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ABSTRACT

GEOMETRIC TRACKING CONTROL OF A FULLY ACTUATED RIGID BODY 
AND APPLICATIN TO ATTITUDE CONTROL OF A QUADROTOR UAV

Bashiri Bargoshadi, Vahid 

M.S., Department of Aerospace Engineering

                                 Supervisor:  Asst. Prof. Dr. Ali Turker Kutay

September 2014, 60 pages

This work is the study of tracking control of rigid body in a general way using a

geometric  approach.  To achieve  globally valid  characteristics,  it  is  necessary to

study such a control problem in its own natural nonlinear space using differential

geometric properties of the space. By linking the tracking control problem to the

problem of stabilization of a single equilibrium of an error dynamics, a tracking

controller in the general case of a compact Lie groups has been developed. Then,

using Lassale invariance theorem convergence to one of the equilibrium points of

error dynamics has been established. Behavior of the system around its equilibrium

points  is  studied  by  linearizing  the  system,  which  proved  the  almost-global

attractiveness of the desired equilibrium. The general control problem studied, in its

special  case  of  space  of  rotation  matrices  is  applied  to  attitude  control  of  a

Quadrotor UAV. Performance of the controller is demonstrated through numerical

simulations.

Keywords: Geometric Control, Tracking Control, Quadrotor
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ÖZ

TAM TAHRİKLİ KATI BİR CİSMİN GEOMETRİK TAKİP KONTROLÜ VE
DÖRT ROTORLU İHA NIN AÇISAL KONUM KONTTROLÜ İÇİN

UYGULANMASI

Bashiri Bargoshadi, Vahid

Yüksek Lisans, Havacılık ve Uzay Mühendisliği

                              Tez Yöneticisi:  Asst. Prof. Dr. Ali Turker Kutay

Eylül 2014, 60 sayfa

Bu çalışma katı bir cismin geometrik yaklaşım ile takip kontrolünü içermektedir.

Bir  kontrol  probleminde  elde  edilen  sonuçların  tüm  hareket  uzayında  geçerli

olabilmesi  için,  problemin  kendi  doğal  doğrusal  olmayan  uzayında, bu  uzayın

geometrik diferansiyel özelliklerinin kullanılarak incelenmesi gerekmektedir.  Takip

kontrol problemini hata dinamiğinin tek bir denge noktasında kararlı hale getirilme

problemine  bağlayarak  kompakt  Lie  gruplarının  genel  bir  durumu için  bir  takip

kontrolcü tasarlanmıştır. Daha sonra Lassale değişimsizlik teoremi kullanılarak hata

dinamiğinin denge noktalarından bir tanesine yakınsadığı gösterilmiştir.   Sistemin

denge  noktaları  etrafındaki  davranışı  doğrusallaştırma  yöntemi  ile  incelenerek

istenen denge noktasının neredeyse tüm uzayda çekici olduğu kanıtlanmıştır. Genel

olarak incelenen kontrol problemi, özel bir durumu olan dönüş matrisleri uzayında

kullanılarak  dört  rotorlu  bir  İHA’nın  açısal  konum  kontrolüne  uygulanmıştır.

Kontrolcünün başarısı sayısal simülasyonlar ile gösterilmiştir.

Anahtar Kelimeler: Geometrik kontrol, Takip kontrol, Quadrotor
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CHAPTER 1

INTRODUCTION

1.1 Overview

The problem of attitude stabilization and tracking of a rigid body has numerous

engineering  applications  such  as  robot  control,  satellite  orientation  control  and

UAV.  The  highly  nonlinear  nature  of  problem  makes  the  task  of  analysis  and

controller design, a challenging one. Unlike a classic control problem which the

state-space of problem always considered to be a Euclidean space, the attitude of a

rigid body evolves in the space of 3×3 orthogonal matrices with unit determinant

(Special Orthogonal group or SO(3)). A parametrization of attitude as a mapping of

a subset  of  rotation  matrices  to  Euclidean space  used to  bring  the  equations  of

system in a form that classical control methods can be applied. As it mentioned

these parametrization only valid in a subset of possible attitudes which is the source

of  singularities  in  attitude  representation  and  it  is  proven  that  there  exist  no

singularity  free  parametrization  of  attitude  with  three  parameters  [13].  These

singularities obviously limit the maneuverability of system but they also lead to a

bigger problem. The problem of stabilization of a dynamical system ideally would

be, to manipulate the equations of system in a way that one of the equilibrium’s of

system becomes globally attractive which means that starting from any arbitrary

initial  conditions,  the  system returns  back  to  the  that  equilibrium.  Because  the

parametrization of attitude is only valid in a neighborhood of equilibrium point, it is

not possible to globally stabilize attitude using a parametrization. Other than that, it

is  very often  that  computing  the  exact  region of  attraction  is  very difficult  and

estimation methods gives only a conservative estimate of it. Result is that using a
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parametrization like rotation angels, it is very difficult to analyze and understand the

behavior  of  system  for  big  attitude  maneuvers.  The  problem  becomes  more

complicated when we try to follow a trajectory using a tracking controller where the

constraints imposed by limitations coming from parametrization make the task of

controller design very difficult. 

To resolve the limitations of attitude parametrization when arbitrary maneuvers are

desired,  it  is  common  to  use  unit  quaternions  to  represent  the  attitude.  Unit

quaternions  are  different  from the  attitude  parametrization  in  the  sense  that  the

space of unit quaternions isn't a Euclidean space. In fact unit quaternions live on the

four  dimensional  unit  sphere  which  is  a  nonlinear  space  itself.  The  reason  of

popularity  of  quaternions  is  that  every  single  attitude  can  be  represented  by

quaternions without singularity while they impose only one algebraic constraint on

differential  equations  of  system  (the  unit  norm),  compare  to  six  algebraic

constraints  one  has  to  deal  with  using  the  rotation  matrices,  which  is  a  very

desirable property during numerical implementation in digital computer. The price

to pay for this simplification is that the correspondence between quaternions and

rotations is not one-one [13]. Actually there exist two quaternions for each rotation

and that becomes the source of another problem called unwinding which is caused

by motion of system from one equilibrium quaternion to its negative (see [3] and

[14]). 

1.2 Purpose of the thesis

The objective of this work is to study the general problem of tracking control for a

system that evolves on a Lie group assuming that the dynamics of system is fully

actuated and to gain an understanding of global behavior of equilibrium points of

closed loop system and finally apply the results to attitude tracking control of a

Quadrotor UAV

1.3 Literature survey

The question  of  representation  of  attitude  is  studied  in  [13].  An early study of
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tracking control for fully-actuated systems is [4] where the gradient vector fields,

used to achieve an almost-global control rule. Also the notion of navigation function

introduced and a navigation function for space of rotation matrices studied, and [20]

contains a more comprehensive study of the same ideas using a modern notation. In

[14]  the  rotation  matrices  are  used  to  design  attitude  controller  for  rotational

dynamic of rigid body and [3] contains a general study of global properties and

shortcomings of such geometric controllers and it is proven that global stabilization

of rigid body rotational dynamics with continuous feedback is impossible. In [2] the

general tracking control problem on Lie groups is studied. 

There exists a vast literate on Quadrotors in which a lot of control methods have

been applied using rotation angles or quaternions as parametrization ([16],[18],[23]

for example) but recently the geometric methods have been gaining more attention.

In [15] and [17] the geometric approach is used to control complex maneuvers of

Quadrotor.

1.4 Contributions of the Thesis

In this thesis based on the work done in [2], a tracking controller for a general class

of fully-actuated mechanical systems for which configuration manifolds is a Lie

group, is designed. The results are applied to rotational dynamics of a Quadrotor

UAV  and  using  the  mathematical  model  of  a  commercial  Quadrotor  the

performance of controller is demonstrated by simulations.

1.5 Contents of the Thesis

We start with a very concise review of mathematical background necessary for our

development in chapter two. We also introduce in a very compact way the basic

ideas  of  geometric  mechanics  which  is  also  an  essential  tool  to  understand  the

theory of mechanical control systems. 

The space of rotation matrices is a Lie group, an abstract mathematical object which

has  a  very  rich  and  well  developed  theory  behind  it.  There  are  other  control

problems evolve on Lie groups, for example the problem of control of six degree of

3



freedom rigid  body evolves  on  a  Lie  group  called  SE(3).  In  chapter  three  the

tracking problem on a Lie group considered in  its  general  setting.  The tracking

problem  linked  to  the  stabilization  of  a  single  equilibrium  of  a  tracking  error

dynamics  which  is  proved  to  evolve  on  the  same  Lie  group.  Based  on  this

transformation a controller proposed and by an application of Lassale Theorem, the

asymptotic stability of closed loop dynamics established. The error dynamic of a

system  on  SO(3)  used  for  numerical  simulations  as  an  example  of  theoretical

material of this chapter.

Finally in chapter four the controller computed in the special case space of rotation

matrices  which  is  applicable  to  rotational  dynamic  of  a  Quadrotor.  The

mathematical model of Quadrotor constructed and the tracking controller applied to

that and the numerical simulation in SIMULINK environment used to study this

model.  The  appendix  contains  some  additional  material  on  parametrization  of

attitude and the unwinding phenomenon. 
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CHAPTER 2

MATHEMATICAL PREREQUITS AND MECHANICS

The  necessary  tool  for  our  later  development  in  this  work  is  the  theory  of

differentiable manifolds. Its a wast mathematical theory started in 19 th century and

still under development as it linked to other branches of mathematics while what we

need  here  for  our  purposes  is  just  a  tiny  fraction  of  it.  These  few  pages  of

mathematics here is an effort to establish a proper notation for the rest of the work

specially that the notation used by different authors sometimes can be very different

and that might cause some confusion. In the next step we will use the mathematical

ideas presented, to express governing equations of mechanics. We will introduce

only the basic ideas in a concise and compact way, based on our needs. 

Obviously our crash course here is far from being complete and sometimes even

doesn’t  have  the  precision  of  a  mathematics  text,  so  the  complete  treatment  of

subject must be followed from excellent textbooks which some of them are listed in

references ([1],[5],[7],[8],[9],[12],[21]). 

2.1 Differentiable Manifolds

A topological manifold M is a topological space such that:

i. Each two pints have disjoint neighborhoods (Hausdorff).

ii. Has a countable basis (second countable).

iii. Locally Euclidean.

