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ABSTRACT

A DENSITY FUNCTIONAL THEORY INVESTIGATION OF
GRAPHENE-BASED MATERIALS

Sayın, Ceren Sibel

Ph.D., Department of Physics

Supervisor : Assoc. Prof. Dr. Hande Toffoli

September 2014, 65 pages

Employability of graphene-based materials in various technological applications in
order to exploit its exceptional properties is achieved/improved via their interactions
with various atoms, molecules, nanostructures and surfaces. In this thesis, the inter-
action of cyclohexane and derived molecules, carbon nanotubes and metallic surfaces
with both pristine and defected graphene structures are investigated using density
functional theory.

Keywords: Graphene, Carbon Nanotubes, Cyclohexane, Density Functional Theory
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ÖZ

GRAFEN BAZLI MALZEMELERİN YOĞUNLUK FONKSİYONELİ
TEORİSİYLE İNCELENMESİ

Sayın, Ceren Sibel

Doktora, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Hande Toffoli

Eylül 2014 , 65 sayfa

Grafen bazlı malzemelerin olağanüstü özelliklerinden yararlanmayı amaçlayan çeşitli
teknolojik uygulamalarda, bu yapıların kullanımı çeşitli atomlar, moleküller, nanoya-
pılarda ve yüzeyler ile etkileşimi yoluyla gerçekleştirilir ve geliştirilir. Bu tezde, sik-
loheksan ve türevi halkalı moleküller, karbon nanotüpler ve metalik yüzeylerin hem
bozulmamış hem de kusurlu grafen yapıları etkileşimi yoğunluk fonksiyoneli teorisi
kullanılarak incelenmiştir.

Anahtar Kelimeler: Grafen, Karbon Nanotüpler, Siklohekzan, Yoğunluk Fonksiyoneli
Teorisi
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CHAPTER 1

INTRODUCTION

The two-dimensional graphene and it’s derivatives such as single-dimensional car-

bon nanotubes and carbon buckyballs attract a deserved attention due to their excep-

tional properties [52, 34, 60]. Behavior of electrons in graphene like massless Dirac

fermions manifested in the linear dispersion of the bands makes graphene a laboratory

for various 2+1 dimensional QED phenomena [38, 13]. As for practical applications,

owing to high carrier mobility and scalability to small sizes, graphene based nanos-

tructures are promising candidates to replace conventional semiconductors in field-

effect transistors and to be employed in other areas like solar-cells, sensors, actuator

devices [67, 62, 64, 75, 33].

Advances in the fabrication and processing of graphene [53] has greatly expanded

its domain of practical utility in the last decade. In a short span of time, graphene

has gone from being a novel source of fascinating physical phenomena [10, 65]

to sophisticated applications in various fields including optics, catalysis and device

technology [77, 36, 31, 57]. Owing to its unique, defect-free sp2 network struc-

ture, graphene possesses unusually high carrier mobility, thermal conductivity and

mechanical strength. The distinguishing feature of the electronic structure is the oc-

curence of double cones in its band structure at the six Fermi points in its hexagonal

Brillouin zone, referred to as Dirac cones. Contributed by the delocalized π − π∗

orbitals, the apices of the Dirac cones touch at a single point resulting in a linear

electronic dispersion and a zero density of states at the Fermi level.

Miniaturized device technology relies on the tunability of the amount of charge car-

riers and the band gap. While the high mobility of graphene is desirable, the lack of
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a band gap is a drawback in such applications as graphene-based field-effect transis-

tors, which require a high on/off current ratio [77]. Much effort has therefore been

invested in developing the ability to control the location of the Fermi level and the

opening of a band gap. A striking example to this search has been given by Coletti et

al [14] where the Fermi level of a graphene sheet, already n-doped by the SiO2 sub-

strate underneath was gradually restored to its original location at the Dirac point by

controllably reversing the charge transfer via an increased coverage of the surface by

F4-TCNQ molecules. Beside device applications, controling the amount of charge

on the graphene sheet is also important from the point of view of catalytic activity,

photocatalytic and photovoltaic applications. A study by Qian et al. [56] showed

that by attaching 1,2-ethylenediamine groups to the edges of graphene quantum dots,

the fluorescence quantum yield was increased 17-fold without increasing biotoxicity.

Numerous methods have been developed to achieve control over the band structure

including application of mechanical strain [7, 5], substrate doping [14], electric field

doping [69] and confinement via nanoribbon formation [10].

Chemical functionalization of graphene is a versatile functionalization technique em-

ployed in a variety of applications including band gap engineering, superior gas

sensing abilities, increased hydrogen storage capacity, synthesis of graphene-derived

nanostructures, prevention of agglomeration and stacking of graphene layers, and in-

duction of magnetic properties for use in spintronics [61, 23, 9, 41, 48]. The species

used in the chemical functionalization of graphene range in size and variety from sin-

gle atoms [1, 37], all the way to large polymers [47]. Depending on the application at

hand, functionalization may be achieved via covalent or noncovalent bonding of the

molecules to the network. Covalent bonding is usually accompanied by the destruc-

tion of the linear dispersion around the Fermi points and the opening of a band gap at

the Fermi points due to the introduction of sp3 bonds. Noncovalent functionalization,

on the other hand, usually relies on weak dispersive forces and often leaves the band

structure unchanged. A charge transfer may nonetheless occur even for noncovalent

bonding, moving the Fermi level above or below the Fermi points, thereby chang-

ing the doping level. Physisorption and chemisorption of the same functionalizing

species may also be observed simultaneously through the occurence of different re-

action steps during the functionalization process as noted by Englert et al. [21] in a
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study using thermal gravimetric analysis coupled to mass spectroscopy (TGA/MS).

This study showed that graphene quantum dots functionalized by 4-TBD molecules

lose mass at two different temperatures, the lower (∼ 210◦) corresponding to the ph-

ysisorbed species and the higher (∼ 480◦) corresponding to the cleavage of covalent

bonds.

In this work, density functional theory (DFT) which is a powerful tool in the pre-

diction of strcutural and electronic properties of nanostructures based on first prin-

ciples calculations is employed. In the first part, an analysis of the interaction of

single walled carbon nanotubes (CNTs) with isolated graphene sheets, the adsorp-

tion of graphene on metallic surfaces and interaction of CNTs with graphene sup-

ported by metals is conducted. CNT/graphene hybrid films were shown to demon-

strate enhanced features as transparent conductors and supercapacitors [70, 80]. All-

carbon FET devices with semiconducting CNT channels were succesfully manufac-

tured where source, drain and gate electrodes are made of graphene sheets [35, 45,

81]. The graphene-metal interface bears great importance due to the essential role

of metals in most applications: they are used as catalyst substrates for high quality

sample production, the probes of characterization devices and electrodes in electronic

devices are metallic. The lattice constant of graphene matches very well with the sur-

face lattice parameters of some metals such as Ni(111) and Cu(111) which allows

graphene to assume a commensurate single adsorption geometry. With others such

as Ru(0001), a lattice mismatch causes formation of different local adsorption struc-

tures or rotated registries which result in Moire superlattices. The varying interaction

strengths causes corrugations in the graphene layer which allows Moire patterns to be

used as templates for preferential adsorption sites [76, 4].

Secondly, the interaction of cyclohexane and derived molecules with ideal and de-

fected graphene structures has been studied. Cyclohexane (c-hexane, C6H12) is a

monocyclic hydrocarbon where the sp3 hybridized carbon atoms are each bonded

to two neighboring C atoms and two H atoms. Cyclohexane is conventionally syn-

thesized from hydrogenation of benzene and is produced on large industrial scales

primarily to employ in the production of adipic acid which is a nylon intermediate

and secondarily as a non-polar solvent [46]. Interaction between cyclohexane (and its

dehydrogenated or oxygenated derivates) and graphene based materials has been spo-
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radically explored in experimental and theoretical literature. According to an experi-

mental study conducted by Yu et al. [81], N-doped carbon nanotubes(CNTs) display

catalytic activity towards the anaeorobic oxidation of cyclohexane. Yang et al. [79]

recently developed a receipe for extracting graphene sheets from a graphite sample

making use of the weak dispersive interaction between cyclohexane and the graphene

basal plane. Bittner et al. [6] and Díaz et al. [19], on the other hand, probe bind-

ing energies of non-cyclic and cyclic molecules on CNTs including cyclohexane and

cyclohexene from a gas adsorption point of view. In a DFT study, Zhao et al. [84]

studied the binding energy and charge transfer of C6H6, C6H12 and 2, 3-dichloro-5, 6-

dicyano-1, 4-benzoquinone (DDQ) with a single-walled CNT. C6H12 was found to

bind slightly more strongly to the surface even though all molecule-CNT interactions

were of dispersive nature. Finally, another DFT study by Yang et al. [79] shed light

on the CNT-catalyzed oxidation of C6H12 with molecular oxygen. In spite of the

important potential applications mentioned in these studies, a thorough systematic

atomic scale examination is missing.

