ

=
dvt(s)

dt
=
λt

αe
e−α∆vt(s). (3.9)

Proposition 3.2.1 gives a closed form solution for the optimal value function,vt(s), for

the mentioned exponential demand behavior. This provides asolution to the pricing

problem also since the corresponding optimal price,p∗st, is defined asvt(s) − vt(s−

1)+ 1
α
.
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Proposition 3.2.1 Let Pt ∼ EXP(α) and let the revenue-to-go function, vt(s) satisfy

the ODE given in (3.9) with boundary conditions vt(0) = 0 and v0(s) = 0. Then, the

closed form representation of revenue-to-go function is asfollows:

vt(s) =
1
α

ln

(

(Λt)s

s!es
+

(Λt)s−1

(s− 1)!es−1
+ · · ·

Λt

e
+ 1

)

, (3.10)

whereΛt =
∫

λtdt assuming thatΛt is well-defined for every t.

Proof. The proof is by induction on s.

(s=1) Using the boundary condition vt(0) = 0, we have∆vt(1) = vt(1). The optimality

equation becomes,
dvt(1)

dt
=
λt

αe
e−αvt(1). (3.11)

To find the solution of the differential equation given in (3.11), we rearrange

the equation as follows:

αeαvt(1)dvt(1) =
λt

e
dt. (3.12)

Integrating both sides we obtain;

eαvt(1) =
Λt

e
+ c. (3.13)

At t = 0, the sales horizon ends soΛt becomes0. Using the boundary condition

v0(1) = 0, we obtain c= 1. Equation (3.13) gives vt(1) = 1
α

ln
(

Λt

e + 1
)

.

(s=k) Assume that vt(k) satisfy the following equality:

vt(k) =
1
α

ln

(

(Λt)k

k!ek
+

(Λt)k−1

(k− 1!)ek−1
+ · · ·

Λt

e
+ 1

)

. (3.14)

(s=k+1) The optimality equation at time t and with(k+ 1) seats on inventory is given in

(3.15).
dvt(k+ 1)

dt
=
λt

αe
e−α∆vt(k+1). (3.15)

To find the solution of the differential equation given in (3.15), we rearrange

the equation as follows:

αeαvt(k+1)dvt(k+ 1) =
λt

e
eαvt(k)dt. (3.16)
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Using the assumption in the previous step of induction regarding vt(k), (3.16)

is rewritten as below.

αeαvt(k+1)dvt(k+ 1) =

(

λt
(Λt)k

k!ek+1
+ λt

(Λt)k−1

(k− 1)!ek
+ · · · λt

Λt

e2
+ λt

1
e

)

dt. (3.17)

Notice that
∫

λt(Λt)idt = (Λt)i+1

i+1 for every positive integer i. Hence, integration

of both sides in (3.17) yields the following equation:

eαvt(k+1) =
(Λt)k+1

(k+ 1)!ek+1
+ λt

(Λt)k

k!ek
+ · · · λt

Λt
2

2!e2
+
λt

e
+ c. (3.18)

Inserting boundary condition v0(k+ 1) = 0, we have c= 1. We obtain vt(k+ 1)

as in (3.18), which completes the induction.

vt(k+ 1) =
1
α

ln

(

(Λt)k+1

(k+ 1)!ek+1
+ λt

(Λt)k

k!ek
+ · · · λt

Λt
2

2!e2
+
λt

e
+ 1

)

. (3.19)

�

3.2.2 Structural Results

The continuous time model is offering a solution for a particular price-demand rela-

tion whereas the discrete time model is promising for the investigation of further char-

acteristic properties on the behavior of marginal seat revenue∆svt(s) disregarding the

relation between price and demand. For a different system formulation of dynamic

pricing problem, Lin (2004) investigates the structure of the optimal expected rev-

enue function. In this study, for the optimal revenue-to-gofunction J(s, pK), which

is defined recursively as a function of the number of items in the inventorys and the

probability mass functionpK for the number of future customers, it is shown that the

inequality in (3.20) is satisfied for every positives.

J(s+ 1, pK) − J(s, pK) ≤ J(s, pK) − J(s− 1, pK). (3.20)

Talluri and van Ryzin (2005) also prove that marginal seat revenue function is a

nondecreasing function of time to departure and nonincreasing function of remaining

seat inventory under the assumption that the marginal revenue (which is a counterpart
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of Pr(Pt ≥ p)p in our formulation) is a convex function of the pricep. We provide

a more general result by eliminating this assumption related to the reservation price

distribution. Lemma 3.2.2 below shows that these two conditions for∆svt(s) (being

nondecreasing int and nonincreasing ins) are equivalent to one another for our for-

mulation. Lemma 3.2.2, the proof of which is structurally the same as the proof of

Talluri and van Ryzin (2005), shows that∆svt(s) is nonincreasing ins. The com-

bined result of the two lemmas allows us to deduce the same results for marginal seat

revenue function as the results of Talluri and van Ryzin (2005) without making any

assumptions on the distribution ofPt.

Lemma 3.2.2 ∆svt(s) is nondecreasing in t if and only if∆svt(s) is nonincreasing in

s.

Proof.

• In the first part of the proof, we want to show that if∆svt(s) is nondecreasing int,

then∆svt(s) is nonincreasing ins. The rearranged model for the case of no refund

option can be written for inventory positionss+ 1 ands as follows:

vt(s+ 1)− vt−1(s+ 1) = ρt max
p
{Pr(Pt ≥ p)[p− ∆svt−1(s+ 1)]} ,

vt(s) − vt−1(s) = ρt max
p
{Pr(Pt ≥ p)[p− ∆svt−1(s)]} . (3.21)

Taking the difference of the two equations side by side, we obtain

∆svt(s+ 1)− ∆svt−1(s+ 1) = ρt(max
p
{Pr(Pt ≥ p)[p− ∆svt−1(s+ 1)]}

−max
p
{Pr(Pt ≥ p)[p− ∆svt−1(s)]}). (3.22)

Let p∗s+1,t = argmax
p
{Pr(Pt ≥ p)[p− ∆svt−1(s+ 1)]} denote the optimum restricted

ticket price for the reduced formulation. It is obvious thatthe optimal price is deter-

mined by both the remaining inventory and time to departure.Naturally, the optimal

price for a certain state would be suboptimal at a different state of the sales process.

If we substitutep∗s+1,t in both terms to be maximized inp, which is optimal for the

first and suboptimal for the latter maximization in (3.22), the following inequality is

obtained:

∆svt(s+ 1)− ∆svt−1(s+ 1) ≤ ρtPr(Pt ≥ p∗s+1,t)[∆svt−1(s) − ∆svt−1(s+ 1)].(3.23)
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Since∆svt(s) is nondecreasing int, the left-hand-side of the inequality (3.23) is non-

negative. Therefore,∆svt−1(s)−∆svt−1(s+1) ≥ 0, meaning that∆svt(s) is nonincreas-

ing in s.

• In the second part of the proof, we want to show that if∆svt(s) is nonincreasing in

s, then∆svt(s) is nondecreasing int. Recall (3.22) we have obtained in the first part

of the proof.

Let p∗s,t = argmax
p
{Pr(Pt ≥ p)[p− ∆svt−1(s)]}. If we substitutep∗s,t in both terms to be

maximized inp, on the right hand side of (3.22), the following inequality is obtained:

∆svt(s+ 1)− ∆svt−1(s+ 1) ≥ ρtPr(Pt ≥ p∗s,t)[∆svt−1(s) − ∆svt−1(s+ 1)].

Since∆svt(s) is nonincreasing ins, the right-hand-side of the equation is nonnegative.

Therefore,∆svt(s+ 1)−∆svt−1(s+ 1) ≥ 0, meaning that∆svt(s) is nondecreasing int.

�

Lemma 3.2.2 shows the equivalence of the two conditions using the optimality equa-

tions derived for inventory positionss ands+ 1. Lemma 3.2.3 below uses induction

over time to show that the marginal seat revenue is nonincreasing ins.

Lemma 3.2.3 ∆svt(s) is nonincreasing in s.

Proof. (due to Talluri and van Ryzin 2005, Proposition 5.2) The proofis given by

induction ont.

• ∆sv0(s+ 1) ≤ ∆sv0(s) holds true for everys ∈ [1,S − 1] sincev0(s+ 1) = v0(s) = 0

by boundary condition.

• Assume∆svt−1(s+ 1) ≤ ∆svt−1(s) for everys ∈ [1,S − 1].

• Denoting the optimal price for the inventory position (s+ i) at timet by p∗s+i,t and the

corresponding sales probability termPr(Pt ≥ p∗s+i,t) by zs+i,t, the following equalities
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for ∆svt(s+ 2) and∆svt(s+ 1) are obtained.

∆svt(s+ 2) = ρt

(

zs+2,t[p
∗
s+2,t − ∆svt−1(s+ 2)] − zs+1,t[p

∗
s+1,t − ∆svt−1(s+ 1)]

)

+∆svt−1(s+ 2)

∆svt(s+ 1) = ρt

(

zs+1,t[p
∗
s+1,t − ∆svt−1(s+ 1)] − zs,t[p

∗
s,t − ∆svt−1(s)]

)

+∆svt−1(s+ 1)

Sincep∗s+1,t is the maximizer for the functionPr(Pt ≥ p)[p− ∆svt−1(s+ 1)], p∗s,t and

p∗s+2,t would be suboptimal values and substituting them in these equations would

yield the following inequalities:

∆svt(s+ 2) ≤ ρt

(

zs+2,t[p
∗
s+2,t − ∆svt−1(s+ 2)] − zs+2,t[p

∗
s+2,t − ∆svt−1(s+ 1)]

)

+∆svt−1(s+ 2)

= ρtzs+2,t [∆svt−1(s+ 1)− ∆svt−1(s+ 2)] + ∆svt−1(s+ 2)

∆svt(s+ 1) ≥ ρt

(

zs,t[p
∗
s,t − ∆svt−1(s+ 1)] − zs,t[p

∗
s,t − ∆svt−1(s)]

)

+∆svt−1(s+ 1)

= ρtzs,t [∆svt−1(s) − ∆svt−1(s+ 1)] + ∆svt−1(s+ 1).

Taking the difference,

∆svt(s+ 2)− ∆svt(s+ 1) ≤ (1− ρtzs+2,t)∆svt−1(s+ 2)+ ρtzs+2,t∆svt−1(s+ 1)

(1− ρtzs,t)∆svt−1(s+ 1)− ρtzs,t∆svt−1(s).

Rearranging the terms on the right hand side above, we obtain

∆svt(s+ 2)− ∆svt(s+ 1) ≤ (1− ρtzs+2,t) (∆svt−1(s+ 2)− ∆svt−1(s+ 1)) +

ρtzs,t (∆svt−1(s+ 1)− ∆svt−1(s)) . (3.24)

In (3.24),ρt, zs,t andzs+2,t are all probability values. So, the terms 1− ρtzs+2,t andzs,t

are nonnegative. Using the induction assumption, both∆svt−1(s+ 2) − ∆svt−1(s+ 1)

and∆svt−1(s+1)−∆svt−1(s) are less than or equal to zero. Thus, we conclude∆svt(s+

2)− ∆svt(s+ 1) ≤ 0, meaning that∆svt(s) is nonincreasing ins. �

The structural characteristics of∆svt(s) provide valuable insight about the behavior of

the optimal expected revenue-to-go function. With this formulation, it is also possible

to make inferences about the optimal price,p∗st. The following lemmas present be-

havioral facts about the optimal price. It is implicitly assumed in the lemmas that the
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customer reservation price,Pt, has a continuous cumulative probability distribution

function.

Lemma 3.2.4 Let p∗st be a maximizer of the function Pr(Pt ≥ p)[p−∆svt−1(s)]. Then,

the marginal revenue function, Pr(Pt ≥ p)p, is a nonincreasing function of price at

p = p∗st.

Proof. (Proof by Contradiction) Assume Pr(Pt ≥ p)p is increasing at p= p∗st. Then,

there existsǫ > 0 such that

Pr(Pt ≥ p∗st + ǫ)(p
∗
st + ǫ) ≥ Pr(Pt ≥ p∗st)p

∗
st. (3.25)

By definition of complementary cumulative distribution function of Pt, we also have

Pr(Pt ≥ p∗st + ǫ) ≤ Pr(Pt ≥ p∗st). (3.26)

Since∆svt−1(s) is a nonnegative quantity for any given(s, t), we have

Pr(Pt ≥ p∗st + ǫ)∆svt−1(s) ≤ Pr(Pt ≥ p∗st)∆svt−1(s). (3.27)

Taking the difference of (3.26) and (3.27), we obtain

Pr(Pt ≥ p∗st + ǫ)(p
∗
st + ǫ − ∆svt−1(s)) ≥ Pr(Pt ≥ p∗st)(p

∗
st − ∆svt−1(s)). (3.28)

which contradicts the assumption that p∗st is the maximizer. By contradiction, we

conclude that Pr(Pt ≥ p)p is nonincreasing at p= p∗st. �

Proposition 3.2.5 Let p∗st be defined as in Lemma 3.2.4. Then, p∗
st ≥ p∗s+1,t.

Proof. It has been shown that,∆svt−1(s) is nonincreasing in s. Hence, we can define

∆svt−1(s+ 1) = ∆svt−1(s) − δ whereδ is nonnegative.

(Proof by Contradiction) Assume that p∗st < p∗s+1,t. By optimality of p∗st, we have the

following inequality:

Pr(Pt ≥ p∗st)(p
∗
st − ∆svt−1(s)) ≥ Pr(Pt ≥ p∗s+1,t)(p

∗
s+1,t − ∆svt−1(s)). (3.29)

Sinceδ ≥ 0 and p∗st < p∗s+1,t, we also have

δPr(Pt ≥ p∗st) ≥ δPr(Pt ≥ p∗s+1,t). (3.30)
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Addition of (3.29) and (3.30) yields,

Pr(Pt ≥ p∗st)(p
∗
st − ∆svt−1(s+ 1)) ≥ Pr(Pt ≥ p∗s+1,t)(p

∗
s+1,t − ∆svt−1(s+ 1)), (3.31)

which contradict the optimality of p∗s+1,t for Pr(Pt ≥ p)[p − ∆svt−1(s+ 1)]. Hence,

p∗st ≥ p∗s+1,t and we conclude that the optimal restricted ticket price is decreasing in

remaining seat inventory s. �

Having shown that the optimal price decreases in the seat inventorys, the consequent

idea is to examine its behavior in time to departure,t. However, under the assump-

tion of time dependent reservation price,Pt, such a monotonicity result cannot be

observed.

Proposition 3.2.5 states thatp∗st is nondecreasing int if the time dependence of reser-

vation price distribution is ignored. However, as noted in Remark 3.1.1, in airline RM

the reservation prices tend to increase as time to departuredecreases. With this mo-

tivation, an exemplary case opposing the monotonicity result in Lemma 3.2.6 under

the assumption ofPt+1 ≤st Pt is also presented in Counterexample 3.2.7.

Proposition 3.2.6 Let p∗st be defined as in Lemma 3.2.2 and the reservation price

distribution be time independent; i.e. fPt(p) = fPt+1(p). Then, p∗st ≤ p∗s,t+1

Proof. In order to prove the lemma, it is required to show that p∗
st ≤ p∗s,t+1 under the

assumption that the reservation price distribution is timeindependent. Let̂p ≤ p∗st.

By optimality of p∗st, we have

Pr(Pt ≥ p∗st)(p
∗
st − ∆vt−1(s)) ≥ Pr(Pt ≥ p̂)(p̂− ∆vt−1(s)). (3.32)

p̂ ≤ p∗st implies0 < Pr(Pt ≥ p∗st) ≤ Pr(Pt ≥ p̂). Since marginal seat revenue is

nondecreasing in t, we have∆vt(s) − ∆vt−1(s) ≥ 0. Then,

Pr(Pt ≥ p∗st)(∆vt(s) − ∆vt−1(s)) ≤ Pr(Pt ≥ p̂)(∆vt(s) − ∆vt−1(s)). (3.33)

Taking the difference (3.2.6)-(3.2.6), we obtain:

Pr(Pt ≥ p∗st)(p
∗
st − ∆vt(s)) ≥ Pr(Pt ≥ p̂)(p̂− ∆vt(s)). (3.34)

Hence, if reservation price distribution is independent oftime to departure, then̂p,

which is less than p∗st, cannot yield a better value for the function to be maximizedat

state (s,t+1); Pr(Pt+1 ≥ p)(p− ∆vt−1(s)). Thus, p∗s,t+1 cannot be less then p∗st. �
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Counterexample 3.2.7Consider the following system state:

• ρ1 = ρ2 = 0.05,

• s= 1 seats remaining t= 2 periods before departure,

• Reservation prices are P1 ∼ U[110,130] and P2 ∼ U[100,120], where U

denotes the continuous uniform distribution.

For any ticket price p, we have Pr(P1 ≤ p) ≤ Pr(P2 ≤ p), hence P2 ≤st P1. The

optimality equation for v1(1) yields the following:

v1(1) = ρ1max
p
{Pr(P1 ≥ p)[p− ∆sv0(1)]} + v0(1). (3.35)

The maximization for the uniform distribution gives p for all p ≤ 110; so, p values

less than110are suboptimal and can be disregarded. For p≥ 130, the maximization

term equals0; so, p values greater than130can also be excluded. The terms∆sv0(1)

and v0(1) are both0 by the boundary condition definition and they cancel out. Hence,

the optimality equation can be rewritten as follows:

v1(1) = 0.05 max
110≤p≤130

{

(130− p)p
20

}

. (3.36)

Solving (3.2.7) in p, p∗1,1 = 110and v1(1) = 5.5 are obtained.

Likewise, the optimality equation for v2(1) can be formulated as follows:

v2(1)− 5.5 = 0.05 max
100≤p≤120

{

(120− p)(p− 5.5)
20

}

. (3.37)

Accordingly, p∗1,2 = 100and v2(1) = 10.225are obtained. Therefore, it is possible to

observe the case p∗s,t+1 < p∗st for s= 1 and t= 1 in case Pt+1 ≤st Pt.�

Section 3.1 studies the problem of determination of optimalprices, (p∗,q∗), at a given

state (s, t,n). So far in Section 3.2, we study a modified problem by disregarding the

possibility of booking cancellations at all and ignoredq. Yet, it is possible to interpret

this modified univariate problem as a restriction of the original bivariate problem

with a given arbitrarily large ¯q value that no customer would be willing to pay for,

i.e., Pr(Qt ≥ q̄) = 0 for all t. Lemma 3.2.2 investigates the relationship between the

restricted ticket prices obtained by these two different formulations.
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Lemma 3.2.8 Let p∗st be defined as in Lemma 3.2.2 and let(p∗,q∗) denote the optimal

solution of the bivariate problem in (3.1). Then, at any given state(s, t,n), p∗st ≥ p∗.

