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ABSTRACT

DYNAMIC PRICING FOR AIRLINE REVENUE MANAGEMENT PROBLEM
WITH CANCELLATION POSSIBILITY

Selcuk, Ahmet Melih
Ph.D., Department of Operations Research
Supervisor : Assoc. Prof. Dr. Z. Mlge Avsar

September 2014, 141 pages

In this study, dynamic pricing methods are developed fdinairrevenue manage-
ment problem. The bookings for a particular flight are coersad in two classes as
restricted and flexible bookings representing whether theebcan claim a refund
in case of a cancellation. Thefi#rent classes of bookings are considered for the
same inventory to be sold atfférent prices. For pricing the restricted bookings, the
principle ideas in revenue management literature are addptmaximize revenues
by managing the demand through price control and altematiathematical models
are developed. For estimating the worth of the cancellatdund claim, which is
the diference between flexible booking and restricted bookingprithe risk of can-
cellation is considered from the risk averse buyer’s pointi@wv and corresponding
pricing methods are proposed. The proposed approach mngihe refund claim is
not specific to airline sector and can also be used for sirdifaamic pricing prob-
lems where the bookings services that are sold in advancibject to cancellation.

Keywords: Revenue Management, Dynamic Pricing, Refund



Oz

IPTALLERIN MUMKUN OLDU GU HAVAYOLLARI GEL IR YONETIM|
PROBLEM ICIN DINAM IK FIYATLAMA

Selcuk, Ahmet Melih
Doktora, Yoneylem Arastirmasi Bolimi
Tez Yoneticisi : Dog. Dr. Z. Mlge Avsar

Eylil 2014 [141 sayfa

Bu calismada, havayolu gelir yonetimi problemi icin dinkrfiyatlandirma yéntem-
leri geligtirilmigtir. Belli bir ugus i¢in yapilacak rezvasyonlar, musterinin olasi bir
iptal halinde Ucret iadesi hakkinin bulunup bulunmamagira kisitl ve esnek re-
zervasyonlar olarak iki sinif halinde ele alinmistir.kresiniftaki rezervasyonlar ayni
envanterin farkl fiyatla satilan farkli tirleri olarak slinulmustur. Kisith rezervas-
yonlar fiyatlandirmak icin gelir yonetimi literatirindeiemel fikirler ele alinarak
talebin fiyatlandirma yoluyla yonetimini 6ngéren, geligngcoklanmasini amaglayan
matematiksel modeller gelistiriimistir. Esnek ve Kisrtezervasyonlar arasindaki fi-
yat farkina karsilik gelen iptal halinde tcret iadesi hakk degjerinin tahmini icin
iptal riski, riskten kaginan bir musterinin bakis aclaigle alinmis ve fiyatlandirma
yontemleri buna gore olusturulmustur. Ucret iade halkkfiyatlandiriimasinda dne-
rilen ve ele alinan bakis acisi havayolu sektériine 6zgildieve 6n satisla ayirtilan,
iptali olasi hizmet satisinin oldu benzer dinamik fiyatlandirma problemleri icin de
uygulanabilir.

Anahtar Kelimeler: Gelir Yonetimi, Dinamik Fiyatlama, Wtradesi

Vi



To My Parents

Vil



ACKNOWLEDGMENTS

First of all, | would like to express my gratitude to my supeor Assoc. Prof. Dr.
Zeynep Muge Avsar for her great support, patience and eagement. Those I've
learned from her reach far beyond her advisory for this thesi

| would like to ofer my thanks to examining committee members Assoc. Prof. Dr.
Serhan Duran, Assist. Prof. Dr. Ayse Kocabiygkq Assist. Prof. Dr. Yeliz Yolcu
Okur and Assoc. Prof. Dr. Haldun Sdral for their contribatio

I would like to thank Assist. Prof. Dr. Banu Tuna Lokman for latuable sugges-
tions and remarks for this study and for her friendship.

This work is_ supported by The Scientific and Technologicaldaersh Council of
Turkey (TUBITAK). | would like to express my gratitude tolBEB for granting this
support.

Also, special thanks to my colleagues for their supportrduthe study: Ozcan,
Ilknur and Evren; life would be intolerable at METU Northe@yprus Campus with-
out you. | am also grateful to Akbank CRM department for theerfdship and
support.

Finally, I would like to thank my family for their endless levand support, and Nes-
lihan for being my inspiration.

viii



TABLE OF CONTENTS

......................................... vi
[ACKNOWLEDGMENTS . . . .« o ot e e e viii
MABLE OF CONTENTS . . . o o v ovooee e e e e e ix
LISTOETABLES . . . o o ot oo Xiii
LISTOEFIGURES . . . . o oo xiv
CHAPTERS

|1 INTRODUCT IQINI ........................... 1

| : ificati 1 - icina in Airli E|tor.. 15







Xi



Xii



LIST OF TABLES

TABLES

Xiii



LIST OF FIGURES

FIGURES

Figurel1.1 Price comparison ftstanbul-London flights . . . . .. ... ... 13

Figurel4.1 Linear and Isoelastic demand curves . . . . . . .. ... ... 52
Figurel4.2Change of reservation price bounds & Sales In@enti . . . . . . 55
Figure|4.3 Stockout probability curves at given dates . . ...... . . . ... 63
Figurel4.4_Relationship betwe@nandS RSty . . . . . .. ..ot 67
Figurel4.5 Predictive estimation 8fR(s.t) andz* att = 30 days . . . . . . . . 69
Figurel4.6 Predictive estimation 8fR(s t) andz att = 2 days . . ... . . . 70

Figurel5.1 Passenger’s decision - utility based on gains . . . . . . . . . . 79
Figurel5.2_Passenger’s decision - regrets of decisionemeduples . . . . . . 81
Figurel5.3 The utility function for dferent degrees of risk aversion . . . . . . 83

Figur = = = =10 . .. .. 85

Xiv



CHAPTER 1

INTRODUCTION

Revenue management (RM) is the art of maximizing revenues tyatling the de-
mand for a good or service throughextive pricing anfbr capacity allocation strate-
gies. Basically, the process involves estimating the pie@and dynamics in time
and controlling the demand over the sales horizon by charitie price in order to
exploit the variations in willingness to pay for the sameduct among the customers
and during the time horizon. Pak and Piersma (2002) define Rileapractice of
increasing revenues by selling each product to the rightoowsr at the right time
for the right price emphasizing the importance of the refabetween right time and

right price.

In this chapter, a general introduction to revenue managemm@resented. The first
section is on the origins of revenue management. In this plaet relevant ideas
from the economic theory of pricing, pioneering work on RM dhéd problem en-
vironments where RM is applicable are discussed. The nexibgeis devoted to
the history of airline RM and the emergence of RM is explainedstly, the sector
specific considerations, the objectives of airline RM andstbletion approaches are

discussed in the third section.

1.1 Economics of Revenue Management (RM)

Determining the price of a commodity is one of the oldest amm$tniundamental
guestions of economic theory. Theoretically, in a perfeshpetition environment

where numerous suppliers present an identical commodityetonarket, the supply-
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demand balance in the market dictates the price to the firmhghenseller is a price
taker and has no control on it. However, in real life therelmige a few suppliers
in the market for a commodity ayat the commodities might be fiierentiated by
quality, brand and other specifications that in turn givepsieps the opportunity to
control the price.

The pricing problem is not limited to setting a unique fixeecprfor a commodity.
The same commodity might befered to diferent customers at fiierent prices in
which case the decision maker is responsible for determialhthese prices. This
pricing strategy is called price discrimination since tlhistomers who are charged
higher prices are discriminated. Price discriminationtdesthe seller to exploit the
differences in the valuation of customers for tifieeed commodities and increase the

revenues.

The studies on price discrimination date back to early tie#imtentury. Pigou (1920)
presents the first extensive analysis on price discrinonatiln his work, he pro-
vides a classification for price discrimination accordiadie degree of discriminat-
ing power. First-degree (or perfect) price discriminatbmcurs when every customer

is charged the maximum amounhs is willing to pay; the hypothetical case of a
mind-reading sales agent who knows the upmost price foyamdividual demand.
Second-degree price discrimination involvéeang alternatives or tdfs to the cus-
tomers and letting them decide; like an airlinféening special discounts for round trip
bookings. Third-degree price discrimination occurs whenfirm sorts the customers
into different groups based on some identifiable characteristies (@cgation, occu-
pation etc.) and then sets a separate price for each grouglees ¢ase of student and
senior discounts. Another descriptive characteristic pfiee discrimination scheme

is the basis of discrimination; thefterence among customers that is decisive for the
price they would be charged. The spatiafeliences (location of market), temporal
differences (time of sales), incometdrences (customer wealth) and qualityfel-
ences (commodity ffierence) have been addressed by Phlips (1983) as the pbtentia
grounds of price discrimination in a market. The pricinglgem in RM mainly deals
with the temporal dferences in the sales horizon of a perishable commodity. For
customers demanding the commodity dfetient times, dferent prices are given ac-

cording to the inventory level, expiry date of commodity ahd customer arrival



time, which can be an indicator of the customers’ willingn&spay. By controlling
the price, the seller in turn controls the demand during #hesshorizon and attempts

to maximize the revenues.

Given the conceptual background of RM problem, one can ingentarket conditions
under which RM can be beneficial. Talluri and van Ryzin (200%)vjate a list of
conditions as Business Conditions Conducive to RM. Here, weiorettte following

crucial conditions that make RM advantageous and operdiyqmassible.

e Customer Heterogeneityfhe core idea of RM is to exploit the potential vari-
ations in customers’ maximum willingness to pay, namelyirtheservation
price. If all customers value a product identically and exhibi#ar purchase
behavior, then the potential to profit from the variationd e less. Thus, for
the applicability of RM in any field, there must exist custorheterogeneity.
Airline and hotel industries exhibit this characteristiog customers have dif-
ferent reservation prices depending on when they will paselthe service and
how flexible their schedules are.

e Price Control Power:The diferences in customers’ willingness to pay is not
always stiicient for the firm. For the implementation of RM, the firm must
have the power to control the prices. For example, if theperfect competition
in the market, the firm would be price taker and would not h&xeechance to
set a price above the equilibrium price imposed by the mawkkso, in some
industries, the firms can be restricted by certain reguiatemd might have no

chance to change their price over time.

¢ Inventory Inflexibility: Revenue management problems generally consider the

sales strategies for a limited inventory that iffidult or impossible to replen-
ish, like number of seats in a plane or rooms in a hotel. Thenxiffility of
inventory throughout the sales horizon is not a prerequfsit a revenue man-
agement implementation. There are studies on multipeneehitory problems

in which the inventory can be replenished and the seller sygiket inventory

and pricing decisions; the ordering quantity and sale®priast be determined.
Nevertheless, complications about inventory replenisitmetivate the seller

to look for more profitable ways of pricing to make the mostafuhe inventory
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on hand.

e Technical Requirementd.he estimation of demand response to price changes
is essential for the success of RM implementations. The fiquires storage
and processing of huge amounts of data to predict the demahéheacertain
applications the system parameters like remaining invgndemand rate, price
sensitivity of demand need to be updated very frequentlysTthe firms can
make successful RM implementations only if they have poweigorithms

and information systems to solve this problem over and ogaimainstantly.

1.2 History of Revenue Management

The emergence and development of revenue managementpracitlosely con-
nected to airline industry. Since the first business impleatens and academic
studies on RM are in this industry, it would not be unfair tocdiss the historical

development of RM together with the last fifty years of airlindustry.

The development of new business practices is motivateddghbrtcomings of cur-
rent methods. In the air transportation sector, the seatséntain flight are perishable
commodities that are worthless after the aircraft takédw this respect, each empty
seat is a missed opportunity to generate extra revenue dauachiacarriers want to
increase theitoad factor, the percentage of capacity being sold, to benefit from this
opportunity. Two main symptoms regarding the empty sea&tsiasold seat inventory
and the booked passengers who fail to show up at the time bf fligferred to here-
after asno-shows In order to compensate no-shows, the decision makers came u
with the idea obverbookingsetting the sales quantity beyond the capacity of the air-
craft to generate extra revenue from the seats of no-show$.9., the airlines started

to use overbooking in 1960s without acknowledging it puiliRothstein (1985) re-
ports that he "found much publicly available evidence thiaha& major airlines were

deliberately overbooking".

Overbooking proved its success in counterbalancing nesstamd booking cancel-
lations, however the inflexibility of aircraft capacity atidket price were still con-

stituting a potential threat for low load factor. In 1970 thrice elasticity of air
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transport was recognized; withf&giently low prices travellers switched from road
transport to air transport. In 1978, Airline Deregulatioot/Aset the U.S. carriers
free to change their prices. Moreover, by the end of 197Gsn#wly recognized
demand of price elastic passengers, who may switch fronr atleans of transport
to air transport when prices arefBaiently low, motivated the low cost carriers and
charters to enter the market. Hence, the price flexibilityoeuced by deregulation
and the competition induced by opponents triggered thie bfrtevenue management

in air transportation.

Having faced the threat of low cost carriers, major airlimese forced to develop
a strategy to recapture the price sensitive leisure passgngo benefit from this
new demand potential, discount tickets to this new segmen¢ wmtroduced. For the
leisure travellersvho have lower reservation prices and more flexibility onrttravel
dates, discounts were available for round trip bookingseurdvance-purchase and
Saturday-stay restrictions. In 1985, American Airlinesdman attempt to compete
with low cost carriers and launched Ultimate Super Saveradist tickets. Smith
et al. (1992) notes that the Super Saver discount ticketphazhase restrictions;
they had to be purchased 30 days in advance of departure nerrefundable, and
required a seven-day minimum stay. The purchase restigcticere designated to
avoid business travellers taking advantage of low fareetik To protect the seats
for the business customers, who are expected to make thairys later, capacity
restrictions were used and the number of discount séiied in each flight was also

limited.

Meanwhile, theoretical studies on revenue management algoeinitiated. Little-
wood (1972) studied two segment -discount and regular feee mliscrimination
scheme and proved that it is optimal to continue sellingalist fare tickets as long as
the discounted fee is above thesplacement costhe expected loss of turning down
a possible regular fare customer. This method is acceptibe &arliest mathematical
method for quantity based revenue management and the stdgnilestone in the
history of RM practice. Quantity based RM refers to the clasRMfimplementa-
tions in which the inventory- or capacity-allocation démns are utilized for demand
management. Price itself can be used as the primary tool &maging demand, this

type of RM implementations are classified as price based RM.



After the success of American Airlines experience, othendiin the sector also
started implementing RM. Smith et al. (1992) reports that RMIementations re-
sulted in revenue improvements of 2% to 8% in comparison éedaregulation pe-
riod. The technological advances and scientific progresgs leal to improvement of
more sophisticated techniques in time. Today, RM is an eisdégmactice for both

major and low cost carriers in the air transportation sed#woreover, RM has been
utilized for pricing a variety of other commodities such adeh rooms, rental cars,

concerts and game tickets, electricity and so on.

This thesis focuses on price based RM in airline sector. Theibation of this study
is twofold; firstly alternative methods are presented facipg dynamically the single
leg bookings under the assumption of no cancellation andvedbooking. The ad-
vantages and shortcomings of the proposed methods aréigated and their perfor-
mances are analyzed on a comparative basis with existingneigrpricing methods.
Dynamic pricing has become popular in airline RM very regerttie earlier imple-
mentations are based on capacity allocation principle.cEgtihe research on price
based RM is not as extensive as quantity based RM and this sraystrotivation for

us to focus on this area.

The second part is devoted to an extension allowing canicgltaand the problem of
pricing therefund premiumthe additional amount a customer should pay for holding
a refund claim in case the booking is cancelled. This prolgarticularly attracts our
attention since we have not encountered any study in thatites analyzing how this
price premium can be determined although it is a common ipeast airline sector
to charge an additional amount for the refund claim. The ammspn of restricted
and refundable ticket prices of major European airlinesatss provided significant
evidence indicating the lack of thorough quantitative apphes for refund premium
pricing. With this motivation, we have developed a methadffwecasting the cus-
tomers’ willingness to pay for holding a refundable tickettead of a restricted one.
The customer preference is modeled as a decision problemt#éizahg the relevant
ideas from the utility theory and the regret theory, the Warta refund claim is esti-
mated. Based on this estimation, we propose a pricing syréoegefund premiums.
The ideas we have adopted are not specific to airline indubtrg the method can be

applicable to other service industries, like entertainnoeeraccommodation in which



the sellers fier advance bookings that can be refunded in case of a caimella

1.3 Preliminaries of Airline Revenue Management

The term airline RM refers to a broad field of research artedint solution ap-
proaches have been proposed fdfadent system environments and problem specifi-
cations. To understand the nature of problem, sector spe&fand characteristics,
objectives of airlines for applying RM and market factoffeeting the structure of

RM methodology should be investigated.

e Demand:In the air travel sector, it is predominantly accepted thatttme of
booking is an indicator of a customer’s willingness to papds been observed
that as the departure time of a flight approaches, the rdsaryarices of cus-
tomers increase. This is a distinguishing characterigtairtne RM problem
which describes the main tradébetween selling the seat immediately or re-
serving the seat for a probable later sale at a higher priceoth®r common
assumption about demand is that the customer arrival rateases as the de-

parture time approaches.

e Objectives:ldentifying the objectives of the airline executives is dical is-
sue in developing a successful RM technique. Maximizing t#tpeeted total
revenue is the primary target, however the company might lostver tactical
concerns as well. For example, maintaining the load fadter @ertain level
will be desirable if the airline has a market share targeemms of the total
number of passengers. Another critical factor for detemmgirthe objective is
risk attitude of the airline. In order to incorporate riskeesion, alternative
objectives like reducing the variance of total revenue arimizing the proba-
bility of obtaining total revenue less than a minimum acabf# amount can be
utilized as in the studies due to Cetiner (2007) and Terciy@009). Barz and
Waldmann (2007) employ utility functions for incorporagithe risk aversion

of the decision maker in the RM problem.

e Competition: Although, in the earlier studies on airline RM, the price pdst

for the flight is considered as the only factdfexting the demand intensity, re-
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cent studies argue that it is also essential to take intoustdbe prices of other
airlines dtering flights on the same route. Th#ezt of an increase in com-
petitor price is reflected in the model as an increase thegibty of sales for
an individual item and theffect would be reverse in case of a decrease. The
competitor prices are considered as external parametethdqricing mod-
els developed according to this approach. There are alsiiestwhich han-
dle the problem in a game theoretic approach; competinmesrideveloping
and adapting their strategies in anticipation of the caumbses of their oppo-
nents. The pricing problem is modeled as a multiplayer gameng rivals and
the pricing strategies are evaluated accordingly (SeesSigte and Shumsky,
2005). Hence, the extent of competitive structure in theketas a critical issue
about the RM implementation.

e Airline Network Structure:There are not necessarily direct flights between
any two nodes in an airline network and the travellers oftéke tsuccessive
flights. Most airlines @er their customers connecting flights and the antici-
pated marginal revenue of a seat in any one of these congdtghts is not
the same as that of a point-to-point flight. Thus, RM applaratifor such net-
work flight structures require more sophisticated analyfs the single leg
flights.

Revenue management is classified as price based RM or quaastity lRM depend-
ing on the type of tactical level decision strategy. Afterdsting the aforementioned
characteristics of the RM problem under consideration, thialsle control strategy
should be determined. kapacity allocatiorpractice, there are fierent fare classes
which are dfered to customers until a boundary condition on the remgimventory
andor time to expiry is reached. Talluri and van Ryzin (2005) expkhis as "opti-
mally allocating capacity of a resource tdfdrent classes of demand". In the airline
example, a two fare sales policy, which controls sales o#ats in a flight with full

and discount rates is an example of capacity allocatiortigeac

In real life implementations, reservation systems prowddierent mechanisms for
controlling the capacity allocation. Booking limits set Inolaries on the amount that

could be sold for each fare class; whereas a protection $pegifies the amount of
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capacity to reserve for a particular fare class for fututessarhus, booking limits or
protection levels are static control tools that are deteeatiwhen the sales start and
can be used throughout the entire sales horizon. On the loéimet, bid price control
is based on the idea of finding a minimum acceptable price simgj it as a threshold;
the requests for lower fare classes are rejected and highecksses are accepted.
The bid price must be recalculated at each booking reguettescontrol mechanism

is dynamic.

The idea of determining and updating the minimum acceptphbte in bid price
control is similarly adopted in developing price based oalsf also referred to as
dynamic pricing In quantity based approach, the seller has to determingrite for
each fare class prior to the capacity allocation and if tipeges are poorly selected,
desired revenue level cannot be attained no matter Hwiemtly the capacity is
allocated to the classes. Dynamic pricing is advantageothss respect. In dynamic
pricing, price itself is the control variable and insteadlefermining the availability

of different fare classes, the decision maker has to decide onitieet@ibe posted.

Dynamic pricing is as old as commerce itself. Auctions, @megotiations, mark-
downs and other forms of dynamic pricing are utilized to @ase revenues: the style
goods are discounted at the end of season, speffasand markdowns are occa-
sional for fast moving perishable goods to deplete excessientories, seasonal
commodities have lower prices during the periods when tinswmption is less. The
key point for any dynamic pricing implementation is to urstand the relation be-
tween demand and price. If the customers’ response to padatns can be es-
timated, the demand can be managé@ddatively and it will be possible to increase
the revenues. Dynamic pricing has become popular in thmaimdustry very re-
cently. Due to Talluri and van Ryzin (2005) the dominance @rgity based controls
in the earlier implementations of airline RM is due to the atisang and managerial
constraints; managers used to publish their fares in meudiaraed to simplify price
management process. With the old technology, updatingrike would have been
much slower than deciding which fare classes to sell and igntiee one thing that
seller does not have in airline sector since the passengaramtling dierent flights
arrive frequently and expect the seller to post the priceadiately. Since it is easier

to keep track of sales and seat inventory rather than caleglthe optimal price at



a certain time and inventory position, in airline industpoking limit and protection
level controls were preferred to dynamic pricing for quiterag time. However, with
the recent advances in the information technology, it hasine possible to execute
complex algorithms and deliver prices to customers witktosids and now dynamic
pricing is widely used in airline RM.

An importantissue in pricing airline bookings is about tlesgibility of refund angbr
rescheduling in case of cancellation. In practice, wherstocner wants to reschedule
hisher booking, the amount to be refunded due to cancellatidgheobriginal book-
ing is deducted from the fee of the new booking and customgs fiee diference in
between. In this respect, rescheduling can be modeled ascaltzion succeeded
by a new booking without loss of generality; hence we focusamcellation refunds
only. In general, the airlinesfi@r their lowest fare restricted tickets without any pos-
sibility of cancellation and the flexible tickets, which da@rescheduled or refunded
upon cancellation requests, areved at higher prices. Accordingly, in seat inven-
tory control applications the booking classes with higlaee$ are refundable and in

dynamic pricing refundable tickets can be booked by paymgdaditional premium.

Different types of refunding policies are adopted by airline games. Proportional
refunds dfer a certain percentage of the ticket fee in case of canicgilahd in partial
refunds the ticket fee is paid back after deducting a caaoe penalty. Full refunds
is a specific case of partial refunds where the cancella@malty is set to zero. Due
to our observations, the most commonly utilized refundinggy in airline sector
is partial refunding and the cancellation penalty is calleel service and booking
expenses, which is a considerably small amount compareidket fprice. In this
study, the partial refunding policy is considered and thestant cancellation fee can

be set to zero to represent the case of full refunding.

In dynamic pricing perspective, the pricetdrence between nonrefundable and re-
fundable bookings for the same service represents the pfitee right to claim a
specified portion or the entire amount spent on a servicevaen in case the reser-
vation is cancelled before the cancellation deadline. igtudy, this right is named
asrefund optiorand is considered as a separate commodigred for the passengers

who book for the flight. Accordingly, the pricing processiisdted as a two-phase
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problem consisting of determining the price of the senvilee air travel, and the price
of the refund option. Although this framework is developerthe case of airline RM,
it would also be applicable for other sectors in which theppre service reservations,

like concert or sports game tickets, hotel reservations &te subject to cancellation.

Evidently, refund options are desirable for the passendeesto the possibility of
cancellation without significant monetary loss if none &t @n the other hand, the
airlines can also utilize refunds as an opportunity to abéaitra profit and competi-
tive advantage. Next, the conditions that motivate aiditeedfer refund options are

mentioned briefly.

1.3.1 Motivations for Offering Refund Options

The refund options can be considered as additional commasdir the firms per-
forming revenue management applications. Xie and Ger$2@€7) report that, un-
der certain conditions,ftering refunds can be profitable for the firm even when no
extra charge is requested for it. How does the firm profit frostamer cancellations?

This question is addressed below.

e Multiple selling of limited capacityCustomer cancellation refunds are in gen-
eral partial refunds; the seller either charges a "cangatidtassle cost" and
deducts this amount from the refund dfers a proportional refund in which
case a certain percentage of the ticket price is refundeesé& hevenues col-
lected from customers who cease to take the service woulergenadditional
profit if the left seats could be resold. This strategy is sburthe case of any

service sale with limited capacity.

e Higher late sales price:As mentioned for the RM applications in the airline
industry, it is observed that the late coming customers d@tiagvto pay higher
for the flight. Hence, if a previously sold and cancelled ¢icis resold to the
late comer, the latter customer would possibly be chargejtaeh price. In
such cases, when the reservation price of customers tendsréase during
the sales horizon of a commodityffering refunds can bring a by-profit by

selling the same service at a higher price.
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e Reduced uncertaintyfhe service providers generally encounter no-show situ-
ations when the advance sold servicé&&ono refund opportunity for cancel-
lation. The refunds give customers a motivation to infore glrvice provider
that they cease to take the service and the capacity restenvttem could be

resold.

No-shows motivate the service provider for overbookingichitould be sim-
ply considered as selling over capacity (See Smith et ab219 When the
overbooked capacity is below the no-shows, there is no prolfbr the firm.

