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ABSTRACT 

IMPLEMENTATION OF K-EPSILON TURBULENCE MODELS IN A TWO 

DIMENSIONAL PARALLEL NAVIER-STOKES SOLVER ON HYBRID GRIDS 

 

KALKAN, Onur Ozan 

M. S., Department of Aerospace Engineering 

Supervisor: Prof. Dr. İsmail H. TUNCER 

September 2014, 82 pages 

 

In this thesis, the popular k-ε turbulence model is implemented on a parallel, 2-

dimensional, explicit, density-based, finite volume based Navier-Stokes solver works on 

hybrid grids, HYP2D. Among the other versions available in the open literature, 

standard version of the k-ε turbulence mode is studied. Launder-Spalding and Chieng-

Launder wall functions are adapted to the turbulence model in order to investigate the 

effects of the strong gradients in the vicinity of the wall on the turbulence. In order to 

include the low-Reynolds-number effects near the wall Abid’s and Abe-Kondoh-

Nagano near wall models are also implemented. Flow over turbulent flat plate and RAE 

2822 airfoil are studied for validation of the implementation. After the results show that 

the implementation is successful according to experimental data and other numerical 

solutions, NACA 0012 airfoil is simulated at different flow conditions and the effects of 

turbulence model on the results are discussed. The ability of simulating the turbulent 

flow with accuracy is acquired to HYP2D solver.  

 

Key-words: Turbulence Modeling, k-ε Turbulence Model, Wall Functions, Turbulent 

Flows 
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ÖZ 

K-EPSİLON TÜRBÜLANS MODELLERİNİN HİBRİT ÇÖZÜM AĞLARINDA İKİ 

BOYUTLU PARALEL NAVIER-STOKES ÇÖZÜCÜSÜNE EKLENMESİ 

 

KALKAN, Onur Ozan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. İsmail H. TUNCER 

Eylül 2014, 82 sayfa 

 

Bu tez çalışmasında, popüler bir türbülans modeli olan k-ε türbülans modelinin paralel, 

2-boyutlu, açık, yoğunluk tabanlı, sonlu hacimler temelli bir Navier-Stokes çözücüsüne 

(HYP2D) eklenmesi gerçekleştirilmiştir. Literatürde farklı versiyonları da bulunan k-ε 

türbülans modelinin standart versiyonu ile çalışılmıştır. Duvar kenarındaki çok yüksek 

değişimlerin türbülans üzerine etkilerini incelemek için Launder-Spalding ve Chieng-

Launder duvar fonksiyonları modele adapte edilmiştir. Ayrıca, düşük Reynolds 

sayılarının duvar etrafındaki akışa etkilerinin incelenmesi için Abid ve Abe-Kondoh-

Nagano duvar modelleri çözücüye eklenmiştir. Türbülanslı düz plaka ve RAE 2822 

kanat profili üzerindeki akış için analizler yapılarak sonuçlar deneysel veriler ve daha 

önce doğrulanmış popüler bir akış çözücüsünden elde edilen sonuçlarla karşılaştırılarak 

doğrulanmıştır. Son olarak, NACA 0012 kanat kesitinin etrafındaki akış farklı akış 

koşulları için modellenmiş ve türbülans modellerinin sonuçlar üzerindeki etkileri ve 

türbülansın kanat etrafındaki akışa etkileri tartışılmıştır. Bu çalışma ile HYP2D 

çözücüsüne türbülanslı akışları da çözebilme yeteneği kazandırılmıştır.   

 

Anahtar Kelimeler: Türbülans modelleme, k-ε Türbülans Modeli, Duvar Fonksiyonları, 

Türbülanslı Akış 



vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Deniz 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

ACKNOWLEDGMENT 

I would like to express my deepest thanks and gratitude to Prof. Dr. İsmail H. TUNCER 

for his supervision, understanding, goodwill and great guidance. 

I also would like to thank TÜBİTAK for supporting this study under the BİDEB-2211 

program. 

I specially would like to thank my wife Deniz BİKE KALKAN. She always encouraged 

me when I felt desperate about this study. I am very grateful for her great love, constant 

encouragement and endless support during this difficult period of my life. 

I would like to thank my wonderful family who supported and encouraged me at every 

moment of my whole life.  

  



ix 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................. V 

ÖZ ........................................................................................................................... VI 

