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ABSTRACT 

MULTISTAGE LAUNCH VEHICLE DESIGN WITH THRUST PROFILE AND 

TRAJECTORY OPTIMIZATION 

 

 

 

Civek Coşkun, Ezgi 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Kemal Özgören 

 

 

September 2014, 198 pages 

 

 

In the frame of this thesis, a Matlab® based design tool utilizing a general purpose optimal 

control solver GPOPS-II® was developed for the optimization of ascent trajectories of 

multistage launch vehicles. This tool can be utilized both for preliminary mission design of 

an existing launch vehicle and conceptual design of a new launch vehicle. 

 

In the preliminary mission design of an existing launch vehicle, maximizing payload mass 

is a very common performance measure. Therefore, a trajectory optimization code was 

developed to determine the optimal trajectory in terms of position and velocity, and the 

control functions corresponding to that trajectory while maximizing the payload mass. 

 

Whereas in the conceptual design of a new launch vehicle, minimization of gross lift-off 

mass for a specific mission is the primary objective, and staging is an effective way to 

reduce the vehicle gross lift-off mass. For this purpose, a staging optimization code was 

developed to determine the staging parameters (mass distribution between stages, 

propellant and structural mass of each individual stage) which minimize the gross lift-off 

mass. 

 

In this thesis, staging and trajectory optimization codes were integrated by two different 

manners, namely the decoupled and the coupled approaches, so as to determine the sizing, 

burn time and thrust time history of each stage together with the optimal trajectory of the 

launch vehicle. Thus, a quick and effective method to find optimal vehicle configurations 

in the early design phases was achieved. 

 

 

Keywords: Launch vehicle, staging optimization, trajectory optimization, thrust profile 

optimization, GPOPS-II 
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ÖZ 

İTKİ PROFİLİ VE YÖRÜNGE ENİYİLEMESİ İLE ÇOK KADEMELİ FIRLATMA 

ARACI TASARIMI 

 

 

 

Civek Coşkun, Ezgi 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal Özgören 

 

 

Eylül 2014, 198 sayfa 

 

 

Bu tez kapsamında, çok kademeli fırlatma araçlarının yükseliş yörüngesinin 

eniyilenmesine yönelik olarak GPOPS-II® genel amaçlı optimal kontrol çözücüsünü 

kullanan Matlab® tabanlı bir tasarım aracı geliştirilmiştir. Bu araç, hem varolan bir 

fırlatma aracının yörünge tasarımında hem de yeni bir fırlatma aracının kavramsal 

tasarımında kullanılabilecektir. 

 

Varolan bir fırlatma aracının yörünge tasarımında, faydalı yük kütlesinin ençoklanması çok 

yaygın bir başarım ölçüsüdür. Bu sebeple, faydalı yük kütlesini ençoklayan konum ve hız 

cinsinden eniyi yörüngenin ve bu yörüngeye ilişkin kontrol fonksiyonlarının belirlenmesi 

için bir yörünge eniyileme kodu geliştirilmiştir. 

 

Yeni bir fırlatma aracının kavramsal tasarımında ise, belirli bir görev için toplam kalkış 

ağırlığının enazlanması birincil amaç olup, bunun en etkili yolu kademelendirmedir. Bu 

amaçla, kademelendirme parametrelerinin (kütlenin kademeler arasındaki dağılımı, her bir 

kademenin yakıt ve yapısal ağırlığı) belirlenmesi için bir kademelendirme eniyileme kodu 

geliştirilmiştir. 

 

Bu tezde, kademelendirme ve yörünge eniyilemesi kodları ayrıştırılmış ve bağlaşık olmak 

üzere iki farklı yaklaşımla fırlatma aracının eniyi yörüngesi ile birlikte her bir kademenin 

ağırlığı, yanma süresi ve itki zaman eğrisi belirlenecek şekilde birleştirilmiştir. Böylece, 

kavramsal tasarım aşamasında eniyi fırlatma aracı konfigürasyonunun bulunması için hızlı 

ve etkili bir yöntem elde edilmiştir. 

 

 

Anahtar Kelimeler: Fırlatma aracı, kademelendirme eniyilemesi, yörünge eniyilemesi, itki 

profili eniyilemesi, GPOPS-II 
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CHAPTER 1 

INTRODUCTION 

Since the launch of first artificial satellite Soviet Sputnik 1 in 1957, thousands of payloads 

have been placed into Earth orbits using space launch vehicles. The payload can be 

anything from satellites to astronauts or from scientific instruments to cargo depending on 

the mission. 

 

In the mid-1950s, the Soviet Union and the United States were the only countries having 

space launch capability, but today several other nations (Europe, China, Ukraine, Japan, 

India, Israel, Brazil, North Korea and Iran) have produced their own launch vehicles. Some 

of the launch vehicles developed by the United States for space access and exploration are 

illustrated by size and shape in Figure 1.1. 

 

Figure 1.1 United States current launch vehicles 

(adapted from http://www.docstoc.com/docs/53998514/Launch-Vehicles) 

Launch vehicles used in space applications are mostly multistage rockets composed of two 

or more stages, each of which contains its own propellant and structure. Stages are stacked 

http://www.docstoc.com/docs/53998514/Launch-Vehicles
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on top of (serial or tandem staging) or attached next to (parallel staging) each other and 

they are numbered as the order of firing. 

 

The idea behind staging is to improve performance by reducing the vehicle’s mass on the 

way to orbit. Once the propellant of a stage is consumed, the empty stage which is no 

longer useful and only adds weight to the vehicle is discarded and the next stage is ignited. 

This stage then accelerates the rest of the vehicle much faster. As a result, less propellant is 

required to reach the desired orbit. 

 

Space launch vehicles deliver payloads into orbit by moving so fast that they can overcome 

Earth’s gravity and after they reach the desired altitudes they release the payloads at very 

high speeds. Almost all rocket powered launch vehicles are launched vertically from the 

ground and they usually try to get out of the dense atmosphere as soon as possible, since 

the atmosphere increases drag losses. However, when the ascent is too steep, energy is 

spent to lift the propellant to high altitudes, which causes gravity losses. Therefore, launch 

vehicles turn down gradually to have almost horizontal acceleration after leaving the 

atmosphere. 

 

The path followed by the launch vehicle from the ground to orbit is called the ascent 

trajectory (Figure 1.2). Ascent trajectory depends on the location of the launch site, 

propulsive, gravitational and aerodynamic forces acting on the vehicle during flight, safety 

and operational constraints on the trajectory and the parameters of the injection orbit that 

the vehicle tries to achieve. Small changes in the ascent trajectory can have significant 

effects on the payload mass that can be delivered into specified orbit, as well as on the 

design of the vehicle and consequently the production and operating costs. Therefore, 

trajectory optimization is required to achieve the best performance. Brief overview of 

satellite orbits are given for reference in APPENDIX A. 

trajectory

orbit

 

Figure 1.2 Launch vehicle’s trajectory on its way to orbit 

1.1 Motivation 

Design of a launch vehicle is a very challenging activity because of highly complex and 

interconnected nature of the launch vehicles. In the early phases of design, various vehicle 
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concepts are first proposed for a specific mission, next an optimum configuration for each 

concept is found and finally the best configuration to proceed with the preliminary design 

is selected by evaluating the performance of the configuration alternatives. 

 

Launch vehicle performance is greatly influenced by both the vehicle characteristics and its 

flight trajectory. Therefore, system level engineering tools optimizing the vehicle design 

and the trajectory simultaneously are needed to predict the performance capabilities of the 

launch vehicle configurations. These tools rely on extensive numerical modeling, 

simulation and optimization. 

 

In principle, vehicle design and trajectory optimization problem can be solved by 

collecting all elements of the trajectory control vector and system design variables in one 

vector of optimization parameters to be manipulated by an appropriate optimization 

algorithm. However, system design is a multidisciplinary process in which aerodynamics, 

propulsion, weights and sizing, trajectory and even reliability and cost must be addressed 

(Stanley, et al., 1994). For multistage launch vehicles, resulting search space is extremely 

large with continuous and discrete variables which may cause convergence problems even 

major system design parameters such as mass split of stages or engine sizing are included. 

 

Furthermore, during conceptual design phase, requirements are not so strict and there are 

many unknowns. Therefore, low-fidelity models are implemented and relationships among 

design objectives and design parameters are not well-defined, which may end up with 

inefficient designs. Rowell and Korte (2003) suggested three approaches for improving 

results. One is the improvement in computational methods, the other is the continued 

improvement of disciplinary analysis models and tools to capture sufficient fidelity, and 

the last one is the development of methods for integrating the disciplines and optimizing 

the system as a whole. They also pointed out that multidisciplinary design optimization 

plays an important role in identifying a near-optimum design for each concept so that 

subsystem level decision makers use this system level information to make choices in 

smaller design spaces. 

 

A few books or book chapters have been written about the launch vehicle design (Griffin 

& French, 2004; Moss, 1995; Loftus & Teixeira, 1999; Peters, 2004; Ndefo, Encalada, 

Hallman, Wang, & Abbott, 2004; Pisacane, 2005). These books give many details about 

how to construct analysis models for each of the different disciplines. However, none of 

these describe how to create an integrated environment that incorporates all of the 

disciplines required for system level conceptual design of a launch vehicle. Only 

Hammond (1999 & 2001) describes the data flow between the disciplines and discusses the 

system level collaborative optimization in his books. Nevertheless, it is left to the system 

designer to develop his/her own approach for integrating required disciplines and to 

determine the details of implementing these approaches. 

 

In the market on the other hand, there are a number of powerful trajectory optimization 

software packages, which offer simultaneous optimization of ascent trajectory and launch 

vehicle design. However, these software packages have been developed by governmental 
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agencies or universities for national space projects and their sale to other countries is 

restricted due to export control regulations. Therefore, there is still a growing demand for 

an integrated and efficient system design and trajectory optimization tool for vehicle 

performance calculations and simulations. 

 

1.2 Scope and Objectives 

Main objective of this thesis is to develop a trajectory optimization tool well suited to be 

used in the following tasks. 

 

 Preliminary mission design of an existing launch vehicle (trajectory optimization 

of a fixed system) 

 Conceptual design of a new launch vehicle (simultaneous optimization of system 

and trajectory) 

 

Use of trajectory optimization in above mentioned tasks in terms of inputs and outputs are 

tabulated in Table 1.1. 

Table 1.1 Use of trajectory optimization in two different tasks 

Trajectory optimization of a fixed system 
Inputs: All physical and performance parameters 

of the launch vehicle are known. 

 number and type of stages 

 propellant and structural masses 

 thrust vs. time 

 mass vs. time 

Outputs: Only trajectory control variables are 

optimized. 

 thrust direction vs. time 

 free flight time durations 

 thrust profile for the stages having 

throttling capability  

Simultaneous optimization of system and trajectory  
Inputs: Physical and performance parameters are 

either specified by design team considering the 

vehicle concept, operational scenarios and 

technology options or calculated from a statistical 

database of existing launch vehicles. 

 specific impulses of stages 

 structural ratios of stages 

 throttling and restart capabilities of stages  

Outputs: Both system and trajectory variables 

are optimized. 

 number and type of stages 

 propellant and structural masses of stages 

 thrust profiles for all stages 

 thrust direction vs. time 

 free flight time durations 

 

 

 

In the conceptual design of a launch vehicle, minimization of gross lift-off mass for a 

specific mission is the primary objective, and staging is an effective way to reduce the 

vehicle gross lift-off mass. Therefore, problem arises as to what is the optimum staging to 

achieve the given mission. 

 

In the scope of this thesis, a Matlab® based computer code was written to determine the 

staging parameters (number of stages, mass distribution between stages, and the propellant 
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and structural masses for each individual stage) which minimize the gross lift-off mass of 

the launch vehicle for a specific mission. 

 

The staging optimization problem was formulated based on the delta-V (velocity change) 

equations and solved by the method of Lagrange Multipliers. The problem was stated in a 

general form to handle launch vehicles having arbitrary number of stages and with various 

configurations involving serial, parallel and clustered stages; and with different structural 

ratios and propellant exhaust velocities in each stage. Velocity increment required to get 

into orbit can also be calculated by considering the gravitational, aerodynamic and 

propulsive loss factors with proper margins under the simplest possible conditions without 

determining the flight trajectory. 

 

On the other hand, a Matlab® based trajectory optimization code well suited to be used in 

the preliminary mission design phase of a generic multistage Earth-to-orbit launch vehicle 

was developed. It was aimed to determine the optimal ascent trajectory so as to maximize 

the payload mass delivered to orbit while satisfying the mission constraints such as limits 

on acceleration, dynamic pressure and aerodynamic heating rate to prevent the launch 

vehicle or the payload from damage. 

 

Launch vehicle dynamics were modeled using three-degrees-of-freedom equations of 

motion and standard models of gravity and atmosphere were implemented in the trajectory 

optimization problem. A general purpose Matlab software program called GPOPS-II 

developed by Patterson and Rao (2013a) was employed to solve the trajectory optimization 

problem. 

 

GPOPS-II utilizes one of the most recent methods known as Radau pseudospectral method, 

which is based on the discretization of states and controls using global polynomials 

collocated at a set of Legendre-Gauss-Radau points. After discretization, resulting 

nonlinear programming problem was solved by SNOPT (Sparse Nonlinear Optimizer) 

developed by Gill, Murray and Saunders (2005) based on a sequential quadratic 

programming algorithm for large scale constrained optimization problems. 

 

After having developed these two independent computer codes for staging and trajectory 

optimization, they are integrated by an overhead program to be used for the simultaneous 

optimization of the vehicle and the trajectory parameters. Thus, a quick and effective 

method to find optimal vehicle configurations in the early design phases was achieved in 

the frame of this thesis. 

 

Space transportation covers a wide range of vehicles from interplanetary or deep space 

transfer vehicles to reentry vehicles for human spaceflight and expendable launch vehicles 

for non-crewed payloads. Since the main characteristics of these vehicles differ from each 

other, disciplinary modeling needs might also be different. In this thesis, only the 

multistage launch vehicles for satellite delivery into Earth’s orbit were covered. Developed 

tools are appropriate for several types of orbits like sunsynchronous and polar orbits, 

geostationary transfer orbits, as well as low and high circular or elliptical orbits. 
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Launch vehicle design is a complex activity involving all aerospace disciplines, and such a 

design activity requires many years of team work with successive iterations achieved with 

numerical and experimental methods in the different disciplinary areas. In this thesis, it 

was not attempted to cover the launch vehicle detailed design process completely, but a 

representative conceptual design model was identified with few design variables and easy 

to compute sizing equations. 

 

1.3 Thesis Outline 

This thesis is organized as follows: 

 

Chapter 1 is the introduction to the thesis. It provides an overall view of the work and 

discusses the motivation of this research and presents the scope, objectives and outline of 

the thesis. 

 

Chapter 2 gives the background on historical development of trajectory optimization 

techniques, and discusses the currently available trajectory optimization software. The 

existing research concerned with the design and trajectory optimization of space launch 

vehicles in the literature is also presented. 

 

Chapter 3 describes the staging optimization code developed in the frame of this thesis in 

order to determine the staging parameters which minimize the gross lift-off mass of the 

launch vehicle for a specific mission. 

 

Chapter 4 focuses on the trajectory optimization code in order to determine the optimal 

ascent trajectory so as to maximize the payload mass while satisfying the mission 

constraints. 

 

Chapter 5 presents the mathematical framework and illustrative examples to find optimal 

vehicle configuration in the early design phases by simultaneous optimization of thrust 

profile and trajectory. 

 

Chapter 6 draws the conclusion of the whole study. It also includes a brief summary of the 

contributions of this thesis and recommendations for future research. 
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CHAPTER 2 

BACKGROUND 

The purpose of this chapter is to present the practical foundations of the staging and 

trajectory optimization of launch vehicles. Since the majority of the work depends on the 

application of the optimization theory, a brief overview of several applicable optimization 

methods and their certain advantages and limitations are first highlighted to provide 

general background knowledge. 

 

This chapter is organized in three sections. Section 2.1 presents available literature on the 

trajectory optimization methods, Section 2.2 gives an introductory summary of available 

software packages for trajectory and design optimization of launch vehicles. Finally, the 

existing research on staging and trajectory optimization of launch vehicles are given in 

Section 2.3 including their relevance to the subject of this thesis as well. 

 

2.1 Trajectory Optimization Methods 

Trajectory optimization of launch vehicles has been a topic of considerable research and 

development for almost 50 years. Prior to the development of digital computers, much of 

the work was focused on obtaining analytical solutions which required making numerous 

simplifying assumptions as Lawden (1963) declared. With the advent of digital computers, 

numerical methods were successfully applied to the launch vehicle trajectory optimization 

problems. 

 

Since the multistage launch vehicles are nonlinear dynamical systems including 

discontinuities in state variables, and their trajectories are characterized by the time 

varying differential equations, the launch vehicle trajectory optimization problem can be 

regarded as a nonlinear, multiphase optimal control problem (OCP). A multiphase OCP is 

formulated as follows. 

 

Given a set of P phases where p ∈ [1, …, P], determine the state x
(p)(t), control u

(p)(t), 

initial time t0
(p), final time tf

(p), integrals q
(p) in each phase and the static parameters s that 

minimize the cost functional (also called objective functional) 

 

 

               

               

1 1 1 1 1 1 1

0 0
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f f

P P P P P P P

f f

t t t t

J

t t t t
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  

  
  
  

x x q

x x q s
 (2.1) 
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subject to the dynamic constraints 

 

 
          , , ,
p p p p P

tx a x u s  (2.2) 

 

the event (boundary) constraints 
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               

1 1 1 1 1 1 1

0 0

max

0 0

, , , , ,

, , , , , ,

f f

P P P P P P P

f f

t t t t

t t t t

  
  

  
  
  

min

x x q

b b b

x x q s
 (2.3) 

 

the inequality path constraints 

 

 
            
min max, , ,
p p p p P p

t c c x u s c  (2.4) 

 

the static parameter constraints 

 

 min max s s s  (2.5) 

 

the integral constraints 

 

 
     
min max

p p p
 q q q  (2.6) 

 

where the integrals are defined as 

 

           
 

 

0

, , ,

p

f

p

t

p p p p P

i

t

q t dt  x u s  (2.7) 

 

In an OCP, the control functions to be applied on the system in order to minimize or 

maximize a specified performance measure are determined while satisfying any constraints 

on the motion of the system. Primary objective of the launch vehicle trajectory 

optimization problem is to find an optimal trajectory between the launch site and the target 

injection orbit. Such kind of OCP with endpoint constraints is referred to as two point 

boundary value problem (2PBVP). 

 

Numerical methods for solving OCPs are divided into two major classes: indirect methods 

and direct methods. In indirect methods, optimality conditions are derived by calculus of 

variations, and resulting 2PBVP is then solved numerically where some sort of 

discretization is introduced. In direct methods, original problem is discretized in time and it 

is converted into a nonlinear programming problem (NLP) and an approximate solution is 

then obtained by using NLP techniques. 
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There are three comprehensive survey papers reviewing and discussing various trajectory 

optimization methods in the literature. Betts (1998) described the direct and indirect 

optimization methods in detail, presented the pros and cons and cited relevant work in the 

literature. Later, Rao (2009) investigated the numerical methods for optimal control 

problems and introduced well known software programs. Finally, Conway (2012) reported 

the recent advancements in the numerical solution methods and explained the advantages 

and disadvantages of the recently developed evolutionary methods. 

 

2.1.1 Numerical Methods for Optimal Control 

Advantages and disadvantages of direct and indirect methods were evaluated in the book 

of Betts (2010) and are herein tabulated in Table 2.1. 

Table 2.1 Comparison of indirect and direct methods 

 Advantages Disadvantages 

Indirect methods High accuracy 

Analytical expressions for necessary conditions must 

be derived 

Small convergence area, requires good initial guess 

Requires also guesses for costates which do not have 

physical meaning 

Direct methods Better convergence Low accuracy 

 

 

 

In order to eliminate the disadvantages of indirect methods and to obtain better 

convergence properties, direct methods were examined in more detail in the scope of this 

thesis. In a direct method, the state and/or control of the original OCP are 

approximated/discretized/parameterized in some appropriate manner and direct methods 

are classified according to how this discretization is handled (Figure 2.1). 

 

Figure 2.1 Classification of direct methods 

Direct 
Methods 

Control 
parametrization 

Shooting 

Multiple 
shooting 

State&control 
parametrization 

Local 
collocation 

Global 
collocation 

Pseudospectral 
methods 
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In the case where only the control is approximated, the method is called a shooting method. 

When both the state and control are approximated, the method is called a collocation 

method, also called transcription. Schematics of these two methods are given in Figure 2.2 

(Tewari, 2011). 

 
(a)      (b) 

Figure 2.2 Shooting (a) and collocation (b) methods 

Shooting methods treat the boundary value problem as if it is an initial value problem and 

initial slope (0)y  is adjusted iteratively so that terminal conditions are satisfied. The 

simplest method to implement is the ordinary shooting method and a variant of it is the 

multiple shooting wherein intermediate shooting points are introduced allowing 

state/costate guesses at these points. Shooting methods are not suitable when the number of 

design variables is large and they are sensitive to the changes in initial conditions. 

 

The major advantage of collocation methods compared to multiple shooting methods is 

their better run time performance. Moreover, as Betts (2010) expressed collocation 

methods offer a convenient way to place a path constraint evaluation point at the same 

locations where the dynamics are evaluated. 

 

Collocation methods are further subdivided into local and global collocation methods. In 

local collocation, time interval considered is divided into a series of subintervals within 

which the integration rule must be satisfied. Trapezoidal, Euler, Runge-Kutta and Hermite-

Simpson methods are local collocation methods having wide application. In global 

collocation, the state and control variables are expanded into piecewise-continuous 

polynomials, the derivative of the state variables are approximated by combinations of 

these interpolating polynomials and their derivatives. 

 

In recent years, global form of orthogonal collocation, i.e. pseudospectral methods become 

very popular. In these methods, states are approximated using global polynomials, and 

collocation is performed at chosen points. Costates can also be estimated directly from 

Lagrange Multipliers of NLP, thus advantage of both direct and indirect methods, such as 
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fast convergence and better accuracy are provided. As the name implies, solution 

converges spectrally (at an exponential rate) as a function of the number of collocation 

points. 

 

Following types of piecewise polynomials can be used to approximate the differential 

equations at collocation points. 

 

 Legendre-Gauss polynomials 

 Legendre-Gauss-Radau polynomials 

 Legendre-Gauss-Lobatto polynomials 

 Chebyshev-Gauss polynomials 

 Chebyshev-Gauss-Radau polynomials 

 Chebyshev-Gauss-Lobatto polynomials 

 

2.1.2 Nonlinear Programming Methods 

After a continuous infinite dimensional optimal control problem is discretized using one of 

the above mentioned collocation methods and converted to an NLP, then an NLP solver is 

required to obtain optimal trajectory and the controls. Numerical methods for solving NLP 

are categorized in Figure 2.3. 

 

Figure 2.3 Classification of NLP methods 

In gradient-based methods, an initial guess is made, and a search direction and a step 

length are determined at every iteration. Most commonly used gradient-based NLP 

solution methods are sequential quadratic programming (SQP) and interior point methods. 

Large numbers of variables and constraints can be handled, and fast and accurate solutions 

are provided through gradient-based methods. But, they suffer from the possibility of 

convergence to the local optima closest to the given starting point when the step length is 

too small to find an improving move. 
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In heuristic methods, search is performed in a stochastic manner and discrete variables can 

easily be accommodated. They are fairly good at locating the global optimum among local 

optima, but often provide near optimum solutions, and they are poor in handling path 

constraints. Main problems that limit the application of stochastic methods to trajectory 

optimization problems are slow convergence rates and unaffordable computational times 

due to the requirement of large number of function evaluations before convergence. 

 

2.2 Trajectory Optimization Software 

A number of software packages exist for performing trajectory optimization of launch 

vehicles. POST, OTIS, SOCS and ASTOS are the most popular ones developed by 

different organizations. 

 

2.2.1 Program to Optimize Simulated Trajectories (POST) 

The Program to Optimize Simulated Trajectories (POST) was developed by Lockheed-

Martin Astronautics and NASA (United States National Aeronautics and Space 

Administration) Langley Research Center in 1970 as a space shuttle trajectory optimization 

program and since then it has been significantly improved with additional capabilities 

added in the area of vehicle modeling, trajectory simulation and optimization (Brauer, 

Cornick, & Stevenson, 1977). 

 

POST provides the capability to simulate and optimize 3DOF and 6DOF trajectories for 

powered or unpowered vehicles and it has been widely used successfully to solve a wide 

variety of atmospheric ascent and reentry problems, as well as exoatmospheric orbital 

transfer problems. 

 

POST is a generalized event-oriented code that numerically integrates the equations of 

motion of a flight vehicle given definitions of aerodynamic coefficients, propulsion system 

characteristics, atmosphere tables, and gravitational models. Guidance algorithms used in 

each phase are user-defined. Numerical optimization, specifically nonlinear programming 

and direct shooting, is used to satisfy trajectory constraints and minimize a user-defined 

objective function by changing independent steering and propulsion variables along the 

flight path. POST runs in a batch execution mode and depends on an input file to define 

the trajectory event structure, vehicle parameters, independent variables, constraints, and 

objective function. 

 

2.2.2 Optimal Trajectories by Implicit Simulation (OTIS) 

Optimal Trajectories by Implicit Simulation (OTIS) was originally developed by the 

Boeing Company in 1980s under contract to the Air Force and later versions were released 

by NASA Glenn Research Center (OTIS, 2011). 

 

OTIS can accommodate varying models of propulsion, weights, atmospheres, and 

aerodynamics. As a result of the trajectory variables being parameterized over specific 

time intervals, constraint boundaries, such as a dynamic pressure boundary, are easily 
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simulated in OTIS. Vehicle models can be very sophisticated and can be simulated through 

six degrees of freedom. 

 

Earlier versions of OTIS have primarily been launch vehicle trajectory and analysis 

programs, but have since been updated for robust and accurate interplanetary mission 

analyses, including low-thrust trajectories. 

 

OTIS primarily uses nonlinear programming and collocation to solve the nonlinear 

programming problem associated with the solution of the implicit integration method, 

although shooting is an option. 

 

2.2.3 Sparse Optimal Control Software (SOCS) 

Sparse Optimal Control Software (SOCS) was developed by the Boeing Company in 

1990s for solving optimal control problems such as trajectory optimization, chemical 

process control and machine tool path definition. 

 

SOCS is based on the sparse optimization. Sparsity allows the solver to be fast in 

comparison with other methods. Betts and Huffman (1990) incorporated sparse matrix 

methods into a nonlinear programming algorithm and brought a major improvement to 

collocation methods. Their sparse matrix methods include an automatic mesh refinement 

algorithm and a Sequential Quadratic Programming (SQP) method that is specialized on 

solving very large, sparse problems including several ten-thousand variables and 

constraints. 

 

2.2.4 AeroSpace Trajectory Optimization Software (ASTOS) 

AeroSpace Trajectory Optimization Software (ASTOS) has been developed by University 

of Stuttgart as a part of an ESA (European Space Agency) project since 1989 (ASTOS, 

2011). 

 

ASTOS is a trajectory simulation and optimization tool covering 3DOF point mass motion 

and trimmed 6DOF trajectories for launch vehicle ascent, suited to analyze a wide range of 

aerospace missions from atmospheric over orbital to interplanetary scenarios. It can be 

used for fast preliminary design studies as well as for operational tasks with high 

requirements for accuracy. 

 

ASTOS use two kinds of third party NLP solvers (SNOPT and SOCS) and offers 

simultaneous optimization of ascent trajectory and launch vehicle design using all-at-once 

approach with trajectory, aerodynamics, weight, structure, propulsion and cost (as post 

analysis) disciplines. 

 

2.3 Previous Research 

Existing research in the field of staging and trajectory optimization of launch vehicles are 

reviewed and discussed in this chapter. 
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2.3.1 Staging Optimization 

Soviet rocket scientist Konstantin Tsiolkovsky first realized the advantages of staging a 

rocket and leaded to the development of the concept of multistage rockets. He proposed his 

idea of multistage rockets in the year 1924 in his book called Cosmic Rocket Trains (as 

cited in Todd & Angelo, 2005). 

 

Mainly, there are two types of staging so called serial staging and parallel staging as 

illustrated in Figure 2.4. In serial staging, several stages are stacked on top of each other 

and they burn successively. While in parallel staging, stages are mounted in parallel and 

they burn simultaneously. 

 

  
         (a)        (b) 

Figure 2.4 Types of staging (a) serial, (b) parallel 

(adapted from http://exploration.grc.nasa.gov/education/rocket/rktstage.html) 

In serial staging, the first and the largest stage is usually at the bottom and the subsequent 

upper stages are above it, usually decreasing in size. In parallel staging, strap-on boosters 

are used to assist the lift capacity of the launch vehicle. Boosters are often referred to as 

zeroth stage, and they are generally ignited simultaneously with the first stage at lift-off to 

accelerate the entire vehicle upwards. In general, burn time of the boosters is shorter than 

the first stage. So, when the boosters run out of propellant they separate from the rest of the 

vehicle, while the first stage continues to burn. A special case of parallel staging is the 

cluster staging in which the burn time of the boosters and the core stage are the same. 

 

Different types of vehicle configurations exist in the world market. As shown in Figure 1.1 

there are a number of vehicles having stages in series such as Pegasus, Taurus, Titan II and 

Atlas II. Space Shuttle is the most obvious example of a parallel staged vehicle which has 

two solid rocket boosters burning simultaneously with the main cryogenic engine. Some 

http://exploration.grc.nasa.gov/education/rocket/rktstage.html


15 

other vehicles use both serial and parallel staging such as Delta II and Titan IV. These 

vehicles have boosters around the 1st stage and a 2nd stage on top of the 1st stage. 

 

On the other hand, single-stage-to-orbit (SSTO) vehicles are so attractive because they 

eliminate cost, complexities and reliability problems of staging. Fully reusable SSTO 

vehicles that can fly into orbit and return to landing site like an airplane are the ultimate 

goal of current research and development activities. However, it is extremely difficult to 

build such a vehicle with today’s technology. The key engineering challenges are the need 

for very efficient propulsion systems having higher specific impulses and mass ratios. 

 

Another advantage of staging is that launch vehicle configuration can be optimized for the 

requirements of a particular mission by adjusting the amount of propellant and engine 

thrust, and using different types of engines, propellants and structural materials for various 

stages. Stages can also be designed for best performance considering their operating 

conditions. Lower stages operate in high atmospheric pressure which leads to high 

aerodynamic drag, while upper stages operate in the vacuum and there is no drag and lift. 

On the other hand, rocket efficiency is strongly affected by the ambient pressure at the 

nozzle exit. For optimum performance, nozzle should be short in the lower atmosphere and 

should be long in the vacuum of space. 

 

Generally, it is meaningful to use solid propellant motors for the lower stages, and liquid 

propellant engines for the upper stages. This is because solid motors are well suited to 

produce the high thrust at lift-off, while high energy and accordingly more efficient liquid 

engines are lighter and thus reduce the work of the lower stages. Therefore, light weight 

construction quality and the exhaust velocity have to increase with the stage number. 

Consequently, investment in high-energy propellant upper stages also results in a reduction 

of the mass of the lower stages. Liquid engines are preferred in the upper stages especially 

for orbit injection purposes as well because of their stop/restart and throttling capabilities. 

 

The optimum stage mass distribution between stages for a multistage launch vehicle can be 

determined by staging optimization for a given set of technology options. Previous staging 

optimization studies are based on the maximization of the payload velocity for a given 

gross lift-off mass constraint or the minimization of gross lift-off mass for a given payload 

velocity constraint. While designing a new launch vehicle, minimization of gross lift-off 

mass for a specific mission is the primary objective. 

 

Till today, many efforts have been made to optimize launch vehicle staging for minimum 

gross lift-off mass. In the early papers, problem was solved with many simplifying 

assumptions. Malina and Summerfield (1947) were the first to optimize staging; however, 

the solution was limited to stages having equal propellant exhaust velocities and structural 

ratios. Vertregt (1956) extended the solution to the case when all stages have different 

exhaust velocities. Goldsmith (1957) offered a solution for two stage rockets when the 

structural masses are proportional to the propellant masses. Weisbord (1958), Subotowicz 

(1958), Hall and Zambelli (1958) have all presented general solutions for minimum gross 
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lift-off mass with non-homogenous stages and the solution holds for arbitrary number of 

stages. 

 

All of these authors used the method of Lagrange Multipliers, which was proven many 

times, and they ignored the effects of gravity, drag and steering in order to obtain the 

derivatives of Lagrangian analytically. Cobb (1961) minimizes the gross lift-off mass with 

the constraint that the total energy imparted to the payload is fixed. He included the effect 

of steering by assuming an average attitude angle for each stage. Later on, Srivastava 

(1966), Tawakley (1967) and Adkins (1970) have examined the isolated effects of gravity, 

steering and drag, respectively. 

 

In the frame of this thesis, staging parameters were optimized so as to obtain the initial 

sizing of the vehicle by considering the gravitational, aerodynamic and propulsive loss 

factors with proper margins under the simplest possible conditions without determining the 

flight trajectory.  

 

2.3.2 Trajectory Optimization 

The ascent trajectory of a launch vehicle begins with lift-off from the launch site and ends 

up with the placement of the payload into a specified orbit. Most launch vehicles are 

launched vertically from the ground, and the vehicle first flies straight up in the dense 

atmosphere gaining both vertical speed and altitude, and then turns slightly to achieve the 

horizontal velocity to get into the orbit. 

 

During flight, a number of energy loss mechanisms affect the performance of the launch 

vehicle. These can be classified as drag losses, gravity losses, steering losses and thrust 

losses. Determination of the ascent trajectory is governed by the desire to minimize these 

losses subject to the operational constraints such as limits on acceleration, dynamic 

pressure, structural loads and aerodynamic heating rate to prevent the launch vehicle or the 

payload from damage. 

 

Another factor that must be taken into consideration during trajectory optimization is the 

safety precautions. Launch site and the launch azimuth angle should be selected such that 

the spent stages, or the launch vehicle itself in case of any emergency, can be safely 

aborted into open water or unsettled areas. 

 

Such kind of severe constraints on the flight path and the high costs of operating launch 

vehicles demand optimal flight trajectories, and the trajectory optimization becomes an 

unavoidable activity for space transportation. Certain applications are: 

 

 Determining the maximum payload mass that a launch vehicle can deliver to orbit 

 Sizing the stages of a launch vehicle for best performance 

 Analyzing how changes in design affect the overall performance 

 Computing the flight corridor and the impact points of spent stages 

 Determining the launch window 
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Typical design variables used in the trajectory optimization of a fixed system for a 

particular mission are time histories of thrust direction, pitch and yaw angles, fairing 

jettison time and free flight (coasting) time durations. If it is intended to optimize the 

vehicle simultaneously with the trajectory, then propellant weights, staging times and 

thrust profiles will also be considered as optimization variables. 

 

After optimal trajectory has been calculated it is the task of the guidance system to 

generate steering commands which will direct the launch vehicle over the flight path from 

the point of departure to the destination. Traditionally, the complete ascent trajectory of a 

launch vehicle is partitioned into two portions: endoatmospheric and exoatmospheric or 

atmospheric and vacuum. 

 

In the atmospheric portion, ascent guidance is performed in open loop mode. After the 

high dynamic pressure portion of the trajectory is over, closed loop guidance mode is 

switched on. Open loop guidance implies that steering commands and engine throttle 

settings along the trajectory are predetermined and installed on the guidance computer 

before flight. Whereas, closed loop guidance means trajectory optimization problem is 

solved online during flight and guidance commands are generated by the onboard 

computer in every guidance update cycle using the current condition as the initial 

condition. 

 

The need for such a partitioning stems from the presence of aerodynamic forces which 

significantly complicate the vehicle dynamics model and consequently the solution 

process. However, after the launch vehicle clears the atmosphere, aerodynamic forces and 

wind effects can be neglected and the optimal ascent trajectory can be determined more 

quickly and reliably. 

 

Trajectory optimization is a complex and computationally intensive task and requires 

sophisticated computer simulations. Trajectory optimization is a part of the earliest 

conceptual design activities with simplified propulsion, aerodynamics and mass properties 

models, and then it iteratively matures its output through the design process and evolves to 

a mission specific trajectory determination program in the operational phase. 

 

Work on launch vehicle trajectory optimization has a long history. Over the last 40 years, 

several authors carried out researches on different methods to solve various problems of 

this type. The methods differ principally by the choice of unknowns, the types of methods 

used to integrate the differential equations and the order of integration. 

 

The early methods employed were based on the calculus of variations so called indirect 

methods. However, because of the disadvantages stated in Table 2.1, finding an optimal 

solution using indirect methods was a lengthy and labor intensive process. In later years, 

emergence of faster computers and improvement of numerical techniques leaded to the 

development of direct methods. Direct methods were then widely used for solving 

trajectory optimization problems. 
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One of the simplest methods to implement among direct methods is the direct shooting 

method. It was first proposed by Brusch and Peltier (1974) and applied to trajectory 

optimization problems of Space Shuttle (Brusch, 1974) and Atlas-Centaur (Brusch, 1977). 

Later, Jänsch, Schnepper and Well (1990) proposed multiple shooting method for 

integrating the dynamic equations numerically and they successfully applied this method to 

the ascent trajectory optimization of Ariane 5. 

 

During the same years, direct collocation method was developed by Hargraves and Paris 

(1987) and they implemented this method in OTIS software, which was described in 

Section 2.2.2. Subsequent implementations of direct collocation algorithms can be found in 

the works of Jänsch, Schnepper and Well (1990), Enright and Conway (1992) and Styrk 

(1993). A major improvement to collocation methods was made by Betts and Huffman 

(1990) with the introduction of SOCS software presented above in Section 2.2.3. 

 

Although the direct methods show better convergence properties, NLP can still be sensitive 

to initial guesses when the gradient-based search algorithms are used in the solution. That 

is, a poor initial condition may terminate in an infeasible solution or converge to a local 

optimum. In order to find an appropriate initial solution for direct methods, hybrid 

methods, which can be a combination of either direct and indirect methods or direct and 

heuristic methods, have been proposed by several authors. Hybrid methods provide quick 

convergence toward the optimal solution. 

 

Gath and Well (2002) implemented an indirect optimization algorithm for initial guess 

calculation. They first generated the nearly analytic vacuum solution and then introduced 

the atmospheric effects. Afterwards, they implemented a direct optimization method to 

solve the optimal trajectory considering path constraints such as dynamic pressure, heat 

flux and empty stage splash down. 

 

Yokoyama and Suzuki (2005) proposed a real-coded genetic algorithm to provide an 

appropriate initial solution to gradient-based direct trajectory optimization of a space plane 

reentry problem. A new hybrid algorithm called genetic algorithm guided gradient search 

was proposed by Geethaikrishnan, Mujumdar, Sudhakar and Adimurthy (2008) to produce 

good initial guesses. A case study with Space Shuttle ascent trajectory optimization 

problem was also carried out in the scope of this work. 

 

Zotes and Peñas (2010) studied the use of a genetic algorithm to optimize the ascent 

trajectory of a conventional two-stage launcher. Karslı and Tekinalp (2005) successfully 

applied simulated annealing based single and multiobjective optimization algorithms to the 

ascent trajectory optimization of a two stage rocket powered launch vehicle. Arslantaş 

(2012) performed design optimization of a nano-satellite launcher using a multiple cooling 

multi objective simulated annealing algorithm. In this study, the angle of attack profile and 

the propulsion characteristics of the motors were formulated as optimization variables. 