On the other hand, if the number of no-shows is less than ow&dal capacity,
then some service requests will be denied and the compahieniiced both
with legal penalties stated in the related regulations dsal lass of prestige.
These service denials resulting from the overbooking uacgy are hence un-
desired. Gfering refund options would decrease the no-shows, whichrim t

would decrease the uncertainty the company would be facing.

e Fairness and Acceptancefhe major opposition against RM applications is
that providing the same gogrvice at dierent prices would conflict with
the customers’ perception of fairness. Talluri and van Ry2D05) mention
that in some real life implementations RM raised huge custahssatisfaction
since the pricing was interpreted as unfair. Thus, RM is inega&na risky

implementation and proposing refund options can legitanitiz

The refund policies of prepaid service providers atféedent from that of re-
tailers since a refund guarantee for a product aims to casatdence in the
quality of the good to be sold. For example, for some prodihetsellers fier a
money pay back guarantee for a trial period after sale in cbdissatisfaction.
Nevertheless, this situation could be misused by the cust®mvho purchase
the product for using it during the trial period only and reing afterwards
without any real complaint about the product. This posiybidf misuse is

a major opposition for fdering refund guarantees for products. On the other
hand, for a prepaid service, the refund opportunity woullg prevent the pos-
sible loss in the situation the buyer fails to get the seraie by its nature it is

not open to that sort of unfair use.
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With the aforementioned motivations, many airline compardter flexible book-
ings in addition to the nonrefundable economy tickets. uke??, the flexible and
economy ticket prices dtanbul-London flights of two major European airlines in
eight consecutive weeks are presented. In both graphsséreéd that the flexible
ticket prices are constant although the economy tickeepnary, indicating that the
dynamic pricing policy applied to economy tickets but nohsidered for flexible
tickets. Another remarkable observation is that the flexttdket price for the same
flight is substantially higher than the economy ticket, ugéwen times more and it
is questionable that if anyone would prefer paying a £56mprm to eliminate the

cancellation risk of a £85 economy ticket.

British Airways

£700
£600 |
£500
£400
£300 |
£200
£100 |

£0

| B Economy M Flexible |

Turkish Airlines

£450
£400
£350 |
£300
£250 |
£200
£150
£100
£50 |
£0

| B Economy M Flexible |

Figure 1.1: Price comparison ftstanbul-London flights

There is no doubt that these leading airline companies matgffort to find ways

of effectively pricing the economy tickets with RM implementasdo manage the
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demand; however, it seems unlikely that they implementlamsiophisticated dy-
namic pricing policies for flexible tickets. We have repektiee same price inquiry
for Turkish Airlines on August 5,2014 and observed that theipg scheme is very
similar to the case 5 years ago, flexible ticket price is fixef@0 while the restricted
booking price varies between £150 and £310 (since Britisiw&ys changed policy
on refundability of economy tickets, a fair comparison i$ passible). Although the
excessive cost of booking refundability is less in more mépeice inquiry, the policy
of keeping flexible booking price fixed while the economy tickee ghangess still
the same. Flexible ticketster the seller the opportunity to sell refund options and
generate additional revenue using the risk aversion obousts and fiering these
tickets at disproportionately high prices compared to eaontickets would be miss-
ing that opportunity. We believe that the anticipated cdstatet flexibility for the
firm must be estimated carefully and the pricing of refunddimokings should be

studied accordingly.

1.3.2 Assumptions for Refund Options and Cancellations

In this thesis, mathematical models for pricing the rettd@and flexible bookings are
proposed. The valuation of refund options is critical fotedmining the diference

between refundable and nonrefundable ticket prices. Thergeassumptions on air
transport demand are mentioned in other studies on airlinepRilem and these

will be taken into account in our pricing models.

On the other hand, the refund options we are consideringsrstady are cancellation
claims having specific properties. The following assumgitor refund options and
cancellations are made parallel to the findings of priorisidn cancellations in RM
and our observations on airlines selling flexible and retstd tickets. Hence, before
using the refund option pricing methods that we propose yvé#tieity of following
assumptions should be verified:

e Freedom of ChoiceRefund options areftered with a price premium and the
customer decides whether it is worth to pay the additionakdor holding this

claim. Hence, it is assumed that, the nonrefundable anddahle tickets are
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available during the entire sales horizon.

Partial Refunding: Only partial refunds (the total price charged at booking)
are under consideration. In the formulations, a fixed cdaioeh hassle cost is
introduced as the deductable part of amount to be refundbis aBsumption

is in accordance with the practices of most airline compsariee booking and
service fees are nonrefundable in general. This penalty ¢an be set to zero
if the seller implements a full refund policy. An importamnark about this
penalty term is that it must be less than the restricted tipkiee; otherwise
proposing refund options would not be logical.

Maturity: Cancellation requests of refundable ticket owners are &eddpnd
the booking fee is refunded) until a prespecified deadlia¢ithannounced to
the buyer at the time of sales. Thus, the refund option hastailcenaturity
date and it expires after this time point. If seller acceptsancellation requests
before the flight, this case can be modeled by setting theetlation deadline
to the time of departure= 0.

Exogeneity of CancellationThe airline tickets are booked in advance and the
buyers may cease to take the flight due to conflicts, changpkairs, health
issues etc. We assume that the probability that the buyesesda take the
flight is determined by those exogenous random factors amdiependent of
the amount to be refunded. Hence, in the airline’s point efwiit is equally
likely for flexible and restricted booking holders to showatphe time of flight

departure.

1.4 Specifications of the Dynamic Pricing in Airline Sector

In order to designate a dynamic pricing method for detemgrihe price of a com-

modity, the nature of the sales process should be studiedutigr In most cases,

the seller is expected to post a price on the requests of fjitbnyers but the time

frame for making this decision depends on the commodity tsdb@. When the sale

of a dozen aircrafts is considered, an airline company canfarathe manufacturer

to post the price for a couple of weeks or even more whereassepger would not
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be willing to wait more than a couple of seconds for the agrlin set the price for the
seat in a desired flight. Thus, dynamic pricing of airlin&éts requires immediate
retrieval of seat inventory information, estimation of ethrelevant parameters and

rapid determination of price with regard to all these fagtor

We are interested in the pricing of the restricted (nonswdable) and the flexible
(refundable) tickets and we assume that all passengerbgstme level of service
during the flight. In case a certain proportion of the seas@served for first class or
business class, these seats could be treatedfasedit commodities and can be priced
independently since the service provided is not identi¢alus, within the scope of
this work, the sales agent is responsible for posting theegdar restricted and flexible

bookings in the desired flight in at most a few seconds.

The sales is considered as a two stage process; firstly thenoeisdecides whether it
is worth to make a nonrefundable booking at the given ppicat the second stage of
sales the sales agent is supposedferdhe passenger the price of the refund option
g- The research on the first stage subproblem is quite new dtreetdificulty of
solving the dynamic pricing algorithms instantly with thieler technology. After
reviewing the studies on airline RM and other sectors, whieldeéscussed in Chapter
2, we develop methods for finding the ticket prigeunder certain assumptions on

demand-price relations.

The second stage subproblem is determining the price otfoed optiong, for the
ticket price, p, obtained in first stage. The passenger would be eligibleogyade
the nonrefundable ticket to a refundable one by purchastmgafund option. Refund
option is not an actual service or product, it is a claim oneppid service agreement
and therefore instead of a generic demand-price relatipnale consider this phase
of pricing as a decision problem for the passenger involtegrisk of cancellation.
In case the decision problem involves uncertain outcorhesattitude of the decision
maker is essential. Berent individuals can makeftierent decisions under the same
conditions due to their personal assessment of risk. Therghy accepted risk at-
titude is risk aversion, in which case the individuals prefertain gains or losses to
risky, uncertain alternatives with higher expected returfihe risk aversion of indi-

viduals increase their willingness to pay for refund opgiorausing refundable ticket
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sales more profitable for airlines. Thi#ext of customers’ risk attitude on pricing the
refund options is further analyzed in Chagter 5.

Allin all, the contribution aimed with this work can be statas follows:

¢ Despite the profound research on seat allocation practi@dine RM, there is
limited work on dynamic pricing applications and this stymigsents a dynamic
pricing methodology for airline RM and compares its perfoncgwith other
credible methods in this field.

¢ We did not come across any study on how to determine the pifikerehce be-
tween the refundable and nonrefundable tickets. The grimiathod suggested
in this work proposes a solution for this problem that is agtdle not only for
the airline RM problem but also for other possible appliaagiat which presold

services are subject to cancellation.

e The alternative formulations of certain parameters co@diseful for airline
RM problems in general. For instance, the way we define exgenteginal
value of a seat can be adopted in other dynamic pricing oedleaation control
methods as well. The analysis on the estimation of paraseelso impor-
tant for airline personnel who are responsible for thesenasibns in real life

implementations.

The organization of this thesis is as follows: An extensi@aw of literature on
airline RM, dynamic pricing in RM and other fields with relevaomicing problems
is given in Chapter 2. Chapter 3 briefly outlines the pricingopem we study in this
thesis and the analytical models are presented. In our siegbyicing problem is
disintegrated into two main parts. First part, finding thetrieted (non-refundable)
booking price ignoring cancellations is studied in deptiCimapter 4. In Chapter 5
our approach to the second part of the pricing problem, fondire price of refund
premium for given restricted booking price is presentedrmathematical models are
introduced. Results of simulation studies are given in Chidptand Chapter 7 covers

our conclusive remarks.
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CHAPTER 2

LITERATURE REVIEW

The research on airline RM problem can be classified into twopg depending on
the type of control mechanism. In the first approach calledt"abocation control”,
the capacity is allocated to the classes witliedtent terms and conditions and sales
prices and the seller controls the availability of seatsefach class throughout the
sales horizon. The earlier studies in the field of airline RM an seat allocation
control. Later, price was used explicitly as the controlatle over the sales horizon
in airline RM. This approach called "dynamic pricing" focuseshow to determine
the optimal price for a commodity depending on the inventewgl and the time to
expiry - the time of departure for the airline example. Aligb dynamic pricing
strategies are proposed in this thesis, crucial ideas feanadlocation control litera-
ture have also been adopted and therefore pioneering stggeat allocation control
are summarized firstly in Sectign 2.1. Then, the researchyaardic pricing in air-
line industry and also in other sectors is reviewed in Sai@. Section 213 briefly
introduces ideas in airline RM concerning ticket refundabénd studies assuming
possibility of cancellation. Literature review is conciatiwith the discussion on the
similarities and dierences between pricing of financial options and pricingstifid
option premiums in Sectidn 2.4.

2.1 Milestones in the Emergence of RM

The first attempt of utilizing mathematical models for sdlatcation control is due to

Littlewood (1972). The problem he studies is the allocatibthe seats in a flight to
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two fare classes (discount-low and full-high fare) so that tevenue is maximized.
He develops an optimal rule for accepting low fare requeisisvantory levelx as
long as:

Fareow > FarenghPr(Demangig, > X).

The termFare,gh Pr(Demandig, > X) expresses the opportunity cost of accepting
the low fare request at inventory level In other words, this term is the expected
marginal revenue of reserving th@ seat for future high fare demand. The rule given
by Littlewood (1972) is limited to the problems with two fackasses. Belobaba
(1987) develops the Expected Marginal Seat Revenue (EMSRistie for multi-
ple fare-class problem based on the same opportunity cpsbagh. Although its
performance depends on the demand distribution, EMSRagtieuras shown good
performance in simulation studies. Belobaba (1987) funthedifies the method and
develops EMSRD, which is reported to have close to optimaltefor finding book-
ing limits. In this method, the expected marginal seat raeeof a fare class is ob-
tained asfare x spill, where spill is defined as the probability that the demandfor
particular fare class will exceed the number of seats autto that class. The ac-
curacy of spill estimation is of great importance for theiimgatlity of seat allocation
when any variation of EMSR is implemented. Belobaba and Bafk899) indicate
this fact and study dlierent methods for spill estimation and compare their perfor
mances. The studies of Littlewood (1972) and Belobaba (1B8d@)great impact on
the airline RM research and therefore these pioneeringestuii seat allocation con-
trol practice have been introduced in this section brieflgtiting the significance of
numerous other studies in the literature, the discussiosean allocation control is
concluded here since this thesis focuses on the dynamiogrimplementations in
airline RM.

Seat allocation practices have been dominant in the fieldrloi@RM at the begin-

ning and dynamic pricing has been introduced to this fieldemecently. Yet, there
are earlier studies on dynamic pricing applications in offedds. To the best of our
knowledge, the study of Kincaid and Darling (1963) appearsd the earliest work
on dynamic pricing. The model given by the authors mainlyscders sales of a per-
ishable stock with a specified disposal date to potentiaélsigrriving according to

a Poisson process and two variants of seller’'s decisionlgmolare studied. In the
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first model, the seller posts prices for each customer driiva variant of the model,
the seller evaluates the bids of potential buyers with aesgpct decisions. For both
cases, the structural properties of optimal strategiepi@sented. Gallego and van
Ryzin (1994) study the same generic dynamic pricing problentHe price posting
case and obtain the following structural monotonicity Hessior optimal price to be
posted by the seller:

e At any fixed time point, the optimal price decreases as thebraurof available
items in the inventory increases.

e For any fixed number of items in the inventory, the optimat@riecreases as

time to disposal increases.

These results are in accordance with the monotonicity te$od bid price policy in

the seat allocation control.

2.2 Dynamic Pricing

Dynamic pricing has a broad scope of application area anactet attention of re-
searchers from étierent fields. It has been used in manufacturing and retailims
as well as service sector (See Talluri and van Ryzin (2005 fdetailed review of
dynamic pricing literature and real-life implementatipndhe structure of pricing
problem varies among filerent fields of application; while the capacity of an air-
plane for a particular flight or the number of available roarha hotel are fixed, in
manufacturing and retail industries the inventories caneipéenished and the seller
should consider joint optimization of inventory and prick the inventory litera-
ture, supply-price management problem has been studiest timelheading of multi-
period problems with variable price forfterent settings (finiggnfinite production
capacity, determinististochastic demand, finjiefinite horizon etc.). The extensions
of base stock policies and the conditions under which thebeigs are optimal have
been extensively studied. Federgruen and Heching (19@9¢hen and Simchi-Levi
(2006) study the optimality conditions of a base stock ligtgpolicy (s, S, p); order

up toS when inventory is belove and set pricep. For a detailed review on dynamic
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pricing studies within the context of manufacturing anagiletystems, the reader is
referred to Elmaghraby and Keskinocak (2003).

The possibility of inventory replenishment is a criticattiar for the dynamic pricing
problem. On the other hand, there are other aspects thatesjaoe careful assess-
ment. The following classification of dynamic pricing prebis is due to ElImaghraby
and Keskinocak (2003):

1. Replenishment vs. No Replenishment of Inventory,
2. Dependent vs. Independent Demand Over Time,

3. Myopic vs. Strategic Customers.

The airline dynamic pricing problem has been studied so figleu the assumptions
that the inventory cannot be replenished and the demandnateeservation price
are both time-dependent. Talluri and van Ryzin (2005) ndtieg, due to the nature
of air travel demand, the reservation prices of customerd te increase as the date
of flight approaches and therefore prices generally follovingreasing trend during
the booking period. Thus, it is reasonable to assume thaiatbsengers would follow
myopic behavior, they would immediately buy the ticket iiinder their reservation
price without any considerations about future prices. &so the best decision for

a strategic customer when the prices are expected to getrhigh

Both Kincaid and Darling (1963) and Gallego and van Ryzin (39%& a time ho-
mogenous demand model; the customer arrival rate is assiarbed time-independent
function of price, and due to the aforementioned charasttesi of air travel demand,
this demand model is not particularly appropriate for a@lRM. In most of the RM
literature, the arrival process of customers is assumedkta Boisson process. If
the customer arrival process is non-stationary, as in tee chairline RM, the time-
dependence of arrivals is handled by modeling the arrivgls INonhomogenous
Poisson process where the Poisson rataries in time. Bitran and Mondschein
(1997) and Bitran et al. (1998) consider Nonhomogenous &wiagrivals to repre-
sent the temporal demand fluctuations in the dynamic priprmadplem of seasonal

goods.
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Lin (2006) gives an important result about Poisson custamérals. He shows that
if A follows Gamma distribution, then the total demand followsegative Binomial
distribution. He also refers to the extensive research emsie of Negative Binomial
demand distribution in marketing science and reports eMidesupporting that Nega-
tive Binomial can be a good fit in certain industries. The stafiggraval and Smith
(1996) on the demand in retail industry is an example foriBgantly better fit of

Negative Binomial than that of the Poisson or Normal distidou

Zhao and Zheng (2000) study a more general case where batnarsarrival rate
and reservation price distribution are time-dependenteyTihdicate the conditions
under which the monotonicity results obtained by Gallegban Ryzin (1994) hold
true for time-dependent reservation prices and arrivabtan our study, the customer

arrival rate and reservation price distributions are agguita be time-dependent.

In dynamic pricing problems, the control tool of the seller imanaging the demand
is the price and the objective is to decide the optimal prica &unction of time and
other relevant factors. Alternatively, Lin (2004) definedifierent decision variable
to determine th@olicy of the seller: the probability of selling successfully otem
to the current customer. Under the assumption that thevatsen price distribution
of the customer is known, the probability of sale can be regmeed as a function of
posted price. Lev denote the probability of selling one itermp,denote the posted

price and the random variabRedenote the reservation price of the customer. Then,

v=Pr(P>p)=1-Fp(p). (2.1)

With this definition of policy, Lin uses dynamic programmifegmulation and derives
structural properties of optimal policy using the optimhakquations. The optimal
expected revenue as a function of seat capacity and randorardkis proven to be
supermodular. Using supermodularity, he has shown thewolg:

¢ If the demand function gets stochastically larger, theroatiprobability of
selling one item gets smaller (correspondingly the prids b&gher) at a fixed

inventory level.

e The incremental contribution of one item in the inventorgécreasing in the
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inventory level; that is for the same demand function, tHaevaf an additional

item increases as the inventory level decreases.

e For a given fixed demand function, probability of selling ateen gets smaller

as the available inventory decreases.

Lin (2004) also covers exact and approximate algorithmslésiving optimal policy
for different customer arrival distributions. For obtaining anergpound on the ex-
pected revenue, he studies the case of a clairvoyant saastagt has the knowledge
of future customer arrivals and, therefore, is expectedettegate a higher revenue
than the regular seller. Increased information on the &tfrthe process ensures
that the revenue estimate for the clairvoyant seller is greupound on the actual

expected revenue and also it makes estimating the expestedue function easier.

Talluri and van Ryzin (2005) introduce a practical linearggeonming (LP) formula-
tion for dynamic pricing by maximizing the expected reverubject to the constraint
that the anticipated sales at selected price levels shaulelsls than or equal to avail-
able capacity. The terrd(t, p(t)) denotes the demand rate in discrete time petiod
when the price in this period t), C denotes the available capacity afig d(t, p(t)))
denotes the corresponding expected revenue for that peBieldw, a compact for-
mulation of the optimization problem is given. Here, thecprip(t), is the decision
variable. This system can be reduced to a linear programmuongl if the demand,

d(t, p(t)), and the expected revenuéi, d(t, p(t))), are linear functions.

max Y r(t, dt, p(t))) (2.2)
subjectto Y\, d(t, p(t)) < C (2.3)
d(t, p(t)) = O. (2.4)

Lin (2006) incorporates real-time demand learning intodiieamic programming
formulation he gives in 2004. The formulation for the updaitdemand distribution

in real time is provided and numerical experiments for theettgped algorithms are
presented to understand théeets of demand learning and update frequency. Exten-
sions regarding the cases of batch demand, discrete pveks lend time-dependent
customer arrival rate are also included in this study. $®hzhang (2009) also facili-

tate demand learning for dynamic pricing of style goods.yTus®e sales observations
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to refine the estimates of the customer arrival rate and ttme & the demand-price

relationship.

Anjos et al. (2004) propose a method for defining the priceated relationship quan-
titatively and employ constrained optimization for priginThey model the probabil-
ity of selling one seatdays before flight at pricgt) as a function of days to departure
and price p(t, y(t)). The functional forms op(t, y(t)) and the time dependent demand
f(t) are determined empirically by examining the booking bé&brasf customers.
Expectation values of revenue and the number of seats tolth@msoobtained using
price, sales probability and demand estimations similénéd_P model due to Talluri
and van Ryzin (2005) in_(2.2) as seen below.

max R= [ f(t)y(t)p(t, y(t))dt (2.5)
subjectto  [7 f(t)p(t, y(t))dt < C. (2.6)

The functionR to be maximized is the expected revenue for a remaining dgpac
of C seatsr days before departure. It is also mentioned that this model used
by a major British airline company for dynamic pricing. Latéire airline company
indicated the absence of competition in the model develdyefinjos et al. (2004)
as a shortcoming. Currie et al. (2008) propose an improvesioreof this model that
incorporates the competition by taking the competitorisgointo account. The prob-
ability of selling one seat days before flight is modeled in this study as a function of
number of days to departure, the ticket price and the conapetirline’s ticket price

and the prior model due to Anjos et al. (2004) is revised atiogty.

2.3 Cancellation and Refundable Bookings in Airline RM

The advance sales of commodities separate the purchasem@swhtption and create
uncertainty for the buyer about the utility of actual congtion. Shugan and Xie
(2000) study advance pricing of services and argue thaesgervation price of buyer
at purchase depends on the expected utility from the exgpexxiasumption state.
They exemplify the risks about future consumption in casbuwfing a ticket for a

concert in advance, like probable health issues, expeaeflicts, mood etc. and

emphasize the impact of these risks on the valuation of suyS8mmilarly, booked
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passengers may change their mind about the travel befofigtieand they are faced

with the risk of paying for an unused service if the ticketad refundable.

The uncertainty of the presence of booked passengers aigheifl considered as
an opportunity to sell over the capacity by airline compardad overbooking prac-
tices are adopted accordingly. Consequently, in the aifRNeliterature, the stud-
ies considering no-shows and cancellations are mostly erbowoking policies (See
Rothstein, 1971; Bierman and Thoman, 1975 and Bodily and Pfai92). Alter-

natively, Talluri and van Ryzin (2005) mention class dep@abdancellation refunds
briefly. They notice that the seller can charge an extra feéhioexpected refund at
the time the reservation is accepted. This approach ishtfsigor understanding the

price diference between restricted and refundable bookings.

The prices of flexible tickets are significantly higher thamfchangeable, nonrefund-
able economy tickets. Mason (2006) attributes thikedence to overbooking policies
of airline companies. Increased flexibility on buyers’ sidduces increased uncer-
tainty for the seller about the number of booked passengeoswill show-up at the
time of flight. Accordingly, overbooking becomes more rig&ythe airline company
due to possible denied-boarding losses and to countedsathe associated losses,

airlines charge higher prices for flexible tickets.

Determination of the price fference between flexible and economy tickets is one of
the major problems considered in this work. Although safesconomy and flexible
tickets for the same flight at filerent prices is a common practice in airline sector,
there is not much work in the literature about determinatibthis price premium.

All we know is that in seat allocation control, the ticket flgkty in terms of can-
cellation refunding should be available to higher fare s¢gsonly. The next section
covers similar pricing problems dealing with pricing ofiates whose future value is

uncertain to the buyer and the seller.

2.4 Pricing of Financial Options and Insurance Contracts

Insurance is a means of hedging the risks by partially oy tudinsferring the possible

losses of an uncertain future outcome to a third party witbraract. For example,
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a standard automobile insurance contract covers the rega@nses, health expenses
of drivers angbr passengers and the compensation for casualties or pentnais-
abilities in case of an accident. The insurance companiesataharge a fixed price
of such a contract for all customers since individuals califferent risks and the

monetary risk they want to hedge is not identical.

Insurance pricing is in general based on classic risk théldrg probabilities reflect-
ing the actual likelihood of loss events are used to caleula loss expectation. Kull

(2003) represents the insurance premium as follows:

R
premium= 17 E"(X) + S(X). (2.7)

In this formulation,X denotes the losses to be covered by the contractEai(¥)

is the loss expectation under the real probability meaBure is the risk free rate

of return and the first term on the right hand side of the miudtgion denotes the
discounted expected loss which can be interpreted as tlee®dcost of the contract
for the insurance compan§(X) is the risk premium the customer pays to discard the

risks and is the expected profit on this contract on the cogipaite.

In practice, the insurance companies cannot go through sm&xe research for
each customer to estimate the probability meaBuiastead, the customers are clas-
sified into risk groups according to certain criteria, ergcord of previous accidents,
mileage per year and driving experience are important aidrs for an automobile
insurance contract. Likewise, in case of life insurances, airrent and previous

diseases, smoking and other addictions can be utilizedsloassessment.

A cancellation refund option is similar to an insurance cacitin the sense that the
passenger hedges the risk of losing the money spent on kie¢ itiaccase of a cancella-
tion by paying an additional premium at the time of bookingeTicket refundability
is useless if the passenger takes the flight, like the casavofignno accidents during
the coverage of insurance. Although this similarity md&gausing the same ideas in
refund option pricing, the airlines lack the informatiom fdassifying the customers
according to their risk of cancellation so it is not likelyuse this approach in prac-
tice. The only data known to the seller is time of booking,atprovides very limited

information about the customer. If an airline implementstomer loyalty programs
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and stores information about the passengers, then thamsipricing approach may

be useful.

In economics and finance, the term option also refers to endlaat is useless if not
exercised. A financial option is an instrument that giveshieler the right, but not
the obligation to buy or sell some financial asset at a preated price at or before

a predetermined expiry date. If we consider a call optiorniciwiyives its holder the
right to buy one unit stock at priag the value of being able to exercise this claim at a
future time point will be max0, s(t) — ¢} wheres(t) denotes the value of the stock in
the stock market. The fundamental problem in this contetd determine the price

of the option at a given time point, considering the uncartaiture of stock price.