This thesis is structured as follows: In the introduction, properties of ideal and de-

fected graphene are briefly mentioned. The theoretical background is explained in

the following chapter. In Chapter 3, the results on the CNT/graphene, CNT/metal and

CNT/graphene/metal interfaces are presented. Chapter 4 is devoted to the calcula-

tions on the interaction of cyclohexane molecules with pristine and defected graphene

layers. Conclusions are summarized in the last chapter. Throughout this work, all

the calculations were performed using the open-source Quantum Espresso code [24]

which is based on plane-wave pseudopotential density functional theory. All the fig-

ures were generated using the XCrYsden visualisation program [40].

1.1 Electronic Structure of Graphene

The unit cell of the two-dimensional honey-comb lattice of a graphene sheet is a

hexagon containing two atoms in the basis. The primitive lattice vectors a1, a2 and

the corresponding reciprocal vectors b1,b2 found from the relation aibi = 2π × n
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are:
a1 =

a

2
(3,
√

3) a2 =
a

2
(3,−

√
3)

b1 =
2π

3a
(1,
√

3) b2 =
2π

3a
(1,−

√
3)

(1.1)

where a is the interatomic distance of 1.42 Å corresponding to a lattice constant of

2.46 Å. The real space representation of graphene with the primitive lattice vectors

and the first Broullouin zone with the reciprocal lattice vectors along with special

K-points are shown in Figure 1.1.

Figure 1.1: The real and reciprocal lattices of graphene

The band structure of graphene was first predicted by Wallace in 1946 [73]. Graphene

bands cross the Fermi level at the Dirac points K and K′ which makes it a zero-gap

semiconductor. They are called Dirac points as the linear dispersion relation of the

bands at these points mimics the Dirac equation. They are located at:

K =
2π

3a
(1,

1√
3

) K′ =
2π

3a
(1,− 1√

3
) (1.2)

The linear dispersion relation from these points obtained from a tight-binding approx-

imation is:

E±(k) ' ε± h̄vF (k) (1.3)

The three dimensional plot of graphene band structure obtained from the tight-binding

theory is seen in Figure 1.2 and the two dimensional band-structure along with the

DOS obtained from ab initio calculations is presented in Figure 2.2.
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Figure 1.2: The band structure graphene obtained from tight-binding theory.

-15

-10

-5

 0

 5

Γ K M Γ

E
n

e
rg

y
 [

e
V

]

 0

 1

 2

-8 -6 -4 -2  0  2  4  6  8  10

D
O

S

Energy [eV]

Figure 1.3: The band structure and DOS plots of graphene obtained from density
functional theory.

1.2 Defects on Graphene

In order to mitigate the chemical inertness of graphene, defects and impurities can be

introduced in the network to facilitate functionalization [8, 83]. Point defects, such as

single or double vacancies and adatoms locally alter the electronic structure which can

act as functionalization centers [16, 74]. Due to high formation energies, such defects

have negligible concentration in graphene produced through standard sample growth

processes, nonetheless, controlled defect creation is possible via methods such as

particle irradiation and chemical treatment [2]. Foreign atoms such as B and N may

also be substituionally introduced to act as charge acceptors and donors to modify

reacitivity [58].

In this thesis, defected graphene structures with a single vacancy, a single carbon
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adatom and a substitutionally doped Nitrogen atom are considered.

The defect formation energies are calculated from:

Edef = Epristine − Edefected + µC (1.4)

where Epristine is the total energy of the pristine graphene sheet, Edefected is the total

energy of defected graphene and µC is the chemical potential of a Carbon atom calcu-

lated from graphite which is negative for a vacancy and positive for an adatom. This

chemical potential was taken as Eideal/N with N being the number of C atoms in the

unit cell. From this formula, single vacancy formation energy and adatom binding

energy are calculated to be 7.77 eV and 1.62 eV respectively which are both in good

agreement with previous theoretical and experimental results [68].

Some important aspects of a single vacancy on graphene are still debated; such as

whether the atoms around the vacancy remain planar or non-planar and the nature

of the magnetic properties of the defective structure [54, 51]. Our spin-polarized and

unpolarized calculations both yielded a flat structure displaying Jahn-Teller distortion.

The spin-polarized calculation is energetically more favorable by 0.4 eV and yielded

a total magnetic moment of 1.45 µB per cell calculated with the GGA. For a carbon

adatom, we found that the most stable geometry is the bridge position where the

additional C atom resides on top of the mid-point of a carbon bond of graphene in

accordance with previous studies. C adatom is covalently bonded to graphene through

two equivalent C-C bonds with bond length 1.50 Å. Contrary to the single vacancy

case, the spin resolved computation for the adatom gave zero net magnetic moment.

The substitution energy for N is calculated using:

Esub = EN−doped − (Epristine − µC) + µN (1.5)

where µN is the chemical potential of Nitrogen calculated by considering the N2

dimer. This energy is computed to be 0.75 eV.

Upon N substitution the atoms of the graphene layer remain coplanar, while the

bond length of the three C–N bonds around N slightly shrink by 0.1 Å to 1.41 Å.

A spin-polarized calculation for the N-doped graphene yielded a magnetization of

0.01 µB per cell and the structure remain unchanged. The small magnetization is
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neglected and the calculations involving N-doped graphene were conducted without

spin-polarization. Bare graphene with a nitrogen impurity is negatively doped which

is reflected in the band structure as a downward shift.

The relaxed pristine and defected structures along with charge density plots are pre-

sented in Figure 1.4. The band structures and density of state (DOS) plots of defected

graphene structures are seen in Figure 1.5.

a) b)

c) d)

Figure 1.4: Charge density plots for pristine graphene (a), graphene with a single
vacancy (majority spin) (b), a single C adatom (c), and N-doped graphene (d).
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Figure 1.5: Band structure and DOS plots for graphene with a single vacancy (a), a
single C adatom (b) and N-doped graphene (c).
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CHAPTER 2

THEORETICAL METHODS

2.1 Many-Body Hamiltonian

In principle, all stationary information about any material can be extracted from the

time-independent Schrödinger equation (neglecting relativistic effects):

Ĥψ = Eψ (2.1)

The non-relativistic Hamiltonian for a system of N electrons with corresponding set

of coordinates r ≡ {ri, i = 1, . . . , N} and P nuclei with coordinates R ≡ {RI , I =

1, . . . , P} and nuclear charge ZI is:

Ĥ = − h̄2

2me

N∑
i

∇2
i −

h̄2

2

P∑
I

∇2
I

MI

+
e2

4πε0

(
1

2

P∑
I

P∑
J 6=I

ZIZJ
|RI −RJ |

+

+
1

2

N∑
i

N∑
j 6=i

1

|ri − rj|
−

N∑
i

P∑
I

ZI
|ri −RI |

(2.2)

In atomic units (e = me = h̄ = 1), the Hamiltonian becomes:

Ĥ = −1

2

N∑
i

∇2
i −

1

2

P∑
I

∇2
I

MI

+
1

4πε0

(
1

2

P∑
I

P∑
J 6=I

ZIZJ
|RI −RJ |

+

+
1

2

N∑
i

N∑
j 6=i

1

|ri − rj|
−

N∑
i

P∑
I

ZI
|ri −RI |

(2.3)

which can be written compactly as:

Ĥ = T̂e(r) + T̂N(R) + V̂ee(r) + V̂NN(R) + V̂eN(r,R) (2.4)

The corresponding total wave function of the Hamiltonian isψ(r1, . . . , rN ,R1, . . . ,RN).
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2.2 Born-Oppenheimer (Adiabatic) Approximation

Obtaining exact solutions for the many-body Hamiltonian especially for large systems

is an impossible task. Firstly due to entangled states which forbid the wave function to

be separated into single-particle components, and secondly due to the immeasurable

computational load such a task requires. Thus, several approximations are needed.

The first of these is the Born–Oppenheimer approximation which allows the wave

function to be broken into electronic and nuclear components. Basically, it states that

the instantaneous electronic states are not affected by the motion of the much heavier

nuclei. As the nuclear mass MI becomes very large, the associated kinetic energy

term, T̂I , can be ignored. Also, the nucleus–nucleus interaction term, EII , only has

a constant contribution which can be added afterwards.

Then the main problem at hand is to solve the Schrödinger equation for the electronic

wave function Ψe(ri), by using the Hamiltonian (in atomic units where h̄ = e =

me = 4πε0 = 1):

Ĥe =− 1

2

∑
i

∇2
i −

∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj|

=T̂ + V̂ext + V̂int .

(2.5)

The nucleus–electron interaction, namely the external potential, V̂ext, is a classical

Coulombic interaction, whereas the electron–electron interaction, V̂int, makes the

wave function non–separable due to quantum mechanical exchange–correlation ef-

fects. Moreover, the dependence of Ψe(ri) on 3N variables for an N-electron system

still demands a vast computational capacity even for storage. This means that fur-

ther approximations and different approaches are required for practical calculations.

Systematic application of certain sets of approximations have been proven to yield

succesful results for certain classes of materials which gave rise to different methods

of electronic structure calculations. For instance, wavefunction-based methods are

convenient to use for small molecular systems, whereas density-based methods are

mainly used for larger materials such as periodic crystals.
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2.3 Hartree-Fock Method/Slater Determinants

An intuitive approximation for the wave function of a many electron system is the

Hartree product which constructs the wave function from the individual single particle

wave functions as ψ(r) = φ1(r1)φ2(r2) . . . φN(rN). For a fermionic system, the wave

function can be written as a normalized linear combination of Hartree products to

satisfy the anti-symmetry property and given as a Slater determinant as:

ψ(r) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) . . . φN(r1)

φ1(r2) φ2(r2) . . . φN(r2)
...