 

Chenglong, Xin and Leni (2008) used a particle swarm optimization algorithm in order to 

solve the trajectory optimization problem of a reusable launch vehicle. They optimized the 



19 

time histories of angle of attack and bank angle considering the physical constraints such 

as dynamic pressure, heat flux, total aerodynamic heating and aerodynamic forces. 

 

Main problem that limits the application of heuristic methods to trajectory optimization 

problem is the requirement of large number of function evaluations before convergence, 

which results in unaffordable computational times for complex problems. 

 

There are numerous studies covering the optimization of system variables along with the 

trajectory. In these studies, launch vehicle design problem is generally decomposed into 

different physical disciplines such as aerodynamics, propulsion, structure, weights and 

sizing and trajectory optimization and it is called multidisciplinary design optimization 

(MDO) problem. These disciplines can be optimized separately and sequentially or 

simultaneously within a same system. Hybrid algorithms that combine heuristic methods 

and gradient-based methods have usually been preferred in MDO studies as also pointed 

out in the review paper of Balesdent, Bérend, Dépincé and Chriette (2012). Several 

researches on the applications of MDO methods to launch vehicle design are presented in 

the following. 

 

Braun, Moore and Kroo (1997) applied the collaborative optimization to the 

multidisciplinary design of an SSTO vehicle. Vehicle design, trajectory and cost issues 

were directly modeled in the problem, which is characterized by 95 design variables and 

16 constraints. 

 

Akhtar and Linshu (2005) applied hybrid optimization algorithm using genetic algorithm 

as a global optimizer and sequential quadratic programming as a local optimizer to optimal 

design of a launch vehicle based on liquid rocket engines. Bayley, Hartfield, Burkhalter 

and Jenkins (2008) used genetic algorithm to optimize multistage launch vehicles with the 

goal of minimizing vehicle weight and ultimately the cost. 

 

Rafique, He, Zeeshan, Kamran and Nisar (2011) proposed a hybrid heuristic search 

algorithm to overcome inherent disadvantages of genetic algorithm, which requires huge 

number of function evaluations to obtain near optimal solutions, and simulated annealing, 

which requires feasible direction at initial stage. They applied their method for the design 

and trajectory optimization of an air launched satellite launch vehicle and proved that the 

proposed method is more efficient. 

 

Ebrahimi, Farmani and Roshanian (2011) optimized the design of a small solid propellant 

launch vehicle so as to minimize the gross lift off mass using particle swarm optimization 

method. Pontani (2014) applied swarming algorithm in order to determine the optimal 

ascent trajectory after expressing the control variables as functions of the adjoint variables 

by employing necessary conditions of optimality. 

 

Castellini, Lavagna and Erb (2008) and Castellini and Lavagna (2012) carried out a 

comparative study to analyze different heuristic algorithms for concurrent optimization of 

ascent trajectory and system level design of expendable launch vehicles. 
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Over the last few years, a new approach based on pseudospectral collocation has been 

developed for rapid trajectory optimization of complex problems. Pseudospectral methods 

are used to transcribe a given optimal control problem into a nonlinear programming 

problem and have advantages of big convergence radius, low requirement for initial 

guesses, small number of function evaluations and good robustness. 

 

Fahroo and Ross (2002) proposed a chebyshev pseudospectral method for solving a 

generic optimal control problem and pointed out that further tests and analyses are needed 

to investigate the stability and accuracy of the method.  

 

Ross, D'Souza, Fahroo and Ross (2003) presented the application of a pseudospectral 

knotting method implemented in the Matlab based software package called DIDO to 

compute optimal trajectory of a three stage solid launch vehicle. They determined the time 

history of thrust direction during the whole trajectory including powered and coast phases 

of flight while maximizing the payload mass. 

 

Rea (2003) applied a legendre pseudospectral method successfully to several launch 

vehicle trajectory optimization problems. In this study, dynamic pressure and sensed 

acceleration constraints were imposed and Euler angle quaternions were optimized. 

Proposed method in this study offered as a potential real time predictive guidance 

algorithm. Xuan, Zhang and Zhang (2009) also used legendre pseudospectral method to 

determine the optimal trajectory of a small solid launch vehicle. They analyzed the fairing 

jettison time as well. 

 

Benson (2004) first implemented the integral and differential gauss pseudospectral method 

in launch vehicle trajectory optimization problem, and then Huntington (2007) extended 

the method by a revised pseudospectral transcription for the computation of the control at 

the boundaries, and examined the local versus global implementation of the method. Later, 

Jorris and Cobb (2009) addressed the ability of gauss pseudospectral method to generate an 

optimal reentry trajectory satisfying the waypoints for multiple payload deployments and 

no-fly zone constraints for geopolitical restrictions or threat avoidance. 

 

Different ascent guidance methods have been developed and implemented in trajectory 

optimization studies carried out until now. During early times, only the exoatmospheric 

phase of the flight was attempted to solve. Brown and Johnson (1967) solved the trajectory 

optimization problem as a boundary value problem in ordinary differential equations to 

find the optimal steering laws for orbital injection and rendezvous missions. 

 

Later, methods that also treat the endoatmospheric phase have been developed. Bradt, 

Jessick and Hardtla (1987) used Hermite interpolation and collocation to implicitly 

integrate the equations of motion and with penalty function to reduce bending moment 

loads. 
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Hanson, Shrader and Cruzen (1995) examined and tested several atmospheric open loop 

and closed loop ascent guidance options for a variety of launch vehicle models. Calise, 

Melamed and Lee (1998) proposed a hybrid collocation approach and achieved reliable 

convergence for a single stage vehicle model. They used an iterative method, which starts 

from a vacuum solution and gradually introduces atmospheric effects until a converged 

solution is obtained. 

 

Dukeman (2002) developed a closed loop ascent guidance algorithm which cyclically 

solves the 2PBVP by calculus of variations starting at vertical rise completion through 

main engine cut off, taking into account atmospheric effects. 

 

Lu, Zhang and Sun (2005) integrated the vacuum multiburn ascent portion with the 

atmospheric ascent portion via a fixed point iteration algorithm. They specifically 

addressed convergence issues and were trying to obtain physically correct solution for 

endoatmospheric portion. Several refinements to this algorithm were presented by Zhang 

and Lu (2008) and they verified and validated the algorithm by studying several test cases. 

 

Another approach followed in many trajectory optimization problems is dividing the flight 

trajectory into phases depending on the specific guidance laws. This approach rose again 

from the need for initial estimates of controls for the numerical solution of the optimal 

trajectory. Even if the algorithms do not strictly require an initial guess, good guess often 

help speed up the optimization process. In the presence of local minima, supplying an 

initial guess, which is as close as possible to the optimal solution also influence the 

correctness of the results. 

 

Edge and Powers (1976), Markl (2001), Well (2003) and Castellini (2008) adopted this 

approach and they imposed initial guesses estimated by applying a sequence of guidance 

laws. A typical reference guidance program consists of four sections: vertical ascent, pitch 

over, gravity turn and tangent steering laws. However, imposing initial guesses in advance 

for each trajectory segment, may lead to near optimal solutions rather than optimal 

solutions. Moreover, these guidance schemes either need some precomputations or involve 

a specific kind of optimization on their own. 
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CHAPTER 3 

STAGING OPTIMIZATION 

Staging optimization starts with the parameters of the desired orbit and payload mass, and 

serves to determine the staging parameters (number of stages, mass split among stages, 

propellant masses, etc.) so as to minimize the launch vehicle’s gross lift-off mass which 

can be considered as a key driver of both performance and cost. Staging optimization gives 

a quick insight about the vehicle performance capability prior to trajectory design with 

minimum basic vehicle data such as the state of the art values of specific impulse and 

structural ratios. 

 

3.1 Mathematical Model 

3.1.1 Tsiolkovsky’s Rocket Equation 

The famous fundamental rocket equation derived from Newton’s second law of motion 

governs the relationship between the rocket velocity and the mass change while the 

propellant is consumed. It allows the estimation of propellant weight necessary to 

accelerate the vehicle to a given velocity and expressed as 

 

 lnvehicleV C     (3.1) 

 

In Eq. (3.1), 

∆Vvehicle is the maximum change of speed that can be attained by the vehicle, 

C is the effective exhaust velocity, 

Λ is the burn-out mass ratio. 

 

Rocket equation shows that mainly two parameters affect the overall performance of the 

rocket: the exhaust velocity (C) and the burn-out mass ratio (Λ). C is a common 

performance figure for the propulsion system and depends mainly on the chemical 

composition of the propellant, while Λ is a measure of structural efficiency of the rocket. 

 

The effective exhaust velocity (C) is defined by 

 

 0spC I g   (3.2) 

 

In Eq. (3.2), 

Isp is the vacuum specific impulse, 

g0 is the gravitational acceleration at sea level, i.e. g0 = 9.80665 m/s2. 
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In today’s technology, Isp values of different type of rocket motors vary between 180 sec 

up to 475 sec depending on the propellant used as tabulated in Table 3.1 (Tewari, 2007). 

Table 3.1 Practical Isp values for common rocket propellants 

Propellant type Isp [sec] 

Solid 180 - 270 

N2O4/MMH 
260 - 310 

N2O4/UDMH 

Kerosene/LO2 300 - 350 

LH2/LO2 455 

LH2/LF 475 

 

 

 

The burn-out mass ratio (Λ) is just the ratio of the initial mass to the final mass. 
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In Eq. (3.3), 

m0 is the initial mass, 

mf is the final mass, 

ms is the structural mass, 

mp is the propellant mass, 

mpl is the payload mass. 

 

For a typical multistage rocket, Λ is in the range from 4 to 14 depending on today’s 

material technology (Turner, 2009). Since Isp and Λ take values within the limits of 

technology, maximum attainable velocity by the vehicle (∆Vvehicle) is also limited. 

 

Turner (2009) noted that the total velocity requirement to achieve a 500 km circular orbit is 

about 8.7 km/s; when the gravity, drag and steering losses are included. The mass ratio for 

such a velocity requirement is too high to achieve, considering the fact that current rocket 

motors have a maximum specific impulse of about 475 sec. Therefore, staging is essential 

to inject satellites into orbit. 

 

3.1.2 Multistage Rocket Parameters 

The ideal velocity increment for an N-stage rocket is the sum of the velocity increments of 

the individual stages. That is 
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In the analysis of an N-stage rocket, the payload of any particular stage (k) can be 

considered as the mass of the subsequent stages (k+1, … , N) as illustrated in Figure 3.1. 

 

 , 0, 1pl k km m   (3.5) 
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Figure 3.1 Mass definitions for serial staging 

Accordingly, the payload of the last (Nth) stage is the actual payload of the launch vehicle. 

That is 

 

 ,pl N plm m  (3.6) 

 

The total payload ratio is a measure of how much of the initial mass of the vehicle is 

payload. For launches to low Earth orbit, the payload is about 2-4% of the vehicle mass, 

and for launches to geostationary transfer orbit, it is only 1% of the vehicle mass (Fischer, 

2005). The total payload ratio (λt) is defined as 

 

 
0 0,1

pl pl

t

m m

m m
    (3.7) 

 

In Eq. (3.7), m0,1 is the gross lift-off mass (GLOM) of the launch vehicle. 

 

The mass of the kth stage, and the initial and final mass before and after the operation of 

the kth stage are given by the following formulas: 
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 , ,k s k p km m m   (3.8) 

 0, 0, 1k k km m m    (3.9) 

 , , 0, 1f k s k km m m    (3.10) 

 

3.1.2.1 Serial Staging 

The relevant dimensionless ratios for stages in series configuration such as illustrated in 

Figure 3.1 are written as follows. 

 

The mass ratio of the kth stage (Λk) is 

 

 
0, 0,

, , 0, 1

k k

k

f k s k k

m m

m m m 

  


 (3.11) 

 

The structural ratio is a measure of how much of the stage is structure. The quantity of 

structural mass comprises of the mass of the structures, mechanisms, engines, fuel tanks, 

control and measurement systems, etc. excluding the propellant and the payload. The 

structural ratio of the kth stage (εk) is defined by 
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It is also convenient to define the propellant ratio of the kth stage (k) as 
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Following relation exists between the structural ratio and the propellant ratio according to 

the definitions stated in Eqs. (3.12) and (3.13). 

 

 1k k    (3.14) 

 

The structural mass varies typically between 5% and 15% of the stage mass depending on 

the size of the stage, and the types of propellant and structural materials used (Ley, 

Wittmann, & Hallmann, 2009). Accordingly, typical values of εk and k are in the range of 

0.05 < εk < 0.15 and 0.85 < k < 0.95, respectively. 

 

For instance, if the motor casing and/or the propellant tanks are manufactured from 

composite material, εk is smaller compared to a stage made up of metallic structures. The 

use of high density propellant assists to decrease the structural ratio as well by leading to a 

smaller size of stage. On the other hand, expendable launch vehicles designed to be used 

only once have relatively low structural ratios, while reusable ones have higher structural 

ratios. 
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The payload ratio of the kth stage (λk) is defined as 
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The parameters λ, ε and Λ are not independent. If ms and mpl are expressed in terms of mp 

using Eqs. (3.12) and (3.15), respectively and inserted in Eq. (3.11), then the mass ratio for 

the kth stage (Λk) is obtained as follows. 
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3.1.2.2 Parallel Staging 

The analysis of a parallel staged rocket as illustrated in Figure 3.2 is quite similar to that 

presented above for a serially staged rocket. The main difference is the stage numbering 

and the need for calculation of average exhaust velocity. 

mp,10

m0,0

mb

mpl

m0,N mN

mp,11

m0 = mb + mp,10 

m0,1
m1 = mc - mp,10

 

Figure 3.2 Mass definitions for parallel staging 

When the parallel boosters and the core of the first stage are burning simultaneously, they 

are taken together and called the zeroth stage, while the propellant remaining in the core’s 

first stage after discarding the parallel boosters is called the first stage of the rocket. 

 

According to Figure 3.2, the mass, structural and payload ratios of the zeroth stage are 

equivalent to a serial rocket and they are given by the following formulas: 
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In Eqs. (3.17) - (3.19), 

b is the subscript for the boosters, 

mp,10 is the propellant mass burned in parallel with the boosters of the zeroth stage. 

 

The average exhaust velocity of the zeroth stage is 
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Similarly, the equivalent ratios for the first stage are as expressed below: 

 

 
0,1

1

, 0,2s c

m

m m
 


 (3.21) 

 
,

1

,10

s c

c p

m

m m
 


 (3.22) 

 
0,2

1

,10c p

m

m m
 


 (3.23) 

 

In Eqs. (3.20) - (3.23), c is the subscript for the core of the first stage. 

 

3.1.3 Orbital Velocity Equation 

A launch vehicle must provide the required energy to insert a spacecraft into a desired orbit 

represented by its altitude and velocity. It is easy to calculate the velocity required to keep 

an object in a specified orbit (Vorbit) using Eq. (A.10) given in Appendix A.2. For elliptical 

orbits, injection point can be considered to remain on the safe side as perigee, where it 

requires higher velocity as explained in Appendix A.4. 

 

3.1.4 Delta-V Calculations 

The velocity change of an N-stage launch vehicle (∆Vvehicle) can be calculated from the 

rocket equation (3.4) knowing the fact that it is the ideal velocity change, for which all the 

effects due to gravity, aerodynamics and flight maneuvers are neglected. The launch 

vehicles must also overcome these effects, in addition to accelerating the payload to orbital 

velocity (Vorbit).  
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Therefore, losses/gains due to various effects should be considered in the calculation of the 

total velocity increment needed to get into orbit (∆Vmission). That is, 

 

 mission orbit g d p gain mV V V V V V V             (3.24) 

 

In Eq. (3.24), 

Vorbit is the orbital velocity, 

∆Vg is the gravitational loss, 

∆Vd is the aerodynamic drag loss, 

∆Vp is the propulsive loss due to steering and ambient pressure change, 

∆Vgain is the velocity gain due to Earth’s rotation or initial altitude or initial velocity, 

∆Vm is the performance margin for unexpected disturbances and inaccuracies. 

 

Tewari (2007) proposed to add a total of 1.5 km/s margin for the possible velocity 

losses/gains as applied for a rocket launched to a low Earth orbit and 2 km/s as applied for 

a rocket launched to a geosynchronous orbit. 

 

If ∆V loss terms are examined separately, it is seen that the gravity losses (ΔVg) and the 

drag losses (ΔVd) are the most significant ones, and they are primarily dependent upon the 

lift-off thrust-to-weight ratio (T/W). T/W needs to be greater than unity for the vehicle to 

leave the launch pad, and typical lift-off T/W values are in the range 1.3 to 2 (Curtis, 2005). 

Propellant type and stage configuration (serial or parallel staging) affects the magnitude of 

T/W as well. 

 

The higher the T/W, the faster the rocket flies in the dense atmosphere and drag losses 

increase, while gravity losses decrease. However, the lower the T/W, the longer it takes the 

rocket to turn over to align itself tangentially to the Earth’s surface. Therefore, gravity 

losses increase. 

 

Approximated values obtained from real data samples can be used for rough estimations of 

gravity and drag losses. In this study, the variations of ΔVg and ΔVd versus T/W are used as 

illustrated in Figure 3.3. These variations are taken from the study of Loftus and Teixeira 

(1999) and they are valid for vertical take-off vehicles. For horizontal take-off vehicles, the 

thrust losses will be higher, but the gravity loss will be much lower. For the horizontal 

take-off vehicles, the highest value of T/W can be used to approximate this characteristic. 

 

The launch vehicles also experience propulsive losses due to the maneuvering and static 

pressure difference at the nozzle exit during their flight. These losses are smaller compared 

to ΔVg and ΔVd especially for the vertical take-off vehicles and it is difficult to estimate the 

magnitude without having the flight trajectory. According to Ley et al. (2009), steering 

losses is around 20-50 m/s for reaching a low Earth orbit at 200 km altitude. They also 

pointed out that a margin of 1-2% must be included in the ΔV budget for unexpected 

orbit/trajectory disturbances and inaccuracies. 
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Figure 3.3 ΔV losses vs. T/W 

On the other hand, the rotation of the Earth fortunately assists in launching. A launch 

vehicle has a latitude-dependent initial velocity at the time of launch owing to the eastward 

rotational velocity of the Earth. Launching from an altitude (h0) also helps decreasing the 

total required ΔV. The component of velocity due to Earth’s rotation can be calculated as 

 

 
0 0, 0 0cosr eV r      (3.25) 

 

In Eq. (3.25), 

ωe is the Earth’s angular velocity, i.e. ωe = 7.292 x 10-5 rad/s, 

r0 is the radial distance from the center to the surface of the Earth, i.e. r0 = Re + h0, 

0 is the geocentric latitude of the launch site, 

0 0,rV   is the Earth’s speed at radius r0 and latitude 0 (eastward). 

 

Considering the launch azimuth (A0) and the Earth’s rotation, one can find the velocity 

required to obtain the target orbit velocity as illustrated in Figure 3.4. According to Figure 

3.4, the speed gained due to the Earth’s rotation can be calculated as 
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Launching from a carrier aircraft with an initial velocity (Vi) also helps decreasing the total 

required ∆V. Therefore, ΔVgain in Eq. (3.24) happens to be 
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Figure 3.4 Velocity gain due to Earth’s rotation 

3.2 Problem Formulation 

The objective of staging optimization problem is to find the optimal mass ratios of stages 

(Λk) which will minimize the gross lift-off mass of the launch vehicle (GLOM, m0) for 

specified payload mass (mpl). 
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Dividing Eq. (3.28) by mpl, one can write the objective function (minimization of m0) with 

respect to the mass ratios of stages (Λk). Curtis (2005) showed that the following relation 

could be obtained by using the definitions of Λk and εk given in Eqs. (3.11) and (3.12), 

respectively. 
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It is more convenient to take the natural logarithm of both sides to obtain the following 

easily differentiable function. 
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The launch vehicle must provide the required energy to insert the satellite into the desired 

orbit. Thus, ∆Vvehicle must be equal to ∆Vmission. 
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Finally, the optimization problem can be formulated as described below: 

 

Minimize 
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Subject to 
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3.3 Method of Solution 

If the Method of Lagrange Multipliers is applied, the optimal mass ratios (Λk) can be found 

by specifying the values for ∆Vmission, εk, Ck and N. Introducing the Lagrange multiplier as 

p, and combining Eqs. (3.32) and (3.33), one can have the following augmented objective 

function f* = f + pg: 
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Expanding the logarithm, Eq. (3.34) can be rewritten as 
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Differentiating f* with respect to Λk and equating the result to zero, the optimality 

condition is obtained as 
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Hence, one can find Λk as 
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For f* to be minimum at the mass ratios Λk given by Eq. (3.37), the second derivatives of f* 

must all be positive for all values of Λk. This condition is expressed as follows: 
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On the other hand, the substitution of Eq. (3.37) into Eq. (3.33) leads to the following 

equation: 
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It is clear from Eq. (3.4) that the vehicle performance increases with an increasing number 

of stages. However, the increase becomes very small after a certain point and staging only 

brings complexity and cost to the system. Burghes (1974) showed that the optimum 

number of stages is between 2 and 4 for most satellite launching operations. Based on this 

fact, the minimum number of stages that is practical should be chosen and solved first, and 

then significant differences should be compared after evaluating different values of N. 

 

As noted in Sections 3.1.1 and 3.1.2.1, the exhaust velocities (Ck) and the structural ratios 

(εk) of the stages strongly depend on the operational aspects, and the state of the art of 

propellant and materials technology. Therefore, the values for εk and Ck are initially 

specified by the designer considering available technology options, and ∆Vmission is 

calculated using the method given in Section 3.1.4. 

 

Eq. (3.39) is a transcendental equation with single unknown (p), and can be solved by 

iterative methods. Having evaluated p for a given set of εk and Ck, the optimal mass ratios 

of stages (Λk) can be found by substituting p into Eq. (3.37). 

 

In this study, Newton-Raphson method, which is a widely used method for solving 

transcendental equations, was used to solve Eq. (3.39). The Newton-Raphson method in 

one variable (p) was implemented starting with an initial guess p0. 

 

The initial guess plays an important role in the solution to overcome the shortcomings such 

as infinite iteration cycles and non-convergence. Determining the bounds for the solution 

will help define the initial guess. The bounds can be determined as explained below. 

 

It is clear that the natural logarithm (ln) function in Eq. (3.32) is defined only for positive 

values, i.e. 
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The following facts are also known: 

 Λk > 1 

 0 < εk < 1 

 Ck > 0 
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1 – εkΛk must be greater than zero in order to satisfy Ineq. (3.40). Using Eq. (3.37) 
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Rearranging the preceding inequalities, one gets 
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Since Eq. (3.43) must hold for every k, the upper bound on p is obtained as 
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After the calculation of Λk, λk can be obtained from Eq. (3.16) as 

 

 
1

1

k k
k

k




 


 
 (3.45) 

 

With the known values of λk, the mass of each stage can be calculated from Eq. (3.15) by 

the following recursive equation beginning from the Nth stage down to the first stage. 
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Finally, GLOM (minimized value) is obtained as 
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The structural mass of each stage is found from Eq. (3.12) 
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As for the propellant mass of each stage, it is found as 

 

 , ,p k k s km m m   (3.49) 

 

So far, the staging has been optimized based on the equations of serial staging. For the 

launch vehicles with parallel staging, an equivalent launch vehicle with serial staging can 

be defined as described in Section 3.1.2.2. After the staging has been optimized based on 

the serial staging, the optimal staging data can be converted to the actual parallel 

configuration again as described in Section 3.1.2.2. 

 

3.4 Results and Discussion 

A Matlab script given in Appendix C.2 was written to solve the staging optimization 

problem. Thus, a quick and effective tool to find optimal vehicle configurations in the 

conceptual design phase of a generic multistage launch vehicle was achieved. A brief 

description of the code as a simple flow diagram is given in Figure 3.5. 

Set LV and stage characteristics:

   number of stages, N

   specific impulses, Isp,k

   structural ratios, εk

Set the desired payload mass, mpl

Set the target orbit parameters:

   orbit size, a & e or ra & rp

   orbit inclination, i

Set launch conditions

   initial altitude, h0

   initial latitude, 0

   initial speed wrt ground, v0

   initial thrust-to-weight ratio, T/W 

Calculate 

∆Vmission

∆Vmission

Newton-

Raphson 

Solver

STAGING 

OPTIMIZATION

Optimal mass ratios, Λk

Stage masses, mk

Structural masses, ms,k

Propellant masses, mp,k

Gross lift-off mass, m0

Total payload ratio, λt
 

Figure 3.5 Staging optimization code description 
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As seen from this diagram, ∆Vmission can be given by the user directly as an input to the 

program or it is calculated by the program based on the mission and considering the 

possible velocity losses explained in Section 3.1.4. 

 

The code was verified in two steps. First, the staging optimization for a given value of 

∆Vmission was verified by the results of previous studies based on different methods 

(Weisbord, 1958; Builder, 1959; Gray & Alexander, 1965; Lubowe, 1965; Hill, 1967; 

Curtis, 2005; Tewari, 2007). In the next step, code was verified as a whole including the 

estimation of ∆Vmission for different missions using the available data of present launch 

vehicles in the market. 

 

As a numerical example, results of staging optimization for two different missions are 

presented in Table 3.2 for gaining insight about vehicle configurations. Isp,k and εk values 

were specified among the available technology options. First, two stage vehicle was solved 

and then three stage vehicle was tried to see the effect of number of stages. Hence, it is 

shown that staging provides considerable performance gain in terms of the decrease in 

GLOM and increase in payload ratio. 

Table 3.2 Numerical example for staging optimization for given ∆Vmission 

Mission definition 

Payload mass, mpl 150 kg 2000 kg 

Target orbit 200 km altitude circular 350 km x 1000 km altitude elliptic 

∆Vmission  ≈ 8 km/s ≈ 10.6 km/s 

Specified 

# of stages 2 3 2 3 

Specific impulses, Isp,k (sec) 270; 305 270; 305; 305 360; 450 360; 450; 400 

Structural ratios, εk 0.15; 0.14 0.15; 0.14; 0.12 0.15; 0.12 0.15; 0.12; 0.11 

Results 

Optimal mass ratios, Λk (kg) 3.82; 4.44  1.92; 2.64; 3.08  2.98; 4.65 1.53; 3.19; 2.78 

Stage masses, mk (kg) 9993; 1365  3025; 1686; 496  66190; 16486 22242; 25395; 5140 

Gross lift-off mass, m0 (kg) 11508.4 5356.81 84676 54777 

Total payload ratio, λt 0.013  0.028  0.024 0.037 

 

 

 

As an example for existing launch vehicles, India’s geosynchronous satellite launch 

vehicle (GSLV) whose staging data is available on the web site of Encyclopedia 

Astronautica (2012) was selected. For a mission inserting a 2500 kg payload into 

geostationary transfer orbit, staging was optimized for minimum GLOM (Table 3.3). 
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Table 3.3 GSLV staging data 

Original data 

Stage # Isp (sec) ε (-) mp (kg) ms (kg) m (kg) Λ (-) ΔV (m/s) 

0 281 0.123 160,000 22,400 182,400 1.667501 1,410 

1 266 0.18 129,000 28,300 157,300 2.460929 2,350 

2 295 0.126 37,500 5,400 42,900 2.666667 2,838 

3 460 0.151 12,400 2,200 14,600 3.638298 5,828 

Σ 
  

338,900 58,300 397,200 
 

12,426 

Serial staging – optimized for minimum GLOM 

Stage # Isp (sec) ε (-) mp (kg) ms (kg) m (kg) Λ (-) ΔV (m/s) 

0 281 0.123 209,340 29,360 238,700 2.48287 2,507 

1 266 0.18 36,213 7,949 44,163 1.47902 1,021 

2 295 0.126 42,458 6,121 48,578 2.68538 2,859 

3 460 0.151 14,069 2,502 16,571 3.81249 6,039 

Σ 
  

302,080 45,932 348,012 
 

12,426 

Parallel staging – converted from serial staging data 

Stage # Isp (sec) ε (-) mp (kg) ms (kg) m (kg) Λ (-) ΔV (m/s) 

0 277.7 0.099 
mp,b: 180,000 

mp,10: 50,000 
25,245 255,245 2.416173 2,404 

1 266 0.309 48,000 21,512 69,512 1.538331 1,124 

2 295 0.126 42,437 6,118 48,555 2.682981 2,856 

3 460 0.151 14,091 2,506 16,597 3.814745 6,042 

Σ 
  

334,528 55,381 389,910 
 

12,425 

 

 

 

When results are compared with the original vehicle data, a considerable difference has 

been observed in the first two stages. It is important to note that this difference is due to the 

parallel staging of GSLV. 

 

One can easily find the equivalent parallel staged vehicle after staging has been optimized 

based on serial staging using the definitions given in Section 3.1.2.2. However, resulting 

parallel staged vehicle will be heavier than its serial equivalent to provide same ∆V. This 

shows that serial staging is more efficient from ∆V point of view and parallel staging is 

more efficient from thrust point of view. Thus, boosters are only used in initial stages. 

 

Finally, in order to illustrate the application of the method proposed in this thesis, the 

variation of GLOM with N, ∆Vmission and mpl were shown graphically in Figure 3.6 to 

Figure 3.8. 

 

Figure 3.6 illustrates the variation of GLOM with the number of stages. The decrease in 

GLOM between N = 2 and N = 3 is quite appreciable, but for higher values of N, the 

decrease becomes very small. 
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Figure 3.6 Variation of GLOM with number of stages 

Figure 3.7 and Figure 3.8 illustrate the variation of GLOM with ∆Vmission and the payload 

mass (mpl), respectively. These figures show that GLOM increases exponentially with 

increasing ∆Vmission and increases linearly with the increasing mpl. 

 

Figure 3.7 Variation of GLOM with ∆Vmission 
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Figure 3.8 Variation of GLOM with payload mass 

It is necessary to point out that the method proposed in this study with approximate 

estimations of the gravitational, aerodynamic and propulsive losses during the flight is not 

very accurate, but nonetheless it is still useful for a preliminary evaluation during the 

conceptual design phase. It is always necessary to carry out trajectory simulations by 

solving the equations of motion for a more detailed and accurate performance analysis. 
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CHAPTER 4 

TRAJECTORY OPTIMIZATION 

Launch vehicle trajectory optimization deals with to ensure desired terminal conditions 

with minimum energy effort as well as satisfying mission constraints. The aim of this 

thesis is to develop a trajectory optimization tool to be used for both the preliminary 

mission design of an existing launch vehicle and the conceptual design of a new launch 

vehicle. For this purpose, a simplified formulation of an ascent trajectory optimization for 

a typical multistage Earth-to-orbit launch vehicle was first established, and then new 

features and capabilities were included to improve the modeling and simulation fidelity 

and to meet the launch vehicle design needs. 

 

4.1 Problem Formulation 

The multistage launch vehicle trajectory optimization problem is an example of an optimal 

control problem (OCP) with discontinuities in the states, where they occur at time instants 

of empty stages jettisoning. Such kind of problems is called multiphase OCPs and a brief 

description of the formulation was given in Section 2.1. 

 

The details of the trajectory optimization problem addressed in this thesis are stated in the 

following sections in terms of system dynamics, objective functions, optimization 

variables and constraints. Furthermore, general purpose optimization software used to 

solve the problem and its implementation are described in Section 4.1.5. 

 

4.1.1 System Dynamics 

The differential equations representing the system dynamics of the launch vehicle are the 

equations of motion and the mass flow rate equation since it is a moving body with 

variable mass. Mathematical models used in the problem formulation are related to the 

disciplines of trajectory, propulsion and aerodynamics, and also geophysical models such 

as earth, gravity and atmosphere are utilized in order to simulate the environmental 

conditions during flight. Overview of these disciplinary models and the interactions among 

them are presented in the following sections before applying them to solve a given 

problem. 

 

4.1.1.1 Trajectory Model 

The complete description of a launch vehicle’s motion comprises three translational and 

three rotational degrees of freedom. However, in the early phases of design, the trajectory 

of the center of mass of the vehicle is of greater interest than its attitude motion. Therefore, 
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in this study, rotational dynamics is neglected and the vehicle is considered as a point mass 

which leads to three degrees of freedom (3DOF) equations of motion governed by 

Newton’s second law. 

 

 ( ) ( )t tr v  (4.1) 
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Eq. (4.1) is the kinematic equation defining the time rate of change of the vehicle’s 

position and Eq. (4.2) is the dynamic equation describing the motion of the vehicle under 

the external forces. The forces acting on the vehicle during powered atmospheric flight are 

gravitational, propulsive and aerodynamic forces. 

 

In Eqs. (4.1) and (4.2), 

r(t) is the inertial position vector at any time instant and represented by [rx ry rz]
T, 

v(t) is the inertial velocity vector at any time instant and represented by [vx vy vz]
T, 

u(t) is the inertial thrust direction vector at any time instant and represented by [ux uy uz]
 T, 

D(t) is the drag force vector at any time instant and represented by [Dx Dy Dz]
 T, 

μ is the Earth’s gravitational parameter, i.e. μ = 398600.4 km3/s2, 

T(t) is the magnitude of thrust at any time instant, 

m(t) is the mass at any time instant. 

 

Knowing the fact that Newton’s laws are valid only with respect to the inertial frame, it is 

the easiest and the fastest way to define and integrate the equations of motion in Earth-

centered-inertial (ECI) frame. And also, rectangular coordinates are preferred since they 

offer a simpler formulation and eliminate singularity problems at lift-off (zero initial 

velocity and 90° flight path angle). 

 

While on the other hand, the relative spherical coordinates give a better insight and 

understanding about the vehicle’s motion, so they are used as the output coordinates to 

present the results to the user. Furthermore, since the final state of the launch vehicle’s 

ascent trajectory is defined with respect to the orbital frame, it is also required to compute 

the orbital elements all along the trajectory in order to assess whether the terminal 

boundary constraints are satisfied or not. Different coordinate systems and the related 

transformations between them are presented in Appendix B.1 and Appendix B.2, 

respectively. 

 

Although the rotational dynamics are not modeled in the equations of motion, the attitude 

of the launch vehicle can be defined based on certain simplifying assumptions, and thus 

trajectory control variables can be physically interpreted easily. The attitude, in general, 

describes the orientation of a body-fixed reference frame with respect to an external 

reference frame. Euler angles or aerodynamic angles are often used to specify the attitude 

of the launch vehicle during flight. 
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Body-fixed reference frame denoted by oxyz, is a reference frame moves with the rigid 

body and has its origin at the instantaneous mass center of the vehicle. As illustrated in 

Figure 4.1, the x axis coincides with the longitudinal axis of the vehicle and points forward 

(flight direction), while the y axis is the lateral or transverse axis and points right. The axis 

completing the right hand triad is called the z axis or normal axis and points downward. 

x

y

z
roll

yaw

pitch

o

 

Figure 4.1 Euler angles 

The Euler angles, namely roll, pitch and yaw angles define the attitude of the vehicle with 

respect to the vehicle carried local frame defined in Section B.1.2. According to Figure 4.1, 

rotation about the x axis (positive, if clockwise) is called the roll angle, rotation about the 

y axis is called the pitch angle (θ) and finally rotation about the z axis is called the yaw 

angle (). 

 

For the launch vehicles having a rotational symmetry around the x axis, specifying a roll 

angle would not make any sense. However, roll angle becomes significant for the vehicles 

which are nonaxisymmetric those having strap-on boosters. In such cases, the roll angle 

can be assumed as fixed so that both the longitudinal axis and the velocity vector lie in the 

vehicle’s symmetry plane. Therefore, the variation of roll angle is not considered in this 

thesis. 

 

The pitch and yaw control of launch vehicles are achieved mainly by thrust vectoring i.e., 

by changing the direction of the thrust vector relative to the longitudinal axis of the 

vehicle. In Eq. (4.2), the thrust direction vector is represented by a unit vector in 

rectangular coordinates in ECI frame, and its physical interpretation is not quite clear. In 

general, the thrust direction is expressed by two angles in pitch and yaw planes and called 

as thrust deflection angles. Thrust deflection angle in pitch plane is illustrated in Figure 

4.2a. 

 

Considering that the commanded thrust deflection angles can be achieved instantaneously 

by the launch vehicle’s control system, the thrust vector can be assumed to be coincident 

with the longitudinal (roll) axis of the vehicle in 3DOF trajectory models (Figure 4.2b). 
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Figure 4.2 Pitch (θ), angle of attack () and flight path angle () 

Aerodynamic angles, namely the angle of attack, side slip and bank angle define the 

attitude of the vehicle with respect to the relative velocity vector in the absence of wind. 

Under the assumption that the thrust is aligned with the body axis represented by Figure 

4.2b, the aerodynamic angles are the two angles exist between the projections of the thrust 

vector and the relative velocity vector (tangent to the trajectory) into the vehicle carried 

local frame defined in Section B.1.2. 

 

As illustrated in Figure 4.2, the angle of attack () is the angle between the thrust vector 

and the velocity vector in the vertical plane and is defined positive for a nose-up attitude. 

 

  q    (4.3) 

 

In Eq. (4.3), 

θ is the pitch angle, 

 is the flight path angle which is defined in Section B.1.3. 

 

Similarly, the side slip () is the angle in the horizontal plane and is defined as positive for 

a nose-left attitude. 

 

      (4.4) 

 

In Eq.(4.4), 

 is the yaw angle, 

 is the heading angle which is defined in Section B.1.3. 

 

Rotation around the relative velocity vector is called the bank angle and it can be assumed 

as zero for vertically launched nonwinged vehicles that are in the subject of this thesis. 

Additionally, it is important to point out that for the launch vehicles having the thrust 
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vector aligned with the body axis, the thrust deflection angles can be considered to be 

equal to the aerodynamic angles. 

 

4.1.1.2 Propulsion Model 

The propulsion system generates the required thrust to overcome the gravity and drag 

forces, and lifts the vehicle from the ground and carries it into the orbit. The thrust 

equation is derived from the conservation of momentum and expressed as 

 

  e e a eT mV P P A    (4.5) 

 

In Eq. (4.9), 

T is the magnitude of the thrust force, 

m  is the mass flow rate, 

Ve is the exhaust velocity at the nozzle exit, 

Pe is the static pressure at the nozzle exit, 

Pa is the ambient static pressure, i.e. the atmospheric pressure, 

Ae is the nozzle exit area. 

 

The first term in Eq. (4.5) is called the momentum thrust, and the second term is the 

pressure thrust. Pressure thrust increases as the atmospheric pressure decreases with 

increasing altitude. In the vacuum of space, the ambient pressure drops almost to zero and 

the thrust becomes 

 

 vac e e eT mV P A   (4.6) 

 

Sutton and Biblarz (2001) emphasized that the change in pressure thrust due to altitude 

changes can amount between 10% and 30% of the overall thrust. Therefore, a correction 

has to be made to consider this effect in order to obtain accurate results. Using Eqs. (4.5) 

and (4.6), the actual thrust at any altitude can be calculated from the vacuum thrust through 

 

 vac a eT T P A   (4.7) 

 

Another important measure of the rocket performance is the specific impulse (Isp) and it 

represents the thrust per unit weight flow rate of propellant at sea level on Earth by 

convention. 
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In Eq. (4.8), 

Isp is the specific impulse of the engine, 

g0  is the gravitational acceleration at sea level, i.e. g0 = 9.80665 m/s2. 
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To complete the propulsion model, Eq. (4.8) is rewritten to obtain the mass flow rate 

equation knowing that the mass is continuously decreases during flight. 
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When the upper stages of the launch vehicles are equipped with restartable liquid engines, 

efficient use of the available propellant becomes an important consideration. The total 

amount of propellant in the upper stage is consumed mainly in four different tasks. 