A natural way of dealing with the option pricing problem isdonsider the expecta-
tion using the real probabilities, similar to the methodtdssed for insurance pricing
herein. However, this expected value using real probghitieasures approach in
general leads tarbitrage a transaction thatfter risk-free profit. The possibility
of arbitrage indicates that the price is unfair and theoadi individuals can make
money out of nothing for this option price. To calculate thieittage-free, fair price
of a future stochastic cash flo, Black-Scholes-Merton theory of option pricing
(also referred to as Black-Scholes theory) suggests céloglthe expectation with

respect to equivalent martingale meas@Qrmstead of real probability measulre

price = 1—-1HEQ(X)' (2.8)

Ismail (2001) explains the independence of option pricenfreal probabilities by a
two state stockbond economy example. Accordingly, the future states oketun-
omy att = T are defined a&lp andDown, and the stock, whose valuetat 0 is $100
will be worth either $150 or $100 with probabilitié’ and 1- PYP, respectively.
On the other hand, the bondfer a risk free return for the investor at a rater pgo

$1 invested in bond return€$. According to this problem setting, the arbitrage-free
price of call option that gives its holder the right to buy 8teck at $100 at = 0 is

as follows:

100

Option price= 100x (1 - e") provided thae™" > 50

(2.9)
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The price of the option is the same fBFP = 0.001 orP"? = 0.999, so the actual
probabilities about the future state of the economy isexraht in financial option
pricing. In our case, the booking cancellation options atmeans of investment
but they are solely intended for avoiding the losses in dasete-booked flight is not
taken and therefore the price of this claim must be dire@lgted to the future state
of the booking, whether it will be cancelled or not. Sinceghasing a flight ticket
is not an actual investment, it is not reasonable to detegrthie price of a refund
option disregarding the real probabilities and using sucbraparison with payfs

of alternative investment strategies.

The solution approaches proposed for insurance premiunatiah and financial op-
tion pricing problems are not applicable for the pricing iolilde booking cancellation
options. Thus, a new approach based on utility functiongmsion theory is devised
in this work to estimate the behavior of customer resermgtioce for the booking
cancellation option. Once the reservation prices are astid) the option price is
determined with the objective of expected total revenueimiation, which is the

main objective in RM.
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CHAPTER 3

PROPOSED ANALYTICAL MODELS

The existing dynamic pricing models developed for airline RhMblem basically
deal with dynamic pricing of a perishable commodity (seatsagarticular flight)
considering the nonhomogeneous nature of reservatioegoiccustomers over time.
The systems allowing cancellations and overbooking arergdlg avoided in these
existing studies since such extensions amplify the conitglekthe problem. That s,
the revenue maximization problem with a single decisiomaxde, the booking price,

is considered in the literature.

In this thesis, a two dimensional revenue optimization [gwbis considered; the
seller determines the price of the restricted booking asd #ie price of the refund
option. Throughout this thesis, the dynamic pricing prabis studied for single leg
flights. The network considerations like pricing of conmettlights can be revisited

by working with the results obtained for single leg problem.

Having mentioned the relevant work in the literature in thevpus chapter, the math-
ematical models developed for simulating the real-lifaeysand the approximations

considered for reducing the immense complexity are digzlissthis chapter.

3.1 Optimization of Nonrefundable and Refundable Ticket Pices

The pricing problem under our consideration deals with figdihe optimal prices
for restrictedandrefundablebookings for a particular flight. We define our decision

variablesp as the price of a restricted ticket aga@s the premium that should be paid
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in addition to the restricted ticket price to get a refundaiiket.

As the name implies, dynamic pricing takes into accountaoeidynamical factors;
factors that are subject to change throughout the saleadmorTherefore, the optimal
values ofp andqg depend on thetateof the sales process. Since the single leg flights
are considered in this work, we restrict our attention tosile of the seats on a flight
between a specific origin-destination pair at a given datee State of this process
can be represented by the triplegt(n) denoting the inventory level (the number
of remaining available seats3, time to departuret, and the number of refundable
tickets sold so fam. The variabld is defined in a backward fashion such that T
denotes the start of sales horizon ard0 denotes the time of flight. The initial seat

inventory level (the value adatt = T) is denoted bys.

The objective of the seller at a given stasegt(n) is to maximize the expected revenue
that could be generated through the remaining sales hor&orordingly, we define
V¢(s, n) as the optimal value function of the Dynamic Programming)Brmulation
we give in this sectionv(s, n) is the optimal expected revenue-to-go when the current
state is § t, n) wheresis the number of seats available for the flight (seat invgntor

t is the time to departure andis the number of refundable bookings sold so far.
The optimization is considered for the decision varialgesdg. p is the price of a
restricted ticket andj is the additional charge for a restricted-to-refundablekinay
upgrade. The decision variables in the sales process atwdhices to be posted by
the firm, but naturally there are other elements that detezrtiie expected revenue-
to-go. The sales would occurH; is greater than the posted pripeP; is reservation
price of the restricted booking, i.e., the maximum price tha customer arriving at
time t is willing to pay for nonrefundable booking. In airline RM gtlpassengers’
willingness to pay changes along the sales horizon; acogisdP; is considered to

be a time dependent random variable.

The sale of a refundable ticket is considered in two steps: &faa restricted ticket
with price p and the sale of the refund option for that passenger at gritbe sale of
refund option would depend d@;(p) which is the reservation price of the customer
for refund option at time, the additional amount that the customer arriving at time

is willing to pay for the refund option. Similar tB;, Q;(p) is considered as a time-
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dependent random variable since the passengers’ arrividgfarent times in the
sales horizon have flierences in valuation as mentioned before. Besides, thedefun
option reservation price depends on the price of the réstriticket posted by the
seller. Refundability of a reservation will have greateruegahs the ticket price gets
higher and this fact is taken into consideration in the esfiom of Q;(p). Keeping
this dependence in mind, we will represent the refund optservation price a®;

in our formulations for the sake of notational convenience.

Remark 3.1.1 McGill and van Ryzin (1999) note that the low-before-higleflaook-
ing arrival pattern is prominent in the seat inventory cantiterature. For instance,
in the simplest two-class example, customers are classisiédaaly-coming) leisure
and (late-coming) business customers and it is assumedédisatre customers de-
mand lower fare class tickets whereas business customersddmgher fare class.
Under the strict low-before-high fare arrival assumptiome ttustomers of successive
fare classes are assumed to arrive in non-overlapping tmervals; hence, we can
consider an upward shift in the customer reservation pricethe end of each time
interval throughout the sales horizon. In the models we psea this thesis, we do
not restrict ourselves to this demand characteristic ofditéne RM problem. As a
special case, we can consider the temporal change in thaatstrticket reservation
price, R, assuming that the reservation price tend to increase ststitally as we
move forward along the sales horizon; i.e., P<q P;. Thus, the proposed demand
frame allows us to consider a gradual increase in the willingg® pay for the air

travel service instead of classifying the customers infeint segmentsl

In the formulation we present, a probable sales transadiconsidered in a small
time period {,t — €], over which customer arrivals occur due to (Nonhomogeasgou
Poisson arrival process. Wheris suficiently small, we could assume that at most
one customer could arrive over this interval with probapiti, = €A;, where; de-
notes the time-variant rate parameter of Nonhomogenowss&oarrival process. The

recursive DP formulation obtained under these assumpisgmesented next.

33



Pr(P. < p)[Asvi-1(S n) + Apvi_1(S— 1, )]
vi(sn) = pumax) +Pr(Pc 2 p, Qt < Anvea(s—1,n) (3.1)

+Pr(Py > p)p + Pr(P; > p, Q; > g)q
+(1 = p)[Asvi-1(s,n) + ApVica(s— 1, )] + vei(s—Ln+ 1),

Vo(s,n) = O forall (s,n),
vi(O,n) = Oforall (t,n),

whereAgv (s, n) = v(s,n) — v(s— 1, n) andA,vi(s, n) = vi(s,n) — v(s,n+1).

Derivation. The recursion along the time for the expected revenue-tigetion is
obtained by evaluating every possible state at the timetpeirl. We begin our in-
vestigation by considering all scenarios regarding théotosr arrival and formulate

the corresponding expected revenue-to-go functign§ , . ).

Case 1: No customer arrives or the arriving customer does urchpse the ticket
since the reservation price is less than the announced fordbe restricted ticket;

the revenue-to-go function after the transaction.ig(s, n).

Case 2: The customer purchases a nonrefundable ticket; shenoer’s reservation is
greater than the announced restricted ticket price andebezvation price of the re-
fund is less than the refund premium, the revenue-to-gatimmafter the transaction

ISVi_1(s—1,n).

Case 3: The customer purchases a refundable ticket, thenveistaeservation prices
of both restricted ticket and refund option are larger tHaa respective prices an-
nounced by the seller; the revenue-to-go function aftertthesaction isv_;(s —
1,n+1).

According to this analysis, the following recursive formtibn is obtained:

[otPr(Py < p) + (1 = A)]ve-1(S, )
w(sn) = maxy +pPr(Py > p, Q < Q[P+ Via(s—1,n) . (3.2
+otPr(Pe > p, Q2 g)[p+q+Vva(s—1,n+ 1)]
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The boundary conditions follow trivially; when there is remraining seats for sale
or when the sales horizon ends with unsold seats on handxpleeted revenue-to-go
equals 0. The terms ifi(3.1) are rearranged to obtain the ifo@11) ]

The recursive formulation in (3.1) is rewritten in terms dférence termagv;_1(s, n)
andA,Vv;_1(s— 1, n) since these could be useful for understanding and an@\bm
behavior of marginal contribution of an additional seatéeenue and the expected

future loss in revenue due to selling an extra refund option.

3.2 Ignoring Cancellation: Finding Nonrefundable Ticket Price

The optimization problem in_(3.1) needs to be solved in thrediwnensional decision
space [,q). Evidently, this problem is much more complex comparedngle vari-
able dynamic pricing problems studied in the literaturegregle formulations with
single decision variable are given by Lin (2004) and Anjoale{2004).

The possibility of cancellation is mostly disregarded ia #irline RM literature and
the problem is studied under the assumption of no cancaisti Similarly, if the
ticket refundability and cancellations are not considénexlir model, the formulation

in (3.1) reduces to the following:

w(®) = pmax{Pr(P; < p)Avis(s) + Pr(P: > p)p}
+(1 = p)Asvi-1(9) + Vi-a(s— 1)
= p mF?x{Pr(Pt > p)[p— Asviea(9)]}

+AsVi-1(8) + (1 — p)Asvi-1(S) + Vi-1(s— 1), (3.3)

whereAgv(s) = w(s) — vi(s— 1).

This reduced formulation is particularly useful for progicertain structural prop-
erties regarding the restricted ticket pripeand the expected revenue-to-gg(s).
Kincaid and Darling (1963) develop the continuous time er®f this formulation
(albeit taking the reservation price distribution and tlwésBon arrival rate time in-
dependent) and conclude that it is possible to find the clésed solution of the

optimal price only if the reservation pricB;, follows exponential distribution.
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Rearranging the terms, we obtain the optimality equatiori3id)( The recursive
model obtained with the boundary conditions is referredstéh@ Dynamic Pricing
model with the acronym DP.

Vi(S) — vi-1(S) = o man{Pr(Pt > p)[Pp— Asvi-1(9)]} .
vi(0)=0
Vo(s) = 0. (3.4)

[p — Asvi_1(9)] can be interpreted as the net earning in case of sale; ffexefice
between the ticket price obtained in case of sale and thecegbéuture contribution
of not selling the ticket to the expected revenue-to-gdadfgeat is sold in the current
period, we start the next periotl- 1, with s— 1 seats instead af seats. Note that
AgVvi_1(9) is independent op, which is the ticket price announced by the seller at time
t; Asvi_1(9) is determined by the ticket price posted in the beginninigpeiext period
[t—1,t—2]. Agvi_1(9) is the expected amount lost by selling a ticket (s&gtih period
t. In other wordsAgv;_1(9) is the expected amount we earn if we do not sell the seat
"s"in periodt. The left-hand-side of (3.2) is nonnegative (with a longges horizon,
the seller cannot do worse); hence, it can be directly olesktivat the optimal price
must be larger than the marginal value of the 2g8¢ 1(s). In the quantity-based RM
literature, comparison g andAgVv;_(S) tells us what to do ("sell” or "do not sell") as

in the case of Littlewood’s rule, static and dynamic sinigig-models.

The discrete-time models are studied in depth in the forthiog parts of this the-
sis. Yet at this point, we shift our focus to the analysis obepatible continuous-
time problem. We compare the univariate discrete-time rhsidelied so far with the
continuous time dynamic pricing model studied in the seinvak of Kincaid and

Darling (1963). Noticing the similarity of models, we extetneir results on optimal

pricing policies.

3.2.1 Closed Form Solution

The model we are investigating is based on the assumptidratimgle customer
request can be received and handled during a very small emeddt, t — €]. Assum-

ing that the time interval is infinitesimal (in other words— 0*), the model can be
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presented in continuous time fashion as follows:

Vi(S) — Vie(9) = fﬂtmgi)q Pr(P. > p)(p — Avi(9))}. (3.5)

Kincaid and Darling (1963) study a particular reservatioite distributionP; ~
EXP(1), whereEXP(1) stands for the exponential distribution with paraméteffor
this demand setting, they derive a closed form representdbir the optimal price
function, p;.. Their model ignores the customer arrival rate and its tiegetidence
(1 = 1) and they restrict the demand function by fixing the exptiakdistribution’s

mean.

In this part it is assumed that the reservation price expialeR; ~ EXP(@) with an
arbitrary« in an attempt to find an exact solution to the model provide(Bi&) for
a particular demand setting. In this case, the complementdrtermPr(P; > p) =

e ?P and the optimality equation fqy* is;
Ps = argmaxe “P(p — Avi_(9))}. (3.6)
P

Notice that the term\v;_.(s) stands for the dierence in optimal value function is
at time { — €); when the current customer leaves the system. Hence thesahce is
independent of price set at the current stats, ). Accordingly, diferentiation with

respect tqo yields the first order optimality equation as follows:
— a€ PPl — AVi_((9)) + € P = 0. (3.7)

Rearranging (3.7), we obtairne *Ps(1 — apy, + aAvi_(9)) = 0. Sincea ande P«
cannot be 0, we have-dapy + aAvi_(S)) = 0 yielding p = Avi_(S) + % Having

obtained optimal price, the recursive formulation in (Z&h be reduced as follows:

Vi(S) — Viee(S) = €y [e‘“‘A"‘f(s”%)g] . (3.8)

Rearranging the terms and taking the right-limitg®es to 0 we obtain the following
optimality equation:

im &) —Vee(s) _ dw(®) | A oawe
e—0* € dt ae

(3.9)

Propositio 3.2]1 gives a closed form solution for the optialue functiony(s), for
the mentioned exponential demand behavior. This providssudion to the pricing
problem also since the corresponding optimal prigg, is defined asi(s) — vi(s —

1)+ 1.
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Proposition 3.2.1 Let P, ~ EXP(a) and let the revenue-to-go function(s) satisfy
the ODE given in (3.9) with boundary conditiong0) = 0 and w(s) = 0. Then, the
closed form representation of revenue-to-go function ifHsws:

(A)° (AT A

1 3.10
sles (s—l)!eHJr e ") (3.10)

1
Vi(S) = — In(
a
whereA; = f/ltdt assuming that\, is well-defined for every t.

Proof. The proof is by induction on s.

(s=1) Using the boundary condition(®) = 0, we haveAv(1) = v(1). The optimality

equation becomes,
dw(l) A _ (1)
= —e MY, 3.11
dt ae ( )

To find the solution of the glerential equation given in (3.11), we rearrange

the equation as follows:

ae™Mdy(1) = %dt. (3.12)

Integrating both sides we obtain;

e@ = % +c. (3.13)

Att = 0, the sales horizon ends g8 become$. Using the boundary condition
Vo(1) = 0, we obtain c= 1. Equation (3.13) gives({d) = % In (% + 1).

(s=k) Assume that;{k) satisfy the following equality:
k k-1
(A () A, 1) . (3.14)

Kek  (k—1)e e

(k) = %m(

(s=k+1) The optimality equation at time t and witk+ 1) seats on inventory is given in

(3.15).
dw(k +1) _ A ootk 1). (3.15)
dt ae

To find the solution of the flerential equation given in (3.15), we rearrange

the equation as follows:

A
ae Dy (k + 1) = Ete""t(")dt. (3.16)
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Using the assumption in the previous step of induction rigarv(k), (3.16)
is rewritten as below.

(A (A<t At
et PG e T e

ae™Ddy(k + 1) = (at até) dt.  (3.17)

Notice that f A(Ay)'dt = (At) for every positive integer i. Hence, integration

of both sides in (3.17) ylelds the following equation:

arvilk+1) (A A (At)k A A

K+ 1)1 k!ek /lt2|e2 +c. (3.18)

Inserting boundary conditiongk + 1) = O, we have &= 1. We obtain (k + 1)

as in (3.18), which completes the induction.

(A (At)k AP A + 1) _

(K + 1)lg

+ A (3.19)

1
Vt(k+ l)_— ( klek /11:2'62

3.2.2 Structural Results

The continuous time model idfering a solution for a particular price-demand rela-
tion whereas the discrete time model is promising for thestigation of further char-
acteristic properties on the behavior of marginal seatmagaVv;(s) disregarding the
relation between price and demand. For fiedent system formulation of dynamic
pricing problem, Lin (2004) investigates the structure led bptimal expected rev-
enue function. In this study, for the optimal revenue-tokgaction J(s, pk), which

is defined recursively as a function of the number of item$&i@éitventorys and the
probability mass functiompy for the number of future customers, it is shown that the

inequality in (3.20) is satisfied for every positige

J(s+1,pc) — (s px) < I(s px) — I(s— 1, p«). (3.20)

Talluri and van Ryzin (2005) also prove that marginal seaemee function is a
nondecreasing function of time to departure and noningrgdsnction of remaining

seat inventory under the assumption that the marginal tevémhich is a counterpart
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of Pr(P; > p)p in our formulation) is a convex function of the prige We provide

a more general result by eliminating this assumption rdl&tethe reservation price
distribution. Lemma 3.2]12 below shows that these two caomtfor Agvi(s) (being
nondecreasing ihand nonincreasing ig) are equivalent to one another for our for-
mulation. Lemma_3.2]12, the proof of which is structurallg ttame as the proof of
Talluri and van Ryzin (2005), shows thatwv(s) is nonincreasing irs. The com-
bined result of the two lemmas allows us to deduce the samésésr marginal seat
revenue function as the results of Talluri and van Ryzin (20G&out making any
assumptions on the distribution Bf.

Lemma 3.2.2 Asv(S) is nondecreasing in t if and only £5v(s) is nonincreasing in

S.

Proof.
e In the first part of the proof, we want to show thatifv(s) is nondecreasing it
thenAqv(s) is nonincreasing irs. The rearranged model for the case of no refund

option can be written for inventory positioss- 1 ands as follows:

Vi(S+1)—Vvia(s+1)

o m’?-X{Pr(Pt > p)p - Asviea(s+ 1)},

Vi(S) — vi-1(9) Pt man{Pr(Pt > p)[p— Asvi-1(9)]} . (3.21)

Taking the diterence of the two equations side by side, we obtain

Avi(S+ 1) = Agvia(s+1) = pt(man{Pr(Pt > P[P —Asvia(s+ 1)}
- man{Pr(Pt > plp-Asvii(9)]). (3.22)

Let p;,,, = argmax{Pr(P; > p)[p — As\-1(s + 1)]} denote the optimum restricted
P
ticket price for the reduced formulation. It is obvious tha optimal price is deter-
mined by both the remaining inventory and time to departiaurally, the optimal

price for a certain state would be suboptimal atféedent state of the sales process.

If we substitutepy,,, in both terms to be maximized ip, which is optimal for the
first and suboptimal for the latter maximization in (3.22 following inequality is

obtained:
Asvi(S+1) = Asvi1(S+1) < pPr(Pe > pg,1)[Asvi-1(S) — Asvi-a(s+ 1)13.23)
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SinceAgV(S) is nondecreasing i the left-hand-side of the inequality (3.23) is non-
negative. Therefore\svi_1(S) — Asvi_1(S+ 1) > 0, meaning thahsv(s) is nonincreas-

ingins.

¢ In the second part of the proof, we want to show thai;(S) is nonincreasing in
s, thenAgw(s) is nondecreasing ih Recall (3.22) we have obtained in the first part

of the proof.

Let p;, = argmax{Pr(P; > p)[p — Asvi-1(9)]}. If we substitutepy, in both terms to be
P
maximized inp, on the right hand side of (3.22), the following inequali&ybtained:

AVi(S+1) = Asvia(s+1) > pPr(Pr > pe)[Asvi-1(S) — A1 (s + 1)].

SinceAsv(S) is nonincreasing is, the right-hand-side of the equation is nonnegative.
Therefore Asvi(s+ 1) — Agvi_1(s+ 1) > 0, meaning thatsv(S) is nondecreasing in
[

Lemmd3.2.R2 shows the equivalence of the two conditiongukia optimality equa-
tions derived for inventory positionrsands + 1. Lemma 3.2.3 below uses induction

over time to show that the marginal seat revenue is nonistrgans.

Lemma 3.2.3 Agv(S) is nonincreasing in s.

Proof. (due to Talluri and van Ryzin 2005, Proposition 5.2) The prigdajiven by

induction ont.

o AVo(S+ 1) < Agvp(S) holds true for everg e [1, S — 1] sincevp(s+ 1) = vp(s) =0

by boundary condition.
e AssumeAgVv;_1(S+ 1) < Agvi_4(S) for everyse [1,S — 1].

e Denoting the optimal price for the inventory positis() at timet by pg,; , and the
corresponding sales probability tefn(P; > pg,; ) by zs.i+, the following equalities
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for Asvi(s+ 2) andAgv(s+ 1) are obtained.

Aw(s+2) = pt (ZS+2,t[p;+2,t — AsVi-1(S+ 2)] = Zsy14[Pgi1 — Asvi-1(S+ 1)])
+AVi_1(S+ 2)
AVi(s+1) = pt(Zsaal Plr — Aioa(s+ 1] - Za[ P — Aia(9)])

+AgVi_1(S+ 1)

Sincepg,,, is the maximizer for the functioRr(P, > p)[p — Asv-1(s + 1)], pg, and
P;,,, Would be suboptimal values and substituting them in thesmtesps would

yield the following inequalities:

AV(S+2) < pr(ZeaalPhny = Avia(S+ 2)] = Zeraa Pl — Avea(s+ 1)])
+AgVi_1(S+ 2)
= pitZsi2t [AsVie1(S+ 1) — Agvica(S+ 2)] + Agvi_a(S+ 2)

Avi(s+ 1)

\%

P (th[p’;t — AgViea(s+ 1)] = Zsi[ pg; - Ath—1(5)])
+AVi_1(S+ 1)

= piZst [AsVi-1(S) — AsVi-1(S+ 1)] + Agvi—1(s+ 1).
Taking the diterence,
AsVi(S+2) = Asvi(s+ 1) < (1= piZsio) AsVica(S+ 2) + piZsioiAsVe-1(S+ 1)
(1 = piZst)Asvi-1(S+ 1) — piZstAsVi-1(S).
Rearranging the terms on the right hand side above, we obtain
AM(S+2) = Asvi(s+1) < (1-piZsiap) (AsVi-1(S+ 2) — Asvi-1(S+ 1)) +
PiZst (Asvi-1(S+ 1) — Asvi-1(9)) - (3.24)

In (3.24),p1, Zs; andzs,; are all probability values. So, the terms-pzs, o andzg;
are nonnegative. Using the induction assumption, BQth (s + 2) — Agvi_1(S+ 1)
andAgVvi_1(s+1)— Agvi_1(S) are less than or equal to zero. Thus, we conclwig s+

2) — Asvi(s+ 1) < 0, meaning thalqw(S) is nonincreasing irs. [

The structural characteristics 8fv;(s) provide valuable insight about the behavior of
the optimal expected revenue-to-go function. With thisrfolation, it is also possible
to make inferences about the optimal pripg, The following lemmas present be-

havioral facts about the optimal price. It is implicitly assed in the lemmas that the
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customer reservation pric®;, has a continuous cumulative probability distribution
function.

Lemma 3.2.4 Let g, be a maximizer of the function @; > p)[p— Asvi-1(S)]. Then,
the marginal revenue function, @; > p)p, is a nonincreasing function of price at

P = Py

Proof. (Proof by Contradiction) Assume @&, > p)p is increasing at p= p;. Then,

there exist > 0 such that
Pr(P; > pg + €)(ps; + €) > Pr(P; > pgy) Pt (3.25)
By definition of complementary cumulative distributiondtion of R, we also have
Pr(P; > p + €) < Pr(P; > pg). (3.26)
SinceAqV;_1(S) is a nonnegative quantity for any givés t), we have
Pr(P: > pg + €)Asvi_1(S) < Pr(Pr > pg)Asvi-1(9). (3.27)
Taking the dfference of (3.26) and (3.27), we obtain
Pr(P; > pg + €)(Pst + € — Asve-1(9)) = Pr(Pr > pg)(Ps; — Asvi-1(9))- (3.28)

which contradicts the assumption thaf, [ the maximizer. By contradiction, we
conclude that PP, > p)p is nonincreasing at p- p; |

Proposition 3.2.5 Let [, be defined as in Lemma 3.2.4. Thef,>ppg,; ;-

Proof. It has been shown thadsv;_1(S) is nonincreasing in s. Hence, we can define

AsVi_1(S+ 1) = Agvi_1(S) — 6 whereéd is nonnegative.

(Proof by Contradiction) Assume that, < pg,,,. By optimality of g, we have the
following inequality:

Pr(Pt 2> po)(Pst = Asvi-1(8)) = Pr(Pe 2 P51 )(Psiae — Asve-a(8))- (3.29)
Sinces > 0and [ < pg,,,, We also have
OPr(Py > pg) > 6Pr(Py > pg,q4)- (3.30)
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Addition of (3.29) and (3.30) yields,
Pr(Py > po)(Ps; — Asvi-1(S+ 1)) = Pr(Py > pg,; (P51 — Asvi-a(s+ 1)), (3.31)

which contradict the optimality ofgp, , for Pr(Py > p)[p — Asvi-a(s + 1)]. Hence,
Py > Pg,q, and we conclude that the optimal restricted ticket price isrelasing in

remaining seat inventory s. [ |

Having shown that the optimal price decreases in the seanfows, the consequent
idea is to examine its behavior in time to departdreliowever, under the assump-
tion of time dependent reservation pridg, such a monotonicity result cannot be

observed.