Proof. Considerp̂ < p∗. By optimality of p∗, we have

Pr(Pt ≥ p̂)[ p̂− ∆svt−1(s,n)] + Pr(Pt ≥ p̂)Pr(Qt ≥ q∗)[q∗ − ∆nvt−1(s− 1,n)] ≤

Pr(Pt ≥ p∗)[p∗ − ∆svt−1(s,n)] + Pr(Pt ≥ p∗)Pr(Qt ≥ q∗)[q∗ − ∆nvt−1(s− 1,n)](3.38)

Sincep̂ < p∗, for complementary cumulative distributions we have Pr(Pt ≥ p̂) ≥

Pr(Pt ≥ p∗). Hence, for optimum refund option value q∗, the following inequality

follows:

Pr(Pt ≥ p̂)Pr(Qt ≥ q∗)[q∗−∆nvt−1(s−1,n)] ≥ Pr(Pt ≥ p∗)Pr(Qt ≥ q∗)[q∗−∆nvt−1(s−1,n)]

(3.39)

Taking the difference of (3.2.8) and (3.2.8), we obtain the following inequality:

Pr(Pt ≥ p̂)[ p̂− ∆svt−1(s,n)] ≤ Pr(Pt ≥ p∗)[p∗ − ∆svt−1(s,n)]. (3.40)

(3.2.8) shows that any restricted ticket price,p̂, which is less than the optimum p∗

obtained by the bivariate model, cannot provide a better result for the maximization

term of the univariate problem. Therefore, we conclude that,the optimal solution of

the univariate problem, p∗st, must be greater than or equal to p∗. �

3.3 Determining Refund Premium Given Restricted Ticket Price

The reduced model studied in Section (3.2) simplifies the problem to finding the opti-

mal restricted ticket price,p∗st, disregarding the gains and losses due to ticket refund-

ability. Assuming that the restricted ticket price obtained by ignoring the cancellation

can provide a close approximation to the true optimum, a secondary subproblem can

be reformulated for a given restricted ticket price. This approach does not only serve

as a complementary to the pricing method in Section (3.2), but also requires particu-

lar attention due to the fact that every airline company has acurrent methodology to

determine the restricted ticket price and might be unwilling to change that method;

yet, a refund premium calculation method for given restricted ticket price could still

be integrated. Letvt(s,n|p) denote the value function for a given value of ticket price
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p posted at time pointt. Accordingly, the problem can be formulated as follows:

vt(s,n|p) = max
q































[

ρt Pr(Pt < p) + (1− λt)
]

vt−1(s,n)

+ρt Pr(Pt ≥ p) Pr(Qt < q|Pt ≥ p)
[

p+ vt−1(s− 1,n)
]

+ρt Pr(Pt ≥ p) Pr(Qt ≥ q|Pt ≥ p)
[

p+ q+ vt−1(s− 1,n+ 1)
]































.

(3.41)

Noticing that for givenp value the maximization is in terms ofq only, (3.3) can be

rewritten as below:

vt(s,n|p) − vt−1(s,n) =ρt Pr(Pt ≥ p){
[

p− ∆svt−1(s,n)
]

+max
q
{Pr(Qt ≥ q|Pt ≥ p)[q− ∆nvt−1(s− 1,n)]}}, (3.42)

where

∆svt−1(s,n) = vt−1(s,n) − vt−1(s− 1,n),

∆nvt−1(s− 1,n) = vt−1(s− 1,n) − vt−1(s− 1,n+ 1).

Thus, for given restricted ticket price, the problem of determining the price of the

refund option,qst(p), can be solved by finding the solution of the maximization given

in (3.3). In this respect, obtaining the probability distribution of refund option reser-

vation price,Qt, conditioned on the value ofp is a critical issue. Also, the estimation

of marginal decrease in revenue due to selling an extra refund option,∆nvt−1(s−1,n),

requires intention.

Up to this point, we concentrate on simplifying the dynamic pricing problem. The

immense complexity of the original formulation, which is a consequence of high

dimensionality of the state space and nonlinearity of optimal expected revenue-to-go

function, is one of the motivations for these efforts. The nature of the airline RM prob-

lem restricts the duration of the optimization procedure; the sales agent requires an

instantaneous price information and simplification of the problem can reduce the solu-

tion time to the desired level. So far, the state space has been reduced and inferences

have been made for findingp∗st, the restricted ticket price ignoring the cancellation

possibility, andqst(p), the optimal refund option price at timet for a given restricted

ticket price,p, instead of simultaneously determining optimalp andq as a function

of the state variables. Hence, noticing that simultaneous optimization methods can
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provide better prices at the expense of considerably longersolution time (simultane-

ous optimization may even be infeasible), we set our solution strategy as sequential

optimization of the decision variablesp andq. The first subproblem is to findp∗st

ignoring the effects of cancellation on the revenue. Chapter 4 covers the proposed

methods for this reduced problem. The latter subproblem is to determineqst(p) for

the givenp and it is investigated in detail in Chapter 5.
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CHAPTER 4

DETERMINING THE RESTRICTED TICKET PRICE

As mentioned in Section 3.1, the optimization problem is treated in two steps. In the

first step, the cancellation possibility is not taken into consideration and the restricted

ticket price is calculated for a system that does not allow cancellations. This section

deals with the first subproblem introduced in Section 3.1.

In Section 3.1, it is argued that for a given value of the restricted ticket price,p, find-

ing the corresponding optimal value ofq is relatively easier than finding the optimal

values of both variables simultaneously. The second subproblem is for determining

refund option price,q, for a given fixedp. In the first subproblem, the cancellation

possibility is disregarded and all tickets are assumed nonrefundable. Consequently,

the refund premium,q, and the number of refundable tickets sold,n are removed from

the formulation. Furthermore, the gain and loss terms attributed to refund options and

cancellation possibility that complicate the expected revenue-to-go function vanished.

Thus, for estimating the optimal value ofp only, we can come up with more tractable

dynamic pricing models.

For solving the first subproblem, we need to know the probability distribution of

the reservation price,Pt. Working with reservation price distributions, we study the

demand-price relation at an individual level instead of theclassical demand-price

models formulated in aggregate quantities. Section 4.1 investigates the optimal price

and revenue-to-go functions for different reservation price distributions.
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4.1 Demand-Price Relationship

In the reduced formulation of the bivariate problem discussed in Section 3.2, the

optimality equation is given in terms ofvt−1(s). Upon a customer arrival in state (s, t),

two possible situations may occur; either the ticket is soldfor p and the expected

revenue-to-go becomesvt−1(s− 1) or the customer does not purchase the ticket and

the inventory remains unchanged. The optimality equation is,

vt(s) = λtmax
p
{Pr(Pt ≥ p)(p+ vt−1(s− 1))+Pr(Pt < p)vt−1(s)}+ (1− λt)vt−1(s). (4.1)

The probability of sales is given by the complementary cumulative distribution of

customer reservation price. Under the assumption that the reservation pricePt has

a bounded, continuous pdf on a bounded support, probabilityof sales, Pr(Pt ≥ p),

and sales price,p can be expressed in terms of each other. Noticing this one-to-

one correspondence, Lin (2004) formulates the dynamic pricing problem by using

the probability of sales as the decision variable instead ofthe price. We denote the

probability of sales byz and refer to it as thesales incentivein this study. Note that

throughout this thesis, sales incentive is alternatively denoted asz(p) to emphasize

the one-to-one correspondence with restricted ticket price and aszst to remind the

dependence of sales incentive value on the state variables.

Remark 4.1.1 Notice that in our analysis the individual demand is disintegrated in

terms of probability of sales, z, and probability of customer arrival, λt. As mentioned

previously, it is assumed in airline RM that the customer reservation price is a time-

variant random variable; hence, z is time-variant similar to λt. Yet, it will be referred

to as z without any explicit time index in our formulations fornotational convenience.

While arrival probability, λt, is independent of the ticket price, p, sales incentive

is determined by p so we reflect the effect of price on demand with z. Hence, the

classical price-demand formulations studied in economic literature can be adopted

in our models by the definition of z. In classical market models, demand curves

represent the aggregate quantities that could be sold at given price levels. At the

individual level, we replace the sales quantity with the salesincentive by rescaling

the demand function so that it takes values on the interval[0,1].
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Let FPt(p) denote the cumulative distribution function of the time dependent random

variablePt. The seller should decide on the optimal value of the sales incentivez

for revenue maximization. Corresponding optimal price,p∗st, is the optimal restricted

ticket price to be posted for a customer to arrive in state (s, t). The optimality equation

is written below with respect to the decision variablez:

vt(s) = λt max
z∈[0,1]

{

z
[

p− ∆vt−1(s)
]

| p = F−1
Pt

(1− z)
}

. (4.2)

Let Γ(z) = −z∆vt−1(s) + zp+ vt−1(s). For the optimalz∗ value, we have
dΓ
dz
= 0 as the

first order (necessary) optimality condition. The derivative is given as follows:

dΓ
dz
= −∆vt−1(s) + p+ z

dp
dz
. (4.3)

Notice that in the differentiation with respect toz, the derivative of∆vt−1(s) equals 0

since the sales incentive at timet does not have an influence on the marginal value

function at timet − 1. Evaluating
dΓ
dz

at z = z∗st, we obtain the following first order

(necessary) optimality condition:

− ∆vt−1(s) + p∗st + z∗st

dp
dz
|z=z∗st
= 0, (4.4)

wherep∗st = F−1
Pt

(1− z∗st).

4.1.1 Demand Models in Microeconomics

Having obtained the first order condition for the optimal sales incentive, we should

determine the reservation price distribution through demand-price relationship at this

stage. In this thesis, we will consider two commonly used demand functions in the

economic literature, linear and isoelastic demand curves to formulate corresponding

sales incentive functions in terms ofp.

Linear demand curves represent equal marginal decrease in demand for the same

amount of increase in price at every price level and the quantity demanded can be

written as a function of price asq(p) = a− bp (for a,b > 0 andp ∈ [0, a
b]). Isoelastic

demand, on the other hand, is formulated asq(p) = ap−b (for a > 0, b > 1), repre-

senting demand curves on which the price elasticity of demand

(

dq
dp
×

p
q

)

is constant.

Both demand curves are depicted in Figure 4.1.
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Figure 4.1: Linear and Isoelastic demand curves

The first order (necessary) optimality condition derived for the optimal sales price is

p∗st = ∆svt−1(s) − z∗st
dp
dz|z=z∗st

. In analogy with the given demand models, this optimality

equation is reinvestigated and the following results are obtained:

• Consider the linear relationship:z(p) = a − bp. This relation could be de-

fined for p ∈ [ a−1
b ,

a
b] so thatz ∈ [0,1]. Keeping the time dependence of the

reservation price distribution in mind, we would like to denote the distribu-

tion parameters asat andbt. According to linear sales incentive formulation,
dp
dz = −

1
bt

and substituting it in the first order optimality equation, we obtain

(4.5).

p =
1
2

(

∆svt−1(s) +
at

bt

)

. (4.5)

For the linear demand case,p = at−z
bt

and the value function to be maximized in

z is Γ(z) = − 1
bt

z2+ (at

bt
−∆svt−1(s))z+ vt−1(s). SinceΓ(z) is a concave function of

z, the second order optimality condition is also satisfied for solution of (4.5), if

exists. If there exists no solution forp ∈ [ a−1
b ,

a
b] , thenΓ(z) would be maximized

at one of the endpoints of the interval depending on the valueof ∆svt−1(s).

z(p) is the complementary cumulative distribution value of reservation price

and accordingly reservation price follows uniform distribution in this case;

fPt(p) = bt over the support [at−1
bt
, at

bt
]. To preserve the (stochastically) decreas-

ing structure of reservation prices in time to departure,bt should be nondecreas-
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ing andat should be nonincreasing int to guarantee thatPt ≥st Pt+1.

• Consider the isoelastic relationship:z(p) = at p−bt whereat > 0, bt > 1 and

sales incentive is defined forp ≥ a1/bt
t . The derivative term in terms of time-

dependent parameters could be written asdp
dz = −

1
atbt

pbt+1 and the corresponding

first order optimality equation is as below:

p∗st = ∆svt−1(s)
bt

bt − 1
. (4.6)

For the isoelastic demand definition,Γ(z) could be expressed in terms terms

of p asat p−bt(p − ∆vt−1(s)). The first derivative with respect top is found as

follows:

d
dp

at p
−bt(p− ∆vt−1(s)) = at p

−bt−1(bt∆vt−1(s) − p(bt − 1))

= at(bt − 1)p−bt−1(∆vt−1(s)
b

b− 1
− p). (4.7)

Then, the first derivative is negative forp > ∆vt−1(s)
bt

bt−1 and positive forp <

∆vt−1(s)
bt

bt−1. The second order derivative evaluated atp = ∆vt−1(s)
bt

bt−1 is as

given below:

d2

dp2
at p
−bt(p− ∆vt−1(s))|p=∆vt−1(s) bt

bt−1
= −atbt∆vt−1(s)(∆vt−1(s)

bt

bt − 1
)−bt−2 ≤ 0

(4.8)

(4.8) implies that the second order optimality condition isalso satisfied. Thus,

p∗ = ∆vt−1(s)
bt

bt−1 is the unique maximizer provided that∆vt−1(s)
bt

bt−1 ≥ a1/bt
t .

If ∆vt−1(s)
bt

bt−1 < a1/bt
t , then the function is decreasing on the support and the

optimal price isp∗ = a1/bt
t .

The pdf of the reservation price for the isoelastic sales incentive formulation

is fPt(p) = atbt p−bt−1. Similar to linear sales incentive formulation,bt should

be nondecreasing andat should be nonincreasing int to preserve the desired

temporal stochastic ordering of reservation prices.

In the linear sales incentive case,a
b > p∗ due to the definition ofp values in the

domain and, hence,p∗ > ∆svt−1(s). Similarly, in the isoelastic sales incentive case,

p∗ > ∆svt−1(s), because b
b−1 is always larger than 1. Working with the optimality
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equation, we have noticed in Chapter 3 that the optimal price,p∗, should always be

larger than the marginal value of a seat,∆svt−1(s) and our observations for particular

demand-price relationships discussed here are parallel tothis finding.

4.1.2 Logarithmic Sales Incentive Function

Up to this point, we work with the linear and isoelastic salesincentive formulations

derived from the corresponding demand models in economic literature. In Section

3, we also present the case of exponential sales incentive model and the derivation

of the optimal pricing policy under that assumption. At thispoint we would like to

introduce another formulation forz, which gives a solution to the dynamic pricing

problem similar to another problem in the inventory literature.

In the definition of pdf derived from isoelastic sales incentive function, fPt(p) =

abp−b−1, the density function is inversely proportional topb+1 whereb > 1. We

similarly define a pdf inversely proportional top, as fPt(p) = at

p over a closed interval

whose upper and lower bounds arepup(t) and plow(t), respectively. Corresponding

sales incentive function isz(p) = 1 − FPt(p) = at (ln(p) − ln(plow(t))). With the def-

inition of price bounds, we requirez(plow(t)) = 1 andz(pup(t)) = 0 and accordingly

we can writeat in terms of these price bounds. The sales incentive functioncould be

stated as a function ofp as given below:

z(p) =
ln(pup(t)) − ln(p)

ln(pup(t)) − ln(plow(t))
. (4.9)

Similar to the distribution parameters in linear and isoelastic sales incentive formu-

lations,plow(t) and pup(t) values are time dependent. In particular,plow(t) and pup(t)

should increase as we move forward over the sales horizon, i.e. they both should be

nonincreasing functions oft. In the first graph of Figure 4.2, an exemplary scenario

for explaining the change of these price bounds over the sales horizon is depicted.

Keeping the time dependence of these parameters in mind, from this point on we will

not use time reference in their notation for the sake of notation simplicity. Figure 4.2

also presents a depiction of the behavior ofz as a function ofp. In the second graph,

the interval [plow, pup] is defined as the range of possible prices for the seller. Price

levels belowplow are not rational for the seller since there is a higher price for which
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the probability of sales is also 1. Likewise, prices abovepup are out of our interest

since at these levels the sales will be impossible.
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Figure 4.2: Change of reservation price bounds & Sales Incentive

As a consequence of one-to-one correspondence on the interval [plow, pup], we could

also represent price as a function of sales incentive asp(z) = pz
lowp1−z

up . Further prop-

erties regarding to this sales incentive formulation are given in Lemma 4.1.2.

Lemma 4.1.2 Let price-sales incentive relation follow p(z) = pz
lowp1−z

up for z ∈ [0,1].

Then;

1.
dp
dz
= −κp holds whereκ = ln(

pup

plow
).

2. The optimal sales incentive value, z∗, satisfies the following equation:

z∗ =
z∗p∗

κz∗p∗ + ∆vt−1(s)
. (4.10)

3. If plow <
pup

e
, then the prices in the interval[plow,

pup

e
] are suboptimal.

4. The sales incentive value, which satisfies (4.10), is the unique maximizer of

Γ(z).

Proof.
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• The first statement of the lemma is straightforward from the definition of p as

a function ofz.

• For the second part, we refer to the (necessary) optimality condition forz∗ given

in (4.4). Letting
dp
dz
= −κp, the equation in (4.4) can be rewritten as follows:

− ∆vt−1(s) + p∗ − z∗κp∗ = 0. (4.11)

Taking the negative terms in (4.11) to the right hand side andmultiplying both

sides by the factor
z∗

κz∗p∗ + ∆vt−1(s)
, the solution of (4.11) forz∗ can be given

as in (4.10).

• Third statement of the lemma gives a restriction of potential optimal prices

on the interval [plow, pup] and in order to prove it, we refer to Lemma 3.2.4,

which states that the marginal revenue function,zp, is nonincreasing in price

at p = p∗. Whenz =
ln(pup) − ln(p)

ln(pup) − ln(plow)
, the derivative of marginal revenue

function is found as below:

d
dp

Pr(Pt ≥ p)p =
ln(pup) − ln(p) − 1

ln(pup) − ln(plow)
=

1
ln(pup) − ln(plow)

ln(
pup

pe
) (4.12)

The derivative term in (4.12) is positive when
pup

pe
≥ 1 and in this case marginal

revenue function turns out to be increasing. Hence, for the given logarithmic

sales incentive formulation, the interval on which the optimal price will exist is

[max
{

plow,
pup

e

}

, pup].