 

 Propellant needed to get into the orbit 

 Propellant reserve allocated for trajectory corrections 

 Propellant needed for deorbiting maneuver 

 Unusable propellant 

 

Orbit acquisition can be achieved by a single firing or with two burns of the upper stage 

which are separated by a coast phase. Propellant consumed during these burns is calculated 

by solving differential equations of motion and the mass flow rate equation. However, the 

propellant mass available for orbit acquisition is limited because of the other items 

explained below. 

 

Propellant reserve should be allocated to ensure mission success against any uncertainties 

and dispersions. Unforeseen variations in the propulsive characteristics of the lower stages, 

errors in the mass properties determination and the limited predictability of the 

aerodynamic coefficients and the atmospheric conditions are the sources of trajectory 

dispersions. Therefore, a certain amount of propellant is used to compensate these 

dispersions occur in previous flight phases. In this thesis, propellant amount corresponding 

to 0.5% of the total delta-V generated by the lower stages is considered for trajectory 

corrections. 
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The upper stages of launch vehicles leave in the orbit for years after spacecraft separation 

unless they are removed from the orbit. Since the debris and consequently the risk of 

collision gradually increases in the densely populated orbit regions, deorbiting of the 

launch vehicle upper stages has become a common practice in recent years due to the 

international agreements. Deorbiting means intentional departing of an object from the 

orbit for reentry into the Earth’s atmosphere by applying a tangential and decelerative 

impulse at the apogee point. 
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Delta-V required for deorbiting from a circular or an elliptical orbit can be estimated using 

the following equations derived by Milstead (Deboost from circular orbits, 1966) as cited 

in the website of Eagle. The user-defined mission constraints are the entry altitude and the 

entry flight path angle relative to the spherical Earth. 
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In Eq. (4.12), 

ri is the radius of the initial circular orbit, 

re is the radius at the entry interface, 

e is the flight path angle at the entry interface, 

r  is the radius ratio, i.e. i

e

r
r

r
 . 
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In Eq. (4.13), 

ra is the apogee radius of the initial elliptical orbit, 

rp is the perigee radius of the initial elliptical orbit, 

ar  is the apogee radius ratio, i.e. a
a

e

r
r

r
 , 

pr  is the perigee radius ratio, i.e. p

p

e

r
r

r
 . 

 

The amount of propellant required for deorbiting can then easily be calculated by using the 

famous rocket equation given in Eq. (3.1) and can be expressed as 
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Apart from all these propellant consumption items, a certain amount of unusable propellant 

always exists, remaining in the tanks or trapped in the engine, pipelines and valves. In this 

thesis, unusable propellant mass is assumed as 5% of the total propellant loaded into the 

stage. 
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4.1.1.3 Aerodynamics Model 

Aerodynamic forces arise due to the relative motion between the launch vehicle and the 

surrounding air and can actually be broken down into three components. These are called 

drag, lift and side force. The drag force is opposite to the direction of motion, while the lift 

force acts perpendicular to the direction of motion, and the side force is mutually 

perpendicular to the lift and the drag. If the launch vehicle’s trajectory is maintained such 

that the velocity vector is parallel to the vehicle’s body axis, i.e. angle of attack and side 

slip are zero, then no lift or side force is generated. 

 

In this thesis, only the drag force is considered for simplification reasons. It is generally a 

valid assumption in the early design phases, since the launch vehicle trajectories are 

designed to keep the aerodynamic angles small during the atmospheric flight in order to 

avoid high aerodynamic loads. The expression for drag force is given by 

 

      
1

2
D rel relt SC t t D v v  (4.15) 

 

In Eq. (4.15), 

ρ is the atmospheric density at the altitude of interest, 

S is the aerodynamic reference area, 

CD is the drag coefficient, 

vrel is the relative velocity vector, 

 

The relative velocity vector, vrel (t) with respect to the Earth’s atmosphere is defined by 

 

      rel t t t  ev v ω r  (4.16) 

 

In Eq. (4.16), 

v(t) is the inertial velocity vector, 

ωe is the Earth’s angular velocity vector relative to the inertial space, 

r(t) is the inertial position vector. 

 

Drag coefficients (CD) are dependent on the size and shape of the vehicle and calculated 

for a reference area (S), which is usually the maximum cross sectional area of the body. 

They vary also with Mach number (M), altitude (h) and the angle of attack (). Again for 

simplicity, variation of drag coefficients with respect to the angle of attack is not 

considered in this thesis. 

 

The Mach number (M) is an important nondimensional aerodynamic parameter and 

defined as 
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In Eq. (4.17), 

vrel is the relative speed, 

a is the speed of sound at the altitude of interest. 

 

The speed of sound (a) is defined as 

 

 a kRT  (4.18) 

 

In Eq. (4.18), 

k is the specific heat ratio for air, 

R is the specific gas constant for air, 

T is the temperature at the altitude of interest. 

 

The aerodynamic prediction code Missile Datcom 97 is used to calculate the drag 

coefficients for the example vehicle configurations presented in this thesis. Datcom is a 

Fortran based computer program developed by McDonnell Douglas Corporation for the 

United States Air Force and is made available to the public domain as a supplement of the 

book of Hammond (2001). 

 

Datcom is a semi empirical code having accuracy suitable for preliminary design and 

provide the users with the capability of modeling different vehicle configurations easily 

(Blake, 1998). However, an important limitation that should be highlighted is the fact that 

Datcom does not allow to model strap-on boosters. Therefore, they have to be analyzed 

separately and the coefficients of the boosters and the central core have to be summed up 

conveniently considering their reference areas. 

 

Datcom can generate aerodynamic data for up to 20 different Mach numbers for a single 

configuration. Therefore, data for different vehicle configurations related to different 

phases of trajectory are stored in different look-up tables and the drag coefficients are 

interpolated by cubic spline functions from the relevant tabulated data based on Mach 

number. 

 

4.1.1.4 Earth and Gravity Models 

Two different Earth models are used in this study depending on the particular need. These 

are the spherical Earth model and the oblate Earth model. In the spherical Earth model, 

Earth is assumed as a perfect sphere with a constant radius, represented by Earth’s 

equatorial radius (Re). 

 

For spherical Earth, the gravitational force can be approximated from Newton's law of 

gravitation, which states that any two bodies attract each other with a force that is directly 

proportional to the product of their masses and inversely proportional to the square of the 

distance between them. 
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In Eq. (4.19), 

F is the force between the two bodies, 

G is the universal gravitational constant, 

M is the mass of the first body, 

m is the mass of the second body, 

r is the distance between the centers of the two bodies. 

 

Or, in vector form 
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If M is the Earth’s mass and m is the vehicle’s mass, then gravitational acceleration (g), 

which is simply defined as the force of a unit mass due to gravity, can be solved from Eq. 

(4.20) by using Newton’s law of motion. 
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In Eq. (4.21), the product GM being a constant, is replaced by , which is called the 

Earth’s gravitational parameter or geocentric gravitational constant. Eq. (4.21) is known as 

the Newtonian gravity model, and is valid under the assumption that the two bodies are 

particles whose masses are concentrated at their centers. Although the zonal harmonics 

perturbations used to consider the latitude variations due to nonspherical mass distribution 

are not modeled in the spherical Earth approximation, it is deemed adequate for relatively 

short term missions such as flight to the low Earth orbit. 

 

In the numerical solution of the equations of motion, Newtonian gravity model is used as 

shown in Eq.(4.2), and each altitude of interest for the prediction of atmospheric pressure 

and density in Eqs. (4.7) and (4.15) is also calculated based on the spherical Earth 

assumption. 

 

On the other hand, the oblate Earth model is used for deriving the outputs to be presented 

at the end of the optimization problem. These outputs are the geodetic latitude, geodetic 

altitude and the geodetic distance. 

 

The oblate Earth model is a high accurate Earth model, which is based on the ellipsoidal 

approximation defined by the World Geodetic System 1984 (NIMA, 2000). In this model, 

the geoid shape of the Earth is represented as an oblate spheroid characterized by the 

parameters given in Table 4.1. 
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Table 4.1 Parameters of WGS 84 Earth model 

Parameter Value 

Equatorial radius of Earth, Re 6378137 m 

Polar radius of Earth, Rp 6356752.3 m 

Mean radius of Earth, Rm = (2Re + Rp)/3 6371008.8 m 

First eccentricity of the reference ellipsoid for Earth, ee 0.08181919084 

Earth’s rotation rate, ωe  7.29211585 x 10−5 rad/s 

Geocentric gravitational constant (with Earth’s atmosphere included),   398600.4 x 109 m3/s2 

 

 

 

4.1.1.5 Atmosphere Models 

In order to predict the aerodynamic loads on the vehicle, to consider the variation of thrust 

with altitude and to simulate vehicle’s flight trajectory accurately, a good representation of 

the atmosphere is required. Atmosphere models typically provide air density, temperature 

and atmospheric pressure values primarily as a function of altitude. Temperature data is 

used to calculate the speed of sound and consequently the Mach number which is required 

to obtain the aerodynamic coefficients, air density data is used to compute the aerodynamic 

forces; whereas pressure data is used to determine the propulsive forces. 

 

Various atmospheric models have been developed so far. The simplest atmospheric model 

is the exponential model, which represents the variation of the density and pressure as an 

exponential function of the altitude, but assumes constant temperature. Some other 

sophisticated models take into account the latitudinal, temporal, seasonal, geomagnetic and 

solar effects as well. 

 

Since the aim of this thesis is to develop a trajectory optimization tool that allows for the 

evaluation of performance capabilities of different vehicles or the design of new vehicles 

for a specified mission, simulations are required to be performed under the same 

circumstances. Simplicity of the models is also important in terms of computational 

efficiency. Matlab offers several built-in functions for different types of atmosphere 

models. Two useful ones are the well known US Standard Atmosphere 1976, which was 

proposed by the United States Committee on Extension to the Standard Atmosphere 

(COESA, 1976) and NRLMSISE-00 atmosphere model developed by United States Naval 

Research Laboratory (Picone, Hedin, Drob, & Aikin, 2002). 

 

NRLMSISE-00 (United States Naval Research Laboratory Mass Spectrometer and 

Incoherent Scatter Radar Exosphere) model calculates the neutral atmosphere empirical 

model from the Earth’s surface to the lower exosphere up to 1,000 km of altitude. US 

Standard Atmosphere 1976 model serves to provide atmospheric parameters up to the 

geometric altitude of 86 km for fixed geodetic latitude of 45 North. Above 86 km altitude, 

it is common practice to extrapolate temperature values linearly and pressure values 

logarithmically. Density and speed of sound can then easily be calculated using the ideal 
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gas law. Accuracy of the model above this altitude is not so critical, since the aerodynamic 

loads become ineffective in this region. 

 

Matlab built-in function ‘atmosnrlmsise00’ implements the mathematical 

representation of the NRLMSISE-00 model. Input arguments of this function are altitude, 

geodetic latitude, longitude and time in terms of year, day of year and seconds in day in 

universal time and the output arguments are temperature (T) and total mass density (). 

 

Because NRLMSISE-00 is valid up to 1000 km of altitude and it has higher fidelity than 

the US Standard Atmosphere 1976 in terms of latitudinal and temporal dependency, it was 

primarily chosen to be used during the trajectory computations in the frame of this thesis. 

But, since it does not provide pressure data, it was considered more practical to use both 

models together. The NRLMSISE-00 model was utilized to obtain temperature and density 

values, whereas another Matlab built-in function ’atmoscoesa’ which implements the 

mathematical representation of the US Standard Atmosphere 1976 was used to find 

pressure values for the input argument of altitude. 

 

Transitory events such as wind were not taken into account in the atmosphere model 

because this would complicate the model a lot without bringing substantial advantage on 

the final result in terms of accuracy. 

 

4.1.2 Objective Functions 

As mentioned earlier, the trajectory optimization tool developed in the frame of this thesis 

can be utilized to solve two different problems. First problem aims to determine the 

optimal ascent trajectory and the payload capacity of an existing launch vehicle for 

different target orbits specified by the user, and is simply called trajectory optimization 

problem. While the second problem is an extension of the trajectory optimization problem 

and can be considered as the system level design of a new launch vehicle for a given 

mission characterized by the target orbit and the payload mass. 

 

In the trajectory optimization problem, the objective function is to maximize the payload 

mass and can be formulated as 

 

 
  P

fJ m t   (4.22) 

 

In Eq. (4.22), 

m(tf
(P)) is the mass at the end of mission where tf

(P) is the final time of the last phase P. 

 

Payload mass maximization criterion is used to generate the performance maps of launch 

vehicles for a range of missions. These maps are then utilized by the payload planners to 

size the satellites during design phase and/or to determine the amount of propellant to be 

filled into the satellite for orbit maintenance maneuvers. The excess payload capacity can 

also be utilized as a secondary payload or additional sensors for housekeeping purposes. 
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In the launch vehicle design problem, the objective function is to minimize the gross lift-

off mass and can be formulated as 

 

 
  1

0J m t  (4.23) 

 

In Eq. (4.23), 

m(t0
(1)) is the mass at the beginning of mission where t0

(1) is the initial time of the first 

phase. 

 

4.1.3 Optimization Variables 

Optimization variables used in the problem formulation are listed in the following. 

 

 Monotonically increasing independent variable: time - t 

 Time-dependent variables: states - x(t) and controls - u(t) 

 Time-independent variable: static parameters - s 

 

The dynamic behavior of the launch vehicle’s motion was described by Eqs. (4.1), (4.2) 

and (4.9) with respect to time. These differential equations involve the position (r), 

velocity (v) and mass (m) as state variables and the thrust direction (u) as a control 

variable. As being vectors, position, velocity and thrust direction are defined by three 

rectangular coordinates, which yield a total of seven states and three controls for each time 

point. 

 

As mentioned earlier in Section 4.1.1.1, although the equations of motion are formulated 

using rectangular ECI coordinates, the relative spherical coordinates and the orbital 

elements representing the position and velocity are also computed all along the trajectory. 

Moreover, attitude variables including the reduced Euler angles and the reduced 

aerodynamic angles are also derived utilizing the thrust vector and the relative velocity 

vector. Thus, the state and control variables used in this thesis can be summarized as 

follows. (Please refer to APPENDIX B for the definitions of the position and velocity 

variables and Section 4.1.1.1 for the definitions of attitude variables.) 

 

 3 sets of position and velocity variables (states) 

- Rectangular ECI coordinates: {rx, ry, rz, vx, vy, vz} 

- Spherical ECEF and geographic coordinates: {h, , , vrel, , } and  d 

- Orbital elements: {a, e, i, , , q*} 

 

 3 sets of attitude variables (controls) 

- Rectangular ECI coordinates: unit vector of thrust direction - {ux, uy, uz} 

- Euler angles: {θ, } 

- Aerodynamic angles: {, } 

 

In the trajectory optimization problem, maximized payload mass is formulated as the 

product of a factor and the estimated value of the payload mass. This factor is called the 
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payload scaling factor (PLSF) and formulated as a static parameter. Whereas, in the launch 

vehicle design problem, thrust profile of each stage are optimized using static parameters. 

Details of the thrust profile model will be described in Section 5.2.1. 

 

In the optimization process, state variables are determined by integrating the differential 

equations for each individual time step, whereas control variables and static parameters 

evolve during the iterations within the user defined bounds in order to find the optimal 

solution satisfying the constraints. Therefore, control variables and static parameters are 

also known as design variables. 

 

4.1.4 Constraints 

A general OCP is formulated as to determine the states, controls and static parameters that 

minimize the objective function subject to the following type of constraints. 

 

 Dynamic constraints 

 Boundary constraints 

 Path constraints 

 

4.1.4.1 Dynamic Constraints 

The dynamic constraints are a set of ordinary differential equations in state-space form, 

which represents the simplest mathematical description of the system. In the trajectory 

optimization problem having a total number of P flight phases where p ∈ [1, …, P], the 

dynamic constraints are 
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4.1.4.2 Boundary Constraints 

The boundary constraints or so called event constraints are equality or inequality type point 

constraints defined only for state variables. Initial and terminal constraints defined at the 

start and/or end time of each phase and the continuity constraints defined at the interior 

interfaces between phases are classified as boundary constraints. The following boundary 

constraints are imposed in this thesis. 

 

4.1.4.2.1. Initial Constraints 

The initial constraints are position and velocity coordinates at the beginning of the mission. 

 

 0 0 0 0 0 0 0( ) [cos cos cos sin sin ]T

et R      r r  (4.27) 



55 

 0 0 0( )t   ev v ω r  (4.28) 

 

In Eqs. (4.27) and (4.28), 

Re is the equatorial radius of the Earth, 

0 is the launch site’s geocentric latitude, 

λ0 is the launch site’s geodetic longitude, 

v0 is the inertial velocity vector due to Earth’s rotation. 

 

Eqs. (4.27) and (4.28) are formulated for ground launched vehicles in line with the 

examples presented in this thesis. In case of a launching from a carrier aircraft, these 

equations should be updated so as to include the initial altitude and velocity at the instant 

of launch. 

 

4.1.4.2.2. Linkage Constraints 

The interior point constraints also called phase continuity or linkage constraints are written 

for time and states. 

 

    1

0 0
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          1 1

0( ) ( ) 0
p p p p p

f sm t m m t
 

    (4.32) 

 

In Eqs. (4.29) - (4.32), 

p is the phase number and  p ∈ [1, …, P-1], 

 

Eqs. (4.29) - (4.31) enforce the time, position and velocity to be continuous, and also mass 

drops at the end of the applicable phases are considered with Eq. (4.32). No mass drop 

occurs in multiburn missions including a coasting phase between two powered phases of 

the same engine. Stage separation/jettison events are assumed to take place instantaneously 

at the end of phases for simplicity, i.e. there is no gap between the motor burn-out and the 

stage separation. 

 

4.1.4.2.3. Terminal Constraints 

The terminal constraints can be applied to both for the endpoint of the last phase and/or the 

endpoints of the intermediate phases. Terminal constraints corresponding to the target orbit 

are 

 

    
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All six components of position and velocity or a couple of them can be enforced as 

terminal constraints depending on the particular mission requirements. For missions 

including a transfer/parking orbit, two distinct terminal constraints for different phases can 

be defined representing the intermediate and the target orbits, leading to a multipoint 

boundary value problem. 

 

Another terminal constraint taken into account is the maximum allowable amount of 

propellant to be used by the upper stage engine during orbit insertion, which is valid only 

for restartable liquid engines. The reason and the rules for applying this constraint were 

explained in Section 4.1.1.2. 

 

Descent trajectories of the separated stages are solved and the instantaneous impact points 

are evaluated in the follow-on analyses as other terminal constraints. Separated stages must 

be dropped into the sea or unpopulated areas in order not to cause any hazards to people or 

property. If the resulting impact point is not acceptable, then the trajectory can be 

reshaped, or thrust time profile of stage motors can be adjusted if the vehicle parameters 

are free to optimize. 

 

For descent trajectories, the differential equations (4.24) - (4.26) given for the powered 

ascent phase can be modified by omitting the thrust and the mass flow rate from the 

equations since there is no propulsion system operating during descent. Nominal impact 

points are calculated for the aerodynamically stable attitude of the separated stages that is 

uncontrolled motion such as tumbling is not considered. 

 

Matlab built-in function ’ode45’ based on Runge-Kutta (4,5) method is  used to integrate 

the differential equations of descent for a certain time interval with initial conditions of 

position and velocity at the separation instant and the mass of the separated stage. The 

integration is terminated when altitude equals to zero, which means that the separated stage 

hits the ground. Related Matlab code is given in Appendix C.3.3 for reference. 

 

4.1.4.3 Path Constraints 

The path constraints are equality or inequality type constraints defined for restricting the 

range of values taken by separate or combined functions of the state and the control 

variables. They can be imposed over the entire trajectory or within a particular flight phase. 

The following path constraints due to the definition of the mathematical models are taken 

into account in the problems solved within this thesis. 

 

 eRr  (4.35) 

 
2 2 2 2 1x y zu u u   u  (4.36) 

 

The state constraint in Eq. (4.35) guarantees to keep the vehicle’s altitude above the 

surface of the Earth, and the control constraint in Eq. (4.36) ensures that the thrust 

direction u is a unit vector. Trajectory or mission constraints arising from the limitations of 

the vehicle and the payload are described in the following sections. 
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4.1.4.3.1. Dynamic Pressure 

The dynamic pressure (q) is a function of the air density () and the air speed (vrel), and 

expressed as 

 

      2

max

1

2
relq t t v t q   (4.37) 

 

Dynamic pressure acts on the outer surface of the vehicle and it is an important 

consideration of the structural loads. Aerodynamic stress, i.e. stress within the structure 

subject to aerodynamic forces is proportional to q. The point of maximum aerodynamic 

stress is often referred to as max q and it is one of the critical load conditions for launch 

vehicles. Therefore, maximum allowable dynamic pressure (qmax) is defined by the user as 

a constraint for trajectory optimization. 

 

4.1.4.3.2. Angle of Attack 

In order to avoid unrealistic trajectories with regard to the controllability and structural 

loads, the maximum angle of attack () is constrained especially within the atmospheric 

portion of the flight. 

 

4.1.4.3.3. Bending Moment 

Dynamic pressure and angle of attack constraints together introduce a third constraint 

which is known as q , which describes the limit of the product of the two and this term is 

considered as another critical load condition which is an indicator of bending moment due 

to dynamic pressure. 

 

4.1.4.3.4. Axial Acceleration 

The acceleration (a) is simply the force per unit mass. Since the thrust direction is assumed 

to be aligned with the vehicle’s longitudinal axis within this thesis, and if the small angle 

of attack values are neglected then nongravitational acceleration can be calculated through 

the following equation and referred as the axial acceleration. 

 

  
   

 
max

T t D t
a t a

m t


   (4.38) 

 

If Eq. (4.38) is divided by the sea level gravitational acceleration (g0), the resulting relation 

corresponds to the axial g-load, which is a common measure of acceleration. 

 

The majority of the total mass of the launch vehicle is the propellant mass. Assuming the 

thrust is constant; the acceleration of the vehicle increases when propellant is burnt and 

expelled. At this point, thrust must be reduced in order not to destroy the payload or the 

vehicle. The magnitude of the thrust can be controlled in response to the needs during 

flight if and only if throttling capability exists. Only some liquid engines have this 
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capability, whereas the thrust of solid propellant motors can be adjusted by various grain 

shapes predetermined by design. 

 

Implementation of acceleration constraint is different than the implementation of other 

constraints mentioned previously. This constraint should be actively taken into 

consideration during design phase, because it is due to the nature of the thrust model which 

is a part of the vehicle characteristics. It is difficult to satisfy acceleration constraint by 

trajectory shaping only and it causes considerable amount of performance loss. 

 

4.1.4.3.5. Aerothermal Heat Flux 

The aerothermal heat flux ( q ) is a frequently used heat load constraint to determine the 

fairing jettisoning time. During the first minute of flight, the temperature of the payload 

fairing surrounding the spacecraft rises rapidly as a result of aerodynamic heating. Within 

two to five minutes after lift-off, the aerodynamic heating drops low enough and the fairing 

can be jettisoned. The aerothermal heat flux is a function of dynamic pressure (q) and air 

speed (vrel), and it can be approximated in free molecular regime using the free stream 

enthalpy convective model (Cremaschi, 2013). 

 

          3

max

1

2
rel relq t q t v t t v t q    (4.39) 

 

4.1.4.3.6. Total Aerodynamic Heating Rate 

Another heat load constraint is the total aerodynamic heating rate (Q) which is defined as 

the integral of the heat flux over time. 

 

        3

max

0 0

1

2

f ft t

relQ t q t dt t v t dt Q     (4.40) 

 

Increase in total aerodynamic heating lead to increasing temperature, which causes 

structural degradation, and this constraint is often used to design the reentry trajectories of 

reusable launch vehicles. The total heating rate constraint was implemented successfully 

into the trajectory optimization code developed within this thesis, but was not applied to 

the any one of the example problems. 

 

4.1.5 GPOPS-II Implementation  

The numerical solution methods for OCPs were given in Section 2.1. Then, the existing 

research related to the application of these methods to the launch vehicle trajectory 

optimization problem was discussed in Section 2.3.2. As laid down therein, discretization 

is an integral part of the solution, and after discretization large number of function 

evaluations is required. Thus, computational efficiency of the solver is highly expected. 

 

In this work, one of the recent methods known with their rapid convergence rates referred 

as pseudospectral methods were intended to use and examined in detail. The software 
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GPOPS-II “A General Purpose Matlab Toolbox for Solving Optimal Control Problems 

Using the Radau Pseudospectral Method” developed by Patterson and Rao (2013a) was 

finally chosen, since it can be used directly in Matlab and its high performance was 

demonstrated on different problems of varying complexity. This software is available to 

the academic researchers for a small amount of licensing fee. 

 

GPOPS-II employs a Legendre-Gauss-Radau quadrature orthogonal collocation method 

where the continuous-time optimal control problem is transcribed to a large sparse NLP. 

The software can be interfaced with either quasi-Newton (first derivative) or Newton 

(second derivative) NLP solvers, and all derivatives required by the NLP solver are 

approximated using sparse finite-differencing of the OCP functions. The key components 

of the software, problem setup, input and output structures and syntax are described in 

details in the user’s manual of GPOPS-II prepared by Patterson and Rao (2013a). 

 

In this thesis, various examples of the multistage launch vehicle ascent trajectory 

optimization problem defined in the preceding sections were solved by GPOPS-II with the 

NLP solver SNOPT developed by Gill, Murray and Saunders (2005) after discretized by 

the Radau pseudospectral method involved in GPOPS-II. Thus, a rapid design 

methodology including simultaneous optimization of trajectory and vehicle parameters 

were developed successfully. 

 

GPOPS-II is not specifically designed to solve trajectories; it is a general purpose optimal 

control software. Therefore, a generic trajectory optimization code was first developed and 

then it was extended as a kind of launch vehicle design optimization code. Since these two 

codes serve to provide solutions to two different problems, the objective functions, 

optimization variables and the constraints used in the optimization framework differ, but 

the dynamic constraints are the same as formulated in the previous sections. 

 

Each time a new problem is to be solved, numerical values for boundary and path 

constraints are first specified, and then initial guesses for the values of time, states, 

controls, integrals and static parameters are assigned for each phase by the user to initiate 

the iterative solution of the problem. It is also useful to limit the dynamic variables by 

imposing reasonable lower and upper bounds in order to improve the robustness. 

 

According to GPOPS-II problem structure, the lower and upper bounds of time are 

provided separately for the start and end of the phase, whereas states require additional 

bounds also for the interior of the phase. Bounds on controls, integrals and path constraints 

are specified only for the entire phase. Bounds and guesses of static parameters are defined 

for the entire problem, since they are independent of phase. 

 

The guesses can be the endpoints or any number of points along the path; therefore even an 

entire trajectory can be given as initial guess. If only the endpoints, namely the initial and 

final points are specified as a guess, then the guess is defined either a constant or a straight 

line over the time interval. A wide range of Earth orbit missions briefly described in 

Appendix A.3 were solved by the tool developed within this thesis and presented below. 
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4.2 Example 1: Delta III – GTO Mission 

In order to evaluate the convenience of GPOPS-II for the ascent trajectory optimization of 

a launch vehicle and describe the methodology elaborately, a simplified example from the 

open literature that was studied by different authors was utilized. In his doctoral thesis, 

Benson (2004) solved the optimal ascent trajectory for the Delta III launch vehicle. The 

same problem was also included as an example in the software GPOPS-II developed by 

Patterson and Rao (2013b) and in the book of Betts (2010). 

 

4.2.1 Vehicle Properties 

The Delta III launch vehicle has two main stages along with nine strap-on solid rocket 

boosters as illustrated in Figure 4.3 (Delta III payload planners guide, 1997). 

  

Figure 4.3 Delta III launch vehicle 

(adapted from Delta III payload planners guide, 1997) 

Mass and propulsion characteristics of the rocket stages used in Delta III launch vehicle are 

given in Table 4.2 (Rao, et al., 2010). 
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Table 4.2 Mass and propulsion characteristics of Delta III 

 
Booster 1

st
 stage 2

nd
 stage 

Propellant type Solid Liquid Liquid 

Number 9 1 1 

Propellant mass, mp (kg) 17010 95550 16820 

Structural mass, ms (kg) 2280 8830 2480 

Specific impulse, Isp (sec) 283.3 301.7 467.2 

Burn time, tb (sec) 75.2 261 700 (max) 

Payload mass mpl (kg) 4164 

 

 

 

4.2.2 Mission Characteristics 

One of the typical missions of Delta III is the direct injection into the geostationary transfer 

orbit (GTO). Launch is from Cape Canaveral and the flight trajectory includes four 

successive powered phases without any coasting periods.  

 

The first phase begins with the rocket at rest on the ground at time t0, when the main 

engine and the six of the nine solid boosters (x6) ignite. At time t1, the boosters are 

depleted and their dry mass is jettisoned. The second phase begins when the remaining 

three solid boosters are ignited. Three solid boosters (x3) burn simultaneously with the 

main engine and when their fuel is exhausted at time t2 their inert mass is ejected. Then, 

the main engine alone creates the thrust for the third phase. After the ejection of the inert 

mass of empty 1st stage at time t3, the fourth phase begins with the second stage ignition. 

The thrust during fourth phase is from the second stage, which burns until the target orbit 

is reached at time t4, thus completing the trajectory. Flight sequence for this mission is 

summarized in Figure 4.4 and Table 4.3. 

 

Figure 4.4 Delta III flight sequence 

Table 4.3 Delta III GTO flight sequence 

Event Time 

Ignition of 1st stage main engine 

Ignition of boosters (x6) 

Lift-off 

t0 = 0 sec 

Boosters (x6) burn-out  

Boosters (x6) separation 

Ignition of boosters (x3) 

t1 = t0 + 75.2 sec 

Boosters (x3) burn-out  

Boosters (x3) separation 
t2 = t0 + 150.4 sec 

1st stage main engine cut-off 

1st stage main engine separation 
t3 = t0 + 261 sec 

Target orbit is achieved 
t4: free 

(t4,max = 961 sec) 
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It is important to note that the solid boosters and the main engine operate during their 

entire burn time (t1, t2 and t3 are fixed), while the second stage engine is shut off when the 

target orbit is achieved (t4 is free), thus unused fuel can remain in the tanks. 

 

Delta III ascent trajectory optimization problem’s objective is to maneuver the launch 

vehicle from the ground to the target orbit while maximizing the remaining fuel in the 

upper stage. No trajectory constraints were applied. 

 

4.2.3 Problem Formulation 

Slightly different from the disciplinary models described in Section 4.1.1, the following 

assumptions were made in this first example in order to simplify the problem, reduce the 

computational time and focus on the trajectory optimization only. 

 

 Dynamics is same during all flight phases, only thrust and mass change. 

 Magnitude of thrust is constant within a phase, only direction changes. 

 Mass flow rate is constant within a phase. 

 Thrust magnitude does not depend on altitude (or atmospheric pressure). 

 Drag coefficient is constant (independent of Mach number) for the entire trajectory 

and taken as a conservative value of CD = 0.5. 

 Aerodynamic reference area is constant and equal to the cross sectional area of the 

payload fairing having a diameter of 4 m, i.e. S = 4 m2. 

 Exponential atmosphere model described below is implemented. 

 

 
 

0

h
He 



   (4.41) 

 

In Eq. (4.41), 

ρ0 is the atmospheric density at sea level, i.e. ρ0 = 1.225 kg/m3 

h is the altitude, i.e., h = r – Re, 

H is the atmospheric scale height, i.e. H = 7200 m. 

 

Since the mass flow rate ( m ) is assumed to be constant, it can be easily calculated for 

each motor using the relevant data in Table 4.2. 

 
p

b

m
m

t
  (4.42) 

 

In Eq. (4.42), 

mp is the propellant mass, 

tb is the burn time. 

 

Thrust can be calculated from Eq. (4.8) with the known values of Isp and m . 

 

 0spT I g m    (4.43) 
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The thrust (T) and the mass flow rate ( m ) within each phase are then expressed as follows. 

 

Phase 1: 0 10 75.2t t t     

 16 bT T T   (4.44) 

 
 1

16 bm m m   (4.45) 

 

Phase 2: 1 275.2 150.4t t t     

 13 bT T T   (4.46) 

 
 2

13 bm m m   (4.47) 

 

Phase 3: 2 3150.4 261t t t     

 1T T  (4.48) 

 
 3

1m m  (4.49) 

 

Phase 4: 3 4,max261 961t t t     

 2T T  (4.50) 

 
 4

2m m  (4.51) 

 

In Eqs. (4.44) - (4.51), subscripts b, 1 and 2 stands for the booster, 1st stage and 2nd stage 

motors, respectively. The payload mass is given and fixed in this example, only the 

remaining fuel in the last stage is to be maximized, thus the initial mass of the launch 

vehicle is known and fixed. 

 

 10 1 2(0) 9 b plm m m m m m      (4.52) 

 

According to the vehicle definition, mass changes at time events are also known. Only the 

final mass is unknown being an optimization variable. 

 

  1

1 10 1fm m m t    (4.53) 

 20 1 ,6f s bm m m   (4.54) 

    2

2 20 2 1fm m m t t     (4.55) 

 30 2 ,3f s bm m m   (4.56) 

    3

3 30 3 2fm m m t t     (4.57) 

 40 3 ,1f sm m m   (4.58) 

 

Launch site is located at the Cape Canaveral Space Station in Florida whose geocentric 

latitude and longitude are 0 = 28.5° and λ0 = -80.6°, respectively. It is assumed for 
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simplicity that the ECEF frame is initially aligned with the ECI frame at time t0 such that 

the X axis passes through the intersection of the equator with the meridian line at Cape 

Canaveral longitude. Thus, the inertial longitude can be taken as zero at time of lift-off, 

provided that it should then be added to the longitude values in the calculated optimal 

trajectory. Finally, the position and velocity vectors can be defined as 

 

 (0) 6378137 [cos28.5 0 sin28.5]T  0r r  (4.59) 

 
5

0 (0) 7.29211585 x 10 (0)  v v k r  (4.60) 

 

The launch vehicle starts on the ground at rest (relative to the Earth) and Eq. (4.60) is the 

inertial velocity at lift-off, which ensures the relative velocity in Eq. (4.16) is zero. At the 

final time t4, the launch vehicle must insert the payload into a GTO defined by the 

following orbital elements, descriptions of which are given in Appendix A.1. 

 

 24361140 mfa   (4.61) 

 0.7308fe   (4.62) 

 28.5fi    (4.63) 

 269.8f    (4.64) 

 130.5f    (4.65) 

 * freefq   (4.66) 

 

Eqs. (4.61) - (4.65) define the final position and velocity of the payload to lie in the desired 

orbit. The true anomaly (θ*), which represents the position of the payload along the orbit at 

injection time, is left as a free parameter in the optimization. Because the only concern in 

this example is to achieve the specified orbit, location within the orbit is not constrained.  

 

Continuity in the position and velocity from phase to phase is enforced by imposing 

interior point constraints. 

 

 
       1 2 1 2

1 1 1 1( ) ( ) ; ( ) ( )t t t t r r v v  (4.67) 

 
       2 3 2 3

2 2 2 2( ) ( ) ; ( ) ( )t t t t r r v v  (4.68) 

 
       3 4 3 4

3 3 3 3( ) ( ) ; ( ) ( )t t t t r r v v  (4.69) 

 

It is noted that the continuity constraint on the mass at each phase interface includes an 

instantaneous drop of the dry mass of the particular stage. In this case, the mass drops at 

the end of phases 1, 2 and 3 are given respectively as 6ms,b, 3ms,b and ms,1. 

 

    1 2

1 1 ,( ) ( ) 6 s bm t m t m   (4.70) 

    2 3

2 2 ,( ) ( ) 3 s bm t m t m   (4.71) 

    3 4

3 3 ,1( ) ( ) sm t m t m   (4.72) 



65 

 

The objective of the optimization problem is to determine the control vector u(t), and final 

time tf to maximize the mass at the end of the fourth phase 

 

 
  4

fJ m t   (4.73) 

 

subject to the dynamic constraints in Eqs. (4.24) and (4.25) together with Eqs. (4.44) - 

(4.51), the boundary constraints in Eqs. (4.59) - (4.72) and the physical path constraints in 

Eqs. (4.35) and (4.36). 

 

4.2.4 Bounds and Guesses 

Since the initial and final time of first three phases are fixed, lower and upper bounds and 

guesses for time were simply set to the certain known values. For the last phase, upper 

bound of final time was determined based on the maximum burn time of 2nd stage engine. 

 

 3 4 4,maxt t t   (4.74) 

 

The position and velocity in rectangular ECI coordinates were restricted by the following 

simple bounds to obtain realistic solutions. 

 

 2 2 ; 2 2 ; 2 2e x e e y e e z eR r R R r R R r R          (4.75) 

 km km km km km km
s s s s s s

10 10 ; 10 10 ; 10 10x y zv v v          (4.76) 

 

The guesses for position and velocity in the first two phases were taken as constant and 

equal to the initial position (r0) and velocity (v0) given in Eqs. (4.59) and (4.60), while in 

the subsequent phases they were again taken as constant, but equal to the target orbit’s 

position and velocity which can easily be obtained from Eqs. (4.61) - (4.66) by an 

appropriate transformation. The guess for free parameter q* was taken as simply equal to 

zero, since the orbit injection usually occurs near perigee point as explained in Appendix 

A.4. 

 

 
, [4397.3 4243.8 2379.5] kmT

guess fr  (4.77) 

 
, [ 5826.7 7819.6 3178.4] m sT

guess   fv  (4.78) 

 

With the known values of initial and final mass in all phases that are given in Eqs. (4.52) - 

(4.58), the upper and lower bounds on mass were simply set to initial and final mass, 

respectively. On the other hand, the guesses for mass were given as a straight line between 

the initial and final mass over phase duration. The lower and upper bounds for controls 

were specified by definition as -1 and +1, respectively. While, the guesses for controls was 

arbitrarily set to a constant vector u = [0 1 0]T in all phases. 
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4.2.5 Results and Discussion 

Problem was successfully solved by GPOPS-II with the NLP solver SNOPT after 

assigning the bounds and initial guesses for the dynamic variables of each phase as 

described in Section 4.2.4. 

 

GPOPS-II output summarizes the important characteristics of the solution obtained by 

GPOPS/SNOPT algorithms. According to the output summary, initial mesh consisting of 

ten uniformly spaced mesh intervals with four Legendre-Gauss-Radau points per mesh 

interval that is a total of 40 nodes per phase was used. Since the accuracy tolerance of 10-6 

was satisfied on the initial mesh, no mesh refinement was performed to reduce the 

discretization error. 

 

The resulting sparse NLP problem had 1636 nonlinear variables and 1313 nonlinear 

constraints. This nonlinear problem required 40 major iterations, which was completed in 

5.6 seconds of CPU time on a computer with a quad-core hyperthreading capable 2.67 

GHz i7 processor (i.e. 8 virtual cores) and 12 GB of memory. The total solution time 

including the time for discretization and scaling of the NLP variables was 8.8 seconds. 

This solution time was obtained by using the one eighth of the processing power, since the 

used optimization algorithms could not have been parallelized. 