Proposition 3.2.5 states thgf; is nondecreasing inif the time dependence of reser-
vation price distribution is ignored. However, as noted imfaek 3.1.1, in airline RM
the reservation prices tend to increase as time to depataareases. With this mo-
tivation, an exemplary case opposing the monotonicityltésiemma 3.2.6 under

the assumption dP;,; < P is also presented in Counterexample 3.2.7.

Proposition 3.2.6 Let g, be defined as in Lemnia 3.2.2 and the reservation price
distribution be time independent; i.e>(fp) = fe,(p). Then, B < pg,,,

Proof. In order to prove the lemma, it is required to show thatp p;,,, under the
assumption that the reservation price distribution is timeependent. Lep < pi.

By optimality of f, we have
Pr(Pc > pe)(Pps; — Avi-a(9)) = Pr(Py > P)(P — Avi-1(9)).- (3.32)

p < pi impliesO < Pr(P; > ps) < Pr(P; > p). Since marginal seat revenue is

nondecreasing in t, we havex(s) — Av;_1(s) > 0. Then,

Pr(Pe > pi)(Avi(s) — Avi_1(9)) < Pr(Pt > P)(Avi(s) — Avi1(9)). (3.33)
Taking the dfference[(3.2J6):(3.2.6), we obtain:
Pr(Pe > pe)(Ps; — AVi()) > Pr(Pt > P)(p — Aw(9)). (3.34)

Hence, if reservation price distribution is independentiofe to departure, them,
which is less than jp cannot yield a better value for the function to be maximeed
state (s;#1); Pr(Pu.1 > p)(p — Avi1(8)). Thus, g,,, cannot be less thengp [ |
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Counterexample 3.2.7Consider the following system state:

® P11 =pP2 = 005,
e s=1seats remaining £ 2 periods before departure,

e Reservation prices are P~ U[110,130]and P ~ U[100,120], where U

denotes the continuous uniform distribution.

For any ticket price p, we have B?; < p) < Pr(P; < p), hence B < P;. The
optimality equation for (1) yields the following:

vi(1) = legﬂlx{Pr(Pl > pP)[P — Asvo(1)]} + Vo(1). (3.35)

The maximization for the uniform distribution gives p foral< 110 so, p values
less thanl10are suboptimal and can be disregarded. Fop @30, the maximization
term equalg); so, p values greater thah30can also be excluded. The terms/(1)
and (1) are bothO by the boundary condition definition and they cancel out.déen
the optimality equation can be rewritten as follows:

110<p<130 20

Solving (3.2.7) in p, p, = 110and (1) = 5.5 are obtained.

vi(1) = 0.05 max {M’}. (3.36)

Likewise, the optimality equation fog(\1) can be formulated as follows:

B (120- p)(p-5.5)
V(1) -55= 0'0510@;?21(20{ 20 } (3.37)

Accordingly, §, = 100and (1) = 10.225are obtained. Therefore, it is possible to
observe the caseLp; < P fors=1andt=1incase R.1 <g P;.00

Sectiori 3.1 studies the problem of determination of optipniges, ©*, q*), at a given
state §,t,n). So far in Sectiof 312, we study a modified problem by disiigg the
possibility of booking cancellations at all and ignogdret, it is possible to interpret
this modified univariate problem as a restriction of the ioady bivariate problem
with a given arbitrarily largey value that no customer would be willing to pay for,
i.e., Pr(Q; > q) = 0 for allt. Lemma 3.2.R investigates the relationship between the

restricted ticket prices obtained by these twidedent formulations.
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Lemma 3.2.8 Let g, be defined as in Lemrha3.2.2 and(let, g*) denote the optimal
solution of the bivariate problem in(3.1). Then, at any giggate(s, t,n), p; > p’.

Proof. Considerp < p*. By optimality of p, we have

Pr(Pt = P)[P — Avi-a(s m] + Pr(Pe = P)Pr(Q = q)[q" — Anvi-a(s— L n)] <
Pr(P > p)[p" - Asvi-a(s )] + Pr(Py > p")Pr(Qc = q)[q" - Anvi-1(s - 1. n)J3.38)

Sincep < p*, for complementary cumulative distributions we havéFPr> p) >
Pr(P; > p*). Hence, for optimum refund option valug, ghe following inequality

follows:

Pr(Pc 2 PIPT(Q: > (A" ~Anv-1(s-1, W] = Pr(Pc 2 PPH(Q: = )l ~Ank-1(s-1, )]
(3.39)
Taking the dfference of[(3.2]8) and(3.2.8), we obtain the following ineifyal

Pr(Pt > P)[P — Asvi-a(s n)] < Pr(Py 2 p)[p* — Asvi-a(s )] (3.40)

(8.2.8) shows that any restricted ticket prige, which is less than the optimumi p
obtained by the bivariate model, cannot provide a betteultesr the maximization
term of the univariate problem. Therefore, we conclude ttegt,optimal solution of

the univariate problem, Jp must be greater than or equal t6.p |

3.3 Determining Refund Premium Given Restricted Ticket Prce

The reduced model studied in Sectibn [3.2) simplifies thelera to finding the opti-
mal restricted ticket pricepy;, disregarding the gains and losses due to ticket refund-
ability. Assuming that the restricted ticket price obtaifyy ignoring the cancellation
can provide a close approximation to the true optimum, arsseny subproblem can
be reformulated for a given restricted ticket price. Thipraach does not only serve
as a complementary to the pricing method in Secfion (3.2)also requires particu-

lar attention due to the fact that every airline company hasreent methodology to
determine the restricted ticket price and might be unwgllio change that method;
yet, a refund premium calculation method for given restddicket price could still

be integrated. Let, (s, n|p) denote the value function for a given value of ticket price
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p posted at time poirtt Accordingly, the problem can be formulated as follows:

[ot Pr(P; < p) + (1 — )] ve_1(s,n)
vi(s nip) = m(;’:lx +pt Pr(Py = p) Pr(Q: < qiPc = p) [p + Vi-1(s— 1, n)]

+p Pr(Py > p) Pr(Q; = Py > p) [p+ g+ Vi-a(s— 1,n+ 1))
(3.41)

Noticing that for givenp value the maximization is in terms gfonly, (3.3) can be

rewritten as below:

V(S Nlp) — Vi_1(S, n) =p¢ Pr(P; > p){[p — Asve_1(S N)]
+ mgx{Pr(Qt > qP; > p)[q— Anviei(s— 1, n)]}  (3.42)

where
AgVi1(SN) = Via(s n) = iea(s—1,n),
Anvia(s=1,n) = vea(s—1,n) - via(s—1,n+ 1),

Thus, for given restricted ticket price, the problem of det@ing the price of the
refund optiongs(p), can be solved by finding the solution of the maximizatioregi
in (3.3). In this respect, obtaining the probability distrdion of refund option reser-
vation price,Q, conditioned on the value gfis a critical issue. Also, the estimation
of marginal decrease in revenue due to selling an extradedption,A,v;_1(s— 1, n),

requires intention.

Up to this point, we concentrate on simplifying the dynamiicipg problem. The
immense complexity of the original formulation, which is ansequence of high
dimensionality of the state space and nonlinearity of ogtiexpected revenue-to-go
function, is one of the motivations for thesgats. The nature of the airline RM prob-
lem restricts the duration of the optimization proceduhe $ales agent requires an
instantaneous price information and simplification of thetylem can reduce the solu-
tion time to the desired level. So far, the state space hasreeeiced and inferences
have been made for finding, the restricted ticket price ignoring the cancellation
possibility, andgs(p), the optimal refund option price at timidor a given restricted
ticket price, p, instead of simultaneously determining optinmedndq as a function

of the state variables. Hence, noticing that simultanegqusnization methods can
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provide better prices at the expense of considerably losgjetion time (simultane-
ous optimization may even be infeasible), we set our salutioategy as sequential
optimization of the decision variablgsandq. The first subproblem is to fingg,
ignoring the &ects of cancellation on the revenue. Chapter 4 covers theopeop
methods for this reduced problem. The latter subproblera getermineqgg(p) for
the givenp and it is investigated in detail in Chapiér 5.
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CHAPTER 4

DETERMINING THE RESTRICTED TICKET PRICE

As mentioned in Section 3.1, the optimization problem iatied in two steps. In the
first step, the cancellation possibility is not taken intasideration and the restricted
ticket price is calculated for a system that does not allomceliations. This section

deals with the first subproblem introduced in Section 3.1.

In Section 3.1, it is argued that for a given value of the ret&d ticket pricep, find-
ing the corresponding optimal value @is relatively easier than finding the optimal
values of both variables simultaneously. The second sibgmrois for determining
refund option priceq, for a given fixedp. In the first subproblem, the cancellation
possibility is disregarded and all tickets are assumedefandable. Consequently,
the refund premiuny, and the number of refundable tickets saléyre removed from
the formulation. Furthermore, the gain and loss termdaaitied to refund options and
cancellation possibility that complicate the expecte@nexe-to-go function vanished.
Thus, for estimating the optimal value ponly, we can come up with more tractable

dynamic pricing models.

For solving the first subproblem, we need to know the probghilistribution of

the reservation price?;. Working with reservation price distributions, we studs th
demand-price relation at an individual level instead of thessical demand-price
models formulated in aggregate quantities. Section 4 dsiinyates the optimal price

and revenue-to-go functions forfilirent reservation price distributions.
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4.1 Demand-Price Relationship

In the reduced formulation of the bivariate problem disedss Section 3.2, the
optimality equation is given in terms ®f 1(s). Upon a customer arrival in stats, {),

two possible situations may occur; either the ticket is doldp and the expected
revenue-to-go becomes 1(s — 1) or the customer does not purchase the ticket and

the inventory remains unchanged. The optimality equason i
wi(s) = ﬂtm[;'iX{Pr(Pt > P)(P+Ve-1(s— 1)) + Pr(Pr < pVe-1(9)} + (1 — A)ve-1(9)- (4.1)

The probability of sales is given by the complementary cuatinvg distribution of
customer reservation price. Under the assumption thatebervation pricd®, has

a bounded, continuous pdf on a bounded support, probabfiisales, Pip; > p),

and sales pricep can be expressed in terms of each other. Noticing this one-to
one correspondence, Lin (2004) formulates the dynamiangyiproblem by using
the probability of sales as the decision variable insteatth@fprice. We denote the
probability of sales by and refer to it as theales incentivén this study. Note that
throughout this thesis, sales incentive is alternativelgaled asz(p) to emphasize
the one-to-one correspondence with restricted ticketepaicd asz; to remind the

dependence of sales incentive value on the state variables.

Remark 4.1.1 Notice that in our analysis the individual demand is disinatgd in

terms of probability of sales, z, and probability of customeival, 1;. As mentioned
previously, it is assumed in airline RM that the customeereation price is a time-
variant random variable; hence, z is time-variant similart. Yet, it will be referred

to as z without any explicit time index in our formulationsrotational convenience.

While arrival probability, A;, is independent of the ticket price, p, sales incentive
is determined by p so we reflect thgeet of price on demand with z. Hence, the
classical price-demand formulations studied in econortédture can be adopted
in our models by the definition of z. In classical market meddemand curves
represent the aggregate quantities that could be sold atrgprice levels. At the
individual level, we replace the sales quantity with the sabtegntive by rescaling

the demand function so that it takes values on the intgfydl].
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Let Fp,(p) denote the cumulative distribution function of the timgdedent random
variableP;. The seller should decide on the optimal value of the salesnitive z

for revenue maximization. Corresponding optimal prisg, is the optimal restricted
ticket price to be posted for a customer to arrive in statg.(The optimality equation

is written below with respect to the decision variaile
W(9) = amax{z[p - Avea(9)] | p= Fpl(1 - 2. (42)

. I
LetI'(2 = —zAvi_1(S) + zp+ Vi_1(S). For the optimak® value, we have‘il—Z = 0 asthe

first order (necessary) optimality condition. The derwaiis given as follows:

dr dp
i —AVi_1(S) + p+ Zd_z' (4.3)

Notice that in the dferentiation with respect tg the derivative ofAv,_,(s) equals 0

since the sales incentive at timmeloes not have an influence on the marginal value
. . . dr : o

function at timet — 1. Evaluating— atz = z,, we obtain the following first order

dz
(necessary) optimality condition:

d
~ AVea(S) + Pl + z;td—s oz = 0, (4.4)

wherep, = FpH(1 - Z).

41.1 Demand Models in Microeconomics

Having obtained the first order condition for the optimalesaihcentive, we should
determine the reservation price distribution through deinarice relationship at this
stage. In this thesis, we will consider two commonly used alesinfunctions in the
economic literature, linear and isoelastic demand cumvdsrinulate corresponding

sales incentive functions in terms pf

Linear demand curves represent equal marginal decreasemard! for the same
amount of increase in price at every price level and the gtyatmanded can be
written as a function of price agp) = a— bp(fora,b > 0 andp € [0, 2]). Isoelastic
demand, on the other hand, is formulatecig® = ap™ (for a > 0, b > 1), repre-

: . . - dg p).
senting demand curves on which the price elasticity of d 3n X a is constant.

Both demand curves are depicted in Figure 4.1.
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Linear Demand Curve Isoelastic Demand Curve

a-bp]
ab™

Demand [qd(p)
Demand [qd(p)

Price (p) Price (p)

Figure 4.1: Linear and Isoelastic demand curves

The first order (necessary) optimality condition derivedtfe optimal sales price is
Pi = AsVi-1(9) — z;t‘;—‘z’h:z&. In analogy with the given demand models, this optimality

equation is reinvestigated and the following results ataiobd:

e Consider the linear relationshig(p) = a — bp. This relation could be de-
fined forp € [a;bl, ¢] so thatz € [0,1]. Keeping the time dependence of the
reservation price distribution in mind, we would like to d¢® the distribu-

tion parameters ag& andb,. According to linear sales incentive formulation,

3—‘2’ = —é and substituting it in the first order optimality equatiore wbtain
(4.5).

D= %(Asvt_l(s) + %) (4.5)

For the linear demand case-= ""*T‘Z and the value function to be maximized in
zisT'(2) = —ézz + (% —AVi_1(9))z+ Ve_1(9). Sincel'(2) is a concave function of
z, the second order optimality condition is also satisfieds@dution of (4.5), if
exists. If there exists no solution fpre [22, 2], thenI'(2) would be maximized

at one of the endpoints of the interval depending on the vafltev;_1(S).

Z(p) is the complementary cumulative distribution value ofergation price
and accordingly reservation price follows uniform disttion in this case;
fp.(p) = by over the supportqb‘t—l, %]. To preserve the (stochastically) decreas-

ing structure of reservation prices in time to departbyshould be nondecreas-
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ing anda; should be nonincreasing trto guarantee tha®; > Py, ;.

e Consider the isoelastic relationshipp) = a,p™ wherea, > 0, b, > 1 and
sales incentive is defined fqr > a”/™. The derivative term in terms of time-
dependent parameters could be writte%ﬁs —ﬁ p>*! and the corresponding

first order optimality equation is as below:

by
b -1

Pst = Asvi-1(9) (4.6)

For the isoelastic demand definitiofi(z) could be expressed in terms terms
of pasa;p™™(p — Av_1(S)). The first derivative with respect tpis found as

follows:

ap ™ H(bAvia(9) - p(o; - 1))

d
a)at p_b[(p — Avi_1(9))

At - D (v (9pog ). (@)

Then, the first derivative is negative fpr> Avt_l(s)b(i_1 and positive forp <
Avt_l(s)bti_l. The second order derivative evaluatedpa Avt_l(s)bti_1 is as

given below:

by

b= 1)“"‘2 <0

(4.8)

d2
Wat p_b[(p - Avt‘l(s))|p=AVt-1(S)b[L,l = —abAVi_1(9)(Avi_1(9)

(4.8) implies that the second order optimality conditioalso satisfied. Thus,
' = Avii(9)52 is the unique maximizer provided thav_,(s)52; > a'™.
If Avi_1(9)52; < a’'™, then the function is decreasing on the support and the

optimal price isp* = a'’™.

The pdf of the reservation price for the isoelastic salesnitige formulation
is fp (p) = abp™~1. Similar to linear sales incentive formulation, should
be nondecreasing aral should be nonincreasing into preserve the desired

temporal stochastic ordering of reservation prices.

In the linear sales incentive casg,> p* due to the definition of values in the
domain and, hencgy® > Aqvi_1(s). Similarly, in the isoelastic sales incentive case,

p* > Asvi_1(9), becausen‘j—l is always larger than 1. Working with the optimality
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equation, we have noticed in Chapter 3 that the optimal ppteshould always be
larger than the marginal value of a se&dy; 1(s) and our observations for particular

demand-price relationships discussed here are paraleistinding.

4.1.2 Logarithmic Sales Incentive Function

Up to this point, we work with the linear and isoelastic sateentive formulations
derived from the corresponding demand models in econone@@ature. In Section
3, we also present the case of exponential sales incentigdelnand the derivation
of the optimal pricing policy under that assumption. At th@nt we would like to
introduce another formulation fa; which gives a solution to the dynamic pricing

problem similar to another problem in the inventory literat

In the definition of pdf derived from isoelastic sales ineamtfunction, fp(p) =
abp™®1, the density function is inversely proportional p5** whereb > 1. We
similarly define a pdf inversely proportional @ asfp,(p) = % over a closed interval
whose upper and lower bounds gg,(t) and piow(t), respectively. Corresponding
sales incentive function Ep) = 1 — Fp,(p) = & (In(p) — IN(Piow(t))). With the def-
inition of price bounds, we requirEpow(t)) = 1 andz(pyp(t)) = 0 and accordingly
we can writea, in terms of these price bounds. The sales incentive functod be

stated as a function qf as given below:

__In(Pup(t)) ~ In(p)
In(pup(t)) - In(plow(t)).

Similar to the distribution parameters in linear and issetasales incentive formu-

z(p)

(4.9)

lations, pow(t) and pyp(t) values are time dependent. In particul@,(t) and pyp(t)
should increase as we move forward over the sales horizornthiey both should be
nonincreasing functions df In the first graph of Figure 4.2, an exemplary scenario
for explaining the change of these price bounds over thes $alezon is depicted.
Keeping the time dependence of these parameters in mind,tfig point on we will
not use time reference in their notation for the sake of raatimplicity. Figure 4.2
also presents a depiction of the behavior @t a function op. In the second graph,
the interval piow, Pup] is defined as the range of possible prices for the sellecePri

levels belowpi,, are not rational for the seller since there is a higher pracevhich
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the probability of sales is also 1. Likewise, prices abpygare out of our interest
since at these levels the sales will be impossible.

=

t

up

| pIow

Upper & Lower Bounds of P
Logaritmic Sales Incentive

o

pIow Price Range when pup

Time to Departure time to denarture =t

Figure 4.2: Change of reservation price bounds & Sales Iha&ent

As a consequence of one-to-one correspondence on theahfpky, pupl, we could
also represent price as a function of sales incentive(8s= plzowpﬁ;)z. Further prop-

erties regarding to this sales incentive formulation avergin Lemma 4.1.2.

Lemma 4.1.2 Let price-sales incentive relation follow(z) = pﬁ)wpﬁgz forze [0, 1].
Then;
1, 9P

Pup
. — = —«p holds whera = In .
dZ Kp (plow)

2. The optimal sales incentive valug, gatisfies the following equation:
_ zZp
~ KZPF+ AVia(9)

(4.10)

3. If pow < %’, then the prices in the interv@piow, %’] are suboptimal.

4. The sales incentive value, which satisfies (4.10), is thguenmaximizer of
I'(2).
Proof.
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e The first statement of the lemma is straightforward from te#nition of p as

a function ofz

e Forthe second part, we refer to the (necessary) optimalitgition forz* given

in (4.4). Letting 2P

FEl —«kPp, the equation in (4.4) can be rewritten as follows:

—AVi1(9) + p"—=Z«p" = 0. (4.11)

Taking the negative terms in (4.11) to the right hand sideraatiiplying both

[ he f F
sides by the acthZ* o T AV (D)’
asin (4.10).

the solution of (4.11) foe* can be given

e Third statement of the lemma gives a restriction of potémimal prices
on the interval pow, pup] and in order to prove it, we refer to Lemma 3.2.4,
which states that the marginal revenue functibp, is nonincreasing in price

In(pup) — In(p)

o IN(pup) — IN(Prow)’
function is found as below:

In(pup) —In(p) -1 _ 1 in(Pep
ln(pup) - In(plow) In(pup) - In(plow) pe

atp = p*. Whenz = the derivative of marginal revenue

d
dp Pr(P:> p)p = ) (412

The derivative term in (4.12) is positive wh%’g > 1 and in this case marginal
revenue function turns out to be increasing. Hence, for thengogarithmic

sales incentive formulation, the interval on which the mati price will exist is
pup

[max{ Piow: ?} » Pupl-

e To prove the last statement of lemma, we consider the seauied (suficient)

optimality condition in terms ot as below:

d’r dp _d?p
@z - %azt%az
= kp(z - 2) (4.13)

Rearranging (4.11), the solution of first order conditionlddee rewritten as

— Av_ : e
zZ= p—\gl(s) Corresponding second order condition is as follows:
K
d’r Avi_1(S)
d_22|2= SYSCES —«p(1+ T) <0. (4.14)

Hence, if there exists a solution to the first order optigationditionz =
P — Avi_1(9)
Kp
prove the uniqueness of this maximizer.

, then that value ot is a local maximizer of'(z). Next, we should
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Rearranging the terms, the first order optimality conditiam be written as
p(1 - x2) = Avi_1(s) where bothp and (1- «z) are decreasing imandAv;_1(S)

is independent of the value affor given s andt values. Having shown the
monotonicity ofp(1 — «2) for all zin [0, 1], we conclude that there may exist at
most onez € [0, 1] that satisfies the first order optimality condition. THere,
the local maximizer of (2) is the optimal sales incentive value on the interval
[0, 1].

The logarithmic sales incentive formulation gives a nicaaddy which is also stii-

cient for finding the optimal price and an elegant formulatio terms of the lower
and upper bound of customer reservation price. Howeveptihgry motivation for
the investigation of this particular model is the structaféhe optimal solution and

the rationale of this choice is explained in Remark 4.1.3.

Remark 4.1.3 For « = 1, the fraction in (4.20) resembles the solution of the newsboy
problem in the inventory theory as shown in (4.15). (Note teatrictingx = 1is
equivalent to assuming that the relatiop,p= epi,w holds for the price upper and

lower bounds.)

R Avi_1(9)
P=Fa (Z* P+ Avt_l(S))' @19

For the optimal solution of the newsboy problem, the cumudagirobability of the
demand at the optimal inventory level equals the r%%ui%“—co where ¢ and ¢, denote
unit underage and overage costs, respectively. The oppna in our formulation

is also evaluated by taking the inverse of the cumulativesithefunction of reserva-
tion price for a similar ratio. In the newsboy problem, undgeacost is the marginal
revenue of an additional item that would have been sold tsfyathe excess de-
mand, the dference between sales price and the purchase price. Simiilar(s.15),
AgVi_1(S) = Viia(S) — vi_1(s— 1) is the marginal value of an extra seat. Overage cost,
on the other hand, refers to the marginal loss due to each itethe inventory that
remains in the inventory after the sales, th¢fatence between the purchase price
and the salvage value. In the airline example, the inveniofixed and an overage
situation corresponds to having unsold seats at the timeepadure. The term*p*

in our formula is the marginal revenue that can be gained femting one seat at
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the current time instant. Hence, it can be interpreted asxgeeted opportunity loss
corresponding to not selling the seat immediately and isl@gaus to the overage
cost in the newsboy problem in this respect.

The findings for all fourz — p relationships investigated so far are tabulated in Table
4.1. Notice that, only in the exponential case we keemnstant over sales horizon
since the closed-form solution of the cannot be obtained otherwise. For the other

distributions, the parameters can be time-variant andebelts will still be valid.

Table 4.1: Summary for analyzed demand-sales incentie¢ioakhips

Demand Type z(p) Parameters fe.(P) p*
. _ ~ 1
Exponential eP a>0 ae P AVi_1(S) + —
a
In(;2) 1 AVi_1(9)
Logarithmic E:‘fv Pup > Piow > 0 1 5
In(%) p(ln(%)) 1-zIn(52)
. 1 a
Linear a-bp ab>0 b > (Avt_l(s) + 5)
; —b —b-1 b
Isoelastic ap a>0,b>1 abp Avt_l(s)le

Remark 4.1.4 For any given reservation price distribution, it is assuntleal the dis-
tribution parameters are time variant with regard to the cgann customers’ willing-
ness to pay. Along with the reservation price distribution, Fhe rate parameter of
the Nonhomogenous Poisson distributed customer arrivdisesdependent. Hence,
the seller needs to know the values of these parameters htwgactime period in
the remainder of the sales horizon in order to determine tiegdor the current cus-
tomer with the proposed DP model. Considering the possililigy the seller may
not accurately estimate the demand parameters at everyeftitne point, we have

also studied an approximate solution for the optimality a&épn (4.11). To avoid the
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requirement for recursive solution, an approximation foe marginal value function,

Avi_1(9), is proposed.

The approximate models developed in this thesis are baseduwotion inferred from
the business concepts in the RM literature and discussduisréspect. Therefore,

the error bounds in these approximations are not studieeiher

4.2 Approximating Marginal Value Function

The termAgvi_1(9), is the opportunity cost of selling thé" available seat in state
(s,t). At state 1t — 1), thes" seat can generate additional profit only if the seller
could sell alls-1 seats before departure and there still remains demandn@se, an
additional empty seat on the flight has no contribution tottit@l revenue. Although
this simplistic perspective overlooks the interdependeoicpricing strategies and

seat inventory, it provides valuable insight for approxXimguAsv;_1(S).

In this part, we consider an approximation for the margirsdig function by assum-
ing that the seller could anticipate the probability ofisgjlall stickets at a states(t)
and the price of the last ticket that would be charged to artastite customempyip,.