For each point on p∈M there exist a homeomorphism ϕ :u→v where u is open in

M with p∈u and  v is  an  open  subset  of =n.  We  call  the  pair (ϕ , u) a  local

coordinate system at p and (ϕ−1 , v) is called a local parametrization or chart of M.
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Two charts (ϕ , u) and (ϕ ' ,u ' ) are called C∞
−compatiable if the maps ϕ ' ∘ϕ−1 and

ϕ∘ϕ '−1 are smooth (infinitely many time differentiable) maps. 

A topological manifold M which admits a collection of charts (ϕα , uα) which:

i. M=W
α

uα

ii. The charts (ϕα , uα) and (ϕβ , uβ) are C∞
−compatiable for every α ,β

called a differentiable (smooth) manifold and the collection of charts (ϕα , uα) called

an Atlas on M.

Take a map F : N →M between two manifolds. Rank of  F at  p∈N is the rank of

Jacobian of F at F ( p)∈M  and F is called an immersion if its rank at every point

equals to dimension of N.  Plus if F be an injective map (each element of codomain

corresponds to no more than one element of domain) then the image of  N on  M,

F(N) called an immersed submanifold of  M. If  F has a continues inverse then its

called an embedding.

Let C∞( p) be the set of all smooth functions defined in a neighborhood of p∈M .

We define the tangent space to M at p denoted by T p M to be the set of all mappings

X p :C∞
( p)→= satisfying two following properties:

i. X p[α f +β g ]=α X p[ f ]+β X p[ g ]

ii. X p[ fg ]=X p [ f ] g [ p ]+ f [ p] X p[ g ]

This forms a vector space and elements of this vector space called tangent vectors to

M at p. Also the dual of this vector space denoted by T p
∗ M called cotangent space

of  M at  p and its elements are called cotangent vectors or covectors. For a chart

(ϕ , u) on M and ϕ( p)=(x1 , x2 ,... , xn
)  the standard basis for tangent and cotangent

spaces at p denoted by { ∂

∂ x1 , ∂

∂ x2 , ... , ∂

∂ xn } and {dx1, dx 2 , ... , dxn} respectively.

A useful interpretation of a tangent vector can be done using the notion of tangent to

a curve on manifold.  Let C (t ): [a ,b]→M be a  smooth curve and f :M →= be a

smooth function on M, then C '
(t 0)=C t0

' becomes a tangent vector to M at C (t 0) and

derivative of f along C t 0

' defined as follows:
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C t0

'
[ f ]=

d
dt|t=t 0

=lim
t→t0

f (C (t))− f (C (t 0))

t−t 0

We denote the vector-covector pairing by ⟨u ,α⟩ for u∈T p M ,α∈T p
∗ M which is a

real number. Using vector-covector pairing we can have another interpretation of

derivative of a real-valued function f. The differential of f is a covector denoted by

df. Now we can write derivative of f along tangent vector X p as following:

⟨df , X p⟩=X p [ f ]

Suppose G :T p M ×T p M →= be  a  bilinear  map.  We  define  the  flat  map

G
♭
:T p M →T p

∗
M such that G(u , v )=⟨G

♭
(u) , v ⟩ .  Also the inverse of G

♭ denoted

by G
♯
:T p

∗
M →T p M called the sharp map. If G has a matrix representation denoted

by [G] then G
♭ will have exactly the same matrix representation. 

The union of all tangent (cotangent) spaces of  M denoted by T M  (T ∗ M ) called

the  tangent  bundle  (cotangent  bundle)  and  we  have  the  projection  map

π :T M →M ,  π( x , v )=x.  Tangent  and  cotangent  bundle  themselves  posses  the

structure of a differentiable manifold. Also if (x1 , x2 , ... , xn
) be a coordinate system

on M then (x1 , x2 , ... , xn , ẋ1 , ẋ2 , ... , ẋn) is a coordinate system on T M .

An (r,s) tensor on a manifold M at p is a multilinear map such that:

t p :T p
∗ M×...×T p

∗M⏟
r

×T p M×...×T p M⏟
s

→=

Let F : M →N be a smooth map, then F induces a linear map F ∗p: T p M →T F ( p) N

at p∈M between  tangent  spaces  of  M and  N called  the  differential  of  F.  If

X p∈T p M be a tangent vector of M, then F ∗p(X p) called the pushforward of X p

becomes  a  tangent  vector  of  N at  point  F(p) and  for  a  real  valued  function

f ∈C∞
(N ) we have the following equation:

F ∗p(X p)[ f ]=X p[ f ∘F ]

If C (t ): [a , b]→M be a smooth curve on M starting at C (0)= p with tangent vector

C ' (0)=X p then we have:

F ∗p(X p)=
d
dt|t=0

(F ∘C)(t )

7



Now let Y F ( p)∈T F ( p) N , then the map F p
∗:T F ( p) N→T p M defines pullback of Y :

(F ∗Y ) p=(F
−1
)∗F ( p)Y F ( p )

Also for a  (0,k) tensor t on N,  its pullback under F defined as below:

(F ∗ t)p(X p ,... , Y p)=tF ( p )(F ∗p X p ,... , F∗ pY p)

A vector field is an assignment of a tangent vector to each point of a manifold. A

smooth vector field X, is the one takes the following form in every coordinates:

X =X 1 ∂

∂ x1+X 2 ∂

∂ x2+...+X n ∂

∂ xn

where X 1 ,... , X n are smooth functions of p∈M at each point. The set of all smooth

vector fields on a manifold M denoted by X(M ) . Each vector field X associates to a

system of n first order differential equations on M which their solutions are called

integral  curves  of  X.  We  define  a  function ϕ : M×=→M such  that

ϕX (x , t)=ϕt
X (x )=ϕx

X (t) be the integral curve of  X starting at x∈M at time  t and

call it the flow of vector field X (we omit the superscript X when there is no chance

of confusion). The flow of a vector field has the following fundamental properties:

i. ϕ( x , 0)=x

ii. ϕ( x , t+s)=ϕt+s( x)=ϕ(ϕ(x ,t ) , s)=ϕ(ϕt( x) , s)=ϕs(ϕ t(x ))=ϕs ∘ϕt( x)

Let f be a real valued function on a smooth manifold M. The derivative of f along

integral curves of a vector field X, called the Lie derivative f with respect to X :

(ℒ X f )( x )=lim
t→ 0

f ∘ϕt− f
t

( x )=X x [ f ]

Note that X x [ f ] means the derivative of f  along X at x. For a curve γ( t ) :=→M ,

its time derivative γ ' ( t ) is a vector field on γ( t ) and we have:

d
dt|t=t0

f ( γ( t ) )=ℒ γ '(t 0 )
f

Using the definition of Lie derivative for real valued functions we can define Lie

derivative of a vector field. If X and Y are two vector fields on a manifold M, the Lie

derivative of Y with respect to X at x∈M is:

(ℒ X Y )( f )=lim
t→0

(Yf )∘ϕt−Yf
t

( x ) , p∈M  

Where Yf ( x)=(ℒ Y f )(x) .  Lie  derivative of  two vector  fields  is  another  vector

8



field itself on M denoted by [X,Y] called Lie bracket of X,Y. Let X ,Y∈X(M ) and

f , g∈C∞
(M ) then the following holds:

i. [ X , Y ]=−[Y , X ]

ii. [ X +Y ,Z ]=[ X ,Z ]+[Y , Z ]

iii. [ fX , gY ]= fg [ X , Y ]+ f (ℒ X g )Y−g (ℒY f )X

iv. [X , [Y , Z ]]+[Y , [Z , X ]]+[Z , [ X ,Y ]]=0

Let M be a smooth manifold. An affine connection on M assigns to each vector field

X of M an operator ∇ X :X(M )→X(M ) with following properties:

i. ∇ X (aY +bZ )=a ∇ X Y +b∇ X Z

ii. ∇ X ( fY )= f ∇ X Y +(Xf )Y

iii. ∇aX +bY Z=a ∇ X Z+b∇ Y Z

iv. ∇ fX (Y )= f ∇ X Y

where ∇ X Y called covariant derivative of Y with respect to X.

For a curve γ( t ) :=→M the integral curves of following differential equation called

the geodesics of affine connection ∇:

∇ γ' (t ) γ ' (t)=0

An (r,s) tensor field on  M is an assignment to each point p∈M an (r,s) tensor.  A

Riemannian metric G on manifold M is a (0,2) tensor field on M which is positive-

definite and symmetric which means that for X p ,Y p∈T p M we have:

i. G(X p ,Y p)>0

ii. G(X p ,Y p)=G(Y p , X p)

Manifold  M endowed with a  Reimannian metric  called a Reimannian manifold.

Such a manifold has the property that the metric is an inner product on tangent

space.

It's  proven  that  for  any  Reimannian  manifold (M ,G) there  exist  a  unique

connection  called  Reimannian  or  Levi-Civita  connection ∇
G

with  following

properties:

i. ∇
G

G=0
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ii. [ X , Y ]=∇
G

X Y−∇
G

Y X

Using the notion of a metric it is possible to define the gradient of a real valued

function. Let (M ,G) be a Reimannian manifold and f ∈C∞
(M ) then gradient of f

is a vector field defined as:

grad f =G
♯
(df )

2.2 Lie Groups and Lie algebras

A set G, which is closed with a binary operation - is a group if:

i. a-(b-c)=(a-b)-c for a , b , c∈G

ii. There  exist 1∈G called  Identity  element  of  group,  such  that

a-1=1-a=a for a∈G

iii. There  exist  a a−1
∈G for  every a∈G called  the  inverse  of  a where

a-a−1
=a−1-a=1

A Lie Group is a group which is also a smooth manifold at the same time where

group operation and inversion are smooth maps.

Tangent space at Identity element T 1G of a Lie group G, called Lie Algebra of  G

and denoted by g. An important example of Lie groups is the space of orthogonal

matrices  with  unit  determinant  with  matrix  multiplication  as  group  operation

denoted  by  SO(3)  and its  Lie  algebra  which  is  the  space  of  skew-symmetric

matrices, denoted by so(3) .