...
...

φ1(rN) φ2(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣∣
(2.6)

2.4 Density Functional Theory

The electronic Hamiltonian suggests that any many-body system is basically a col-

lection of interacting electrons moving in an external potential. Early quantum sta-

tistical models such as the Thomas–Fermi theory reasonably presumed that such a

system could be analyzed using the density of electrons as the central variable instead

of the wave function. Although these failed to accurately describe real systems, DFT

followed the same approach and emerged as an exact theory. The density of particles

n(r) gives probability density that any of the N electrons is at the position r. It is

obtained from the expectation value of the density operator n̂(r) =
∑N

i δ(r− ri) as:

n(r) = N

∫
ψ∗(r, r2, . . . , rN)ψ(r, r2, . . . , rN)d3r2d

3r33rN (2.7)

The integral of the density give the total number of electrons
∫
n(r)d3r = N and the

charge density for charge q is related to the particle density as ρ(r) = qn(r). Clearly,

the density is determined by the wave function as any other observable. The question

is to demonstrate the reverse case. Indeed, it was proven by Hohenberg and Kohn

that the ground state wave function for a fixed external potential is a unique func-

tional of the ground state density. They also showed that the energy corresponding to

this ground state density acquires its minimum value which equals the ground state

energy:

E0 =

∫
Vext(r)n(r)dr + F [n(r)] . (2.8)
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In the above expression, F [n(r)] contains kinetic energy and electron–electron inter-

action terms. It is a universal functional as it is independent of the system in consid-

eration.

2.4.1 The Variational Principle

The variational principle states that the ground state energy E0 of a system is always

less than (or equal to if the trial function is the ground state wave function) the expec-

tation value of the Hamiltonian calculated with a trial wave function φ:

E0 ≤
〈φ| Ĥ |φ〉
〈φ|φ〉

(2.9)

Assuming that for the eigenvalue equation Ĥψn = Enψn, En are the eigenvalues

where E0 is the ground state, E1 is the first excited state etc. with E0 < E1 < E2...

and ψn are the corresponding orthonormal eigenstates such that 〈ψn|ψm〉 = δnm.

Then the trial wave function can be expanded in terms of ψn which form a complete

basis set as |φ〉 =
∑

n cn |ψn〉 and the expectation value in 2.9 becomes:

〈φ| Ĥ |φ〉
〈φ|φ〉

=

∑
nm cncm 〈ψn| Ĥ |ψm〉∑
nm cncm 〈ψn|ψm〉

=

∑
n |cn|2En∑
n |cn|2

=
|c0|2E0

|c0|2
+

∑
n>0 |cn|2En∑
n>0 |cn|2

= E0 +

∑
n>0 |cn|2En∑
n>0 |cn|2

≥ E0 (2.10)

2.4.2 Hohenberg-Kohn Theorems

This theorem states that the (non-degenerate) ground state density n0(r) uniquely

determines the external potential Vext(r) up to an additive constant. [32]

Assuming that another potential V ′ext(r) with ground state wave function ψ′0 corre-

sponds to the same density n0(r), the ground state energies would beE0 = 〈ψ0| Ĥ |ψ0〉
and E ′0 = 〈ψ′0| Ĥ′ |ψ′0〉 where Ĥ = F̂ + V̂ext and Ĥ′ = F̂ + V̂′ext. Applying the vari-
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ational principle by using ψ′0 as a trial wave function:

E0 < 〈ψ′0| Ĥ |ψ′0〉 = 〈ψ′0|
(
Ĥ− Ĥ′ + Ĥ′

)
|ψ′0〉

= 〈ψ′0| Ĥ′ |ψ′0〉+ 〈ψ′0|
(
V̂ext − V̂′ext

)
|ψ′0〉

= E ′0 + 〈ψ′0|
(
V̂ext − V̂′ext

)
|ψ′0〉 (2.11)

Similarly, taking ψ0 as a trial wave function:

E ′0 < 〈ψ0| Ĥ′ |ψ0〉 = 〈ψ0|
(
Ĥ′ − Ĥ + Ĥ

)
|ψ0〉

= E0 − 〈ψ0|
(
V̂ext − V̂′ext

)
|ψ0〉 (2.12)

Summing the left and right hand sides of equations 2.11 and 2.12, one obtains the

contradictory result:

E0 + E ′0 < E ′0 + E0 (2.13)

Hence the theorem is proven by reductio ad absurdum.

The second theorem states that the ground state energy is a functional of the ground

state density.

2.5 Kohn-Sham Equations

In order to be able to use Hohenberg–Kohn theorems in practice for real calculations,

Kohn and Sham [39] provided a way in which the density is written in terms of ficti-

tious single particle orbitals:

n(r) =
N∑
i

|φi(r)| (2.14)

E[n(r)] =
N∑
i

εi (2.15)

In essence, Kohn–Sham formalism assumes an auxiliary system of non-interacting

electrons experiencing an effective potential, Veff , which mimics not only the ionic

potentials but the interactions with all other electrons as well. Veff contains both

the external potential and electron–electron interaction contributions. The latter is

broken into two parts: the Hartree term describing the Coulombic repulsion for a
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non-interacting electron system, plus, the exchange–correlation potential, Vxc, for the

effects arising from the interaction among electrons. Then Veff in terms of density is:

Veff =

∫
Vext(r)n(r)dr +

∫
n(r)n(r′)

|r− r′|
drdr′ + Vxc . (2.16)

These definitions of the density and the effective potential leads to single-particle

Schrödinger like equations:

Ĥeff =
[
T̂′ + V̂eff

]
Φi(r) = εiΦi(r) . (2.17)

The kinetic energy, T̂′, in the Kohn–Sham Hamiltonian Heff , is denoted by a prime

as it is no longer the kinetic energy of the real system. A kinetic energy correction for

the interacting case is included inside Vxc.

The Kohn–Sham equations has the peculiar characteristic that the Veff depends on

the density which already is the unknown parameter to be found. Eventually, they

can only be solved by iterative calculations forming a self-consistent cycle, explained

further in Section 2.6.

2.5.1 Exchange–Correlation Functionals

The exchange–correlation effects are due to the Pauli exclusion principle. The overlap

of the anti-symmetric wave functions of interacting electrons results in an attractive

or a repulsive effect apart from Coulombic forces. The complicated nature of the

exchange-correlation energy Exc prevents it to be expressible analytically in terms

of the density. Thus, it is an approximated functional available in several different

types each of which may work better in different systems. The most commonly used

functionals are Local Density Approximation (LDA) and Generalized Gradient Ap-

proximation (GGA). Given Exc, the corresponding potential Vxc used in Kohn-Sham

equations is found by taking its functional derivative.

In constructing LDA functionals, it is assumed that locally, the density is homoge-

neous and the total exchange–correlation energy can be found by integrating the cor-
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responding exchange–correlation energies:

ELDA
xc =

∫
n(r)εhomxc (n(r))dr . (2.18)

The homogeneous, local exchange-correlation energy, εhomxc , is obtained by adding

the separately found exchange and correlation parts. The exchange and correlation

energies are complicated as they are related to the whole system rather than pairwise

interactions. Their determination is made by Quantum Monte Carlo simulations using

different parameters. LDA types differ in this parametrization process and some of

the most commonly used types are Perdew–Zunger (PZ),Perdew–Wang (PW).

GGA functionals attempt to improve LDA approach by including the gradient of the

density in the integration:

EGGA
xc =

∫
n(r)εxc[n(r),∇n(r)]dr . (2.19)

Most common GGA types are Becke–Lee–Yang–Parr (BLYP) and Perdew–Burke–

Ernzerhof (PBE). Although GGA not necessarily improves LDA it was proved to be

more accurate in highly inhomogeneous systems.

2.5.2 Plane Wave Expansion

To be able to numerically solve the Kohn–Sham equations, the Kohn–Sham orbitals

Φi(r) should be expanded in terms of a finite basis set. The basis can be chosen as

consisting of plane waves or localized orbitals. Localized orbitals are more appro-

priate in small, isolated systems such as atoms, molecules and nanoclusters. In this

thesis, we performed all the calculations using the PWSCF software which employs

plane waves.

Using a plane wave basis requires working in the reciprocal space. The relation be-

tween the real space primitive vectors a and the primitive reciprocal space vectors b

is:

ai.bj = 2πδij . (2.20)
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The reciprocal unit cell defined by b is the first Brilliouin zone and the infinitely

many vectors lying in this volume are denoted by k. The vectors G spanning the

whole reciprocal space are defined as:

Gm = mibi (2.21)

where m is an integer.

Plane wave expansion of the Kohn–Sham orbitals is a direct result of the crystal struc-

ture. In a crystal as the ions are arranged regularly, the potential created by this system

is periodic. According to Bloch’s Theorem [21], the wavefunction of particles placed

in this potential will also be periodic with the same periodicity as the potential. It

states that the eigenfunctions Φ(r) of the Shrödinger equation for such a potential is

the product of a cell-periodic function, u(r,k) and a plane wave :

Φ(r) = u(r,k) · e(ik.r) . (2.22)

As any periodic function can be expanded in terms of plane waves, u(r,k) can be

written as:

u(r,k) =
1√
Ω

∑
Gm

ci(k,Gm)eGm.r (2.23)

where Ω is the volume of the unit cell and ci(k,Gm) are the complex expansion

coefficients.