S Hs t) : stock-out probability (the probability that all of theede will be sold before
departure; that is, the probability that the demand durivegt ttime periods
before departure is greater thgn

psin : final price the seller would post at the end of sales horizon.

Asvi(S) @ The approximation we consider Isv;_1(S) ~ SHSt — 1)psin + 0(1 —
SHs, t - 1)) for thes" seat at time.

Evidently, the maximum ticket price and the stock-out ptolig depend on the pol-
icy of the seller during the sales process. However, theipusvsales records for
similar flights can be useful for estimating the valueggf andS Rs,t). Remark
4.2.1 outlines the methods in airline RM literature that esgplstock-out probability
or similar figures in the estimation of expected incremenéat revenue. The be-

havior of the stock-out probabilit$ R(s, t) is investigated as a function of the state
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variables in Remark 4.2.2.

Remark 4.2.1 The probability of stock-out during the sales horizon,(S#8, is an
important figure in the estimation of the marginal value fima, Av;_;1(S), in the
current state,(s,t). Littlewood (1972) describes the decision rule for the Zsla
problem as "keep low fare open as long as the probability thatdemand for high-
fare seats exceeds the remaining seat inventory is lessthigaratio of low-fare to
high-fare". Belobaba (1989) similarly defines the probeypibf spill for the n-class
case,P(S)), as the probability of receiving more than @quests for fare class i. The
expected marginal seat revenue for fare class i, ENEB)RIis found by multiplying
the probability of spill and the fare of fare class i. EMSRues serve as thresholds

to determine protection levels of the fare classes in se@ntory control.

Belobaba and Farkas (1999) point out the importance of gstimation for success
of EMSR heuristics or similar techniques in airline RM. leithwork, they employ (1)
a total demand function aggregating the fare classes, (d)iphei fare class demand
representation with the assumption of lower fare passengeokibg before higher
fare and (3) multiple period multiple class demand repréggéon. The adequacy of
each demand representation and the impact on the yield aestigated on a com-
parative basis. Within a similar context to spill, we emplog stock-out probability
S Hs,t) in our formulations. In the dynamic pricing model adoptedshéhere are no
fare classes and the price itself is the control variablee Timarginal value of a seat
is regarded as a function of the state of the sys{git) and is approximated as the
maximum price anticipated for the sales horizog,,pnultiplied with the probability
of stock-out, S {&,t). Here, the price p of the seat is not used buf, 5 used. In
this work, we use the term stock-out probability instead df spice the term spill
is used to refer to both the amount of passenger demand abewaapacity and the
probability of demand being above the capadity.

Remark 4.2.2 Estimating the stock-out probability $$t) for a certain inventory
level in a given state can be possible by assuming a fundtfona in terms of the
state variablegs, t). The following properties should be satisfied for(S,B.

e SHs t) should be a well defined function for non-negative integeueslof
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seat inventory s and for positive values of t and its valuaikhbe betwee®
and1 on this domain. Note thats[0, S] and te [0, T].

e If there are unsold seats, §8t) will tend to0 as the flight approaches.

lim_o- SRS t) =0fors>0.

e When inventory depletes before the departure, the proibhabflstock-out (which

has already occurred) should be equalito

SRO,t) =1fort > 0.

e S Hs, t) should be nonincreasing in s; the lower the seat inventompeshigher

the probability of stock-out gets.

e SHs, t) should be nondecreasing in t; the more time the sales agenbétmre

the departure, the higher the probability of stock-out géts

4.2.1 Parametric Estimation ofSHst)

It is reasonable to use the historical stock-out data tonesé the functional behavior
of SHs t). The statistical methodology of parameter estimatiomgia parametric
or nonparametric method is a critical issue for the decisiafers at this point.

A plausible functional relation that satisfies the condisian Remark4.212 iS As, t) =

Mo t . .
1 —( s ) , Wherew > s— S andApg = [ A,dr > 0. The approximate dynamic

S+w
pricing model based on this parametric stockout probalektimation is abbreviated
asPara— M. Condition onw assures tha Rs,t) € (0, 1) for s € [0, S] and positiv-
ity of Ay is required for meeting the monotonicity propertiesSdq(s, t) explained
above.Apy is introduced in Section 3.2.1 also and denotes the expectedber of
customer arrivals from timeuntil the flight. The value of» does not have such a di-
rect interpretation and it should be estimated accordirigealemand characteristics
of the flight. This formulation relies on the following tworfdamental observations

about the stock-out probability.

1. The Future: While we are considering the nature of depleatiothe remain-

ing seats, the anticipation of the demand in the remaindéreo$ales horizon
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must be taken into account. In our model, we propose repliagehe impact

of anticipated demand intensity by the ratio of expectedriicustomers to
remaining seats. This ratio g[;’—t] whereApy is the time-weighted average
arrival rate of customers. The ratio can simply be integets a demand-to-

supply ratio.

2. The Past: The impact of sales history should also be re@leéntthe stock-out
probability function. The percentage of remaining tick%ss gives us an idea
about the sales trend for the flight so far; smaller valuesyimigher possibility

of stock-out and vice versa. However, in our formulations tiatio is not used

, o .S .
directly to enable calibration. Instead fthe ratloS is adopted. In order

+w
to assure tha® Hs, t) takes values on the interval,[0], we restrictw > s— S.

The positivity of A andw being larger thais— S guarantee that the derivative with
respect to time given in_(4.16) is positive. That is, the toat probability increases

as the time to departure increases for a gis&alue.
Aoy

6SP:_( s ) S (ﬁ)m( s )>o. (4.16)

ot S+w S S+w;

We also expect the stock-out probability to be higher forlna values. The partial
derivative given in[(4.17) shows th&tHs, t) is a nonincreasing function affor given

t:
Aoy

[
S P s \—= (A s
= - S e CUR T 4.17
ds (S+w) ( & )( nS+w1)<O “.17)

The parametedw, is introduced to the formulation to allow the stock-out lpability
for the initial inventory level to be greater than 0. For fimglithis parameter, we can
use an estimate for the stock-out probability value at aeefe state. In this respect,
we can refer to the expertise of sales people for an estiroatbd stockout probabil-
ity at the beginning of sales (when time to departuré andS seats are available for
sale). Lety = SHS, T) denote this estimate. Using this estimate obtained byglmsi

of experts from the historical sales records,can be obtained as follows:

AT

) T o= S((l— n)‘ﬁ) _s (4.18)

~SRS,T)=1-
n RS, T) (S+w1

62



Example 4.2.3 Consider a 30-days ahead flight for which the seller intendss® u
the parametric estimation method for the given type of stadkprobability function.

Let the parameter setting for the problem be given as below:

e The daily intensity of customer arrivals increase frérarrivals per day to40

arrivals per day g, = 540" ).
e S = 200seats are available for sales.

e SR200 30) = 0.6 is seller's estimate for the probability of selling all seat
before the flight.

According to the given;, demand-to-supply ratio (i.e. expected number of customer
arrivals per remaining seat) is found a%[;—ﬂ = 2.52 and the other parametes =

87.5. HerAlce, the seller could utilize the stock-out probabifilmction SRs t) =

1- (%75)405_Tl Apy is a time dependent parameter so it would be recalculated as
the sales proceeds. For this scenario, the stockout prdibals depicted below as a

function of seat inventory s for fixed values of t in Figure 4.3

Stokout Probability (SP(s,t))

Remaining seats (s)

Figure 4.3: Stockout probability curves at given dates

Estimation of the stock-out probability at the initial imtery-time stateS RS, T),
using the previous sales records requires attention. ¢fiiat, sales records need to
be classified into groups so that the demand characteratecsimilar within each

group; low season statistics would not be appropriate fgin keason flights and vice
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versa. Similarly, the historical records of a flight would be reliable if the company
made a promotional, non-standard mark-down during thes dadeizon since such

campaigns can also deviate the demand from its normal patter

It is reasonable to assume that the stock-out probabilityhie flight at the reference
state can be estimated using the stock-out probabilitiesnafar flights atsimilar
states. Yet, the stock-out probabilities of previous flgistnot a directly observable
parameter and this brings forth the problem of estimatiegstbck-out probability of
a flight at a given state after observing its sales records &hktimation needs to be

done considering the following criteria.

Let the same inventory-time positiors, ), be observed for two éierent flights and
let SP(s t) and S Py(s t) denote the stock-out probability estimates of these two
flights at stateg t).

e If the first airplane was sold out and the second one depaitbcempty seats,
thenS Py(s,t) > S Py(s, t) should hold.

e If both airplanes were sold out but the seats of the first opdetied before the
second, the® P(s,t) > S Py(s,t) should hold.

¢ If both airplanes departed with empty seats but the numbenyity seats of
the first one is less than the second, tBd(s,t) > S P(s, t) should hold.

To sum up, itis a sophisticated task to implement empiricgthmds for the estimation
of stock-out probability at a given state. For the previoightk, the sales records
must be classified according to the demand patterns and tvdéaige of the number
of empty seats at the time of departure and the time of stotkHoobserved) should

be recorded for all these flights.

In case the parametric method is not favored due to aforeomeat dificulties, an al-
ternative analytical approach can also be applicable.i®e4i2.2 covers an alterna-
tive for estimating the stock-out probability without ugia functional approximation

or any empirical data.
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4.2.2 Predictive Estimation ofS Rs, t)

The stock-out probability at a given staBHs, t), is a critical figure in the estimation
of optimal sales incentive valug, In the dynamic pricing problem, this figure needs
to be re-estimated at each customer arrival. Thus, defi@iRg, t) as a function of
remaining inventory and time to departure is a reasonalilgigo for this estimation
problem. We propose a methodology for determin8gs, t) using expert opinion
for function fitting. The functional form of the stock-outrfation is restricted so that
it satisfies the required set of conditions for any given flighhen, the parameters
that introduce the demand characteristics of the saleepsamder consideration are

determined and the final form of the stock-out function isaoied.

The stock-out probability would have been easily calcdatehe number of cus-
tomers to arrive until the end of sales horizon and the pritibabf purchasing for
each customer were known. In this respect, the stock-oult é&vévestigated in this

section under the following assumption:

Assumption: At the state § t), the seller predicts constant sales incentive for

all remaining customers.

Recall thatz" = Pr(P; > pg,). The seller determines according to the expectations
on future demand. If the demand realizations turn out to lpalleato expectationsz
can be a reasonable estimate for the average future sadggiuec Notice that keep-
ing the probability of sales constant does not imply fixing phice for the remaining
the sales horizon. The same sales incentive value woulésmond to higher prices
as the reservation prices of customers increase towardepgature. Also notice that
the actual pricing process will continue on a dynamic basd this assumption on

constantz* is about the estimation & Hs, t) only.

Let D; be a random variable denoting the number of customers teeanhen the
time to departure it Of those customers, those who have a higher reservatioa pri
than the ticket price posted by the airline will purchase tibkets and vice versa.
Hence, the customer arrivals can be classified into two graspurchaseseferring

to the arrival of customers who accept the posted pricerafusdalsreferring to the
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arrival of customers who do not accept the price posted byéfier. The stockout
probability could then be defined in terms of prospectiveepieject decisions of
customers to arrive until the end of sales horizon. At a gstate §,t), we define the

probability of stockout as below:
Ki: number of customers arriving in [f) to accept the priceféer.

D; — Ki: number of customers arriving in [f} to reject the price fier.
(2 )@)HL- )P if0 <k<D,

Pr(K; =KIDy) = k I

0 otherwise.

Stockout probability: Probability that number of arriviegstomers to accept the
price dfer is at leass; SHs, t) = Pr(K; > 9).

Pr(Ky > s) = i Pr(K; = k)

=S

T

Pr(Kt = let = d)Pr(Dt = d)

Pr(Kt = let = d)Pr(Dt = d)

DM T 1M
D 2 B

d
( ) )(Ze)"(1 ~ Z5)*“Pr(Dy = d).

~
Il

[oX
1l

=

S
The customer arrivals are assumed to follow a NonhomogeRoisson Process. Ac-
cordingly, Dy follows cumulative distribution function for NonhomogersPoisson
Distribution for given time variant rate.

An alternative formulation for stockout probability coldé given as below:

Pr(Kc>9) = > Pr(K; > SD; = d)Pr(D; = d).
d=s

If we assume that the outcomes of individual customer dassare Bernoulli trials,
thenPr(K; > gD; = d) denotes the probability of observing at leaguccesses in
d trials. This probability is equal to the probability of olpgimg the s" success at or
before thed™ trial or equivalently observing at modt-sfailures until thes” success.

Let Ng; denote the number of customers that arrive but do not puedhagicket until
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the remainings tickets are all successfully sold. This random variableeifired for
D; > ssuch thaiNg|D; takes values if0, 1, ..., D; — s}. Accordingly, tickets would be

sold out after the arrival ofNg; + )" customer.

According to these definitions and the assumption for connzta we have the fol-

lowing observations:

1. The random variablblg;, conditioned orD, follows Negative Binomial distri-
butionNegBIr(s, ).

2. The stock-out probability for a given number of custonterarrive,D; = d,
is equal tOPI’(Nst < Dt - SIDt = d) = Pr(Dt - NSt > Dt - (Dt - S)|Dt =
d) = Pr(Dy — Ng > D¢ = d). Dy — N denotes the number of customers who

purchase ticket in the lasperiods when the current statesis

EvaluatingPr(Ns; < Dy — ) = > g Pr(Ng < d — 9)Pr(D; = d) is computation-
ally difficult especially for large values @ In an attempt to simplify the calcu-
lation, we use the approximatidPr(Ng < Dy — ) = Pr(Ngt < E[D;] — s). No-
tice that the expected number of customers to ariy[&;] = Ay defined in Sec-
tion[4.2.1. For large values @&[Dy], we employ continuous distribution approxi-
mations to Negative Binomial distribution. Vose (2008) niem$ that Normal ap-
proximation is a good approximation to Binomial distributtid number of successes
(E[Dy] — 9) is greater than 50 and probability of succe®g$ (s not very close to 0
(NegBir(s, 2) ~ Normal: - s, %)). For small values of*, Gamma distribution

provides a good approximatighlegBir(s 2) ~ Gammds, ).

DP

N

SP z

Pr(N<Dy)
Figure 4.4: Relationship betweehandS Hs, t)
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Hence, for a given value &, it is possible to finds s, t). Moreover, using th®P
model,z* can be calculated when the stock-out probability is knowm. kivow that
Z' is a probability value, meaning that it can take values onntexval [Q 1]. Using
NegBir(s, 2), we can calculat® R s, t) values for every value of = {0.01,0.02, ..., 1}
at a precision level of 18. Likewise, SR t) € [0,1] and for everySRst) =
{0.04,0.02, ...,1}, z can be found usin@pP. At optimality, the value of stock-out
probability for given sales incentive and the sales ineentbtained by the stock-out
probability should be the same. That is, the optimal vafuean be found by the
following algorithm based on direct enumeration. The mimadeapproach described
in the algorithm is referred to as Predictive Modeling apto with the acronym
PredM.

Step 1. Definéd as a matrix whose first row contains all possible sales imnceualues
at a precision level of 16, [0.01, 0.02, ..., 1], and second row contai$sR(Zs, t)
values found bys Rs, t) = Pr(NPs; < D; — s) for the correspondingvalues in

the first row.

Step 2. DefineB as a matrix whose second row contains possible stock-obiapii
ity values at a precision level of 1§) [0.01,0.02 ..., 1] and first row contains
Z'|S As, t) values obtained bipP for corresponding H s, t) values in the sec-

ond row.

Step 3. DefineA;; = maxX|A(L i) — B(L, ))I,IA(Z,1) — B(2, j)I}; the maximum of the
difference between the;[5 A tuples ati™ column ofA and j™ column ofB.

Step 4. Findi( j) for which A;; is minimum (where the tuplez[S RZs, t)] and [z *
ISRHs,t); SH are closest to each other)A(1,i) + B(1, j)) /2 is the optimal

sales incentive value.

Example 4.2.4 Consider the problem setting in Example 4.2.3;=S200 seats are
available with T= 30 days to flight and time dependent daily customer arrival fre-
quency followst, = 540", According to the definition of;, 505 potential buyers

are expected to show up f@b0seats before the plane departs.

The predictive method requires estimation @f dhe maximum ticket price the seller

could gain on a last minute sales and the time-dependend gatentive as a function
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of price, £p). For this particular example, we choose logarithmic salesmtive with
Pup = 250and pow = 100at t = 30 days and assumeyp = 400. The values of ,
Pow and prin are selected arbitrarily and the algorithm works reliably wisame
computational gort.

t=30 days (505 arrivals / 200 seats)

0.8
SP(z | s=200, t=30 )

06

Probability of stockout

041 z* | SP(s,t)
¥

0.2r

0 0.2 0.4 0.6 0.8 1
Sales incentive (z)

Figure 4.5: Predictive estimation 8fHs, t) andz* att = 30 days

According to the proposed methodology, the point of intdise in Figure 4.5 gives
the optimal value of sales incentive together with the c@oesling stockout proba-
bility. Notice that the stockout probability curve, &R, t), is increases rapidly from
Oto 1 over asmallinterval. Since we consider a large number ofvaits when = 30
days, relatively small rise in probability results in a hugerease in expected number

of seats to be sold and therefore the variance is quite small.

In this case, the stockout probability is not representethaform of a function of
state variables so the procedure needs to be repeated atoemtbmer arrival. Now,
let us consider a later stage during sales when2 days. For given;, 75 customers
are expected to show up in the last two days and we assum&@seats are left
unsold so the demand-to-supply ratiod%. Finally, we assume price upper and
lower bounds for the reservation price distribution arg,p= 250and p,, = 500.

Respective findings are depicted in Figure 4.6.
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t = 2 days (75 arrivals / 30 seats)

o
©
T

AN

SP(z | s=30, t=2)

o
o
T

Probability of stockout
o
=

0.2r

. . .
0 0.2 0.4 0.6 0.8 1
Sales incentive (z)

Figure 4.6: Predictive estimation 8fHs,t) andz* att = 2 days
4.3 Nonrecursive Dynamic Pricing Model

Using the approximationgv(s) = w(s) — (s— 1) ~ SKHs,t — 1)psin, the recursive
Dynamic Pricing model@P) for the first subproblem to determines obtained.

DP :

Z = argmax|-zSRs.t— 1)prn + 2P+ %a(9) | P= Fpl(1-2)}.  (4.19)

z€[0,1]

The termsS Rs,t — 1) andv;_(s) are independent afwhich determines the price at
timet. Besides, the pricpis defined by the inverse cumulative density function of the
reservation priceP;. Assume that the cumulative density function ifetientiable.
Thus, the function to be maximized #in (4.19) is diferentiable irg, implying that

the maximum exists in the interval,[0].

We assume that the upper and lower bounds on ppggt) and piw(t), are given
parameters for timé¢. The upper bound corresponds to the price limit, above this
limit the customer will not purchase the ticket, Bo(P; > py(t)) = 0. With a similar
interpretation,Pr(P; > pow(t)) = 1. Hence, the sales incentive,= Pr(P; > p),

is a nonincreasing function of pric@, on the interval piow(t), pup(t)]. That is, the
dp
dz
a formulation of the optimal value of sales incentizefor a particular form of the

term — should be negative or zero on the same interval. The follgyemma gives

function p(2). The analysis in the lemma is made for a giten
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Using the value ofz" in (£.10) in p(z) = F;'(1 - Z), the following equation is
obtained for the optimal pricp at state §, t):

(k=1)z'p(z)+ SAst - 1)pfin)
kZ'p(z') + SHS t - 1)prin

p(Z) = FE}( (4.20)

Solving (4.10) is not straightforward since the optimalueabf the probability of
sales,z, is expressed in terms af. Although an explicit formulation has not been

obtained, numerical methods like search algorithms carsbd for finding the solu-

tion of (4.10).

The following bisection algorithm is given to fired numerically for the case of loga-
rithmic demand. This algorithm should be used throughoeitstides horizon at each
customer arrival; thus the state variablast) and the state dependent parameters
(Pups Pow» S A(s, 1)) should be updated accordingly. Remember that for the ithgar
mic sales incentive case, the third statement of Lernmal4fle?s a mathematical
condition for suboptimal value elimination before stagtia search type algorithm.
Hence, this condition is also taken into consideration &wedfdllowing algorithm is
devised:
e Initialization: Setx = In @. Set the lower and upper limits of search
interval forz': zew = 0, z,p = rﬁlior\;v(], 1/«). Enter the parameters,, and piow
for timet, psin, SRS t - 1) andprec

e Step 1: If SRS t—1)prin = Pup, STOP withz' = 0. Otherwise, go to Step 2.

e Step 2: Sety = (Zow + Zip)/2. Calculatee as follows:e = ~-SHs, t — 1)psin +

(1 - «y) piy PL,- GO to Step 3.

e Step 3: If |[¢] < prec STOP withz = y. If € < —prec setz,, = y. If
€ > preg setz,, = y. Go back to Step 2.

The parameteprecdefined in the initialization stage is the precision giverttmyuser
for stopping the algorithm. A generic bisection algorittsrdefined in Steps 2 and 3
using the optimality equation given in (4]10). The condit®Rs,t — 1)prin > Pup
implies that the expected revenue of keeping one more sdatéo sales is larger than

the maximum price the current customer is willing to pay. His tcase, the optimal
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decision is not to sell the seat to the customer at all anddbigiament* = 0 at Step

1 represents this decision.
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CHAPTER 5

DETERMINING THE REFUND PREMIUM

The original dynamic pricing formulation in Sectién 8.1 @ finding the optimal
prices for the flight and the option simultaneously. On tr@ehentioned grounds,
we handle the pricing problem in two consecutive steps. itpproposed two meth-
ods for determining the ticket prigedisregarding the option in Chaptér 4, the method-
ology developed for pricing the refund option for a giventriesed ticket price is

presented here.

For a fixedp value, it is shown in[(3]3) that the optimal value of optioicprcan be

obtained as follows:
Jst = argmax{Pr(Q; > q/P; > p)(q - Anvi_1(S—1,n))}. (5.1)
q

The only information about the customer that can be usefybriiging the refund op-
tion is the arrival time. The seller does not know anythingcsfic about the customer
that can indicate hiber willingness to pay for refund option. Also, there exists
opportunity to negotiate to learn about the customer’srvasen price. Hence, for
maximizing the expected revenue, the airline company needsvise a method to
estimate the probability distribution of the maximum pribat a customer is willing
to pay for the refund option. Recall that this maximum pricdesoted byQ;. The
estimation of the reservation price of a commodity basedhemptevious sales records
is practically impossible since the seller is not able tovkinmw much the customers
are willing to pay before or after the sale; hence, the sekeer knows how much it
is worth to a customer to have a refund option. Thus, the gmittyadistribution of
Q: must be interpreted in terms of the probability distribanted another variable that

is observabldo the seller.

73



In customers’ point of view, the worth of a refund option is titility of avoiding the
risk of losing the money spent for the unused ticket in cassmatellation. The can-
cellation risk can be predicted by the seller using cantitetiaand no-shows statistics
of the previous flights having similar characteristics. $hassuming that the seller
can estimate the probability distribution of random valeaD;, the probability that
the customer who purchases a refundable ticket atttimk cancel the booking, it is
possible to estimate the reservation price of refund opfitire relationship between

C, andQ; can be formulated mathematically.

The variablesC; and Q; are closely related to each other. The higher the risk of
cancellation is, the higher the worth of refund option wal. bfo formulate a mathe-
matical relation betwee@, andQ;, the decision making perspective of the customer
must be modeled in a quantifiable way. Hence, our objectitRisistep is to obtain

the probability distribution of); using the probability distribution df;.

The termA,vi_1(S— 1, n) is the expected net change in revenue-to-go due to making
the current booking refundable. This cost term is consui@rehis work as the dif-
ference between the amount to be refunded to the custontex eancellation instant
(immediate loss) and the expected return from the resetifribe unit capacity that
is available for sale after the cancellations (future ga®yibramanian et al (1999)
study a Markov Decision Process for airline RM problem withazlations. They
firstly define two diferent classes of events, cancellation and purchase redoest
each fare class and devise optimality equations accosdiiiglen, noticing the com-
putational dificulties, they transform the optimality equations such thliexpected
costs (caused by cancellations and no-shows) are assasediastant of admis-
sion (booking of a seat) along with the reward (payment offéine)". In this part,
we adopt a similar methodology for introducing th&et of cancellations into our

formulations.

In our formulations, the amount refunded to a refundableetitiolder in case of a
cancellation request is full fare minus the cancellationghy, p + g — m. The full
refunding strategy can be analyzed by setting the canicellaenalty to 0. Unlike
the losses due to cancellation, the gains due to resellipgrdion the time of cancel-

lation request. Thus, to find the increase in expected revengo due to an increase
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in seat inventory with cancellation (mathematically, tpagximateA,v(s— 1,1)), we
consider the change in revenue at the time of cancellationtdd byr and come up
with the corresponding expectation [n (5.8) ahdn; refer to the (anticipated) values
of state variablesandn att = 7 and fr_(7) denotes the pdf of the time of cancellation
(denoted byT.) given that cancellation would occur. The cancellationdiiea, t4,

denotes the time point in the sales horizon at which cartaatlalaims expire.

Anvi_a(s—1,np, q) = E[C{]

(p+q-m - f @AV (G| (52)

Similar to the the marginal seat revenue approximation icti®&e[4.2, we define
AV, (5,N) ~ SKHS, 7)pmax. Notice that, on the left-hand-side of the equation, the
marginal seat revenue term is definedsit,(n) to represent thefiect of outstanding
cancellation claims. However, we keep the stockout prdipaleistimation function

in terms of §,t) in order to preserve consistency with the estimation nugtuzfined

in Chaptef®.