Let (G ,-) be a Lie group and g be its Lie algebra. For g ,h∈G and ζ ,η∈g we have

the following definitions:

i. For  every  group  element  the  maps Rg , Lg :G→G where Lg (h)=g-h and

Rg(h)=h- g are called left and right translations respectively.

ii. The Conjugation map I g :G→G defined as I g (h)=g-h- g−1 .

iii. The map Ad g :g→g defined as Ad g=( I g)∗1 called the adjoint map.

iv. A smooth vector field  X on  G called left-invariant (right-invariant) if it is

Lg−related (Rg−related) to  itself  which  means  that

Lg
∗ X=X   (Rg

∗ X =X ) .
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v. The  vector  fields ζ L=(Lg)∗1ζ  and ζR=(Rg)∗1ζ are  called  left  and  right-

invariant vector fields generated by ζ∈g .

vi. We define the adjoint operator ad ζ :g→g as ad ζη=[ζ L ,ηL](1) .

vii. The exponential  map exp :g→G defined by exp (ζ)=ϕ1
ζ L(1) ,  which  means

the flow generated by ζ L at t=1 and identity.

viii. An  affine  connection ∇ on  G  is  left-invariant  if  for  every  left-

invariant vector fields X and Y, ∇ X Y be a left invariant vector field.

A Lie algebra is  a vector  space  V with a binary operation called bracket  which

following properties hold for every u , v , w∈V :

i. [u , v ]=−[v , u ]

ii. [u , [v ,w ] ]+[v , [w , u ] ]+[w , [u , v ]]=0

The set of left-invariant vector fields of a Lie group G form a Lie algebra which Lie

algebra bracket is the Lie bracket defined on vector fields. It is proven that this Lie

algebra is isomorph to the Lie algebra of G defined above and we have :

[ζ ,η]=ad ζη=[ζ L ,ηL](1)

For a  Lie  group  G  and its  Lie  algebra g the  exponential  map has  the  following

properties :

i. For ζ∈g we have: exp (t ζ )=ϕt
ζ L(1).

ii. Lg ∘exp (t ζ)=ϕt
ζL( g) and Rg ∘exp( t ζ)=ϕt

ζ R( g) for g∈G and ζ∈g .

Every inner product I of Lie algebra induces a left-invariant Reimannian metric on

Lie group  G  denoted by GI . Also there exist a bilinear map ∇
g

:g×g→g such that

∇
G

ζ L
ηL=(∇

g

ζ η)L and the following equation holds:

∇
g

ζ η=
1
2
[ζ , η]−

1
2
I
♯(ad ζ

∗
I
♭
(η)+ad η

∗
I
♭
(ζ))

Now we present relations we will use latter in our development:

Lemma  2.1. ([12]  pg.175)  Let (G ,-) be  a  Lie  group.  We  define  two  maps

μ :G×G→G and  i :G→G called multiplication and inversion maps respectively,

such that: μ(g ,h)=g-h   ,  i( g)=g−1. Then the following relations hold for their

tangent maps:
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μ∗( g ,h)(X g ,Y h)=(Rh)∗g X g+(Lg)∗h Y h

 i∗g X =−(Rg−1)∗1(Lg−1)∗g X

Proof: Take a curve (C1(t) ,C2(t))=C : I→G×G which (C1(0) ,C 2(0))=(g ,h) and

(C1
'
(0) ,C 2

'
(0))=(X g ,0). Let f ∈C∞

(G) be an arbitrary real valued function. Then

for the tangent map μ∗( g ,h ):T g G×T h G→T g -hG we have:

μ∗( g ,h)(X g , 0) [ f ]=
d
dt|t=0

( f ∘μ∘C)( t )                                                  

=lim
t→0

( f ∘μ∘C)( t )−( f ∘μ∘C)(0)
t

=lim
t→0

f (C1( t)-C2(t ))− f (g-h)

t

=lim
t→0

f (C1( t)-h )− f (g-h)

t
      

=lim
t→0

f (Rh(C1(t)))− f (Rh( g ))

t
   

=
d
dt|t=0

( f ∘Rh∘C1)( t )                   

=(Rh)∗g X g [ f ]                              

For another curve C : I→G×G with C (0)=(g , h) and C '
(0)=(0,Y h) we can apply

the same procedure to get:

μ∗( g ,h)(0,Y h)=(Lg)∗hY h

If we add these two together from linearity of  tangent map we have the result:

μ∗( g ,h)(X g ,Y h)=(Rh)∗g X g+(Lg)∗h Y h

For second part we define the curve C : I→G which C (0)=g and C ' (0)=X g∈T g G,

we have:

μ((i ∘C ) , C)=1     ⇒    
d
dt|t=0

μ((i∘C ) ,C )=0

⇒      μ
∗( g−1 , g )( d

dt|t=0

(i∘C )(t) ,
d
dt|t=0

C (t))=0   

⇒      μ
∗( g−1 , g )(i∗g X , X )=0                                 
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⇒      (Rg )∗g−1i∗g X +(Lg−1)∗g
X=0                       

⇒      (Rg−1)∗1 (Rg)∗g−1 i∗g X=−(Rg−1)∗1(Lg−1)∗g
X

⇒      (Rg−1∘ Rg )∗g−1i∗g X=−(Rg−1)∗1(Lg−1)∗g
X    

Thus we have the following for differential of inversion map:

i∗g X=−(Rg−1)∗1(Lg−1)∗g X                                         ■

Lemma 2.2. ([1] pg.307 )Let G be a Lie group with η ,ζ∈g two vectors in its Lie

algebra. Take two curves γ : I →G and v : I →g on G and its Lie algebra respectively

where γ ' (t)  =  (Lγ (t ))∗1v (t ) then the following equations are true:

i. d
dt|t=0

Ad exp(ζ t )η  =  ad ζη

ii. d
dt
γ
−1
(t)  =  −(Rγ

−1
(t ))∗1 v (t)

iii. d
dt

Ad γ(t)η  =  Ad γ (t )[v (t ) ,η ]

Proof:  Take the flow of left-invariant vector field generated by ζ , then we have

ϕt
ζ L( g)=Lg (exp(ζ t)) . From properties of flow and exponential map we have:

 ϕt
ζ L( g)−1

∘ϕt
ζ L(g )=g   ⇒    ϕt

ζ L(g )−1(Lg ∘exp (ζ t ))=g   ⇒    ϕt
ζL( g)−1

=Rexp(−ζ t )

now we can apply the definition of adjoint operator and Lie derivative:

ad ζη   =  [ζL ,ηL](1)    =   (ℒ ζL
ηL)(1)   =  lim

t→0

(ϕ t
ζL)

∗
ηL−ηL

t
(1)

                              = lim
t→0

[(ϕt
ζ L)

∗
ηL ]1−η
t

                           

                              = lim
t→0

(ϕt
ζ L)∗exp(ζ t )

−1

(ηL )exp(ζ t )
−η

t
             

                              = lim
t→0

(Rexp(−ζ t ))∗exp(ζ t )

−1
(ηL)exp(ζ t )

−η

t
      

                             = lim
t→0

(Rexp(−ζ t ))∗exp(ζ t )

−1
( Lexp(ζ t ))∗1η−η

t
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                            =lim
t→0

[Rexp (−ζ t )Lexp(ζ t )]∗1η−η
t

             

                            =lim
t→0

Ad exp (ζ t)η−η

t
=

d
dt|t=0

Ad exp (ζ t)η

To prove (ii , iii) we can apply lemma 1.1:

d
dt
γ
−1
(t)  =  

d
dt

i(γ (t))                                                      

=−(Rγ
−1
(t ))∗1(Lγ

−1
(t ))∗γ( t )γ

'
( t)            

=−(R
γ
−1
(t ))∗1(Lγ

−1
(t ))∗γ(t )(Lγ( t ))∗1 v (t)

=−(Rγ
−1
(t ))∗1(Lγ

−1
( t )∘Lγ(t ))∗1 v (t)       

=−(R
γ
−1
(t ))∗1v ( t )                               

and finally for (iii) :

d
dt|t=t0

γ
−1
(t 0) γ(t)  =  μ

∗ (γ−1 (t 0) ,γ (t 0))
(0 ,γ(t 0))   

                   =(L
γ
−1
(t0 )
)∗γ(t 0)

γ
'
(t 0)

                                =(L
γ
−1
(t0 )
)∗γ(t 0)(Lγ (t 0))∗1v (t 0)

=v (t 0)

                   =
d
dt|t=0

exp(tv (t 0))

Note that we used the following relation:

d
dt|t=t0

Ad γ (t )η  =  
d
dt|t=t0

Ad γ(t0)( Ad
γ
−1
(t0) γ(t)

η)  =  Ad γ(t0)

d
dt|t=t 0

(Ad
γ
−1
(t 0)γ (t )

η)

knowing  that γ−1(t 0) γ( t)|t=t 0
 =  exp(tv (t 0))|t=0  =  1 and  using  part  (i)  result

follows:

d
dt|t=t0

γ
−1
(t 0) γ(t) η  =  

d
dt|t=0

exp( tv(t 0))η  = ad v(t0 )
η
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2.3 Simple Mechanical Systems

Historically the geometric mechanics dates back to the end of nineteenth century

and work of Poincare on three-body problem where he decided that the classical

framework for mechanics, based on theory of ordinary differential equations is not

enough to answer some of the important questions like stability of solar system. His

pioneering  work  then  continued  and  perfected  during  20th century  and  took  its

current shape, what we call geometric mechanics.

We know that  the  every orientation of  a  single rigid  body can be expressed  as

rotation of body-fixed frame with respect to a spetial frame which means that every

possible orientation of a rigid body in space is an element of SO(3). In a problem

that we only consider the orientation of rigid body, we say that our configuration

manifold is SO(3). If other than orientation, position of body frame with respect to

special frame is also important to us, every possible configuration of rigid body can

be expressed as a combination of a 3-dimensional vector and the orientation. In the

other words the configuration manifold of a rigid body with six degree of freedom

would  be SO(3)×=
3 .  Because SO(3) and =

3 are  both  smooth  manifolds  their

products also will be a smooth manifold. There is a nice way to write the elements

of this configuration manifold in matrix form. We define:

SE(3)={[ R r
01×3 1]|R∈SO(3) , r∈=3}

called the Special Euclidean Group. It can be proved that  SE(3) itself form a Lie

group with matrix multiplication and its lie algebra is:

se (3)={[ ω̂ v
01×3 1]|ω̂∈so(3) , v∈=3}

In the two cases above the configuration manifolds were Lie groups. This is not true

in general for every problem we study. Consider combination of n rigid bodies with

their own body-fixed frames and a spetial frame which the orientation and spatial

position of each rigid body is important to us. The configuration manifold of such a

problem is the space of all possible configuration of these rigid bodies which is:

(SO (3)×=)
n
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As product  of smooth manifolds (Lie Groups)   this  configuration manifold is  a

smooth  manifold  (Lie  Group).  In  real  cases  often  happens  that  the  permissible

configurations are evolve not in whole of this  configuration space but only in a

subspace of it, which might not be a Lie group.