Then the wavefunction of the system expanded in terms of plane waves is:

Φ(r) = Φi(r,k) =
1√
Ω

∑
Gm

ci(k,Gm)ei(k+Gm).r

=
∑
Gm

ci(k,Gm)|k + Gm > (2.24)

For a given k, the orthonormality property of the plane waves reads as:

< k + Gm′ |k + Gm >= δmm′ . (2.25)
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Then the he Kohn–Sham Hamiltonian can be written as:

∑
Gm

〈k + Gm′ | Ĥeff |k + Gm〉 ci(k,Gm) = εi
∑
Gm

δmm′ci(k,Gm) = εi
∑
Gm

ci(k,Gm′) .

(2.26)

This matrix equation can be written compactly as:

∑
Gm

Hmm′ci,m = εi
∑
Gm

ci,m′ . (2.27)

Each operator forming the Hamiltonian should be considered separately. The kinetic

energy operator is given by:

〈k + Gm′| T̂ |k + Gm〉 = −〈k + Gm′ | 1
2
∇2 |k + Gm〉 =

1

2
|k + Gm|2δmm′ .

(2.28)

The effective potential is periodic as stated before and it can be expanded as the wave

function actually is an inverse Fourier transformation:

Veff (r) =
1√
Ω

∑
Gm

Veff (Gm)ei(k+Gm).r . (2.29)

The Fourier transformation from real to reciprocal space integrated over real space

vectors is:

Veff (G) =
1√
Ω

∫
r

Veff (r)e
−i(k+Gm).r . (2.30)

The effective potential matrix is given as:

〈k + Gm′|Veff (r) |k + Gm〉 =
∑
Gm

Veff (Gm)δGm−G′
m,Gm = Veff (Gm −Gm′) .

(2.31)
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Then the matrix elements of the Kohn–Sham Hamiltonian:

Hmm′ =
1

2
|k + Gm|2δmm′ + Veff (Gm −Gm′) . (2.32)

The expansions requires summation over the infinitely many G-vectors which is a

computationally impossible task. However, for large G, plane waves become negligi-

ble, thus the sum can be truncated at a certain value. This value is called the cut-off

radius, Ecut, usually expressed in terms of kinetic energy in units of electronvolts or

Rydbergs. Larger Ecut results in more accurate results but takes more computational

time as the number of plane waves will increase accordingly. In order to determine

the smallest possible Ecut value that gives accurate results, convergence tests should

be conducted over a range of values.

Another approximation is the discretisation of the k-points set. Depending on the fact

that the wavefunctions at the k-points that are very close to each other are almost iden-

tical, a certain region in the reciprocal space can be represented by a single k-point.

Naturally, the denser the discrete k-points set is, the more accurate (but slower) the

calculations will be. Different methods for the discretisation have been proposed and

in this thesis we used the Monkhorst–Pack sheme [50]. Similar to the determination

process of Ecut, the k-points grid should be subjected to convergence tests.

Lastly, as periodicity is essential for the plane wave basis, calculations are made over

infinitely many periodic images of the considered unit cell extending in three dimen-

sions even if the system does not have three dimensional periodicity. Thus, in per-

forming plane wave calculations for finite systems, such a system should be placed

inside a large enough supercell preventing the interaction between the periodic im-

ages.

2.5.3 Pseudopotentials

Around regions close to the ions, the potential and hence the electronic wave function

has a highly oscillating behaviour. Accurate representation of such a behaviour re-

quires a very large number of plane waves. The oscillations are mainly due to the core
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electrons and the part of the wave functions of the valence electrons around the ions

oscillate as well due to orthogonality condition. After a certain radius, the wave func-

tion whose behaviour is determined by the valence electrons tend to become smooth

which can be appropriately described by a few plane waves. Owing to the fact that

almost any chemical and physical property of materials depends on the behavior of

the valence electrons, the oscillatory core part is replaced by smoother pseudopoten-

tials and as a result only the density of the valence electrons is considered in DFT

calculations.

2.5.4 Pseudopotential Generation

A pseudopotential generated for an atom should obey certain criteria in order to be

accurate and transferable:

1. The pseudo wave function should overlap with the real wave function beyond

a certain core radius, rc.

2. The eigenvalues for a reference atomic configuration of the real and pseudo

wave functions of the valence electrons should match.

3. The logaritmic derivatives of the real and pseudo wave functions should be

equal at rc.

A forth criterion, called the norm-conservation condition [30] can also be counted

which requires that the integrated charge inside rc for the real and pseudo wave func-

tions should agree. However this condition can be relaxed for the sake of obtain-

ing smoother, hence computationally faster pseudopotentials. A widely employed

class of pseudopotentials abandoning norm-conservation are ultrasoft pseudopoten-

tials. In our calculations we used Vanderbildt type ultrasoft pseudopotentials [?] for

each atom.

In this thesis, other than the well-known Perdew-Zunger (PZ)-LDA functionals and

Perdew-Burke-Erzenhof (PBE)-GGA functionals, revised PBE (revPBE) and c09x

functionals which were shown to work well along with van-der Walls corrections

which are explained in Section 2.7. The GGA functional in equation 2.5.1 can also
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be expressed as:

EGGA
xc =

∫
n(r)εxcn(r)Fx(s)dr . (2.33)

where Fx(s) is called the enchancement factor depending on the dimensionless den-

sity gradient s with s = ∇n
2kFn

. The PBE and revPBE enhancement factors are:

Fx(s) = 1 +
µs2

1 + µs2/κ
(2.34)

and for the c09x exchange functional it is:

Fx(s) = 1 + µs2e−αs
2

+ κ(1− e−αs2/2) (2.35)

Pseudopotentials with revPBE and c09x exchange parts were generated in order to use

in combination with corresponding van-der Waals functionals. The all-electron and

pseudopotential wave-functions of the pseudopotential generation for Carbon atom

are presented in Figure 2.1.

2.6 Self-Consistency Cycle

The iterative cycle needed to solve the Kohn–Sham equations is constructed as fol-

lows: starting from an initially guessed input density, nin, the effective potential Veff

is calculated and fed to the Kohn–Sham equations. The Kohn-Sham Hamiltonian is

solved with this Veff and the calculated new output density, nout, is compared to nin.

If they are not consistent, the cycle repeats itself until self-consistency is achieved.

Rather than starting from a guessed density at the beginning of each cycle or directly

feeding in the calculated output density, a mixture of the input and output densities

is preferred for easier convergence. The simplest method is linear mixing formulated

as:

ni+1
in = βniout + (1− β)niin = niin + β(niout − niin) (2.36)

where i denotes the ith cycle and β is a number between 0 and 1. Different mixing

shemes providing faster convergence have been proposed. A commonly used scheme

is Broyden mixing [11] which we used for the bulk calculations in this thesis.

Most of the computational effort in the self-consistent cycle is spent to the solution

of the Kohn–Sham equations expanded in a plane wave basis. The calculations re-
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Figure 2.1: All electron and pseudopotential wave functions for the c09x and revpbe
functionals.

quire diagonalisation of very large matrices which makes direct diagonalisation too

expensive. Different algorithms have been proposed far faster diagonalisation. In this

thesis we used the Davidson algorithm [18].

2.7 van-der Waals Interaction

As the standard DFT functionals are either local (LDA) or semi-local (GGA), hence

only good for modelling short-range electronic correlations; the weak, long-ranged
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van der Waals forces cannot be described. In recent years it became possible to in-

clude the van-der Waals effects by directly adding a semi-empirical dispersion cor-

rection to the total energy as in the DFT-D method [27, 28] or by reconstructing the

exchange-correlation functional (called the vdW-DF method [20]) which allows a

self-consistent treatment.

In density functional theory, the standard energy functional is given as,

EDFT [n] = T [n] + Vee[n] + Vion[n] + Exc[n] (2.37)

Within DFT-D, the energy functional is improved by simply adding a semi-empirical

dispersion term Edisp:

EDFT−D = EDFT + Edisp (2.38)

The dispersion correction describes the London forces resulting from the instanta-

neously induced dipoles due to the fluctuation of electron densities as C6

R6 with R be-

ing the interatomic distance and C6 being the semi-empirical coefficient proportional

to ionization potentials and dipole polarizabilities. In more detail, Edisp is given for

periodic boundary conditions as [3]:

Edisp = −1

2

∑
i,j

C6ij

[∑
R

fdamp
1

|rij + R|6

]
(2.39)

and the damping function to avoid singularities for small R is:

fdamp = s6 ×
1

1 + exp
[
−d×

(
|rij+R|
r0
− 1
)] (2.40)

where s6 is a scaling factor which depends on the exchange-correlation functional,

the parameter d tunes the steepness of the function.

In the vdW-DF method, the exchange-correlation Exc is given as
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Exc = EGGA
x + ELDA

c + Enl
c (2.41)

where the exhange energy (EGGA
x ) is evaluated within GGA, the local part of the

correlation (ELDA
c ) is approximated in LDA and a non-local correlation contribution

(Enl
c ) is included to describe dispersive interactions.