 

Figure 4.5 and Figure 4.6 illustrate the optimal solution for position r(t) and velocity v(t) in 

rectangular ECI frame, respectively. The optimal steering commands u(t) representing the 

thrust direction are also plotted in Figure 4.7. Results match quite well with the ones 

obtained by Benson (2004), Betts (2010), Rao et al. (2010) and Patterson and Rao (2013b) 

all of whom implemented different collocation and NLP algorithms. Benson (2004) and 

Rao et al. (2010) solved this problem by gauss pseudospectral method, whereas Betts 

(2010) applied the sparse optimal control (SOCS) algorithm. Finally, Patterson and Rao 

(2013b) utilized Radau pseudospectral method, which is implemented also in GPOPS-II. 

 

Figure 4.5 Delta III position profile 

 

Figure 4.6 Delta III inertial velocity profile 
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Figure 4.8 displays the mass time profile indicating the optimal value of the objective 

function, which is the final mass. Final mass is obtained as 7530 kg when time tf is equal to 

924.1 sec. Subtracting the payload mass mpl and the structural mass of upper stage ms,2 

from the final mass, the remaining fuel in the tank is found as 886 kg and the burn time of 

the second stage, which can be at most 700 sec, is found as 663.1 sec. As a conclusion, it is 

important to emphasize that the remaining fuel can be utilized as payload in the future 

missions if the launch vehicle follows the proposed optimal trajectory. 

 

Figure 4.7 Delta III control time history 

 

Figure 4.8 Delta III mass profile 

Table 4.4 shows at what extent the terminal constraints regarding the target orbit were 

satisfied. It is easily seen that the desired orbital parameters are exactly the same. The 

important point here is that the value of free parameter, true anomaly (q*) was obtained as 

almost 6.8, which indicates that the satellite is injected into the orbit after it passes the 

perigee point. 

Table 4.4 Delta III target orbit parameters 

Orbital element Desired Result 

Semimajor axis (a) 24361140 m 24361139.9 m 

Eccentricity (e) 0.7308 0.730799 

Inclination (i) 28.5 28.499 

Right ascension of the ascending node () 269.8 269.800 

Argument of perigee () 130.5 130.500 

True anomaly (q*) free 6.7834 

 

 

 

Time histories of altitude and speed given in Figure 4.9 and Figure 4.10 also support this 

conclusion such that the terminal altitude is around 200 km and the terminal inertial speed 
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is around 10.24 km/s. Because if the satellite was injected into the orbit at its perigee point, 

the corresponding altitude and inertial speed should be around 180 km and 10.26 km/s, 

respectively according to Eqs. (4.77) and (4.78). This comparison shows that injection 

from perigee point is not optimal in terms of payload mass maximization, since the orbital 

velocity needed to get into the orbit increases with decreasing altitude. 

 

Figure 4.9 Delta III altitude profile 

 

Figure 4.10 Delta III speed profile 

Figure 4.11 illustrates the latitude versus longitude and Figure 4.12 illustrates the altitude 

versus range including the descent trajectories of the separated stages and the impact 

points. 

 

Figure 4.11 Delta III latitude vs. longitude 

 

Figure 4.12 Delta III altitude versus range 

Figure 4.9 also notifies an interesting oscillation in altitude during the last phase of flight. 
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altitudes and then starts descending before ascending to the orbit while accelerating 

towards burn-out. Trajectory lofting is frequently associated with vehicles which have a 

low upper stage thrust to weight ratio as Patton and Hopkins (2006) emphasized. However, 

this kind of trajectory is unsafe for manned flights since it does not allow the passenger 

vehicle to continue on a ballistic trajectory at the time of the abort. Therefore, the upper 

stages of launch vehicles for manned flights are designed as more powerful, and 

consequently a more slanted and a softer trajectory is obtained. 

 

Figure 4.13 and Figure 4.14 show the time histories of flight path angle and heading angle 

respectively. Although no mission constraints were imposed in this example, acceleration 

and dynamic pressure profiles are plotted in Figure 4.15 and Figure 4.16 for information. 

 

Figure 4.13 Delta III flight path angle 

 

Figure 4.14 Delta III heading angle profile 

 

Figure 4.15 Delta III acceleration profile 

 

Figure 4.16 Delta III dynamic pressure profile 
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4.3 Vega Missions 

After a simplified problem given in Section 4.2, different missions of the European Vega 

launch vehicle were solved, and the results were compared with the available data in the 

open literature. In these examples, higher fidelity engineering models were implemented, 

and the fine details of the mission scenarios were tried to be applied. The main objective is 

to verify and validate the trajectory optimization tool developed within the scope of this 

thesis and to assess its suitability for real-world applications. 

 

4.3.1 Vehicle Properties 

Vega is a new generation launch vehicle developed to provide highly efficient access to 

low Earth orbits for small payloads. It consists of three solid propellant lower stages and a 

restartable liquid propellant upper stage called AVUM – attitude and vernier upper module 

and it is illustrated in Figure 4.17. 

 

Figure 4.17 Vega launch vehicle 

(adapted from http://www.spaceflight101.com/vega-vv02-launch-updates.html) 

The three solid propellant rocket motors (P80, Z23 and Z9) in the lower stages are 

responsible for executing the main ascent phase of the launch vehicle, while the upper 

stage is fired to reach an elliptical transfer orbit. The upper stage AVUM has restart 

capability up to five times, thus it provides mission flexibility by orbital maneuvering and 

ensures precise orbit injection. After the spacecraft separation, it is deorbited to comply 

with the debris mitigation policies. This module also houses the attitude control system and 

the avionics of the launch vehicle, and has an additional task of compensating the 

trajectory dispersions due to performance variations of the first three stages. 

 

Overall height 30.2 m 

Maximum diameter 3 m 

Lift-off mass  137 tons 

 

Fairing 

4th stage (AVUM) 

3rd stage (Z9) 

2nd stage (Z23) 

1st stage (P80) 

http://www.spaceflight101.com/vega-vv02-launch-updates.html
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The physical and performance characteristics of the rocket stages used in Vega launch 

vehicle are summarized in Table 4.5 (Vega user’s manual, 2014).  

Table 4.5 Physical and performance characteristics of Vega 

 
1

st
 stage 2

nd
 stage 3

rd
 stage AVUM 

Propellant type Solid Solid Solid Liquid 

Propellant mass, mp (kg) 87710 23814 10567 577 

Structural mass, ms (kg) 8533 2486 1433 688 

Vacuum specific impulse, Isp (sec) 280 287.5 295.9 314.6 

Burn time, tb (sec) 109.9 77.1 119.6 
667 (max. for 

continuous burn) 

Stage diameter (m) 3 1.9 1.9 1.9 

Nozzle exit diameter (m)* 1.98 1.47 1.23 0.3 

Vacuum thrust, Tvac (kN) See Figure 4.18 2.45 

Mass flow rate, m (kg/s) See Figure 4.18 0.794 

Payload fairing mass, mplf (kg) 540 
* taken from the doctoral dissertation of Castellini (2012) 

 

 

 

Thrust profiles of solid propellant motors P80, Z23 and Z9 were obtained from the paper 

of Fiorillo, Giliberti, Angelone, Milana and Serraglia (2013). Although the values are 

missing on the plots given in this paper, they were easily derived based on the values of 

maximum thrust and burn time of the motors with the help of a program for digitizing 

graphs called GetData graph digitizer. The mass profiles were also calculated with the 

assumption of constant specific impulse from Eq. (4.9). The resulting plots of variations of 

thrust and remaining propellant mass with respect to time are shown in Figure 4.18. 

 

Figure 4.18 Thrust and propellant mass profiles of solid rocket motors of Vega 

Thrust and mass profiles were loaded into the trajectory optimization code as tabulated 

data, and cubic interpolation was performed when a new point is needed to integrate the 

differential equations. The effective thrust in the atmosphere was also computed within the 
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code using Eq. (4.7) in order to take into account the pressure losses. The corresponding 

nozzle exit areas were calculated based on the exit diameters given in Table 4.5. 

 

The amount of propellant in the upper stage excluding the 5% unusable portion was 

completely allowed to be consumed. The maximum amount available for orbit insertion 

was determined considering the amounts needed for the trajectory corrections and the 

deorbiting maneuvering. Since these amounts depend upon the current mass of the launch 

vehicle, they were computed specific to each mission in the optimization code according to 

the approach described in Section 4.1.1.2. On the other hand, the propellant of attitude 

control system was included into the inert mass assuming as if it was going to be carried 

till the end of mission although it is partly ejected during flight. 

 

For deorbiting, entry interface was specified such that the upper stage reenters the 

atmosphere establishing a -3 flight path angle at an altitude of 100 km representing the 

boundary between the Earth’s atmosphere and the outer space. Descent trajectory of the 

upper stage was not solved since it was considered that these entry conditions ensure the 

disintegration and burning up of the remaining upper stage in the atmosphere. 

 

The drag coefficients for five different configurations related to different phases of 

trajectory were calculated by Datcom. These configurations are the launch vehicle as a 

whole, launch vehicle excluding the first stage and the separated 1st, 2nd and 3rd stages. The 

aerodynamic forces were included in the equations of motion only in the first two phases 

of flight up to the second stage separation, because the dynamic pressure is very low in the 

rest of the flight. 

 

The external geometry of the launch vehicle was constructed from the dimensions 

indicated on the drawings available in the presentation of Vega qualification mission 

(Lares, 2009). The coefficients were calculated for the reference area of S = 7.07 m2 for the 

ascent phase considering the 3 m diameter of the 1st stage, while the reference areas for the 

separated stages were simply obtained from the values of stage diameters given in Table 

4.5. The input geometries and the coefficients predicted by Datcom are given in Figure 

4.19 and Figure 4.20, respectively. 

 

 

Figure 4.19 Aerodynamic configurations of Vega 
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Figure 4.20 Drag coefficients of Vega 

4.3.2 Mission Characteristics 

Vega launch vehicle was designed primarily to carry about 1500 kg payload into polar low 

Earth orbit at an altitude of 700 km, but it is also capable of delivering satellites (from 300 

kg to 2500 kg) into a wide variety of orbits from circular to elliptical and from equatorial 

to sunsynchronous. The first launch (maiden flight) of Vega took place in February 2012, 

and two more launches had successfully conducted till today. The following three mission 

examples are covered in the succeeding sections. 

 

 Low Earth elliptical transfer orbit (LETO) with perigee altitude of 200 km, apogee 

altitude of 1500 km and 5.4 inclination 

 Polar Earth orbit (PEO) at 700 km altitude (also known as reference mission) 

 Sunsynchronous Earth orbit (SSO) at 750 km altitude 

 

The ELA1 launch complex located in Kourou, French Guiana is used for Vega launches. 

Its geographic position is 5.236N and 52.775W (Wikipedia, 2014). After a 

transformation of latitude from geodetic to geocentric, the initial position coordinates are 
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The physical environment where the Vega launch vehicle operates is defined by the Earth 

and gravity models described in Section 4.1.1.4 and the atmosphere models described in 

Section 4.1.1.5. 

 

Having a restartable liquid engine in the upper stage, multiburn orbit insertion scenarios 

become possible for Vega. As mentioned in Appendix A.4, a coasting phase can be 

inserted into the mission in order to increase the payload performance. In such kind of 

missions, the launch vehicle is first injected into an intermediate orbit by the first burn of 

the upper stage. And, after a certain period of time of coasting along this orbit, the second 

burn is performed to insert the spacecraft into the target orbit. 

 

For circular low Earth orbit missions, the AVUM flight typically consists of two burns 

(burn-coast-burn trajectory arcs) to reach the target orbit. Whereas in case of elliptical 

orbits, a single AVUM boost can perform the orbit injection. The flight sequence varies 

according to the mission to be deployed, but may be summarized as in Table 4.6 and 

illustrated in Figure 4.21. 

Table 4.6 Typical flight sequence of Vega 

Event Time 

P80 ignition and lift-off t0 = 0 sec 

P80 burn-out and separation  

Z23 ignition 
t1 = t0 + 106.7 = 106.7 sec 

Z23 burn-out and separation 

Start of coast 
t2 = t1 + 76 = 182.7 sec 

Payload fairing separation 

Z9 ignition 
t3

* 

Z9 burn-out and separation 

Start of coast 
t4 = t3 + 116.8 sec 

AVUM 1st ignition (perigee firing and trajectory corrections) t5 = t4 + 15 sec 

AVUM 1st cut-off (injection into transfer orbit) t6
* 

AVUM 2nd ignition (circularization burn) t7
* 

AVUM 2nd cut-off (injection into target orbit) t8
* 

Payload separation t9
 

AVUM 3rd ignition (deorbiting) t10
 

* to be optimized in order to achieve the maximum performance 
 depend on pointing and collision avoidance requirements that are out of scope of this work 

 

 

 

The durations of the solid motor powered phases given in Table 4.6 were specified 

according to the burn time values in Table 4.5. However, it is important to note that they 

were set slightly lower than the actual burn time. Because as seen from Figure 4.18, thrust 

level drops so much and almost diminishes to zero towards the end of burn, and this leads 

to significant problems in the optimization. For powered phases within the atmosphere, a 
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certain level of thrust is always required; otherwise singularities may occur in the control 

variables especially when the thrust data are given as tabulated form. Therefore, few data 

points at the end of burn were removed from the propulsion input data. Although this is not 

a perfect solution, it is easy to apply, and as a matter of fact the very low thrust values in 

this region do not contribute to the ascent performance at all.  

 

On the other hand, a short-time coasting period may exist between the burn-out of a stage 

and the ignition of the next one in order to provide a necessary clearance distance between 

the separated stages against undesirable effects due to plume reflection. In Vega missions, 

coasting is not allowed after 1st stage separation since the aerodynamic forces are still 

significant and may cause a considerable performance loss. Therefore, 2nd stage is ignited 

immediately after the separation, and the retro motors are used to pull the empty 1st stage 

away from the vehicle. 

 

Vega missions have ten to thirty seconds duration of gaps after burn-outs of 2nd and 3rd 

stage, although five to fifteen seconds of coasting after separation is common in current 

launchers. A secondary purpose of coasting between 2nd and 3rd stage powered phases is to 

provide favorable conditions for payload fairing release without loss of performance. As 

mentioned in Section 4.1.4.3.5, the free molecular heat flux at fairing jettison should not 

exceed a certain value. For this reason, the first short coast after 2nd stage burn-out was 

optimized depending on the mission requirements, whereas a fixed duration of 15 seconds 

was added for safe separation before the 1st ignition of AVUM in all Vega mission 

examples. 

 

Figure 4.21 Vega flight sequence 

(adapted from http://dma.dima.uniroma1.it:8080/users/lsa_eps/MATERIALE/Vega-20-11-2008.pdf) 

t0 
t1 

t2 

t4, t5 

t6 

t7 t8 t9 t10 

t3 

http://dma.dima.uniroma1.it:8080/users/lsa_eps/MATERIALE/Vega-20-11-2008.pdf
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As disclosed in the timeline of Vega qualification mission, the payload fairing is released 

at the beginning of the Z9 flight phase – a couple of seconds after the ignition – when the 

aerothermal heat flux becomes lower or equal to the typical value of 1135 W/m2 (Lares, 

2009). In the examples within this thesis, the payload fairing was jettisoned at a predefined 

time closer to the real mission scenario, but coinciding with any one of the phase 

endpoints. For example in Vega missions, fairing separation was assumed to be occurred at 

the end of coasting after 2nd stage separation and at the same time instant with the 3rd stage 

ignition. Additionally, terminal and path constraints were applied for the relevant and 

subsequent phases in order to ensure that the heat flux does not exceed 1135 W/m2 after 

payload fairing jettisoning. 

 

  
2

W
1135

m
q t   (4.80) 

 

In the Vega mission examples solved in this thesis, the objective function was formulated 

as to maximize the payload mass. Therefore, both the trajectory parameters and the 

payload mass are design variables. Consequently, the initial mass of the launch vehicle is 

unknown, and thus this problem is more complex than the Delta III example even just 

because of this difference. 

 

The target orbit was defined by the first three orbital elements, namely semimajor axis (a), 

eccentricity (e) and inclination (i), and only these three were imposed as terminal 

constraints in the optimization. The right ascension of the ascending node (), argument of 

perigee () and the true anomaly (q*
) were left free in order to evaluate the optimal 

solution corresponding to the maximum payload mass. As a matter of fact, the orbit plane 

position can be adjusted as desired by specifying the sidereal time at launch. 

 

The maximum angle of attack and the maximum bending moment indicator were 

constrained during the atmospheric portion of the trajectory corresponding to the first two 

powered phases of flight before the fairing jettisoning. 

 

  5 5 (endoatmospheric flight)t      (4.81) 

    60 kPa 60 kPaq t t       (4.82) 

 

During the exoatmospheric flight, i.e. after the fairing jettisoning, only the angle of attack 

was constrained to 15 since the dynamic pressure decreases low enough. 

 

  15 15 (exoatmospheric flight)t      (4.83) 

 

The problem formulation was not described here in details, since and it was given in 

Section 4.1 and exemplified in Section 4.2.3 with Delta III mission. The differences from 

the Delta III example in terms of the disciplinary models and the optimization framework 

have already been elaborated herein before. 
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4.3.3 Bounds and Guesses 

The bounds and guesses that are common in all three Vega mission examples are given in 

this section, while the differences will be discussed in the relevant sections specific to each 

mission example. The bounds introduced on position, velocity and controls are exactly the 

same as the previous Delta III example. 

 

 2 2 ; 2 2 ; 2 2e x e e y e e z eR r R R r R R r R          (4.84) 

 km km km km km km
s s s s s s

10 10 ; 10 10 ; 10 10x y zv v v          (4.85) 

 1 1; 1 1; 1 1x y zu u u          (4.86) 

 

Until AVUM’s first ignition, only the duration of the separation coast after 2nd stage burn-

out is variable, and it was optimized by allowing it to vary between 15 and 50 seconds. The 

lower limit was assigned considering the required amount of time for safe separation, and 

the upper limit was not kept very flexible since it will result in loss of performance. 

 

  3
15 sec 50 secft   (4.87) 

  5
15 secft   (4.88) 

 

Estimated value of the payload mass was simply set to 1000 kg and the payload scaling 

factor (PLSF) being formulated as a static parameter was allowed to vary in the range 

between 0.01 and 3, which corresponds to 10 kg or 3000 kg of payload. Since the payload 

mass is variable in the optimization, the initial and final mass are also variable and 

unknown. Estimated values (guesses) for the initial and final mass of each phase were 

calculated based on the estimated value of the payload mass, and the upper and lower 

bounds of the mass were set to three times of the initial mass and one tenth of the final 

mass, respectively. 

 

 0.01 3PLSF   (4.89) 

 00.1 3fm m m   (4.90) 

 

The initial guess of the static parameter PLSF was normally taken as 1.0, however this 

value is subject to change in order to improve the speed of convergence. The upper bound 

for maximum amount of propellant allowed to be consumed by the upper stage engine was 

constrained with the usable fraction (95%) of total loading. 

 

     6 8

, , 548.15 kgp p p corrections p deorbitm m m m     (4.91) 

 

The estimated values of the free orbital parameters, the right ascension of the ascending 

node () and the argument of perigee () were calculated using Eqs. (A.6) and (A.7), 

respectively. Although the input arguments  and  correspond to the target orbit’s 

position, they were arbitrarily set to the latitude and the longitude of the launch site. The 
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true anomaly (q*) was also taken as simply equal to zero in the estimation of terminal 

position and velocity, since the orbit injection usually occurs near perigee point. 

 

The guesses for position and velocity in the last phase were taken as constant and equal to 

the terminal position and velocity, while they were simply set to the initial position (r0) and 

velocity (v0) in the other phases. On the other hand, the guesses for controls was arbitrarily 

set to a constant vector u = [0 1 0]T in all phases. 

 

All Vega mission examples were solved by GPOPS-II with NLP solver SNOPT in the first 

derivative mode. Derivatives required by SNOPT were approximated by GPOPS-II using 

sparse central finite-differencing of the optimal control functions. The results were 

obtained employing the implicit integration form of the Radau collocation method together 

with ‘hp1’ adaptive mesh refinement scheme. NLP tolerance was set to 10-5 with 2,000,000 

maximum iterations, and mesh refinement accuracy tolerance was set to 10-3 in all 

examples. The number of collocation points in each problem was specified as giving better 

convergence, and automatic scaling procedure of GPOPS-II was implemented. 

 

4.3.4 Example 2: Vega – LETO Mission 

A direct ascent mission consisting of a single AVUM boost was chosen as the first 

example. The target orbit in this example is a low Earth elliptical transfer orbit (LETO) 

defined by 

 

 , 1500 kma fh   (4.92) 

 , 200 kmp fh   (4.93) 

 5.4fi    (4.94) 

 

The orbital elements a and e can easily be calculated from apogee and perigee heights ha 

and hp using Eqs. (A.1) - (A.4). 

 

The flight trajectory is composed of a total of six phases, four of which are powered and 

the remaining two are the coasting periods after the separation of 2nd and 3rd stages. 

Mission ends after the first burn of AVUM when the target orbit is achieved. Therefore, 

the final time is free and the duration of AVUM burn is to be optimized together with the 

payload mass. 

 

Duration of the last phase was restricted by the maximum continuous burn duration of 

AVUM given in Table 4.5. Let P be the number of the last phase, then the lower and upper 

bounds on final time will be 

 

      1 1
667 sec

P P P

f f ft t t
 

    (4.95) 

 

The problem was solved with an initial mesh of consisting of 60 Legendre-Gauss-Radau 

points. The optimality conditions and the mesh error tolerance were satisfied on the initial 
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mesh and thus, no mesh refinement was necessary. The NLP problem arising after 

collocation had 3295 nonlinear variables and 3112 nonlinear constraints. The computation 

time for solving this example on a computer whose specifications are given in Section 

4.2.5 was around 535 seconds, 480 seconds of which was the NLP solution time. When the 

profiling option of Matlab was activated to track the execution time of the code pieces, the 

function consuming the most time was identified as ‘atmosnrlmsise00’. It is 

important to note that the time spent for this function took approximately 242 seconds with 

a total of 90,000 calls, which highlights the fact that the run time performance can be 

improved by changing the atmosphere model in the future. 

 

The state and control solutions obtained using GPOPS-II are shown in from Figure 4.22 to 

Figure 4.25. Cross markers existing in these graphs indicate the boundaries of the flight 

phases. 

 

Figure 4.22 LETO position profile 

 

Figure 4.23 LETO inertial velocity profile 

 

Figure 4.24 LETO mass time history 

 

Figure 4.25 LETO control time history 
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Table 4.7 gives a brief summary of the optimized mission. The durations of powered and 

unpowered, i.e. coasting phases can also be comprehended from the mass time profile 

given in Figure 4.24. This profile clearly indicates the coasting phases with time invariant 

mass after 2nd and 3rd stage separations, and also the jettisoning of the empty stages and the 

payload fairing at the end of relevant phases. Coasting phases are also remarkable in 

Figure 4.25 with zero control values. 

Table 4.7 Vega – LETO mission flight phases summary 

# Duration (seconds) Phase description Active constraints 

1 0 – 106.7 Powered flight of P80 -5 ≤ α ≤ 5 

-60 kPa ≤ qα ≤ 60 kPa 2 106.7 – 182.7 (76) Powered flight of Z23 

3 182.7 – 222.3 (39.6*) 
Separation coast 

(fairing separation at end) endq  ≤ 1135 W/m2 

4 222.3 – 339.1 (116.8) Powered flight of Z9 - 

5 339.1 – 354.1 (15) Separation coast - 

6 354.1 – 978.7 (624.6*) AVUM burn for orbit insertion af, ef, if (ha,f, hp,f , if) 
* optimized in order to achieve the maximum performance 

 

 

 

As seen from Table 4.7, the optimized durations of the 3rd and 6th phases corresponding to 

the free flight time and the AVUM burn are obtained as 39.6 sec and 624.6 sec, 

respectively. On the other hand, the orbital elements of the final orbit are given in Table 

4.8 together with the comparison of initial guesses and the desired and optimized values. 

Table 4.8 Vega – LETO mission target orbit parameters 

Orbital element Desired Guess Result 

Semimajor axis (a) 7228137 m 7228137 m 7228137 m 

Eccentricity (e) 0.0899 0.0899 0.0899 

Inclination (i) 5.4 5.4 5.4000 

RAAN () free 232.9066 233.3630 

Argument of perigee () free 74.3796 102.7518 

True anomaly (q*) free 0 25.8102 

 

 

 

Table 4.8 shows that the terminal position constraint is definitely satisfied, and the desired 

orbit is achieved with the true anomaly value of around 25 corresponds to an altitude 

considerably higher than its perigee height (see also the altitude profile given in Figure 

4.30). Variations of perigee and apogee altitudes and the orbital inclination with respect to 

time during entire trajectory are given in Figure 4.26 and Figure 4.27, respectively. 
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Figure 4.26 LETO perigee & apogee heights 

 

Figure 4.27 LETO orbit inclination profile 

The initial guesses of the free parameters in Table 4.8 might give the impression that they 

are so close to the corresponding optimal solution; however it can be concluded that the 

problem is not sensitive to these guesses, because it was able to be solved by imposing a 

wide range of guesses without any distinguishable differences on convergence properties 

and computational time. Figure 4.28 depicts the inertial and relative speed profiles 

highlighting the latitude dependent initial (inertial) velocity gain due to Earth’s rotation. 

 

A summary of the propellant budget of AVUM in LETO mission is reported in Table 4.9. 

Excluding the unusable fraction and the amounts reserved for trajectory corrections and 

deorbiting, it is seen that all the available propellant has been utilized for orbit insertion. 

The duration of AVUM burn (624.6 sec) can also be cross checked from the consumed 

amount of propellant during orbit insertion and the mass flow rate given in Table 4.5. 

Table 4.9 Vega – LETO mission AVUM propellant budget 

Mission event Propellant mass (kg) 

Orbit insertion 495.8594 

Trajectory corrections 38.9617 

Deorbiting 13.3289 

Unusable 28.8500 

Remaining 0 

Total 577 

 

 

 

Figure 4.24 indicates the gross lift-off mass (including the payload mass) and the objective 

function that is final mass and equal to 2855 kg. Considering 688 kg structural mass of the 
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4th stage and the unusable and reserved propellant amounts given in Table 4.9, the 

optimized payload mass is obtained as 2086 kg. 

 

The relevant performance data for the same mission is given as 1963 kg in the user’s 

manual of Vega (2014). When these two values are compared, the performance estimate 

obtained through trajectory optimization method presented in this thesis is about 6% (123 

kg) higher than the actual performance of the Vega launcher. This residual error should not 

be evaluated as just an overestimation of the performance due to inaccuracies in vehicle 

properties and the lack of several modeling features, because performance maps declared 

in user’s manuals often have a certain amount of safety margins. 

 

On the other hand, the nominal performance maps for the whole mission envelope given in 

user’s manuals are generally computed by means of standard guidance laws although they 

provide near optimum solutions rather than the optimal ones. Standard guidance laws are 

specifically designed to handle the ascent trajectory optimization problems more quickly 

and effectively, and they are characterized by a small number of optimizable parameters 

representing the attitude controls. Their reduced complexity and robust performance speed 

up the optimization process considerably, and they offer similar performance results as full 

trajectory optimization.  

 

As presented in the paper of Gallucci, Battie, Volpi, Fossati and Curti (2012), the ascent 

trajectory of Vega’s maiden flight was designed by following a very common reference 

guidance program implemented and proven successfully in many mission planning studies 

(Edge and Powers, 1976; Markl, 2001; Well, 2003; Castellini, 2008). 

 

This reference trajectory begins with lift-off and vertical ascent. The lift-off takes place 

when the thrust equals the vehicle’s weight. Just after lift-off, a vertical ascent is required 

for a safe clearing of the launch pad, avoiding that the exhaust gases hit ground structures 

around the pad itself. Duration of this phase is desired to keep as short as possible, since it 

causes high gravity losses. 

 

The pitch-over maneuver is necessary in order to deflect the trajectory out of the vertical 

and establish a well-defined kick angle and the required azimuth for the successive gravity 

turn maneuver. A typical pitch program is performed by means of a constant pitch rate and 

a constant heading for certain duration. Pitch rate, launch azimuth and maneuver duration 

are the optimization variables during this phase. 

 

The gravity turn maneuver corresponds to a zero angle of attack turn due to the gravity 

force that allows the minimization of the drag losses and the structural loads. This 

guidance strategy is applied up to the end of 2nd stage flight of Vega, although it is 

nonoptimal from the performance point of view, but easy to implement. 

 

During the 3rd stage flight and subsequent AVUM firing, the attitude program is optimized 

by means of a closed loop guidance in order to achieve the maximum performance as well 

as satisfying the mission requirements and constraints. The injection into the transfer or the 
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target orbit is achieved by target inclination maneuvering such as linear or bilinear tangent 

laws or the velocity to-be-gained approach also known as Q-guidance. 

 

The method proposed in this thesis allows control variables to be optimized at all 

discretization points. And, since they do not have to stick to any rule, it is possible to 

obtain the real optimum. The outputs of trajectory optimization tool developed in the scope 

of this thesis are plotted alongside the performance results given in the user’s manual of 

Vega (2014) (Figure 4.29 - Figure 4.31). In these graphs, black lines labeled as ‘result’ 

refer to the outputs of the newly developed tool, while the blue lines labeled as ‘reference’ 

refer to the original data of Vega. 

 

Comparing the overall altitude profiles in Figure 4.30 reveals remarkable differences 

during the second half of the trajectory which corresponds to the target inclination 

maneuvering. It can easily be concluded from the graphs that although the target orbits are 

same in terms of size, shape and inclination (200 km x 1500 km; 5.4), the altitudes where 

the vehicle enters the orbit are different. The relative speed profiles in Figure 4.29 also 

assist to draw the same conclusion, since the point closer to the Earth on the same orbit has 

higher speed than the farther one. 

 

It is well known that not all the vehicle’s thrust power can be used for velocity increment, 

but there exist several loss mechanisms incurred mainly due to the external aerodynamic 

and gravitational forces. Figure 4.30 illustrates that the altitude rate in reference trajectory 

in high altitudes is much greater than the optimal result, and the vehicle climbs into the less 

dense atmosphere earlier than the optimal solution. This reveals that the steeper and slower 

trajectory of the guidance law solution incurs lower drag but higher gravity losses 

compared to the optimal solution. Since gravity is more dominant than drag at high 

altitudes, the guidance law trajectory is exposed to higher losses than the optimal trajectory 

in the entire flight and leads to less performance. 

 

Figure 4.28 LETO speed profile 

 

Figure 4.29 LETO relative speed comparison 
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Figure 4.30 LETO altitude comparison 

Figure 4.31 shows the ground track comparison of the launch vehicle’s flight trajectory 

projected on the world map. It is seen that solutions are in close agreement excluding a 

small difference at the end of the mission. The vehicle flies over land in the optimal 

trajectory as labeled on the map; however it would not be a problem about the range safety 

since the flight altitude is sufficiently high. 

 

Figure 4.31 LETO launch vehicle’s ground track comparison 

Table 4.10 includes the geodetic position coordinates of the nominal impact points (IP) of 

the jettisoned empty stages, and Figure 4.32 illustrates the ground tracks and the nominal 

impact points on the world map. It is seen that all stages are dropped into the ocean 
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sufficiently far from the coast without introducing any hazard. Impact point of the payload 

fairing was not solved, since it would exhibit a similar behavior to that of the separated 2nd 

stage. The similarity stems from the fact that the separated 2nd stage follows nearly the 

same trajectory with the vehicle during the separation coast phase; the only discrepancy 

would be due to the different aerodynamic properties. Figure 4.33 displays the altitude 

downrange profile. Altitude values are given with respect to Earth’s equatorial radius, i.e. 

Re = 6378.137 km. 

Table 4.10 Vega – LETO mission separable parts impact points 

 
Longitude () Geodetic latitude () Downrange (km) 

1st stage -49.80 5.31 330.6 

2nd stage -40.05 5.43 1410.9 

3rd stage 47.61 -0.15 11171.9 

 

 

 

  

Figure 4.32 LETO separated stages impact points 

 

Figure 4.33 LETO altitude vs. downrange (incl. separated stages) 
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Other important trajectory parameters are presented in Figure 4.34 to Figure 4.39. Figure 

4.34 shows the variation of thrust during the solid stage powered phases. Vacuum thrust is 

the interpolated value for each integration time step from the propulsion input data, and the 

corrected thrust profile is the effective thrust dependent on altitude, which is an input to the 

trajectory simulations. Figure 4.35 shows the acceleration profile with a maximum at 

around 4 g which is a quite moderate value for satellite launchers. 

 

Figure 4.34 LETO thrust profile 

 

Figure 4.35 LETO acceleration profile 

Figure 4.36 and Figure 4.37 shows the variations of the density and the Mach number, 

which are used to obtain aerodynamic loads. Density is extracted from the atmosphere 

model according to the flight altitude and the projected latitude over the oblate Earth, 

whereas Mach number is determined from the relative flight speed and the local sound 

speed. 

 

Figure 4.36 LETO density profile 

 

Figure 4.37 LETO Mach number profile 
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Figure 4.38 and Figure 4.39 demonstrates the variations of dynamic pressure and drag 

force with respect to time during the atmospheric flight phase. Although the dynamic 

pressure is not constrained within this problem, its maximum value is around 55 kPa which 

is acceptable for almost all existing launch vehicles in terms of structural strength. 

 

Figure 4.38 LETO dynamic pressure profile 

 

Figure 4.39 LETO drag force profile 

Figure 4.40 and Figure 4.41 display the control profiles (pitch & yaw angles) and the 

velocity angles (flight path angle – FPA & heading angle) during entire trajectory. Control 

angles pitch and yaw are undefined during zero-thrust flight (3rd and 5th phase) under the 

assumption that the longitudinal axis of the vehicle coincides with the thrust vector. 

 

Figure 4.40 LETO FPA & pitch profile 

 

Figure 4.41 LETO heading & yaw profile 
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problem was solved such that FPA is enforced to be equal to 90, it was observed that the 

effect of this change on payload performance is limited to just a few kilograms, because 

launch pad clearance is completed within a period of less than 5 seconds. 

 

Figure 4.42 to Figure 4.44 show the results of the problem solved with and without 

trajectory constraints on the same graph. These figures point out that the maximum 

allowable values of 5 angle of attack and 60 kPa bending moment indicator are both strictly 

satisfied during flight before fairing jettisoning, and heat flux is not exceeded 1135 W/m2 after 

fairing jettisoning. 

  

Figure 4.42 LETO angle of attack profile – constrained vs. unconstrained 

 

Figure 4.43 LETO bending moment profile 

 

Figure 4.44 LETO heat flux profile 
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Additionally, the angle of attack was constrained to be lower than 15 during the 

exoatmospheric portion of the flight, but the limit values were not observed in this region even 

in the unconstrained trajectory as seen in Figure 4.42. 

 

It is important to note that when the same problem was solved under the same conditions 

but without imposing any trajectory constraints, the optimized payload mass was obtained 

as 2138 kg. Thus, it can be concluded that the trajectory constraints cause a performance 

loss of around 50 kg. It is also important to note that imposing constraints increases the 

complexity of the problem, but reduces the size of the feasible region, and improves the 

convergence properties. 

 

The relatively quick run time and the optimized results presented in this section clearly 

demonstrate the success of the trajectory optimization tool developed within this thesis, 

and contribute to its validation through a real mission example. 

 

4.3.5 Example 3: Vega – PEO Mission 

Adding a level of complexity, multiple burn orbit injection mission consisting of two 

AVUM burns and a coasting between them was chosen as the second Vega example. The 

target orbit in this example is the polar circular Earth orbit (PEO) defined by 

 

 700 kmfh   (4.96) 

 0fe   (4.97) 

 90fi    (4.98) 

 

The flight trajectory is composed of a total of eight phases, five of which are powered and 

the remaining three are the coasting periods. The first six phases are similar to the previous 

LETO mission, but at the end of AVUM’s first burn the launch vehicle is injected into a 

transfer orbit whose apogee height is equal to the altitude of the circular target orbit. After 

a long coasting flight along this transfer orbit, AVUM is reignited and the circularization 

maneuvering is performed at the end of which the spacecraft is inserted into the target 

orbit. 

 

In this mission, durations of AVUM burns and the coasting flights were optimized together 

with the payload mass. The perigee altitude of the transfer orbit was constrained to be 

higher than 150 km for safety reasons in accordance with the general practice. The reason 

is that in case the upper stage engine would not restart at the apogee, there will be at least a 

second full orbit for one more attempt. Otherwise, the vehicle starts to descent when it 

encounters the atmosphere at lower altitudes, and it is finally lost. 

 

 
 6

700 kmah   (4.99) 

 
 6

150 kmph   (4.100) 
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Since there are many phases in this problem including a quite long coasting period, the 

problem was first solved up to the transfer orbit injection, and then its results were given as 

an initial guess to the actual problem. 

 

In the formulation of the first step, the propellant to be used during target orbit insertion 

maneuvering or so called circularization burn should have to be predicted and allocated for 

the second ignition of AVUM. Circularization maneuvering occurs in a short time interval 

compared to the entire time of flight; therefore impulsive orbit transfer assumption is valid. 

Accordingly, the required delta-V and consequently the required amount of propellant for 

circularization burn can be calculated analytically using Eqs. (A.14) and (A.15). 

 

The optimal solution for the trajectory only up to the transfer orbit (TO) is presented in 

Figure 4.45 and Figure 4.46. According to this optimal solution, the vehicle enters an 

elliptical transfer orbit whose perigee is equal to 150 km and whose apogee is equal to 700 

km at the end of the trajectory in compliance with the Eqs. (4.99) and (4.100). The flight 

altitude is slightly above 150 km with a corresponding true anomaly (θ*) of around 6. The 

maximized payload mass was obtained as 1482 kg when the estimated value of required 

propellant for circularization burn was considered. 

 

Figure 4.45 PEO TO altitude profile 

 

Figure 4.46 PEO TO speed profile 

It is important to point out that the purpose of this initial guess is just to achieve easier 

convergence in the next step of the problem, in which the entire trajectory including all 

flight phases from ground to the final circular orbit will be optimized all at once. This 
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advantage, the optimal solution regarding the entire mission was successfully deployed. 
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Table 4.12 and Figure 4.49, vehicle achieves a transfer orbit having a perigee altitude of 

180 km at an altitude above 230 km (θ* = 38°), although it was around 150 km in transfer 

orbit solution. 

 

Another important initial guess used for the optimization of the entire trajectory is related 

with the duration of coasting along the transfer orbit. This duration was estimated based on 

the half period (please refer to Appendix A.2) of the transfer orbit defined by Eqs. (4.99) 

and (4.100). 

 

For circular orbit mission examples within this thesis, two different inequality constraints 

regarding the size and the shape of the target orbit were imposed. Although a circular orbit 

is mathematically the simplest orbit; it is difficult in practice to achieve an exact circular 

orbit due to launch vehicle dispersion errors. On the other hand, zero eccentricity 

introduces numerical difficulties such as spurious fluctuations and the nonconvergence of 

the solution although the trajectory models are fully general and any kind of orbit could in 

theory be reached. Therefore, the semimajor axis and the eccentricity were allowed to 

deviate from the desired values within predefined tolerances as follows. 

 

 2 kmfa    (4.101) 

 0 0.0001fe   (4.102) 

 

The first part of the problem, which was intended to provide a good initial guess, was 

solved within 740 seconds, and the whole trajectory was optimized in an additional time of 

almost 800 seconds with a computer whose specifications are given in Section 4.2.5. The 

optimized payload mass was obtained as 1488 kg, which is almost 60 kg (4%) higher than 

the reference performance capability declared as 1430 kg in the user’s manual of Vega 

(2014). Other important characteristics of the optimal solution are summarized in Table 

4.11 to Table 4.13. 