Consider the kinetic energy of a single rigid body with mass m and inertia tensor J:

KE=
1
2
[ω̂T vT ][J 0

0 mI 3×3][ωv ]=
1
2
⟨ ⟨ω , J ω⟩⟩+

1
2

m⟨ ⟨v , v ⟩⟩

where ⟨⟨. , .⟩ ⟩ is the standard inner product of =3 . The matrix composed of inertia

tensor and mass of rigid body in relation above is positive definite and defines an

inner product on TSE(3) or a Reimannian metric on SE(3). This is true for general

case, where the total kinetic energy of system (sum of kinetic energy of every single

rigid  body  associated  to  the  system)  defines  a  Reimannian  metric  on  the

configuration manifold called the kinetic energy metric and we denote it by G. In

the other words if Q is the configuration manifold and u∈TQ , then we have:

KE ( p)=
1
2
G(u ,u )

Now in our system of n rigid bodies consider that the a-th rigid body is subject to

force and torques f a and τa while it has linear and angular velocities v a andωa . We

define a covector called the Lagrangian force F a∈T∗Q that satisfies the following

equation:

⟨Fa , ua⟩=⟨⟨ f a , va⟩⟩+⟨⟨ τa ,ωa ⟩⟩

Note that this Lagrangian force is a mathematical notion which is different from the

force in its Newtonian meaning. Then total external force acting on a system of  n

rigid bodies defined as:

F=∑
i=1

n

F a

Now consider a system of n rigid body with configuration manifold Q, the kinetic

energy metric G and total external forces F. Let V :Q→= be a potential function on

Q giving rise to a potential force field gard V. Also take a coordinate system on TQ

as (q1 , q2 , ... , qn , q̇1 , q̇2 ,... , q̇n) with (F 1 , F 2 , ... , F n) the coordinate expression of F.

Define a real valued function L :Q→= called Lagrangian as follows:
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L(q , vq)=KE (vq)−V (q)

Such a system called a simple mechanical system and following Euler-Lagrange

equation governs the motion of system:

d
dt (∂ L

∂ q̇i)−
∂L
∂ qi

=F i

If γ : I →Q be a solution of his equation then γ( t) also a solution to the following

equation:

∇
G

γ ' (t )γ ' ( t)=−grad (V )+G
♯
(F )

For the special case of an unforced system with no external force and no potential

field,  the  Lagrangian  becomes  the  kinetic  energy  of  system  and  solutions  of

unforced Euler-Lagrange equation are kinetic energy minimizers. In this case the

geometric equivalent of Euler-Lagrange equation becomes: 

∇
G

γ ' (t )γ ' ( t)=0

Which is the differential equation of geodesics associated with Reimannian metric

G . This makes sense because geodesics are minimizers of length and in this case

kinetic energy is a measure of length on configuration manifold.

Now take the following quantity called the total energy of system:

E=
1
2
G(γ ' (t) ,γ ' ( t))+V (γ(t ))

its time derivative proved to be:

dE
dt
=⟨F , γ ' (t)⟩

A  covector  field  F  called  a  dissipative  force  if ⟨ F ,γ ' ( t)⟩⩽0.  For  a  simple

mechanical system with dissipative forces the total energy is non increasing along

the solutions curves of equations of system.

Consider a simple mechanical system with a configuration manifold which is a Lie

group  G.  Let the kinetic energy metric GI be left-invariant (which is the case in

most  real  situations).  Then  there  exist  an  inner  product I on  Lie  algebra g that

generates the metric by left translation. Let { f i}i=0,... ,n be a basis for g∗and consider

a set of scalar functions {u i(t )}i=1 , ... , n, then every control force at point γ( t) can be
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written as

∑
i=1

n

ui(t )(L
γ−1 (t ))∗γ(t ) f i

Now if γ( t): I→G be a solution to equation of system then the governing equations

becomes:

∇
G

γ ' (t )γ ' (t)=−grad (V )+∑
i=1

n

ui( t)GI

♯ ((Lγ(t ))1
∗

f i)

Also if v ( t): I→g be a curve on g then this equation can be expressed on Lie algebra

as follows:

γ ' (t)=(Lγ (t ))∗1 v (t)

v ' (t)=I
♯
(ad v (t )

∗
I
♭
(v( t)))−(Lγ(t ))1

∗
grad (V )+∑

i=1

n

u i(t) I
♯( f i )

when  the  configuration  manifold  of  system  is  SE(3)  or  SO(3)  then  the v ( t)

represents the velocities resolved in body-fixed frame.

Let G be an n-dimensional space which means that at each point and obviously in 1

its tangent space is isomorphic to =
n .  Equations of a simple mechanical system

above are a set of  2n  first order differential equations and their solutions are two

curves γ( t)∈G and v ( t)∈g . So the solution of equations of system at each point

are the elements of the tangent bundle (γ(t) ,(Lγ (t ))∗1v (t ))∈TG . In the other words

the state space of mechanical control system above is TG.
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CHAPTER 3

TRACKING CONTROL ON LIE GROUPS

In this chapter based on the theory developed in [2], we will consider the problem

of trajectory tracking for a mechanical system whose configuration manifold is a

Lie group. This general approach allows the results to be applicable to any control

problem when the configuration manifold is a Lie group. Particularly problems of

tracking control for three degree of freedom rigid body (orientation control) and six

degree of freedom (orientation and position) are the same problems on two different

Lie groups which our results can be applied. 

3.1 Statement of Problem

Consider the following mechanical system on a Lie group (G ,-)and its Lie algebra

g:

γ ' (t)=( Lγ (t ))∗1v (t )                                                             

v ' (t)=I
♯
(ad v (t )

∗
I
♭
(v ( t)))−(Lγ( t ))1

∗
grad V +∑

i=1

n

ui (t)I
♯( f i )

             (3.1)

where

i. γ( t): I→G  is a curve on G representing the motion of system.

ii. v ( t): I→g  is another curve on g which is related to γ( t) by first equation.

In  case  of  rotational  motion  of  rigid  body, v ( t ) represents  the  angular

velocities resolved in body-fixed frame.

iii. Lγ(t ) represents the left translation action of the group.

iv. I is the inner product of g that generates the kinetic energy metric GI on G.

Every  inner  product  on  a  vector  space  associates  to  a  positive  definite
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matrix,  for example in case of 3-DOF rigid body the matrix representation

of I is the inertia tensor.

v. { f i } is the set of n covectors forming a base for g∗and the fact that n equals

to dimension of G, guarantees that the control system is fully actuated and

again in case of  3-DOF rigid body they associate to three unit vectors of

body-fixed frame.

vi. {u i} is the set of controls which is a set of n scalar functions.

vii. V  is the potential field like Earths gravity.

Consider  an  arbitrary  curve γd (t) : I→G and  suppose  there  exist  another  curve

v d (t) : I→g such that:

γ ' d (t )=(Lγd (t))∗1 vd (t)                                          (3.2)

Note that this relation put no constraint on the problem, since its a relation resulted

from geometry of space. To make it more clear, its similar to say that we have a

rigid body that its motion is fully controlled and it can perform arbitrary maneuvers

while it respects the kinematic rules of motion.

We  want  our  mechanical  system  described  above,  tracks  down  the  motion  of

mechanical system whose trajectory is γd (t) . It means that starting from any initial

conditions, γ( t) converges to γd (t) and the error between two trajectories remains

non-increasing at any time.

3.2 Reformulation of problem and tracking error dynamics

We define a tracking error function as following relation:

e (t )=γd ( t)- γ
−1
(t)                                             (3.3)

Notice that the group structure of G guarantees that always e (t)∈G . Now we use

the differential of multiplication map in Lemma 2.1 to compute time derivative of e:

d
dt|t=t0

e (t)=μ
∗(γd (t 0) ,γ

−1
(t 0))( d

dt|t=t0

γd ( t) ,
d
dt|t=t0

γ
−1
(t))

                                =(Rγ−1 (t 0))∗γd (t0 )

d
dt|t=t0

γd ( t)+(Lγd (t 0))∗γ−1
(t0 )

d
dt|t=t0

γ
−1
(t)
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Applying Lemma2.2 and from (3,1),(3,2) we have:

                                        =(R
γ−1 (t 0))∗γd (t0 )

(Lγd (t0))∗1 vd (t 0)−(Lγd (t 0))∗γ−1
( t0 )(R

γ−1(t0 ))∗1v (t 0)

                        =(R
γ−1 (t 0)

∘ Lγd (t0 ))∗1 vd ( t0)−(Lγd (t0 )
∘R

γ−1 (t0))∗1 v (t 0)

        =(Lγd (t0 ))∗γ−1
(t0) (Rγ−1(t0 ))∗1 (vd (t 0)−v (t 0))

                                       =(Lγd (t0 ))∗γ−1
(t0) (L

γ−1 (t 0)
∘Lγ(t0 ))∗γ−1

(t0 )
(Rγ−1(t0 ))∗1 (vd (t 0)−v ( t0))

                                        =(Lγd (t0 ))∗γ−1
(t0) (Lγ−1(t 0))∗1 (Lγ(t0))∗γ−1

(t0)(Rγ−1 (t0))∗1 (vd (t 0)−v (t 0))

                         =(Lγd (t 0)
∘ L

γ−1 (t 0))∗1(Lγ (t 0)
∘R

γ−1(t0))∗1 (vd (t 0)−v (t 0))

       =(Lγd (t 0)-γ
−1(t0))∗1 Ad γ (t 0)(vd (t 0)−v (t 0))

=(Le(t0))∗1 Ad γ(t0 )(vd ( t0)−v (t 0))   

new we define η : I →g such that:

η(t)=Ad γ(t )(vd (t)−v (t))                                         (3.4)

which gives the final result:

e ' ( t)=(Le(t))∗1η(t)