Let ECI(s - 1,t,n, p,q) (Expected Cancellation Increment) refer to the increment
in the value of the function given i_(5.2) under this appnoation. Noticing that
the integral term in[(512) is independent of the valueggofve can denote expected
incremental cancellation cost in the formBCI(s— 1,t,n, p,q) = E[C{]q+ Awhere
A=E[CI(p-m=- [ fr,(t)Asv(S.. )dr) is constant g,

The primary problem in the estimation BCI(s - 1,t,n, p,q) is the uncertainty of
the cancellation timeg; with probability C, the customer returns with a cancellation
claim but the time of this requestfacts the value of the additional seat which be-
comes available for sale once the reservation is cancdlleslexpectation formulated
in (5.2) containdt_(7), the probability distribution of cancellation time givérat the
current booking will be cancelled. Yet, this informatiomist suficient because the
seat inventory at the time of cancellation, cannot be known as well. Depletion
of seat inventory depends not only on the demand charaotdrig also the pricing
policy of the seller, so, itis impossible to derive a forntida of §; analytically. Like-
wise, the future state of number of refundable bookingss'determined by demand,

pricing policy and cancellation claims used; making ffidult to estimate.

An alternative approximate approach to expected loss doartoellation can be use-

ful for estimating an analogous term that we defin&&4(s— 1,t, n, p, ), Expected
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Cancellation Loss. The amount refunded to the customerg — m, is lost if (1) the
ticket is cancelled during the sales horizon and (2) salds eefore this additional
seat is resold, which means stockout does not occur. Theasgtn of the can-
cellation probability,C;, which is necessary for finding the loss expectation, is also
required for the determination of the pdf of the refund optieservation priceQ.
Similarly, the stockout probabilitys R's — 1,t) is already estimated in the restricted
price determination in Chaptel 4. So, the same formulatiansbe used in this part
as well. Accordingly, without requiring additional knowlige regarding the sales pro-
cess or the current customer, the expected cancellatisrchos be approximated as

follows:
ECL(s-1,t,n,p,q) ~ E[C](L-SRAs-Lt))(p+qg—m). (5.3)

The stock-out probability term on right-hand side[of [58assumed to be indepen-
dent ofn. This definition is equivalent to assuming that the expecteacellation
loss of a customer booking a refundable ticket at tinseindependent of the number
of refund claims sold (and not used) until tirheNoticing that this assumption may
decrease the accuracy BCL estimation, it is necessary to keep the dimensionality

at a manageable level.

Recall [5.1); for finding the optimal refund option price fogiaen p, together with
the expected cancellation loss, the probability distrdubf refund option reserva-
tion price,Q; must be known. In this respect, in Sectionl 5.1 the relatignisatween
cancellation probability of the customé), and the reservation price of that customer

for the refund claim@, is investigated.

5.1 Decision Making Under Gains and Opportunity Losses

In the first stage of the dynamic pricing problem, the selkxides on the restricted
ticket price according to the revenue maximization priteiplhe airline company
processes individual customer requests hundreds of tiorasythe sales horizon for
each flight and this sales process is experienced for evght.fl5o, the overall rev-
enue of the airline company will converge to the total expecevenue by the Law of

Large Numbers after hundreds of flights. Thus, the sellessamed to be risk neutral
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and the uncertainties regarding the total revenue are ket tato consideration. On
the other hand, a restricted ticket buyer faces the risk@fidmg money on an unused
service in case of cancellation and is expected to be risksavagainst this probable
loss. In order to estimate the maximum amount the customeilling to pay for a

restricted-to-refundable ticket upgrade, in this sectl@buyers will be considered
as risk-averse decision makers choosing between the nowiable and refundable

ticket according to their own utility function.

Remark 5.1.1 The risk aversion of individuals could be an opportunity ¥pleit

for the corporations. The insurance companies sell a greahlper of insurance
policies at prices above the expected loss utilizing riskrsion. Similarly, financial
derivatives are proposed to investors who want to reduce tlerntainty in their

future gains and brokering parties benefit from risk avemsio this case. In their
seminal work on Prospect Theory, Kahneman and Tversky (1@fi@edoss aversion
as the stronger risk aversion of people when losses are urmhsideration than they
have in situations considering gains. Thus, as long as tlstoooers are expecting
probable future losses, selling contracts that would avdie tisks can be a very

profitable business practice if the price is determined fidhg

Selling refundable tickets with a price premium is similas&lling insurance policies
in the sense that in both cases the tendency of customersfar paying a premium
to avoid uncertain future losses is exploited. For the conp the loss in case of
a cancellation depends on whether the booking is refundableot the final loss
for nonrefundable ticket will be higher with probability.CThis dfference in utility
rationalizes the dference in prices of restricted and refundable tickets thafenoted

by g.

The decision making model based on maximizing the expected efdinal gains
could be reasonable under the assumption of risk neutrafithe passengers. How-
ever, the refund options, which are developed for elimirgttie risk of cancellations,
are preferred by risk averse passengers and the decisiatepsoshould be modeled
accordingly. Hence, the decision making models based ogcéq utility maximiza-

tion will be employed in our analysis.
According to the decreasing marginal utility assumptioseguted for risk averse in-
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dividuals, the utility function @) should be an increasing concave function mapping
positive monetary gains to positive utility values. Thesguirements on the func-

tional form of da) can be described mathematically as follows:
e g(a) : R* - R*,

od—gZOV(lZO,
da

Understanding the customers’ willingness to pay for thedfoption is a critical
issue for determining its price. The optimal valuegp€annot be found unless the
cumulative distribution function of the reservation pri¢&,(q), and the expected
incremental cancellation co$|C(s,t,n, p, g), are estimated. The reservation price,
Q:, represents a price threshold for the customer’s decisioblgm of purchasing
the refund option or not at timee In this respect, the estimation of reservation price

distribution is connected to the seller’s decision probt#rdeterminingg.

Having decided to book for a certain flight with a given prigeghe customer should
decide whether the risk of missing the flight is worth payihg additional premium
for holding a refundable ticket which would prevent mongtass in this case. The
decision problem of the passenger for choosing betweenatest and refundable
tickets is depicted in the decision tree in Figlrel 5.1. Indkeision tree, the prob-
ability that a restricted (nonrefundable) ticket owner sloet take the flight and the
probability that a refundable ticket owner cancels the lnagpkre both denoted k.
Assuming that these two events have the same probabilitgafreence is consistent
with the assumption of exogeneity of cancellation (camatelh being independent of
having the refund option) discussed in Chapter 1.

The dfficulty of the aforementioned net gain approach is twofolde Tifst problem
is to estimate the monetary value that the customer atésitotreceiving the air travel
service. The seller knows the price paid for that servic@owever, it could only be a
lower limit on the customer reservation price for the pre#sxd service. The second
problem regards co-existence of gains and losses in the s@ityefunction. In their

seminal work, Kahneman and Tversky (1979) show that thiyufilnction of an in-
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Figure 5.1: Passenger’s decision - utility based on gains

dividual is structurally dierent for gains and losses and demonstrate the phenomena
of loss-aversion, which they describe as preference ofdawpilosses to acquiring

gains.

Notice that the reservation price of the refund option iswvihkele ofqg for which the
customer is indterent between refundable and nonrefundable tickets. Febr @at-
come (take or miss the flight), service-related utilities igientical for nonrefundable
and refundable booking decisions. Furthermore, the ckaticel probability is as-
sumed to be independent of having the refund option sincesaunae that thevilling
customemwvould like to cancel the booking only due to exogenous fagtdee health

problems, conflicts, etc.

It is noted by Bell (1982) and Loomes and Sugden (1982) thattitiey functions
defined with the final gain may fail to represent the decisi@kens’ behavior and
they presented experiments that contradict the assunspioexpected utility maxi-
mization principle. On the other hand, they show that wytilitnctions could still be
insightful with an alternative metric; the post-decisi@giret that the decision maker
would have if the chosen alternative is not the best altermddr the final outcome.
Thus, minimization of anticipated (dis)utility of regrastéonsidered as an alternative
objective in decision making process and regret is emploggether with final gains
while defining the utility function of the decision maker. Withis motivation, in

Sectior 5.2 the decision problem is reinvestigated witk éxitended formulation of
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utility.

5.2 Regret and Negative Utility

In the decision theory, regretis defined as tHedence between the paythat would
have been obtained if the best course of action had beenrcharsa particular out-
come and the paybof the selected alternative for the same outcome. In thisees
incorporation of regret makes it possible to define utilitpdtions that evaluate the
opportunity loss of an alternative together with its gainfoAmal definition of regret

is given below.

Definition 5.2.1 (Loomes and Sugden 1982) Regret is a measure of how much bet-
ter the decision maker’s position would have beephié $1ad chosen an alternative

course of action for the given outcome.

To the best of our knowledge, the first studies on regret insa@t making under
uncertainty are in early 1980s. Loomes and Sugden (1982gpt¢he Regret Theory
explaining the concept of regret broadly for single-cigarand multi-criteria deci-
sion making and discussing the legitimacy of regret minatian in decision making.
Bell (1982) also studies incorporation of regret into expdattility theory and no-
tices that the existence of a sense of loss via inclusiongrétén the utility function
formulation makes the expected utility maximization adettescriptive model. Both
papers give examples of the paradoxical behaviors thatamtiot the axioms of ex-
pected utility on gains. Yet, these behaviors of the degisi@akers are consistent

with the desire to avoid post-decision regret.

5.2.1 Mathematical Modeling

In refund option pricing problem considered in this studye tustomer has three
choices (do not book, nonrefundable booking or nonrefuledadioking) and for both
outcomes (flying or not) determining the regret is quiteightiorward. The gains
are defined in the same way as depicted in Figure 5.1. Thetragseciated with

either of restricted and flexible booking alternatives dan he described in monetary
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terms easily as seen in Figurel5.2. The (dis)utility valuenéd in terms of the
regret are denoted &g and{; for nonrefundable and refundable booking alternatives,
respectively. Notice that the third optioRp not bookis omitted in the decision tree.
Since the customers’ willingness to pay for the refund apti is related to the
tradedt between the nonrefundable and refundable booking, weaestr attention

to these two alternatives.

Figure 5.2: Passenger’s decision - regrets of decisiooeou tuples

Consider the case the decision is to get the restricted bgokithout refund op-
tion: if the customer ceases to receive the service, thepakedecision regret in
monetary terms would be equal posince the best alternative would have been not
purchasing the ticket. On the other hand, if the customezives the booked service,
then restricted booking would be the best course of actidregret would be 0. The
alternative decision is to get the refundable ticket by pgydn additional amournf

in this case, the regret in case of a cancellation would balgqun, and when the
customer receives the service, the regret would be equal 1o the formulations
below, we work with conditional random variables for giv€n Below, we define
the random variabled,(t) andU,(t) as the utilities of the monetary regret for nonre-
fundable and refundable ticket owners, respectivelg.increasing in regret denoted

by a negative quantity in the following formulations.

l(—=p) with probabilityC,,

Unr(t)|ct = . .
Z(0)  with probability 1- C;.
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/(—m)  with probability C;,

U ()IC; = . i
Z(-g)  with probability 1- C;.

E (Un(®IC) = (1-C)L(0) + Cl(-p).  E(U:MIC) = (1 - C)(-0) + C{ ()

Recalling the expected (dis)utility values for nonrefundadnd refundable booking
options in Figuré 5]2 and using (5.2Z),(t) and{;(t) are found as below:

Zr(t) = E(E(Uni(D)IC) = (1 - E(C1))Z(0) + E(C)L(-p)
4 (1) = E(E(U(DIC) = (1 - E(C)){(-a) + E(C)Z(-m).

Remark 5.2.2 From historical sales realization records, it is possitde the seller to
observe for every booking whether the customer cancels thidrimpor not. So, dis-
tribution parameters of the cancellation probability €an be estimated for current
customers using past data. On the other hand, estimatidmeafustomer reservation
price, R, is a more complicated task. In historical sales records, gbller’'s knowl-
edge is limited to the accemject decisions of the customers for the pricgered to
them and their maximum willingness to pay for tifeed service is unknown. Thus,
the utility based analysis is considered impractical duaenézessity of reservation
price estimation and in this work we will assume that the selterd only estimate

the distribution of cancellation probability,C]

5.2.2 Solution Approach

The regret of each decision must be converted into utilitynse Howard (1988)
notices that "exponential utility curves satisfactoritgdt a wide range of individual
and corporate risk preference”. In addition, Kirkwood (2p8hows that in most
cases an exponential utility function with appropriategpaeters provides a very good
approximation for general utility functions. Bouakiz andb®b(1992) and Barz and
Waldman (2007) also utilize exponential utility functickasincorporate risk aversion
for decision making situations involving loss. They qugnthe (negative) utility to

be maximized ag(d) = —e”’ whered < 0 denotes the loss in monetary terms gnd
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is the positive risk aversion cficient. In the reference cited above, it is noted that
larger values of8 represents greater risk aversion. Figuré 5.3 illustrateschange
in risk aversion due to increase in value of risk aversiorfic@ent, which appears as

the increased concavity of the utility function.

I SR
-200f .- 1
b4
o -400p |
(<o}
v
=
5 _go0} 3=0.017 1
-800} 1
-400 -350 -300 -250

Loss(8)

Figure 5.3: The utility function for dierent degrees of risk aversion

Understanding the customers’ willingness to pay for bogkefundability and esti-
mating the future revenue impacts of selling an additioeéind claim are the two
critical issues for determining refund option price. ®&tand Q; denote the cus-
tomer’s reservation price for base service and cancefiagfund option, respectively,
where subscript denotes the dependence to the time between booking andeservi
Assuming that the seller has an estimate of expected iner@eancellation cost,
AnVi_1(s—1, n), which is a function of remaining inventorg, and time to expiryt, for
given price setting. We consider the following two altevatefund option pricing

policies.

e Point Estimate. Let the seller have a point estimate for the customer’s fun
option reservation price.” Then, the pricing policy imposed by revenue max-
imization principle is elementary;fier refund option pricey, "provided that

Qt > Ath—l(S_ 1, n)-
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e Probability Distribution Estimation. Let the seller have an estimation for the
cdf of customer’s refund option reservation pri€&(Q; > q/P; > p). Then,
the refund option price could be determined according tontlaimization
formulated in[(5.b).

ds(P) = argmaxPr(Q; = qlPt = p)(q - Avia(s—-Ln))}.  (5.5)
q

The regret of each decision should be converted into utdityns using utility func-
tions defined for losses. Bouakiz and Sobel (1992) and Barz aaddrivén (2007)
utilize exponential utility functions to incorporate rigkersion for decision making
situations involving loss. They quantify the (negativelitytto be maximized as
£(#) = —eP? wheref < 0 denotes the loss in monetary terms grisithe positive risk

aversion cofficient. Itis noted that larger values@fepresents greater risk aversion.

Respecting the popularity in the literature and consideitsxgnalytical advantages,
we prefer exponential utility functions. In this study, wensider the following
(dis)utility function: £(¢) = a— be®® wherea > b > 0 andd < 0. Next, we model
the customers’ choice between nonrefundable and refuadbaakings as a decision
problem and show that a point estimagefor refund option price obtained accord-
ingly at timet. Lemmal5.2.B presents a neat formulation of the point estiroh
refund option reservation pricg,. Lemmd5.2.4 gives an estimate of the probability
distribution of reservation price);.

Lemma 5.2.3 Let/(#) = a— be? where a> b > 0 and6 < 0. Then, for given p, m

and G = c, the breakeven refund option prigeis

qt:}m(MJrl).

2 T (5.6)

Proof.Proof. Using the expressions givenlin (5.7) for the congdetility function,

we have

E (Un()IC; = ©) = (1 - ¢)(a— be?O) + c(a— be?P) (5.7)
E (Un(1)IC; = ¢) = (1 - ¢)(a— be?D) + c(a— be?tM), (5.8)

E (Un(t)IC; = ¢) above is constant igandE (U, (t)|C; = ¢) is concave decreasing in

g. Since the breakeven refund option pragés"given by theq value for which these
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two curves intersect, solving
E(Unr(t)lct = C) = E(Unr(t)lct = C)

G is obtained as i (516). -

Figure[5.4 presents a graphical demonstration of Lemma& $02a given parameter
setting. Observe that refundable booking has greaterufdig) value (i.e., more
preferable) than nonrefundable booking while option pisdess than the breakeven
refund option price. Therefore, it is the maximum price thetomer will be willing
to pay for a restricted to flexible booking upgrade. The beeeh price determined
by four parameters is increasing in cancellation probgbdi and restricted booking
price, p, and decreasing in cancellation penaitty,

Nonrefundable
----- Refundable

-
||-|-\-r-,-‘-
-
-,

-60

-80+

-100}

Figure 5.4: Breakeveqwhenc = 0.2,8 = 0.05, p = 100 andn = 10

The breakeven refund option price presented in Leinmal5&fiBab the customer’s
maximum willingness to pay for refund option given a fixed @giation probability
value,C; = c. Assuming that the cancellation probability is a time-aatirandom
variable, the reservation price of refund option would baradom variable as well.
c(eP — &M

1-
c € [0,1). Then, using Lemm

Let ¢(c) = [—3 In + 1| be defined as a monotone increasing function for

.3, we can obtain the probabiliggrithution of
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Q: from the distribution ofC; (recall Remark 5.2]2). The relationship between the
two random variables is given in Lemrma 512.4. Proof is basedetating the cu-
mulative distributions of two random variables when oneasied from the other
with a monotone increasing function. A compact proof is mted here forC, and

Q:; however, Ross (2008) presents a more comprehensive regggin@ral monotone

functions.

Lemma 5.2.4 Let the functions(c) be defined such that
p_ m
—C(eg &) +1].
(1-0
Let the ticket price, p, be larger than cancellation penalty Then, &, = Fo o¢ and

¢(c) = % In( (5.9)

Fo = Fc 0 ¢~ where R, and Fq, denote the cumulative density functions of random

variables G and Q, respectively.

Proof. The first derivative of(c) with respect ta below

dp(c) 1 1-c &P —m
TE_‘Bcwm—w®+a—QXUr®2)

is positive forp > m. (Note that the ticket pricgp being greater than cancellation

penaltymassures the positivity of the tergP—e’™.) Hence g is monotone increasing

on its domain and it is invertible (the inverse functiprt is well defined).

The monotonicity of functiom assures existence of the inverse functipoh Through
a few algebraic operations, we obtain' as follows:

1
PP _Pm_ 1’

Sinceg¢ is a monotonically increasing function, it preserves théeang on its do-

Q) =

main. That isg(c) < ¢(c’) if and only if c < ¢’. Accordingly, we have the following

equality for everyc:
Fe(c) = Pr(C; < ¢) = Pr(¢(Cy) < ¢(c)) = Pr(Q; < ¢(c)) = Fo(¢(c)).
Therefore, we havEc, = Fg o ¢ andFq = Fc 0 ¢t |

Therefore, the seller might transform the cumulative thatron function of cancella-
tion probabilityC; to the cumulative distribution function of refund optiorsegvation

price for the (dis)utility function considered in Lemia 32
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Table 5.1: Break-even option price valugs= 200 andm = 10)

Ct:C

0.001

0.003

0.005

0.010

0.030

0.050

0.020

4.304

5.342

6.691

12.066

73.994

122.207

0.040

8.768

10.818

13.431

23.256

95.886

136.459

0.060

13.400

16.432

20.223

33.726

109.445

144.982

0.080

18.212

22.191

27.073

43.595

119.417

151.162

0.100

23.212

28.102

33.986

52.957

127.385

156.062

0.120

28.413

34.172

40.967

61.890

134.076

160.157

0.140

33.828

40.407

48.020

70.456

139.884

163.698

0.160

39.468

46.817

55.151

78.706

145.046

166.839

0.180

45.350

53.410

62.367

86.684

149.719

169.676

0.200

51.490

60.194

69.673

94.428

154.008

172.276

0.220

57.903

67.181

77.077

101.971

157.992

174.688

0.240

64.610

74.381

84.586

109.339

161.727

176.948

0.260

71.631

81.805

92.206

116.560

165.258

179.082

0.280

78.989

89.466

99.947

123.656

168.619

181.112

0.300

86.709

97.379

107.817

130.646

171.838

183.055

0.320

94.819

105.556

115.825

137.552

174.938

184.925

0.340

103.349

114.016

123.982

144.389

177.939

186.734

0.360

112.333

122.775

132.300

151.176

180.857

188.493

0.380

121.809

131.853

140.789

157.927

183.705

190.209

0.400

131.819

141.271

149.465

164.659

186.497

191.891

0.420

142.409

151.053

158.340

171.387

189.243

193.544

0.440

153.633

161.224

167.432

178.126

191.955

195.176

0.460

165.549

171.814

176.757

184.892

194.641

196.793

0.480

178.225

182.855

186.337

191.700

197.310

198.399

0.500

191.738

194.382

196.192

198.566

199.971

199.999
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The rows and columns of Takle 5.1 display the change of ckatioel option reser-
vation priceg; = ¢(c) with respect increase in risk aversion ffic@ents and cancel-
lation probabilityC, = c, respectively. The monotonicity gic) in ¢, which has been
shown in the proof of Lemma’5.2.4, is observed along the cotum(c) values are
also increasing along the rows; reservation prices inergagsk aversion cdécient

B. For diferent values op andm tuples, the same pattern is observed if the cancel-
lation probability is less than.D (if cancellation is less likely than taking the flight).

Conjecturé 5.2]5 is given based on these observations:

Conjecture 5.2.5 Assume that for a passenger who booked on a flight, it is more
probable to take the flight than not taking ity(€ 0.5). In this case, the reservation
price of the customer found by the breakeven analysisnQeases as the cgieient

B increases.

It has been noted that the increasgimalue corresponds to increased risk aversion.
Thus, Conjecture 5.2.5 can be restated as follow€; I& 0.5, the maximum price

a customer is willing to pay for the cancellation refund optincreases as the cus-
tomer’s risk aversion increases.

In order to prove the conjecture, one needs to show that tinatiee term(cj}l—;5 IS pos-

itive for cancellation probability values less tha.0Conjecturé 5.215 states results
for particular values of;. A more general condition can be given on the distributions
of random variable€; andQ, rather than specific values. Lemia 512.6 states a nec-
essary condition that leads to stochastic ordering of vasen prices corresponding

to different degrees of risk aversion.

-1

Lemma 5.2.6 Let the random variable < 0.5 and Ietdd—ﬁ < 0 hold for any(p, m)

tuple such that nx p. Let the functiong, and ¢, be defined as if_(5.9) with risk
aversion cofficientsp; and g, respectively such thg < .. Then, Q = ¢1(Cy) is

stochastically smaller than £3= ¢,(C,).

Proof. By Lemm&5.2.4, we know th&y:(q) = Fc,0¢1'(0) andF(q) = Fc045(0).
dg~t

Sincew < 0,B1 < B2 implies¢;*(q) > ¢,*(q) for every value ofy.
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The cumulative density function of cancellation probapilC; is a non-decreasing

function; hence the following inequality holds for every

Foi (@) = Fe, 0 ¢77(a) = Fe, © ¢57(0) = Fee(0). (5.10)

The inequalityF:(q) > F(q) indicates thaQ} is stochastically smaller tha@?. B

Remember that the second stage subproblem deals with thenimation problem
dst(p) = arg max{Pr(Q; > q Pr(P; > p))(d - Aqvi_1(S— L. nip,q))} .
q

So far, we have formulated a concrete method of estimategdhofQ; using the cdf
of C;. The further discussions on th&ect of customer’s degree of risk aversion on
this relation is made in order to validate our findings. Itasural to expect that more
risk averse individuals would be more willing to pay for eiinating their risks and
for a reasonable range of cancellation probability valligs< 0.5) this is observed
in our calculations. In Chaptéf 6, this methodology will beplemented for finding

the refund premium in the simulation studies.
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CHAPTER 6

RESULTS AND DISCUSSION

In this study, the airline dynamic pricing problem is stutlie two consecutive stages.
For the first stage subproblem, tBé¢ model is investigated in detail on a theoretical
basis so far. In Chaptéf 6, we firstly intend to evaluate theaaey of the pricing
scheme of the proposed model and compare it with an alteendyinamic pricing
model. Then, the revenue generation and load factor pediocsofDP implemen-

tation are assessed through simulation studies.

The second stage subproblem considers pricing the refierdipms for given base
(nonrefundable) ticket prices and a concrete methodolsggtioduced in Chapter
B. The revenue contribution of options for ticket refundigoand proposed pricing

method are also analyzed with sales simulations that alloweellations.

6.1 Parameter Setting

In order to simulate a realistic sales process for the @M problem, we have
merged our observations on the real life booking resematystems with the theoret-
ical basis of dynamic pricing. The parameters that we reguwimodel the temporal
nature of demand and to calculate the prices with the praposeing algorithms are
classified into three main groups. With the setting we prelsere, we first construct
a base scenario for the simulation runs and alterationsesetiparameters are also

made to understand the impact of changes in individual facto
a. Sales parameters:In order to define the state space, the primary decision to
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make is to decide the length of the sales horizon and the seantory. Although
typical sales horizons vary between 6 to 12 months, "earsSare mostly managed
by strategic marketing campaigns and special promotiolysaic pricing is most
effectively implemented at the operational level in the lastda@s period, during
which more 75% of the tickets are sold. We assume there aresd{3 available
for sales at the beginning of last 30-days peri®@d= 100 seatsT = 30 days is
considered in the base scenario, simulation results féerént values of are also
included in Appendix 2). Another parameter determined atdtnategic level and
applied to all customers is the cancellation penaityT he typical ticket price for our
demand setting varies between $5@00 and in real life implementations we have

observed relatively low hassle cost for refundable tickibiss we assume = 10.

b. Temporal demand parameters:The distribution of reservation pricB;, and cus-
tomer arrival rate , are the two components of time-variant disaggregated déman
we introduced in our formulations. The reservation pricgrehution we study in the
simulations is the logarithmic distribution, which is exly formulated in Section
[4.1.2. This distribution is defined on a bounded support, sonedeled the temporal
shift in distribution as an increase in lower and upper beuasl time to departure
approaches. Parallel to our observations from the annied data from a major Eu-
ropean airline, we have set the reservation price to rantyecles (29— 149) when

t = 30 days to departure and between (39299) at the end of booking horizon.
The increase of lower and upper reservation price boundségwise linear in time;

as pw(t) increases from 29 to 199 along the sales horizon, 50% ofitbiease is
modeled with linear increase at constant rate and the of%n/&ith jumps at prede-
termined time points in the sales horizon. The Nonhomogesn@woisson arrival rate

A; follows a convex increase along the sales horizon, assuont@rtt with 3 arrival-
g/day at the beginning of sales horizon and 20 arridag at the end. Note that this
parameter setting fat, is considered as the base demand scenario and alternatives

are also studied where applicable.

c. Empirically determined parameters: Similar to reservation prices, the cancel-
lation probability is assumed to be a time dependent randamale. The real life
data in most airlines’ online reservation systems is lithitesales realization reports;

hence, detailed records of customer cancellations or mestpreferences between
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refundable and restricted tickets are not available. Duado of further information
regarding the distribution of cancellation probabilitye wonsider a uniform distribu-
tion whose bounds vary in time. One patrticular restrictiegarding the cancellation

probability,C; is that it remains less that®in all simulation scenarios.