Table 4.11 Vega – PEO mission flight phases summary 

# Duration (seconds) Phase description Active constraints 

1 0 – 106.7 Powered flight of P80 -5 ≤ α ≤ 5 

-60 kPa ≤ qα ≤ 60 kPa 2 106.7 – 182.7 (76) Powered flight of Z23 

3 182.7 – 219.1 (36.4*) 
Separation coast 

(fairing separation at end) endq  ≤ 1135 W/m2 

4 219.1 – 335.9 (116.8) Powered flight of Z9 - 

5 335.9 – 350.9 (15) Separation coast - 

6 350.9 – 780.9 (430*) 
AVUM burn for transfer orbit 

insertion 

ha,TO = 700 km 

hp,TO ≥ 150 km 

7 780.9 – 3000.1 (2219.2*) Coasting along the transfer orbit - 

8 3000.1 – 3147.1 (147*) AVUM circularization burn af, ef, if (ha,f, hp,f , if) 
* optimized in order to achieve the maximum performance 
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Table 4.12 Vega – PEO mission target orbit parameters 

Orbital element 
Transfer orbit 

(start of coast) 

Transfer orbit 

(end of coast) 
Target orbit 

Perigee altitude, hp (km) 179.04 179.07 698.30* 

Apogee altitude, ha (km) 700 700 699.72* 

Inclination, i () 90 90 90 

RAAN,  () 308.11 308.11 308.11 

Argument of perigee,  () 6.51 6.49 7.06 

True anomaly, q* () 38.15 178.27 195.79 
* deviates slightly from the circular orbit 

 

 

 

Table 4.13 Vega – PEO mission AVUM propellant budget 

Mission event Propellant mass (kg) 

Transfer orbit insertion 341.3554 

Trajectory corrections 34.8430 

Circularization burn 116.6616 

Deorbiting 55.2907 

Unusable 28.8500 

Remaining 0 

Total 577 

 

 

 

The mass time history is given in Figure 4.47. The final mass includes the 4th stage 

structural mass (Table 4.5), the unusable propellant and the propellant reserved for 

deorbiting and trajectory corrections (Table 4.13) other than the payload. When these 

amounts are subtracted from the final mass, the payload mass is obtained as 1488 kg. 

Actually, the amount of propellant reserved for trajectory corrections could be discarded at 

the end of the first burn of AVUM, since it was considered to correct the trajectory 

deviations occur during solid motor powered phases. In any way, this approach ensures the 

optimized solution to remain on the safe side in terms of payload performance. 

 

The comparison of the results with the reference data available in the open literature are 

given in Figure 4.48 to Figure 4.54 and Figure 4.57. The blue markers labeled by ‘ref.1’ in 

these graphs are originated from the presentation of Serraglia (2008) who is Integrated 

Project Team Leader of Vega Program. Whereas, green curves labeled by ‘ref.2’ are 

obtained from the doctoral dissertation of Castellini (2012) using GetData graph digitizer. 
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Figure 4.47 PEO mass time history 

 

Figure 4.48 PEO relative speed comparison 

  

Figure 4.49 PEO altitude comparison 

As seen from Figure 4.48 and Figure 4.49, results match fairly well with the performance 

estimation of Vega given in ‘ref.1’. A closer examination reveals that the key difference is 

the duration of AVUM’s first burn. This difference lies in the change of propellant 

capacity of AVUM main engine, which was declared as 550 kg in the old version of the 

user’s manual (Vega, 2006). Currently, it is able to contain 577 kg of propellant and the 

mass flow rate is almost exactly the same as announced in the updated version of the user’s 

manual (Vega, 2014). 

 

Since ‘ref.1’ reflects the situation in the year 2008, the dissimilarity in burn time of AVUM 

can be clearly identified. It is important to point out that this capacity increase may have 
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effect on the performance as well; however it was already compared with the up-to-date 

information given in the last issue of the manual of Vega (2014) as mentioned previously. 

 

Another distinction observed between the result and ‘ref.1’ in Figure 4.48 and Figure 4.49 

is the duration of the coasting phase. The coasting phase in the optimal solution is about 70 

seconds longer than the reference performance estimation. This difference is probably 

explained by the differences between the preferred transfer orbits. As declared in Table 

4.12, a transfer orbit having a perigee altitude of 179 km and apogee altitude of 700 km 

was obtained as optimal solution within the constraints imposed in this study. However, 

the perigee and apogee heights of the transfer orbit followed in the performance analyses 

of Vega might be different but lead up to the same target orbit by a slightly different orbit 

insertion maneuvering. 

 

Reference solution represented by green curves labeled as ‘ref.2’ follows a longer 

trajectory showing a bit more horizontal tendency. It is important to point out that the 

configurational properties of the vehicle in ‘ref.2’ substantially match with the ones 

considered in this study and the manual of Vega (2014). 

 

Figure 4.50 shows the variation of flight path angle along the trajectory, and Figure 4.51 

and Figure 4.52 shows the control profiles and the resulting angle of attack in comparison 

with ‘ref.2’. 

  

Figure 4.50 PEO flight path angle profile comparison 

Figure 4.50 highlights the fact that trajectory in ‘ref.2’ inclines to the local horizontal 

earlier than the optimal solution. Figure 4.51 indicates the distinctive nose-up maneuvering 

of the launch vehicle between the time interval between 200 and 400 sec, which can also 

be observed from Figure 4.49. Figure 4.52 points out that the trajectory in ‘ref.2’ 

completes its maneuvering around 850 seconds after lift-off and it enters into the orbit by 

assuming tangential thrust coinciding with the velocity direction. 
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Figure 4.51 PEO pitch angle profile comparison 

  

Figure 4.52 PEO angle of attack profile comparison 

Figure 4.53 to Figure 4.56 shows the variation of the orbital elements over the whole 

flight. Figure 4.53 confirms that both trajectories represented by solid and dotted lines 

reach the desired circular orbit such that semimajor axis length, apogee radius and perigee 

radius are all converged to the same value at the end points of the trajectories. Figure 4.54 

demonstrates the change of orbit’s shape from parabola (e = 1) to circle (e  0) during 

flight. 

 

Figure 4.55 implies that inclination change maneuvering is completed within the first 350 

seconds of flight, since it would be more costly when the vehicle speed increases. Figure 

4.56 indicates the values of true anomaly at the beginning and end of the coasting phase, 
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which represents the location at which vehicle enters the transfer orbit and the location at 

which circularization burn starts respectively. 

 

Figure 4.53 PEO a, ra, rp comparison 

 

Figure 4.54 PEO eccentricity comparison 

 

Figure 4.55 PEO inclination comparison 

 

Figure 4.56 PEO true anomaly comparison 

Figure 4.57 shows the comparison of ground tracks which match closely, only difference 

results from the difference of phase durations previously discussed and consequently the 

whole mission duration. Table 4.14 lists the geodetic position coordinates of the nominal 

impact points and Figure 4.58 illustrates the ground tracks and the nominal impact points 

on the world map. Additionally, Figure 4.59 displays the altitude downrange profile. It is 

important to point out that altitude values are given with respect to Earth’s equatorial 

radius, i.e. Re = 6378.137 km. 

0 1000 2000 3000 4000
0

2000

4000

6000

8000

time (s)

o
rb

it
 s

iz
e
 (

k
m

)

 

 

semimajor axis length

apogee radius

perigee radius

solid lines: result
dotted lines: ref.2

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

time (s)
e
c
c
e
n

tr
ic

it
y

, 
e
 (

-)

 

 

result

ref.2

0 1000 2000 3000 4000
0

20

40

60

80

100

time (s)

in
c
li

n
a
ti

o
n

, 
i 

(d
e
g

)

0 1000 2000 3000 4000
0

50

100

150

200

time (s)

tr
u

e
 a

n
o

m
a
ly

, q
*

 (
d

e
g

)



97 

 

Figure 4.57 PEO launch vehicle’s ground track comparison 

 

Table 4.14 Vega – PEO mission separable parts impact points 

 
Longitude () Geodetic latitude () Downrange (km) 

1st stage -52.95 8.20 332.2 

2nd stage -53.50 17.77 1392.6 

3rd stage -50.60 88.85 9300.5 

 

 

 

    

Figure 4.58 PEO separated stages impact points 
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Figure 4.59 PEO altitude vs. downrange (incl. separated stages) 

Other important trajectory parameters are presented in Figure 4.60 to Figure 4.63. Figure 

4.60 and Figure 4.61 confirm that the trajectory constraints related with bending moment 

indicator and heat flux are successfully satisfied. Whereas, Figure 4.62 and Figure 4.63 

demonstrates the acceleration and dynamic pressure profiles which are acceptable for Vega 

launcher. It is useful to remind that acceleration and dynamic pressure are driven by the 

thrust time profile of motors, which is given and fixed in the examples of this chapter. 

 

Figure 4.60 PEO bending moment profile 

 

Figure 4.61 PEO heat flux profile 
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Figure 4.62 PEO acceleration profile 

 

Figure 4.63 PEO dynamic pressure profile 

4.3.6 Example 4: Vega – SSO Mission 

The last example from Vega is its Sunsynchronous Earth orbit (SSO) mission, whose orbit 

injection scenario is similar to PEO mission consisting of two AVUM burns. The target 

orbit is defined by 

 

 750 kmfh   (4.103) 

 0fe   (4.104) 

 98.5fi    (4.105) 

 

Since the same methodology discussed extensively in Section 4.3.5 was applied for the 

trajectory design of SSO mission, only a summary of the trajectory optimization results is 

given here in this section. 

 

The solution to provide initial guess regarding the trajectory up to the transfer orbit having 

an apogee altitude of 750 km was solved within 510 seconds, and the whole trajectory was 

optimized in an additional time of 575 seconds with a computer whose specifications are 

given in Section 4.2.5. The optimized payload mass was obtained as 1354 kg, which is 54 

kg (around 4%) higher than the reference performance capability declared as 1300 kg in 

the user’s manual of Vega (2014). 

 

Other important characteristics of the optimal solution are summarized in Table 4.15 to 

Table 4.17. The comparison of the results with the reference data available in the open 

literature are given in Figure 4.65, Figure 4.66 and Figure 4.72. The reference data were 

obtained from the user’s manual of Vega (2014) using GetData graph digitizer. 

 

The relative speed and altitude profiles (Figure 4.65 and Figure 4.66) have the same trend 

and in line with the discussion is Section 4.3.5. The key difference in the acceleration 
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profile (Figure 4.72) originates from the slight differences of the burn time of motors as 

explained in Section 4.3.2. 

Table 4.15 Vega – SSO mission flight phases summary 

# Duration (seconds) Phase description Active constraints 

1 0 – 106.7 Powered flight of P80 -5 ≤ α ≤ 5 

-60 kPa ≤ qα ≤ 60 kPa 2 106.7 – 182.7 (76) Powered flight of Z23 

3 182.7 – 219.8 (37.1*) 
Separation coast 

(fairing separation at end) endq  ≤ 1135 W/m2 

4 219.1 – 336.6 (116.8) Powered flight of Z9 - 

5 336.6 – 351.6 (15) Separation coast - 

6 351.6 – 787.6 (436*) 
AVUM burn for transfer orbit 

insertion 

ha,TO = 750 km 

hp,TO ≥ 150 km 

7 787.6 – 2945.2 (2157.6*) Coasting along the transfer orbit - 

8 2945.2 – 3087 (141.8*) AVUM circularization burn af, ef, if (ha,f, hp,f , if) 
* optimized in order to achieve the maximum performance 

 

Table 4.16 Vega – SSO mission target orbit parameters 

Orbital element 
Transfer orbit 

(start of coast) 

Transfer orbit 

(end of coast) 
Target orbit 

Perigee altitude, hp (km) 200.01 200.16 748.29* 

Apogee altitude, ha (km) 750.00 750.95 749.71* 

Inclination, i () 98.5 98.5 98.5 

RAAN,  () 308.91 308.91 308.91 

Argument of perigee,  () 11.08 11.16 52.88 

True anomaly, q* () 33.96 169.77 136.43 
* deviates slightly from the circular orbit 

 

Table 4.17 Vega – SSO mission AVUM propellant budget 

Mission event Propellant mass (kg) 

Transfer orbit insertion 346.1185 

Trajectory corrections 32.5851 

Circularization burn 111.8061 

Deorbiting 57.6403 

Unusable 28.8500 

Remaining 0 

Total 577 
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Figure 4.64 SSO mass time history 

 

Figure 4.65 SSO relative speed comparison 

  

Figure 4.66 SSO altitude comparison 

 

Figure 4.67 SSO FPA profile 

 

Figure 4.68 SSO pitch angle profile 
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Figure 4.69 SSO angle of attack profile 

 
Figure 4.70 SSO bending moment profile 

 
Figure 4.71 SSO heat flux profile 

 
Figure 4.72 SSO acceleration comparison 

 
Figure 4.73 SSO dynamic pressure profile 
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Figure 4.74 SSO launch vehicle’s ground track comparison 

Table 4.18 Vega – SSO mission separable parts impact points 

 
Longitude () Geodetic latitude () Downrange (km) 

1st stage -53.37 8.11 327.8 

2nd stage -55.39 17.57 1397.4 

3rd stage -165.63 81.29 9811.5 

 

 

 

   

Figure 4.75 SSO separated stages impact points 
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4.4 Example 5: Taurus – SSO Mission 

The fifth and the last example related with the verification and validation of the trajectory 

optimization code developed within the scope of this thesis is the SSO mission of the 

Taurus launch vehicle. The details of the problem formulation are not described herein, 

since they are exactly the same as the previous Vega mission examples in terms of 

applicable aspects. The major differences arose from the fact that the last stage of Taurus 

uses a solid rocket motor whereas the upper stage of Vega comprises a liquid engine. 

Therefore, the applied scenarios for orbit insertion are different, and the durations of 

powered flight phases in Taurus mission are fixed and known in the optimization. 

 

4.4.1 Vehicle Properties 

Taurus is a four stage solid propellant launch vehicle developed by Orbital Sciences 

Corporation in the United States. It has different configuration variants, and the one 

designated by 2210 is the subject of this verification example (Figure 4.76). 

 

Figure 4.76 Taurus launch vehicle 

(adapted from Taurus payload user’s guide, 1999) 

All four stages of the Taurus launch vehicle use solid propellant rocket motors developed 

by ATK (formerly known as Thiokol). The first stage (also known as stage 0) uses the 

Castor 120 motor, and the upper stages use the Orion 50SG, Orion 50 and Orion 38 

motors, respectively. Table 4.19 summarizes the physical and performance characteristics 

of the Taurus launch vehicle, and Figure 4.77 shows the thrust and mass profiles of the 

Fairing 
4th stage 

(Orion 38) 

3rd stage 

(Orion 50) 

2nd stage 

(Orion 50SG) 

1st stage 

(Castor 120) 

Overall height 27 m 

Maximum diameter 2.4 m 

Lift-off mass  73 tons 
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solid rocket motors. All these data were gathered together from three distinct sources 

(Taurus payload user’s guide, 1999; ATK product catalog, 2008; The space launch report, 

2014). 

Table 4.19 Physical and performance characteristics of Taurus 

 
1

st
 stage 2

nd
 stage 3

rd
 stage 4

th
 stage 

Propellant type Solid Solid Solid Solid 

Propellant mass, mp (kg) 49005.2 12156.7 3025 770.7 

Structural mass, ms (kg)* 4922.7 2029.7 470.8 356.5 

Vacuum specific impulse, Isp (sec) 278.98 286.44 292.25 288.99 

Burn time, tb (sec) 84.6 77.9 75.8 68.6 

Stage diameter (m) 2.36 1.27 1.27 1.665 

Nozzle exit diameter (m) 1.52 1.21 0.86 0.53 

Vacuum thrust, Tvac (kN) See Figure 4.77 

Mass flow rate, m (kg/s) See Figure 4.77 

Fairing mass mplf (kg) 300 
* structural masses except the inert masses of stage motors were estimated using the interstage 

masses of a similar launch vehicle Vega so as to be consistent with the lift-off mass of Taurus 

 

 

Figure 4.77 Thrust and propellant mass profiles of solid rocket motors of Taurus 
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4.4.2 Mission Characteristics 

Taurus is able to carry payloads around 1000 kg to low Earth orbits of a variety of altitudes 

and geosynchronous transfer orbit. The target orbit in this example is one of the typical 

mission profiles of Taurus which is 300 nmi (556 km) sunsynchronous orbit defined by 

 

 556 kmfh   (4.106) 

 0fe   (4.107) 

 97.6fi    (4.108) 

 

Launch is from South Vandenberg Air Force Base whose geocentric position is 

 

 0 034.73 ; -120.57      (4.109) 

 

Taurus flight trajectory is composed of five flight phases as depicted in Figure 4.78. Since 

all stages of Taurus uses solid rocket motors, the increments of velocity change are 

relatively fixed, and the trajectory strongly depends on the target orbit. Mission starts with 

the successive burn of the first three stages, and at burn-out of the 3rd stage the vehicle is 

reached a suborbital trajectory whose peak is slightly above the desired orbit’s altitude. 

After a ballistic (coasting) phase along this suborbital trajectory up to its apogee (peak) 

point, the 4th stage is fired and its burn adds the velocity to insert the payload into the target 

orbit. 

 

Figure 4.78 Taurus flight sequence 

(adapted from Taurus payload user’s guide, 1999) 

t1 

t2 

t4 t5 t3 

t0 
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As can be noticed promptly, Vega and Taurus operate different orbit insertion scenarios for 

circular Earth orbits with different coasting characteristics to the final burn point. As 

explained in 4.3.5, Vega uses the conventional approach by first inserting the upper stage 

vehicle into a transfer/parking orbit whose apogee height coincides with the target orbit’s 

altitude and perigee is above the ground. In this scenario, when the upper stage vehicle 

reaches the desired apogee location, it is ignited and places the payload into its target orbit. 

Whereas, Taurus uses another technique so called nonapsidal injection such that the upper 

stage coasts along a suborbital trajectory whose perigee altitude is lower than zero 

(intersecting with the ground), and then it is fired at a point neither apogee nor perigee. 

This technique allows a heavier mass since suborbital trajectories require lower energy, 

however it has poor flexibility, and hard constraints have to be satisfied to insert the 

payload into the desired orbit. This difference in orbit insertion patterns can easily be 

observed from the altitude downrange profiles of circular orbit missions of Vega and 

Taurus illustrated respectively in Figure 4.59 and Figure 4.81. 

 

Table 4.20 summarizes the mission timeline of Taurus. Although, there exists a short coast 

time between 2nd stage burn-out and 3rd stage ignition, which is typically 12 seconds, this 

phase was not required to be modeled since heat flux constraint for fairing separation can 

easily be satisfied. As experienced from the fixed time coast of 15 seconds after 3rd stage 

separation of Vega, no significant difference is expected on performance even if it is 

modeled. 

Table 4.20 Taurus flight sequence 

Event Time 

Castor 120 ignition and lift-off t0 = 0 sec 

Castor 120 burn-out and separation 

Orion 50SG ignition 
t1 = t0 +79.5 = 79.5 sec 

Orion 50SG burn-out and separation 

Payload fairing separation 

Orion 50 ignition 

t2 = t1 + 75 = 154.5 sec 

Orion 50 burn-out and separation 

Start of coast 
t3 = t2 + 75.6 = 230.1 sec 

Orion 38 ignition t4
* 

Orion 38 burn-out (injection into transfer orbit) t5 = t4
* + 67.7 sec 

* to be optimized in order to achieve the maximum performance 

 

 

 

4.4.3 Results and Discussion 

The problem was solved with an initial mesh of consisting of 40 Legendre-Gauss-Radau 

points. The optimality conditions and the mesh error tolerance were satisfied on the third 

mesh, that is, two mesh refinement iterations were performed. The NLP problem arising 

after collocation had 2046 nonlinear variables and 1793 nonlinear constraints. The 
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computation time for solving this mission example was around 340 seconds on a computer 

whose specifications are given in Section 4.2.5. 

 

The optimized payload mass was obtained as 787 kg, which is 117 kg higher than the 

reference performance capability declared as 670 kg in Taurus payload user’s guide 

(1999). This difference of around 17% may result from the unavailability of the actual 

structural mass data of the stages. As mentioned in the footnote under Table 4.19, only the 

inert masses of stage motors are available in the published data sources cited in Section 

4.4.1, and therefore the other structural masses such as the mass of interstage structures, 

auxiliary propulsion systems and the avionic units and components had to be estimated 

based on the data of similar launch vehicle Vega. Although the value of gross lift-off mass 

of Taurus is conserved, it appears to be that the distribution of structural mass between 

stages could not have been determined accurately. 

 

Table 4.21 gives a brief summary of the optimized mission, and Table 4.22 presents the 

orbital elements of the target orbit. In this mission example, the entire trajectory up to the 

circular target orbit was optimized at once different from the circular orbit mission 

examples of Vega, in which the vehicle first achieves an intermediate elliptical transfer 

orbit. Other important characteristics of the optimal solution are illustrated in from Figure 

4.79 to Figure 4.95. 

Table 4.21 Taurus – SSO mission flight phases summary 

# Duration (seconds) Phase description Active constraints 

1 0 – 79.5 Powered flight of Castor 120 -5 ≤ α ≤ 5 

-60 kPa ≤ qα ≤ 60 kPa 

endq  ≤ 1135 W/m2 
2 79.5 – 154.5 (75) Powered flight of Orion 50SG 

3 154.5  – 230.1 (75.6) Powered flight of Orion 50 - 

4 230.1 – 622.1 (392*) Coasting along suborbital trajectory - 

5 622.1 – 689.8 (67.7) 
Powered flight of Orion 38 

(orbit insertion at end) 
af, ef, if (ha,f, hp,f , if) 

* optimized in order to achieve the maximum performance 

Table 4.22 Taurus – SSO mission target orbit parameters 

Orbital element Desired Guess Result 

Semimajor axis (a) 6934137 m 6934137 m 6933998 m 

Eccentricity (e) 0 0 0.0001* 

Inclination (i) 97.6 97.6 97.6 

RAAN () free 244.7371 245.4822 

Argument of perigee () free 35.0827 50.7827 

True anomaly (q*) free 0 14.7699 
* deviates slightly from the circular orbit 



109 

  

Figure 4.79 Taurus altitude comparison 

  

Figure 4.80 Taurus speed comparison 

 

Figure 4.81 Taurus altitude-range comparison 

 

Figure 4.82 Taurus mass profile 
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Figure 4.83 Taurus ground track comparison 

 

Figure 4.84 Taurus 1st & 2nd impact points 

 

Figure 4.85 Taurus separated 3rd stage ground track and impact point 

 

Figure 4.86 Taurus thrust profile 

 

Figure 4.87 Taurus acceleration profile 
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Figure 4.88 Taurus dynamic pressure profile 

 

Figure 4.89 Taurus drag force profile 

 

Figure 4.90 Taurus bending moment profile 

 

Figure 4.91 Taurus heat flux profile 
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120 is derived from the first stage of Peacekeeper intercontinental ballistic missile. It is 

also seen from Figure 4.90 that one of the constrained trajectory parameters, the bending 

moment indicator leans to the limit value of 60 kPa or -60 kPa during the significant 

portion of the flight. Figure 4.91 confirms that the separation of payload fairing at the end 

of second flight phase is appropriate since the corresponding value of heat flux drops under 

1135 W/m2 during flight beginning with 3rd stage ignition. Finally, Figure 4.94 highlights 

that the vehicle follows a suborbital trajectory with a negative perigee altitude until the last 

stage burn which provides the required velocity change for circularization. 

 

Figure 4.92 Taurus FPA & pitch profile 

 

Figure 4.93 Taurus angle of attack profile 

 

Figure 4.94 Taurus perigee-apogee heights 

 

Figure 4.95 Taurus inclination profile 
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CHAPTER 5 

LAUNCH VEHICLE DESIGN 

The conceptual design of a launch vehicle is an iterative process and requires strong 

interaction of multiple disciplines. The major disciplines involved in the design process 

include configuration and layout, mass properties and sizing, aerodynamics, propulsion, 

flight dynamics and sometimes cost and reliability analyses. Rowell, Olds and Unal (1996) 

describes the data exchange between various disciplines involved in launch vehicle 

conceptual design process within a flow diagram. 

 

Geethaikrishnan, Mujumdar, Sudhakar and Adimurthy (2010) define the traditional launch 

vehicle conceptual design methodology in two steps. In the first step, propellant and 

structural mass of each stage that yield optimum stage configuration for each concept are 

determined. Then, a number of configurations are selected based on a performance index. 

The selected stage configurations pass through the second step, and remaining 

configuration variables are then specified through a sequential process of disciplinary 

designs to arrive at optimum vehicle configurations. Finally, one or more of the vehicle 

configurations are selected to proceed with preliminary design. 

 

In this traditional approach, mass split between the stages is not free to change, and 

sequential process does not allow the synergetic effects of mutual coupling between the 

disciplines which may lead to suboptimal designs. Alternatively, there is a fully coupled 

design approach in which the propulsion, trajectory and weights and sizing parameters are 

iteratively refined in an integrated manner to obtain an optimum vehicle configuration. 

 

Such an interactive design approach is now being applied during the conceptual design 

phase of launch vehicles owing to the considerable increase in computational power. It 

offers a significant time saving since the design process is automated to some extent, and it 

provides improved understanding of complex optimization problems by taking into 

account interactions among design variables. 

 

The objective of this chapter is to find optimal vehicle configurations for a given mission 

by simultaneous optimization of the thrust profile and the trajectory. Thus, the sizing 

(propellant and structural mass), thrust time history and burn time of each stage are able to 

be obtained together with the optimal flight trajectory. The payload mass is given and 

fixed, and the minimization of the gross lift-off mass (GLOM) is considered as the 

objective function of this optimization problem since it is the key parameter having a 

significant impact on both performance and cost. The details of the problem formulation 
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were constructed to achieve an appropriate level of accuracy and precision required for 

conceptual design while offering affordable computation times. 

 

Both approaches known as decoupled and coupled approaches mentioned above were 

applied in this study. The proposed methodologies are presented in the following sections 

together with the application examples, and finally solutions are discussed and analyzed. It 

is important to point out that the application examples cover only the optimization of 

stages with solid propellant rocket motors (SRM). 

 

5.1 Decoupled Approach 

In the decoupled approach, the staging and the trajectory optimization codes developed to 

serve for two different objectives and described extensively in CHAPTER 3 and 

CHAPTER 4 were linked together by an overhead program as illustrated in Figure 5.1. In 

this program, the difference between the desired payload mass and the maximized payload 

mass (output of the trajectory optimization subprogram) is compared, and a new ∆V 

requirement (input of the staging optimization subprogram) is estimated to achieve the 

desired payload mass. Thus, the vehicle’s GLOM is minimized iteratively. 

 
 

Figure 5.1 Schematic for the decoupled approach 

5.1.1 Problem Formulation 

Staging optimization method presented in CHAPTER 3 is based on the estimation of 

∆Vmission, and on the other hand, the basic performance requirements namely the specific 

impulse (Isp) and the structural ratio ( of the launch vehicle’s stages are determined by 

design team considering the technology options. These technology dependent 

characteristics and the mission requirements such as target orbit parameters and the desired 

Overhead 
program 

Staging 
optimization 

Trajectory 
optimization 

Vmission 

burn time, tb or 

mass flow rate, m  

Target orbit 

mpl,desired 

Isp,  

mpl,desired - 

mpl,maximized 

propellant & structural masses 

(mp & ms) 
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payload mass are input to the staging optimization code given in Appendix C.2, and its 

output is the optimal mass ratios of stages. Given the structural ratios, one can find the 

propellant (mp) and structural mass (ms) of each stage easily. 

 

Trajectory optimization code was written based on the formulation described in Section 

4.1, and the related code to solve for Delta III example presented in Section 4.2 is given in 

Appendix C.3. The inputs to this code are the mass and performance characteristics of the 

vehicle and trajectory related parameters such as initial and terminal constraints and path 

constraints. When these two codes, so called the staging optimization and the trajectory 

optimization subprograms are executed sequentially and iteratively, the optimal stage 

weight distribution is first obtained via staging optimization, and either the burn time (tb) 

or the mass flow rate ( m ) values of the stages are then given as input to the trajectory 

optimization code with constant m  and thrust assumption. 

 

Since the mass flow rate was first assumed as constant in this approach, the thrust level can 

easily be calculated from the known values of Isp and tb (or m ). During the conceptual 

design phase, burn time (tb) can be determined based on the technology options and similar 

existing systems (Figure D.1). 

 

 
p

b

m
m

t
  (5.1) 

 0const spT I g m    (5.2) 

 

In the decoupled approach, burn time is not an optimization parameter; however it can be 

adjusted if it is desired to be longer or smaller due to the drop zone restrictions of separated 

stages if any. But, this time thrust and consequently m should not be kept as constant in 

order to conserve the propellant mass and fulfill the mission by the launch vehicle having 

the same GLOM. In order to achieve this aim, thrust will be variable over time but the total 

impulse must be the same as the predetermined value by imposing Isp and m given at the 

beginning of the problem. By this way, the resulting launch vehicle configuration will 

comply with the optimal staging. 

 

To summarize, the staging optimization code finds optimal staging based on estimated 

∆Vmission, and the trajectory optimization code finds the optimal trajectory and maximum 

payload mass based on optimal staging. Then, the overhead program compares the values 

of maximized and desired payload mass, and estimates a new value of ∆Vmission. This loop 

is repeated until the maximized payload mass becomes equal to the desired payload mass. 

 

As it can easily be concluded that the accuracy of the estimated ∆Vmission is not so important 

since it is corrected through a few iterations using the outputs of trajectory optimization 

including more realistic gravity and drag calculations. 
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5.1.2 Example 1: Delta III 

In order to evaluate the applicability and accuracy of the decoupled approach, design of a 

new launch vehicle for a mission specified in Section 4.2 was selected as the first 

application example.  

 

Technology dependent inputs required for the launch vehicle design are presented in Table 

5.1. The structural ratios () were calculated simply from Eq. (3.12) using the data given in 

Table 4.2. Similarly, the other inputs such as the thrust (T) and the mass flow rate ( m ) 

were also calculated from the data given in Table 4.2 using the Eqs. (5.1) and (5.2). 

 

As it was indicated in Section 3.3, the staging optimization method generates a launch 

vehicle configuration in serial staging, and then it is converted to its parallel equivalent 

through the equations presented in Section 3.1.2.2. Therefore, before the execution of the 

staging and trajectory optimization codes, the original Delta III launch vehicle was first 

converted to an equivalent hypothetical launch vehicle with four stages in serial (4SLV) 

stage configuration. The basic performance data derived for 4SLV are also given in Table 

5.1 for comparison. Since the boosters and the 1st stage main engine burn together during 

first and second flight phases, Isp of the 1st and 2nd stages of 4SLV take values between Isp,b 

and Isp,c. 

Table 5.1 Comparison of Delta III and 4SLV 

Delta III Booster 1
st
 stage ME 2

nd
 stage 

 
Specific impulse, Isp (sec) 283.3 301.7 467.2 

Structural ratio,  (-) 0.118 0.085 0.129 

Burn time, tb (sec) 75.2 261 700 

4SLV 1
st
 stage 2

nd
 stage 3

rd
 stage 4

th
 stage 

Specific impulse, Isp (sec) 287.2 289.8 301.7 467.2 

Structural ratio,  (-) 0.096 0.080 0.179 0.129 

Burn time, tb (sec) 75.2 75.2 110.6 700 

 

 

 

Then, the trajectory of 4SLV was optimized and compared with the optimal trajectory of 

Delta III presented in 4.2.5. Figure 5.2 and Figure 5.3 show that results are exactly the 

same as expected, thus the conversion from parallel to serial staging was confirmed. 

Overhead program was then executed to obtain a Delta III equivalent launch vehicle 

configuration designated with 2SLV, which is capable of accomplishing the same mission 

but with minimum GLOM and without imposing any trajectory constraints. 

 

Table 5.2 shows the comparison of 2SLV and Delta III. The first four-row block in Table 

5.2 belongs to the serial equivalent of 2SLV, which is an intermediate solution. The second 

four-row block in Table 5.2 gives the properties of the optimized launch vehicle for 
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minimum GLOM called 2SLV, while the last four-row block contains the original Delta III 

launch vehicle’s data. 

 

Table 5.2 points out that the optimal staging brings almost 90 tons reduction in GLOM 

without leaving any excess fuel mass in the tanks. On the other hand, staging optimization 

proposes to scale up 2nd stage, whose specific impulse is the largest and the structural ratio 

is moderate as given in Table 5.1. Whereas, it proposes to decrease the size of the 1st stage 

main engine because its values of specific impulse and structural ratio are not very good. 

 

Figure 5.2 Delta-4SLV altitude comparison 

 

Figure 5.3 Delta-4SLV speed comparison 

Table 5.2 Comparison of 2SLV and Delta III 

4SLV in serial - optimized  1
st
 stage 2

nd
 stage 3

rd
 stage 4

th
 stage Overall 

Structural mass, ms (kg) 10832 5059 1586 3069 209328 kg  

+ 4164 kg 

payload 

Propellant mass, mp (kg) 102592 58094 7276 20811 

Burn time, tb (sec) 59.5 55.6 20 866 

2SLV Booster 1
st
 stage ME 2

nd
 stage Overall 

Structural mass, ms (kg) 9 x 1766 1586 3069 
209328 kg 

+ 4164 kg payload 

(all fuel burned) 

Propellant mass, mp (kg) 9 x 13200 49150 20811 

Thrust, T (N) 9 x 616345 1077174 110103 

Burn time, tb (sec) 59.5 135 866 

Delta III Booster 1
st
 stage ME 2

nd
 stage Overall 

Structural mass, ms (kg) 9 x 2280 8830 2480 
296404 kg 

+ 4164 kg payload 

+ 886 kg excess fuel 

Propellant mass, mp (kg) 9 x 17010 95550 16820 

Thrust, T (N) 9 x 628500 1083100 110094 

Burn time, tb (sec) 75.2 261 700 
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Almost 90 tons reduction in GLOM is mainly because of the reduction in propellant mass 

whereas the values of thrust T were converged to almost the same levels. Thus, it can be 

concluded that the vehicle climbs faster by resulting larger values of axial acceleration and 

dynamic pressure which are plotted in Figure 5.4 and Figure 5.5, respectively. 

 

However, as mentioned previously these parameters should be kept below certain values in 

order not to damage the payload or the launch vehicle itself. When these parameters are 

constrained, the launch vehicle has to climb slower, and thus needs more propellant to 

achieve the same mission. That’s why Delta III is heavier than 2SLV, but still it might not 

be optimal. 

 

Figure 5.4 2SLV acceleration profile 

 

Figure 5.5 2SLV dynamic pressure profile 

5.1.3 Example 2: Vega 

Design of a new launch vehicle for PEO mission specified in Section 4.3.5 was selected as 

the second example for the application and assessment of the decoupled approach. Similar 

to the previous Delta III example, the problem was formulated relatively simple 

considering the following assumptions and conditions. 

 

1. The vehicle concept and the technology options were considered same as actual 

Vega configuration. 

2. Only the first three solid stages (SRMs) were optimized. 

3. AVUM was used in the upper stage as a ready product. 

4. The structural ratios and specific impulses of stages were identified based on Vega. 

5. The overall mission characteristics such as the launch site location, target orbit, 

orbit insertion scenarios and trajectory design considerations comply with Section 

4.3.5. 
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6. The short term coast phases after 2nd and 3rd stage separations were not modeled 

since they do not have a significant impact on the overall performance, and also 

they cause longer computation times. 

7. Trajectory was optimized up to the transfer orbit defined by 150 km x 700 km, 90 

inclination orbit. Since it was demonstrated in Section 4.3.5 that there is not a 

considerable difference in terms of payload mass that can be delivered to target 

PEO or its transfer orbit. 

8. In addition to the trajectory design variables, the thrusts of each SRM were defined 

as design variables and assumed as constant. 

9. Burn times of each SRM were defined by the user as equal to 90 sec which is an 

average value of similar SRMs given in Figure D.1. 

10. No trajectory constraints were imposed. 

 

Thrust levels and the mass properties of the first three solid stages were optimized so as to 

minimize GLOM for a desired payload mass of 1488 kg, which is the maximized value for 

Vega launch vehicle for the same mission. The optimal vehicle configuration obtained via 

decoupled approach for PEO mission are summarized in Table 5.3, its optimal trajectory is 

given in Figure 5.6 and Figure 5.7, and the most important trajectory parameters are 

presented in Figure 5.8 to Figure 5.11. 

Table 5.3 Optimal vehicle configuration for PEO mission (decoupled) 

 1
st
 stage 2

nd
 stage 3

rd
 stage 

Propellant mass, mp (kg) 87765 19579 6016 

Thrust, T (kN) 2678 613.3 194 

Burn time, tb (sec) 90 90 90 

GLOM (kg) 128013 

 

 

Figure 5.6 Altitude profile (Vega decoupled) 

 

Figure 5.7 Speed profile (Vega decoupled) 
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Since no constraints were imposed on acceleration, dynamic pressure and bending moment 

in this problem for simplicity, the maximum values of these parameters increase up to 65.1 

m/s2, 81.8 kPa and 333.3 kPa, respectively and are definitely unacceptable for most of the 

existing satellite launch vehicles. These values are also much higher than the values 

regarding the optimal trajectory of PEO mission of Vega presented in Section 4.3.5. 

 

Figure 5.8 Thrust profile (Vega decoupled) 

 

Figure 5.9 Acceleration (Vega decoupled) 

 

Figure 5.10 Dyn. pressure (Vega decoupled) 

 

Figure 5.11 Bend. moment (Vega decoupled) 

5.1.4 Discussion 

Applicability of the decoupled approach for launch vehicle design was successfully proven 

with the two examples above. The problem solved in Section 5.1.3 was then solved by the 

coupled approach as well, and the results are given in Section 5.2.2.1 in details. However, 

a short comparison is given here in Table 5.4. 
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Table 5.4 Decoupled vs. coupled approach for PEO mission (Tconst & tb: fixed) 

 Decoupled Coupled 

1st stage mass (kg) 96304 99205 

2nd stage mass (kg) 22124 19181 

3rd stage mass (kg) 6832 6105 

Payload mass (kg) 1488 1488 

GLOM (kg) 128013 127245 

1st stage thrust (kN) 2678 2758 

2nd stage thrust (kN) 613.3 531.7 

3rd stage thrust (kN) 194 173.3 

Acceleration (m/s2) 65.1 73.4 

Dynamic pressure (kPa) 81.8 86.1 

Bending moment (kPa) 333.3 418.1 

Run time (sec) 369 28 

 

 

 

As noted in Table 5.4, minimized GLOM obtained through the decoupled approach is 768 

kg more than GLOM obtained as a result of the coupled approach. This difference can be 

explained as an error margin of 0.6%, which is totally acceptable in conceptual design 

level studies. However, since the ultimate optimal is searched, the output of decoupled 

approach seems to be a little bit suspicious. As described previously, in the decoupled 

approach, the staging and the trajectory are solved separately and the stage mass 

distribution is specified before the trajectory optimization. Therefore, the velocity losses 

dependent on the flight path and flight time have a general effect on staging ignoring their 

split among flight phases. 

 

In the coupled approach, however, the staging and the trajectory are optimized 

simultaneously. Therefore, ∆V generated by each stage (consequently the stage masses) are 

determined considering the actual velocity losses corresponding to the relevant flight 

phase. 