This  is  an  interesting  result  because  it  indicates  that  like γ( t) and γd (t)  the

derivative of tracking error we defined, related to a curve on g via pushforward of

left translation action. This is a necessary condition for every simple mechanical

system on a Lie group to satisfy that equation and because the second equation of

(3.1) is a controlled equation and it is possible to manipulate the right hand side of it

by choosing proper control functions, it is a sufficient condition too meaning that

the dynamic of our error function has the form of a simple mechanical system. To

complete our computation of error dynamics we need to calculate time derivative of

η :

d
dt|t=t0

η(t )=
d
dt|t=t0

Ad γ (t )(vd (t 0)−v (t 0))+Ad γ(t0 )

d
dt|t=t0

(vd (t )−v (t ))

By an application of Lemma 2.2 we have:

            =Ad γ (t 0)[v ( t0) , vd ( t0)−v (t0)]+Ad γ (t 0)(v ' d ( t0)−v ' (t 0))

 =Ad γ (t 0)[v ( t0) , vd ( t0)]+Ad γ(t 0)(v ' d ( t0)−v ' (t 0))
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 =Ad γ (t 0)(v ' d (t 0)−v ' ( t0)+[ v (t0) , vd (t 0)])          

Finally the equations of error dynamics take the following shape:

e ' (t )=(Le (t ))∗1η( t)                                    
η ' (t )=Ad γ(t)(v ' d (t )−v ' (t)+[v (t) , vd (t)] )

                        (3.5)

The state space of this system is the TG and states of system are in the form of pairs

(e (t) ,e ' (t)) . Equating the first of error equations above to zero results in η( t)=0

and from (3.4) we get vd ( t)=v( t)  and again form (3.2) and (3.1) γd ( t)=γ(t)  or

e (t)=1 . In the other words (1 ,0) is an equilibrium of error dynamics and when

error dynamics converges to this equilibrium point, in our mechanical system, the

trajectory  of  system  converges  to  the  reference  trajectory.  So  the  problem  of

trajectory  tracking  on  G boils  down  to  problem of  asymptotically  stabilize  the

(1 ,0)  equilibrium of system (3.5).

We propose the following feedback law:

∑
i=1

n

u i(t )I
♯ ( f i )=−I

♯
(ad v(t)

∗
I
♭
(v (t)))+(Lγ(t))1

∗
grad V +v ' d (t)+[v (t) , vd (t)]−Ad

γ
−1
(t )u

(3.6)

We will design the vector u∈g to achieve desired characteristics for error dynamics

but before that we need to introduce the notion of configuration error functions.

3.3 Basic Morse theory and configuration error functions

To continue with the construction of our feedback law we need some basic facts

from Morse theory. Let Ψ : M →= be a function defined on a manifold  M which

(x1 ,... , xn
)  is a coordinate system on it. We define its Hessian as following: 

HessΨ=(
∂

2
Ψ

∂ x1
∂ x1

∂
2
Ψ

∂ x1
∂ x2 … ∂

2
Ψ

∂ x1
∂ xn

∂
2
Ψ

∂ x2
∂ x1

∂
2
Ψ

∂ x2
∂ x2 ⋯ ∂

2
Ψ

∂ x2
∂ xn

⋮ ⋮ ⋱ ⋮

∂
2
Ψ

∂ xn
∂ x1

∂
2
Ψ

∂ xn
∂ x2 ⋯ ∂

2
Ψ

∂ xn
∂ xn

)
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It can be proved that the rank of this matrix is independent of choice of coordinates.

The set of all points of M where d Ψ=0 are called critical points of Ψ and they are

the set of extermum of Ψ . Let x0 be a critical point of Ψ and HessΨ(x0) be a non-

singular matrix, then we have the following:

i. If HessΨ(x0) be a positive definite matrix (negative definite matrix) then

x0 is a minimum (maximum) value of Ψ .

ii. If HessΨ(x0) has a combination of positive and negative eigenvalues then

x0 is a saddle point and the number of its negative eigenvalues called the

index of critical point x0.

A real valued function on a manifold M with non-singular Hessian at critical points

(or non-degenerate critical  points)  called a Morse function.  Its  been proven that

Morse functions exist on any compact connected manifold. Also critical point of a

Morse function are isolated points and each Morse function has only finite number

of them. A Morse function with minimum number of critical points called a perfect

Morse function. 

An infinitely differentiable Morse function, bounded from below and with unique

minimum at identity called a configuration error function. 

3.4 Local properties of closed loop tracking error dynamics

Let Ψ be configuration error function on G and consider its gradient vector field. In

feedback law (3.6) we choose following u:

u=−k η−(Le(t )−1)∗e(t )
grad Ψ

By closing the loop the tracking error dynamics (3.5) takes the following shape:

e ' (t)=(Le(t))∗1η(t)                                   

η ' (t)=−k η(t)−(Le (t )−1)∗e(t)
grad Ψ(e (t))

                      (3.7)

If we equate left hand side of this system to zero from first equation we get η=0

and from second equation we get grad Ψ(γ(t))=0 which means that equilibrium

points of this system are the pairs (e ,η)=(ci ,0) where c i is critical point of Ψ . 

Lyapunov's  indirect  method  makes  the  link  between  that  local  behavior  of  an

equilibrium  and  its  linearization.  If  the  linearization  of  system  around  an
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equilibrium possess only negative (positive) eigenvalues, then that equilibrium is a

stable node (unstable node) and if it has a mix of positive and negative eigenvalues,

then the equilibrium is a saddle point. 

To linearize (3.7) first we need to construct a coordinate system on G. It is known

that at identity the exponential map is a local diffeomorphism meaning that it is

infinitely  differentiable  and  has  a  continuous  inverse  making  it  a  chart  around

identity.  Now  consider  an  arbitrary  point  on  Lie  group  G,  knowing  that  left

translation and inversion maps are smooth, the functions exp∘Lg−1 and Lg ∘exp−1

are diffeomorphisms which defines a chart in a neighborhood of g. In what follows

we will use bold face fonts for coordinate expression of vectors which are column

vectors.

Let {∂/∂ x i}i=1,. .. , n be  the  standard  base  for T 1G≃g,  then  the  set

{(Le0
)∗1∂/∂ x i}i=1,. .. , n

becomes  a  base  for T e0
G .  Now  let  x=( x1 ,... , xn)T be  the

coordinates  of  a  point e∈G in  the  chart  we  defined  above  around e0 where

e0=(0 , ... , 0)T  and  η=(η1 ,... ,ηn
)

T be  the  exponential  coordinates  of η.  In  a

vicinity of e0 we can make the approximation that ė≈( ẋ1 , ... , ẋn
)

T and first dynamic

equation of (3.7) can be written in coordinates:

ẋ
i
(Le0

)∗1
∂

∂ xi≈η
i
(Le0

)∗1
∂

∂ x i

Note that we used summation convention here in up and down indices. So the linear

form of first equation becomes ẋ=η  where e=Le0
∘exp( x) .

Because we are interested in matrix Lie groups like SO(3), SE(3) or their subgroups

we can derive this linearization using exponential map of a matrix Lie group. Let G

be a matrix Lie group, then around a point e0 from first equation of (3.7) we have:

e (t)=e0 exp( x( t))=e0(I +∑
k=1

∞ 1
k !

x (t )k)
where x is the coordinates of e we defined above. Now we have to differentiate this

equation. Using the expression for differential of matrix exponential we have:
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e (t)η=e0
d
dt

exp( x( t))                      

                              =e0exp (x ( t))(∑k=1

∞ (−1)k−1

k !
ad x

k−1 ẋ)≈e (t) ẋ

Which is the same result for linearization of first dynamic equation.

For  the  second equation,  first  let  write  the gradient  of Ψ in  the coordinates  we

defined above:

grad Ψ( x)=
∂Ψ(x )

∂ xi (Le)∗1
∂

∂ x i

With this expression of gradient our dynamic equitation takes the following shape in

coordinates:

η̇
i ∂

∂ xi=(−k ηi
−
∂Ψ( x)

∂ x i ) ∂

∂ xi

This coordinate representation of second equation, is a dynamic equation on a linear

space and we can linearize it by simply taking its Jacobian. Let us place our origin

at one of the equilibrium points of system which we proved to be the points with

zero gradient. Taking Jacobian leads to:

η̇=−k I n×nη−[ ∂
2
Ψ( x)

∂ x i
∂ x j |

x=0
]x

note  that η  and x  are  column  vectors  and  the  matrix  of  second  derivatives  in

nothing  but  Hessian  of Ψ at  origin.  Result  of  this  discussion  is  that  around  its

equilibrium  points  and  in  the  coordinates  we  defined,  system  (3.7)  can  be

approximated  by  a  linear  system ż=A z where z=(xT ,ηT
)

T and  A has  the

following matrix description:

A=( 0 I n×n

−HessΨ(e0) −kI n×n
)  

Now we study the eigenvalues of this matrix. Let λ be an eigenvalue of this matrix.

Using the fact that the matrices at the second raw are commute we have:

| λ I n×n −I n×n

HessΨ(e0) (λ+k ) I n×n
|=|λ (λ+k ) I n×n+HessΨ(e0)|=0

Now let h be an eigenvalue of HessΨ(e0), the characteristic polynomial becomes:
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|−hI n×n+HessΨ(e0)|=0

comparing to the characteristic polynomial of A matrix above, we can see that each

eigenvalue h of HessΨ(e0) generates two eigenvalues of A according the equation

below:

λ (λ+k )=−h   ⇒   λ1=
−k+√k 2−4 h

2
,λ2=

−k−√k 2−4h
2

            (3.8)

We have chosen Ψ to be a configuration error function which means that it  is a

Morse function with a unique minimum at identity. We also know that equilibrium

points  of  system  (3.7)  are  critical  points  of Ψ,  which  makes  the  identity,  an

equilibrium with positive definite Hessian matrix. Positive definite hessian means

that every eigenvalue h, is a positive value and because k is also a positive value,

from (3.8) all the eigenvalues of A become negative values at identity. In the other

words the pair (1 ,0) is a stable equilibrium of error dynamics.

All the other critical points of Ψ are saddle or maximum points which means that

they are critical points with a Hessian with at least one negative eigenvalue. For

each negative h, equation (3.8) generates one positive and one negative eigenvalue

for A, which makes all the other equilibrium points saddles. 