• To prove the last statement of lemma, we consider the second order (sufficient)

optimality condition in terms ofz as below:

d2Γ

dz2
= 2

dp
dz
+ z

d2p
dz2

= κp(zκ − 2). (4.13)

Rearranging (4.11), the solution of first order condition could be rewritten as

z=
p− ∆vt−1(s)
κp

. Corresponding second order condition is as follows:

d2Γ

dz2
|
z=

p−∆vt−1(s)
κp
= −κp(1+

∆vt−1(s)
p

) < 0. (4.14)

Hence, if there exists a solution to the first order optimality condition z =
p− ∆vt−1(s)
κp

, then that value ofz is a local maximizer ofΓ(z). Next, we should

prove the uniqueness of this maximizer.
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Rearranging the terms, the first order optimality condition can be written as

p(1− κz) = ∆vt−1(s) where bothp and (1− κz) are decreasing inz and∆vt−1(s)

is independent of the value ofz for given s and t values. Having shown the

monotonicity ofp(1− κz) for all z in [0,1], we conclude that there may exist at

most onez ∈ [0,1] that satisfies the first order optimality condition. Therefore,

the local maximizer ofΓ(z) is the optimal sales incentive value on the interval

[0,1].

�

The logarithmic sales incentive formulation gives a nice equality which is also suffi-

cient for finding the optimal price and an elegant formulation in terms of the lower

and upper bound of customer reservation price. However, theprimary motivation for

the investigation of this particular model is the structureof the optimal solution and

the rationale of this choice is explained in Remark 4.1.3.

Remark 4.1.3 For κ = 1, the fraction in (4.20) resembles the solution of the newsboy

problem in the inventory theory as shown in (4.15). (Note that restrictingκ = 1 is

equivalent to assuming that the relation pup = eplow holds for the price upper and

lower bounds.)

p∗ = F−1
Pt

(

∆vt−1(s)
z∗p∗ + ∆vt−1(s)

)

. (4.15)

For the optimal solution of the newsboy problem, the cumulative probability of the

demand at the optimal inventory level equals the ratio
cu

cu + co
where cu and co denote

unit underage and overage costs, respectively. The optimalprice in our formulation

is also evaluated by taking the inverse of the cumulative density function of reserva-

tion price for a similar ratio. In the newsboy problem, underage cost is the marginal

revenue of an additional item that would have been sold to satisfy the excess de-

mand, the difference between sales price and the purchase price. Similarly, in (4.15),

∆svt−1(s) = vt−1(s) − vt−1(s− 1) is the marginal value of an extra seat. Overage cost,

on the other hand, refers to the marginal loss due to each itemin the inventory that

remains in the inventory after the sales, the difference between the purchase price

and the salvage value. In the airline example, the inventoryis fixed and an overage

situation corresponds to having unsold seats at the time of departure. The term z∗p∗

in our formula is the marginal revenue that can be gained fromselling one seat at
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the current time instant. Hence, it can be interpreted as an expected opportunity loss

corresponding to not selling the seat immediately and is analogous to the overage

cost in the newsboy problem in this respect.

The findings for all fourz− p relationships investigated so far are tabulated in Table

4.1. Notice that, only in the exponential case we keepα constant over sales horizon

since the closed-form solution of thep∗ cannot be obtained otherwise. For the other

distributions, the parameters can be time-variant and the results will still be valid.

Table 4.1: Summary for analyzed demand-sales incentive relationships

Demand Type z(p) Parameters fPt(p) p∗

Exponential e−αp α > 0 αe−αp ∆vt−1(s) +
1
α

Logarithmic
ln( p

pup
)

ln( plow

pup
)

pup > plow > 0
1

p
(

ln( pup

plow
)
)

∆vt−1(s)

1− z∗ ln( pup

plow
)

Linear a-bp a,b > 0 b
1
2

(

∆vt−1(s) +
a
b

)

Isoelastic ap−b a > 0, b > 1 abp−b−1 ∆vt−1(s)
b

b− 1

Remark 4.1.4 For any given reservation price distribution, it is assumedthat the dis-

tribution parameters are time variant with regard to the change in customers’ willing-

ness to pay. Along with the reservation price distribution, FPt , the rate parameter of

the Nonhomogenous Poisson distributed customer arrivals istime dependent. Hence,

the seller needs to know the values of these parameters at each unit time period in

the remainder of the sales horizon in order to determine the price for the current cus-

tomer with the proposed DP model. Considering the possibilitythat the seller may

not accurately estimate the demand parameters at every future time point, we have

also studied an approximate solution for the optimality equation (4.11). To avoid the
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requirement for recursive solution, an approximation for the marginal value function,

∆vt−1(s), is proposed.

The approximate models developed in this thesis are based onintuition inferred from

the business concepts in the RM literature and discussed in this respect. Therefore,

the error bounds in these approximations are not studied herein.

4.2 Approximating Marginal Value Function

The term∆svt−1(s), is the opportunity cost of selling thesth available seat in state

(s, t). At state (s, t − 1), thesth seat can generate additional profit only if the seller

could sell alls−1 seats before departure and there still remains demand. Otherwise, an

additional empty seat on the flight has no contribution to thetotal revenue. Although

this simplistic perspective overlooks the interdependence of pricing strategies and

seat inventory, it provides valuable insight for approximating ∆svt−1(s).

In this part, we consider an approximation for the marginal value function by assum-

ing that the seller could anticipate the probability of selling all s tickets at a state (s, t)

and the price of the last ticket that would be charged to a last-minute customer,pf in.

S P(s, t) : stock-out probability (the probability that all of the seats will be sold before

departure; that is, the probability that the demand during the t time periods

before departure is greater thans).

pf in : final price the seller would post at the end of sales horizon.

∆svt(s) : The approximation we consider is∆svt−1(s) ≈ S P(s, t − 1)pf in + 0(1 −

S P(s, t − 1)) for thesth seat at timet.

Evidently, the maximum ticket price and the stock-out probability depend on the pol-

icy of the seller during the sales process. However, the previous sales records for

similar flights can be useful for estimating the values ofpf in andS P(s, t). Remark

4.2.1 outlines the methods in airline RM literature that employs stock-out probability

or similar figures in the estimation of expected incrementalseat revenue. The be-

havior of the stock-out probabilityS P(s, t) is investigated as a function of the state
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variables in Remark 4.2.2.

Remark 4.2.1 The probability of stock-out during the sales horizon, S P(s, t), is an

important figure in the estimation of the marginal value function, ∆vt−1(s), in the

current state,(s, t). Littlewood (1972) describes the decision rule for the 2-class

problem as "keep low fare open as long as the probability thatthe demand for high-

fare seats exceeds the remaining seat inventory is less thanthe ratio of low-fare to

high-fare". Belobaba (1989) similarly defines the probability of spill for the n-class

case,P(Si), as the probability of receiving more than Si requests for fare class i. The

expected marginal seat revenue for fare class i, EMS R(Si), is found by multiplying

the probability of spill and the fare of fare class i. EMSR values serve as thresholds

to determine protection levels of the fare classes in seat inventory control.

Belobaba and Farkas (1999) point out the importance of spillestimation for success

of EMSR heuristics or similar techniques in airline RM. In their work, they employ (1)

a total demand function aggregating the fare classes, (2) multiple fare class demand

representation with the assumption of lower fare passengers booking before higher

fare and (3) multiple period multiple class demand representation. The adequacy of

each demand representation and the impact on the yield are investigated on a com-

parative basis. Within a similar context to spill, we employ the stock-out probability

S P(s, t) in our formulations. In the dynamic pricing model adopted here, there are no

fare classes and the price itself is the control variable. The marginal value of a seat

is regarded as a function of the state of the system(s, t) and is approximated as the

maximum price anticipated for the sales horizon, pf in, multiplied with the probability

of stock-out, S P(s, t). Here, the price p of the seat is not used but pf in is used. In

this work, we use the term stock-out probability instead of spill since the term spill

is used to refer to both the amount of passenger demand above the capacity and the

probability of demand being above the capacity.�

Remark 4.2.2 Estimating the stock-out probability S P(s, t) for a certain inventory

level in a given state can be possible by assuming a functional form in terms of the

state variables(s, t). The following properties should be satisfied for S P(s, t).

• S P(s, t) should be a well defined function for non-negative integer values of
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seat inventory s and for positive values of t and its value should be between0

and1 on this domain. Note that s∈ [0,S] and t∈ [0,T].

• If there are unsold seats, S P(s, t) will tend to0 as the flight approaches.

lim t→0+ S P(s, t) = 0 for s> 0.

• When inventory depletes before the departure, the probability of stock-out (which

has already occurred) should be equal to1.

S P(0, t) = 1 for t > 0.

• S P(s, t) should be nonincreasing in s; the lower the seat inventory is,the higher

the probability of stock-out gets.

• S P(s, t) should be nondecreasing in t; the more time the sales agent has before

the departure, the higher the probability of stock-out gets.�

4.2.1 Parametric Estimation ofS P(s, t)

It is reasonable to use the historical stock-out data to estimate the functional behavior

of S P(s, t). The statistical methodology of parameter estimation, using a parametric

or nonparametric method is a critical issue for the decisionmakers at this point.

A plausible functional relation that satisfies the conditions in Remark 4.2.2 isS P(s, t) =

1−
(

s
S+ω

)

Λ[0,t]
s , whereω > s− S andΛ[0,t] =

∫ t

0
λτdτ > 0. The approximate dynamic

pricing model based on this parametric stockout probability estimation is abbreviated

asPara− M. Condition onω assures thatS P(s, t) ∈ (0,1) for s ∈ [0,S] and positiv-

ity of Λ[0,t] is required for meeting the monotonicity properties ofS P(s, t) explained

above.Λ[0,t] is introduced in Section 3.2.1 also and denotes the expectednumber of

customer arrivals from timet until the flight. The value ofω does not have such a di-

rect interpretation and it should be estimated according tothe demand characteristics

of the flight. This formulation relies on the following two fundamental observations

about the stock-out probability.

1. The Future: While we are considering the nature of depletion of the remain-

ing seats, the anticipation of the demand in the remainder ofthe sales horizon
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must be taken into account. In our model, we propose representing the impact

of anticipated demand intensity by the ratio of expected future customers to

remaining seats. This ratio is
Λ[0,t]

s
, whereΛ[0,t] is the time-weighted average

arrival rate of customers. The ratio can simply be interpreted as a demand-to-

supply ratio.

2. The Past: The impact of sales history should also be reflected in the stock-out

probability function. The percentage of remaining tickets,
s
S

, gives us an idea

about the sales trend for the flight so far; smaller values imply higher possibility

of stock-out and vice versa. However, in our formulation, this ratio is not used

directly to enable calibration. Instead ofs
S , the ratio

s
S + ω

is adopted. In order

to assure thatS P(s, t) takes values on the interval [0,1], we restrictω > s− S.

The positivity ofΛ[0,t] andω being larger thans−S guarantee that the derivative with

respect to time given in (4.16) is positive. That is, the stock-out probability increases

as the time to departure increases for a givens value.

∂S P
∂t
= −

( s
S + ω

)

Λ[0,t]

s
(

λt

s

)

ln

(

s
S + ω1

)

> 0. (4.16)

We also expect the stock-out probability to be higher for smaller svalues. The partial

derivative given in (4.17) shows thatS P(s, t) is a nonincreasing function ofs for given

t:

∂S P
∂s
= −

( s
S + ω

)

Λ[0,t]

s
(

Λ[0,t]

s2

) (

1− ln
s

S + ω1

)

< 0 (4.17)

The parameterω, is introduced to the formulation to allow the stock-out probability

for the initial inventory level to be greater than 0. For finding this parameter, we can

use an estimate for the stock-out probability value at a reference state. In this respect,

we can refer to the expertise of sales people for an estimate for the stockout probabil-

ity at the beginning of sales (when time to departure isT andS seats are available for

sale). Letη = S P(S,T) denote this estimate. Using this estimate obtained by insights

of experts from the historical sales records,ω1 can be obtained as follows:

η = S P(S,T) = 1−

(

S
S + ω1

)

Λ[0,T]
S

⇒ ω1 = S
(

(1− η)
− S
Λ[0,T]

)

− S. (4.18)
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Example 4.2.3 Consider a 30-days ahead flight for which the seller intends to use

the parametric estimation method for the given type of stock-out probability function.

Let the parameter setting for the problem be given as below:

• The daily intensity of customer arrivals increase from5 arrivals per day to40

arrivals per day (λt = 5t40T−t).

• S = 200seats are available for sales.

• S P(200,30) = 0.6 is seller’s estimate for the probability of selling all seats

before the flight.

According to the givenλt, demand-to-supply ratio (i.e. expected number of customer

arrivals per remaining seat) is found as
Λ[0,T]

S
= 2.52 and the other parameterω =

87.5. Hence, the seller could utilize the stock-out probabilityfunction S P(s, t) =

1 −
(

s
287.5

)

Λ[0,T]
s . Λ[0,t] is a time dependent parameter so it would be recalculated as

the sales proceeds. For this scenario, the stockout probability is depicted below as a

function of seat inventory s for fixed values of t in Figure 4.3.
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Figure 4.3: Stockout probability curves at given dates

Estimation of the stock-out probability at the initial inventory-time state,S P(S,T),

using the previous sales records requires attention. Firstof all, sales records need to

be classified into groups so that the demand characteristicsare similar within each

group; low season statistics would not be appropriate for high season flights and vice
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versa. Similarly, the historical records of a flight would not be reliable if the company

made a promotional, non-standard mark-down during the sales horizon since such

campaigns can also deviate the demand from its normal pattern.

It is reasonable to assume that the stock-out probability for the flight at the reference

state can be estimated using the stock-out probabilities ofsimilar flights atsimilar

states. Yet, the stock-out probabilities of previous flights is not a directly observable

parameter and this brings forth the problem of estimating the stock-out probability of

a flight at a given state after observing its sales record. This estimation needs to be

done considering the following criteria.

Let the same inventory-time position, (s, t), be observed for two different flights and

let S P1(s, t) and S P2(s, t) denote the stock-out probability estimates of these two

flights at state (s, t).

• If the first airplane was sold out and the second one departed with empty seats,

thenS P1(s, t) > S P2(s, t) should hold.

• If both airplanes were sold out but the seats of the first one depleted before the

second, thenS P1(s, t) > S P2(s, t) should hold.

• If both airplanes departed with empty seats but the number ofempty seats of

the first one is less than the second, thenS P1(s, t) > S P2(s, t) should hold.

To sum up, it is a sophisticated task to implement empirical methods for the estimation

of stock-out probability at a given state. For the previous flights, the sales records

must be classified according to the demand patterns and the knowledge of the number

of empty seats at the time of departure and the time of stock-out (if observed) should

be recorded for all these flights.

In case the parametric method is not favored due to aforementioned difficulties, an al-

ternative analytical approach can also be applicable. Section 4.2.2 covers an alterna-

tive for estimating the stock-out probability without using a functional approximation

or any empirical data.
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4.2.2 Predictive Estimation ofS P(s, t)

The stock-out probability at a given state,S P(s, t), is a critical figure in the estimation

of optimal sales incentive value,z∗. In the dynamic pricing problem, this figure needs

to be re-estimated at each customer arrival. Thus, definingS P(s, t) as a function of

remaining inventory and time to departure is a reasonable solution for this estimation

problem. We propose a methodology for determiningS P(s, t) using expert opinion

for function fitting. The functional form of the stock-out function is restricted so that

it satisfies the required set of conditions for any given flight. Then, the parameters

that introduce the demand characteristics of the sales process under consideration are

determined and the final form of the stock-out function is obtained.

The stock-out probability would have been easily calculated if the number of cus-

tomers to arrive until the end of sales horizon and the probability of purchasing for

each customer were known. In this respect, the stock-out event is investigated in this

section under the following assumption:

Assumption: At the state (s, t), the seller predicts constant sales incentive for

all remaining customers.

Recall thatz∗ = Pr(Pt ≥ p∗st). The seller determinesz∗ according to the expectations

on future demand. If the demand realizations turn out to be parallel to expectations,z∗

can be a reasonable estimate for the average future sales incentive. Notice that keep-

ing the probability of sales constant does not imply fixing the price for the remaining

the sales horizon. The same sales incentive value would correspond to higher prices

as the reservation prices of customers increase towards thedeparture. Also notice that

the actual pricing process will continue on a dynamic basis and this assumption on

constantz∗ is about the estimation ofS P(s, t) only.

Let Dt be a random variable denoting the number of customers to arrive when the

time to departure ist. Of those customers, those who have a higher reservation price

than the ticket price posted by the airline will purchase thetickets and vice versa.

Hence, the customer arrivals can be classified into two groups aspurchasesreferring

to the arrival of customers who accept the posted price andrefusalsreferring to the
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arrival of customers who do not accept the price posted by theseller. The stockout

probability could then be defined in terms of prospective accept/reject decisions of

customers to arrive until the end of sales horizon. At a givenstate (s, t), we define the

probability of stockout as below:

Kt: number of customers arriving in [0, t] to accept the price offer.

Dt − Kt: number of customers arriving in [0, t] to reject the price offer.

Pr(Kt = k|Dt) =































(
Dt

k
)(z∗st)

k(1− z∗st)
Dt−k if 0 ≤ k ≤ Dt,

0 otherwise.

Stockout probability: Probability that number of arrivingcustomers to accept the

price offer is at leasts; S P(s, t) = Pr(Kt ≥ s).

Pr(Kt ≥ s) =

∞
∑

k=s

Pr(Kt = k)

=

∞
∑

k=s

∞
∑

d=0

Pr(Kt = k|Dt = d)Pr(Dt = d)

=

∞
∑

k=s

∞
∑

d=k

Pr(Kt = k|Dt = d)Pr(Dt = d)

=

∞
∑

k=s

∞
∑

d=k

(
d

k
)(z∗st)

k(1− z∗st)
d−kPr(Dt = d).

The customer arrivals are assumed to follow a NonhomogenousPoisson Process. Ac-

cordingly, Dt follows cumulative distribution function for Nonhomogenous Poisson

Distribution for given time variant rateλt.

An alternative formulation for stockout probability couldbe given as below:

Pr(Kt ≥ s) =

∞
∑

d=s

Pr(Kt ≥ s|Dt = d)Pr(Dt = d).

If we assume that the outcomes of individual customer decisions are Bernoulli trials,

thenPr(Kt ≥ s|Dt = d) denotes the probability of observing at leasts successes in

d trials. This probability is equal to the probability of observing thesth success at or

before thedth trial or equivalently observing at mostd−s failures until thesth success.

Let Nst denote the number of customers that arrive but do not purchase the ticket until
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the remainings tickets are all successfully sold. This random variable is defined for

Dt ≥ ssuch thatNst|Dt takes values in{0,1, ...,Dt − s}. Accordingly, tickets would be

sold out after the arrival of (Nst + s)th customer.

According to these definitions and the assumption for constant z∗, we have the fol-

lowing observations:

1. The random variableNst, conditioned onDt, follows Negative Binomial distri-

butionNegBin(s, z∗st).