Customer risk aversion is used together with probabilityasfallation in refund op-
tion pricing calculations. Observing the exponentialitytifunctions, we have intro-
duced three alternative customer risk aversion paramatees as ©2/0.04/0.08/0.16
to model diterent levels of risk aversion among airline customers. Alsgtockout
probability estimation, an initial estimate for stockoublpability is required. We
have little knowledge regarding this parameter and thusmed initial probability to
be Q5.

Remark 6.1.1 The risk attitude of customers towards the possibility ofbeig re-
imbursed in case of booking cancellation may depend on waractors including
customers wealth, character and flying frequency and suchnrdtion is not always
available for the seller. Hence, we assumed that customeirsrag at different times
along sales horizon have the same degree of risk aversioTamave a deeper un-
derstanding about the risk aversion offdrent customer groups, historical sales and
booking records should be analyzed to study customer regsao refundable book-
ing gffers. For that purpose, loyalty programs could be utilized &ime information
on customers’ preference between refundable and nonreblediakets for the past

purchases could be investigated.

There are also other parameters regarding the computhgiartaof simulations that

we have decided after experimentation with alternativeesl

e Number of replications for steady-state analysis in theufation studies is set
to 500 empirically. For each case, the distribution of rexeand load factor
results given by these 500 replications are tested for gessinf-fit to Normal
Distribution. Accordingly, we have obtained confidencemgls according to

Normal Distribution assumption.

¢ In iterative numerical optimization routines developedfioding optimal sales

incentive, stopping criterion for the algorithms is set @31 That is, the max-
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imum error in optimal sales incentive values,= Pr(P; > p*), is limited to
0.001.

e The discretization of continuous sales process requilaseadiscretization unit
which is small enough so that the probability of multiple tomser arrivals in a
single interval is negligibly small. We set interval leng¢h0.5 minutes so that
the possibility of multiple customer arrivals is less thar 507° for the given

parameter setting.

With the sales simulations, we intend to assess the perfarenaf proposed pricing
algorithm. We also adopt a mixed integer programmilid®) approach to compare
with DP model. In this respect, the sales and demand parametersbaéelsso far for
the continuous time setting are transformed and introdthis alternative model.
The detailed description of thd 1P is presented ih 612.

6.2 Mixed Integer Programming Model for Determining Price

Talluri and van Ryzin (2005) present an IP model for discrete tdynamic pricing
problem that is reviewed in Sectibn P.2. The aggregate ddmeer a given period of
time is considered as a time dependent function of pdftep(t)) wheret represents
the time period ang(t) represents the sales price for that time perjuitl) is selected
from a discrete set of possible prices. Accordingly, thécgrdated revenue for period

t become(t) x d(t, p(t)). The objective is maximizing the revenue in the remainder
of the sales horizon and the limited number of seats availtdl sale imposes the
constraint on the total demand that can be satisfied. Hehegrbblem is reduced
to allocating the available seat capacity to the discrete fperiods by controlling the
demand in each period through price manipulation.

The dynamic pricing method we presented in Sedtioh 4.2 istas the use of a con-
tinuous time setting. Then, the sales horizon is discrétiz® small time intervals of
unit length €) and the pricing problem is restated as finding the optimiakepat the
beginning of each time interval. In this section, we diseeethe sales horizon into
larger time intervals which could possibly have unequaditea and we refer to these

intervals aepisodesMoreover, the price is discretized by restricting it todaklues
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from a finite set of alternative prices. Using a model withcdite state space and
discrete decision space, a variation of the Integer Progniagmodel due to Talluri
and van Ryzin (2005) is considered in this part and is refetoesls Mathematical

Programming (MP) model.

Customer
Sales Arrival (t) Sales
begin fa end
e | | | | |
==t = 1 1 1 |
=T t1 tho = & tpy -+ 1 =0

Figure 6.1: Discretization of the sales horizon

Our objective is to attain compatibility between the pragmB®P model and theMP
model so that the two models are comparable in sales sirongatiVith this perspec-
tive, we propose a reformulation of the demand in a givemwalefor a given price
using the generally accepted notions in airline RM and preshomentioned ideas in
Section$ 113 and 2.2 in this thesis.

6.2.1 Demand Aggregation

In the MP model, the period-price assignments should be represbewgtethary vari-
ables. Correspondingly, the demand should be defined as thiemwof tickets that
could be sold during an episode at a given price. In the rootatiis used for the
discrete time indexn refers to the total number of episodes.is the cardinality of
the set of possible prices ands used for indexing the prices in this set. The set of
alternative prices is defined &g, ..., pm}. ti_1 andt; denote the beginning and end

points of episode.

In DP reservation price distribution and arrival probabilitycofstomers are assumed
to be time dependent. The reformulation of demand requggeegation of customer

arrival intensity @,) and sales incentive @ F((p)) over episodes. Let the parameter
uij define demand-price relationship in th° model, denoting the expected number

of seats that can be sold in episadehen the price posted in this episodeps
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Accordingly,u;; could be obtained as below:

wi = [ A= FOppat (6.1)

i1
The parameters of the reservation price distributish(p) are assumed constant
within each episode. In order to adopt the generally acdepte-fare before high-
fare customer arrival pattern for consistency, it is asslithat the reservation price
in episodei — 1 is stochastically larger than the reservation price inghexeding
episodd, i.e. Fi-Y(p) < FO(p) for everyp.

6.2.2 Mixed Integer Programming Formulation

The decision variables used in tMP model arey;; that denotes the number of seats
that are sold in thé" episode at price levgland the binary variablg; that is defined

below.
. - 1 if the price in thd 1" episode ig;,
J 0 otherwise.

At the beginning of the last episodes when the remaining number of available seats
is equal tos, the MP model to be solved is given below. The model would give the

solution for the whole sales horizon wher= T ands = S.

MP: Max ZZ PiVij

m
subject to Z Yij < S,

i=1 j=1

m

ij =1 Vi € [1,1],

=1

OSyij < HijXij ViE[l,T], je[l,m],
Xij € {0, 1} Yie[l, 7], je[l,m].

Along with the ticket price in each episode, solution of & model also provides
the number of seats to be sold in each episode. Yet, tfiereince in the imple-
mentation of dynamic pricing from seat allocation pracis¢hat the prices for the

episodes are the only control variables that determinedher's policy. Therefore,
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the dynamic pricing policy is characterized by only valuéshe binary variables
Xj representing the optimal price levels in the following egiss. Since a price up-
date scheme is considered in this section to solve the motlet deginning of each
episode, the only relevant decision variable value is that;dor the current episode

T.

6.2.3 Discretization into MP for Logarithmic Demand

In order to transform th®P model parameters intl P model counterparts, the first
step is partitioning the sales horizon into episodes. No&t for both methods, it
may not always be meaningful to develop a dynamic pricingcgdbr the entire
sales horizon. In the airline industry, the sales horizam®raonly vary between
90 days and 360 days prior to flight. Unless there are batckibg® andgor group
reservations (those should be priced with other methodsjonity of the seats are
sold on a narrower time window before departure. The frequefot in Figurd 6.P is
depicted with the sales realization data of 150 flights of énsteeam airline during
a year on a particular itinerary with no competitor havingraat flight on the same
route. In the horizontal axis, the fraction of tickets soéddye the last 30-days within
overall sales for that flight is given. In most of the flightse tseats that are booked
prior to the last 30 days constitute a very small ratio inltoégacity sold. Observing
this, we decide to restrict our attention to pricing polciguring the last 30 days

before departure.

For the numerical illustrations in this section, the-8@ys sales horizon is partitioned
into 5 episodes for th&P model. The continuous and piecewise constant versions
of time-dependent model parameters are depicted in Fig@reTdie values of these
parameters are also given in Table 2. The parameter tranafiem methodology is

summarized below:
e In MP model, the durations of 5 episodes are assumed to be 15 ddggsH4
days, 3 days and 2 days.

¢ In DP model the reservation price distributions are assumed limgagithmic as

defined in Sectioh 4.11.2 with linearly increasing lower apger bounds along
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Figure 6.2: Percentage of tickets sold before the last 3GDay

time; pow(t) andpy,(t), respectively. In thé1P model, lower and upper bounds
of logarithmic reservation price assumed piecewise cotistixed within each

episode to the episode averagedd#t counterpart.

¢ In DP model, daily customer arrival rate is convex increasingif®arrival day
to 20 arrivalgday; 4; = 3920 %.In MP model, the Nonhomogenous Poisson
arrival rate is also piecewise constaitbeing integrated between endpoints of

corresponding episode.
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Figure 6.3: Time-dependent demand parameterBfoandMP

As seen in Table 6.1, the average daily arrival rate is foun8 for the first episode

(t € [15,30] days) and the expected number of total arrivals during ebisode is
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5x(30-15) = 75. Within the first episode of thd P model, the reservation prices are
assumed to follow logarithmic behaviour wigh,, = 71 andpy, = 186. If the ticket
In(pup) — In(p))

In(Pup) — IN(Piow)
and the aggregate expected number of seats that can be dblg finst episode at

price ispj, then the sales incentive for this fare class would;be

price p; will be 75z; in the MP model.
Table 6.1: Parameters f@P andMP models

Parameters Epi. 1 | Epi. 2| Epi. 3| Epi. 4| Epi. 5
Sales Horizon (in days) [30,15] | (15,9] | (9,5] | (5,2] | (2,0]
Arrivals/Day [3 — 20] 5.0 94 129 | 161 | 188

Pow(t) : [29 — 199] 71 131 159 | 179 193
Pup(t) : [149 — 299] 186 239 | 264 | 281 | 294

Solving MP only once at = 30 days to departure would give a static temporal price
discrimination scheme. In order to uB&P as a tool for dynamic pricing, it could be
solved periodically (for instance, on a daily basis). Itlsogpossible to resolve the
model at every customer arrival at corresponding stgtg. (Notice that the demand

parameters needs to be updated as well.

For DP, the length of a unit time intervak, is chosen as 30-second®P gives
the optimal price for all time intervals and every possikéddue of seat inventory as
pst. The MP model, on the other hand, works once for a particugat) (pair. For
the numerical analysis her®|P is solved repeatedly by fixing or t to understand
the evolution of optimal price as a function of time to depegtor remaining seat
inventory. The exemplary results are depicted in FigureaBdiFiguré 6.5 in order to

see the behaviour of the optimal pricetiands by fixing one of the state variables.

In Figure[6.4 on the 30-days sales horizon, it is seen thairibing schemes obtained
by DP and MP are reasonable. The initial increasing trend is due to tbeease in

customer reservation prices along the sales horizon. Tbeedse towards the end
of the sales horizon can be due to an increase in expectedueve be obtained by
selling more of the remaining seats at good prices withauetong the prices much.
It is observed that the optimal prices with 10 seats are hitjia those obtained for
30 seats. The most significantiédirence between the findings ioP andMP is due

to the diference between the definition of reservation price bounaisMP, p,, and
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Pow are piecewise constant whereas the bounds are lineariaisiog forDP.

Optimal Price

In Figure[6.5, the optimal prices obtained by are decreasing in the seat inventory
level as expected. However, the results are counterivuitir theMP model: cycli-

cal ups and downs are observed instead of a general trengl pfiehomenon is due
to the structure of th&1P model to find an optimal seat allocation for the remain-
ing episodes together with the optimal prices. In this respbe optimal price for
(s+1,1) could be larger than that fos,t) due to a major change in sales strategy with

an additional available seat in periadThis could be noted as a shortcoming of the
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Figure 6.5: Optimal prices fdr= 6 andt = 12 days to departure

MP model.

To wrap up,DP could represent the continuous change in reservation,@®jcand
customer arrival probabilityy; better whileMP is restricted to a piecewise constant

approximation to these time-dependent parameters. Fonuheerical results pre-
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sented in this section, bofdbP and MP models are solved using MATLAB. When
these two models are compared in terms of computation tiBesignificantly out-
performsMP model. For the small-scale sample problem under considara@PU
time to solveDP is less than a minute and it isfigient to solve it once at the begin-
ning of the sales horizon. SolvingP for a given §,t) pair typically lasts 60 to 90

seconds. Note thaflP is solved every day in the example problem.

6.3 Nonrefundable Ticket Pricing Sales Simulations

MP andDP are both exact models developed under the assumption thetller has
completeinformation on prospective demand; knowing at what ratecih&tomers
would arrive with what kind of reservation price distributs. Accordingly, the per-
formances of the two ‘exact’ models are compared under #sgraption in the sim-
ulations. These strict assumptions on sellers capabdifgriesee the future demand
are relaxed to a certain extent in the approximate modelserthe seller hasmcom-
pletefuture demand information and requires an approximatiomhf® marginal seat
revenue. The performances of ‘approximate’ models R&@rd PredM defined in
Chaptef # are compared in this respect to assess which ondgsavbetter approx-
imation. The revenue and load-factor performances of Raexxd PredM are also
compared withDP to understand the value of future demand information and the

accuracy of marginal seat revenue approximations.

6.3.1 Seller Has Complete Future Demand Information

The DP approach to airline RM problem is constructed as a recursixadlation
working backwards in time. In our simulation design, at tlegibning of each run,
the optimal sales price is found for every staget) in the discretized state space
such that for any given seat inventory - time to departurelioation, the optimal
prices are known before the sales begins. In each replicattamdom arrival times
and reservation prices are generated for customers angdadihe given temporal de-
mand parameters and at each customer arrival, the sellesrtheprecalculated price.

For algorithmic details regarding the simulation settipigase refer to Appendix B.
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The MP approach is adapted from seat allocation models; the rémgageat inven-
tory is partitioned into the episodes in the remainder ofdhkes horizon together
with the price to ffer at each episode. For instance at the beginning of salehor
MP runs with 36-days to departure and 100 seats available for sales. Thaalpti
policy determines to se#; seats at pricg; and nexts, seats at pric@, and so on. In
order to represent thefect of sales realizations to the seller’s pricing policyhmt

a sales horizon, the prices found MP are updated on a daily basis model during
each simulation run. That s, if 2 seats are sold on first M#yruns with 29-days to
departure and 98 seats available for sales to find corresgppdces.

The average revenue results obtained with 500 simulating sbhiow thatDP (aver-
age revenue: 1830) outperformdV P (average revenue: 1490) significantly, with

28 percent higher revenue generation. Together with thietsiral shortcomings of
the pricing policy generated bylP (discussed in Sectidn 6.2.3), we conclude that
DP model could provide more realistic anffextive pricing policies in comparison
to MP.

6.3.2 Seller Has Incomplete Future Demand Information

Recursive solution t®P requires marginal seat revenuey(s, t), which could be cal-
culated only when theeller foresees future demarichowing prospective customers’
arrival times and reservation price distributions. Witk #pproximate models pro-
posed in this work, we have studied an approximation of matgeat revenue with
an estimate of stock-out probabilit$, Rs, t). By introducing these models, we re-
duce the demand knowledge requirement of the seller: tresvason price distri-
bution of current customeP() and the number of prospective customers that would
arrive until the departureA(y) would be stficient for determining the the price
of the nonrefundable booking. For instance, if time to deparis 30 days and re-
cursion is defined on discrete time intervals of 30 secondlsitien of DP model
requires estimating the value @f at 1440 consecutive intervals. On the other hand,
if the seller has an estimation for the stock-out probahiptice could be calculated

directly without further need to future demand parameters.
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e The model-based stockout probability estimation, Pveg@resumes a certain
mathematical relationship between the state variableshansitock-out proba-

bility. The mathematical relation introduced in SecfioB.4.is as below:

SP(s,t):l—(Siw)ﬁ?l 6.2)

In order to find the value of parameter we require the anticipated number of
future arrivals and an initial estimate for the stockoutlyadaility at the begin-
ning of the sales horizor§ RS, T). Hence, the pricing policy of the seller and
the corresponding revenue performance are dependent @stihgated value
of SRS, T). In our simulation runs, we have tested scenarios witfedint
values of initial stockout probability estimates and cep@nding revenue and
load factor results are depicted in Figlre|6.6. The revenaeimizing initial
stockout probability estimate SRS, T) = 0.2 with an average of 1902.
Hence, the pricing policy based on Pritstock-out probability approxima-
tion performs 12% worse in revenue generation thanDRemodel. Notice
that load factor is around 86, which is also significantly less than that of exact

model.
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Figure 6.6: Simulation results for given initial stockostieates

e The PredM stock-out probability estimation based approximate matbels

not require an initial parameter estimate. At each custaméval generated
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in the sales simulations, the pricp) @nd sales incentivez are calculated as-
suming an interdependence betw&¥aandz, as explained in detail in Section
4.2.2.

According to the simulation results, predictive model agbs an average rev-
enue of 16664, which is 5% better than the revenue performance of model
based approximation. Moreover, the average load facto®® b the predic-

tive model outperforms its model-based counterpart in bathria.

In Table[6.2, simulation statistics for the exact pricindigoand both approximate
pricing policies are summarized. For both revenue and laatbf parameters, the

expected values (averages) and 95% confidence intervas lare presented.

Table 6.2: Nonrefundable simulation results - medium daiman

Revenue Load Factor
Method | Average 95% ClI Average| 95% CI
ParaM | 15912 | [14,057-17,766] | 0.85 | [0.77,0.92]
PredM | 16,664 | [16,144—-17,183]| 0.99 | [0.99, 1.00]
DP 18,069 | [16,763-19,374]| 0.99 | [0.96, 1.00]

We consider the demand scenario used in the simulation sinase level of demand
and also studied high and low demand cases. Remind that tt@eersarrival rate
has been formulated such that it varies fram = 3 arrivalgday toA, = 20 arrival-
g/day along the sales horizon. Empirically determined low aedhand high demand
parameters used in alternative simulation scenarios ardated in Tablé 6]3. The

. A[o,'r] . . . .
demand-to-supply ratloT is also provided to give an idea about the aggregate
demand along the sales horizon.

Table 6.3: Customer arrival rate parameters used in siroulatins

Demand Level At Ao Demand-to-Supply
Low 2 arrivajday | 15 arrivalday 1.93
Medium 3 arrivajday | 20 arrivajday 2.68
High 4 arrivajday | 30 arrivajday 3.87

The simulation results obtained for low and high demandétieves are given as
below.
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Table 6.4: Nonrefundable simulation results - alternadiemands

Revenue Load Factor
Scenario| Method | Average 95% ClI Average| 95% CI
ParaM | 13716 | [11,355-16,077] | 0.75 | [0.63-0.86]
Low | PredM | 15213 | [14,586—-15840] | 0.99 | [0.98- 1.00]
DP 16,116 | [14,486—-17,746] | 0.98 | [0.91- 1.00]
ParaM | 17,608 | [15,732-19,483]| 0.84 | [0.77-0.92]
High | PredM | 18121 | [17,608-18,633]| 0.99 | [0.99-1.00]
DP 20,147 | [19,131-21162]| 0.99 |[0.97-1.00]

We performed our simulation runs with Matlab 9.0 on a PC hgiai8.0 GHz proces-

sor and 4 GB RAM. CPU time results for these simulation runs aengas below:

e DP model calculates optimal price at every possible state m3l€econds and
500 replications are completed in 12 minutes for the givenapater setting.
The simulation foDP model is constructed such that the optimal price matrix
obtained in the beginning is used in each run and not recdkull In simula-
tions for approximate models, restricted price is caladah each arrival for
the corresponding state.

e ParaM runs a simple routine for obtaining restricted ticket prateeach cus-
tomer arrival in less than.D seconds. 500 replications are completed in 27

minutes.

e PredM requires solving a recursive formulation defined on stothouoba-
bility and sales incentive. Restricted ticket price at gigtaite is found in 2

seconds and 500 replications are completed in approxiynaiehours.

In airline RM, online reservation systems are expected toptet@ price inquiries
within a couple seconds. Hence, we consider all three dlgos satisfactory in terms

of CPU times for posting restricted booking price.

6.3.3 Sales Price Comparisons - Single Sales Run

Revenue and load factor comparisons provide informatiomersales performances

of proposed methods. In order to acquire further insighaurgigng the pricing policies,

105



we also compared the methods over a single simulation runddvaly generated

sales scenario is replicated and following results areioéta

e 257 customer arrival generated for 100 seats inventory. réhenue corre-
sponding to exact pricing 1826, while predictive stock-out estimation based
pricing policy generates 1827 and model-based stock-out estimation based
pricing policy generates 1862.

e The price record over the 3@ays sales horizon in Figure 6.7 depicts the pric-
ing strategies of competing policies. Notice that, apprate model based on
PredM model dters lowest prices at the beginning of the sales horizon and
highest prices at the end. On the other haD®, model starts sales horizon
with the highest prices and the price increases at slower pacomparison to

other methods until the last 2 days of the sales horizon.

e The load factor of model-based approximation policy, Rdrefound as (B3,
whereas bottbP and PredM policies are 100 for this simulation run. Notice
that although all seats are sold wiiiP and PredM policies, the diference in
pricing policies is reflected to the depletion trends of s@atales simulations
of these two methods. When we check the ratio of seats solg 40 days to
departure, we observe that only 15% of seats are sold whiem &@lows DP

pricing policy and 32% of seats are sold in case of Rvked-
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Figure 6.7: Sales price comparisons for proposed fornariati

6.4 Refundable Ticket Pricing Sales Simulations

The simulation runs for investigating the impact dfesing refund options requires
modeling a sales process that involves two type of eventagltire sales horizon. Ar-
rivals of prospective customers are modeled with respedbtthomogenous Poisson
Arrival assumption as in nonrefundable scenarios. Cust@auecellations are intro-
duced to the simulation model as an attribute assigned tmmess that purchase
refundable tickets. Of those customers purchasing rehladickets, a secondary
arrival is scheduled if/be wishes to cancel the booking. The primary assumptions

considered in simulating the sales process with cancatiatare enlisted below:

1. Assuming that customers decide between refundable améfumdable book-
ings as described in Section 5J2.2, the customer resenvptioe for refund
option is calculated as described at Lenima5.2.4.

2. When a booking request is received, the seller decidesiinefundable ticket
price using the 'exactDP formulation. Approximate models are not preferred
for determining the nonrefundable ticket price to see theromement in rev-
enue by refund option sales when the best practice is apjplidohding p. On
the other hand, the marginal value results found in the soluf DP are not

used for solving the refund option pricing problem sincerttoglel is developed
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for approximated\svi(s) andA,v(s) values.

3. Itis assumed that the seller knows the probability distron of cancellation

probability, C; for the current customer.

4. The refund options are sold to the customers until the#@&stours of the sales
horizon. We assume that the late purchasing customers \hautklless uncer-
tainty from the time of booking until time of flight having weslim probabili-
ties of booking cancellation in between.

5. For each customer who purchases refundable booking,aaybaancellation
flag is assigned with respect to the individual cancellapoobability at the
time of sales. Those customers who would cancel their bgoére also as-

signed a cancellation time.

6. Cancellation requests are all scheduled before the labb@rs of the sales
horizon. In real life examples, booking cancellations haweilar temporal
restrictions;late cancellation claims are partially refunded or not refunded
all.

6.4.1 Degree of Customer Risk Aversion

For different levels of customer risk aversion, the revenue gestbiay selling re-
fundable tickets is investigated for medium demand raté wdrameters given in
Table[6.8. The results are tabulated below, with respeattenue generated, load
factor, total number of refund options sold and total numiferancellation claims
made. Average and standard deviation statistics for quoreing parameter are de-
noted byu ando, respectively. The option pricing methodologies are reféto as
"Point",referring to determining the refund option price with them estimate, and
"“Interval”, referring to estimation of pdf of refund option reservatjrice first and
calculation of the optimal option price afterwards. (Seet®a[5.2.2 for details).

The interpretations of simulation results regarding thgrele of customer risk aver-

sion are as given below:

e The average revenue for sales simulations of nonrefundiakégs (no-cancellations)
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Table 6.5: Simulation results forftierent degrees of customer risk aversion

Revenue Load Factor| Options Sold| Options Used
Method | B u o u o u o u o
0.002| 18,893| 821 | 0.98| 0.02 | 35.3| 55 |59 2.4
0.004| 18,935/ 807 | 0.98| 0.03 | 36.6| 4.4 |6.6 2.4

PoInt -3 008 19,193 983 | 0.98] 0.04 | 36.4| 3.9 | 66| 26
0.016] 20.246] 999 | 0.98] 0.03 | 36.2| 42 |61| 22
0.002] 19.007| 902 | 0.98| 0.03 | 54.1| 54 | 89| 3.3
0.004] 19.234] 1.095 0.97| 0.04 | 56.2| 4.8 | 82| 25
Interval

0.008| 19,723| 1,178| 0.97| 0.04 | 61.1| 4.4 |9.2 2.8
0.016| 21,222| 1,011| 0.97| 0.03 | 67.9| 4.8 | 9.9 3.7

case is found as 1830. Observing the average revenue values, we infer that
selling refund options improves the revenue at all risk sieer levels for both
point estimation and interval estimation of refund optiagit@. The revenue
improvement is parallel to customer risk aversiongascreases gradually, the

refund options become more and more profitable.

e When interval estimation method is applied for refund oppoicing more re-
fund options are sold and higher revenues are generatedipargson to point
estimation case. Therefore, interval estimation methddestorms point esti-

mation in our experiments.

e The load factors are quite close to 1 although significantgregage of booked
customers are allowed to cancel their bookings before tgbtfand some of
them actually use their cancellation claims. This situat®primarily due to

reselling of the cancelled tickets to consecutive custemer

e The percentage of customers who prefer refundable tickeapproximately,
35% for the point estimation case and 55%856% for interval estimation. How-

ever, only 15% of refundable bookings are cancelled in eaehaio.