3.5 Global behavior of equilibrium points

Now we study the attractiveness of the stable equilibrium in a global seance. We

want to determine what happens to trajectories of (3.7) if we start from an arbitrary

point on configuration manifold and with an arbitrary initial velocities? We also

proved that there exists a number of saddle points, which poses the question of how

their stable and unstable manifolds behave?

It is proven that on a compact manifold there exist no globally symbiotically stable

equilibrium[3].  Fortunately  almost-global  attractiveness  on  a  dense  subset  of

configuration manifold is achievable and we will prove it in this section. Also we

will show that the stable manifold of a saddle point is a nowhere dense subset of

configuration manifold.

We start with the following Lyapunov function:
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ψ(e (t) ,η(t))=Ψ(e (t))+
1
2
I(η(t) ,η(t ))                             (3.9)

Lets compute its time derivative:

ℒ e' (t)ψ(e (t) , η(t))=
d
dt
ψ(e (t ) ,η(t))                                                                  

= ⟨d Ψ(e(t )) , e ' (t)⟩+
1
2

d
dt

I(η(t) ,η(t ))

                                =G
I
(G♯

d Ψ(e (t)) , e ' ( t))+ 1
2
I (η ' (t) ,η(t ))+

1
2
I (η(t) ,η' ( t))

 =GI (grad Ψ(e (t )) , e ' (t))+I(η ' (t) , η(t))

                             =G
I (−(Le (t ))∗1 (η ' (t)+k η(t)) ,( Le(t ))∗1η( t))+I(η' ( t ) , η(t))

=I (−η ' (t)−k η(t) ,η(t ))+I (η ' (t) ,η(t ))

=−k I (η(t) ,η(t ))                                     

remember that I is an inner product on g, so we proved the following:

ℒ e' (t)ψ=−k‖η( t)‖
2
≤0                                      (3.10)

The negative time derivative shows that ψ is non-increasing along solutions of (3.7)

and vanishes at η=0 which previously we proved that, corresponds to equilibrium

points of system.

At this point let state LaSalle invariance theorem from [1]:

LaSalle Invariance Theorem: For X ∈X(M ), let A⊂M be compact and positively

X-invariant.  Let ψ∈C∞
(M ) satisfy ℒ X ψ≤0 in A and  let B be  the  largest

positively  X-invariant  set  contained  in {x∈A|ℒ X ψ=0}.  Then  the  following

statements hold:

i. each integral curve of X with initial condition in A approaches B as t→+∞.

ii. if B consists of a finite number of isolated points then each integral curve of

X with initial condition in A converges to a point of B as t→+∞.

The consequence of LaSalle's theorem is that on a compact configuration manifold

(which is  the case in most of practical applications) trajectories of system (3.7)

starting from any initial conditions, converge to one of the equilibrium points of

system.

A subset of a topological space called dense, if the union of its limit points and itself
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generate the whole space. For example the open interval (0,1) is not dense in =

because (0,1)∪{0,1}≠= but it is dense in close interval [0,1].

According to stable manifold theorem [22], at every equilibrium point of system

(3,7)  there  exists  immersed  submanifolds  called  stable  and  unstable  manifolds

which their dimension are equal to number of negative and positive eigenvalues of

linearization  at  that  point  respectively.  These  manifolds  represent  attracting  and

repelling  sets  of  each  equilibrium  and  one  consequence  of  the  fact  that  our

configuration error function is a Morse function is that they are and their union is

nowhere dense and complement of this nowhere dense set is open and dense. In the

other  words,  our  unique  stable  equilibrium  is  attractive  everywhere  on  the

configuration  manifold  except  on  a  nowhere  dense  set  which  makes  it  almost-

globally asymptotically stable.

3.6 Error dynamics on SO(3)

At this section we study the error dynamics in a special case when the configuration

manifold is the space of rotation matrices. Space of 3×3 orthogonal matrices with

unit  determinant is a Lie group called special  orthogonal group or  SO(3) which

represent the rigid rotations of three dimensional space. The Lie algebra of  SO(3)

denoted by  so(3),   is  the space of skew-symmetric  matrices.  Since every skew-

symmetric  matrix  can be represented by three real  numbers  we define  the map

.̂ :=3
→so (3) as follows:

v=(
x
y
z)⇔ v̂=(

0 −z y
z 0 −x
− y x 0 )

The .̂ and its inverse denoted by .∨:so (3)→=
3 are continues maps which establish

an  isomorphism  between =
3 and 3×3 skew-symmetric  matrices.  We  introduce  a

configuration error function on SO(3) as follows:

Ψ(e )=
1
2

Tr (G( I 3×3−e))

Note that e is rotation matrix,  G is a positive-definite matrix and Tr represents the

trace operator of a matrix. If v i be an eigenvector of G then the critical points of this
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function are the rotation matrices exp( lπ vi) where l is a whole number and at each

point e and each critical point e0 in standard basis of cotangent space (the one left-

translated from Lie algebra) we have:

d Ψ(e)=
1
2
(G e−eT G)

∨ , HessΨ(e0)=
1
2
(Tr (G e0) I 3×3−G e0)

We will prove these in the next chapter. Also left and right translation actions of

group, becomes left and right multiplication by rotation matrices in SO(3).

Our error dynamic equations take the following shape:

ė (t)=e . η̂(t)                                

η̇( t)=−k η( t)−
1
2
(G .e−eT .G)

∨
, e (t)∈SO (3) , η̂( t)∈s o(3)

First equation here is a differential equation on Lie group which has to be taken into

account during numerical computations. It means that algebraic constraints defining

orthogonality  needs  to  be  taken  into  account  in  order  to  get  valid  results  from

numerical  computations  which  in  this  case  means  a  system of  nine  differential

equations  coupled  with  six  algebraic  constraints.  A  solution  to  reduce  the

complexity of numerical computations is to use the unit quaternions. 

Consider  the  kinematic  equation Ṙ=RΩ where  R is  a  rotation  matrix  and

Ω=[ω1,ω2,ω3]
T and  let q=(q0 , q1 , q2 , q3)

T be  the  unit  quaternion.  Then  q

represents the following rotation matrix:

R=(
q0

2
+q1

2
−q2

2
−q3

2 2(q1 q2−q0 q3) 2(q1 q3+q0 q2)

2(q1 q2+q0 q3) q0
2
−q1

2
+q2

2
−q3

2 2 (q2 q3−q0 q1)

2(q1 q3−q0 q2) 2(q2 q3+q0 q1) q0
2
−q1

2
−q2

2
+q3

2)             (3.11)

computing its time derivative and equating it to RΩ gives the quaternion version of

kinematic equation:

(
q̇0

q̇1

q̇2

q̇3
)=1

2(
q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0
)( 0
ω1
ω2
ω3
)                          (3.12)

So we have a set of four differential equations with one algebraic constraint (the

unit norm), which is a huge advantage in terms of computational effort. 

Figure  1 indicates  the  graphical  version  of  tracking error  dynamic  equations  in
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Simulink environment. 

Take the following set of parameters:

G=( 25 0 −5√3
0 20 0

−5√3 0 15 ) , k=5

Consider the motion of a particle in earths gravity field subject to a dissipative force

like  air  friction.  The  second  equation  of  tracking  error  dynamics  has  two

components,  a gradient vector which can be compared to the gradient of height

function representing the potential energy and a dissipative part which drains out

the  kinetic  energy  from  system,  driving  it  to  the  equilibrium  points.  So  the

parameter k determines the damping speed of velocities and the other parameter G

controls  how  much  energy  stores  in  the  system  as  we  go  away  from  desired

equilibrium, to return it back to that point. 

The  first  simulation  is  the  case  when  the  system  starts  from  an  arbitrary

configuration  with  relatively  large  initial  velocities.  The  dissipative  part  of
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Figure 1: Tracking error dynamics equations in Simulink
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Figure 2:System starts with a big initial angular velocity
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Figure 3: System starts with zero initial angular velocity
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Figure 4: System starts from a saddle point
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controller reduces the velocities until system comes to rest at desired equilibrium

(Figure 2).

The second simulation is the case when system starts from an initial configuration

with zero initial velocities. The configuration error generates a big gradient vector

(like the potential energy stored in gravity field) which increases the velocity until

the system converges to its equilibrium point (Figure 3).

In final simulation the system starts from one of its saddle points with a very tiny

velocity. Without that tiny velocity we expect the system to remain in that saddle

point forever, while a small deviation from the saddle point caused by the initial

velocity push the system into the attractive set of stable equilibrium and after that

the trajectories of system flows towards the desired point (Figure 4).
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CHAPTER 4

ATTITUDE TRACKING CONTROL OF QUADROTOR

In  this  section  we  apply  the  controller  of  chapter  3  to  the  problem of  attitude

tracking control of a Quadrotor. The Quadrotors have been the subject of research in

recent years and there exist a wast literature on modeling, estimation and control of

them. Other than the practical applications, the control problem of Quadrotor is an

interesting one on its own specially that availability of them in reduced prices made

it  possible  to  test  complicated  rigid  body  control  algorithms  in  a  real

implementation  which  is  an  inspiration  to  consider  the  problem  of  controlling

complicated maneuvers.

The base of most  of the work done for controlling the Quadrotor  would be the

application of rotation angels or quaternions to model the kinematic and then using

linear control theory or Lyapunov methods to design stabilizing controllers ([16],

[18] for example) which as it explained in introduction, this parametrization can

lead to some problems during big attitude maneuvers. The theory we developed in

previous chapter encompasses the attitude control of a Quadrotor as a special case

which is the study of details of it is a task for current chapter.

4.1 Mathematical model of Quadrotor

Figure  5  illustrates  a  simplified  model  of  Quadrotor.  Orientation  of  a  vector

expressed  in  body frame  (fixed  in  center  of  mass)  is  related  to  its  orientation

expressed in inertial frame by a 3×3 rotation matrix R. So R determines orientation

of body frame with respect to inertial frame or we can say that configuration space

of problem is the space of 3×3 orthogonal matrices.
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Forces F 1 , F 2 , F3 , F4 generated  by  rotation  of  propellers  give  us  the  control

torques in  x and  y directions. Also the rotation of propeller in the air, produces a

reactive force which is tend to rotate the body around z axis and if we add four of

them generated by four  propellers,  it  gives  us  the control  torque  in  z direction.