2. The stock-out probability for a given number of customersto arrive,Dt = d,

is equal toPr(Nst < Dt − s|Dt = d) = Pr(Dt − Nst > Dt − (Dt − s)|Dt =

d) = Pr(Dt − Nst > s|Dt = d). Dt − Nst denotes the number of customers who

purchase ticket in the lastt periods when the current state iss.

EvaluatingPr(Nst < Dt − s) =
∑∞

d=s Pr(Nst < d − s)Pr(Dt = d) is computation-

ally difficult especially for large values ofd. In an attempt to simplify the calcu-

lation, we use the approximationPr(Nst < Dt − s) ≈ Pr(Nst < E[Dt] − s). No-

tice that the expected number of customers to arrive,E[Dt] = Λ[0,t] defined in Sec-

tion 4.2.1. For large values ofE[Dt], we employ continuous distribution approxi-

mations to Negative Binomial distribution. Vose (2008) mentions that Normal ap-

proximation is a good approximation to Binomial distribution if number of successes

(E[Dt] − s) is greater than 50 and probability of success (z∗) is not very close to 0
(

NegBin(s, z) ≈ Normal( s
z − s,

√

s(1−z)
z2 )

)

. For small values ofz∗, Gamma distribution

provides a good approximation
(

NegBin(s, z) ≈ Gamma(s, 1
z)
)

.

z*

DP

Pr(Nst<Dt)

SP

Figure 4.4: Relationship betweenz∗ andS P(s, t)
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Hence, for a given value ofz∗, it is possible to findS P(s, t). Moreover, using theDP

model,z∗ can be calculated when the stock-out probability is known. We know that

z∗ is a probability value, meaning that it can take values on theinterval [0,1]. Using

NegBin(s, z), we can calculateS P(s, t) values for every value ofz= {0.01,0.02, ...,1}

at a precision level of 10−2. Likewise, S P(s, t) ∈ [0,1] and for everyS P(s, t) =

{0.01,0.02, ...,1}, z∗ can be found usingDP. At optimality, the value of stock-out

probability for given sales incentive and the sales incentive obtained by the stock-out

probability should be the same. That is, the optimal valuez∗ can be found by the

following algorithm based on direct enumeration. The modeling approach described

in the algorithm is referred to as Predictive Modeling approach with the acronym

Pred-M.

Step 1. DefineA as a matrix whose first row contains all possible sales incentive values

at a precision level of 10−2, [0.01,0.02, ...,1], and second row containsS P(z|s, t)

values found byS P(s, t) = Pr(NPs,t < Dt − s) for the correspondingzvalues in

the first row.

Step 2. DefineB as a matrix whose second row contains possible stock-out probabil-

ity values at a precision level of 10−2, [0.01,0.02, ...,1] and first row contains

z∗|S P(s, t) values obtained byDP for correspondingS P(s, t) values in the sec-

ond row.

Step 3. Define∆i j = max{|A(1, i) − B(1, j)|, |A(2, i) − B(2, j)|}; the maximum of the

difference between the [z; S P] tuples ati th column ofA and j th column ofB.

Step 4. Find (i, j) for which ∆i j is minimum (where the tuples [z; S P(z|s, t)] and [z ∗

|S P(s, t); S P] are closest to each other).(A(1, i) + B(1, j)) /2 is the optimal

sales incentive value.

Example 4.2.4 Consider the problem setting in Example 4.2.3; S= 200 seats are

available with T= 30 days to flight and time dependent daily customer arrival fre-

quency followsλt = 5t40T−t. According to the definition ofλt, 505potential buyers

are expected to show up for200seats before the plane departs.

The predictive method requires estimation of pf in, the maximum ticket price the seller

could gain on a last minute sales and the time-dependent sales incentive as a function
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of price, z(p). For this particular example, we choose logarithmic sales incentive with

pup = 250and plow = 100at t = 30 days and assume pf in = 400. The values of pup,

plow and pf in are selected arbitrarily and the algorithm works reliably with same

computational effort.
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Figure 4.5: Predictive estimation ofS P(s, t) andz∗ at t = 30 days

According to the proposed methodology, the point of intersection in Figure 4.5 gives

the optimal value of sales incentive together with the corresponding stockout proba-

bility. Notice that the stockout probability curve, S P(z|s, t), is increases rapidly from

0 to 1 over a small interval. Since we consider a large number of arrivals when t= 30

days, relatively small rise in probability results in a hugeincrease in expected number

of seats to be sold and therefore the variance is quite small.

In this case, the stockout probability is not represented inthe form of a function of

state variables so the procedure needs to be repeated at eachcustomer arrival. Now,

let us consider a later stage during sales when t= 2 days. For givenλt, 75 customers

are expected to show up in the last two days and we assume s= 30 seats are left

unsold so the demand-to-supply ratio is2.5. Finally, we assume price upper and

lower bounds for the reservation price distribution are plow = 250 and pup = 500.

Respective findings are depicted in Figure 4.6.
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Figure 4.6: Predictive estimation ofS P(s, t) andz∗ at t = 2 days

4.3 Nonrecursive Dynamic Pricing Model

Using the approximation∆svt(s) = vt(s) − vt(s− 1) ≈ S P(s, t − 1)pf in, the recursive

Dynamic Pricing model (DP) for the first subproblem to determinep is obtained.

DP :

z∗st = argmax
z∈[0,1]

{

−zS P(s, t − 1)pf in + zp+ vt−1(s) | p = F−1
Pt

(1− z)
}

. (4.19)

The termsS P(s, t − 1) andvt−1(s) are independent ofz which determines the price at

time t. Besides, the pricep is defined by the inverse cumulative density function of the

reservation price,Pt. Assume that the cumulative density function is differentiable.

Thus, the function to be maximized inz in (4.19) is differentiable inz, implying that

the maximum exists in the interval [0,1].

We assume that the upper and lower bounds on price,pup(t) and plow(t), are given

parameters for timet. The upper bound corresponds to the price limit, above this

limit the customer will not purchase the ticket, soPr(Pt ≥ pup(t)) = 0. With a similar

interpretation,Pr(Pt ≥ plow(t)) = 1. Hence, the sales incentive,z = Pr(Pt ≥ p),

is a nonincreasing function of price,p, on the interval [plow(t), pup(t)]. That is, the

term
dp
dz

should be negative or zero on the same interval. The following lemma gives

a formulation of the optimal value of sales incentive,z, for a particular form of the

function p(z). The analysis in the lemma is made for a givent.
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Using the value ofz∗ in (4.10) in p(z∗) = F−1
Pt

(1 − z∗), the following equation is

obtained for the optimal pricep at state (s, t):

p(z∗) = F−1
Pt

(

(κ − 1)z∗p(z∗) + S P(s, t − 1)pf in

κz∗p(z∗) + S P(s, t − 1)pf in

)

. (4.20)

Solving (4.10) is not straightforward since the optimal value of the probability of

sales,z∗, is expressed in terms ofz∗. Although an explicit formulation has not been

obtained, numerical methods like search algorithms can be used for finding the solu-

tion of (4.10).

The following bisection algorithm is given to findz∗ numerically for the case of loga-

rithmic demand. This algorithm should be used throughout the sales horizon at each

customer arrival; thus the state variables (s, t) and the state dependent parameters

(pup, plow,S P(s, t)) should be updated accordingly. Remember that for the logarith-

mic sales incentive case, the third statement of Lemma 4.1.2offers a mathematical

condition for suboptimal value elimination before starting a search type algorithm.

Hence, this condition is also taken into consideration and the following algorithm is

devised:

• Initialization: Setκ = ln
pup

plow
. Set the lower and upper limits of search

interval forz∗: zlow = 0, zup = min(1,1/κ). Enter the parameterspup and plow

for time t, pf in, S P(s, t − 1) andprec.

• Step 1: If S P(s, t − 1)pf in ≥ pup, STOP withz∗ = 0. Otherwise, go to Step 2.

• Step 2: Setγ = (zlow+ zup)/2. Calculateǫ as follows:ǫ = −S P(s, t − 1)pf in +

(1− κγ) p1−γ
up pγlow. Go to Step 3.

• Step 3: If |ǫ | ≤ prec, STOP withz∗ = γ. If ǫ < −prec, setzup = γ. If

ǫ > prec, setzlow = γ. Go back to Step 2.

The parameterprecdefined in the initialization stage is the precision given bythe user

for stopping the algorithm. A generic bisection algorithm is defined in Steps 2 and 3

using the optimality equation given in (4.10). The condition S P(s, t − 1)pf in ≥ pup

implies that the expected revenue of keeping one more seat for later sales is larger than

the maximum price the current customer is willing to pay. In this case, the optimal
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decision is not to sell the seat to the customer at all and the assignmentz∗ = 0 at Step

1 represents this decision.
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CHAPTER 5

DETERMINING THE REFUND PREMIUM

The original dynamic pricing formulation in Section 3.1 is for finding the optimal

prices for the flight and the option simultaneously. On the aforementioned grounds,

we handle the pricing problem in two consecutive steps. Having proposed two meth-

ods for determining the ticket pricepdisregarding the option in Chapter 4, the method-

ology developed for pricing the refund option for a given restricted ticket price is

presented here.

For a fixedp value, it is shown in (3.3) that the optimal value of option price can be

obtained as follows:

qs,t = arg max
q
{Pr(Qt ≥ q|Pt ≥ p)(q− ∆nvt−1(s− 1,n))} . (5.1)

The only information about the customer that can be useful for pricing the refund op-

tion is the arrival time. The seller does not know anything specific about the customer

that can indicate his/her willingness to pay for refund option. Also, there existsno

opportunity to negotiate to learn about the customer’s reservation price. Hence, for

maximizing the expected revenue, the airline company needsto devise a method to

estimate the probability distribution of the maximum pricethat a customer is willing

to pay for the refund option. Recall that this maximum price isdenoted byQt. The

estimation of the reservation price of a commodity based on the previous sales records

is practically impossible since the seller is not able to know how much the customers

are willing to pay before or after the sale; hence, the sellernever knows how much it

is worth to a customer to have a refund option. Thus, the probability distribution of

Qt must be interpreted in terms of the probability distribution of another variable that

is observableto the seller.
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In customers’ point of view, the worth of a refund option is the utility of avoiding the

risk of losing the money spent for the unused ticket in case ofcancellation. The can-

cellation risk can be predicted by the seller using cancellation and no-shows statistics

of the previous flights having similar characteristics. Thus, assuming that the seller

can estimate the probability distribution of random variable Ct, the probability that

the customer who purchases a refundable ticket at timet will cancel the booking, it is

possible to estimate the reservation price of refund optionif the relationship between

Ct andQt can be formulated mathematically.

The variablesCt and Qt are closely related to each other. The higher the risk of

cancellation is, the higher the worth of refund option will be. To formulate a mathe-

matical relation betweenCt andQt, the decision making perspective of the customer

must be modeled in a quantifiable way. Hence, our objective atthis step is to obtain

the probability distribution ofQt using the probability distribution ofCt.

The term∆nvt−1(s− 1,n) is the expected net change in revenue-to-go due to making

the current booking refundable. This cost term is considered in this work as the dif-

ference between the amount to be refunded to the customer at the cancellation instant

(immediate loss) and the expected return from the resellingof the unit capacity that

is available for sale after the cancellations (future gain). Subramanian et al (1999)

study a Markov Decision Process for airline RM problem with cancellations. They

firstly define two different classes of events, cancellation and purchase requests for

each fare class and devise optimality equations accordingly. Then, noticing the com-

putational difficulties, they transform the optimality equations such that"all expected

costs (caused by cancellations and no-shows) are assessed at the instant of admis-

sion (booking of a seat) along with the reward (payment of thefare)". In this part,

we adopt a similar methodology for introducing the effect of cancellations into our

formulations.

In our formulations, the amount refunded to a refundable ticket holder in case of a

cancellation request is full fare minus the cancellation penalty, p + q − m. The full

refunding strategy can be analyzed by setting the cancellation penalty to 0. Unlike

the losses due to cancellation, the gains due to reselling depend on the time of cancel-

lation request. Thus, to find the increase in expected revenue to go due to an increase
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in seat inventory with cancellation (mathematically, to approximate∆nv(s− 1, t)), we

consider the change in revenue at the time of cancellation denoted byτ and come up

with the corresponding expectation in (5.2). ˆsτ andn̂τ refer to the (anticipated) values

of state variablessandn at t = τ and fTc(τ) denotes the pdf of the time of cancellation

(denoted byTc) given that cancellation would occur. The cancellation deadline, td,

denotes the time point in the sales horizon at which cancellation claims expire.

∆nvt−1(s− 1,n|p,q) = E[Ct]

[

(p+ q−m) −
∫ t

td

fTc(τ)∆svτ(ŝτ, n̂τ)dτ

]

. (5.2)

Similar to the the marginal seat revenue approximation in Section 4.2, we define

∆svτ(ŝτ, n̂τ) ≈ S P(ŝτ, τ)pmax. Notice that, on the left-hand-side of the equation, the

marginal seat revenue term is defined in (s, t,n) to represent the effect of outstanding

cancellation claims. However, we keep the stockout probability estimation function

in terms of (s, t) in order to preserve consistency with the estimation methods defined

in Chapter 4.

Let ECI(s − 1, t,n, p,q) (Expected Cancellation Increment) refer to the increment

in the value of the function given in (5.2) under this approximation. Noticing that

the integral term in (5.2) is independent of the value ofq, we can denote expected

incremental cancellation cost in the form ofECI(s− 1, t,n, p,q) = E[Ct]q+ A where

A = E[Ct](p−m−
∫ t

td
fTc(τ)∆svτ(ŝτ, n̂τ)dτ) is constant inq.

The primary problem in the estimation ofECI(s− 1, t,n, p,q) is the uncertainty of

the cancellation time,τ; with probabilityCt the customer returns with a cancellation

claim but the time of this request affects the value of the additional seat which be-

comes available for sale once the reservation is cancelled.The expectation formulated

in (5.2) containsfTc(τ), the probability distribution of cancellation time giventhat the

current booking will be cancelled. Yet, this information isnot sufficient because the

seat inventory at the time of cancellation,τ, cannot be known as well. Depletion

of seat inventory depends not only on the demand characteristic but also the pricing

policy of the seller, so, it is impossible to derive a formulation of ŝτ analytically. Like-

wise, the future state of number of refundable bookings, ˆnτ, is determined by demand,

pricing policy and cancellation claims used; making it difficult to estimate.

An alternative approximate approach to expected loss due tocancellation can be use-

ful for estimating an analogous term that we define asECL(s− 1, t,n, p,q), Expected
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Cancellation Loss. The amount refunded to the customer,p+ q−m, is lost if (1) the

ticket is cancelled during the sales horizon and (2) sales ends before this additional

seat is resold, which means stockout does not occur. The estimation of the can-

cellation probability,Ct, which is necessary for finding the loss expectation, is also

required for the determination of the pdf of the refund option reservation price,Qt.

Similarly, the stockout probability,S P(s− 1, t) is already estimated in the restricted

price determination in Chapter 4. So, the same formulations can be used in this part

as well. Accordingly, without requiring additional knowledge regarding the sales pro-

cess or the current customer, the expected cancellation loss can be approximated as

follows:

ECL(s− 1, t,n, p,q) ≈ E[Ct](1 − S P(s− 1, t))(p+ q−m). (5.3)

The stock-out probability term on right-hand side of (5.3) is assumed to be indepen-

dent ofn. This definition is equivalent to assuming that the expectedcancellation

loss of a customer booking a refundable ticket at timet is independent of the number

of refund claims sold (and not used) until timet. Noticing that this assumption may

decrease the accuracy ofECL estimation, it is necessary to keep the dimensionality

at a manageable level.

Recall (5.1); for finding the optimal refund option price for agiven p, together with

the expected cancellation loss, the probability distribution of refund option reserva-

tion price,Qt must be known. In this respect, in Section 5.1 the relationship between

cancellation probability of the customer,Ct, and the reservation price of that customer

for the refund claim,Qt, is investigated.

5.1 Decision Making Under Gains and Opportunity Losses

In the first stage of the dynamic pricing problem, the seller decides on the restricted

ticket price according to the revenue maximization principle. The airline company

processes individual customer requests hundreds of times during the sales horizon for

each flight and this sales process is experienced for every flight. So, the overall rev-

enue of the airline company will converge to the total expected revenue by the Law of

Large Numbers after hundreds of flights. Thus, the seller is assumed to be risk neutral
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and the uncertainties regarding the total revenue are not taken into consideration. On

the other hand, a restricted ticket buyer faces the risk of spending money on an unused

service in case of cancellation and is expected to be risk-averse against this probable

loss. In order to estimate the maximum amount the customer iswilling to pay for a

restricted-to-refundable ticket upgrade, in this sectionthe buyers will be considered

as risk-averse decision makers choosing between the nonrefundable and refundable

ticket according to their own utility function.

Remark 5.1.1 The risk aversion of individuals could be an opportunity to exploit

for the corporations. The insurance companies sell a great number of insurance

policies at prices above the expected loss utilizing risk aversion. Similarly, financial

derivatives are proposed to investors who want to reduce the uncertainty in their

future gains and brokering parties benefit from risk aversion in this case. In their

seminal work on Prospect Theory, Kahneman and Tversky (1979) define loss aversion

as the stronger risk aversion of people when losses are under consideration than they

have in situations considering gains. Thus, as long as the customers are expecting

probable future losses, selling contracts that would avoid the risks can be a very

profitable business practice if the price is determined carefully.

Selling refundable tickets with a price premium is similar toselling insurance policies

in the sense that in both cases the tendency of customers to prefer paying a premium

to avoid uncertain future losses is exploited. For the customer, the loss in case of

a cancellation depends on whether the booking is refundable or not; the final loss

for nonrefundable ticket will be higher with probability Ct. This difference in utility

rationalizes the difference in prices of restricted and refundable tickets that is denoted

by q.

The decision making model based on maximizing the expected worth of final gains

could be reasonable under the assumption of risk neutralityof the passengers. How-

ever, the refund options, which are developed for eliminating the risk of cancellations,

are preferred by risk averse passengers and the decision process should be modeled

accordingly. Hence, the decision making models based on expected utility maximiza-

tion will be employed in our analysis.

According to the decreasing marginal utility assumption accepted for risk averse in-

77



dividuals, the utility function g(α) should be an increasing concave function mapping

positive monetary gains to positive utility values. These requirements on the func-

tional form of g(α) can be described mathematically as follows:

• g(α) : �+ → �+,

•
dg
dα
≥ 0 ∀α ≥ 0,

•
d2g
dα2
≤ 0 ∀α ≥ 0.

�

Understanding the customers’ willingness to pay for the refund option is a critical

issue for determining its price. The optimal value ofq cannot be found unless the

cumulative distribution function of the reservation price, FQt(q), and the expected

incremental cancellation cost,EIC(s, t,n, p,q), are estimated. The reservation price,

Qt, represents a price threshold for the customer’s decision problem of purchasing

the refund option or not at timet. In this respect, the estimation of reservation price

distribution is connected to the seller’s decision problemof determiningq.