The van-der Waals forces at one point of the system depend on the variations in the

charge density at another point. Thus the non-local part of the exchange-correlation

energy is given as a double-space integral:

Enl
c [n] =

1

2

∫ ∫
drdr′n(r)n(r′)Φ(r, r′) (2.42)

where the interaction kernel Φ(r, r′) depends on r− r′ and the charge densities n(r),

n(r′) and their gradients at r and r′. The vdW-DF2 method uses a large-N asymptotic

expansion in the evaluation of the kernel which improves the accuracy of vdW-DF

for various systems [44].

Although the vdW-DF and vdW-DF2 methods allow a self-consistent treatment from

scratch, they can also be included as a post-GGA perturbation over the charge densi-

ties calculated with usual semi-local functionals. Some studies suggest that following

the latter method has immaterial consequences, however, other studies claim that

fully self-consistency is necessary for certain systems. vdW-DF and vdW-DF2 meth-

ods are implemented in Quantum Espresso through an efficient algorithm proposed by

Roman-Perez and Soler [59] and the computational load required for a self-consistent

treatment does not significantly vary from standard calculations. Due to this the fully

self-consistency way was adopted through this thesis.

It is known that the type of the GGA exchange employed in vdW calculations may

significantly affect certain properties of a system such as interaction distances, bind-

ing energies etc. [43]. The revPBE exchange is typically used in combination with

the vdW-DF method as it shows little of the spurious bonding effect observed in many

other GGA flavors [42]. However, revPBE is too repulsive at short distances and the

c09 exchange was proposed as a remedy to this shortcoming [15]. Despite this cor-

rection, the c09 exchange used in combination with vdW-DF can overestimate the
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binding energies which is mostly due to the vdW-DF itself. In the vdW-DF2 method,

originally the rPW86 functional was used. Many other flavours, such as hybrid func-

tionals can also be employed. There is still not a universial convention about the best

suited functional to combine with the vdW-DF methods and in this study the most

abundantly used functionals are considered. There also doesn’t exist much informa-

tion in the litterature about the effects of matching the flavour of the pseudopotentials

with the exchange functionals. Here, matching pairs are used and revPBE and c09

pseudopotentials were generated as explained in 2.5.4.

2.7.1 Benchmarking vdW functionals

To decide on the van-der Waals functional to use in the calculations, benchmark

tests involving graphite and bilayer graphene were conducted. Graphite and bilayer

graphene consist of graphene layers held together with van-der Waals forces. The

most common naturally occuring form for graphite is the ABA (Bernal) stacking,

whereas bilayer graphene has AA stacking. The in-plane lattice parameters are iden-

tical to graphene and the interlayer separation is about 3.3 Å for both structures. The

vertical lattice parameters and exfoliation energies were calculated for graphite and

bilayer graphene by fixing the in-plane lattice parameter to the optimized values of

graphene which are given Table 2.1.

Table 2.1: Optimized lattice constants for graphene with different functionals

Functional a[Å] % error
LDA 2.440 0.81
GGA 2.463 0.12

vdW-DFrevPBE 2.481 0.85
vdW-DF2c09 2.464 0.16

Exp. 2.461

The exfoliation energy for graphite was calculated from the formula:

Eex = Egraphite − (3× Egraphene) (2.43)
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and for bilayer graphene:

Eex = Ebilayer − (2× Egraphene) (2.44)

Table 2.2: Binding energies and distances for graphite calculated with different func-
tionals.

Functional d[Å] Eb(meV/)

LDA 3.38 -24
GGA 4.29 -3

vdW-DFrevPBE 3.75 -54
vdW-DF2c09 3.38 -54

Exp. 3.34 -52±5

Through these tests, it was decided that the vdW-DF2c09 yields the best results for

graphene-based structures, hence this flavor was employed in the calculations involv-

ing van-der Waals interactions. These benchmark tests are also in good agreement

with previous studies [29].
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Figure 2.2: The binding energy difference plots for different functionals for
graphite(a) and bilayer graphene(b).
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CHAPTER 3

CARBON NANOTUBES ON GRAPHENE ON METALS

In this chapter, we study the geometry, energetics and electronic structure of sin-

gle walled carbon nanotubes adsorbed on isolated graphene, the graphene/Cu(111)

and graphene/Ni(111) interfaces and carbon nanotubes on graphene supported by the

Cu(111) surface.

3.1 Computational Details

Four different exchange-correlation functionals (and corresponding pseudopotentials)

including both standard and van-der Waals types are employed: (i) local density ap-

proximation (LDA) with Perdew-Zunger (PZ) parametrization [85], (ii) generalized

gradient approximation (GGA) with Perdew-Burke-Erzenhof (PBE) parametrization

[55], (iii) vdW-DF [20] with revised PBE [82] exchange (vdW-DFrevPBE), (iv) vdW-

DF2 [44] with c09 [15] exchange (vdW-DF2c09). All the pseudopotentials involved

are of the Vanderbilt ultrasoft type [71]. The generation of the c09x and revPBE pseu-

dopotentials are explained in Chapter 2. We account for the dispersive interactions by

employing Van-der Waals density functionals fully self-consistently at the vdW-DF2

[44] level. The necessity to use different functionals are explained throughout the

section.

We used 1x6x1 and 6x6x1 Monkhorst-Pack [50] grids for k-points sampling of the

CNT/graphene and CNT/metal calculations respectively. A kinetic energy cut-off of

35 Ryd gave well converged results for all systems and a Marzari-Vanderbilt smearing

[49] with a broadening of 0.02 Ryd was present in the calculations involving metals.
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The unit cell for the adsorption of a horizontally aligned CNT on an isolated graphene

sheet consists of a rectangular strip of graphene placed underneath the CNT. We con-

sidered the interaction of graphene with CNT(6,0) and CNT(8,0) nanotubes. The

CNT-CNT distance between periodic images and the vacuum region in the vertical

direction were larger than 10Å in all cases to prevent interactions. The >10Å con-

straint between parallel CNTs is satisfied by basically using the unrolled version of

the CNT as the graphene sheet in the unit cell, i.e. and an n×1 graphene sheet is used

for a CNT(n,0).

From the binding energy versus separation curves plotted for different functionals for

a (8,0) CNT on a graphene layer in the directly-on-top geometry that is presented

in Figure 3.1, it is evident that van-der Waals functionals should be used as GGA

cannot yield any binding at all. Even though LDA may be used to accurately model

weak interactions (ref), the underestimation of the lattice parameters as seen in Table

2.1 can mimic strain on the structures which is known to affect the electronic struc-

ture (ref). The vdw-DF2-c09 functional was preferred as it gave accurate results in

the benchmark tests for graphite and bilayer graphene as presented in Section 2.8.

In these calculations the graphene layer was fixed and the energies were calculated

self-consistently by scanning over the vertical distance. The separation l is taken per-

pendicularly from the bottom of the CNT to the graphene layer. The binding energy

is defined as:

Eb = E(l)− E(l→∞) (3.1)

where E(l) is the calculated total energy and E(l → ∞) is the total energy of the

non-interacting system.

For the graphene/metal calculations, graphene was put on top of 5 layers of metal

whose last layer was kept fixed during geometric optimization. In the CNT+graphene+metal

calculations, 3 layers of Cu was considered.

3.2 CNTs on Graphene

In searching for stable adsorption geometries and the corresponding interaction dis-

tances for the CNT on the graphene sheet we started with the parallel, directly-on-top
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Figure 3.1: The binding energy vs. distance plots for a horizontally aligned (8,0)
CNT on graphene calculated with PBE-GGA and vdW-DF2c09 functionals.

configuration and scanned over various other sites by rolling the CNTs along the

central axis and/or by shifting in the horizontal direction. Within this constraint, ba-

sically two distinct alignments exist noted as directly-on-top and shifted geometries

as shown in Figure 3.2. Any axial rotation or horizontal shift corresponds to a site

in between these two configurations. The directly-on-top geometry is an analogue to

the AA stacking of bilayer graphene. Cross-registries (twisted geometries) were not

considered as they require much larger unit cells.

We have found two different stable adsorption modes for the horizontally aligned

(6,0) and (8,0) CNTs on graphene. One is physisorption in which the nanotubes

atabilizes at about 3 Å above the graphene layer. Another stable adsorption phase of

a CNT on a graphene sheet is meditated through the formation of single or double

C-C bonds. Allowing the system to fully relax starting from a small initial separation

(<2Å) results in deformed nanotubes bonded to graphene where a cusp forms at the

bonding site. In the directly on top geometry, the CNT is bonded to the graphene

layer with a single C-C bond per unit cell. A double C-C bond which occurs when

the CNT is slightly rotated. All these three cases are seen in Figure 3.3. In the

shifted geometry, C-C bond formation did not occur and the CNT remained weakly

interacting regardless of the initial separation.
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We defined the binding energy per length and calculated it by substracting the energies

of the deformed CNT and graphene layer from the total energy of the system and

divide it by the length of the unit cell in y-direction. The equilibrium bond lengths

and the binding energies per length calculated with the vdW-DF2c09 functional are

summarized in Table 3.1. Physisorption yielded rather weak binding energies per

length which are 11 meV and 9 meV for the (6,0) and (8,0) CNTs respectively. The

C–C bond lengths are about 1.6 Å whenever they are formed. The binding energies

in all cases are slightly larger for the CNT (6,0).