Assume that  two opposite propellers rotates in same direction and the two other

rotates  in  opposite  direction.  Let u x( t) f x , u y (t) f y , uz( t) f z be  the  three  control

torques generated in this way where ua( t)'s are real valued functions called controls

and f a 's are three unit vectors in x,y,z direction of body frame, then they relate to

control forces with the following relation:

(
ux (t)
u y (t)
uz( t)

)=(
d 0 −d 0
0 d 0 −d
k −k k −k)(

F 1

F 2

F 3

F 4
)

where d is the distance from center of propeller to the center of mass of whole body
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Figure 5: A simple model of Quadrotor



and k is a constant related to aerodynamical properties of propellers. Also because

we placed our body frame in center of mass forces of earths gravity generates no

torques on rigid body so when we are dealing with attitude of rigid body we can

ignore the effect of gravity.

We know that the configuration manifold of the problem is the space of rotation

matrices denoted by  SO(3) which is a Lie group and its lie algebra, so (3) is the

space of skew-symmetric matrices.  Now let I be the inertia tensor of rigid body

which we denote  its  matrix  representation  by [I].  The  kinetic  energy of  system

becomes:

KE=
1
2
I(Ω ,Ω)=

1
2
[Ω]

T
[I][Ω]

where [Ω] is the coordinate representation of tangent vector Ω∈s o(3). Since [I] is

a positive definite matrix,  it  defines an inner  product on tangent space and that

generates  the  kinetic  energy  metric GI
on SO(3) which  has  the  same  matrix

representation as I and its inverse becomes [GI

♯
]=[I

♯
]=[I]

−1. Using the isomorphism

between so (3) and =
3 with .̂ we  can  write  matrix  version  of  left  and  right

translation  and  also  adjoint  operator  and  adjoint  map.  For

Ω1 ,Ω2∈so(3) ,α1 ,α2∈so
∗
(3) and R∈SO(3) we have the following relations:

i. adΩ1
Ω2=Ω̂1 .Ω2=Ω1×Ω2 ,

ii. ad α1

∗ α2=α̂2 .α1=α2×α1

iii. Ad RΩ1=R .Ω1

iv. (LR)∗Ω1=R . Ω̂1

note that A.B means the matrix multiplication of A and B which we will write it as

AB in the rest of this chapter and × is the cross product of vectors.

Now we can use equation (3.1) of a general mechanical system on a Lie group to

write the equations of Quadrotor. Let R(t) be the rotation matrix representing the

attitude at  time  t,  then there exist  a tangent vector Ω(t) called the body angular

velocity and we define it as Ω̂(t)=R(t) Ṙ(t) which actually is the physical vector of

angular velocity expressed in body frame and the following equations describe the
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motion of system:

Ṙ(t)=R (t)Ω̂ (t)                                               (4.1)

Ω̇(t)= J−1
(J Ω(t)×Ω(t))+ J−1U                              (4.2)

where U=(u x , uy , uz)
T and J=[I].  These  are  the  familiar  equations  of  rotational

dynamics of a rigid body which came out of our general equations of mechanical

system. Now we can apply the theory of chapter 3 to tracking control of this model.

4.2 A configuration error function on SO(3)

In this section we study the configuration error function we introduced in chapter 3

with following equation:

Ψ(R)=
1
2

Tr (G (I 3×3−R))                                           (4.3)

where  G is symmetric positive definite matrix. To compute grad Ψ remember the

chart we defined on a Lie group at each point using the exponential function and

left translation as R=R0 exp( x̂) and let denote by J 0 the Jacobian at zero, then:

[ grad Ψ(R0)]
T
=J 0Ψ(x )                                                                    

=
1
2

J 0(Tr(G−GR0−GR0∑
k=1

∞ 1
k !

x̂k))
               =−

1
2

J 0(Tr (GR0 x̂))−
1
2

J 0(Tr(GR0∑
k=2

∞ 1
k !

x̂k))
The second term composed of second or higher order terms and its Jacobian at zero

vanishes. Some direct computation shows the following result:

grad Ψ(R)=
1
2
(GR−RT G)

∨
=skew (GR)∨                           (4.4)

Note that this equation is the expression of a vector on tangent space at  R in the

base that is left-transelated from Lie algebra, so we have:

(LR−1)∗R grad Ψ(R)=skew(GR )∨

Now we compute the quaternion version of  these equalities.  Let  R  represents a

rotation with angle θ around a unit vector  n as the axis of rotation, then the unit

quaternion (q0 , q1 , q2 , q3)=(q0 , q) represents the same rotation and we have:
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R=I+2q0 q̂+2 q̂2 , q0=cos(θ2) , q=sin(θ2 )n

note that for simplicity we dropped the subscript from  I. Now we can compute

quaternoin version of Ψ and Ψ̇ as follows:

Ψ=−
1
2

Tr (G (2q0 q̂+2 q̂2
))                      

=−Tr (G q̂2
)=qT (Tr (G) I−G )q       

Ψ̇=q̇T (Tr (G) I−G )q+qT (Tr (G) I−G ) q̇

using (3.12) and some computation:

Ψ̇=(q0 I− q̂)(Tr (G) I−G)qΩ

which means that:

d Ψ=(q0 I−q̂)(Tr (G) I−G)q

Obviously q=0 gives us one critical point but to compute the other critical points of

Ψ we need to equate this to zero which results:

q̂(Tr (G) I−G)q=q0(Tr (G) I−G)q

This  means  that q0 is  an  eigenvalue  of q̂ with (Tr (G) I−G)q as  its  associated

eigenvector. Since q̂ is a skew-symmetric matrix, the only real eigenvalue of it is

zero and its associated eigenvector is q so for some real scalar k:

(Tr (G) I−G)q=k q   ⇒   G q=(Tr (G)−k )q

which means that q is an eigenvector of G too. So the rest of critical points of Ψ are

associate  with  the  quaternions (0,v i) which v i is  a  unit  eigenvector  of  G.  In  the

other words the expression exp (l π v̂ i) , l∈Z generates all of four critical points of

Ψ in the form of rotation matrices and since no Morse function on SO(3) can have

less than four critical points, Ψ is a perfect Morse function. 

As  an  example;  if  G is  chosen  to  be  diagonal  with  three  distinct  positive

eigenvalues,  then  the  following  three  vectors  form  an  orthonormal  set  of

eigenvectors of G:

v1=(
1
0
0) , v2=(

0
1
0) , v3=(

0
0
1)

and from the discussion above, the following four rotation matrices generated by

the exponential formula, are the set of critical points of Ψ :
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{(
1 0 0
0 1 0
0 0 1) , (

−1 0 0
0 −1 0
0 0 1) , (

1 0 0
0 −1 0
0 0 −1) , (

−1 0 0
0 1 0
0 0 −1)}

Other  than  identity  the  three  other  rotation  matrices  correspond  to  180  degree

rotations around x,y and z axes. 

Now  we  compute  the  Hessian  of  Ψ at  its  critical  points.  First  observe  that

according to (4.2) at a critical point R0, GR0=R0
T G . Using Rodriguez formula and

in coordinates defined by R=R0 exp( x̂) we have:

Ψ(x )=
1
2

Tr(G−GR0−GR0

sin‖x‖
‖x‖

x̂−GR0

1−cos‖x‖

‖x‖2 x̂2)                 

=
1
2

Tr (G−GR0)−
1−cos‖x‖

2‖x‖2 Tr (GR0 x̂2)                           

=
1
2

Tr (G−GR0)+
1−cos‖x‖

2‖x‖2 xT (Tr (GR0) I−GR0) x          

Taking Jacobian two times at origin gives the result:

HessΨ(R0)=
1
2
(Tr (GR0) I−GR0)                                   (4.5)

4.3 The tracking controller on SO(3)

Now  we  can  construct  the  tracking  controller  for  the  special  case  when  the

configuration manifold is the SO(3). Suppose we want to track the motion of rigid

body  with  the  kinematic  equation Ṙd=Rd Ω̂d .  The  tracking  error  becomes

e=Rd RT and from (3.4) and (3.5), η=R(Ωd−Ω) and  η̇=R(Ω̇d−Ω̇+Ω×Ωd) and

finally for the system described by equations (4.1) and (4.2) the feedback law (3.6)

takes the following shape:

J−1U =−J−1
(J Ω×Ω)+Ω̇d+Ω×Ωd+k (Ωd−Ω)+RT skew (GRd RT

)
∨     (4.6)

where U=(u x , uy , uz)
T and  note  that  we  took u=−kR (Ωd−Ω)−skew (G e)∨ in

(3.6). Figure 6 is an illustration of this controller in Simulink.

Using the same parameters for  G and  k as in our previous example in chapter 3,

Figure 7 illustrates how the taking controller successfully tracks down a reference
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Figure 6: Tracking controller in Simulink
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Figure 7: Tracking a reference trajectory (red)
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trajectory. 

Now let study how the tracking controller can stabilize a certain attitude in response

to external  forces.  Take the following inertia  matrix  of a  typical  Quadrotor  and

parameters:

J=(
5.6×10−3 0 0

0 5.6×10−3 0
0 0 8.1×10−3)   kg . m2   ,  G=( 45 0 −5√3

0 40 0
−5√3 0 45 )  ,  k=6

consider the case when Quadrotor is hovering with a certain heading angle and then

an external force causes an unwanted deviation in attitude. 

Simulation results shows that despite a big change in attitude which caused the craft

to flip over the tracking controller successfully maintained stability and returned the

Quadrotor back to the original attitude (Figure 8).

4.4 Application to a real life Quadrotor

So far we considered our Quadrotor and control system to be a perfect rigid body

without limitations in control forces and moments. To make more real simulations

we need to consider the imperfections of a real life implementation of such flying

object. 

Generally a Quadrotor has two separate parts of algorithms running in its on-board

computer  in  real  time,  an  estimation  algorithm  and  control  algorithms.  The

estimation  algorithm is  a  Kalman filter  or  a  nonlinear  observer  implemented  as

computer code that reads the unprocessed and noisy data form on-board sensors,

filter out the noise and other undesired contamination and compute the attitude in

the form of rotation angels or quaternions. However this attitude estimation is not

perfect and the computations always deviate from the real attitude to some extent

which  in  our  simulations  we  will  model  it  by  multiplying  the  attitude  with  a

bounded  random signal.  Also  because  computing  each  sample  of  attitude  takes

some time, there exist a delay between the real attitude and output of estimation

algorithm which might have significant effect on the control algorithm.