Having decided to book for a certain flight with a given pricep, the customer should

decide whether the risk of missing the flight is worth paying the additional premium

for holding a refundable ticket which would prevent monetary loss in this case. The

decision problem of the passenger for choosing between restricted and refundable

tickets is depicted in the decision tree in Figure 5.1. In thedecision tree, the prob-

ability that a restricted (nonrefundable) ticket owner does not take the flight and the

probability that a refundable ticket owner cancels the booking are both denoted byCt.

Assuming that these two events have the same probability of occurrence is consistent

with the assumption of exogeneity of cancellation (cancellation being independent of

having the refund option) discussed in Chapter 1.

The difficulty of the aforementioned net gain approach is twofold. The first problem

is to estimate the monetary value that the customer attributes to receiving the air travel

service. The seller knows the price paid for that service,p; however, it could only be a

lower limit on the customer reservation price for the pre-booked service. The second

problem regards co-existence of gains and losses in the sameutility function. In their

seminal work, Kahneman and Tversky (1979) show that the utility function of an in-
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Figure 5.1: Passenger’s decision - utility based on gains

dividual is structurally different for gains and losses and demonstrate the phenomena

of loss-aversion, which they describe as preference of avoiding losses to acquiring

gains.

Notice that the reservation price of the refund option is thevalue ofq for which the

customer is indifferent between refundable and nonrefundable tickets. For each out-

come (take or miss the flight), service-related utilities are identical for nonrefundable

and refundable booking decisions. Furthermore, the cancellation probability is as-

sumed to be independent of having the refund option since we assume that thewilling

customerwould like to cancel the booking only due to exogenous factors, like health

problems, conflicts, etc.

It is noted by Bell (1982) and Loomes and Sugden (1982) that theutility functions

defined with the final gain may fail to represent the decision makers’ behavior and

they presented experiments that contradict the assumptions of expected utility maxi-

mization principle. On the other hand, they show that utility functions could still be

insightful with an alternative metric; the post-decision regret that the decision maker

would have if the chosen alternative is not the best alternative for the final outcome.

Thus, minimization of anticipated (dis)utility of regret is considered as an alternative

objective in decision making process and regret is employedtogether with final gains

while defining the utility function of the decision maker. With this motivation, in

Section 5.2 the decision problem is reinvestigated with this extended formulation of

79



utility.

5.2 Regret and Negative Utility

In the decision theory, regret is defined as the difference between the payoff that would

have been obtained if the best course of action had been chosen for a particular out-

come and the payoff of the selected alternative for the same outcome. In this respect,

incorporation of regret makes it possible to define utility functions that evaluate the

opportunity loss of an alternative together with its gain. Aformal definition of regret

is given below.

Definition 5.2.1 (Loomes and Sugden 1982) Regret is a measure of how much bet-

ter the decision maker’s position would have been if s/he had chosen an alternative

course of action for the given outcome.

To the best of our knowledge, the first studies on regret in decision making under

uncertainty are in early 1980s. Loomes and Sugden (1982) present the Regret Theory

explaining the concept of regret broadly for single-criterion and multi-criteria deci-

sion making and discussing the legitimacy of regret minimization in decision making.

Bell (1982) also studies incorporation of regret into expected utility theory and no-

tices that the existence of a sense of loss via inclusion of regret in the utility function

formulation makes the expected utility maximization a better descriptive model. Both

papers give examples of the paradoxical behaviors that contradict the axioms of ex-

pected utility on gains. Yet, these behaviors of the decision makers are consistent

with the desire to avoid post-decision regret.

5.2.1 Mathematical Modeling

In refund option pricing problem considered in this study, the customer has three

choices (do not book, nonrefundable booking or nonrefundable booking) and for both

outcomes (flying or not) determining the regret is quite straightforward. The gains

are defined in the same way as depicted in Figure 5.1. The regret associated with

either of restricted and flexible booking alternatives can also be described in monetary
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terms easily as seen in Figure 5.2. The (dis)utility values defined in terms of the

regret are denoted asζnr andζr for nonrefundable and refundable booking alternatives,

respectively. Notice that the third option,Do not book, is omitted in the decision tree.

Since the customers’ willingness to pay for the refund option, q, is related to the

tradeoff between the nonrefundable and refundable booking, we restrict our attention

to these two alternatives.
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Figure 5.2: Passenger’s decision - regrets of decision-outcome tuples

Consider the case the decision is to get the restricted booking without refund op-

tion: if the customer ceases to receive the service, then thepost-decision regret in

monetary terms would be equal top since the best alternative would have been not

purchasing the ticket. On the other hand, if the customer receives the booked service,

then restricted booking would be the best course of action and regret would be 0. The

alternative decision is to get the refundable ticket by paying an additional amountq:

in this case, the regret in case of a cancellation would be equal to m, and when the

customer receives the service, the regret would be equal toq. In the formulations

below, we work with conditional random variables for givenCt. Below, we define

the random variablesUnr(t) andUr(t) as the utilities of the monetary regret for nonre-

fundable and refundable ticket owners, respectively.ζ is increasing in regret denoted

by a negative quantity in the following formulations.

Unr(t)|Ct =



















ζ(−p) with probabilityCt,

ζ(0) with probability 1−Ct.
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Ur(t)|Ct =



















ζ(−m) with probabilityCt,

ζ(−q) with probability 1−Ct.

E (Unr(t)|Ct) = (1−Ct)ζ(0)+Ctζ(−p), E (Ur(t)|Ct) = (1−Ct)ζ(−q) +Ctζ(−m).(5.4)

Recalling the expected (dis)utility values for nonrefundable and refundable booking

options in Figure 5.2 and using (5.7),ζnr(t) andζr(t) are found as below:

ζnr(t) = E(E(Unr(t)|Ct)) = (1− E(Ct))ζ(0)+ E(Ct)ζ(−p)

ζr(t) = E(E(Ur(t)|Ct])) = (1− E(Ct))ζ(−q) + E(Ct)ζ(−m).

Remark 5.2.2 From historical sales realization records, it is possible for the seller to

observe for every booking whether the customer cancels the booking or not. So, dis-

tribution parameters of the cancellation probability Ct can be estimated for current

customers using past data. On the other hand, estimation of the customer reservation

price, Pt, is a more complicated task. In historical sales records, the seller’s knowl-

edge is limited to the accept/reject decisions of the customers for the prices offered to

them and their maximum willingness to pay for the offered service is unknown. Thus,

the utility based analysis is considered impractical due tonecessity of reservation

price estimation and in this work we will assume that the seller could only estimate

the distribution of cancellation probability, Ct. �

5.2.2 Solution Approach

The regret of each decision must be converted into utility terms. Howard (1988)

notices that ”exponential utility curves satisfactorily treat a wide range of individual

and corporate risk preference”. In addition, Kirkwood (2004) shows that in most

cases an exponential utility function with appropriate parameters provides a very good

approximation for general utility functions. Bouakiz and Sobel (1992) and Barz and

Waldman (2007) also utilize exponential utility functionsto incorporate risk aversion

for decision making situations involving loss. They quantify the (negative) utility to

be maximized asζ(θ) = −e−βθ whereθ < 0 denotes the loss in monetary terms andβ
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is the positive risk aversion coefficient. In the reference cited above, it is noted that

larger values ofβ represents greater risk aversion. Figure 5.3 illustrates the change

in risk aversion due to increase in value of risk aversion coefficient, which appears as

the increased concavity of the utility function.
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Figure 5.3: The utility function for different degrees of risk aversion

Understanding the customers’ willingness to pay for booking refundability and esti-

mating the future revenue impacts of selling an additional refund claim are the two

critical issues for determining refund option price. LetPt and Qt denote the cus-

tomer’s reservation price for base service and cancellation refund option, respectively,

where subscriptt denotes the dependence to the time between booking and service.

Assuming that the seller has an estimate of expected incremental cancellation cost,

∆nvt−1(s−1,n), which is a function of remaining inventory,s, and time to expiry,t, for

given price setting. We consider the following two alternative refund option pricing

policies.

• Point Estimate. Let the seller have a point estimate for the customer’s refund

option reservation price, ˆqt. Then, the pricing policy imposed by revenue max-

imization principle is elementary; offer refund option price ˆqt provided that

q̂t > ∆nvt−1(s− 1,n).
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• Probability Distribution Estimation. Let the seller have an estimation for the

cdf of customer’s refund option reservation price,Pr(Qt ≥ q|Pt ≥ p). Then,

the refund option price could be determined according to themaximization

formulated in (5.5).

q∗st(p) = arg max
q
{Pr(Qt ≥ q|Pt ≥ p)(q− ∆nvt−1(s− 1,n))} . (5.5)

The regret of each decision should be converted into utilityterms using utility func-

tions defined for losses. Bouakiz and Sobel (1992) and Barz and Waldman (2007)

utilize exponential utility functions to incorporate riskaversion for decision making

situations involving loss. They quantify the (negative) utility to be maximized as

ζ(θ) = −e−βθ whereθ < 0 denotes the loss in monetary terms andβ is the positive risk

aversion coefficient. It is noted that larger values ofβ represents greater risk aversion.

Respecting the popularity in the literature and consideringits analytical advantages,

we prefer exponential utility functions. In this study, we consider the following

(dis)utility function: ζ(θ) = a − be−βθ wherea ≥ b > 0 andθ < 0. Next, we model

the customers’ choice between nonrefundable and refundable bookings as a decision

problem and show that a point estimate ˆqt for refund option price obtained accord-

ingly at time t. Lemma 5.2.3 presents a neat formulation of the point estimate of

refund option reservation price, ˆqt. Lemma 5.2.4 gives an estimate of the probability

distribution of reservation price,Qt.

Lemma 5.2.3 Let ζ(θ) = a− be−βθ where a≥ b > 0 andθ < 0. Then, for given p, m

and Ct = c, the breakeven refund option priceq̂t is

q̂t =
1
β

ln

(

c(eβp − eβm)
1− c

+ 1

)

. (5.6)

Proof.Proof. Using the expressions given in (5.7) for the considered utility function,

we have

E (Unr(t)|Ct = c) = (1− c)(a− be−β×0) + c(a− be−β(−p)) (5.7)

E (Unr(t)|Ct = c) = (1− c)(a− be−β(−q)) + c(a− be−β(−m)). (5.8)

E (Unr(t)|Ct = c) above is constant inq andE (Unr(t)|Ct = c) is concave decreasing in

q. Since the breakeven refund option price ˆqt is given by theq value for which these
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two curves intersect, solving

E (Unr(t)|Ct = c) = E (Unr(t)|Ct = c)

q̂t is obtained as in (5.6). �

Figure 5.4 presents a graphical demonstration of Lemma 5.2.3 for a given parameter

setting. Observe that refundable booking has greater (dis)utility value (i.e., more

preferable) than nonrefundable booking while option priceis less than the breakeven

refund option price. Therefore, it is the maximum price the customer will be willing

to pay for a restricted to flexible booking upgrade. The breakeven price determined

by four parameters is increasing in cancellation probability, c, and restricted booking

price,p, and decreasing in cancellation penalty,m.
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Figure 5.4: Breakevenq whenc = 0.2, β = 0.05, p = 100 andm= 10

The breakeven refund option price presented in Lemma 5.2.3 defines the customer’s

maximum willingness to pay for refund option given a fixed cancellation probability

value,Ct = c. Assuming that the cancellation probability is a time-variant random

variable, the reservation price of refund option would be a random variable as well.

Let φ(c) =
1
β

ln

(

c(eβp − eβm)
1− c

+ 1

)

be defined as a monotone increasing function for

c ∈ [0,1). Then, using Lemma 5.2.3, we can obtain the probability distribution of
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Qt from the distribution ofCt (recall Remark 5.2.2). The relationship between the

two random variables is given in Lemma 5.2.4. Proof is based on relating the cu-

mulative distributions of two random variables when one is derived from the other

with a monotone increasing function. A compact proof is provided here forCt and

Qt; however, Ross (2008) presents a more comprehensive result on general monotone

functions.

Lemma 5.2.4 Let the functionφ(c) be defined such that

φ(c) =
1
β

ln

(

c(eβp − eβm)
(1− c)

+ 1

)

. (5.9)

Let the ticket price, p, be larger than cancellation penalty, m. Then, FCt = FQt ◦φ and

FQt = FCt ◦φ
−1 where FCt and FQt denote the cumulative density functions of random

variables Ct and Qt, respectively.

Proof. The first derivative ofφ(c) with respect toc below

dφ(c)
dc
=

1
β

(

1− c
c(eβp − eβm) + (1− c)

) (

eβp − eβm

(1− c)2

)

is positive forp > m. (Note that the ticket pricep being greater than cancellation

penaltymassures the positivity of the termeβp−eβm.) Hence,φ is monotone increasing

on its domain and it is invertible (the inverse functionφ−1 is well defined).

The monotonicity of functionφ assures existence of the inverse functionφ−1. Through

a few algebraic operations, we obtainφ−1 as follows:

φ−1(Qt) =
eβQt − 1

eβp + eβQt − eβm− 1
.

Sinceφ is a monotonically increasing function, it preserves the ordering on its do-

main. That is,φ(c) < φ(c′) if and only if c < c′. Accordingly, we have the following

equality for everyc:

FCt(c) = Pr(Ct < c) = Pr(φ(Ct) < φ(c)) = Pr(Qt < φ(c)) = FQt(φ(c)).

Therefore, we haveFCt = FQt ◦ φ andFQt = FCt ◦ φ
−1. �

Therefore, the seller might transform the cumulative distribution function of cancella-

tion probabilityCt to the cumulative distribution function of refund option reservation

price for the (dis)utility function considered in Lemma 5.2.3.
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Table 5.1: Break-even option price values (p = 200 andm= 10)

❍
❍

❍
❍
❍
❍❍

Ct = c
β

0.001 0.003 0.005 0.010 0.030 0.050

0.020 4.304 5.342 6.691 12.066 73.994 122.207
0.040 8.768 10.818 13.431 23.256 95.886 136.459
0.060 13.400 16.432 20.223 33.726 109.445 144.982
0.080 18.212 22.191 27.073 43.595 119.417 151.162
0.100 23.212 28.102 33.986 52.957 127.385 156.062
0.120 28.413 34.172 40.967 61.890 134.076 160.157
0.140 33.828 40.407 48.020 70.456 139.884 163.698
0.160 39.468 46.817 55.151 78.706 145.046 166.839
0.180 45.350 53.410 62.367 86.684 149.719 169.676
0.200 51.490 60.194 69.673 94.428 154.008 172.276
0.220 57.903 67.181 77.077 101.971 157.992 174.688
0.240 64.610 74.381 84.586 109.339 161.727 176.948
0.260 71.631 81.805 92.206 116.560 165.258 179.082
0.280 78.989 89.466 99.947 123.656 168.619 181.112
0.300 86.709 97.379 107.817 130.646 171.838 183.055
0.320 94.819 105.556 115.825 137.552 174.938 184.925
0.340 103.349 114.016 123.982 144.389 177.939 186.734
0.360 112.333 122.775 132.300 151.176 180.857 188.493
0.380 121.809 131.853 140.789 157.927 183.705 190.209
0.400 131.819 141.271 149.465 164.659 186.497 191.891
0.420 142.409 151.053 158.340 171.387 189.243 193.544
0.440 153.633 161.224 167.432 178.126 191.955 195.176
0.460 165.549 171.814 176.757 184.892 194.641 196.793
0.480 178.225 182.855 186.337 191.700 197.310 198.399
0.500 191.738 194.382 196.192 198.566 199.971 199.999
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The rows and columns of Table 5.1 display the change of cancellation option reser-

vation priceqt = φ(c) with respect increase in risk aversion coefficientβ and cancel-

lation probabilityCt = c, respectively. The monotonicity ofφ(c) in c, which has been

shown in the proof of Lemma 5.2.4, is observed along the columns. φ(c) values are

also increasing along the rows; reservation prices increase in risk aversion coefficient

β. For different values ofp andm tuples, the same pattern is observed if the cancel-

lation probability is less than 0.5 (if cancellation is less likely than taking the flight).

Conjecture 5.2.5 is given based on these observations:

Conjecture 5.2.5 Assume that for a passenger who booked on a flight, it is more

probable to take the flight than not taking it (Ct < 0.5). In this case, the reservation

price of the customer found by the breakeven analysis, Qt, increases as the coefficient

β increases.

It has been noted that the increase inβ value corresponds to increased risk aversion.

Thus, Conjecture 5.2.5 can be restated as follows: IfCt < 0.5, the maximum price

a customer is willing to pay for the cancellation refund option increases as the cus-

tomer’s risk aversion increases.

In order to prove the conjecture, one needs to show that the derivative term
dφ
dβ

is pos-

itive for cancellation probability values less than 0.5. Conjecture 5.2.5 states results

for particular values ofCt. A more general condition can be given on the distributions

of random variablesCt andQt rather than specific values. Lemma 5.2.6 states a nec-

essary condition that leads to stochastic ordering of reservation prices corresponding

to different degrees of risk aversion.

Lemma 5.2.6 Let the random variable Ct < 0.5 and let
dφ−1

dβ
≤ 0 hold for any(p,m)

tuple such that m< p. Let the functionsφ1 andφ2 be defined as in (5.9) with risk

aversion coefficientsβ1 andβ2 respectively such thatβ1 ≤ β2. Then, Q1
t = φ1(Ct) is

stochastically smaller than Q2t = φ2(Ct).

Proof. By Lemma 5.2.4, we know thatFQ1
t
(q) = FCt◦φ

−1
1 (q) andFQ2

t
(q) = FCt◦φ

−1
2 (q).

Since
dφ−1

dβ
< 0, β1 ≤ β2 impliesφ−1

1 (q) ≥ φ−1
2 (q) for every value ofq.
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The cumulative density function of cancellation probability Ct is a non-decreasing

function; hence the following inequality holds for everyq:

FQ1
t
(q) = FCt ◦ φ

−1
1 (q) ≥ FCt ◦ φ

−1
2 (q) = FQ2

t
(q). (5.10)

The inequalityFQ1
t
(q) > FQ2

t
(q) indicates thatQ1

t is stochastically smaller thanQ2
t . �

Remember that the second stage subproblem deals with the maximization problem

qs,t(p) = arg max
q
{Pr(Qt ≥ q|Pr(Pt ≥ p))(q− ∆nvt−1(s− 1,n|p,q))} .

So far, we have formulated a concrete method of estimating the cdf ofQt using the cdf

of Ct. The further discussions on the effect of customer’s degree of risk aversion on

this relation is made in order to validate our findings. It is natural to expect that more

risk averse individuals would be more willing to pay for eliminating their risks and

for a reasonable range of cancellation probability values (Ct < 0.5) this is observed

in our calculations. In Chapter 6, this methodology will be implemented for finding

the refund premium in the simulation studies.
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CHAPTER 6

RESULTS AND DISCUSSION

In this study, the airline dynamic pricing problem is studied in two consecutive stages.