 

Table 5.4 also indicates that the optimal trajectory obtained as a result of the coupled 

approach with constant thrust assumption and without trajectory constraints exposes higher 

structural loads than the trajectory optimized by the decoupled approach. This excess 

amount results from the fact that the coupled approach’s solution follows a steeper 

trajectory with less GLOM compared to the solution of the decoupled approach. 

 

Although both approaches answered to conceptual design needs of launch vehicles in a 

reasonable accuracy, the coupled approach was found more reliable and practical for thrust 

profile optimization. As a conclusion, the decoupled approach was not applied on more 

realistic scenarios such as optimization under constraints and allowing thrust shaping. 
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5.2 Coupled Approach 

Performance requirements of solid propellant rocket motors (SRMs) used in launch vehicle 

stages are driven by trajectory constraints especially the maximum allowable acceleration 

and dynamic pressure. SRM performance requirements include parameters like specific 

impulse, burn time and thrust. Therefore, the need for adaptation of thrust profile 

specifically to the mission requirements and constraints is extremely important for optimal 

launch vehicle design. 

 

A systematic design procedure to find optimal SRMs for the predefined launch vehicle 

concept and its specified mission was proposed within the scope of this thesis. An 

overview of this procedure is depicted in Figure 5.12. 

Mission specification

Vehicle concept definition

Initial vehicle sizing

(as first guess)

Trajectory optimization

Thrust profile optimization

Vehicle sizing

Evaluation
 

Figure 5.12 Schematic for the coupled approach 

As seen from Figure 5.12, first of all, the vehicle concept (staging type, number of stages, 

technological preferences on propellant composition and structural materials, etc.) is 

chosen by taking into consideration the mission requirements. Then, basic performance 

requirements are determined by design team according to the technology options. In the 

next step, initial vehicle sizing is performed by the staging optimization tool described in 

CHAPTER 3. The output of this step was utilized as a reference vehicle configuration just 

to provide an initial guess for the design variables to be optimized. 

 

Afterwards, the trajectory optimization tool described in CHAPTER 4 takes over the task 

of simultaneous optimization of trajectory, thrust profile and vehicle sizing parameters. 

Since the general formulation of the trajectory optimization problem was elaborated in 

Section 4.1, only the details regarding the modeling of the thrust profile is described in the 

next section. 
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5.2.1 Problem Formulation 

The variation of thrust with respect to time can be modeled as a constant or a variable 

profile. When the thrust is assumed as constant, the same principles applied on the 

examples covered in Section 5.1 are exactly valid. To summarize, the burn time is fixed 

and predefined by the user taking into account the similar vehicles (Figure D.1), and the 

corresponding thrust level and propellant mass are then optimized. 

 

When it is required to model the thrust as a varying quantity with respect to time, thrust 

time curve modeling is performed considering the following principles. 

 

 The thrust profiles at vacuum conditions are defined as design variables. The 

effective thrust is calculated in the dynamic equations according to the flight 

altitude. 

 Thrust shapes are represented by n number of piecewise continuous linear 

functions (Figure 5.13). The initial thrust (Ti) and the n number of slopes with 

evenly spaced time intervals are treated as parameters in the optimization. 

Increasing the number of linear segments, more accurate approximation of the 

thrust profile can be achieved. 

T

tn = tb

Ti

t
t1 t2 t3

0

s1

s2 s3

sn

 

Figure 5.13 Thrust time curve modeling 

 Burn times are defined as design variables and optimized within a range defined 

by the user considering the application area and the state of the art in technology. 

 

Thrust profile modeling has to be done that it finally can be realized by reasonable grain 

design; therefore some limitations should be imposed on typical SRM thrust parameters. 

These are listed in the following. 

 

 Maximum value of thrust (Tmax) 

 Maximum over minimum thrust ratio (TR) 



124 

 

 max

min

T
TR

T
  (5.3) 

 

 Maximum thrust rate: derivatives of the functions, the rates of change (slope) are 

restricted. 

 

  
sec sec

lower upper

T dT T
s s

dt
    (5.4) 

 

It is important to point out that the upper and the lower bounds for thrust values must be 

determined by the user to ensure realistic results if the thrust profile is considered as 

constant. It is clear that the other thrust shaping constraints such as maximum over 

minimum thrust ratio and the maximum thrust rate are not applicable to problems with 

constant thrust assumption. 

 

5.2.2 Example 1: Vega 

The trajectory optimization of Vega for its reference mission of 700 km PEO was 

performed and its results were given in Section 4.3.5. An optimal vehicle configuration 

was then generated for this reference mission using the decoupled approach and its results 

were given in Section 5.1.3. The same reference mission was also chosen as design 

objective for the first example of the coupled approach. The problem was formulated 

according to the methodology described in Section 5.2.1 and solved by the trajectory 

optimization tool developed within this thesis. 

 

5.2.2.1 Constant Thrust 

The launch vehicle design problem specific to PEO mission was first solved under the 

constant thrust assumption in order to demonstrate the applicability of the coupled 

approach. The assumptions and conditions stated in Section 5.1.3 are also valid for this 

example. The only difference lies in the method of solution. The resulting optimal vehicle 

configuration is summarized in Table 5.5 and the important trajectory parameters are 

presented in Figure 5.14 to Figure 5.19. 

Table 5.5 Optimal vehicle configuration for PEO mission (coupled – Tconst) 

 1
st
 stage 2

nd
 stage 3

rd
 stage 

Propellant mass, mp (kg) 90409 16974 5375.7 

Thrust, T (kN) 2758 531.7 173.3 

Burn time, tb (sec) 90 90 90 

GLOM (kg) 127245 
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When the resulting optimal trajectories are compared with the results of the decoupled 

approach, it can be concluded that the trajectories are almost the same. As also discussed in 

Section 5.1.4, the decoupled approach gives a slightly heavier vehicle, and the coupled 

approach proposes to use a larger and more powerful motor in the first stage, and lighter 

and smaller motors in the upper stages in order to decrease the gross lift-off mass. 

 

Figure 5.14 Altitude profile (Vega coupled) 

 

Figure 5.15 Speed profile (Vega coupled) 

 

Figure 5.16 Thrust profile (Vega coupled) 

 

Figure 5.17 Acceleration (Vega coupled) 

Figure 5.16 shows the optimal constant thrust profile for the first three stages together with 

the user defined upper and lower bounds. It is seen that the optimized thrust levels remain 

within the defined region and thrust constraints are satisfied. However, resulting 

acceleration levels are quite high since no constraints are imposed on the trajectory. 

Similarly, the time history of the bending moment indicator exhibits considerably high 

values as given in Figure 5.19. 
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Figure 5.18 Dyn. pressure (Vega coupled) 

 

Figure 5.19 Bending moment (Vega coupled) 

5.2.2.2 Variable Thrust 

The first seven assumptions stated in Section 5.1.3 were applied in this problem, whereas 

the last three were replaced by the following ones. 

 

1. Thrust shape of the 1st stage SRM was represented by 15 piecewise continuous 

linear functions, whereas 2nd and 3rd stage SRMs were modeled by 3 linear 

functions. 

 

2. Thrust time profiles of each SRM were optimized as satisfying the following 

constraints. 

 

2.1. Maximum value of thrust (estimated based on relevant Vega SRMs) 

 

 
max,1 max,2 max,33500 kN 1200 kN 250 kNT T T    (5.5) 

 

2.2. Maximum over minimum thrust ratio (taken similar to relevant Vega SRMs) 

 

 1 2 31.5 2.2TR TR TR    (5.6) 

 

2.3. Maximum thrust rate as proposed by Johnson (1975) 

 

 
max max2% of 0.5% of for all stagesT T T    (5.7) 

 

3. Burn times of each SRM were optimized within the range of 60 sec - 120 sec. This 

range was determined based on the burn time values of SRMs used in similar 

launch vehicles (Figure D.1). The initial guesses were simply set to 90 sec which is 

an average value. 
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4. The following trajectory constraints were imposed. 

 

4.1. Acceleration, amax ≤ 4.5 g 

4.2. Dynamic pressure, qmax ≤ 55 kPa 

4.3. Angle of attack, -5 ≤ α(1), (2) ≤ 5 & -15 ≤ α(3), (4) ≤ 15 

4.4. Bending moment indicator, -60 kPa ≤ qα(1) ≤ 60 kPa 

 

Trajectory optimization was accomplished in two successive steps. In the first step, thrust 

levels were optimized without any trajectory constraints and assuming constant thrust and 

fixed burn time, which is equal to 90 sec which is an average value of similar SRMs. A 

new vehicle configuration was then obtained by performing staging optimization again 

considering the amount of velocity change attained by the vehicle at previous trajectory 

optimization run. Finally, the resulting vehicle and the constant thrust levels corresponding 

to fixed burn time of 90 sec were given as an initial guess to the actual problem defined in 

the previous paragraphs. 

 

The problem was successfully solved within 530 seconds of CPU time on a computer with 

2.67 GHz i7 processor and 12 GB of memory. All trajectory constraints were met and the 

desired transfer orbit was exactly achieved. The optimal solution is summarized in Table 

5.6, and the important trajectory parameters are presented in Figure 5.20 to Figure 5.25 

alongside with the unconstrained solution of the problem in order to interpret the effect of 

trajectory constraints. The mass and performance characteristics of the minimized GLOM 

vehicle without any trajectory constraints are tabulated in Table 5.7. 

Table 5.6 Optimal solution for PEO mission (constrained coupled – T(t)) 

 1
st
 stage 2

nd
 stage 3

rd
 stage 

Propellant mass, mp (kg) 82428 22759 6488 

Average thrust, T (kN) 2337 953.7 156.9 

Burn time, tb (sec) 96.85 67.28 120 

GLOM (kg) 126285 

 

Table 5.7 Optimal solution for PEO mission (unconstrained coupled – T(t)) 

 1
st
 stage 2

nd
 stage 3

rd
 stage 

Propellant mass, mp (kg) 79705 20275 5928 

Average thrust, T (kN) 2925 952.7 143.3 

Burn time, tb (sec) 74.83 60 120 

GLOM (kg) 119860 
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Figure 5.20 Altitude (cons. vs. unc.) 

 

Figure 5.21 AOA (cons. vs. unc.) 

 

Figure 5.22 Thrust (cons. vs. unc.) 

 

Figure 5.23 Acceleration (cons. vs. unc.) 

 

Figure 5.24 Dyn. pressure (cons. vs. unc.) 

 

Figure 5.25 Bending moment (cons. vs. unc.) 
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The mass distribution between stages is presented in Table 5.8 together with the values of 

actual Vega launch vehicle. This table points out that the desired mission can be 

accomplished by the optimal vehicle whose mass is 8.3% less compared to Vega. 

Table 5.8 Mass comparison between optimal vehicle and actual Vega 

 Vega (kg) Optimal (kg) Difference (%) 

1st stage 96243 90447 -6.0 

2nd stage 26300 25178 -4.3 

3rd stage 12000 7367 -38.6 

4th stage 1265 1265 0.0 

Payload fairing 540 540 0.0 

Payload 1430 1488 +4.1 

GLOM 137778 126285 -8.3 

 

 

 

Table 5.9 shows the comparison of the velocity change (v) generated by the first three 

stages and the resulting inertial speed (v) of the vehicle at the end of burn-out of the 

corresponding stages. According to Table 5.9, both vehicles reach almost the same speed at 

the end of 3rd stage’s burn-out as expected. However, it seems that Vega was forced to 

produce more delta-V to overcome velocity losses incurred during flight due to the 

nonoptimality of its trajectory and its heaviness. 

Table 5.9 Delta-V and speed comparison between optimal vehicle and Vega 

 Vega (m/s) Optimal (m/s)  

 v v v v v Difference (m/s) 

1st stage 2779.5 1856 2904.0 2015 -124.5 

2nd stage 2401.5 4036 2841.9 4718 -440.3 

3rd stage 3684.4 7625 2973.5 7616 710.9 

Total 8865.4  8719.4  145.4 

 

 

 

The comparisons of optimized thrust profiles with the reference thrust profiles of Vega are 

illustrated in Figure 5.26, Figure 5.27 and Figure 5.28. The thrust profile of the optimal 

vehicle’s 1st stage is in a close agreement with P80. This demonstrates that the evenly 

spaced 16 points appear to be sufficient to represent the actual thrust profile. The 

maximum and the local minimum of the curves match quite well, but the local maximum 

around 75 seconds after lift-off is slightly shifted with a decrease in magnitude in the 

optimal solution. The reason for this decrease is mainly due to the higher thrust in the early 

periods of operation and the incomplete modeling of the thrust tail-off. 



130 

 

Figure 5.26 Thrust profile comparison of 1st stage SRM 

The thrust profile of the 2nd stage which was represented by three linear functions given in 

Figure 5.27 coincides to a great extent with Z23, but the 3rd stage’s thrust time curve is 

considerably different than Z9. The similar drastic difference is also observed in the values 

of mass and delta-V presented in Table 5.8 and Table 5.9, respectively. These results imply 

that the thrust shapes of the first two stages are driven by the trajectory constraints within 

the endoatmospheric portion of the flight, whereas the impact of the trajectory on the 3rd 

stage’s thrust profile is relatively insignificant since aerodynamic forces are no more 

effective in this region. 

 

Figure 5.27 Thrust profile comparison of 2nd stage SRM 
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Figure 5.28 Thrust profile comparison of 3rd stage SRM 

In order to examine the differences in mass distribution more rigorously, ideal rocket 

equation was utilized. Trajectory-independent optimal staging providing the same delta-V 

given in Table 5.9 was obtained for both Vega and the optimal vehicle and the results are 

compared in terms of delta-V and mass split and presented in Table 5.10 and Table 5.11, 

respectively. The percentage differences also confirm that optimal solution under the given 

constraints is closer to the ideal solution compared to Vega. 

Table 5.10 Delta-V comparison between Vega, optimal vehicle and ideal vehicle 

 Vega (m/s) Ideal (m/s) %Dev. from Ideal 

1st stage 2779.5 3217.6 13.62 

2nd stage 2401.5 2746.7 12.57 

3rd stage 3684.4 2901.1 -27.00 

Total 8865.4 8865.4  

 Optimal (m/s) Ideal (m/s) %Dev. from Ideal 

1st stage 2904.0 3165.8 8.27 

2nd stage 2841.9 2698.1 -5.33 

3rd stage 2973.5 2855.5 -4.13 

Total 8719.4 8719.4  
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Table 5.11 Mass comparison between Vega, optimal vehicle and ideal vehicle 

 Vega (kg) Ideal (kg) %Dev. from Ideal 

1st stage 96243 102645 6.24 

2nd stage 26300 23136.4 -13.67 

3rd stage 12000 7000.6 -71.41 

GLOM 137778 135477  

 Optimal (m/s) Ideal (m/s) %Dev. from Ideal 

1st stage 90447 94491.6 4.28 

2nd stage 25178 21822.7 -15.38 

3rd stage 7367 6777.2 -8.7 

GLOM 126285 125844  

 

 

 

5.2.2.3 Discussion 

For the reference mission of PEO four different vehicle configurations were generated 

using the decoupled and the coupled approaches and with constant and variable thrust 

options. Results are presented together with the optimized trajectory of Vega for the same 

mission according to the solution given in Section 4.3.5. 

Table 5.12 Comparison of optimal vehicle configurations and Vega for PEO mission 

 

Decoupled 

Constant 

thrust 

Unconstrained 

Coupled 

Constant 

thrust 

Unconstrained 

Coupled 

Variable 

thrust 

Constrained 

Coupled 

Variable 

thrust 

Unconstrained 

Vega 

Optimal 

trajectory 

m1 (kg) 96304 99205 90447 87459 96243 

m2 (kg) 22124 19181 25718 22911 26300 

m3 (kg) 6832 6105 7367 6732 12000 

mpl (kg) 1488 1488 1488 1488 1488 

GLOM (kg) 128013 127245 126285 119860 137836 

Tave,1 (kN) 2678 2758 2337 2925 2253.7 

Tave,2 (kN) 613.3 531.7 953.7 952.7 883.2 

Tave,3 (kN) 194 173.3 156.9 143.3 262.6 

tb,1 (sec) 90 90 96.85 74.83 106.7 

tb,2 (sec) 90 90 67.28 60 76 

tb,3 (sec) 90 90 120 120 116.8 

amax (m/s2) 65.1 73.4 44.13 63.4 45.73 

qmax (kPa) 81.8 86.1 55 113.3 54.8 

qαmax (kPa) 333.3 418.1 60 907.9 60 

run time (sec) 369 28 530 132 800 
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If Table 5.12 is examined in the sense of GLOM, the first remarkable point is that there is 

at least 10 tons difference between the optimal vehicle configurations and the existing 

launch vehicle Vega. This difference points out that Vega is not optimum in terms of mass 

minimization. 

 

Although the problems with constant thrust assumptions were formulated to provide 

relatively good initial guesses to the variable thrust optimization problems, they yield 

reasonable average values in terms of GLOM. Actually, keeping the thrust constant within 

a flight phase while the mass of the launch vehicle continuously decreases, adversely affect 

the performance and mission flexibility. In accordance with this argument, vehicle 

configurations modeled with variable thrust are lighter than the vehicles with constant 

thrust. The vehicle with minimum GLOM is the one having variable thrust and is not 

subject to any trajectory constraints. Therefore, the acceleration, dynamic pressure and 

bending moment indicator reach peak values during flight. 

 

5.2.3 Example 2: Taurus 

The second example used to assess the applicability of the developed trajectory 

optimization tool to the simultaneous optimization of thrust and mass profile of the stages 

together with the trajectory of the launch vehicle. The coupled approach was employed to 

obtain the optimal vehicle configuration for the SSO mission of the Taurus launch vehicle 

solved in Section 4.4. Following assumptions and conditions were applied in the 

formulation of the problem. 

 

1. The vehicle concept and the technology options were considered same as actual 

Taurus configuration. Thus, the structural ratios and specific impulses of stages 

were identified based on Taurus. All four stages were optimized to generate 

minimum GLOM vehicle. 

2. The overall mission characteristics were specified in accordance with Section 4.4. 

The entire trajectory from ground up to the circular target orbit was optimized. 

3. Thrust shape of the first two stages were represented by 5 piecewise continuous 

linear functions, 3rd stage were modeled by 3 linear functions and finally the thrust 

of the fourth and the last stage was assumed as constant. 

4. Thrust time profiles of each SRM were optimized as satisfying the following 

constraints. 

 

 
max,1 max,2 max,3 max,42000 kN 500 kN 150 kN 50 kNT T T T     (5.8) 

 

 1 2 3 41.5 1.3 2.2TR TR TR TR     (5.9) 

 

 
max max2% of 0.5% of for all stagesT T T    (5.10) 
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5. Burn times of the 2nd and 3rd stages were constrained to be equal to each other 

based on the fact that their diameters are same. The range of 60 sec - 120 sec was 

specified as lower and upper bounds, respectively. 

 

6. The following trajectory constraints were imposed. 

 

6.1. Acceleration, amax ≤ 50 m/s2 

6.2. Dynamic pressure, qmax ≤ 120 kPa 

6.3. Angle of attack, -5 ≤ α(1), (2) ≤ 5 & -15 ≤ α(3), (4) ≤ 15 

6.4. Bending moment indicator, -60 kPa ≤ qα(1) ≤ 60 kPa 

 

The mass and performance characteristics of the optimal vehicle configuration are 

summarized in Table 5.13 and Table 5.14, and the thrust time profile comparison of stages 

are illustrated in from Figure 5.29 to Figure 5.32. According to these figures, it can be 

concluded that the thrust profile of the 1st stage is almost exactly the same as the actual 

reference vehicle, thrust profiles of the 2nd and 3rd stages can be considered as reasonably 

compatible, whereas the last stage’s thrust profile has the maximum difference. 

Table 5.13 Optimal vehicle configuration for SSO mission of Taurus 

 1
st
 stage 2

nd
 stage 3

rd
 stage 4

th
 stage 

Propellant mass, mp (kg) 48133 10572 3580 885 

Average thrust, T (kN) 1719.1 423 146.1 27.9 

Burn time, tb (sec) 76.6 70.22 70.22 90 

GLOM (kg) 71728 

 

Table 5.14 Mass comparison between optimal vehicle and actual Taurus 

 Taurus (kg) Optimal (kg) Difference (%) 

1st stage 53928 52968 -1.78 

2nd stage 14186 12298 -13.31 

3rd stage 3496 4137 18.33 

4th stage 1127 1238 9.81 

Payload fairing 300 300 0.0 

Payload 670 787 17.46 

GLOM 73707 71728 -2.69 

 

 

The most important trajectory parameters are presented in from Figure 5.33 to Figure 5.36. 

It can be seen from these figures that the vehicle successfully achieves the target orbit and 

the trajectory constraints are satisfied. 
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Figure 5.29 Thrust comparison of 1st stage 

 

Figure 5.30 Thrust comparison of 2nd stage 

 

Figure 5.31 Thrust comparison of 3rd stage 

 

Figure 5.32 Thrust comparison of 4th stage 

 

Figure 5.33 Altitude (Taurus coupled) 

 

Figure 5.34 Acceleration (Taurus coupled) 
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Figure 5.35 Dyn. pressure (Taurus coupled) 

 

Figure 5.36 Bend. moment (Taurus coupled) 
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CHAPTER 6 

CONCLUSIONS 

6.1 Thesis Summary and Conclusions 

Throughout this thesis work, the development and verification of a quick and effective tool 

to find optimal vehicle configurations in the early design phases was achieved. Within this 

framework, first, a trajectory optimization code was developed to determine the optimal 

trajectory in terms of position and velocity, together with the control functions 

corresponding to that trajectory while maximizing the payload mass. This code utilized a 

general purpose optimal control solver GPOPS-II®. Next, a staging optimization code was 

developed to determine the staging parameters (number of stages, mass distribution 

between stages, and the propellant and structural mass of each individual stage) which 

minimized the gross lift-off mass. Finally, these two codes were integrated for 

simultaneous optimization of the thrust and mass profile of the stages together with the 

trajectory of the launch vehicle. 

 

This newly developed tool can be utilized for both of the following two types of problems. 

 

1. Preliminary mission design of an existing launch vehicle, i.e. for the maximization 

of the payload mass for a given vehicle and target orbit 

2. Conceptual design of a new launch vehicle, i.e., for the minimization of vehicle 

mass for a given payload and target orbit 

 

With reference to the objectives primarily set in the introduction chapter of this research, 

the major contribution and conclusions of this thesis are as follows. 

 

 What has been accomplished in this thesis is not necessarily something totally new 

for the whole world. In other words, there already exist some software packages 

which offer simultaneous optimization of ascent trajectory and launch vehicle 

design. However, these software packages have been developed by governmental 

agencies or universities for national space programs and their sale to other 

countries is restricted due to export control regulations. Therefore, there was still a 

demand, at least in Turkey, for such an integrated and efficient system design and 

trajectory optimization tool for performance calculations and simulations of launch 

vehicles. Finally, it is important to point out that only the open source information, 

data and documents in the world’s literature have been used in this thesis work. 
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 It is well known that relatively simplified engineering models and associated 

physical laws can be utilized even in the field of space rocket design in its early 

phases. As an example, the preliminary trajectories of the launch vehicles are 

generally computed by means of standard guidance laws (e.g. pitch-over, gravity 

turn, bilinear tangent law, etc.) mentioned in Section 4.3.4 even though they 

provide near optimum solutions. These so-called standard guidance laws are 

particularly preferred since they offer reasonably similar performance results as 

those obtainable by full trajectory optimization tools owing to their reduced 

complexity and robust performance. 

 However, the tool developed within this thesis can be used to achieve full 

trajectory optimization, because it allows the control variables to be optimized at 

all discretization points generated by the optimal control software GPOPS-II. 

Thus, it offers a so-called “real optimal trajectory”. 

 Moreover, this thesis has not only achieved the above-mentioned aims, but has 

also offered a practical, quick, and reliable design tool to find optimal vehicle 

configurations with an appropriate level of accuracy required for the early design 

phases. The following are simultaneously optimized to obtain the so called 

“optimal vehicle configuration”. 

o Propellant and structural mass distribution between stages 

o Thrust profile of the stages 

o Flight trajectory of the launch vehicle 

 Two different launch vehicle design methodologies were applied in this work, 

which are designated as the decoupled and coupled approaches. These 

methodologies were exemplified by two reference missions belonging to Vega and 

Taurus launch vehicles, and both are evaluated to be acceptable for conceptual 

design of launch vehicles with an appropriate level of accuracy and affordable 

computation times. 

 It is also important to highlight that the quality of the thrust profile modeling is 

bound to the user-specified limitations imposed on the maximum thrust, thrust 

ratio and thrust rate. For the present research, these limitations were determined 

based on the qualified reference launch vehicles. As a consequence, they may not 

be applicable to significantly different solid rocket motors, and therefore 

specialized expertise is always beneficial and required. 

 In any case, after the optimal thrust profile is found, the feasibility of the ballistic 

performance and the mass characteristics of solid rocket motor should be 

confirmed considering the burn rate of the propellant, operating pressure, grain 

geometry and other solid rocket motor related design parameters. These parameters 

are independent design variables and can be adjusted so as to obtain the desired 

thrust profile by subsystem designers.  

 The last as a conclusion is that, as mentioned before, the developed tool can be 

considered to be quite fast compared to its similar counterparts. For instance, the 

present work offers a solution in the order of minutes (less than 15 minutes for the 

examples covered in this work) utilizing a gradient-based algorithm. On the other 
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hand, the other known up-to-date computer tools give results in the order of hours, 

especially the ones that make use of the evolutionary optimization algorithms. 

 

6.2 Future Developments 

Although this thesis work deals with a large number of topics, suggestions for short terms 

developments are listed in the following. 

 

 Although the developed tool was verified by several mission examples based on 

real launch scenarios, the accessible data in the open literature was limited. 

Therefore, few more verifications and validations to be organized in a systematic 

approach will be very much desirable whenever such opportunities becomes 

available. 

 If it is going to be employed as it is, the resulting optimal vehicle configurations 

should necessarily be re-evaluated at least by the trajectory optimization tool 

developed within this thesis in order to ensure that the desired payload mass is 

satisfied. This time trajectory design considerations should be modeled in more 

details with fixed mass and thrust parameters. For instance, it becomes possible to 

include wind effects, controllability issues, etc. 

 Although the trajectory models implemented in this thesis are fully general, and 

any kind of trajectory of an expendable launch vehicle into Earth’s orbit could in 

theory be computed, the developed tool was verified only with ascent trajectory 

optimization into orbits like sun-synchronous and polar Earth orbits and 

geostationary transfer orbits. Therefore, the applicability of this tool had better be 

verified for other kind of applications ranging from rendezvous vehicles to reentry 

vehicles for human spaceflight and interplanetary or deep space transfer vehicles. 

 It is a well known fact that gradient-based optimization algorithms are sensitive to 

initial guesses. As it is commonly applied in the literature, an initial guess 

generator with much less optimization variables utilizing standard guidance laws 

can be developed in order to minimize the convergence issues. 

 Regarding the above-mentioned issue about the feasibility of the solid rocket 

motor, the more favorable solution is to consider the solid rocket motor parameters 

with a simplified internal ballistics model and to optimize also the rocket motors 

together with the trajectory. In order to achieve this goal, a large-scale mixed-

integer nonlinear programming solver might be utilized, or GPOPS-II can be 

employed after it is integrated with an appropriate heuristic algorithm. 

 If the developed tool is upgraded so as to be worked with an evolutionary 

algorithm, then the fidelity of the subsystem models involving discrete 

optimization variables can be increased easily. The following subsystem models 

are strongly recommended to be included as a top priority. 

o Solid rocket motor ballistic performance prediction, geometrical sizing, 

and mass estimation 

o Interstage structures geometrical sizing and mass estimation 
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 An aerodynamic prediction code such as Missile Datcom can be integrated into the 

optimization cycle. 

 A 6-DOF trajectory model with appropriate guidance and control algorithms can 

be implemented for more detailed trajectory design. 
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APPENDIX A 

SATELLITE ORBITS 

Satellites travel around the Earth along predetermined repetitive paths called orbits. Figure 

A.1 represents an elliptical orbit with one focus at the Earth’s center. 

Major axis (2a)

PerigeeApogee
F’ 2c

Earth

ra rp

r

Satellite
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
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Figure A.1 Elliptical orbit 

The apogee is the point on the orbit that is farthest from the Earth's center; whereas the 

perigee is the point closest to the Earth's center. Distance from the apogee to the Earth’s 

center is called the apogee radius (ra) and the distance from the perigee to the Earth’s 

center is called the perigee radius (rp). The apogee altitude (ha) and the perigee altitude 

(hp) are the heights above the Earth’s surface and expressed as 

 

 a a eh r R   (A.1) 

 p p eh r R   (A.2) 

 

In Eqs. (A.1) and (A.2), 

Re is the Earth’s equatorial radius, i.e. Re = 6378.137 km. 
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A.1 Orbital Elements 

There are six parameters required to uniquely identify a specific orbit and they are called 

classical orbital elements, also known as Keplerian parameters. The two main elements, 

which are the semimajor axis (a) and the eccentricity (e), respectively define the size and 

the shape of the ellipse. 

 

1. Semimajor axis (a) defines the size of the orbit and it is the half length of the 

major axis of the ellipse. 

 

 
2

a pr r
a


  (A.3) 

 

2. Eccentricity (e) defines the shape of the orbit and it is the ratio of the distance 

between the two foci to the length of the major axis. 

 

 
a p

a p

r rc
e

a r r
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 


 (A.4) 

 

For a circular orbit e = 0 (a = r); whereas for an elliptical orbit 0 < e < 1 (a > 0). Trajectory 

is parabolic when e = 1 (a = ) and hyperbolic when e > 1 (a < 0). 

 

Two elements, namely the inclination (i) and the right ascension of the ascending node (Ω) 

define the orientation of the orbital plane in space (Figure A.2). 

 

Figure A.2 Orbital elements (i, Ω, ω, θ*) 

(adapted from the book of Curtis, 2005) 
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3. Inclination (i) is the angle between the orbital plane and the equatorial plane and 

takes values in the range of 0-180°. It is equal to zero for equatorial orbits and 90° 

for polar orbits. Inclination can be determined by the following well known 

relation. 

 

 0 0cos sin cosi A    (A.5) 

 

In Eq. (A.5), 

A0 is the inertial launch azimuth (angle measured clockwise from north), 

0 is the geocentric latitude of the launch site. 

 

Eq. (A.5) can be satisfied if and only if i ≥ 0. Therefore, achievable inclinations 

are constrained by the latitude of the launch site. It is impossible to launch directly 

into an inclination lower than the launch site’s latitude without orbit plane transfer 

which requires a large amount of velocity change (∆V). Therefore, launch sites at 

or near the Equator are highly desirable, because launch into any inclination from 

them are possible. 

 

4. Right ascension of the ascending node – RAAN (Ω) is the angle between the 

vernal equinox direction and the ascending node. The ascending node is the point 

where the orbit crosses the equatorial plane when the satellite passes from the 

southern hemisphere to the northern hemisphere, and the vernal equinox is the 

vector pointing the fixed stars in the constellation of Aries (Figure A.2). On the 

first day of spring, line joining the Earth’s center and the Sun’s center points in 

vernal equinox direction. 

 

RAAN takes values in the range of 0-360° and is undefined when i = 0° or i = 

180°. Specified RAAN can be achieved by choosing an appropriate injection time 

depending upon the longitude of the injection point as Maini & Agraval (2011) 

emphasized. Tewari (2007) derived a useful relationship to determine RAAN 

utilizing the spherical trigonometry. 

 

 
tan

arcsin
tan i




 
    

 
 (A.6) 

 

In Eq. (A.6), 

 is the geodetic longitude, 

 is the geocentric latitude. 

 

5. Argument of perigee (ω) defines the orientation of the ellipse (in which direction 

it is flattened compared to a circle) in the orbital plane, as an angle measured from 

the ascending node to the perigee. Argument of perigee takes values in the range 

of 0-360° and is undefined when i = 0° or i = 180° or e = 0. As Maini & Agraval 

(2011) noted that ω can directly be calculated from the following relation when the 

injection point is the same as the perigee point. 



154 

 

 
sin

arcsin
sin i




 
  

 
 (A.7) 

 

6. True anomaly (θ
*
) defines the position of the satellite along the orbit at a specific 

time and it is the angle between the perigee and the satellite location. True 

anomaly takes values in the range of 0-360° and is undefined when e = 0. At 

perigee and apogee points, θ* = 0° and θ* = 180°, respectively. 

 

A real orbit (and its elements) changes over time due to gravitational perturbations by other 

objects and the effects of the relativity. A Keplerian orbit is an idealized mathematical 

approximation and true anomaly is assumed as the only orbital element that changes with 

time. As mentioned above, some of the orbital elements become undefined for certain 

special cases (Table A.1). 

Table A.1 Special cases of orbits 

Type of orbit Undefined parameter 

circular (e = 0) ω & θ*: undefined 

equatorial (i = 0) Ω & ω: undefined 

circular and equatorial (e = 0 & i = 0) Ω, ω & θ*: undefined 

 

 

 

A.2 Orbital Position, Velocity and Period 

As depicted in Figure A.1, r is the satellite’s position vector measured from the Earth’s 

center and v is the satellite’s velocity vector. Radial distance from the Earth’s center to the 

satellite (r) can be calculated by using the orbit equation defining the shape of the orbit in 

polar coordinates. 

 

 
 2
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1
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a e
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e q
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 (A.8) 

 

As illustrated in Figure A.1, flight path angle (γ) is the angle measured from local 

horizontal to the velocity vector (v). Local horizontal is a line perpendicular to the position 

vector (r). At apogee and perigee points, γ = 0° since v is perpendicular to r. Flight path 

angle (γ) can be calculated as 
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Velocity of the satellite at any point in an orbit can be calculated using the following vis 

viva equation derived from the orbital energy conservation equation. 

 

 
2 1

orbitV
r a


 

  
 

 (A.10) 

 

In Eq. (A.10), 

Vorbit is the orbital velocity at radial distance r, 

μ is the Earth’s gravitational parameter, i.e. μ = 398600.4 km3/s2, 

r is the radial distance from the Earth’s center to the satellite,
 

a is the semimajor axis. 

 

Satellite reaches its maximum speed at perigee (r = rmin) and minimum speed at apogee (r 

= rmax) as Eq. (A.10) implies. For circular orbits r is constant and equals to a, thus Eq. 

(A.10) reduces to a constant speed of circular orbit. 

 

 
circV

r


  (A.11) 

 

Time taken for a satellite to make one complete revolution along an elliptical orbit is called 

orbital period (τ) and can be calculated by 

 

 
3 22 a




  (A.12) 

 

The time elapsed from perigee point along an elliptical orbit can be calculated as a fraction 

of orbital period using Kepler’s second law. Or, more generally, it can be expressed for an 

arbitrary θ* as derived by Addison (2009). 
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 (A.13) 

 

A.3 Orbit Types 

The orbital elements of a particular satellite depend upon its intended application and 

mission. Thus, given a particular mission, orbital elements are specified so as to satisfy the 

mission requirements such as coverage area, ground track, surface orientation relative to 

the sun, photographic resolution, satellite visibility, rendezvous considerations, etc. Table 

A.2 summarizes the characteristic orbital elements for specific types of satellite orbits. 
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Table A.2 Types of satellite orbits 

Classification Orbit type Characteristic parameter 

Inclination 

Equatorial i = 0° 

Polar i = 90° 

Prograde 0° < i < 90° 

Retrograde 90° < i < 180° 

Eccentricity 

Elliptical 0 < e < 1 

Circular e = 0 

Molniya (highly elliptical) e = 0.7; i = 63.4°; ω = 270°; a = 26571 km 

Distance from 

Earth 

Low Earth orbit (LEO) h < 1500 km 

Medium Earth orbit (MEO) 10000 km < h < 20000 km 

Geostationary orbit (GEO) h = 35786 km; e = 0; i = 0° 

Particular 

mission 

Geostationary transfer orbit (GTO) ha = 35786 km; e ≠ 0; i ≠ 0° 

Sunsynchronous orbit (SSO) i ≈ 98°, e = 0, LEO 

 

 

 

In general, satellites are placed in one of the three types of orbits around the Earth: 

geostationary (GEO), polar (PEO) or sunsynchronous (SSO) whose characteristic orbital 

elements are listed in Table A.2. The type of orbit determines the sensor type, its altitude 

and the instantaneous field of view. 

 

GEO is an orbit matching the Earth’s sidereal rotation period. These orbits enable a 

satellite to always view the same area on the Earth; therefore they are commonly used by 

the communication and meteorological satellites. Polar orbiting satellites pass over the 

Earth poles and the equator at a different longitude at each revolution. A PEO satellite 

eventually sees every part of the Earth's surface, which is highly desirable for remote 

sensing applications. 

 

A nearly polar orbit whose altitude is such that the satellite will always pass over a location 

at given latitude at the same local solar time is called SSO. These orbits are useful for 

Earth observation satellites which can always view a part of the Earth under the same 

illumination conditions ensuring the lengths of shadows are same on every pass. Imaging 

satellites having active sensors such as radar or lidar may not require sun light, but they do 

rely on solar energy as a power source. 

 

A.4 Orbit Insertion 

Once the orbital altitude (injection point) is reached, launch vehicle is accelerated to attain 

the necessary orbital velocity. If the satellite is released when the velocity is equal to Vcirc 

at that altitude calculated from Eq. (A.11), then a circular orbit is achieved. If the velocity 

is higher than Vcirc, then a variety of elliptical orbits with the injection point as perigee can 

be generated. If the velocity is lower than Vcirc, then elliptical orbits with the injection point 

as apogee are possible. In this case, if the perigee exists virtually below the surface of the 

Earth, satellite enters a ballistic flight and falls back to the Earth. 
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Usually the intended injection point is chosen to be the perigee point but provided that is 

high enough to prevent atmospheric drag from causing rapid decay. Orbits of having 

injection points as apogee are therefore usually short lived and the result of an injection 

error or motor failure (Turner, 2009). 

 

It is generally more energy efficient to first insert the satellite into a transfer/parking orbit 

and after a coasting (unpowered flight) phase where it gains altitude, an additional thrust 

maneuver is performed to attain the final orbit as illustrated in Figure A.3. 

perigee

apogee

transfer/

parking orbit

target 

orbit

 

Figure A.3 Orbital injection  

LEO satellites are almost always directly injected into their mission orbits by the launch 

vehicles. However, for higher orbits such as GEO, launch vehicles usually deliver the 

payload to GTO and then onboard propulsion of the satellite is employed to reach GEO. 

For circular LEO insertions, restartable upper stage motors of launch vehicles are utilized 

to circularize the elliptical transfer orbit after the coasting period. This operation is called 

the circularization burn, which can be modeled as a single impulse maneuver performed at 

the apogee point. The required delta-V (∆VCB) for this maneuvering can be calculated 

easily from the difference between the velocity of the desired circular orbit and the transfer 

orbit’s velocity at apogee. 
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 (A.14) 

 

In Eq. (A.14), 

∆VCB is the required delta-V for circularization burn, 

rcirc is the radius of desired circular orbit, 
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ra,TO is the apogee radius of transfer orbit, 

aTO is the semimajor axis length of transfer orbit. 