Another issue we have to  consider  to  achieve a more realistic simulation is  the

dynamic of motor and propeller. Most of quadrotrs use brushless DC motors with an

electronic drive system to control the speed and this motor connected to a propeller
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Figure 8: Rotation angles of system in response to external input
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which  its  shape  optimized  to  generate  maximum  trust  in  interaction  with

surrounding air at each rotational speed. The whole system of motor and propellers 

can be considered as one actuator system.

In [23] the nonlinear and adaptive control of a commercial Quadrotor studied. The

following table contains the parameters of such a Quadrotor:

Takeoff weight 480 g

Distance between motor axes (r) 34 cm

Thrust per Motor 0.05-3.5 N

Moment of inertia I xx , I yy=5.6×10−3 ; I zz=8.1×10−3
(kg .m2

)

k m 0.016 (m)

k n 5.7×10−8(N /rpm2)

Parameters of sample Quadrotor

 

The trust of each motor  F related to square of rotational speed withk n . Also the

propellers interact with air to produce a moment in body frame z direction which is

proportional to F with k m.

F=k n . n2   ,   M =k m . F

Assuming that total trust T t equally distributed among propellers, we can write the

relation between the trust of each motor and control moments in matrix form:

(
L

M
N
T t
)=(

0 −0.17 0 0.17
0.17 0 −0.17 0

−0.016 0.016 −0.016 0.016
1 1 1 1

)(
F1

F2

F3

F4
)

(
F 1

F 2

F 3

F 4
)=(

0 2.941 −15.16 0.25
−2.941 0 15.16 0.25

0 −2.941 −15.16 0.25
2.941 0 15.16 0.25

)(
L
M
N
T t
)

In [23], based on testbed data from manufacturer dynamic behavior of motor and 

propeller actuator modeled as ilustrated in Figure 9. This is a first order estimate of 
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actuator dynamic, with two different time constants for step-up (125 ms) and step-

down  (250  ms)  inputs.  Also  the  limitations  of  maximum  and  minimum  trust

considered using saturation blocks.

The control rule we introduced in (4.6) depend on an exact value of inertia tensor

which is not achievable by physical measurements and no mater how accurate our

instruments are, there exist a certain measure of uncertainty in the values we know

and  sensitivity  of  our  control  system  to  such  uncertainties  is  a  measure  of

robustness of system. To simulate such uncertainties let assume that we measure the

following inertia tensor with experiments:

J=(
4.0 0.3 0.5
0.3 4.0 0.6
0.5 0.6 7.0)×10−3      kg . m2

which is the inertia tensor we will set for our controller.

Figure 10 indicates the closed loop system using the tracking controller and the

model  of  Quadrotor  we described.  We choose  the  following parameters  for  our

tracking controller:

G=(
70 0 0
0 80 0
0 0 20)  , k=30

 Also a conservative estimate of 10 ms considered for delay in estimation system.

The limitations of control moments causes a slower convergence but finally the

tracking controller  tracks down the reference trajectory.  Also we expect that the

time constants of actuator dynamic limits the band width of tracking controller and 
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Figure 9: Approximation of motor and propeller dynamic as one actuator unit
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affects its ability to track very fast trajectories. Simulation results indicates a 

successful tracking for trajectories with frequency content, bounded to 8 Hz. 
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Figure 10: Tracking controller applied to model of Quadrotor
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Figure 11: Quaternions representing attitude (blue) and reference trajectory (red)
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Figure 12: Control forces generated by motors
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The next simulation indicates the capability of controller to maintain stability in

response to disturbances. 

Three pulse functions as indicated in Figure 13 acting on Quadrotor which is in

stable flight in a certain attitude and cause a fast undesired maneuvers which is tend

to destabilize the system. The singularity-free nature of tracking controller resulted

in a very rigid stability of original attitude and return the Quadrotor back to it after

three flip-overs.
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Figure 13: External disturbance moments
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Figure 14: Rotation angels in response to external input
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Figure 15: Control moments in response to external input
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Figure 16: Angular velocities in response to external input
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CHAPTER 5

CONCLUSIONS

This work seeks to answer the question of how one can define a feedback rule that

globally  stabilize  the  attitude  of  a  rigid  body.  To  achieve  global  properties  no

representation of attitude allowed and one has to work with the rotation matrices

directly. These rotation matrices belong to class of mathematical structures called

Lie groups, so instead of studying only rotation matrices we turned to the general

problem of tracking control on a Lie group. We defined a tracking error function on

a general Lie group and proved that the dynamic of this tracking error evolves on

the same Lie group and the tracking problem reduces to stabilizing one equilibrium

point of this error dynamic. We introduced the configuration error function, to be a

Morse  function  which  posses  the  property  that  the  nature  of  its  critical  points

completely determined by their hessian matrix. To stabilize the desired equilibrium

of error dynamic we chose a feedback rule to be the gradient of the configuration

error  function  and  by  linearizing  equations  of  error  dynamic  around  these

equilibrium points we proved that the nature of extermum of configuration error

function on being a minimum, maximum of saddle point determines the dynamic

behavior of equilibrium points of error dynamics in the sense that weather they are

stable, unstable of saddle points. Using LaSalle invariance theorem on a compact

Lie  group  we  proved  that  on  a  dense  subset  of  configuration  manifold  the

trajectories of system converge to the desired equilibrium point which is the best

possible result considering that global asymptotic stability in not possible in a non-

Euclidean space.

We computed the control rule in a special case of space of rotation matrices to be

able to apply it to rotational dynamic of a Quadrotor UAV. Numerical simulations of
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the ideal case without considering actuator dynamics or any other imperfection of a

real system, proved the validity of mathematical computations.  Finally based on

previous works, a model of real Quadrotor used for more real simulations. Other

than limitations imposed by delays of attitude estimation system or time constants

of actuator dynamics, the tracking controller perform its task perfectly in tracking

reference trajectory and stabilizing the rotational dynamics. 
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APPENDIX A

 ATTITUDE PARAMETRIZATION AND CONTROL

In this appendix we review some results regarding attitude parametrization and their

shortcomings when being used in controller design to achieve globally attractive

stabilizers.

The rigid body rotations in three denominational space in their geometric meaning

form a group and this group of rigid rotations has a representation as a matrix group

of 3×3 orthogonal matrices with unit determinant called special orthogonal group

or  SO(3). This means that there exist a one-one correspondence between physical

rotations of three dimensional Euclidean space and rotation matrices. The space of

rotation matrices also poses the structure of a three dimensional smooth manifold.

This means that at each point on this manifold, the tangent space has constant rank

of three or in the other words, at each point the angular velocity would be a three

dimensional  vector.  It  also  means  that  each  point  on  this  manifold  has  a

neighborhood around it and there exist a smooth function with continuous inverse

which maps that neighborhood to three dimensional Euclidean space (a chart). In

other words, three is the smallest number of independent variables that one needs to

represent the attitude locally.

Now let us ask the question if these three numbers are enough to identify every

single  attitude?  If  the  answer  is  positive  it  means  that  we  can  find  a  three

dimensional parametrization of attitude without singularity because singularities of

representations,  like rotation angles are  coming from the fact  that  those smooth

functions we mentioned above, are not well-defined at some points. It is proven that

such functions can not be found [13], or it is not possible to embed SO(3) in three

dimensional Euclidean space. It is also proven that the smallest n that SO(3) can be
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embedded  in =
n is  five  [13],  which  means  that  five  is  the  smallest  number  of

parameters that we need for a unique and singularity-free representation of attitude.

It is also proven that we need at least four overlapping charts to cover entire SO(3)

[25].

Unit quaternions among the common attitude parametrization are an exception in

the sense that they do not reside in an Euclidean space so they do not fit into our

discussion above. They provide a singularity-free parametrization of attitude but the

mapping  from  unit  quaternions  to  SO(3)  is  not  one-one  and  there  exist  two

quaternions for each physical rotation. This issue needs to be taken into account to

analyze global behavior of system when quaternions are involved in equations of

dynamical system subject to study. Since for every rotation q and -q represent the

same attitude, our dynamical system can be stable at one of them and unstable at the

other. Starting from an initial condition very close to unstable one the quaternion

dynamical system has a natural motion towards the stable point. In physical system

since we started from a point very close to desired attitude it is expected that system

with a small maneuver comes to rest at equilibrium point but the motion of system

in quaternion space can cause a huge maneuver of physical system before it ends up

at a point very close to the starting point [13]. By Lyapunov's definition of stability

this means the unsuitability of physical system while the quaternion system might

be  asymptotically  stable.  As  an  example,  consider  the  following  system  with

quaternion PD feedback from [16].
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Figure 17: Quaternion PD controller
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Figure 19: Starting from negative quaternions

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

φ ( Roll )

0 2 4 6 8 10
−1

−0.5

0

0.5

θ ( Pitch )

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ψ ( yaw )

0 2 4 6 8 10
0

1

2

3

4

5

6
|| x ||

 [-0.9999 , -0.0075591 , -0.0037796 , -0.011339]

[ -0.99999 , -0.0023905 , -0.0011952 , -0.0035857]

[ -0.999999 , -0.00075593 , -0.00037796 , -0.0011339]

Figure 18: Starting from positive quaternions
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The article claims to prove global asymptotic stability (Theorem 2). Let us see what

it means for physical system. To have a measure of closeness to equilibrium point

let us consider the norm of system state x=[ϕ ,θ ,ψ , p , q , r ]T which is composed

of rotation angels and angular velocities. 

As it can clearly be seen in Figure 18, as we get closer to the origin,the maximum of

norm  of  state  vector  gets  smaller  as  well.  Actually  according  to  definition  of

Lyapunov  stability,  we  can  make  the  norm of  state  vector  arbitrarily  small  by

getting close enough to origin. Now let us consider the negative of the same initial

quaternions which in physical system correspond to exactly the same attitudes. As it

is indicated in Figure 19 no matter how close we get to origin the maximum of state

vector  norm,  remains  greater  than  a  certain  value.  It  means  that  the  system is

unstable according to Lyapunov definition of stability.

Result of this discussion is that the two-one correspondence between quaternions

and rotations of rigid body leads to unwinding phenomenon and to make any claim

about  global  stability  properties  of  a  control  system involving  quaternions,  one

needs to consider this effect.
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