For the first stage subproblem, theDP model is investigated in detail on a theoretical

basis so far. In Chapter 6, we firstly intend to evaluate the adequacy of the pricing

scheme of the proposed model and compare it with an alternative dynamic pricing

model. Then, the revenue generation and load factor performance ofDP implemen-

tation are assessed through simulation studies.

The second stage subproblem considers pricing the refund premiums for given base

(nonrefundable) ticket prices and a concrete methodology is introduced in Chapter

5. The revenue contribution of options for ticket refundability and proposed pricing

method are also analyzed with sales simulations that allow cancellations.

6.1 Parameter Setting

In order to simulate a realistic sales process for the airline RM problem, we have

merged our observations on the real life booking reservation systems with the theoret-

ical basis of dynamic pricing. The parameters that we require to model the temporal

nature of demand and to calculate the prices with the proposed pricing algorithms are

classified into three main groups. With the setting we present here, we first construct

a base scenario for the simulation runs and alterations in these parameters are also

made to understand the impact of changes in individual factors.

a. Sales parameters:In order to define the state space, the primary decision to
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make is to decide the length of the sales horizon and the seat inventory. Although

typical sales horizons vary between 6 to 12 months, "early sales" are mostly managed

by strategic marketing campaigns and special promotions. Dynamic pricing is most

effectively implemented at the operational level in the last 30-days period, during

which more 75% of the tickets are sold. We assume there are 100seats available

for sales at the beginning of last 30-days period (S = 100 seats;T = 30 days is

considered in the base scenario, simulation results for different values ofS are also

included in Appendix 2). Another parameter determined at the strategic level and

applied to all customers is the cancellation penalty,m. The typical ticket price for our

demand setting varies between $50− 300 and in real life implementations we have

observed relatively low hassle cost for refundable tickets, thus we assumem= 10.

b. Temporal demand parameters:The distribution of reservation price,Pt, and cus-

tomer arrival rate,λt are the two components of time-variant disaggregated demand

we introduced in our formulations. The reservation price distribution we study in the

simulations is the logarithmic distribution, which is explicitly formulated in Section

4.1.2. This distribution is defined on a bounded support, so we modeled the temporal

shift in distribution as an increase in lower and upper bounds as time to departure

approaches. Parallel to our observations from the annual sales data from a major Eu-

ropean airline, we have set the reservation price to range between (29− 149) when

t = 30 days to departure and between (199− 299) at the end of booking horizon.

The increase of lower and upper reservation price bounds is piecewise linear in time;

as plow(t) increases from 29 to 199 along the sales horizon, 50% of thisincrease is

modeled with linear increase at constant rate and the other 50% with jumps at prede-

termined time points in the sales horizon. The Nonhomogeneous Poisson arrival rate

λt follows a convex increase along the sales horizon, assumed to start with 3 arrival-

s/day at the beginning of sales horizon and 20 arrivals/day at the end. Note that this

parameter setting forλt is considered as the base demand scenario and alternatives

are also studied where applicable.

c. Empirically determined parameters: Similar to reservation prices, the cancel-

lation probability is assumed to be a time dependent random variable. The real life

data in most airlines’ online reservation systems is limited to sales realization reports;

hence, detailed records of customer cancellations or customer preferences between
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refundable and restricted tickets are not available. Due tolack of further information

regarding the distribution of cancellation probability, we consider a uniform distribu-

tion whose bounds vary in time. One particular restriction regarding the cancellation

probability,Ct is that it remains less that 0.5 in all simulation scenarios.

Customer risk aversion is used together with probability of cancellation in refund op-

tion pricing calculations. Observing the exponential utility functions, we have intro-

duced three alternative customer risk aversion parameter values as 0.02/0.04/0.08/0.16

to model different levels of risk aversion among airline customers. Also, in stockout

probability estimation, an initial estimate for stockout probability is required. We

have little knowledge regarding this parameter and thus assumed initial probability to

be 0.5.

Remark 6.1.1 The risk attitude of customers towards the possibility of notbeing re-

imbursed in case of booking cancellation may depend on various factors including

customers wealth, character and flying frequency and such information is not always

available for the seller. Hence, we assumed that customers arriving at different times

along sales horizon have the same degree of risk aversion andTo have a deeper un-

derstanding about the risk aversion of different customer groups, historical sales and

booking records should be analyzed to study customer responses to refundable book-

ing offers. For that purpose, loyalty programs could be utilized and the information

on customers’ preference between refundable and nonrefundable tickets for the past

purchases could be investigated.

There are also other parameters regarding the computational part of simulations that

we have decided after experimentation with alternative values.

• Number of replications for steady-state analysis in the simulation studies is set

to 500 empirically. For each case, the distribution of revenue and load factor

results given by these 500 replications are tested for goodness-of-fit to Normal

Distribution. Accordingly, we have obtained confidence intervals according to

Normal Distribution assumption.

• In iterative numerical optimization routines developed for finding optimal sales

incentive, stopping criterion for the algorithms is set to 10−3. That is, the max-
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imum error in optimal sales incentive values,z∗ = Pr(Pt ≥ p∗), is limited to

0.001.

• The discretization of continuous sales process requires a time discretization unit

which is small enough so that the probability of multiple customer arrivals in a

single interval is negligibly small. We set interval lengthto 0.5 minutes so that

the possibility of multiple customer arrivals is less than 5× 10−5 for the given

parameter setting.

With the sales simulations, we intend to assess the performance of proposed pricing

algorithm. We also adopt a mixed integer programming (MIP) approach to compare

with DP model. In this respect, the sales and demand parameters described so far for

the continuous time setting are transformed and introducedto this alternative model.

The detailed description of theMIP is presented in 6.2.

6.2 Mixed Integer Programming Model for Determining Price

Talluri and van Ryzin (2005) present an IP model for discrete time dynamic pricing

problem that is reviewed in Section 2.2. The aggregate demand over a given period of

time is considered as a time dependent function of price;d(t, p(t)) wheret represents

the time period andp(t) represents the sales price for that time period.p(t) is selected

from a discrete set of possible prices. Accordingly, the anticipated revenue for period

t becomesp(t) × d(t, p(t)). The objective is maximizing the revenue in the remainder

of the sales horizon and the limited number of seats available for sale imposes the

constraint on the total demand that can be satisfied. Hence, the problem is reduced

to allocating the available seat capacity to the discrete time periods by controlling the

demand in each period through price manipulation.

The dynamic pricing method we presented in Section 4.2 is based on the use of a con-

tinuous time setting. Then, the sales horizon is discretized into small time intervals of

unit length (ǫ) and the pricing problem is restated as finding the optimal price at the

beginning of each time interval. In this section, we discretize the sales horizon into

larger time intervals which could possibly have unequal lengths and we refer to these

intervals asepisodes. Moreover, the price is discretized by restricting it to take values

94



from a finite set of alternative prices. Using a model with discrete state space and

discrete decision space, a variation of the Integer Programming model due to Talluri

and van Ryzin (2005) is considered in this part and is referredto as Mathematical

Programming (MP) model.

t0=T t1 t2 tk tk+1 tn-1 tn=0... ...

Sales

end

Sales

begin

n n-1 n-2 b b-1 1 0

Figure 6.1: Discretization of the sales horizon

Our objective is to attain compatibility between the proposedDP model and theMP

model so that the two models are comparable in sales simulations. With this perspec-

tive, we propose a reformulation of the demand in a given interval for a given price

using the generally accepted notions in airline RM and previously mentioned ideas in

Sections 1.3 and 2.2 in this thesis.

6.2.1 Demand Aggregation

In theMP model, the period-price assignments should be representedby binary vari-

ables. Correspondingly, the demand should be defined as the number of tickets that

could be sold during an episode at a given price. In the notation, i is used for the

discrete time index.n refers to the total number of episodes.m is the cardinality of

the set of possible prices andj is used for indexing the prices in this set. The set of

alternative prices is defined as{p1, ..., pm}. ti−1 and ti denote the beginning and end

points of episodei.

In DP reservation price distribution and arrival probability ofcustomers are assumed

to be time dependent. The reformulation of demand requires aggregation of customer

arrival intensity (λt) and sales incentive (1− F(i)(p)) over episodes. Let the parameter

µi j define demand-price relationship in theMP model, denoting the expected number

of seats that can be sold in episodei when the price posted in this episode ispj.
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Accordingly,µi j could be obtained as below:

µi j =

∫ ti

ti−1

λt(1− F(i)(pj))dt. (6.1)

The parameters of the reservation price distributionF(i)(p) are assumed constant

within each episode. In order to adopt the generally accepted low-fare before high-

fare customer arrival pattern for consistency, it is assumed that the reservation price

in episodei − 1 is stochastically larger than the reservation price in thepreceding

episodei, i.e. F(i−1)(p) ≤ F(i)(p) for everyp.

6.2.2 Mixed Integer Programming Formulation

The decision variables used in theMP model areyi j that denotes the number of seats

that are sold in thei th episode at price levelj and the binary variablexi j that is defined

below.

xi j =



















1 if the price in thei th episode ispj,

0 otherwise.

At the beginning of the lastτ episodes when the remaining number of available seats

is equal tos, the MP model to be solved is given below. The model would give the

solution for the whole sales horizon whenτ = T ands= S.

MP: Max
τ

∑

i=1

m
∑

j=1

pjyi j

subject to
τ

∑

i=1

m
∑

j=1

yi j ≤ S,

m
∑

j=1

xi j = 1 ∀i ∈ [1, τ],

0 ≤ yi j ≤ µi j xi j ∀i ∈ [1, τ], j ∈ [1,m],

xi j ∈ {0,1} ∀i ∈ [1, τ], j ∈ [1,m].

Along with the ticket price in each episode, solution of theMP model also provides

the number of seats to be sold in each episode. Yet, the difference in the imple-

mentation of dynamic pricing from seat allocation practiceis that the prices for the

episodes are the only control variables that determine the seller’s policy. Therefore,
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the dynamic pricing policy is characterized by only values of the binary variables

xi j representing the optimal price levels in the following episodes. Since a price up-

date scheme is considered in this section to solve the model at the beginning of each

episode, the only relevant decision variable value is that of xτ j for the current episode

τ.

6.2.3 Discretization into MP for Logarithmic Demand

In order to transform theDP model parameters intoMP model counterparts, the first

step is partitioning the sales horizon into episodes. Note that for both methods, it

may not always be meaningful to develop a dynamic pricing policy for the entire

sales horizon. In the airline industry, the sales horizons commonly vary between

90 days and 360 days prior to flight. Unless there are batch bookings and/or group

reservations (those should be priced with other methods), majority of the seats are

sold on a narrower time window before departure. The frequency plot in Figure 6.2 is

depicted with the sales realization data of 150 flights of a mainstream airline during

a year on a particular itinerary with no competitor having a direct flight on the same

route. In the horizontal axis, the fraction of tickets sold before the last 30-days within

overall sales for that flight is given. In most of the flights, the seats that are booked

prior to the last 30 days constitute a very small ratio in total capacity sold. Observing

this, we decide to restrict our attention to pricing policies during the last 30 days

before departure.

For the numerical illustrations in this section, the 30−days sales horizon is partitioned

into 5 episodes for theMP model. The continuous and piecewise constant versions

of time-dependent model parameters are depicted in Figure 6.3. The values of these

parameters are also given in Table 2. The parameter transformation methodology is

summarized below:

• In MP model, the durations of 5 episodes are assumed to be 15 days, 6days, 4

days, 3 days and 2 days.

• In DPmodel the reservation price distributions are assumed to belogarithmic as

defined in Section 4.1.2 with linearly increasing lower and upper bounds along
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Figure 6.2: Percentage of tickets sold before the last 30 Days

time; plow(t) andpup(t), respectively. In theMP model, lower and upper bounds

of logarithmic reservation price assumed piecewise constant: fixed within each

episode to the episode average ofDP counterpart.

• In DPmodel, daily customer arrival rate is convex increasing from 3 arrival/day

to 20 arrivals/day;λt = 3
t

30201− t
30 .In MP model, the Nonhomogenous Poisson

arrival rate is also piecewise constant,λt being integrated between endpoints of

corresponding episode.
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Figure 6.3: Time-dependent demand parameters forDP andMP

As seen in Table 6.1, the average daily arrival rate is found as 5 for the first episode

(t ∈ [15,30] days) and the expected number of total arrivals during this episode is
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5×(30−15)= 75. Within the first episode of theMP model, the reservation prices are

assumed to follow logarithmic behaviour withplow = 71 andpup = 186. If the ticket

price ispj, then the sales incentive for this fare class would bezj =
ln(pup) − ln(pj)

ln(pup) − ln(plow)
and the aggregate expected number of seats that can be sold inthe first episode at

price pj will be 75zj in theMP model.

Table 6.1: Parameters forDP andMP models

Parameters Epi. 1 Epi. 2 Epi. 3 Epi. 4 Epi. 5
Sales Horizon (in days) [30,15] (15,9] (9,5] (5,2] (2,0]
Arrivals/Day [3→ 20] 5.0 9.4 12.9 16.1 18.8

plow(t) : [29→ 199] 71 131 159 179 193
pup(t) : [149→ 299] 186 239 264 281 294

Solving MP only once att = 30 days to departure would give a static temporal price

discrimination scheme. In order to useMP as a tool for dynamic pricing, it could be

solved periodically (for instance, on a daily basis). It is also possible to resolve the

model at every customer arrival at corresponding state (s, t). Notice that the demand

parameters needs to be updated as well.

For DP, the length of a unit time interval,ǫ, is chosen as 30-seconds.DP gives

the optimal price for all time intervals and every possible value of seat inventory as

pst. The MP model, on the other hand, works once for a particular (s, t) pair. For

the numerical analysis here,MP is solved repeatedly by fixings or t to understand

the evolution of optimal price as a function of time to departure or remaining seat

inventory. The exemplary results are depicted in Figure 6.4and Figure 6.5 in order to

see the behaviour of the optimal price int andsby fixing one of the state variables.

In Figure 6.4 on the 30-days sales horizon, it is seen that thepricing schemes obtained

by DP andMP are reasonable. The initial increasing trend is due to the increase in

customer reservation prices along the sales horizon. The decrease towards the end

of the sales horizon can be due to an increase in expected revenue to be obtained by

selling more of the remaining seats at good prices without lowering the prices much.

It is observed that the optimal prices with 10 seats are higher than those obtained for

30 seats. The most significant difference between the findings forDP andMP is due

to the difference between the definition of reservation price bounds. For MP, pup and
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plow are piecewise constant whereas the bounds are linearly increasing forDP.
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In Figure 6.5, the optimal prices obtained byDP are decreasing in the seat inventory

level as expected. However, the results are counterintuitive for theMP model: cycli-

cal ups and downs are observed instead of a general trend. This phenomenon is due

to the structure of theMP model to find an optimal seat allocation for the remain-

ing episodes together with the optimal prices. In this respect, the optimal price for

(s+1, t) could be larger than that for (s, t) due to a major change in sales strategy with

an additional available seat in periodt. This could be noted as a shortcoming of the

MP model.

To wrap up,DP could represent the continuous change in reservation price, Pt, and

customer arrival probability,ρt better whileMP is restricted to a piecewise constant

approximation to these time-dependent parameters. For thenumerical results pre-
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sented in this section, bothDP and MP models are solved using MATLAB. When

these two models are compared in terms of computation times,DP significantly out-

performsMP model. For the small-scale sample problem under consideration, CPU

time to solveDP is less than a minute and it is sufficient to solve it once at the begin-

ning of the sales horizon. SolvingMP for a given (s, t) pair typically lasts 60 to 90

seconds. Note thatMP is solved every day in the example problem.

6.3 Nonrefundable Ticket Pricing Sales Simulations

MP andDP are both exact models developed under the assumption that the seller has

completeinformation on prospective demand; knowing at what rate thecustomers

would arrive with what kind of reservation price distributions. Accordingly, the per-

formances of the two ‘exact‘ models are compared under this assumption in the sim-

ulations. These strict assumptions on sellers capability to foresee the future demand

are relaxed to a certain extent in the approximate models where the seller hasincom-

pletefuture demand information and requires an approximation for the marginal seat

revenue. The performances of ‘approximate‘ models Para-M and Pred-M defined in

Chapter 4 are compared in this respect to assess which one provides a better approx-

imation. The revenue and load-factor performances of Para-M and Pred-M are also

compared withDP to understand the value of future demand information and the

accuracy of marginal seat revenue approximations.

6.3.1 Seller Has Complete Future Demand Information

The DP approach to airline RM problem is constructed as a recursive formulation

working backwards in time. In our simulation design, at the beginning of each run,

the optimal sales price is found for every state (s, t) in the discretized state space

such that for any given seat inventory - time to departure combination, the optimal

prices are known before the sales begins. In each replication, random arrival times

and reservation prices are generated for customers according to the given temporal de-

mand parameters and at each customer arrival, the seller posts the precalculated price.

For algorithmic details regarding the simulation setting,please refer to Appendix B.
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The MP approach is adapted from seat allocation models; the remaining seat inven-

tory is partitioned into the episodes in the remainder of thesales horizon together

with the price to offer at each episode. For instance at the beginning of sales horizon,

MP runs with 30−days to departure and 100 seats available for sales. The optimal

policy determines to sells1 seats at pricep1 and nexts2 seats at pricep2 and so on. In

order to represent the effect of sales realizations to the seller’s pricing policy within

a sales horizon, the prices found byMP are updated on a daily basis model during

each simulation run. That is, if 2 seats are sold on first day,MP runs with 29−days to

departure and 98 seats available for sales to find corresponding prices.

The average revenue results obtained with 500 simulation runs show that,DP (aver-

age revenue: 18,130) outperformsMP (average revenue: 14,190) significantly, with

28 percent higher revenue generation. Together with the structural shortcomings of

the pricing policy generated byMP (discussed in Section 6.2.3), we conclude that

DP model could provide more realistic and effective pricing policies in comparison

to MP.