 

The amount of propellant required for circularization burn can then easily be calculated by 

using the famous rocket equation given in Eq. (3.1) and can be expressed as 
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 (A.15) 
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APPENDIX B 

COORDINATE SYSTEMS & TRANSFORMATIONS 

Three dimensional modeling of launch vehicle ascent trajectories from the ground to the 

Earth orbit requires definition of a number of reference frames and their associated 

coordinate systems and coordinate transformations. Reference frames and coordinate 

systems are two distinct entities according to Zipfel (2007). Reference frames are models 

of physical references, whereas coordinate systems establish the association with the 

Euclidean space. In line with this definition, coordinate systems are used to express the 

motion of a system within a particular reference frame. 

 

This appendix presents the various reference frames, coordinate systems and coordinate 

transformations used in this thesis. The descriptions of the reference frames and the 

definitions of trajectory variables are originated from the Recommended Practice for 

Atmospheric and Space Flight Vehicle Coordinate Systems outlined by American National 

Standards Institute (ANSI, 1992). 

 

B.1 Coordinate Systems 

A reference frame is defined by an origin and a set of three orthogonal axes with specified 

positive directions. A coordinate system consists of a reference frame and a number of 

vectorial variables (or parameters) as needed. Particular frames of reference used in this 

thesis to specify the position variables are inertial, relative and orbital reference frames 

located on the Earth, whereas a local frame attached to the vehicle in its current location is 

used to specify the velocity variables. As being vectors, position and velocity can be 

resolved into a variety of components. Most common are rectangular and spherical 

coordinates. 

 

B.1.1 Rectangular ECI Coordinate System 

Earth-centered-inertial (ECI) frame denoted by OXiYiZi has the origin at the center of the 

Earth. The Xi axis is the continuation of the line from the center of the Earth through the 

vernal equinox, the Zi axis is coincident with the mean spin axis of the Earth positive to the 

North Pole, and the Yi axis completes the right hand triad (Figure B.1). The axes of ECI 

frame moves very slightly over time due to precession of vernal equinox and assumed as 

fixed with respect to the distant stars. Trajectory variables in the rectangular ECI 

coordinate system are three rectangular components of position and velocity vectors. They 

are expressed as {rx, ry, rz, vx, vy, vz} as illustrated in Figure B.1. 
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Figure B.1 Rectangular ECI coordinate system 

A special form of ECI frame, which is more convenient to initialize launch vehicle inertial 

measurement units, is called the go-inertial ECI frame. In this frame, Xi axis is coincident 

with the Greenwich meridian at time very near or at lift-off. 

 

B.1.2 Spherical ECI Coordinate System 

Apart from ECI frame defined in Section B.1.1, vehicle carried East-North-Up (ENU) 

frame denoted by oxLyLzL is required to define the trajectory in spherical coordinates 

which is more convenient for physical interpretation (Figure B.2). ENU frame has the 

origin at the vehicle’s center of gravity. The xL axis is along the position vector r pointing 

upwards, the yL and zL axes point towards East and North, respectively while they span the 

local horizontal frame. 

 

Trajectory variables in the spherical ECI coordinate system are one radial and two angular 

components of position and velocity vectors. They are expressed in terms of the following 

six quantities {r, i, , vi, A, i} as illustrated in Figure B.2. 

 

r : geocentric radius, 

i : right ascension (inertial longitude), 

 : declination (geocentric latitude), 

vi : inertial speed, 

 : velocity azimuth, 

i : inertial flight path angle. 
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Figure B.2 Spherical ECI coordinate system 

In Figure B.2, right ascension i.e. inertial longitude (i) is the angle made by the projection 

of r on OXiYi with the vernal equinox direction OXi, while declination i.e. geocentric 

latitude () is the angle between the position vector r with the equatorial plane OXiYi. 

Longitude is divided into ±180° with the positive direction starting at the Greenwich 

meridian in an easterly direction (counterclockwise). Whereas, latitude is measured above 

the equatorial plane positive to the North from 0 to 90° and negative to the South from 0 to 

-90°. 

 

In order to specify the velocity vector v, vehicle carried ENU frame oxLyLzL is employed. 

The horizontal projection of v makes an angle  with North ozL called the velocity azimuth 

and defined positive toward the East. The velocity vector v makes an angle i called the 

inertial flight path angle with the local horizontal plane oyLzL and defined positive above 

the plane.  

 

B.1.3 Spherical ECEF Coordinate System 

Earth-centered Earth-fixed (ECEF) frame denoted by OXYZ has the origin at the center of 

the Earth. The X axis is the continuation of the line from the center of the Earth through 

the intersection of the Greenwich meridian and the equator, the Z axis is the mean spin axis 

of the Earth, positive to the North, and the Y axis completes the right hand triad. (Figure 

B.3). The axes of ECEF frame are fixed relative to the Earth and rotate with the Earth at a 

constant rate as time progresses. 
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Figure B.3 Spherical ECEF coordinate system 

Spherical ECEF coordinate system is similar to the spherical ECI coordinate system, the 

only difference is that it is based on ECEF frame rather than ECI frame as it is evident 

from its name. A set of spherical coordinates in the ECEF frame are {r, , , vrel, , } as 

illustrated in Figure B.3. 

 

r : geocentric radius, 

 : geodetic longitude, 

 : geocentric latitude, 

vrel : relative speed with respect to Earth, 

 : heading angle, 

 : flight path angle. 

 

B.1.4 Geographic Coordinate System 

Geographic coordinate system is to define the position of objects relative to the oblate 

Earth. In the preceding sections, Earth was assumed as sphere although it is an oblate 

spheroid which can be represented by a reference ellipsoid as illustrated exaggeratedly in 

Figure B.4. 

 

Geographical coordinates are geodetic latitude (), geodetic longitude () and geodetic 

altitude (h). The relationships between geodetic and geocentric coordinates are given in 

Section B.2.3. Definition of the longitude does not change due to oblateness, since it is 

defined in the equatorial frame. 
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Figure B.4 Geographic coordinate system 

B.1.5 Orbital Coordinate System 

Orbital frame also known as perifocal frame denoted by OPWQ has the origin at the center 

of the Earth which is at the same time at one of the focuses of the elliptical orbit. The P 

axis is directed towards the perigee of the orbit and W axis is perpendicular to orbital plane 

i.e. direction of angular momentum vector h, which is the radius vector crossed the 

velocity vector. Q axis completes the right hand triad being in the orbital plane (Figure 

B.5). 
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Figure B.5 Orbital frame 
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The orbital elements {a, e, i, , , q*} defined in Section A.1 form the perifocal 

coordinate system, which is commonly used to express orbital trajectories. 

 

B.1.6 Summary 

Different reference frames and coordinate systems used for describing atmospheric and 

orbital trajectories were introduced in the preceding sections. Table B.1 summarizes these 

reference frames, while Table B.2 and Table B.3 present the trajectory variables and their 

ranges, respectively. 

Table B.1 Summary of reference frames 

Reference frame Origin Axes 1
st
 direction 3

rd
 direction 

ECI Earth’s center XiYiZi Vernal equinox Earth’s spin axis 

ECEF Earth’s center XYZ Greenwich Earth’s spin axis 

Vehicle carried ENU Vehicle’s center of gravity xLyLzL Position vector  North 

Orbital Earth’s center PQW Perigee point Satellite motion 

Table B.2 Summary of trajectory variables 

Coordinate system 1 2 3 4 5 6 

Rectangular ECI rx ry rz vx vy vz 

Spherical ECI r i  vi A i 

Spherical ECEF r   vrel   

Geographic h   - - - 

Orbital a e i   q 

Table B.3 Range of trajectory variables 

Variables Range 

rx, ry, rz, vx, vy, vz -∞, +∞ 

r, vi, vrel, h ≥ 0 

i, , A, , , , q* 0°, 360° 

, , i,  -90°, 90° 

i 0°, 180° 

a > 0 (for circular or elliptical orbits) 

e 0 ≤ e < 1 (for circular or elliptical orbits) 
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B.2 Coordinate Transformations 

Trajectory variables defined in any one of the coordinate systems summarized in Table B.2 

can easily be converted to other coordinate systems via appropriate coordinate 

transformations. Coordinate transformations used in this thesis are formulated based on the 

derivations done by Chobotov (2002) and Tewari (2007). 

 

B.2.1 Rectangular ECI to Spherical ECI and vice versa 

Rectangular to spherical: Radial components of position and velocity vectors can easily 

be calculated from the rectangular components by taking their magnitude. 

 

 
2 2 2

x y zr r r r    (B.1) 

 
2 2 2

i x y zv v v v    (B.2) 

 

The angular components of position vector can be obtained using the basic trigonometric 

identities. 

 

  arctan 2 ,i y xr r   (B.3) 

 arcsin zr

r


 
  

 
 (B.4) 

 

Since the spherical coordinates of velocity are expressed in local horizon frame, the 

orientation of this frame relative to the ECI frame should first be defined. As seen from 

Figure B.2, rotations of ECI frame first about the Zi axis by i and then about the Yi axis by 

-δ will cause the Xi axis become collinear with the radius vector. One can write the 

transformation matrix from ECI frame to local horizon frame using the elementary rotation 

matrices as follows. 

 

    

cos cos cos sin sin

sin cos 0

sin cos sin sin cos

i i

i i i

i i

    

   

    

 
 

    
 
   

i2L 2 3R R R  (B.5) 

 

Velocity vector in local horizon frame with respect to ECI frame can now be expressed as 

 

 

,

,

,

L x x

L y y

L z z

v v

v v

v v

   
   

    
   
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i2LR  (B.6) 

 

The angular components of velocity can be derived by using Eqs. (B.5) and (B.6) as 

follows. 

 



166 

 
,

arcsin
L x

i

i

v

v
   (B.7) 

  , ,arctan 2 ,L y L zv v   (B.8) 

 

Spherical to rectangular: From Figure B.2, one can immediately write 

 

 cos cosx ir r    (B.9) 

 cos siny ir r    (B.10) 

 sinzr r   (B.11) 

 

Velocity vector can be resolved in local horizon frame as 

 

 , sinL x i iv v   (B.12) 

 , cos sinL y i iv v    (B.13) 

 , cos cosL z i iv v    (B.14) 

 

Transformation matrix from local horizon frame to ECI frame will be the inverse of the 

transformation matrix defined in Eq. (B.5). 

 

    

cos cos sin cos sin

sin cos cos sin sin

sin 0 cos
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i i i i
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L2i i2L 3 2R R R R  (B.15) 
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Matlab scripts written for transformations between rectangular and spherical coordinates in 

ECI frame are given in Appendix C.1.1. 

 

B.2.2 Spherical ECI to Spherical ECEF and vice versa 

A set of spherical coordinates in ECI frame is {r, i, , vi, A, i}, while it is {r, , , vrel, , 

} in ECEF frame. Figure B.6 illustrates the difference between ECI and ECEF frames 

which share the common OZ axis. As it is clearly seen, definitions of geocentric radius r 

and latitude δ are same both for ECI and ECEF frames. 

 

The relationship between the inertial velocity and the velocity relative to rotating frame is 

given by 

 

   i rel ev v ω r  (B.17) 
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In Eq. (B.17), 

ωe = ωek is the angular velocity of the Earth, i.e. ωe = 7.29211585 x 10−5 rad/s 

r = ri. 

Y
O

r

trajectory

v

Zi, Z

Xi

X

Yi



i,G + et



xL

yL

zL

o

i

 

Figure B.6 Difference in longitude definitions in ECI and ECEF frames 

Expressing the inertial and relative velocity vectors as 

 

  sin cos sin cos cosi i i iv       iv i j k  (B.18) 

  sin cos sin cos cosrelv       relv i j k  (B.19) 

 

And substituting them into Eq. (B.17) to yield 
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 

sin cos sin cos cos

sin cos sin cos cos cos
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rel e
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      

   

   

i j k

i j k j
 (B.20) 

 

Equating the respective vector components on both sides of Eq. (B.20) gives 

 

 sin sini i relv v   (B.21) 

 cos sin cos sin cosi i rel ev v r        (B.22) 

 cos cos cos cosi i relv v     (B.23) 
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ECI to ECEF: Dividing Eq. (B.22) by Eq. (B.23), one can find 
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v
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
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 
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 (B.24) 

 

Dividing Eq. (B.21) by Eq. (B.23), one can find 

 

 
cos

arctan tan
cos

i


 

 
  

 
 (B.25) 

 

Finally, from Eq. (B.21) 

 

 
sin

sin

i
rel iv v




  (B.26) 

 

Thus, the explicit relationships between the inertial and relative velocity components are 

obtained. 

 

The geodetic longitude () can be calculated at a given time t from the current right 

ascension (λi) and the right ascension of the zero longitude line OX (Greenwich meridian 

on Earth) (λi,G) known at some previous time t = 0 as follows. 

 

  ,i i G et       (B.27) 

 

In Eq. (B.27), λi,G + et refers to the sidereal time which is the time scale that is based on 

the Earth’s rate of rotation measured relative to the fixed stars. λi,G is usually available 

from periodically published astronomical (or ephemeris) charts such as the American 

Ephemeris and National Almanac for the right ascension of the Greenwich meridian. Or 

alternatively, λi,G is assumed as 0 at time of lift-off and relative longitude values are 

calculated for different time instants of the trajectory for simple evaluations independent of 

time. 

 

ECEF to ECI: Rearranging Eqs. (B.24) - (B.27), spherical coordinates in ECI frame can 

be obtained from spherical coordinates in ECEF frame as follows. 
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i

v v



  (B.30) 

  ,i i G et       (B.31) 
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Matlab scripts written for transformations between ECI and ECEF frames in spherical 

coordinates are given in Appendix C.1.2. 

 

B.2.3 Geocentric to Geodetic and vice versa 

Figure B.4 shows the relationships of the positions and angular measurements for the 

triangle represented by the vectors R, h and r, bounded by points O, S and P. It is easy to 

obtain the geodetic latitude () and the Earth radius (R) for a given geocentric latitude (0) 

using spherical trigonometric relations. 

 

  
 

 
0

2

tan
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1 ee
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
 (B.32) 
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In Eqs. (B.32) and (B.33), 

Re is the equatorial radius of the Earth, 

ee is the first eccentricity of the reference ellipsoid for Earth. 

 

According to WGS-84 Earth’s model defined in the report of NIMA (2000), values for 

these physical constants are 

 

Re = 6378.137 km 

ee = 0.08181919084 

 

The geodetic altitude (h) can be calculated from the law of cosines considering the 

spherical triangle OSP in Figure B.4. 

 

 
2 2 2

0
2 cos( )h r R Rh       (B.34) 

 

Finally, by applying the law of sines to the triangle OSP, it can be shown that the 

geocentric latitude or the declination angle () of point P relative to equatorial plane is 

 

 
0arcsin sin ( )

R

r
   

 
   

 
 (B.35) 

 

Moreover, the geodetic ground distance (d) or so called downrange can be computed from 

the known values of geodetic latitude and longitude through iterative formulas developed 

by Vincenty (1975). Using these formulas, arc length of the great circle arcs connecting 

pairs of points on the surface of the reference ellipsoid and the azimuth, which is the angle 

at which the arc crosses the meridian containing the first point, can be calculated. 
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User written and built-in Matlab functions used for transformations between geocentric 

and geodetic coordinates in ECEF frame are given in Appendix C.1.3. 

 

B.2.4 Orbital to Rectangular ECI and vice versa 

Orbital to rectangular: From Figure B.5, XiYiZi axes become PQW axes by three 

successive rotations. First is about the Zi axis by Ω, second is about the Xi axis by i, the last 

is about the Zi axis by ω. Transformation matrix from inertial to orbital frame can be 

obtained using the elementary rotation matrices as follows. 

 

      i   i2oe 3 1 3R R R R  (B.36) 

 

Inverse transformation is required to convert orbital elements to inertial rectangular 

coordinates. 
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oe2i 3 1 3R R R R  (B.37) 

 

Position and velocity vectors in orbital frame with respect to ECI frame can now be 

expressed as 
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In Eq. (B.37), 

 

 11  cos cos sin cos sinR i      (B.40) 

 12  cos sin sin cos cosR i       (B.41) 

 13  sin sinR i   (B.42) 

 21  sin cos cos cos sinR i      (B.43) 

 22  sin sin cos cos cosR i       (B.44) 

 23  cos sinR i    (B.45) 

 31  sin sinR i   (B.46) 

 32  sin cosR i   (B.47) 

 33  cosR i  (B.48) 
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Rectangular to orbital: In this transformation, a set of inertial rectangular coordinates {rx, 

ry, rz, vx, vy, vz} is to be expressed as orbital elements {a, e, i, , , q*}. Computational 

steps for this transformation are as follows. 

 

 
2 2 2

x y zr r r r    (B.49) 

 
2 2 2

x y zv v v v    (B.50) 

 

The semimajor axis (a) can be obtained directly from the definition of orbital velocity in 

Eq. (A.10) 
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The eccentricity vector (e) can be calculated by the known position and velocity vectors in 

inertial space (Figure B.5). 
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whose magnitude is equal to orbit eccentricity (e) 

 

 e  e  (B.53) 

 

The unit angular momentum vector (h) is defined by 
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From Figure B.5, orbit inclination (i) can be obtained from Eq.(B.54) 
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 (B.55) 

 

The ascending node vector (n) can be calculated by 

 

 





K h
n

K h
 (B.56) 

 

From Figure B.5, 
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 cos sin   n I J  (B.57) 

 

From Eq. (B.57), right ascension of the ascending node (Ω) can be obtained without 

quadrant ambiguity. 

 

  2 1arctan 2 ,n n   (B.58) 

 

The argument of perigee (ω), which is the angle between the vectors of ascending node 

and the eccentricity, can be calculated by 

 

 arccos
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 (B.59) 

 

Finally, the true anomaly (q*) is found by 

 

 
* arccosq
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Matlab scripts written for transformations between rectangular and perifocal coordinates 

are given in Appendix C.1.4. 
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APPENDIX C 

MATLAB IMPLEMENTATION 

Computer codes utilized in this thesis work were developed in Matlab® (Version R2012b, 

8.0.0) 

 

C.1 Coordinate Transformations 

C.1.1 Rectangular ECI to Spherical ECI and vice versa 

% Transformation from rectangular ECI to spherical ECI 

% Ref. Tewari'2007, pp. 124. 

  

function sph = rec2sph(rec) 

 

N = size(rec,1); 

 

% Input argument "rec" is a vector of size N x 6. Rows are inertial position 

% and velocity vectors of size 6 in cartesian coordinates. 

% [rx, ry, rz, vx, vy, vz] [m . . m/s . .] 

  

% Output "sph" is a vector of size N x 6. Rows are inertial position and 

% velocity vectors of size 6 in spherical coordinates. [radius, celestial 

% longitude, geocentric latitude, celestial speed, velocity azimuth in 

% celestial frame , flight path angle in celestial frame. 

% [r alpha delta v_i A beta] [m deg deg m/s deg deg] 

  

% CONSTANTS 

% ========================================================================= 

r2d = 180/pi;                   % unit conversion from radian to degree 

  

% USER INPUTS 

% ========================================================================= 

% Position and velocity in rectangular celestial frame (ECI, cartesian) 

r_ijk = rec(:,1:3);        % [m] 

v_ijk = rec(:,4:6);        % [m/s] 

  

% Transformation from ECI to spherical celestial frame 

r = sqrt(sum(r_ijk.^2,2));                   % [m] geocentric radius 

  

alpha = atan2(r_ijk(:,2),r_ijk(:,1))*r2d;    % [deg] celestial longitude 

                                             % (right ascension) 

                                             % within -180 and +180 deg 

  

delta = asind(r_ijk(:,3)./r);                % [deg] celestial latitude 

                                             % (declination) 

                                             % = geocentric latitude 

                                             % within -90 and +90 deg 

                                                 

v_i = sqrt(sum(v_ijk.^2,2));                 % [m/s] speed in celestial fr. 

                                                  

  

% Transformation matrix from ECI to local horizon 

sa = sind(alpha); ca = cosd(alpha); 
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sd = sind(delta); cd = cosd(delta); 

  

C_r2lh1 = [cd.*ca cd.*sa sd]; 

C_r2lh2 = [-sa ca zeros(N,1)]; 

C_r2lh3 = [-sd.*ca -sd.*sa cd]; 

  

C_r2lh = zeros(3,3,N); 

v_lh = zeros(N,3); 

  

for i =1:N 

    C_r2lh(:,:,i) = cat(1, C_r2lh1(i,:), C_r2lh2(i,:), C_r2lh3(i,:)); 

    % Velocity in local horizon frame wrt celestial frame 

    v_lh(i,:) = (C_r2lh(:,:,i)*v_ijk(i,:)')'; 

end 

  

A = atan2(v_lh(:,2),v_lh(:,3))*r2d;     % [deg] azimuth in celestial fr. 

                                        % within 0 and 360 deg 

  

% make all A positive 

for i = 1:N 

    if A(i) < 0 

        A(i) = A(i) + 360; 

    else 

        A(i) = A(i); 

    end 

end 

  

beta = asind(v_lh(:,1)./v_i);           % [deg] fpa in celestial fr. 

                                        % within -90 and +90 deg 

  

sph = [r alpha delta v_i A beta]; 

 

 
% Transformation from spherical to rectangular (cartesian) coordinates in 

% Earth Centered Inertial frame Ref. Tewari, 2007, p.123. 

  

function r = sph2rec(sp) 

 

% Input argument "fp" is a row vector containing six elements (r lambda 

% delta v chi gamma) in flight path coordinate system. Units must be in 

% meters and degrees. 

% sp = [11866107 269.8817 74.2467 4166 210.8382 -8.4259]; 

  

% USER INPUTS 

% ========================================================================= 

r = sp(1);                  % [m] radial distance 

lambda = sp(2);             % [deg] geocentric longitude 

delta = sp(3);              % [deg] geocentric latitude 

v = sp(4);                  % [m/s] speed wrt Earth 

chi = sp(5);                % [deg] heading angle 

gamma = sp(6);              % [deg] flight path angle 

  

sl = sind(lambda); cl = cosd(lambda); 

sd = sind(delta); cd = cosd(delta); 

sc = sind(chi); cc = cosd(chi); 

sg = sind(gamma); cg = cosd(gamma); 

  

% position vector in ECEF frame 

x = r*cd*cl; 

y = r*cd*sl; 

z = r*sd; 

r_ijk = [x; y; z]; 

  

% Resolve velocity vector in local horizon frame 

vx = v*sg; 

vy = v*cg*sc; 

vz = v*cg*cc; 
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v_lh = [vx; vy; vz]; 

  

% Transformation from local horizon frame to rectangular (ECI, cartesian) 

C_lh2r = R3d(-lambda)*R2d(delta-90)*R2d(90); 

  

v_ijk = C_lh2r*v_lh; 

  

r = [r_ijk; v_ijk]; 

 

C.1.2 Spherical ECI to Spherical ECEF and vice versa 

% Transformation from spherical ECI to spherical ECEF (velocity components 

% only) (flight path coordinate system) Ref. Tewari'2007, pp. 128. 

  

function fp = sph2fp(sph) 

 

N = size(sph,1); 

 

% Input argument "sph" is a vector of size N x 6. Rows are inertial 

% position and velocity vectors of size 6 in spherical coordinates. 

% [radius, geographic longitude, geocentric latitude, celestial speed, 

% velocity azimuth in celestial frame , flight path angle in celestial 

% frame. [r alpha delta v_i A beta] [m deg deg m/s deg deg] 

  

% Output "fp" is a vector of size N x 3. Rows are relative velocity vectors 

% of size 3 in spherical coordinates. [relative speed, velocity azimuth 

% (heading angle), flight path angle]. [v_rel chi gamma] [m/s deg deg] 

  

% CONSTANTS 

% ========================================================================= 

w_E = 7.29211585275553e-5;      % [rad/s] Earth's angular velocity 

  

% USER INPUTS 

% ========================================================================= 

r = sph(:,1);                   % [m] geocentric radius 

delta = sph(:,3);               % [deg] celestial latitude 

                                % (declination) 

                                % = geocentric latitude 

                                                  

v_i = sph(:,4);                 % [m/s] speed in celestial fr. 

  

A = sph(:,5);                   % [deg] azimuth in celestial fr. 

  

beta = sph(:,6);                % [deg] fpa in celestial fr. 

  

% Transformation from spherical celestial frame (ECI) to flight path 

% coordinate system (ECEF) 

  

% heading angle in local horizon wrt ECEF (deg) 

% within 0 and 360 deg 

chi = atand(tand(A) - w_E*r.*cosd(delta)./(v_i.*cosd(beta).*cosd(A))); 

  

% Fix the quadrant 

for i = 1:N 

    if sign(cosd(A(i))) == sign(cosd(chi(i))) 

        chi(i) = chi(i); 

    else 

        chi(i) = chi(i) + 180; 

    end 

end 

  

% make all chi positive 

for i = 1:N 

    if chi(i) < 0 

        chi(i) = chi(i) + 360; 

    else 

        chi(i) = chi(i); 

    end 



176 

end 

  

gamma = atand(tand(beta).*cosd(chi)./cosd(A));    % [deg] fpa in ECEF 

                                                  % within -90 and +90 deg 

  

v_rel = v_i.*sind(beta)./sind(gamma);             % [m/s] velocity in ECEF 

  

fp = [v_rel chi gamma];  % [deg] 

 

 
% Transformation from celestial (inertial) longitude to relative longitude 

% (Transformation from spherical ECI to spherical ECEF) 

% Ref. Tewari'2007, pp. 129. 

  

function lambda = i2rlong(alpha,t) 

 

N = size(alpha,1); 

 

% Input argument "alpha" is the inertial longitude with respect to 

% constellation Aries (or Vernal equinox) in degrees. It is a vector of size 

% N. "t" is a vector of size N containing time instants corresponding to 

% alpha positions. 

  

% Output argument "lambda" is the relative longitude with respect to 

% Greenwich prime meridian in degrees. It is a vector of size N. 

  

% CONSTANTS 

% ========================================================================= 

w_E = 7.29211585275553e-5;      % [rad/s] Earth's angular velocity 

r2d = 180/pi;                   % unit conversion from radian to degree 

  

l_G = zeros(N,1);    % right ascension of the Greenwich meridian at time t0 

lambda = alpha - (l_G + w_E*t*r2d );    % [deg] longitude in ECEF 

                                        % = geodetic (geographic) longitude 

                                        % within -180 and +180 deg 

                                         

for i = 1:N 

    if lambda(i) < -180 

        lambda(i) = lambda(i) + 360; 

    else if lambda(i) > 180 

        lambda(i) = lambda(i) - 360; 

        else 

            lambda(i) = lambda(i); 

        end 

    end 

end 

 

 
% Transformation from spherical ECEF to spherical ECI coordinate system 

% Ref. Tewari, 2007, p.126. 

  

function spheci = sph_ecef2eci(fp,t) 

 

N = size(fp,1); 

l_G = zeros(N,1);    % right ascension of the Greenwich meridian at time t0 

 

% Input argument "fp" is a row vector containing six elements (r lambda 

% delta v chi gamma) in flight path coordinate system. Input argument "t"  

% is the time instants corresponding to position and velocity vectors. 

% Units must be in meters, degrees and seconds 

  

% CONSTANTS 

% ========================================================================= 

w_E = 7.29211585e-5;                % [rad/s] Earth's rotation rate 

  

% USER INPUTS 
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% ========================================================================= 

% coordinates in ECEF spherical frame 

r = fp(:,1);                  % [m] radial distance 

lambda = fp(:,2);             % [deg] geocentric longitude 

delta = fp(:,3);              % [deg] geocentric latitude 

v = fp(:,4);                  % [m/s] speed wrt Earth 

chi = fp(:,5);                % [deg] heading angle 

gamma = fp(:,6);              % [deg] flight path angle 

  

% velocity components in local horizon wrt ECI spherical frame 

A = atand(tand(chi) + w_E*r.*cosd(delta)./(v.*cosd(gamma).*cosd(chi))); 

beta = atand(tand(gamma).*cosd(A)./cosd(chi)); 

vi = v.*sind(gamma)./sind(beta); 

  

alpha = lambda + l_G + wE*t;    % rad 

spheci = [r alpha delta vi A beta]; 

 

C.1.3 Spherical ECEF to Geographic and vice versa 

% Conversion from geocentric latitude to geodetic latitude 

ecc = 0.08181919;   % Earth's eccentricity 

  

% geodetic latitude 

lat_geod = atan2(sind(lat_geoc), (1-ecc^2)*cosd(lat_geoc))*180/pi; 

 

% Earth's radius wrt latitude 

Re = 6378137;         % Earth's equatorial radius (semi-major axis) 

R_geoc = Re*sqrt(1-ecc^2)./(1-ecc^2*cosd(lat_geoc).^2).^(1/2); 

 

The following Matlab built-in functions can easily be utilized for conversions between 

geodetic to geocentric coordinates. 

 
% Conversion of latitude from geodetic to geocentric and from geocentric to 

geodetic 

delta = geodetic2geocentricLat(ecc,phi) 

phi = geocentric2geodeticLat(ecc,delta) 

% (ecc is the first eccentricity of the reference ellipsoid) 

 

% Conversion of rectangular position coordinates in ECEF frame to geodetic 

coordinates (latitude, longitude and altitude). 

lla = ecef2lla(r,'WGS84') 

 

% Calculation of rectangular geodetic arclength (range) and azimuth from 

specified latitude and longitude coordinates and assuming that the points lie 

on the reference ellipsoid. 

[range,az] = distance(lat0,long0,phi,lambda,referenceEllipsoid('wgs84')); 

 

% 'WGS84' is the reference Earth model (oblate spheroid) supported by Matlab. 

 

C.1.4 Orbital to Rectangular ECI and vice versa 

% Transformation from perifocal (kepler elements) coordinate system to 

% rectangular coordinate system Ref. Chobotov, 2002. 

  

function [r v] = oe2rv(oe) 

  

% Input argument "oe" is a row vector containing six elements 

% Distances must be in m and angles must be in degrees 

  

% CONSTANTS 

% ========================================================================= 

mu = 3.986004418e14;    % [m^3/s^2] Earth's gravitational parameter 

  

% USER INPUTS 



178 

% ========================================================================= 

% Classical orbital elements 

a = oe(1);              % [m] semimajor axis 

e = oe(2);              % [-] eccentricity 

i = oe(3);              % [deg] inclination 

Om = oe(4);             % [deg] right ascension of the ascending node 

om = oe(5);             % [deg] argument of perigee 

nu = oe(6);             % [deg] true anomaly 

  

% CALCULATIONS 

% ========================================================================= 

% Transformation matrix 

C = R3d(-Om)*R1d(-i)*R3d(-om); 

  

p = a*(1-e^2);                           % [m] semilatus rectum  

r = p/(1+e*cosd(nu));                    % [m] eqn. of conic section 

  

% Position and velocity vector in rectangular coordinates 

r = C*r*[cosd(nu); sind(nu); 0];                 % [m] 

v = C*sqrt(mu/p)*[-sind(nu); (e+cosd(nu)); 0];   % [m/s] 

  

% ROTATION MATRICES 

% ================== 

% Rotation matrix about 3rd axis 

% input: x (deg) 

function R = R3d(x) 

R = [cosd(x)  sind(x) 0; 

     -sind(x) cosd(x) 0; 

     0        0       1]; 

 

% Rotation matrix about 1st axis 

% input: x (deg) 

function R = R1d(x) 

R = [1  0        0; 

     0  cosd(x)  sind(x); 

     0  -sind(x) cosd(x)]; 

 

 
% Transformation from inertial coordinate system to perifocal coordinate 

% system, REF: Tewari, 2007 

% input argument 'rv' is a 1x6 row vector. [m] 

% output argument 'oe' is a 1x6 row vector. [m, rad] 

  

function oe = rv2oe(rv,mu) 

ri = rv(1:3)';      % inertial position (column vector) 

vi = rv(4:6)';      % inertial velocity (column vector) 

K  = [0;0;1]; 

hv = cross(ri,vi);  % angular momentum vector 

nv = cross(K,hv);   % ascending node vector 

n  = sqrt(nv.'*nv); 

h2 = (hv.'*hv); 

v2 = (vi.'*vi); 

r  = sqrt(ri.'*ri); 

% eccentricity vector 

ev = 1/mu*((v2-mu/r)*ri - (ri.'*vi)*vi); 

p  = h2/mu;         % semilatus rectum 

e  = sqrt(ev.'*ev); 

a  = p/(1-e*e);     % semimajor axis 

i  = acos(hv(3)/sqrt(h2));  % inclination 

Om = acos(nv(1)/n);         % RAAN 

if (nv(2)<0-eps), 

  Om = 2*pi-Om; 

end; 

om = acos(nv.'*ev/n/e);     % argument of perigee 

if (ev(3)<0), 

  om = 2*pi-om; 

end; 
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theta = acos(ev.'*ri/e/r);  % true anomaly 

if (ri.'*vi<0), 

  theta = 2*pi-theta; 

end; 

oe = [a e i Om om theta];   % orbital elements vector 

 

C.2 Staging Optimization 

clc 

clear all 

  

% USER INPUTS 

% ========================================================================= 

% Mission definition 

h_inj = 200;                    % [km] injection altitude 

h_a = 200;                      % [km] apogee altitude 

h_p = 200;                      % [km] perigee altitude 

i = 28.5;                       % [deg] orbit inclination 

mpl = 150;                      % [kg] payload mass 

  

% Launch conditions 

h_0 = 9.1;                      % [km] initial altitude 

phi_0 = 28.5;                   % [deg] initial latitude 

V_0 = 152.4;                    % [m/s] initial speed wrt ground 

  

% Stage configuration 

Isp = [305; 325; 350];          % [sec] specific impulses for each stage 

epsilon = [0.15; 0.14; 0.12];   % [-] structural ratios for each stage 

TW = 1.8;                       % [-] lift-off thrust-to-weight ratio 

  

% CONSTANTS 

% ========================================================================= 

GM = 398600.4418;    % [km^3/s^2] Earth's gravitational parameter 

R = 6378.137;        % [km] Earth's mean radius 

g0 = 9.80665;        % [m/s^2] gravitational acceleration @ Earth's surface 

Omega = 7.292115e-5; % [rad/s] Earth's angular velocity 

d2r = pi/180;        % unit conversion from degree to radian 

  

% CALCULATIONS 

% ========================================================================= 

% Target orbit parameters 

r_inj = R + h_inj;                       % [km] injection radius 

r_a = R + h_a;                           % [km] apogee radius 

r_p = R + h_p;                           % [km] perigee radius 

a = (r_a + r_p)/2;                       % [km] semimajor axis 

  

% Launch parameters 

r_0 = R + h_0;                           % [km] initial radius (@launch) 

A = asin(cos(i*d2r)/cos(phi_0*d2r));     % [rad] launch azimuth  

V_phi = 1e3*Omega*r_0*cos(phi_0*d2r);    % [m/s] Earth's speed wrt latitude 

  

% Vehicle configuration 

N = length(Isp);                % number of stages 

C = g0*Isp;                     % [m/s] exhaust velocities for each stage 

  

% DeltaV calculations 

% ------------------------------------------------------------------------ 

% velocity required to keep payload in a specified orbit [m/s] 

V_orbit = 1e3*sqrt(GM*(2/r_inj - 1/a)); 

  

% velocity gain due to Earth's rotation [m/s] 

V_rot = V_orbit - sqrt((V_orbit*sin(A) - V_phi)^2 + (V_orbit*cos(A))^2); 

  

% velocity loss due to gravity [m/s] 

V_g = 81.006*TW^2 - 667.62*TW + 1505.4; 

  

% velocity loss due to aerodynamic drag [m/s] 

V_d = -32.692*TW^2 + 258.86*TW - 226.57; 
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% velocity loss due to steering and pressure change [m/s] 

V_p = 100; 

  

% initial absolute velocity [m/s] 

V_i = V_rot + V_0; 

  

% margin for unexpected disturbances and inaccuracies [m/s]  

V_m = 100;  

  

% mission deltaV [m/s] 

Vmission = V_orbit + V_g + V_d + V_p - V_i + V_m; 

  

% STAGING OPTIMIZATION (minimizing gross lift-off weight, m0 while 

% satisfying mission deltaV) 

% ========================================================================= 

p = Lagr_NR(Vmission, C, epsilon);  % Lagrange multiplier 

if isnan (p) == 0                   % checking p is a defined number 

L = (1 + p*C)./(p*C.*epsilon);      % [-] mass ratios for each stage 

lambda = (L.*epsilon - 1)./(1 - L); % [-] payload ratios for each stage 

m = zeros(N,1); 

m_pl = mpl; 

for k = N:-1:1                      % calculation of step masses of each 

    m(k) = m_pl/lambda(k);          % stage beginning with stage N 

    m_pl = m_pl + m(k); 

end 

  

%optimum stage configuration 

dV = C.*log(L);                     % [m/s] optimal deltaV split of stages 

m_s = epsilon.*m;                   % [kg] structural masses for each stage 

m_p = m - m_s;                      % [kg] propellant masses for each stage 

m01 = sum(m) + mpl;                 % [kg] gross lift-off mass 

lambda_t = mpl/m01;                 % [-] overall payload fraction 

  

% print results to the command window 

fprintf('optimal deltaV split of stages:\n') 

for j = 1:N 

    fprintf('%d\t %g\n', j, dV(j)) 

end 

fprintf('\noptimal stage masses:\n') 

for j = 1:N 

    fprintf('%d\t %g\n', j, m(j)) 

end 

fprintf('\noptimal structural masses:\n') 

for j = 1:N 

    fprintf('%d\t %g\n', j, m_s(j)) 

end 

fprintf('\noptimal propellant masses:\n') 

for j = 1:N 

    fprintf('%d\t %g\n', j, m_p(j)) 

end 

fprintf('\ngross lift-off mass:\t') 

fprintf('%g', m01) 

fprintf('\ntotal payload ratio:\t') 

fprintf('%g', lambda_t) 

else 

fprintf('Failed to find a solution.') 

fprintf('\nPlease increase Isp, or decrease epsilon or payload mass.\n') 

end 

 
function p = Lagr_NR(Vmission, C, epsilon) 

% Solution of Lagrange Multiplier, p by Newton-Raphson method. 

p_0 = -1/(min(C.*(1 - epsilon))); 

p = p_0;        % initial guess 

tol = 10;       % error tolerance             

V = Vmission - sum(C.*log((1 + p*C)./(p*C.*epsilon))); 

while abs(V)>tol 

V = Vmission - sum(C.*log((1 + p*C)./(p*C.*epsilon))); 
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dV = sum(C./p./(1 + p*C)); 

d = -V./dV; 

p = p + d; 

end 

 

C.3 Trajectory Optimization 

The following code belongs to the Delta III GTO mission presented in Section 4.2 and it is 

also included as an example in the software GPOPS-II developed by Patterson and Rao 

(2013b). 

 
clc; clear all; close all 

%% USER INPUTS 

% Physical data 

earthRadius         = 6378137; 

gravParam           = 3.986012e14; 

initialMass         = 301454; 

earthRotRate        = 7.29211585e-5; 

seaLevelDensity     = 1.225; 

densityScaleHeight  = 7200; 

g0                  = 9.80665; 

eccentricity        = 0.08181919; 

  

scales.length       = 1; 

scales.speed        = 1; 

scales.time         = 1; 

scales.acceleration = 1; 

scales.mass         = 1; 

scales.force        = 1; 

scales.area         = 1; 

scales.volume       = 1; 

scales.density      = 1; 

scales.gravparam    = 1; 

  

if 0, 

scales.length       = earthRadius; 

scales.speed        = sqrt(gravParam/scales.length); 

scales.time         = scales.length/scales.speed; 

scales.acceleration = scales.speed/scales.time; 

scales.mass         = initialMass; 

scales.force        = scales.mass*scales.acceleration; 

scales.area         = scales.length^2; 

scales.volume       = scales.area.*scales.length; 

scales.density      = scales.mass/scales.volume; 

scales.gravparam    = scales.acceleration*scales.length^2; 

end 

  

omega               = earthRotRate*scales.time; 

auxdata.omegaMatrix = omega*[0 -1 0;1 0 0;0 0 0]; 

auxdata.mu          = gravParam/scales.gravparam; 

auxdata.cd          = 0.5; 

auxdata.sa          = 4*pi/scales.area; 

auxdata.rho0        = seaLevelDensity/scales.density; 

auxdata.H           = densityScaleHeight/scales.length; 

auxdata.Re          = earthRadius/scales.length; 

auxdata.g0          = g0/scales.acceleration; 

auxdata.ecc         = eccentricity; 

  

% Boundary conditions 

delta0              = 28.5*pi/180;   % geodetic latitude (rad) 

long0               = -80.6;         % geodetic longtude (lambda) 

lambda0             = 0;             % ECI-ECEF coincident @lift-off ass. 