The CNT(6,0) is metallic whereas the (8,0) CNT is a small-gap semiconductor with

a band gap of about 0.5 eV. The density of states(DOS) of the (8,0) CNT adsorbed

on graphene via van-der Waals forces, a single C-C bond and a double C-C bond are

seen Figure 3.3. The DOS of the isolated graphene layer and the isolated CNT are

plotted along. The zero of the plot coincides with the Fermi level of graphene. As

seen from the zoomed plots around the Fermi level, the total CNT+graphene system

seems to be remained semiconducting whereas the C-C bonds rendered the system

metallic.
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Figure 3.2: The on-top (left) and shifted (right) geometries of a CNT on graphene.

Table 3.1: The equilinrium bond lengths and the binding energy per length for the
adsorption of CNT(6,0) and CNT(8,0) on graphene through van-der Waals, single
and double C-C bonds.

beq[Å] Eb/l[meV/Å]
CNT(6,0) VdW 3.14 11

Single C-C 1.62 62
Double C-C 1.60 34

CNT(8,0) VdW 3.24 9
Single C-C 1.62 52
Double C-C 1.60 31
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Figure 3.3: The optimized structures and density of states plots for a CNT(8,0) on
graphene for van-der Waals interaction (a), single C-C bonds (b) and double C-C
bonds (c).
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3.3 Graphene/Metal Interface

Graphene adsorbs to metals with a small lattice mismatch in a planar geometry with-

out corrugations and generally has a single most stable adsorption configuration.

These metals have a face-centered cubic (FCC) structure and they are divided into

two classes with respect to the interaction strength: graphene weakly interacts with

Cu, Al, Ag and Au, while it strongly interacts with Ni, Co and Pd.

In order to work with periodic boundary conditions in plane-wave DFT studies, a

single lattice parameter should be adopted. The lattice constant of graphene can be

fixed to that of the metals or the lattice parameter of metals can be fixed to that of

graphene. Although the lattice mismatches are small, it was shown that these two

cases may lead to significant differences such as varying type and amount of doping

of the graphene layer [66]. Adopting the lattice constant of metals models processes

in which graphene is grown on or transferred to metallic surfaces. Fixing lattice con-

stants to graphene corresponds to depositing metals onto the graphene layer. Most ap-

plications involve processes as represented by the first model, however the significant

underestimation or overestimation of the lattice parameters of the metals with certain

functionals may lead to unrealistic results in DFT calculations. As a result some stud-

ies employ experimental values for the lattice constants of the metals [78].The surface

lattice parameter αsurface of the (111) surface of an FCC metal is calculated from the

bulk lattice parameter alat from the relation:

αsurface = alat ×
√

2

2
=
alat√

2
(3.2)

In this section, we investigate Graphene/Cu(111) and graphene/Ni(111) interfaces as

Ni and Cu are representative metals from both weak and strong interaction classes, the

lattice mismatches are relatively small and also, they are both important in electronic

applications and epitaxial growth of graphene. Both experimental and theoretical

studies suggest that the most stable adsorption geometry of graphene on Ni(111) is

the top-fcc configuration where C atoms are alternately positioned over the metal

atoms of the first and third layers as seen Figure 3.4. Although experimental evidence

is lacking for Cu, theoretical calculations predict the same configuration for Cu(111).

Apart from the lattice constant, the graphene–metal interface is also very sensitive to
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the type of the functional. LDA calculations divide the metals in two classes where

graphene is either chemisorbed or physisorbed which is in-line with experimental re-

sults [25]. GGA predicts the lattice parameters better than LDA, but fails to produce

accurate values for the binding energies and distances. It either gives too weak bind-

ing or no binding at all. It was shown that VdW-DFrevpbe gives similar results to GGA

[72] while VDW-DF2c09 is well suited and it gives both the adsorption distances and

energies in good agreement with experiments. [29]. VDW-DF2c09 also produces the

lattice constants close to the experimental values. The lattice constants for Cu and Ni

calculated with different functionals are listed in Table 3.2.

Table 3.2: Experimental bulk lattice constants, surface lattice constants and surface-
graphene percent mismatches calculated with different functionals for Cu and Ni.

Func. a(Å) αsurf (Å) % mismatch
Cu LDA 3.55 2.51 2.89

GGA 3.67 2.60 5.56
vdWrevPBE 3.71 2.62 5.60

vdW2c09 3.59 2.54 3.08
Exp. 3.61 2.55 3.66

Ni LDA 3.43 2.43 0.41
GGA 3.52 2.49 1.09

vdWrevPBE 3.56 2.52 1.57
vdW2c09 3.47 2.45 0.58

Exp. 3.52 2.49 1.18

The band structure of graphene adsorbed on the Ni(111) surface calculated with

L(S)DA is shown in Figure 3.4. Graphene is chemisorbed on Ni and graphene states

hybridizes with the d states of Ni which results in the opening of a gap at K in ac-

cordance with previous studies. For the Cu(111) surface, two rather different results

were obtained by using two different lattice parameters. As the whole system is fixed

to lattice constant of the metal, the band structure displays n-doping as predicted by

previous studies, while the graphene-metal separation was found to be 2.54 Å which

is significantly shorter than the experimental and theoretical data which suggests a

distance of 3.3 Å. On the other hand, as the system is calculated by fixing the lat-

tice constant to that of graphene, the distance is more accurate at 2.82 Å while the

n-doping is rather small. Both cases are seen in Figure 3.5. These cases demostrates
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the sensitivity of calculations on different parameters.
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Figure 3.4: The on-top geometry of graphene on Ni(111) and the band structure of
the graphene/Ni(111) system.

3.4 CNTs on Graphene on Metals

In calculating the CNT(8,0)/graphene/Cu(111) interface, the lattice parameters are

fixed to that of graphene and van-der Waals corrections are included. First, the

graphene+Cu(111) system was calculated without the carbon nanotube. As the unit

cell grows, the number of metallic layers is reduced to 3 from 5 in order to save com-

putational time and the last layer was kept fixed. In this case, the graphene-Cu(111)

distance was calculated to be 3.35 Å.

The CNT(8,0)/graphene/Cu(111) system both the CNT weakly interacting with graphene

and CNT that formed a single C–C bond was considered. The systems has 112 atoms

in total. Upon optimization for the physisorption case, the graphene-CNT distance

was found to be 3.24 Å which is the same as the CNT-graphene separation for iso-

lated graphene. The nanotube causes a slight curvature on the graphene layer. The

graphene-Cu distance is 3.2 Å beneath the nanotube and it is 3.4 far from the nan-

otube.

For the case in which the CNT is bonded to graphene, The C–C bond length increased

slightly to 1.63 Å from 1.62 Å in isolated graphene. The graphene-Cu(111) distance

decreased slightly ranging from 3.15 Å to 3.25 Å apart from the cusp underneath the
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Figure 3.5: The relaxed configurations and band structures of graphene on Cu(111)
calculated with the lattice parameter of graphene (top) and lattice parameter of the
metal (bottom).

CNT which is at 3.74 Å.
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Figure 3.6: The CNT(8,0) interacting through van-der Waals forces (top) and a single
C–C bond (bottom) with graphene on Cu(111).
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CHAPTER 4

INTERACTION OF IDEAL AND DEFECTED GRAPHENE

WITH CYCLOHEXANES

In this chapter, the interaction of cyclohexane (c-hexane, C6H12) and its dehydro-

genated derivatives, cyclohexyl radical (c-hexyl, C6H11*) and cyclohexene molecule

(c-hexene, C6H10) on both pristine and defected graphene is explored. In our defect

calculations, we include a single vacancy and a C adatom as well as a substitutionally

doped N atom. While C6H12 only has completely saturated sp3 bonds, C6H10 has a

mixture of sp2 and sp3 bonds. C6H11*, on the other hand, is a radical with high reac-

tivity. The choice of these three molecules provides a platform for diverse modes of

bonding and band structure manipulation.

4.1 Computational Details

Vanderbilt ultrasoft pseudopotentials [71] with PBE-GGA and PZ-LDA exchange-

correlation functionals were used [55]. For systems in which dispersive forces are

predicted to play an important role, a van der Waals correction to the exchange-

correlation functional was present and executed fully self-consistently as implemented

in Quantum Espresso through the Soler algorithm [59]. VDW-DF2 type Van-der

Waals functionals were used with the C09 exchange (VDW2-C09) [44, 15].A ki-

netic energy cut-off of 30 Ryd and an augmentation cut-off of 300 Ryd were used in

all calculations which gave well-converged values for both graphene and molecules.

Marzari-Vanderbildt type cold smearing with a broadening of 0.02 eV was employed

for Brillouin zone integration [49]. A vacuum separation of at least 12 Å was present
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in all calculations to prevent interaction between periodic images.