To sum up, we observe that selling refund options are prdditabd the increase in
refund option selling probability is paralel to the degrdéecastomer risk aversion.
At all levels of risk aversion, we observe that ’Intervaltiesation model is more

favorable than 'Point’ estimation model in terms of revegeeaeration.
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6.4.2 Level of Demand Intensity

Remember the alternative demand parameters defined in[T&blA&ording to the
customer arrival rate alternatives, the simulation resaié obtained for low, medium
and high demand parameters for both 'Point’ and ’Intervadtinods. Results dDP
are also tabulated in Takllle 6.6 to benchmark tiiect of option selling possibility on
the revenue at éfierent demand levels. The load factor results are quitegbiifar-

Table 6.6: Refundable simulation results - alternative detaa

Revenue Load Factor
Scenario| Method | Average 95% ClI Average| 95% CI
Point 16,831 | [14,782-18,880]| 0.97 | [0.88-1.00]

Low | Interval | 16,659 | [14,432—18,886]| 0.95 | [0.84— 1.00]
DP (noq) | 16,116 | [14,486-17,746]| 098 |[0.91- 1.00]
Point 18,721 | [17,208-20,234]| 0.98 | [0.93— 1.00]
Medium | Interval | 19,110 | [17,305-20,915]| 0.98 | [0.92- 1.00]
DP(noq) | 18069 | [16,763—19,374]| 0.99 |[0.96- 1.00]
Point 20,943 | [19,841—22,045]| 099 | [0.97- 1.00]
High | Interval | 21,114 | [19,985-22243]| 099 |[0.97- 1.00]
DP (noqg) | 20,147 | [19,131-21,162]| 099 |[0.97- 1.00]

ward; as the demand-to-supply gets higher the load factoeases for each pricing
policy. When we compare the revenue results of refund optraing alternatives,
we observe that the 'Point’ estimation method performslygoetter than the ’Inter-
val’ estimation methods. As the demand intensity increabesinterval’ estimation

model performs better.

6.5 Further Observations on Pricing Policies

Thus far, we present alternative pricing models for deteimgj the restricted ticket
price, p, and refund option pricey, and assess each model according to its analytical
limitations and sales performance in a theoretical petsgecyet, simpler empirical
observations could be deduced from sales simulations tode@eneric policy rules

for presented dynamic pricing problem.
The sales incentivez = Pr(P; > p) is used as a decision variable interchangeably
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with the sales price in our formulations. In the approximaigdels, we presume a
relationship betweemnand the stock-out probabilitg Rs, t), which was defined as a
function in terms of demand-to-supply rat%fso—’t] in Sectio 4.2.11. In this respect, on
a simulation run with exact pricing modd)P), the change of sales incentive and the
supply-to-demand ratio over the sales horizon is inves@aSimulation results for
supply-to-demand ratio the complementary probabilityadés incentive (referred to

askeep incentivef the seller) are depicted in Figure 6.8.

1.4

1.2+

0.8

Keep Incentive (1 —z*)
0.6
0.4

02k Supply-to-Demand ()

. . . . .
30 25 20 15 10 5 0
Days to Departure (t)

Figure 6.8: Change of sales incentive with supply-to-denratid over time

In accordance with our expectations, we observe negatirrelation between keep
incentive, 1- z, and supply-to-demand ratie,i (lower supply-to-demand values
would motivate the seller to keep more seat[g’t]for late-comvlis have higher will-
ingness to pay). The sum of these two variables is also depiotthe figure and
the graph resembles a piecewise constant behavior ovewittnéhe jumps observed
aroundt = 10 dayst = 5 days and = 2 days, which are the time points when the
jumps on time dependent reservation price bounds are setreléion between the
two variables could be approximated as{¥" + Tiﬂ) = Ky, which is equivalent to

zZ = Tiq +(1-Ky) where the value of constakt changes with each jump. According

to these findings, we have devised a rule-based pricingypa$idollows:

1. Ift > 10 days, thez' = = - 0.3.

Apy

2. Ift € [5,10) days, thex* = > - 0.2.

Apy

3. Ifte[2,5) days, therr' = >~

Apg”
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4. Ift < 2 days, therr* = Tiu +0.2.

Simulation results obtained for rule-based policy are sanwed in Tablé 6]7. The
average revenue of the rule-based policy is onld worse than that of exact pricing
policy, hence we believe the policy performs quite good dess simplicity.

Table 6.7: Simulation results - DP vs. Rule-Based Pricingdyoli

Revenue Load Factor
Method | Average 95% CI | Average 95% CI
Rule-Based 17,887 | [17,177- 18,596] 0.99 | [0.98,1.00]
DP | 18069 | [16,763- 19,374] 0.99 | [0.96,1.00]

Remark 6.5.1 The rule-based policy outperformed both approximate pgapoli-
cies, Pred-M and Para-M. However, it is derived for the speci@mand setting used
in the simulation runs. For dgierent customer arrival patterns, fgrent temporal af-
fects on reservation price distributions, this empiricale would not be applicable.
Still, we believe that the relationship between the salesnitoe 2, and supply-to-

demand ratio; is promising for developingfgective dynamic pricing policies.
[0
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

The pricing problem studied herein is partitioned into twajon components in ac-
cordance with the two main pricing decisions we consideneithé problem formu-
lation: determining restricted booking price ignoring kimgy cancellationgefund-
ability and determining refund option price for given reged booking price. In
this chapter, the conclusions drawn from the simulatiowlissiare given for these
two pricing problems first. Then, potential improvementsitnoduced methods are

discussed and we make our final remarks about future resdéaections.

7.1 Subproblem-1: Finding p Ignoring Cancellation Refunds

e Exact Model: For low, medium and high demand scenarios, it is observed tha
both approximate pricing policies based on stock-out podia estimation,
PredM and ParaM, are outperformed by thBP model for the first subprob-
lem. This observation is parallel to our expectation sibéemodel calculates
optimal price with actual values of marginal seat revensteiad of approxi-

mating it.

e Approximate Models: Among the two approximate methods, Prigddisplays
better performance than Paké-in terms of revenue and load factor. Notice
that higher load factor implies that the seller behaves mekeaverse, i.e. the
seller is less inclined to take risk and keeps seats for laeirny customers
(who have greater willingness to pay) than selling moredtisio early arriving

leisure customers. Hence, Prbtlappears more preferable than Pafawith
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its slightly better revenue generation performance. Alsseove that, Pret
is more robust; the standard deviation of its revenue islemihlan the revenue

generated by implementation of Pavh-

Note that the performance of Pakéis dependent on the accurate estimation
of parametew. Although in our simulations alternative values of inits&bck-
out probability estimater{ = SRS, T)) are tried and we determined the best
value ofw accordingly, we did not update our estimate doat later points in
sales horizon. For real life applications, updating theapaaters of presumed
stockout function an@r trying other functional forms could improve the per-

formance of pricing policies based on model-baSdqs, t) estimation.

e Value of Information: The simulation studies show thaP model is the most
successful method for the first subproblem, however it canly be solved
when seller has complete information on time-variant patens of disaggre-
gated demand, namely customer arrival rateand restricted ticket reservation
price, P;. For the simulated demand scenarios, thiftedence between average
revenues oDP method and approximate methods (Pidand ParaMm) can

be considered as the value of this information to the seller.

e Policy Rule: The revenue performance of the policy rule studied for thes fir
subproblem is also noteworthy. Although it is defined on gudistic empirical
rule between sales incentive and demand-to-supply rati@as better revenue
performance then both approximate methods. However, ttepers in the
definition of this rule is specific to the given demand patte3n, for diferent
scenarios, similar parameters should be recalculatedy wmulation based

methods.

7.2 Subproblem-2: Findingq for Given p

We consider our solution for the second subproblem, findifgy given p, as more
contributing since the refund possibility and pricing oé trefund option is studied
with a new perspective in revenue management. The decisemrdtic approach to

customers’ valuation of refund options is not specific tdirsrindustry and it could
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be applied to other service industries where there is sagmifitime lag between time
of booking and time of service delivery. In real life implemtations, early bookings
are very common in hospitality industry and hotel reseoreticould be made several
months in advance to benefit from price advantages. Hencbglieve that sales of

cancellation refunds could be useti@ently in tourism sector.

The simulation results on revenue improvement due to getifiund options show
the significance of féective pricing ofg. As mentioned previously, customer risk-
aversion could be exploited by the firms to improve their nexes and results show
that the higher the degree of customer risk-aversion detanre profitable féering
refund options become. Among the two alternative methodpgsed for findingy,
the model based on probability distribution estimationeftind option reservation

price,Fq, is found more promising.

To sum up, we recommendP model for findingp andIntervalmethod for deter-
mining g. In case time variant demand parameters could not be estinaaturately,
seller could prefer Pre for finding restricted ticket price to have a higher load
factor and more robust revenue-to-go. Plfazan be suitable for pricing if batch
arrivals of last-minute customers is probable; in whichedagving empty seats just

before departure is advantageous for the seller.

7.3 Possible Improvements and Future Research

Parameter estimation plays a major role in the success amndignpricing methods
proposed in this study. In this respect, we consider esiomatf probability distri-
butions of customer reservation pridés() and probability of cancellation/,) as
promising areas for further research. Historical recorfdgrevious price inquiries
of customers can be stored on airline reservation systecha@epteject decisions
for offered price can be utilized to infer reservation prices witBagesian estima-
tion model. Cancellation statistics of previous flights aneshows are also recorded
on airline database systems and this data could be usedtiimagag cancellation

probabilities.
In this study, parameter estimation problem is not resti¢d estimation of demand
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and cancellation parameters introduced in the originadlera formulation. The suc-

cess of approximate models developed for findmgndq are based on estimation

of stockout probabilityS Rs,t). In the parametric estimation model we proposed,

expert opinion is used for the initial value only= S Rs, t). For stockout probability
estimation, alternative models could be also developedakengreater use of expert
opinion. We already know by definition of stockout probdbithatS RO,t) = 1 and
SHs, 0) = 1 for s> 0. Stockout probability estimates atf@irent points in the state-
space could be gathered from sectorffgssionals#j = SHs,t) fori = 1,2,...,n)
and surface fitting techniques could be applied to find amredtere functional form

for stockout probability function.

Note that although the possibility of cancellation is taketo consideration, over-
booking is not allowed in our formulations (this restrictiallows defining the bound-
ary conditionv;(0) = 0). The dynamic pricing approach studied herein is based
expected net revenue, defined as the sales probabilitypiedtiwith the diference
between the sales price and the opportunity cost of an additseat. Similarly, in
case of overbooking marginal cost of selling one more seat the capacity could
be approximated. When the no-shows (customers who bookéddtig¢int and do not
show up at the time of departure) exceed the overbooked itgpdhe airline com-
pany does not incur any costs; however, certain penaltiss$ excase a customer
is denied on boarding. The marginal revenue term could beoappated by using
the probability of observing less than expected no-showslés to S s, t)) and the
penalties that could be incurred in case of overbookingil@irto psin). With this ap-
proximation, a similar approach could be adopted for dguatpa dynamic pricing

methodology for overbooked capacity.
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APPENDIX A

ADDITIONAL SIMULATION RESULTS

Table A.1: Revenue generation - 120 seats on han3 tays

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

44258

44135

43824

43635

43014

42582

41635

40821

39002

46783

46189

46196

45571

45203

44971

44498

43565

42520

48004

47742

47529

47331

46837

46606

46096

45704

44424

47996

47936

47463

47284

47234

46816

46538

45752

44433

48290

47837

47810

47463

47367

47177

46656

46035

44868

48875

48854

48607

48165

48060

47808

47218

46963

46352

Table A.2: Load factor results - 120 seats on hang-30tdays

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

90.9%

90.8%

90.7%

90.7%

90.4%

90.2%

89.9%

89.5%

88.8%

91.5%

91.2%

91.2%

91.0%

90.9%

90.8%

90.6%

90.3%

89.9%

91.7%

91.6%

91.5%

91.5%

91.3%

91.2%

91.0%

90.9%

90.4%

91.7%

91.6%

91.5%

91.4%

91.4%

91.3%

91.2%

90.9%

90.4%

91.8%

91.6%

91.6%

91.5%

91.5%

91.4%

91.2%

91.0%

90.5%

91.9%

91.7%

91.7%

91.6%

91.5%

91.5%

91.3%

91.2%

91.0%
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Table A.3: Revenue generation - 150 seats on hanel3 days

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
57022| 56892| 56558 | 56444 | 55884 | 55374 | 54472 | 53474 | 51362
61619| 61030| 60988 | 60368 | 60031 | 59712 | 59209 | 58190 | 56895
63934 | 63673| 63491 | 63250 62656 | 62417 | 61824 | 61362 | 59766
64012| 63902| 63487 | 63249 | 63132 | 62757 | 62354 | 61384 | 59916
64450| 63865| 63979 | 63548 | 63451 | 63210| 62541 | 61876 | 60452
65532| 65492| 65213 | 64731 | 64642 | 64336| 63699 | 63423 | 62628

Table A.4: Load factor results - 150 seats on hané-30tdays

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
82.06%| 81.90%| 81.58%| 81.57%| 81.10% | 80.65% | 79.91%| 79.08% | 77.42%
83.63%)| 83.16%| 83.16% | 82.71%| 82.48%| 82.35%| 81.92%| 81.16%| 80.27%
84.33%)| 84.08%| 83.99%| 83.83%| 83.41%| 83.27%| 82.94%| 82.59%| 81.64%
84.26%| 84.13%| 83.94%| 83.73% | 83.72%| 83.46% | 83.27%| 82.55%| 81.61%
84.51%)| 84.09%| 84.11%| 83.82%| 83.87%| 83.68%| 83.24%| 82.78%| 81.90%
84.68%| 84.63%| 84.48%| 84.17%| 84.02%| 83.97% | 83.52% | 83.42% | 82.89%
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APPENDIX B

SIMULATION CODES IN MATLAB

Cancellation Allowed Simulation Run for DP Model

function[rev,empty,pricerec,salesrec,reservprec,tsoldtaanc_logk...
SIM_exactP_intvlQ(S,Tdays,Pinit,Pfin,lambda,pretemgth,Lin2Jump,m,beta, SPinit)

[Poptarry,value,time,Res_Price_Boun€fd] _matrix_pst(S,Tdays,...
Pinit,Pfin,lambda,prec,intlength,Lin2Jump);

reservpszeros(1,1000);
reservgszeros(2,1000);
prices=zeros(1,1000);
priceqs=zeros(1,1000);
sales-zeros(1,1000);
salegs-zeros(1,1000);
tarrvi=zeros(1,1000);
custcountO;
canc_log[-1 -1];

linit=lambda(1);
Ifin=lambda(2);
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%Nonhomogenous Customer Arrivals are generated
[tarr]=generate_arrivals(Tdays,linit,Ifin);

SNOWES;

rev=0;

nb_arrivals-length(tarr);

for custcountl:nb_arrivals

tnow=tarr(custcount);

%Check: Customer arrivad Cancellation

if (thow<canc_log(1,1))

%customer refunded

rev=rev-canc_log(1,2);

SNOW=SNOWA1;

%realized cancellation is removed from cancellation elistit
canc_log(1,13-1;

%remaining cancellations in the event list are sorted
canc_logflipdim(sortrows(canc_log),1);

else

if (snow>0)
intnumbekceil(thow*144(@intlength);

Plo=Res_Price_Bounds(1,intnumber);
Phi=Res_Price_Bounds(2,intnumber);
%seller determines price

P_opt Poptarry(snow,intnumber);

% Option A: Point Estimation of Qq———
%Q_optfind_g_point(P_opt,beta,m,tnow, Tdays);

%

Option A: Point Estimation of Q————

% Option B: Interval Estimation of Qq———

%estimate stock-out probability
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SP=find_Pstockout_1(SPinit, linit, Ifin, snow, S, thow, Tdays )
Q_optfind_g_optimal(P_opt,beta,m,tnow, Tdays,SP);

prices(custcounyP_opt;

sales(custcount)}1;

pbuy=rand(1);

C_t=0.1+0.4*(thowTdays)*rand(1);

reservg=(Plo” (1-pbuy))*(Phi" pbuy);
reservelog(1+(C_t(1-C_t))*(exp(beta*P_opt)-exp(beta*m)Peta;
if (thow< 2)

reservg= O;

end

reservps(custcountjeservp;

reservgs(1,custcourtieservq;

reservgs(2,custcousty t;

if (reservp> P_opt)

if (reservg> Q_opt)

rev=rev+P_optQ_opt;
SNOW=SNow-1;
sales(custcount]l;
saleqs(custcount],;
tsold(1,custcounstnow;

tsold(2,custcounsl;

prob_temprand(1);

if (prob_temp< C_t)

t temp=1+(tnow-1)*rand(1);
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refund=P_op#Q_opt-m;
canc_log[canc_log; t _temp refund];
canc_logflipdim(sortrows(canc_log),1);
end

else

rev=rev+P_opt;
snow=snow-1,;
sales(custcount);
tsold(1,custcounstnow;
tsold(2,custcounyO;

end

end

end

end

empty=snow;
tarrvi=nonzeros(tarr);
priceree=nonzeros(prices);
salesreenonzeros(sales);
reservpreenonzeros(reservps);

reservgreereservqgs,;

end
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Subroutine for solving recursive DP Model

%Function returns optimal price at every possible statés,p*
function[Poptarry,value,time,Res_Prices,lambda_airy]
fill_matrix_pst(S,Tdays,Pinit,Pfin,lambda,prec,ingémLin2Jump)
%STATEVARIABLES%

%S:seat inventory

%Tdays:time in DAY's

%DEMAND
%Pinit=[Plo(T) Phi(T)]; reservation prices at the start of saleszuon
%Pinit=[Plo(0) Phi(0)]; reservation prices at the end of saleszuori

%lambda= [linit, Ifin] initial and final arrival rates

%OTHER PARAMETERS

%prec:precision parameter (error tolerance for numericropation)
%intlength:interval length in MINUTES

%Lin2Jump:G>Linear Increase,4>Piecewise Constant with Jumps res. price

%values between 0 and 1 yields jumps at given points.

tic

%RESERVATION PRICE JUMPS

jump_times:[10 5 2];

jump_percent[0.2 0.3 0.5];
Pfin_linear_ugPinit(2+(Pfin(2)-Pinit(2))*(1-Lin2Jump);
Pfin_linear_le=Pinit(1+(Pfin(1)-Pinit(1))*(1-Lin2Jump);
upper_bound_jumpgump_percent*(Pfin(2)-Pinit(2))*Lin2Jump;
lower_bound_jumpsjump_percent*(Pfin(1)-Pinit(1))*Lin2Jump;
%RESERVATION PRICE JUMPS

T=(Tdays*1440)intlength;
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Poptarry-zeros(S,T);
value=zeros(S-1,T+1);
Res_Priceszeros(2,T);
lambda_arryzeros(2,T);

for tnow=1:T

Plo=(Pinit(1)*tnow+Pfin_linear_lo*(T-thow))T;
Phi=(Pinit(2)*tnow+Pfin_linear_up*(T-tnow))r;

if tnow <jump_times(1)*(1440ntlength)
Plo=Plo+ lower_bound_jumps(1);
Phi=Phi+ upper_bound_jumps(1);

if tnow <jump_times(2)*(1440ntlength)
Plo=Plo+ lower_bound_jumps(2);
Phi=Phi+ upper_bound_jumps(2);

if tnow <jump_times(3)*(1440ntlength)
Plo=Plo+ lower_bound_jumps(3);
Phi=Phi+ upper_bound_jumps(3);

end

end

end

Res_Prices(1,tnowpIo;

Res_Prices(2,tnowPhi;

[Inow,lavg]=find_lambda(tnow,T,lambda(1),lambda(2));
Inow = Inow*(intlengtty1440);

for snow=1:S
delta=value(snow-1,tnow)-value(snow,tnow);
Poptfind_p_log(Phi,Plo,prec,delta);
salespe(log(Phi)-log(Popt))Xlog(Phi)-log(Plo));
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Poptarry(snow,thowPopt;
value(snow1,tnow+1)=value(snow1,tnowhInow*salespr*(Popt-delta);
end

end

time=toc;

end
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Subroutine Generating Customer Arrivals

function[tarr]=generate_arrivals(T,linit,Ifin)
tarr=zeros(1,round(T*Ifin));

thow=T;

i=1;

while (tnow > 0)
[tnext]=nhp_arrival(tnow, T, linit,Ifin);
if tnext> 0

tarr(i)=tnext;

end

i=i+1;

tnow=tnext;

end

tarr=nonzeros(tarr)’;
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Function Returning Next Customer Arrival

%Subroutine used in generate_arrivals.m
function[tnext]=nhp_arrival(tnow, T, linit,Ifin)

%due to Lewis&Shedler (Lewis P.A.W., Shedler G.S., "Simalabf Nonhomoge-
nous Poisson Process by

%Thinning", Nav. Res. Logist. Quart., 26:403—-413 (1979)
t=tnow;

Inow=find_lambda(t,T,linit,Ifin);

Imax=lfin;

u=rand(1,2);

t=t+log(u(1)yImax;

while (u(2)> (Inow/Imax))

u=rand(1,2);

t=t+log(u(1)yImax;

end

tnextt;

end
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Function Returning Time Dependent Poisson Arrival Rate

%Function returns Nonhomogenous Poisson Arrival Rates
function[Inow, lavgl=find_lambda(t, T,linit,Ifin)

%lambda increases exponentially along the horizon
Inow=Ifin*(Ifin /linit) ~(-t/T);

lavg=((Ifin*T) /(log(Ifin/linit)*t))*(1-(Ifin /linit) " (-t/T));

end
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Stock-out Probability Estimation Routine - Para-M

function SP=find_Pstockout_1(SPinit, linit, Ifin, snow, S, thow, Tdays )
[Inow, lavg]=find_lambda(Tdays, Tdays,linit,Ifin);
omega:S*((1-SPinity (-S/(lavg*Tdays))-1);

Lambda= lavg;

SP=1-(snow(S+omegal))(Lambda*tnowsnow);

end
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Subroutine Finding Optimal Refund Option Price - Point Estimation

function[P_optEp_opt_predictive(Plo,Phi,prec,P_maxx,s,d)

SP_to z arryzeros(2,100);
z_to_SP_arryzeros(2,100);

for i=1:100

SP_to_z_ arry(1,9i/100;

delta= SP_to_z_arry(1,i)*P_maxx;

[z_given_SP, P_given_SHjnd_p_log(Phi,Plo,prec,delta);
SP _to_z arry(2,9z_given_SP;

z to_SP_arry(2,5i/100;
SP=SP_given_z(z_to_SP_arry(2,i),s,d);
z to_SP_arry(1,HSP;

end

error=1;

fori=1:100

for j=1:100
errornew=max(abs((SP_to_z_arry(1,i)-z_to_SP_arry(1,)))),...
abs((SP_to_z_arry(2,i)-z_to_SP_arry(2,)))));

if (errornevkerror)

Z_indexsi;

SP_index;j;

error=errornew;

end

end
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end
Z optSP_to_z arry(:,z_index);

SP_optz_to_SP_arry(;,SP_index);
P_op&Phi*(1-z_opt(2))*PId z_opt(2);
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Solution of Approximate Model

%Function returns opt. price with recursion solved for itfpanic demand

function[v,P_optEfind_p_log(Phi,Plo,prec,delta)

%Phi: Price upper bound for LOGARITHMIC DEMAND
%Plo: Price lower bound for LOGARITHMIC DEMAND
%prec: error tolerance for numeric optimization
%delta: v_t(s) - v_{t-1}(s)

kappa=log(PhjPIo);

if (delta>Phi)

v=0;

i=0;

else

vu=min(1,Ykappa);

vI=0;

v=(vu+vl)/2;

eps=-delta+(Phi* (1-v))*(Plo"v)*(1-kappa*v);
i=0;

while(abs(eps)prec && 1<20)

if (eps>prec)

vl=v;

v=(vu+vl)/2;
eps=-delta+(Phi*(1-v))*(Plo"v)*(1-kappa*v);
i=i+1;

else if(eps<-prec)

VU=V;

v=(vu+vl)/2;
eps=-delta+(Phi"(1-v))*(Plo"v)*(1-kappa*v);
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i=i+1;

end

end

end

end

P_opt&Plo™ (v)*Phi~ (1-v);

iter=i;
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Stockout Probability for Given Sales Incentive (used in Prd-M)

function[SP}=SP_given_z(z,s,d)
if ((s<=0))

SP=1;

else if(d<s||(z==0))

SP=0;

else

SP=nbincdf(d-s, s, z);

end

end
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Subroutine Finding Optimal Refund Option Price - Point Estimation

function[Q_opt} find_qg_point(P_opt,beta,m,tnow, Tdays);

pcanc-0.1+0.4*(tnowTdays)*0.5;
Q_optlog(1+(pcang(1-pcanc))*(exp(beta*P_opt)-exp(beta*mipeta;

end
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Subroutine Finding Optimal Refund Option Price - Interval Estimation

function[Q_opt] = find_q_optimal(P_opt,beta,m,tnow, Tdays,SP);

C_t_expected0.1+0.4*(thowTdays)*0.5;

C_t cdEzeros(2,101);
Q_t_cdfzeros(2,101);

fori=0:100

C_t _cdf(1,+1)=0.1+0.4*(tnowTdays)*(/100);
C_t_cdf(2,i+1)=(i/100);

pcane=C_t_cdf(1,i1);
Q_t cdf(1,#1)=log(1+(pcang(1-pcanc))*(exp(beta*P_opt)-exp(beta*mieta;
Q_t_cdf(2,ir1)=(i/100);

end

Q_return=zeros(1,101);

fori=0:100
ECL=C_t_expected*(1-SP)*(P_optQ_return(1+1) - m);
Q_return(14#1)= (1-Q_t_cdf(2,#+1))*(Q_t_cdf(1,k+1)- ECL);

end
[max_return,index¢max(Q_return);

Q_optQ _t cdf(1,index);

end
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