  

% geocentric latitude of launch point (due to oblateness) 

phi0 = atan2((1-auxdata.ecc^2)*sin(delta0), cos(delta0)); 
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% Earth's geoncentric radius wrt geocentric latitude (due to oblateness) 

R0 = auxdata.Re*sqrt(1-auxdata.ecc^2)/(1-auxdata.ecc^2*cos(phi0)^2)^(1/2); 

  

% initial position vector (1x3) 

r0 = R0*[cos(phi0)*cos(lambda0) cos(phi0)*sin(lambda0) sin(phi0)]; 

  

% initial velocity vector (1x3) 

v0 = r0*auxdata.omegaMatrix.'; 

  

% initial position-velocity vector (1x6) 

rv0 = [r0 v0]; 

  

af = 24361140/scales.length; 

ef = 0.7308; 

incf = 28.5*pi/180; 

Omf = 269.8*pi/180; 

omf = 130.5*pi/180; 

nuguess = 0; 

  

oef = [af ef incf Omf omf nuguess]; 

rvf = oe2rv(oef,auxdata.mu); 

  

% Vehicle Properties 

btSrb = 75.2/scales.time; 

btFirst = 261/scales.time; 

btSecond = 700/scales.time; 

  

mTotSrb      = 19290/scales.mass; 

mPropSrb     = 17010/scales.mass; 

mDrySrb      = mTotSrb-mPropSrb; 

mTotFirst    = 104380/scales.mass; 

mPropFirst   = 95550/scales.mass; 

mDryFirst    = mTotFirst-mPropFirst; 

mTotSecond   = 19300/scales.mass; 

mPropSecond  = 16820/scales.mass; 

mDrySecond   = mTotSecond-mPropSecond; 

mPayload     = 4164/scales.mass; 

thrustSrb    = 628500/scales.force; 

thrustFirst  = 1083100/scales.force; 

thrustSecond = 110094/scales.force; 

mdotSrb      = mPropSrb/btSrb; 

ispSrb       = thrustSrb/(auxdata.g0*mdotSrb); 

mdotFirst    = mPropFirst/btFirst; 

ispFirst     = thrustFirst/(auxdata.g0*mdotFirst); 

mdotSecond   = mPropSecond/btSecond; 

ispSecond    = thrustSecond/(auxdata.g0*mdotSecond); 

  

auxdata.thrustSrb    = thrustSrb; 

auxdata.thrustFirst  = thrustFirst; 

auxdata.thrustSecond = thrustSecond; 

auxdata.ispSrb       = ispSrb; 

auxdata.ispFirst     = ispFirst; 

auxdata.ispSecond    = ispSecond; 

  

%% TRAJECTORY OPTIMIZATION 

% Time events 

t0 = 0/scales.time; 

t1 = 75.2/scales.time; 

t2 = 150.4/scales.time; 

t3 = 261/scales.time; 

t4 = 961/scales.time; 

  

% Mass change at time events (kg) 

m10 = mPayload+mTotSecond+mTotFirst+9*mTotSrb; 

m1f = m10-(6*mdotSrb+mdotFirst)*t1; 

m20 = m1f-6*mDrySrb; 

m2f = m20-(3*mdotSrb+mdotFirst)*(t2-t1); 

m30 = m2f-3*mDrySrb; 

m3f = m30-mdotFirst*(t3-t2); 
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m40 = m3f-mDryFirst; 

m4f = mPayload; 

  

rmin = -2*auxdata.Re; 

rmax = -rmin; 

vmin = -10000/scales.speed; 

vmax = -vmin; 

rvmin = [rmin*ones(1,3),vmin*ones(1,3)]; 

rvmax = [rmax*ones(1,3),vmax*ones(1,3)]; 

  

% Bounds and guesses in each phase of problem 

iphase = 1; 

bounds.phase(iphase).initialtime.lower = t0;  

bounds.phase(iphase).initialtime.upper = t0;  

bounds.phase(iphase).finaltime.lower = t1;  

bounds.phase(iphase).finaltime.upper = t1;  

bounds.phase(iphase).initialstate.lower = [rv0,m10];     

bounds.phase(iphase).initialstate.upper = [rv0,m10];     

bounds.phase(iphase).state.lower = [rvmin,m1f]; 

bounds.phase(iphase).state.upper = [rvmax,m10]; 

bounds.phase(iphase).finalstate.lower = [rvmin,m1f];  

bounds.phase(iphase).finalstate.upper = [rvmax,m10];  

bounds.phase(iphase).control.lower = -ones(1,3); 

bounds.phase(iphase).control.upper = +ones(1,3); 

bounds.phase(iphase).path.lower  = 1; 

bounds.phase(iphase).path.upper  = 1; 

guess.phase(iphase).time = [t0; t1]; 

guess.phase(iphase).state(:,1) = [rv0(1); rv0(1)]; 

guess.phase(iphase).state(:,2) = [rv0(2); rv0(2)]; 

guess.phase(iphase).state(:,3) = [rv0(3); rv0(3)]; 

guess.phase(iphase).state(:,4) = [rv0(4); rv0(4)]; 

guess.phase(iphase).state(:,5) = [rv0(5); rv0(5)]; 

guess.phase(iphase).state(:,6) = [rv0(6); rv0(6)]; 

guess.phase(iphase).state(:,7) = [m10; m1f]; 

guess.phase(iphase).control(:,1) = [0; 0]; 

guess.phase(iphase).control(:,2) = [1; 1]; 

guess.phase(iphase).control(:,3) = [0; 0]; 

  

iphase = 2; 

bounds.phase(iphase).initialtime.lower = t1;  

bounds.phase(iphase).initialtime.upper = t1;  

bounds.phase(iphase).finaltime.lower = t2;  

bounds.phase(iphase).finaltime.upper = t2;  

bounds.phase(iphase).initialstate.lower = [rvmin,m2f]; 

bounds.phase(iphase).initialstate.upper = [rvmax,m20]; 

bounds.phase(iphase).state.lower = [rvmin,m2f]; 

bounds.phase(iphase).state.upper = [rvmax,m20]; 

bounds.phase(iphase).finalstate.lower = [rvmin,m2f];  

bounds.phase(iphase).finalstate.upper = [rvmax,m20];  

bounds.phase(iphase).control.lower = -ones(1,3); 

bounds.phase(iphase).control.upper = +ones(1,3); 

bounds.phase(iphase).path.lower  = 1; 

bounds.phase(iphase).path.upper  = 1; 

guess.phase(iphase).time = [t1; t2]; 

guess.phase(iphase).state(:,1) = [rv0(1); rv0(1)]; 

guess.phase(iphase).state(:,2) = [rv0(2); rv0(2)]; 

guess.phase(iphase).state(:,3) = [rv0(3); rv0(3)]; 

guess.phase(iphase).state(:,4) = [rv0(4); rv0(4)]; 

guess.phase(iphase).state(:,5) = [rv0(5); rv0(5)]; 

guess.phase(iphase).state(:,6) = [rv0(6); rv0(6)]; 

guess.phase(iphase).state(:,7) = [m10; m1f]; 

guess.phase(iphase).control(:,1) = [0; 0]; 

guess.phase(iphase).control(:,2) = [1; 1]; 

guess.phase(iphase).control(:,3) = [0; 0]; 

  

iphase = 3; 

bounds.phase(iphase).initialtime.lower = t2;  

bounds.phase(iphase).initialtime.upper = t2;  

bounds.phase(iphase).finaltime.lower = t3;  
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bounds.phase(iphase).finaltime.upper = t3;  

bounds.phase(iphase).initialstate.lower = [rvmin,m3f]; 

bounds.phase(iphase).initialstate.upper = [rvmax,m30]; 

bounds.phase(iphase).state.lower = [rvmin,m3f]; 

bounds.phase(iphase).state.upper = [rvmax,m30]; 

bounds.phase(iphase).finalstate.lower = [rvmin,m3f];  

bounds.phase(iphase).finalstate.upper = [rvmax,m30];  

bounds.phase(iphase).control.lower = -ones(1,3); 

bounds.phase(iphase).control.upper = +ones(1,3); 

bounds.phase(iphase).path.lower  = 1; 

bounds.phase(iphase).path.upper  = 1; 

guess.phase(iphase).time       = [t2; t3]; 

guess.phase(iphase).state(:,1) = [rvf(1); rvf(1)]; 

guess.phase(iphase).state(:,2) = [rvf(2); rvf(2)]; 

guess.phase(iphase).state(:,3) = [rvf(3); rvf(3)]; 

guess.phase(iphase).state(:,4) = [rvf(4); rvf(4)]; 

guess.phase(iphase).state(:,5) = [rvf(5); rvf(5)]; 

guess.phase(iphase).state(:,6) = [rvf(6); rvf(6)]; 

guess.phase(iphase).state(:,7) = [m30; m3f]; 

guess.phase(iphase).control(:,1) = [0; 0]; 

guess.phase(iphase).control(:,2) = [1; 1]; 

guess.phase(iphase).control(:,3) = [0; 0]; 

  

iphase = 4; 

bounds.phase(iphase).initialtime.lower = t3;  

bounds.phase(iphase).initialtime.upper = t3;  

bounds.phase(iphase).finaltime.lower = t3;  

bounds.phase(iphase).finaltime.upper = t4;  

bounds.phase(iphase).initialstate.lower = [rvmin,m4f]; 

bounds.phase(iphase).initialstate.upper = [rvmax,m40]; 

bounds.phase(iphase).state.lower = [rvmin,m4f]; 

bounds.phase(iphase).state.upper = [rvmax,m40]; 

bounds.phase(iphase).finalstate.lower = [rvmin,m4f];  

bounds.phase(iphase).finalstate.upper = [rvmax,m40];  

bounds.phase(iphase).control.lower = -ones(1,3); 

bounds.phase(iphase).control.upper = +ones(1,3); 

bounds.phase(iphase).path.lower  = 1; 

bounds.phase(iphase).path.upper  = 1; 

guess.phase(iphase).time    = [t3; t4]; 

guess.phase(iphase).state(:,1) = [rvf(1); rvf(1)]; 

guess.phase(iphase).state(:,2) = [rvf(2); rvf(2)]; 

guess.phase(iphase).state(:,3) = [rvf(3); rvf(3)]; 

guess.phase(iphase).state(:,4) = [rvf(4); rvf(4)]; 

guess.phase(iphase).state(:,5) = [rvf(5); rvf(5)]; 

guess.phase(iphase).state(:,6) = [rvf(6); rvf(6)]; 

guess.phase(iphase).state(:,7) = [m40; m4f]; 

guess.phase(iphase).control(:,1) = [0; 0]; 

guess.phase(iphase).control(:,2) = [1; 1]; 

guess.phase(iphase).control(:,3) = [0; 0]; 

  

% Phase continuity constraints 

bounds.eventgroup(1).lower = [zeros(1,6), -6*mDrySrb, 0]; 

bounds.eventgroup(1).upper = [zeros(1,6), -6*mDrySrb, 0]; 

bounds.eventgroup(2).lower = [zeros(1,6), -3*mDrySrb, 0]; 

bounds.eventgroup(2).upper = [zeros(1,6), -3*mDrySrb, 0]; 

bounds.eventgroup(3).lower = [zeros(1,6), -mDryFirst, 0]; 

bounds.eventgroup(3).upper = [zeros(1,6), -mDryFirst, 0]; 

  

% Terminal constraint (desired orbit parameters) 

bounds.eventgroup(4).lower = oef(1:5); 

bounds.eventgroup(4).upper = oef(1:5); 

  

% Optimization problem setup 

setup.name = 'ECivek-PhD_TrajOpt'; 

setup.functions.continuous = @continuous; 

setup.functions.endpoint = @endpoint; 

setup.bounds = bounds; 

setup.guess = guess; 

setup.auxdata = auxdata; 
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setup.derivatives.supplier = 'sparseFD'; 

setup.derivatives.derivativelevel = 'first'; 

setup.derivatives.dependencies = 'sparseNaN'; 

setup.scales.method = 'automatic-bounds'; 

setup.mesh.method = 'hp1'; 

setup.mesh.tolerance = 1e-6; 

setup.mesh.maxiteration = 3; 

% provide an initial mesh for each phase 

meshphase(4).colpoints(10) = 0; 

meshphase(4).fraction(10) = 0; 

for i=1:4 

  meshphase(i).colpoints = 4*ones(1,10); 

  meshphase(i).fraction = 0.1*ones(1,10); 

end 

setup.mesh.phase = meshphase; 

setup.nlp.solver = 'snopt'; 

setup.nlp.options.tolerance = 1e-7; 

setup.method = 'RPMintegration'; 

  

% solve problem using GPOPS2 

tic 

output = gpops2(setup); 

toc 

  

%% SEPARATED STAGES 

sol = output.result.solution; 

% solve trajectories of separated stages 

rv1s = sol.phase(1).state(end,1:6); 

rv2s = sol.phase(2).state(end,1:6); 

rv3s = sol.phase(3).state(end,1:6); 

ms1 = 6*mDrySrb; 

ms2 = 3*mDrySrb; 

ms3 = mDryFirst; 

x10s = [rv1s ms1]; 

x20s = [rv2s ms2]; 

x30s = [rv3s ms3]; 

  

options = odeset('Events', @descentStopCond); 

[t1s, x1s, t1imp, x1imp] = ode45(@descent,[t1, 1000], x10s', options); 

[t2s, x2s, t2imp, x2imp] = ode45(@descent,[t2, 1000], x20s', options); 

[t3s, x3s, t3imp, x3imp] = ode45(@descent,[t3, 1000], x30s', options); 

  

%% POSTPROCESSING & PLOTS 

% extract data and endpoint values from solution 

% ------------------------------------------------------------------------- 

% time 

t = [sol.phase(1).time; sol.phase(2).time; sol.phase(3).time; 

sol.phase(4).time]; 

Pt = [t1 t2 t3]; 

i1 = find(t == t1); 

i2 = find(t == t2); 

i3 = find(t == t3); 

t4f = sol.phase(4).time(end); 

i4 = find(t == t4f); 

  

% states 

x = [sol.phase(1).state; sol.phase(2).state; sol.phase(3).state; 

sol.phase(4).state]; 

  

% position (m) 

rv = x(:,1:3); 

r1s = x1s(:,1:3); r2s = x2s(:,1:3); r3s = x3s(:,1:3); 

Px = [x(i1(1),1) x(i2(1),1) x(i3(1),1)]; 

Py = [x(i1(1),2) x(i2(1),2) x(i3(1),2)]; 

Pz = [x(i1(1),3) x(i2(1),3) x(i3(1),3)]; 

figure 

plot(t,x(:,1),'k',t,x(:,2),'b',t,x(:,3),'r',... 

    Pt,Px,'kx',Pt,Py,'bx',Pt,Pz,'rx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('position (m)') 
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legend('x','y','z') 

grid on 

  

% velocity (m/s) 

vv = x(:,4:6); 

Pvx = [x(i1(1),4) x(i2(1),4) x(i3(1),4)]; 

Pvy = [x(i1(1),5) x(i2(1),5) x(i3(1),5)]; 

Pvz = [x(i1(1),6) x(i2(1),6) x(i3(1),6)]; 

figure 

plot(t,x(:,4),'k',t,x(:,5),'b',t,x(:,6),'r',... 

    Pt,Pvx,'kx',Pt,Pvy,'bx',Pt,Pvz,'rx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('inertial velocity (m/s)') 

legend('v_x','v_y','v_z') 

grid on 

  

% mass (kg) 

figure 

plot (t,x(:,7),'k','LineWidth',2) 

xlabel('time (s)'); ylabel('mass (kg)') 

grid on 

  

% controls 

u = [sol.phase(1).control; sol.phase(2).control; sol.phase(3).control; 

sol.phase(4).control]; 

Pu1 = [u(i1(1),1) u(i2(1),1) u(i3(1),1)]; 

Pu2 = [u(i1(1),2) u(i2(1),2) u(i3(1),2)]; 

Pu3 = [u(i1(1),3) u(i2(1),3) u(i3(1),3)]; 

figure 

plot(t,u(:,1),'k',t,u(:,2),'b',t,u(:,3),'r',... 

    Pt,Pu1,'kx',Pt,Pu2,'bx',Pt,Pu3,'rx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('thrust direction cosines') 

legend('u_x','u_y','u_z') 

grid on 

  

% PLOTS 

% data postprocessing, extract endpoint values for plotting purposes 

% ------------------------------------------------------------------------- 

% Conversion from ECI cartesian to flight path coordinate system [m & deg] 

fp = rv2fp(x(:,1:6),t); 

fp1s = rv2fp(x1s(:,1:6),t1s); 

fp2s = rv2fp(x2s(:,1:6),t2s); 

fp3s = rv2fp(x3s(:,1:6),t3s); 

  

% geocentric radius (m) 

r = fp(:,1); 

  

% altitude (m) 

h = r - auxdata.Re; 

Ph = [h(i1(1)) h(i2(1)) h(i3(1))]*1e-3; 

h1s = fp1s(:,1) - auxdata.Re; 

h2s = fp2s(:,1) - auxdata.Re; 

h3s = fp3s(:,1) - auxdata.Re; 

figure 

plot(t,h*1e-3,'k',Pt,Ph,'kx',t1s,h1s*1e-3,'--k',... 

    t2s,h2s*1e-3,'--k',t3s,h3s*1e-3,'--k','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('altitude, h(t) (km)') 

grid on 

  

% inertial speed (m/s) 

vi = sqrt(sum(vv.^2,2)); 

Pvi = [vi(i1(1)) vi(i2(1)) vi(i3(1))]; 

  

% relative speed (m/s) 

vrel = fp(:,4); 

Pvrel = [vrel(i1(1)) vrel(i2(1)) vrel(i3(1))]; 

  

figure 

plot(t,vi,'k',t,vrel,'b',Pt,Pvi,'kx',Pt,Pvrel,'bx',... 

    'markers',12,'LineWidth',2) 
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xlabel('time (s)'); ylabel('speed (m/s)') 

legend('inertial speed','relative speed') 

grid on 

  

% heading angle (deg) 

chi = fp(:,5); 

Pchi = [chi(i1(1)) chi(i2(1)) chi(i3(1))]; 

figure 

plot(t,chi,'k',Pt,Pchi,'kx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('heading angle, \chi(t)(deg)') 

grid on 

  

% relative flight path angle 

gamma = fp(:,6); 

Pgamma = [gamma(i1(1)) gamma(i2(1)) gamma(i3(1))]; 

figure 

plot(t,gamma,'k',Pt,Pgamma,'kx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('flight path angle, \gamma(t) (deg)') 

grid on 

  

% latitude & longitude 

dlong = fp(:,2);          % change in longitude 

long = long0 + dlong;     % geographic longitude 

Plong = [long(i1(1)) long(i2(1)) long(i3(1))]; 

delta = fp(:,3);          % geocentric latitude 

Plat = [delta(i1(1)) delta(i2(1)) delta(i3(1))]; 

lat1s = fp1s(:,3); long1s = long0 + fp1s(:,2); 

lat2s = fp2s(:,3); long2s = long0 + fp2s(:,2); 

lat3s = fp3s(:,3); long3s = long0 + fp3s(:,2); 

  

figure 

plot(long,delta,'k',Plong,Plat,'kx',long1s,lat1s,'--k',... 

    long2s,lat2s,'--k',long3s,lat3s,'--k','markers',12,'LineWidth',2) 

xlabel('longitude (deg)'); ylabel('latitude (deg)') 

grid on 

  

% downrange (m) 

ellipsoid = [auxdata.Re auxdata.ecc]; 

[range,az] = distance(delta0*180/pi,long0,delta,long, ellipsoid); 

Prange = [range(i1(1)) range(i2(1)) range(i3(1))]*1e-3; 

[drange1s,az1s] = distance(lat1s(1),long1s(1),lat1s,long1s, ellipsoid); 

[drange2s,az2s] = distance(lat2s(1),long2s(1),lat2s,long2s, ellipsoid); 

[drange3s,az3s] = distance(lat3s(1),long3s(1),lat3s,long3s, ellipsoid); 

range1s = range(i1(1)) + drange1s; 

range2s = range(i2(1)) + drange2s; 

range3s = range(i3(1)) + drange3s; 

  

figure 

plot(range*1e-3,h*1e-3,'k',Prange,Ph,'kx',... 

    range1s*1e-3,h1s*1e-3,'--k',range2s*1e-3,h2s*1e-3,'--k',... 

    range3s*1e-3,h3s*1e-3,'--k','markers',12,'LineWidth',2) 

xlabel('range (km)'); ylabel('altitude, h(t) (km)') 

grid on 

  

% dt 

dt = diff(t); 

dt(dt == 0) = [];  % prevent division by zero 

% dv 

dv = diff(vi); 

dv(dv == 0) = []; 

  

% acceleration (g) 

a = dv./dt/auxdata.g0; 

Pa = [a(i1(1)-1) a(i2(1)-2) a(i3(1)-3)]; 

ta = [t(1:i1(1)-1); t(i1(1)+1:i2(1)-1); t(i2(1)+1:i3(1)-1); t(i3(1)+1:i4-1)]; 

figure 

plot(ta,a,'k',Pt,Pa,'kx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('acceleration, a(t) (g)'); 

grid on 
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% density (kg/m^3) 

rho = auxdata.rho0*exp(-h/auxdata.H); 

Prho = [rho(i1(1)) rho(i2(1)) rho(i3(1))]; 

figure 

plot(t,rho,'k',Pt,Prho,'kx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('density, \rho(t) (kg/m^3)') 

grid on; 

  

% dynamic pressure (Pa) 

q = 1/2*rho.*vrel.^2; 

Pq = [q(i1(1)) q(i2(1)) q(i3(1))]*1e-3; 

figure 

plot(t,q*1e-3,'k',Pt,Pq,'kx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('dynamic pressure, q(t) (kPa)') 

grid on 

  

% aerodynamic heat flux (W/m^2) 

Q = q.*vrel; 

PQ = [Q(i1(1)) Q(i2(1)) Q(i3(1))]*1e-6; 

figure 

plot(t,Q*1e-6,'k',Pt,PQ,'kx','markers',12,'LineWidth',2) 

xlabel('time (s)'); ylabel('aerodynamic heat flux, Q(t) (MW/m^2)') 

grid on 

  

% Thrust angle wrt the local horizon frame [deg] 

Tdircos = [x(:,1:3), u]; 

Ta = rec2sph(Tdircos); 

Ta1 = Ta(:,5); 

Ta2 = Ta(:,6); 

  

% Thrust direction angle - lateral [deg] 

psi1 = Ta1 - chi; 

% Thrust direction angle - vertical [deg] 

psi2 = Ta2 - gamma; 

  

Ppsi1 = [psi1(i1(1)) psi1(i2(1)) psi1(i3(1))]; 

Ppsi2 = [psi2(i1(1)) psi2(i2(1)) psi2(i3(1))]; 

figure 

plot(t,psi1,'k',t,psi2,'b',Pt,Ppsi1,'kx',Pt,Ppsi2,'bx','markers',12,'LineWidth

',2) 

xlabel('time (s)'); ylabel('thrust direction angle, \psi(t)(deg)') 

legend('lateral','vertical') 

grid on 

  

% orbital elements at terminal point (m, deg) 

rvf_result = x(end,1:6); 

oef_result = rv2oe(rvf_result,auxdata.mu); 

orbit = [oef_result(1:2) oef_result(3:6)*180/pi]; 

  

% payload mass (kg) 

payload = -output.result.objective - mDrySecond; 

  

% Write outputs to an excel file 

header1 = {'t (sec)' 'rx (m)' 'ry (m)' 'rz (m)' 'vx (m/s)' 'vy (m/s)'... 

    'vz (m/s)' 'mass (kg)' 'u1' 'u2' 'u3'  'r (m)' 'dlong (deg)'... 

    'delta (deg)' 'vrel (m/s)' 'chi (deg)' 'gamma (deg)' 'alt. (m)'... 

    'v_i(m/s)' 'long (deg)' 'range (m)' 'rho (kg/m3)' 'q (Pa)' 'Q (W/m2)'... 

    'Ta1 (deg)' 'Ta2 (deg)' 'psi1 (deg)' 'psi2 (deg)' 'ta(s)' 'accel (g)'}; 

results1 = [t x u fp h vi long range rho q Q Ta1 Ta2 psi1 psi2]; 

results2 = [ta a]; 

xlswrite('results', header1, 'Sheet1') 

xlswrite('results', results1, 'Sheet1', 'A2') 

xlswrite('results', results2, 'Sheet1', 'AC2') 

  

header2 = {'a (m)' 'e (-)' 'i (deg)' 'Om (deg)' 'om (deg)' 'theta (deg)'... 

    'mpl (kg)'}; 

xlswrite('results', header2, 'Sheet1', 'AE1') 

xlswrite('results', orbit, 'Sheet1', 'AE2') 
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xlswrite('results', payload, 'Sheet1', 'AK2') 

  

header3 = {'t (sec)' 'rx (m)' 'ry (m)' 'rz (m)' 'vx (m/s)' 'vy (m/s)'... 

    'vz (m/s)' 'mass (kg)' 'r (m)' 'dlong (deg)' 'delta (deg)'... 

    'vrel (m/s)' 'chi (deg)' 'gamma (deg)' 'alt. (m)' 'long (deg)'... 

    'range (m)'}; 

results1s = [t1s x1s fp1s h1s long1s range1s]; 

results2s = [t2s x2s fp2s h2s long2s range2s]; 

results3s = [t3s x3s fp3s h3s long3s range3s]; 

xlswrite('results', header3, 'Sheet2') 

xlswrite('results', results1s, 'Sheet2', 'A2') 

xlswrite('results', header3, 'Sheet3') 

xlswrite('results', results2s, 'Sheet3', 'A2') 

xlswrite('results', header3, 'Sheet4') 

xlswrite('results', results3s, 'Sheet4', 'A2') 

 

C.3.1 Dynamic Equations 

function phaseout = continuous(input) 

%---------------------% 

% Dynamics in Phase 1 % 

%---------------------% 

t1 = input.phase(1).time; 

x1 = input.phase(1).state; 

u1 = input.phase(1).control; 

r1 = x1(:,1:3); 

v1 = x1(:,4:6); 

m1 = x1(:,7); 

  

rad1 = sqrt(sum(r1.^2,2)); 

rad1(rad1 < input.auxdata.Re) = input.auxdata.Re; 

omegaMatrix = input.auxdata.omegaMatrix; 

omegacrossr = r1*omegaMatrix.'; 

vrel1 = v1-omegacrossr; 

speedrel1 = sqrt(sum(vrel1.^2,2)); 

h1 = rad1-input.auxdata.Re; 

rho1 = input.auxdata.rho0*exp(-h1/input.auxdata.H); 

bc1  = (rho1./(2*m1)).*input.auxdata.sa*input.auxdata.cd; 

bcspeed1 = bc1.*speedrel1; 

bcspeedmat1 = repmat(bcspeed1,1,3); 

Drag1 = -bcspeedmat1.*vrel1; 

muoverradcubed1 = input.auxdata.mu./rad1.^3; 

muoverradcubedmat1 = repmat(muoverradcubed1,1,3); 

grav1 = -muoverradcubedmat1.*r1; 

  

TSrb1   = 6*input.auxdata.thrustSrb*ones(size(t1)); 

TFirst1 = input.auxdata.thrustFirst*ones(size(t1)); 

TTot1   = TSrb1+TFirst1; 

m1dot1  = -TSrb1./(input.auxdata.g0*input.auxdata.ispSrb); 

m2dot1  = -TFirst1./(input.auxdata.g0*input.auxdata.ispFirst); 

mdot1   = m1dot1+m2dot1; 

  

path1 = sum(u1.^2,2); 

Toverm1 = TTot1./m1; 

Tovermmat1 = repmat(Toverm1,1,3); 

thrust1 = Tovermmat1.*u1; 

rdot1 = v1; 

vdot1 = thrust1+Drag1+grav1; 

phaseout(1).dynamics = [rdot1 vdot1 mdot1]; 

phaseout(1).path = path1; 

  

%---------------------% 

% Dynamics in Phase 2 % 

%---------------------% 

t2 = input.phase(2).time; 

x2 = input.phase(2).state; 

u2 = input.phase(2).control; 

r2 = x2(:,1:3); 
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v2 = x2(:,4:6); 

m2 = x2(:,7); 

  

rad2 = sqrt(sum(r2.^2,2)); 

rad2(rad2 < input.auxdata.Re) = input.auxdata.Re; 

omegaMatrix = input.auxdata.omegaMatrix; 

omegacrossr = r2*omegaMatrix.'; 

vrel2 = v2-omegacrossr; 

speedrel2 = sqrt(sum(vrel2.^2,2)); 

h2 = rad2-input.auxdata.Re; 

rho2 = input.auxdata.rho0*exp(-h2/input.auxdata.H); 

bc2  = (rho2./(2*m2)).*input.auxdata.sa*input.auxdata.cd; 

bcspeed2 = bc2.*speedrel2; 

bcspeedmat2 = repmat(bcspeed2,1,3); 

Drag2 = -bcspeedmat2.*vrel2; 

muoverradcubed2 = input.auxdata.mu./rad2.^3; 

muoverradcubedmat2 = repmat(muoverradcubed2,1,3); 

grav2 = -muoverradcubedmat2.*r2; 

TSrb2 = 3*input.auxdata.thrustSrb*ones(size(t2)); 

TFirst2 = input.auxdata.thrustFirst*ones(size(t2)); 

TTot2 = TSrb2+TFirst2; 

m1dot2 = -TSrb2./(input.auxdata.g0*input.auxdata.ispSrb); 

m2dot2 = -TFirst2./(input.auxdata.g0*input.auxdata.ispFirst); 

mdot2 = m1dot2+m2dot2;     

path2 = sum(u2.^2,2); 

Toverm2 = TTot2./m2; 

Tovermmat2 = repmat(Toverm2,1,3); 

thrust2 = Tovermmat2.*u2; 

rdot2 = v2; 

vdot2 = thrust2+Drag2+grav2; 

phaseout(2).dynamics = [rdot2 vdot2 mdot2]; 

phaseout(2).path = path2; 

  

%---------------------% 

% Dynamics in Phase 3 % 

%---------------------% 

t3 = input.phase(3).time; 

x3 = input.phase(3).state; 

u3 = input.phase(3).control; 

r3 = x3(:,1:3); 

v3 = x3(:,4:6); 

m3 = x3(:,7); 

  

rad3 = sqrt(sum(r3.^2,2)); 

rad3(rad3 < input.auxdata.Re) = input.auxdata.Re; 

omegaMatrix = input.auxdata.omegaMatrix; 

omegacrossr = r3*omegaMatrix.'; 

vrel3 = v3-omegacrossr; 

speedrel3 = sqrt(sum(vrel3.^2,2)); 

h3 = rad3-input.auxdata.Re; 

rho3 = input.auxdata.rho0*exp(-h3/input.auxdata.H); 

bc3  = (rho3./(2*m3)).*input.auxdata.sa*input.auxdata.cd; 

bcspeed3 = bc3.*speedrel3; 

bcspeedmat3 = repmat(bcspeed3,1,3); 

Drag3 = -bcspeedmat3.*vrel3; 

muoverradcubed3 = input.auxdata.mu./rad3.^3; 

muoverradcubedmat3 = repmat(muoverradcubed3,1,3); 

grav3 = -muoverradcubedmat3.*r3; 

TTot3 = input.auxdata.thrustFirst*ones(size(t3)); 

mdot3 = -TTot3./(input.auxdata.g0*input.auxdata.ispFirst); 

path3 = sum(u3.^2,2); 

Toverm3 = TTot3./m3; 

Tovermmat3 = repmat(Toverm3,1,3); 

thrust3 = Tovermmat3.*u3; 

rdot3 = v3; 

vdot3 = thrust3+Drag3+grav3; 

phaseout(3).dynamics = [rdot3 vdot3 mdot3]; 

phaseout(3).path = path3; 
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%---------------------% 

% Dynamics in Phase 4 % 

%---------------------% 

t4 = input.phase(4).time; 

x4 = input.phase(4).state; 

u4 = input.phase(4).control; 

r4 = x4(:,1:3); 

v4 = x4(:,4:6); 

m4 = x4(:,7); 

rad4 = sqrt(sum(r4.^2,2)); 

rad4(rad4 < input.auxdata.Re) = input.auxdata.Re; 

omegacrossr = r4*input.auxdata.omegaMatrix.'; 

vrel4 = v4-omegacrossr; 

speedrel4 = sqrt(sum(vrel4.^2,2)); 

h4 = rad4-input.auxdata.Re; 

rho4 = input.auxdata.rho0*exp(-h4/input.auxdata.H); 

bc4  = (rho4./(2*m4)).*input.auxdata.sa*input.auxdata.cd; 

bcspeed4 = bc4.*speedrel4; 

bcspeedmat4 = repmat(bcspeed4,1,3); 

Drag4 = -bcspeedmat4.*vrel4; 

muoverradcubed4 = input.auxdata.mu./rad4.^3; 

muoverradcubedmat4 = repmat(muoverradcubed4,1,3); 

grav4 = -muoverradcubedmat4.*r4; 

TTot4 = input.auxdata.thrustSecond*ones(size(t4)); 

mdot4 = -TTot4/(input.auxdata.g0*input.auxdata.ispSecond); 

path4 = sum(u4.^2,2); 

Toverm4 = TTot4./m4; 

Tovermmat4 = repmat(Toverm4,1,3); 

thrust4 = Tovermmat4.*u4; 

rdot4 = v4; 

vdot4 = thrust4+Drag4+grav4; 

phaseout(4).dynamics = [rdot4 vdot4 mdot4]; 

phaseout(4).path = path4; 

 

C.3.2 Terminal Constraint and Objective Function 

function output = event(input) 

% Variables at Start and Terminus of Phase 1 

t0{1} = input.phase(1).initialtime; 

tf{1} = input.phase(1).finaltime; 

x0{1} = input.phase(1).initialstate; 

xf{1} = input.phase(1).finalstate; 

% Variables at Start and Terminus of Phase 2 

t0{2} = input.phase(2).initialtime; 

tf{2} = input.phase(2).finaltime; 

x0{2} = input.phase(2).initialstate; 

xf{2} = input.phase(2).finalstate; 

% Variables at Start and Terminus of Phase 3 

t0{3} = input.phase(3).initialtime; 

tf{3} = input.phase(3).finaltime; 

x0{3} = input.phase(3).initialstate; 

xf{3} = input.phase(3).finalstate; 

% Variables at Start and Terminus of Phase 2 

t0{4} = input.phase(4).initialtime; 

tf{4} = input.phase(4).finaltime; 

x0{4} = input.phase(4).initialstate; 

xf{4} = input.phase(4).finalstate; 

  

% Event Group 1:  Linkage Constraints Between Phases 1 and 2 

output.eventgroup(1).event = [x0{2}(1:7)-xf{1}(1:7), t0{2}-tf{1}]; 

% Event Group 2:  Linkage Constraints Between Phases 2 and 3 

output.eventgroup(2).event = [x0{3}(1:7)-xf{2}(1:7), t0{3}-tf{2}]; 

% Event Group 3:  Linkage Constraints Between Phases 3 and 4 

output.eventgroup(3).event = [x0{4}(1:7)-xf{3}(1:7), t0{4}-tf{3}]; 

% Event Group 4:  Constraints on Terminal Orbit 

orbitalElements = rv2oe(xf{4}(1:6),input.auxdata.mu); 

output.eventgroup(4).event = orbitalElements(1:5); 

output.objective = -xf{4}(7); 
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C.3.3 Descent Trajectories of Separated Stages 

function deriv = descent(t,x) 

% Descent trajectories of separated stages 

omega = 7.29211585e-5; 

omegaMatrix = omega*[0 -1 0;1 0 0;0 0 0]; 

Re = 6378137; 

rho0 = 1.225; 

H = 7200; 

sa = 4*pi; 

cd = 0.5; 

mu = 3.986012e14; 

  

r = x(1:3);         % position @separation instant 

v = x(4:6);         % velocity @separation instant 

m = x(7);           % mass of separated stage 

  

rad = norm(r); 

omegacrossr = omegaMatrix*r; 

vrel = v - omegacrossr; 

speedrel = norm(vrel); 

h = rad - Re; 

% calculation of drag 

rho = rho0*exp(-h/H); 

bc  = (rho/(2*m))*sa*cd; 

bcspeed = bc*speedrel; 

Drag = -bcspeed*vrel; 

% calculation of gravity 

muoverradcubed = mu/rad^3; 

grav = -muoverradcubed*r; 

% equations of motion 

rdot = v; 

vdot = grav+Drag; 

mdot = 0; 

  

deriv = [rdot; vdot; mdot]; 

 

 

function [value,isterminal,direction] = descentStopCond(t,x) 

Re = 6378145; 

value = norm(x(1:3)) - Re;  % when value = 0, an event is triggered 

isterminal = 1;             % terminate after the first event 

direction = 0;              % get all the zeros 
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APPENDIX D 

SOLID PROPELLANT ROCKET MOTORS 

Rocket motors are used to impart a desired velocity to a flight vehicle which requires high 

thrust in order to transport its payload. Solid propellant rocket motors (SRM) consists of 

the fuel and oxidizer in solid state and thus it can operate in all environmental conditions. 

 

Solid propellant is generally cast directly into the motor case in a special geometric form 

that is called the propellant grain. The thrust time history of SRM is dependent on the grain 

geometry and is proportional to the instantaneous burning area. The most common grain 

shapes and the corresponding thrust profiles are given in Figure D.1. Different thrust time 

curves can be accomplished by an appropriate combination of particular grain shapes. 

 

Figure D.1 SRM grain cross sections and influence on thrust profile 

(adapted from www.allstar.fiu.edu/aero/rocket2.htm) 

The burn time (operation time) of SRM is also determined by the grain shape, especially 

the web thickness of the grain. The burn time of SRMs used in space launch applications 

are illustrated in Figure D.1 according to a classification based on the relevant stage 

number. This chart is generated by using the available data of existing small class launch 

vehicles those are Vega (Europe), Taurus, Minotaur I, Minotaur IV, Athena I, Athena II 

(United States), Start (Russia), PSLV (India), M-V (Japan) and VLS (Brazil). 

http://www.allstar.fiu.edu/aero/rocket2.htm
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Figure D.1 Burn time of SRMs used in launch vehicles 

From Figure D.1, it can be concluded that burn time of SRMs used in space launch 

applications vary between 60 sec – 120 sec. When the burn times of SRMs are examined 

according to the stage on which they are used, the same distribution applies without any 

distinctive mark. 
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