6.3.2 Seller Has Incomplete Future Demand Information

Recursive solution toDP requires marginal seat revenue,∆v(s, t), which could be cal-

culated only when theseller foresees future demand; knowing prospective customers’

arrival times and reservation price distributions. With the approximate models pro-

posed in this work, we have studied an approximation of marginal seat revenue with

an estimate of stock-out probability,S P(s, t). By introducing these models, we re-

duce the demand knowledge requirement of the seller: the reservation price distri-

bution of current customer (Pt) and the number of prospective customers that would

arrive until the departure (Λ[0,t]) would be sufficient for determining the the price

of the nonrefundable booking. For instance, if time to departure is 30 days and re-

cursion is defined on discrete time intervals of 30 seconds, solution of DP model

requires estimating the value ofλt at 1440 consecutive intervals. On the other hand,

if the seller has an estimation for the stock-out probability, price could be calculated

directly without further need to future demand parameters.
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• The model-based stockout probability estimation, Pred-M presumes a certain

mathematical relationship between the state variables andthe stock-out proba-

bility. The mathematical relation introduced in Section 4.2.1 is as below:

S P(s, t) = 1−
( s
S + ω

)

Λ[0,t]
s

(6.2)

In order to find the value of parameterω, we require the anticipated number of

future arrivals and an initial estimate for the stockout probability at the begin-

ning of the sales horizon;S P(S,T). Hence, the pricing policy of the seller and

the corresponding revenue performance are dependent on theestimated value

of S P(S,T). In our simulation runs, we have tested scenarios with different

values of initial stockout probability estimates and corresponding revenue and

load factor results are depicted in Figure 6.6. The revenue maximizing initial

stockout probability estimate isS P(S,T) = 0.2 with an average of 15,902.

Hence, the pricing policy based on Pred-M stock-out probability approxima-

tion performs 12% worse in revenue generation than theDP model. Notice

that load factor is around 0.85, which is also significantly less than that of exact

model.

Figure 6.6: Simulation results for given initial stockout estimates

• The Pred-M stock-out probability estimation based approximate modeldoes

not require an initial parameter estimate. At each customerarrival generated
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in the sales simulations, the price (p) and sales incentive (z) are calculated as-

suming an interdependence betweenS Pandz, as explained in detail in Section

4.2.2.

According to the simulation results, predictive model achieves an average rev-

enue of 16,664, which is 5% better than the revenue performance of model-

based approximation. Moreover, the average load factor is 0.99 so the predic-

tive model outperforms its model-based counterpart in bothcriteria.

In Table 6.2, simulation statistics for the exact pricing policy and both approximate

pricing policies are summarized. For both revenue and load factor parameters, the

expected values (averages) and 95% confidence interval limits are presented.

Table 6.2: Nonrefundable simulation results - medium demand

Revenue Load Factor
Method Average 95% CI Average 95% CI
Para-M 15,912 [14,057− 17,766] 0.85 [0.77,0.92]
Pred-M 16,664 [16,144− 17,183] 0.99 [0.99,1.00]
DP 18,069 [16,763− 19,374] 0.99 [0.96,1.00]

We consider the demand scenario used in the simulation runs as base level of demand

and also studied high and low demand cases. Remind that the customer arrival rate

has been formulated such that it varies fromΛT = 3 arrivals/day toΛ0 = 20 arrival-

s/day along the sales horizon. Empirically determined low demand and high demand

parameters used in alternative simulation scenarios are tabulated in Table 6.3. The

demand-to-supply ratio,
Λ[0,T]

S
is also provided to give an idea about the aggregate

demand along the sales horizon.

Table 6.3: Customer arrival rate parameters used in simulation runs

Demand Level λT λ0 Demand-to-Supply
Low 2 arrival/day 15 arrival/day 1.93
Medium 3 arrival/day 20 arrival/day 2.68
High 4 arrival/day 30 arrival/day 3.87

The simulation results obtained for low and high demand alternatives are given as

below.
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Table 6.4: Nonrefundable simulation results - alternativedemands

Revenue Load Factor
Scenario Method Average 95% CI Average 95% CI

Low
Para-M 13,716 [11,355− 16,077] 0.75 [0.63− 0.86]
Pred-M 15,213 [14,586− 15,840] 0.99 [0.98− 1.00]
DP 16,116 [14,486− 17,746] 0.98 [0.91− 1.00]

High
Para-M 17,608 [15,732− 19,483] 0.84 [0.77− 0.92]
Pred-M 18,121 [17,608− 18,633] 0.99 [0.99− 1.00]
DP 20,147 [19,131− 21,162] 0.99 [0.97− 1.00]

We performed our simulation runs with Matlab 9.0 on a PC having a 3.0 GHz proces-

sor and 4 GB RAM. CPU time results for these simulation runs are given as below:

• DP model calculates optimal price at every possible state in 107.3 seconds and

500 replications are completed in 12 minutes for the given parameter setting.

The simulation forDP model is constructed such that the optimal price matrix

obtained in the beginning is used in each run and not recalculated. In simula-

tions for approximate models, restricted price is calculated in each arrival for

the corresponding state.

• Para-M runs a simple routine for obtaining restricted ticket priceat each cus-

tomer arrival in less than 0.1 seconds. 500 replications are completed in 27

minutes.

• Pred-M requires solving a recursive formulation defined on stockout proba-

bility and sales incentive. Restricted ticket price at givenstate is found in 2

seconds and 500 replications are completed in approximately 17 hours.

In airline RM, online reservation systems are expected to complete price inquiries

within a couple seconds. Hence, we consider all three algorithms satisfactory in terms

of CPU times for posting restricted booking price.

6.3.3 Sales Price Comparisons - Single Sales Run

Revenue and load factor comparisons provide information on the sales performances

of proposed methods. In order to acquire further insight regarding the pricing policies,
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we also compared the methods over a single simulation run. Randomly generated

sales scenario is replicated and following results are obtained:

• 257 customer arrival generated for 100 seats inventory. Therevenue corre-

sponding to exact pricing 18,326, while predictive stock-out estimation based

pricing policy generates 16,927 and model-based stock-out estimation based

pricing policy generates 15,462.

• The price record over the 30−days sales horizon in Figure 6.7 depicts the pric-

ing strategies of competing policies. Notice that, approximate model based on

Pred-M model offers lowest prices at the beginning of the sales horizon and

highest prices at the end. On the other hand,DP model starts sales horizon

with the highest prices and the price increases at slower pace in comparison to

other methods until the last 2 days of the sales horizon.

• The load factor of model-based approximation policy, Para-M is found as 0.83,

whereas bothDP and Pred-M policies are 1.00 for this simulation run. Notice

that although all seats are sold withDP and Pred-M policies, the difference in

pricing policies is reflected to the depletion trends of seats in sales simulations

of these two methods. When we check the ratio of seats sold att = 10 days to

departure, we observe that only 15% of seats are sold when seller follows DP

pricing policy and 32% of seats are sold in case of Pred-M.
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Figure 6.7: Sales price comparisons for proposed formulations

6.4 Refundable Ticket Pricing Sales Simulations

The simulation runs for investigating the impact of offering refund options requires

modeling a sales process that involves two type of events during the sales horizon. Ar-

rivals of prospective customers are modeled with respect toNonhomogenous Poisson

Arrival assumption as in nonrefundable scenarios. Customercancellations are intro-

duced to the simulation model as an attribute assigned to customers that purchase

refundable tickets. Of those customers purchasing refundable tickets, a secondary

arrival is scheduled if s/he wishes to cancel the booking. The primary assumptions

considered in simulating the sales process with cancellations are enlisted below:

1. Assuming that customers decide between refundable and nonrefundable book-

ings as described in Section 5.2.2, the customer reservation price for refund

option is calculated as described at Lemma 5.2.4.

2. When a booking request is received, the seller decides the nonrefundable ticket

price using the ’exact’DP formulation. Approximate models are not preferred

for determining the nonrefundable ticket price to see the improvement in rev-

enue by refund option sales when the best practice is appliedfor finding p. On

the other hand, the marginal value results found in the solution of DP are not

used for solving the refund option pricing problem since themodel is developed
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for approximated∆svt(s) and∆nvt(s) values.

3. It is assumed that the seller knows the probability distribution of cancellation

probability,Ct for the current customer.

4. The refund options are sold to the customers until the last48-hours of the sales

horizon. We assume that the late purchasing customers wouldhave less uncer-

tainty from the time of booking until time of flight having very slim probabili-

ties of booking cancellation in between.

5. For each customer who purchases refundable booking, a binary cancellation

flag is assigned with respect to the individual cancellationprobability at the

time of sales. Those customers who would cancel their booking are also as-

signed a cancellation time.

6. Cancellation requests are all scheduled before the last 24-hours of the sales

horizon. In real life examples, booking cancellations havesimilar temporal

restrictions;late cancellation claims are partially refunded or not refundedat

all.

6.4.1 Degree of Customer Risk Aversion

For different levels of customer risk aversion, the revenue generated by selling re-

fundable tickets is investigated for medium demand rate with parameters given in

Table 6.3. The results are tabulated below, with respect to revenue generated, load

factor, total number of refund options sold and total numberof cancellation claims

made. Average and standard deviation statistics for corresponding parameter are de-

noted byµ andσ, respectively. The option pricing methodologies are referred to as

"Point",referring to determining the refund option price with the point estimate, and

"Interval", referring to estimation of pdf of refund option reservation price first and

calculation of the optimal option price afterwards. (See Section 5.2.2 for details).

The interpretations of simulation results regarding the degree of customer risk aver-

sion are as given below:

• The average revenue for sales simulations of nonrefundabletickets (no-cancellations)
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Table 6.5: Simulation results for different degrees of customer risk aversion

Revenue Load Factor Options Sold Options Used
Method β µ σ µ σ µ σ µ σ

Point

0.002 18,893 821 0.98 0.02 35.3 5.5 5.9 2.4
0.004 18,935 807 0.98 0.03 36.6 4.4 6.6 2.4
0.008 19,193 983 0.98 0.04 36.4 3.9 6.6 2.6
0.016 20,246 999 0.98 0.03 36.2 4.2 6.1 2.2

Interval

0.002 19,007 902 0.98 0.03 54.1 5.4 8.9 3.3
0.004 19,234 1,095 0.97 0.04 56.2 4.8 8.2 2.5
0.008 19,723 1,178 0.97 0.04 61.1 4.4 9.2 2.8
0.016 21,222 1,011 0.97 0.03 67.9 4.8 9.9 3.7

case is found as 18,130. Observing the average revenue values, we infer that

selling refund options improves the revenue at all risk aversion levels for both

point estimation and interval estimation of refund option price. The revenue

improvement is parallel to customer risk aversion; asβ increases gradually, the

refund options become more and more profitable.

• When interval estimation method is applied for refund optionpricing more re-

fund options are sold and higher revenues are generated in comparison to point

estimation case. Therefore, interval estimation method outperforms point esti-

mation in our experiments.

• The load factors are quite close to 1 although significant percentage of booked

customers are allowed to cancel their bookings before the flight and some of

them actually use their cancellation claims. This situation is primarily due to

reselling of the cancelled tickets to consecutive customers.

• The percentage of customers who prefer refundable tickets is approximately,

35% for the point estimation case and 55%−65% for interval estimation. How-

ever, only 15% of refundable bookings are cancelled in each scenario.

To sum up, we observe that selling refund options are profitable and the increase in

refund option selling probability is paralel to the degree of customer risk aversion.

At all levels of risk aversion, we observe that ’Interval’ estimation model is more

favorable than ’Point’ estimation model in terms of revenuegeneration.
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6.4.2 Level of Demand Intensity

Remember the alternative demand parameters defined in Table 6.3. According to the

customer arrival rate alternatives, the simulation results are obtained for low, medium

and high demand parameters for both ’Point’ and ’Interval’ methods. Results ofDP

are also tabulated in Table 6.6 to benchmark the effect of option selling possibility on

the revenue at different demand levels. The load factor results are quite straightfor-

Table 6.6: Refundable simulation results - alternative demands

Revenue Load Factor
Scenario Method Average 95% CI Average 95% CI

Low
Point 16,831 [14,782− 18,880] 0.97 [0.88− 1.00]
Interval 16,659 [14,432− 18,886] 0.95 [0.84− 1.00]
DP (noq) 16,116 [14,486− 17,746] 0.98 [0.91− 1.00]

Medium
Point 18,721 [17,208− 20,234] 0.98 [0.93− 1.00]
Interval 19,110 [17,305− 20,915] 0.98 [0.92− 1.00]
DP(noq) 18,069 [16,763− 19,374] 0.99 [0.96− 1.00]

High
Point 20,943 [19,841− 22,045] 0.99 [0.97− 1.00]
Interval 21,114 [19,985− 22,243] 0.99 [0.97− 1.00]
DP (noq) 20,147 [19,131− 21,162] 0.99 [0.97− 1.00]

ward; as the demand-to-supply gets higher the load factor increases for each pricing

policy. When we compare the revenue results of refund option pricing alternatives,

we observe that the ’Point’ estimation method performs slightly better than the ’Inter-

val’ estimation methods. As the demand intensity increases, the ’Interval’ estimation

model performs better.

6.5 Further Observations on Pricing Policies

Thus far, we present alternative pricing models for determining the restricted ticket

price,p, and refund option price,q, and assess each model according to its analytical

limitations and sales performance in a theoretical perspective. Yet, simpler empirical

observations could be deduced from sales simulations to provide generic policy rules

for presented dynamic pricing problem.

The sales incentive,z = Pr(Pt ≥ p) is used as a decision variable interchangeably
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with the sales price in our formulations. In the approximatemodels, we presume a

relationship betweenz and the stock-out probabilityS P(s, t), which was defined as a

function in terms of demand-to-supply ratio,
Λ[0,t]

s
in Section 4.2.1. In this respect, on

a simulation run with exact pricing model (DP), the change of sales incentive and the

supply-to-demand ratio over the sales horizon is investigated. Simulation results for

supply-to-demand ratio the complementary probability of sales incentive (referred to

askeep incentiveof the seller) are depicted in Figure 6.8.
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Figure 6.8: Change of sales incentive with supply-to-demandratio over time

In accordance with our expectations, we observe negative correlation between keep

incentive, 1− z, and supply-to-demand ratio,
s
Λ[0,t]

(lower supply-to-demand values

would motivate the seller to keep more seats for late-comerswho have higher will-

ingness to pay). The sum of these two variables is also depicted in the figure and

the graph resembles a piecewise constant behavior over timewith the jumps observed

aroundt = 10 days,t = 5 days andt = 2 days, which are the time points when the

jumps on time dependent reservation price bounds are set. The relation between the

two variables could be approximated as (1− z∗ + s
Λ[0,t]

) = Kt, which is equivalent to

z∗ = s
Λ[0,t]
+(1−Kt) where the value of constantKt changes with each jump. According

to these findings, we have devised a rule-based pricing policy as follows:

1. If t ≥ 10 days, thenz∗ = s
Λ[0,t]
− 0.3.

2. If t ∈ [5,10) days, thenz∗ = s
Λ[0,t]
− 0.2.

3. If t ∈ [2,5) days, thenz∗ = s
Λ[0,t]

.
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4. If t < 2 days, thenz∗ = s
Λ[0,t]
+ 0.2.

Simulation results obtained for rule-based policy are summarized in Table 6.7. The

average revenue of the rule-based policy is only 1.1% worse than that of exact pricing

policy, hence we believe the policy performs quite good despite its simplicity.

Table 6.7: Simulation results - DP vs. Rule-Based Pricing Policy

Revenue Load Factor
Method Average 95% CI Average 95% CI

Rule-Based 17,887 [17,177− 18,596] 0.99 [0.98,1.00]
DP 18,069 [16,763− 19,374] 0.99 [0.96,1.00]

Remark 6.5.1 The rule-based policy outperformed both approximate pricing poli-

cies, Pred-M and Para-M. However, it is derived for the specific demand setting used

in the simulation runs. For different customer arrival patterns, different temporal af-

fects on reservation price distributions, this empirical rule would not be applicable.

Still, we believe that the relationship between the sales incentive, z∗, and supply-to-

demand ratio,
s
Λ[0,t]

is promising for developing effective dynamic pricing policies.

112



CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

The pricing problem studied herein is partitioned into two major components in ac-

cordance with the two main pricing decisions we considered in the problem formu-

lation: determining restricted booking price ignoring booking cancellations/refund-

ability and determining refund option price for given restricted booking price. In

this chapter, the conclusions drawn from the simulation studies are given for these

two pricing problems first. Then, potential improvements inintroduced methods are

discussed and we make our final remarks about future researchdirections.

7.1 Subproblem-1: Findingp Ignoring Cancellation Refunds

• Exact Model: For low, medium and high demand scenarios, it is observed that

both approximate pricing policies based on stock-out probability estimation,

Pred-M and Para-M, are outperformed by theDP model for the first subprob-

lem. This observation is parallel to our expectation sinceDP model calculates

optimal price with actual values of marginal seat revenue instead of approxi-

mating it.

• Approximate Models: Among the two approximate methods, Pred-M displays

better performance than Para-M in terms of revenue and load factor. Notice

that higher load factor implies that the seller behaves morerisk averse, i.e. the

seller is less inclined to take risk and keeps seats for late coming customers

(who have greater willingness to pay) than selling more tickets to early arriving

leisure customers. Hence, Pred-M appears more preferable than Para-M with
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its slightly better revenue generation performance. Also observe that, Pred-M

is more robust; the standard deviation of its revenue is smaller than the revenue

generated by implementation of Para-M.

Note that the performance of Para-M is dependent on the accurate estimation

of parameterω. Although in our simulations alternative values of initialstock-

out probability estimate (η = S P(S,T)) are tried and we determined the best

value ofω accordingly, we did not update our estimate forω at later points in

sales horizon. For real life applications, updating the parameters of presumed

stockout function and/or trying other functional forms could improve the per-

formance of pricing policies based on model-basedS P(s, t) estimation.

• Value of Information: The simulation studies show thatDP model is the most

successful method for the first subproblem, however it couldonly be solved

when seller has complete information on time-variant parameters of disaggre-

gated demand, namely customer arrival rate,λt, and restricted ticket reservation

price,Pt. For the simulated demand scenarios, the difference between average

revenues ofDP method and approximate methods (Pred-M and Para-M) can

be considered as the value of this information to the seller.

• Policy Rule: The revenue performance of the policy rule studied for the first

subproblem is also noteworthy. Although it is defined on a simplistic empirical

rule between sales incentive and demand-to-supply ratio, it has better revenue

performance then both approximate methods. However, the parameters in the

definition of this rule is specific to the given demand pattern. So, for different

scenarios, similar parameters should be recalculated using simulation based

methods.

7.2 Subproblem-2: Findingq for Given p

We consider our solution for the second subproblem, findingq for given p, as more

contributing since the refund possibility and pricing of the refund option is studied

with a new perspective in revenue management. The decision theoretic approach to

customers’ valuation of refund options is not specific to airline industry and it could
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be applied to other service industries where there is significant time lag between time

of booking and time of service delivery. In real life implementations, early bookings

are very common in hospitality industry and hotel reservations could be made several

months in advance to benefit from price advantages. Hence, webelieve that sales of

cancellation refunds could be used efficiently in tourism sector.