On pristine graphene, molecules with Θ=1/36 ML and Θ=1/9 ML coverages were

considered which correspond to a surface density of one molecule per 6×6 and 3×3

graphene unit cells respectively. The 1/36 ML coverage offers an intermolecular dis-

tance of at least 10 Å while 1/9 ML corresponds to a full coverage as the molecules

start to intertwine at denser concentrations. For defected graphene, the interaction

of a molecule with a single defect per 6×6 unit cell is considered. Monkhorst-Pack

meshes of 6×6×1 and 3×3×1 k-points were used for the 3×3 and 6×6 cells respec-

tively. The optimal structures were obtained through a full relaxation of the systems

using the BFGS optimization algorithm [12, 22, 26, 63] with a force convergence

threshold of 0.025 eV/Å.

The adsorption energies are calculated from:

Eads = Emolecule+gr − Egr − Emolecule (4.1)

whereEmolecule+gr is the total energy of the combined system,Egr is the energy of the

pristine or defected graphene sheet and Emolecule is the energy of an isolated C6H12,

C6H11 or C6H10 molecule, all calculated with the same computational parameters.

4.2 C6H12,C6H11* and C6H10

The geometric optimization for isolated molecules was carried out in a large cubic

unit cell at the Γ point using the PBE-GGA pseudopotential. Cyclohexane C6H12

is mostly found in the chair conformation as seen in Figure 4.1. The cyclohexane

ring deviates from a planar hexagon in order to reduce the torsional strain and the

C-C-C angles decrease to about 109.5 degrees. It is the most unreactive and stable

cycloalcane. The calculated C–C–C bond angle and C–C bond length for the C6H12

molecule are 111.4◦ and 1.5328 Å respectively. The axial H atoms which are per-

pendicular to the molecular mean plane and the equatorial H atoms which surround

the C6H12 ring have slightly different H-C distances with dequatorial=1.1043 Å and

daxial=1.1006 Å. The deviation of equatorial H atoms from the mean plane is 16.3◦.

The Highest Occupied Molecular Orbital (HOMO) and Lowest Occupied Molecular

Orbital (LUMO) gap of the molecule is computed to be 6.42 eV.
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C6H11* has a slightly distorted chair geometry with an increased C–C–C bond angle

of 119.1◦ and a decreased C–C bond length of 1.4775 Å around the C atom which

lacks one hydrogen while the remaining bond angles remain about 111◦. The sin-

gle H atom is positioned equatorially, leaving two axial H atoms on one side of the

molecule. The H–C bond length of this atom is the shortest among others with a

value of 1.0892 Å while the closest two axial H atoms have H–C distances of 1.1160

Å. Having an odd number of valence electrons, C6H11* has a half-filled orbital.

The C6H10 molecule has two adjacent C atoms bonded to a single H atom. Its stable

conformer is the half-chair geometry in which the these two C atoms and the two C

atoms bonded to them are in the same plane while two C atoms are in the opposite

sides of this plane. The C–C–C angles between the four coplanar contiguous C atoms

are 123.5◦ and they are 111.1◦ in the remaining part. The C–C bond length between

the C atoms with a single H is calculated to be 1.34 Å, between these C atoms and

their neighbors it is 1.50 Å and the bond length is 1.53 Å for the remaining three C–C

bonds. The C–H distance is 1.09 Å for the single H atoms which are equatorially

positions, and it is about 1.10 Å with small differences at the third decimal for the

remaining C–H bonds. The HOMO-LUMO gap of this molecule is computed to

be 5.07 eV. The relaxed structures and HOMO-LUMO plots of the molecules are

presented in Figure 4.1. All of these results compare well with experimental data.

4.3 Molecules on Ideal Graphene

A C6H12 molecule on a 6×6 graphene can be treated as an isolated molecule as the

smallest intermolecular distance between periodic images is about 10.4 . There are

90 atoms in the 6×6 graphene+C6H12 system. Due to the stability and unreactiv-

ity of both structures, C6H12 weakly interacts with graphene and upon relaxation the

system easily traps into a local minima. Thus in order to determine the most pre-

ferred sites of C6H12 on graphene, the systems were relaxed starting from 14 distinct

initial configurations formed by rotating and shifting the molecule which are seen in

Figure 4.3. The configurations in which the mean-plane of the molecule is parallel

and perpendicular to graphene were both considered. The adsorption energies and

graphene-molecule distances obtained from these configurations are listed in Table
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a) b) c)

Figure 4.1: Relaxed structures of the (a) C6H12, (b) C6H11* and (c) C6H10 molecules
along with the HOMO (middle panel) and LUMO (lower panel) orbitals
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a) b)

Figure 4.2: The C6H12 molecule on pristine graphene with (a) 1/9 ML and (b) 1/36
ML concentrations.

4.1. The molecule induces small curvatures in the graphene layer. Thus the distances

were taken as the vertical separation of the average value in the z-direction of C atoms

in graphene and the H atom of the molecule that is closest to the graphene layer.

We found that the preferred geometry of a C6H12 molecule on graphene is a parallel

configuration in which the axial H atoms of the molecule facing the graphene layer

are located on top of the centers of the empty hexagonal sites of the honeycomb lat-

tice of graphene as seen in Figure 4.4. In the optimized structure, the C6H12 molecule

is located at a distance of 2.48 Å and the adsorption energy is 321 meV. Without

the vdW correction the PBE-GGA calculation yields the molecule-graphene distance

as 3.1 Å and a binding energy of only 43 meV. Several metastable structures were

obtained from other initial configurations which yielded slightly lower adsorption en-

ergies by 10 to 30 meV for parallel geometries and by about 0.1 eV for perpendicular

geometries.

Upon increasing the C6H12 concentration from Θ=1/36 ML to Θ=1/9 ML as seen in

Figure 4.2, the graphene-molecule distance increased from 2.48 Å to 2.49 Å. The

adsorption energy of the C6H12 monolayer is 3 meV higher than the single molecule,

it is 324 meV. The total energy of the 3×3 molecules is 64 meV lower than the 6×6

concentration. This slight difference may be interpreted as a tendency to cluster on

pristine graphene.

The band structure for the non-covalent interaction of the C6H12 molecule with pris-

tine graphene reveals no deviation around the K-point from ideal graphene’s band
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Table 4.1: Distances and binding energies of C6H12 and C6H11* on ideal graphene
layer at different sites.

Parallel Perpendicular
Site d[Å] Eb[meV] Site d[Å] Eb[meV]

C6H12 A 2.59 290 A 2.59 191
B 2.58 289 B 2.43 212

BC 2.47 312 C 2.56 188
C 2.48 323 D 2.56 207
Ar 2.58 300 Ar 2.56 200
Br 2.57 302 Br 2.58 192

BCr 2.49 300 Cr 2.38 189

C6H11* A 1.69 (C-C) 352 A 2.36 352
B 1.66 (C-C) 543 B 1.65(C-C) 692

BC 2.45 467 C 1.65(C-C) 698
C 2.48 458 D 2.37 308
Ar 2.44 462 Ar 2.42 351
Br 2.50 443 Br 1.64(C-C) 687

BCr 1.67 (C-C) 538 Cr 2.27 305

structure as seen in Figure 4.4. Additional states from the molecule fell on the con-

duction and valence parts. The population analysis using the Löwdin methods reveals

that only 0.02 e is lost by the C6H12 molecule upon adsorption.

Similarly, a systematic investigation of the preferred geometries for C6H11* was

conducted by examining the same initial configurations considered for the C6H12

molecule. C6H11* forms a carbon-carbon bond in the equatorial conformation with

pristine graphene as seen in Figure 4.4. The bond length is 1.65 Å and the binding en-

ergy is 0.70 eV calculated by including van-der Waals corrections. Dispersive forces

makes an important contribution to this rather weak C-C bond as the binding energy

is just 0.12 eV when calculated with PBE only. Upon adsorption the flat structure

of graphene is deformed and the three carbon bonds surrounding the binding carbon

atom of graphene are extended to 1.50 Å. The less stable axial conformation has a

binding energy of 0.54 eV and the C-C bond length is 1.66 Å. The charge transfer is

from molecule to graphene and the lost charge is 0.01 e by Lowdin analysis. The fact

that this value is even smaller than the charge transfer in C6H12/graphene interaction
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Figure 4.3: Different initial configurations for C6H12 on pristine graphene.

even though the molecule is bonded by a C–C bond may be attributed to the inaccu-

racy of the Lowdin method. As seen in the band structure of the C6H11*+graphene

system in Figure 4.4, one flat band coincides with the Fermi level rendering the sys-

tem metallic. Furthermore, the degeneracy of the pi bands is lifted.

Similar to C6H12, the C6H10 molecule physisorbes on pristine graphene. At the on-

top site as seen in Figure 4.4, the calculated adsorption energy is 391 meV and the

graphene-molecule distance is 2.45 Å. C6H10 has a slightly larger adsorption energy

and stabilizes at a smaller distance than C6H12. Again this interaction doesn’t result in

a significant change around the Dirac point as seen in the band structure in Figure 4.4

apart from a molecular band at 1.5 eV below the Fermi level.