The simulation results on revenue improvement due to selling refund options show

the significance of effective pricing ofq. As mentioned previously, customer risk-

aversion could be exploited by the firms to improve their revenues and results show

that the higher the degree of customer risk-aversion gets, the more profitable offering

refund options become. Among the two alternative methods proposed for findingq,

the model based on probability distribution estimation of refund option reservation

price,FQt is found more promising.

To sum up, we recommendDP model for findingp and Intervalmethod for deter-

mining q. In case time variant demand parameters could not be estimated accurately,

seller could prefer Pred-M for finding restricted ticket price to have a higher load

factor and more robust revenue-to-go. Para-M can be suitable for pricing if batch

arrivals of last-minute customers is probable; in which case having empty seats just

before departure is advantageous for the seller.

7.3 Possible Improvements and Future Research

Parameter estimation plays a major role in the success of dynamic pricing methods

proposed in this study. In this respect, we consider estimation of probability distri-

butions of customer reservation price (FPt) and probability of cancellation (FCt) as

promising areas for further research. Historical records of previous price inquiries

of customers can be stored on airline reservation systems and accept/reject decisions

for offered price can be utilized to infer reservation prices with aBayesian estima-

tion model. Cancellation statistics of previous flights and no-shows are also recorded

on airline database systems and this data could be used for estimating cancellation

probabilities.

In this study, parameter estimation problem is not restricted to estimation of demand
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and cancellation parameters introduced in the original problem formulation. The suc-

cess of approximate models developed for findingp andq are based on estimation

of stockout probability,S P(s, t). In the parametric estimation model we proposed,

expert opinion is used for the initial value only,η = S P(s, t). For stockout probability

estimation, alternative models could be also developed to make greater use of expert

opinion. We already know by definition of stockout probability thatS P(0, t) = 1 and

S P(s,0) = 1 for s> 0. Stockout probability estimates at different points in the state-

space could be gathered from sector proffessionals (ηi = S P(si , ti) for i = 1,2, ...,n)

and surface fitting techniques could be applied to find an alternative functional form

for stockout probability function.

Note that although the possibility of cancellation is takeninto consideration, over-

booking is not allowed in our formulations (this restriction allows defining the bound-

ary conditionvt(0) = 0). The dynamic pricing approach studied herein is based on

expected net revenue, defined as the sales probability multiplied with the difference

between the sales price and the opportunity cost of an additional seat. Similarly, in

case of overbooking marginal cost of selling one more seat over the capacity could

be approximated. When the no-shows (customers who book for the flight and do not

show up at the time of departure) exceed the overbooked capacity, the airline com-

pany does not incur any costs; however, certain penalties exist in case a customer

is denied on boarding. The marginal revenue term could be approximated by using

the probability of observing less than expected no-shows (similar to S P(s, t)) and the

penalties that could be incurred in case of overbooking (similar to pf in). With this ap-

proximation, a similar approach could be adopted for developing a dynamic pricing

methodology for overbooked capacity.
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APPENDIX A

ADDITIONAL SIMULATION RESULTS

Table A.1: Revenue generation - 120 seats on hand at t=30 days

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
44258 44135 43824 43635 43014 42582 41635 40821 39002
46783 46189 46196 45571 45203 44971 44498 43565 42520
48004 47742 47529 47331 46837 46606 46096 45704 44424
47996 47936 47463 47284 47234 46816 46538 45752 44433
48290 47837 47810 47463 47367 47177 46656 46035 44868
48875 48854 48607 48165 48060 47808 47218 46963 46352

Table A.2: Load factor results - 120 seats on hand at t=30 days

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
90.9% 90.8% 90.7% 90.7% 90.4% 90.2% 89.9% 89.5% 88.8%
91.5% 91.2% 91.2% 91.0% 90.9% 90.8% 90.6% 90.3% 89.9%
91.7% 91.6% 91.5% 91.5% 91.3% 91.2% 91.0% 90.9% 90.4%
91.7% 91.6% 91.5% 91.4% 91.4% 91.3% 91.2% 90.9% 90.4%
91.8% 91.6% 91.6% 91.5% 91.5% 91.4% 91.2% 91.0% 90.5%
91.9% 91.7% 91.7% 91.6% 91.5% 91.5% 91.3% 91.2% 91.0%
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Table A.3: Revenue generation - 150 seats on hand at t=30 days

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
57022 56892 56558 56444 55884 55374 54472 53474 51362
61619 61030 60988 60368 60031 59712 59209 58190 56895
63934 63673 63491 63250 62656 62417 61824 61362 59766
64012 63902 63487 63249 63132 62757 62354 61384 59916
64450 63865 63979 63548 63451 63210 62541 61876 60452
65532 65492 65213 64731 64642 64336 63699 63423 62628

Table A.4: Load factor results - 150 seats on hand at t=30 days

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
82.06% 81.90% 81.58% 81.57% 81.10% 80.65% 79.91% 79.08% 77.42%
83.63% 83.16% 83.16% 82.71% 82.48% 82.35% 81.92% 81.16% 80.27%
84.33% 84.08% 83.99% 83.83% 83.41% 83.27% 82.94% 82.59% 81.64%
84.26% 84.13% 83.94% 83.73% 83.72% 83.46% 83.27% 82.55% 81.61%
84.51% 84.09% 84.11% 83.82% 83.87% 83.68% 83.24% 82.78% 81.90%
84.68% 84.63% 84.48% 84.17% 84.02% 83.97% 83.52% 83.42% 82.89%
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APPENDIX B

SIMULATION CODES IN MATLAB

Cancellation Allowed Simulation Run for DP Model

function[rev,empty,pricerec,salesrec,reservprec,tsold,tarrvl,canc_log]=...

SIM_exactP_intvlQ(S,Tdays,Pinit,Pfin,lambda,prec,intlength,Lin2Jump,m,beta,SPinit)

%1 sales replication

%At every possible state, optimal prices with DP is found

[Poptarry,value,time,Res_Price_Bounds]=fill_matrix_pst(S,Tdays,...

Pinit,Pfin,lambda,prec,intlength,Lin2Jump);

%Initialization of simulation parameters

reservps=zeros(1,1000);

reservqs=zeros(2,1000);

prices=zeros(1,1000);

priceqs=zeros(1,1000);

sales=zeros(1,1000);

saleqs=zeros(1,1000);

tarrvl=zeros(1,1000);

custcount=0;

canc_log=[-1 -1];

linit=lambda(1);

lfin=lambda(2);
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%Nonhomogenous Customer Arrivals are generated

[tarr]=generate_arrivals(Tdays,linit,lfin);

snow=S;

rev=0;

nb_arrivals=length(tarr);

for custcount=1:nb_arrivals

tnow=tarr(custcount);

%Check: Customer arrival= Cancellation

if (tnow<canc_log(1,1))

%customer refunded

rev=rev-canc_log(1,2);

snow=snow+1;

%realized cancellation is removed from cancellation eventlist

canc_log(1,1)=-1;

%remaining cancellations in the event list are sorted

canc_log=flipdim(sortrows(canc_log),1);

else

if (snow>0)

intnumber=ceil(tnow*1440/intlength);

Plo=Res_Price_Bounds(1,intnumber);

Phi=Res_Price_Bounds(2,intnumber);

%seller determines price

P_opt= Poptarry(snow,intnumber);

%——–Option A: Point Estimation of Q————

%Q_opt=find_q_point(P_opt,beta,m,tnow,Tdays);

%——–Option A: Point Estimation of Q————

%——–Option B: Interval Estimation of Q———

%estimate stock-out probability
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SP=find_Pstockout_1(SPinit, linit, lfin, snow, S, tnow, Tdays );

Q_opt=find_q_optimal(P_opt,beta,m,tnow,Tdays,SP);

%——–Option B: Interval Estimation of Q———

prices(custcount)=P_opt;

sales(custcount)=-1;

%customer arrives with a certain prob. of buying

pbuy=rand(1);

%customer arrives with a certain prob. of cancellation

C_t=0.1+0.4*(tnow/Tdays)*rand(1);

reservp=(Plô (1-pbuy))*(Phî pbuy);

reservq=log(1+(C_t/(1-C_t))*(exp(beta*P_opt)-exp(beta*m)))/beta;

if (tnow< 2)

reservq= 0;

end

reservps(custcount)=reservp;

reservqs(1,custcount)=reservq;

reservqs(2,custcount)=C_t;

if (reservp> P_opt)

if (reservq> Q_opt)

%customer books refundable

rev=rev+P_opt+Q_opt;

snow=snow-1;

sales(custcount)=1;

saleqs(custcount)=1;

tsold(1,custcount)=tnow;

tsold(2,custcount)=1;

%future cancellation record needed

prob_temp=rand(1);

%customer cancels with probability C_t

if (prob_temp< C_t)

%random cancelation time

t_temp=1+(tnow-1)*rand(1);
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%refund amount when canceled is logged

refund=P_opt+Q_opt-m;

canc_log=[canc_log; t_temp refund];

canc_log=flipdim(sortrows(canc_log),1);

end

else

%customer books non-refundable

rev=rev+P_opt;

snow=snow-1;

sales(custcount)=1;

tsold(1,custcount)=tnow;

tsold(2,custcount)=0;

end

%sales complete(customer leaves with or without purchase)

end

end

end

empty=snow;

tarrvl=nonzeros(tarr);

pricerec=nonzeros(prices);

salesrec=nonzeros(sales);

reservprec=nonzeros(reservps);

reservqrec=reservqs;

end
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Subroutine for solving recursiveDP Model

%Function returns optimal price at every possible state; p*(s,t)

function[Poptarry,value,time,Res_Prices,lambda_arry]=...

fill_matrix_pst(S,Tdays,Pinit,Pfin,lambda,prec,intlength,Lin2Jump)

%STATEVARIABLES%

%S:seat inventory

%Tdays:time in DAYs

%DEMAND

%Pinit=[Plo(T) Phi(T)]; reservation prices at the start of sales horizon

%Pinit=[Plo(0) Phi(0)]; reservation prices at the end of sales horizon

%lambda= [linit, lfin] initial and final arrival rates

%OTHER PARAMETERS

%prec:precision parameter (error tolerance for numeric optimization)

%intlength:interval length in MINUTEs

%Lin2Jump:0=>Linear Increase, 1=>Piecewise Constant with Jumps res. price

%values between 0 and 1 yields jumps at given points.

tic

%RESERVATION PRICE JUMPS

jump_times=[10 5 2];

jump_percent=[0.2 0.3 0.5];

Pfin_linear_up=Pinit(2)+(Pfin(2)-Pinit(2))*(1-Lin2Jump);

Pfin_linear_lo=Pinit(1)+(Pfin(1)-Pinit(1))*(1-Lin2Jump);

upper_bound_jumps=jump_percent*(Pfin(2)-Pinit(2))*Lin2Jump;

lower_bound_jumps=jump_percent*(Pfin(1)-Pinit(1))*Lin2Jump;

%RESERVATION PRICE JUMPS

T=(Tdays*1440)/intlength;
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Poptarry=zeros(S,T);

value=zeros(S+1,T+1);

Res_Prices=zeros(2,T);

lambda_arry=zeros(2,T);

for tnow=1:T

%Find reservation price bounds Plo-Phi

%Linear increase

Plo=(Pinit(1)*tnow+Pfin_linear_lo*(T-tnow))/T;

Phi=(Pinit(2)*tnow+Pfin_linear_up*(T-tnow))/T;

%Add jumps

if tnow<jump_times(1)*(1440/intlength)

Plo=Plo+ lower_bound_jumps(1);

Phi=Phi+ upper_bound_jumps(1);

if tnow<jump_times(2)*(1440/intlength)

Plo=Plo+ lower_bound_jumps(2);

Phi=Phi+ upper_bound_jumps(2);

if tnow<jump_times(3)*(1440/intlength)

Plo=Plo+ lower_bound_jumps(3);

Phi=Phi+ upper_bound_jumps(3);

end

end

end

Res_Prices(1,tnow)=Plo;

Res_Prices(2,tnow)=Phi;

%Find arrival rate at current time point

[lnow,lavg]=find_lambda(tnow,T,lambda(1),lambda(2));

lnow = lnow*(intlength/1440);

for snow=1:S

delta=value(snow+1,tnow)-value(snow,tnow);

Popt=find_p_log(Phi,Plo,prec,delta);

salespr=(log(Phi)-log(Popt))/(log(Phi)-log(Plo));
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Poptarry(snow,tnow)=Popt;

value(snow+1,tnow+1)=value(snow+1,tnow)+lnow*salespr*(Popt-delta);

end

end

time=toc;

end
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Subroutine Generating Customer Arrivals

%Function returns randomly generated Nonhomogenous Poisson arrivals

function[tarr]=generate_arrivals(T,linit,lfin)

tarr=zeros(1,round(T*lfin));

tnow=T;

i=1;

while (tnow> 0)

[tnext]=nhp_arrival(tnow, T, linit,lfin);

if tnext> 0

tarr(i)=tnext;

end

i=i+1;

tnow=tnext;

end

tarr=nonzeros(tarr)’;
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Function Returning Next Customer Arrival

%Subroutine used in generate_arrivals.m

function[tnext]=nhp_arrival(tnow, T, linit,lfin)

%due to Lewis&Shedler (Lewis P.A.W., Shedler G.S., "Simulation of Nonhomoge-

nous Poisson Process by

%Thinning", Nav. Res. Logist. Quart., 26:403–413 (1979)

t=tnow;

lnow=find_lambda(t,T,linit,lfin);

lmax=lfin;

u=rand(1,2);

t=t+log(u(1))/lmax;

while (u(2)> (lnow/lmax))

u=rand(1,2);

t=t+log(u(1))/lmax;

end

tnext=t;

end
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Function Returning Time Dependent Poisson Arrival Rate

%Function returns Nonhomogenous Poisson Arrival Rates

function[lnow, lavg]=find_lambda(t,T,linit,lfin)

%lambda increases exponentially along the horizon

lnow=lfin*(lfin /linit)ˆ(-t/T);

lavg=((lfin*T) /(log(lfin/linit)*t))*(1-(lfin /linit)ˆ(-t/T));

end

132



Stock-out Probability Estimation Routine - Para-M

%Function returns stockout probability estimate for parametric method

functionSP=find_Pstockout_1(SPinit, linit, lfin, snow, S, tnow, Tdays );

[lnow, lavg]=find_lambda(Tdays,Tdays,linit,lfin);

omega1=S*((1-SPinit)̂ (-S/(lavg*Tdays))-1);

Lambda= lavg;

SP=1-(snow/(S+omega1))̂(Lambda*tnow/snow);

end
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Subroutine Finding Optimal Refund Option Price - Point Estimation

function[P_opt]=p_opt_predictive(Plo,Phi,prec,P_maxx,s,d)

%both arrays are defined so that first row contains SP and second row

%contains z

SP_to_z_arry=zeros(2,100);

z_to_SP_arry=zeros(2,100);

for i=1:100

%Optimal sales incentive is obtained by approximation delta= SP*P_maxx

SP_to_z_arry(1,i)=i/100;

delta= SP_to_z_arry(1,i)*P_maxx;

[z_given_SP, P_given_SP]=find_p_log(Phi,Plo,prec,delta);

SP_to_z_arry(2,i)=z_given_SP;

%probability of stockout for given sales incentive is foundby Neg. Bin

z_to_SP_arry(2,i)=i/100;

SP=SP_given_z(z_to_SP_arry(2,i),s,d);

z_to_SP_arry(1,i)=SP;

end

error=1;

for i=1:100

for j=1:100

errornew=max(abs((SP_to_z_arry(1,i)-z_to_SP_arry(1,j))),...

abs((SP_to_z_arry(2,i)-z_to_SP_arry(2,j))));

if (errornew<error)

z_index=i;

SP_index=j;

error=errornew;

end

end
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end

z_opt=SP_to_z_arry(:,z_index);

SP_opt=z_to_SP_arry(:,SP_index);

P_opt=Phî (1-z_opt(2))*Plô z_opt(2);
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Solution of Approximate Model

%Function returns opt. price with recursion solved for logarithmic demand

function[v,P_opt]=find_p_log(Phi,Plo,prec,delta)

%Phi: Price upper bound for LOGARITHMIC DEMAND

%Plo: Price lower bound for LOGARITHMIC DEMAND

%prec: error tolerance for numeric optimization

%delta: v_t(s) - v_{t-1}(s)

kappa=log(Phi/Plo);

if (delta>Phi)

v=0;

i=0;

else

vu=min(1,1/kappa);

vl=0;

v=(vu+vl)/2;

eps=-delta+(Phî (1-v))*(Ploˆv)*(1-kappa*v);

i=0;

while(abs(eps)>prec && i<20 )

if (eps>prec)

vl=v;

v=(vu+vl)/2;

eps=-delta+(Phî (1-v))*(Ploˆv)*(1-kappa*v);

i=i+1;

else if(eps<-prec)

vu=v;

v=(vu+vl)/2;

eps=-delta+(Phî (1-v))*(Ploˆv)*(1-kappa*v);
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i=i+1;

end

end

end

end

P_opt=Plô (v)*Phiˆ(1-v);

iter=i;
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Stockout Probability for Given Sales Incentive (used in Pred-M)

function[SP]=SP_given_z(z,s,d)

if ((s<=0))

SP=1;

else if(d<s ‖(z==0))

SP=0;

else

SP=nbincdf(d-s, s, z);

end

end
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Subroutine Finding Optimal Refund Option Price - Point Estimation

%Function returns optimal Q using point estimation method

function[Q_opt]= find_q_point(P_opt,beta,m,tnow,Tdays);

pcanc=0.1+0.4*(tnow/Tdays)*0.5;%expected value of canc. prob

Q_opt=log(1+(pcanc/(1-pcanc))*(exp(beta*P_opt)-exp(beta*m)))/beta;

end
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Subroutine Finding Optimal Refund Option Price - Interval Estimation

%Function returns optimal Q using interval estimation method

function[Q_opt]= find_q_optimal(P_opt,beta,m,tnow,Tdays,SP);

C_t_expected=0.1+0.4*(tnow/Tdays)*0.5;

C_t_cdf=zeros(2,101);

Q_t_cdf=zeros(2,101);

for i=0:100

C_t_cdf(1,i+1)=0.1+0.4*(tnow/Tdays)*(i/100);

C_t_cdf(2,i+1)=(i/100);

pcanc=C_t_cdf(1,i+1);

Q_t_cdf(1,i+1)=log(1+(pcanc/(1-pcanc))*(exp(beta*P_opt)-exp(beta*m)))/beta;

Q_t_cdf(2,i+1)=(i/100);

end

Q_return=zeros(1,101);

for i=0:100

ECL=C_t_expected*(1-SP)*(P_opt+ Q_return(1,i+1) - m);

Q_return(1,i+1)= (1-Q_t_cdf(2,i+1))*(Q_t_cdf(1,i+1)- ECL);

end

[max_return,index]=max(Q_return);

Q_opt=Q_t_cdf(1,index);

end
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