4.4 Defect-Bonded Molecules

Our calculations showed that the interaction of the C6H12 molecule with defected

graphene has a non-covalent nature both for a single vacancy and a carbon adatom as

with the pristine graphene. In the case of a single vacancy, the adsorption energy is

calculated without including spin degrees of freedom as spin-polarized calculations
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Figure 4.4: Geometry and band structure of C6H12 (a), C6H11* (b) and C6H10 (c) on
pristine graphene
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cannot be conducted in conjunction with the van-der Waals functionals. A spin po-

larized GGA calculation yields no binding at all, and an LSDA computation may be

unreliable due to the underestimation of the lattice constant of graphene which may

be more important in the presence of a vacancy. Upon adsorption as seen in Fig-

ure 4.5, the molecule causes the planarity around the vacancy to disturb by attracting

the unsaturated C atom. The vertical distance of this atom from the mean plane of

graphene is 0.45 Å. The adsorption energy in this case is 0.29 eV which is slightly

smaller than pristine graphene and the distance of the molecule to the mean graphene

plane is 2.67 Å. As a side note, a less preferred configuration in which the molecule

is rotated such that an axial H atom is positioned on top of the unsaturated C atom

has also been considered and this time the flatness is disturbed in the opposite way,

i.e., the molecule repelled the C atom.

The interaction of C6H12 with graphene with a single C adatom is rather weak with

a binding energy of only 0.12 eV and induces no visible changes in the band struc-

ture as seen in Figure 4.6. For this system we also considered an initial condition in

which the molecule-graphene distance is considerably small, which can be physically

thought as forcing the molecule towards the defect. Then, upon geometric optimiza-

tion both structures become completely disrupted, one hydrogen atom spontaneously

moved to the adatom and we ended up with C6H11* with a ch group bonded to ideal

graphene surface.

The C6H11* molecule makes a C-C bond with the unsaturated C atom at the single

vacancy which is presented in Figure 4.5. Upon adsorption the total magnetic moment

of the system becomes zero, i.e., spin polarization disappears. The adsorption energy

is 3.26 eV. The length of the C-C bond is 1.54 Å. The flatness is again disrupted as

the unsaturated C atom bend upwards toward the molecule and the bond lengths of

this atom increase from 1.36 Å to 1.42 Å. According to Lowdin population analysis,

the charge transfer from the molecule to graphene is calculated to be 0.03 e which is

again rather small. In the C6H11*/single vacancy system, the band structure around

the Fermi level at the gamma point did not change. However, the flat band about 0.5

eV below the Fermi level disappeared.

Adsorption of the C6H11* molecule to the C adatom is again through a C-C bond as
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seen in Figure 4.6. The molecule adsorps at equatorial conformation with a binding

energy of 3.59 eV.The binding energy of adsorption at the axial conformation is 78

meV lower than this value. The C-C bond length is 1.46 Å. In this case, the Fermi

level is shifted upwards so that the flat band coincides with the fermi level and the

shapes of the bands around Fermi level also changes slightly resembling the band

structure of bilayer graphene.

Cyclohexene is physisorbed on graphene with a single vacancy as cyclohexane in a

rotated configuration in which the unsaturated C atom is repelled from the molecule as

seen in Figure 4.5. The binding energy was calculated to be 0.36 eV and the distance

is 2.49 Å. The molecule-graphene distance is lower and the binding energy is higher

than cyclohexane. Again, spin degrees of freedom were not taken into account and

the band structure reveals no differences than the clean surface.

On the adatom, this time cyclohexene binds through two carbon-carbon bonds as

seen in Figure 4.6. The bond lengths of these bonds are Å and the binding energy

is calculated as eV. In the band structure for this interaction, the flat band near the

Fermi level is removed and a tiny gap is observed. Even though this band gap may be

due to computational errors, there is a chance that the system is rendered a small gap

semiconductor upon adsorption of C6H10.

4.5 Molecules on N-Doped Graphene

Similar to pristine graphene, both C6H12 and C6H10 physisorbes on N-doped graphene.

In the on-top geometry as seen in Figure 4.7, the binding energy is the same for C6H12

(0.32 eV) while it is slightly increased to 0.41 eV from 0.39 eV for C6H10. There is

also a slight increase in the molecule-graphene distance by 0.01 Å for C6H12 while

the separation remained the same for C6H10. Again, these weak interactions does not

induce visible changes in the band structure and the system remains negatively doped

as seen in Figure 4.7.

The C6H11* binds to the substituted N-atom through a C-N bond with a bond length

of 1.62 Å as presented in Figure 4.7. Even though this bond length is shorter than

the length of the C-C bond which forms during the molecule’s adsorption on pristine
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Figure 4.5: Geometry and band structure of, C6H12 (a), C6H11* (b) and C6H10 (c)
interacting with a single vacancy.
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Figure 4.6: Geometry and band structure of, C6H12 (a), C6H11* (b) and C6H10 (c)
interacting with a single C adatom.
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Figure 4.7: Geometry and band structure (a) C6H12 ,(b) C6H11* and (c) and C6H10

interacting with N-doped graphene.

graphene, the binding energy is lower at 0.42 eV. This low value for the binding

energy is due to the structural strain in the graphene layer caused by the interaction.

Upon adsorption, the molecule attracts the N atom and the lengths of the C-N bonds

in the graphene layer increase by 7% from 1.41 Å to 1.51 Å. This interaction causes

the Fermi level to shift upwards and reverses the N-doping.

All the calculated binding energies Eb and distances d of the C6H12,C6H11* and

C6H10 molecules adsorbed on pristine graphene, graphene with a single vacancy,

graphene with a C adatom and N-Doped graphene are summarized in Table 4.2.
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Table 4.2: Summary of the binding energiesEb, distances d of the molecules adsorbed

on pristine graphene, graphene with a single vacancy, graphene with a C adatom and

N-Doped graphene

Pristine Single Vacancy C Adatom N-Doped

Eb [eV] d [Å] Eb [eV] d [Å] Eb [eV] d [Å] Eb [eV] d [Å]

C6H12 0.32 2.48 0.29 2.67 0.12 3.12 0.32 2.49

C6H11* 0.70 1.65 3.26 1.54 3.59 1.46 0.42 1.62

C6H10 0.39 2.45 0.36 2.49 3.44 1.48 0.41 2.45
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CHAPTER 5

CONCLUSION

In this thesis, properties of ideal and defected graphene structures, CNT/graphene

interactions, effects of metal support on graphene, the CNT+graphene+metal inter-

face and interaction of cyclohexane and its dehydrogenated derivatives with pristine

and defected graphene structures are studied using density functional theory. We

have used van-der Waals functionals at the vdW-DF2 level fully self-consistently for

interactions involving van-der Waals forces. Corresponding pseudopotentials were

generated to use in combination with vdW functionals. Different functionals were

benchmarked with graphite and bilayer graphene and we found that vdW-DF2-c09x

functionals yield the most accurate results for graphene-based structures in accor-

dance with previous studies [29].

The interaction of horizontally aligned (6,0) and (8,0) nanotubes on an isolated graphene

layer is investigated. Two different adsorption modes for the CNT on graphene was

found: it is either physisorbed or interacts with graphene via single or double C-C

bonds accompanied with a deformation of both structures. Similar results were pre-

viously theoretically found fo the CNT-CNT junctions [17]. The CNT(6,0) is metal-

lic, whereas The CNT(8,0) is a small gap semiconductor and the CNT(8,0)+graphene

system remains semiconducting when the interaction is through van-der Waals forces,

while it becomes metallic as C–C bonds form. Even though direct experimental evi-

dence is lacking which indicates the formation of such bonds and the electronic struc-

ture of similar systems, our results support various experimental findings regarding

the mixed semiconductor/metal nature of CNT/graphene hybrid films(ref).

In order to explore both the potential of the graphene to be used in the cyclohexane-
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oxidation processes and the potential of cyclohexane-type molecules to functionalize

graphene, we investigated the interaction of cyclohexane,cyclohexyl and cyclohex-

ene with pristine graphene and graphene defected with a single vacancy, a single C

adatom and graphene doped with a single N atom. We found that the cyclohexane

molecule weakly interacts with all the pristine and defected graphene structures with-

out introducing any significant changes in the band structure. After rigorous analysis

of different adsorption sites on pristine graphene we found that the molecule prefers

the configurations in which it can maximize the number of hydrogen atoms located at

the centers of the hexagons of the honeycomb lattice of graphene. We found that the

binding energies for this molecule are about 0.3 eV for all the considered surfaces,

except for the adatom with a binding energy of only 0.12 eV.

Cyclohexyl, which is a radical that is one H atom short of c-hexane binds to each

structure with a single C–C bond. It introduces a new state at the Fermi level for

pristine graphene. Upon the molecule’s absorption to the unsaturated C atom at the

single vacancy, it neutralizes the spin-polarization of the system while at the same

time increasing n-doping by causing a downward shift of the bands. Another notable

result is that the adsorption of c-hexyl to the N atom on N-doped graphene is that it

reverses the n-doping of the system.

Except for the adatom, the c-hexene molecule physisorbes to each graphene struc-

ture with adsorption energies slightly larger than those of c-hexane. This molecule

strongly binds to the adatom through two C–C bonds. Upon adsorption, the molecule

possibly causes the opening of a very small band gap. Another notable point is that c-

hexene binds to N-doped graphene with a slightly larger energy than pristine graphene

which supports the findings in [81], whereas the binding energies are the same for c-

hexane for both structures.
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