ACKNOWLEDGMENT ...................................................................................... VIII 

TABLE OF CONTENTS ........................................................................................ IX 

LIST OF TABLES .................................................................................................. XI 

LIST OF FIGURES ............................................................................................... XII 

LIST OF SYMBOLS ........................................................................................... XIV 

1 INTRODUCTION ................................................................................................ 1 

1.1 CHARACTERISTICS OF TURBULENCE .............................................................. 2 

1.2 TURBULENCE MODELING ............................................................................... 2 

1.2.1 Algebraic Models ............................................................................ 3 

1.2.2 One-Equation Models ...................................................................... 4 

1.2.3 Two-Equation Models ..................................................................... 4 

1.2.4 Large Eddy Simulation .................................................................... 5 

1.2.5 Direct Numerical Simulation ........................................................... 6 

1.3 OBJECTIVE OF THE THESIS ............................................................................. 6 

2 GOVERNING EQUATIONS ............................................................................... 7 

2.1 CONSERVATION EQUATIONS .......................................................................... 7 

2.2 REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS ................................... 9 

2.3 K-Ε TURBULENCE MODEL EQUATIONS ......................................................... 10 

3 SOLUTION ALGORITHM ............................................................................... 15 

3.1 NON-DIMENSIONALIZATION ......................................................................... 15 



x 

3.2 DISCRETIZATION OF RANS EQUATIONS ...................................................... 18 

3.2.1 Discretization of Inviscid Fluxes................................................... 22 

3.2.2 Discretization of Viscous Fluxes................................................... 24 

3.2.3 Temporal Discretization ................................................................ 27 

3.3 DISCRETIZATION OF K-Ε TURBULENCE MODEL EQUATIONS ........................ 29 

3.4 BOUNDARY CONDITIONS….. ....................................................................... 31 

3.4.1 Far-Field Boundary Condition ...................................................... 31 

3.4.2 Wall Boundary Condition ............................................................. 33 

3.5 PARALLEL COMPUTATIONS… ...................................................................... 35 

4 MODELING NEAR WALL REGION .............................................................. 37 

4.1 PHYSICS NEAR THE WALL ............................................................................ 38 

4.1.1 Viscous sub-layer .......................................................................... 39 

4.1.2 Fully Turbulent Region ................................................................. 40 

4.1.3 Buffer Layer .................................................................................. 42 

4.2 LAW-OF-THE-WALL………. ........................................................................ 42 

4.3 WALL FUNCTION APPROACH ....................................................................... 43 

4.4 NEAR WALL MODELING APPROACH ............................................................ 46 

4.4.1 Abid’s k-ε Turbulence Model ....................................................... 46 

4.4.2 Abe-Kondoh-Nagano Turbulence Model...................................... 47 

5 RESULTS AND DISCUSSIONS ...................................................................... 49 

5.1 VALIDATION OF THE SOLVER ....................................................................... 49 

5.1.1 Turbulent Flat Plate Solutions ....................................................... 49 

5.1.2 RAE 2822 Airfoil Solutions .......................................................... 55 

5.2 NACA 0012 AIRFOIL APPLICATION ............................................................ 68 

6 CONCLUSIONS ................................................................................................ 77 

6.1 FUTURE WORKS ........................................................................................... 78 

REFERENCES ....................................................................................................... 79 



xi 

LIST OF TABLES 

TABLES 

Table 2.1. k-ε Turbulence Model Coefficients ............................................................... 13 

Table 4.1. Damping functions for Abid’s Model ............................................................ 46 

Table 4.2. Damping functions for AKN Model .............................................................. 47 

Table 5.1. Flow Conditions over for the Turbulent Flat Plate Case ............................... 49 

Table 5.2. Flow Conditions for RAE 2822 Airfoil Simulations ..................................... 56 

Table 5.3. Flow Conditions for NACA 0012 Airfoil Simulations .................................. 68 

Table 5.4. CPU Times on Parallel Computations ........................................................... 75 

  



xii 

LIST OF FIGURES 

FIGURES 
 
Figure 1.1. RANS Simulations Reported in ASME Journal of Fluids Engineering[18] ... 5 

Figure 3.1. Coordinate Rotation for Flux Calculation ..................................................... 21 

Figure 3.2. Components of Surface Vector in Cartesian Coordinate System .................. 22 

Figure 3.3. Far-Field Inlet Boundary ............................................................................... 31 

Figure 3.4. Far-Field Outlet Boundary ............................................................................ 32 

Figure 3.5. Wall Boundary............................................................................................... 34 

Figure 4.1. Laminar and Turbulent Shear in near-wall region [29] ................................. 39 

Figure 4.2. Near-wall variations of flow properties [29] ................................................. 40 

Figure 4.3. Fully turbulent region variations of flow properties [29] .............................. 41 

Figure 4.4. Log law of the Wall [4] ................................................................................. 42 

Figure 4.5. Variation of Variables in the Wall Adjacent Cell, Chieng-Launder Model .. 45 

Figure 5.1. Grid Generated for Turbulent Flat Plate Case ............................................... 50 

Figure 5.2. Near-Wall Grid Resolutions for Wall Functions and LRN Models .............. 51 

Figure 5.3. Velocity Profile in the Boundary Layer at x=0.4 (LRN Models) ................. 51 

Figure 5.4. Velocity Profile in the Boundary Layer at x=0.4 (Wall Functions) .............. 53 

Figure 5.5. Skin Friction Coefficient over the Flat Plate (LRN Models) ........................ 54 

Figure 5.6. Skin Friction Coefficient over the Flat Plate (Wall Functions) ..................... 55 

Figure 5.7. Grid Independency Study for RAE 2822 Simulations .................................. 57 

Figure 5.8. Grid for RAE 2822 Simulations .................................................................... 58 

Figure 5.9. Comparison of Mach Contours-Abid’s Model .............................................. 59 

Figure 5.10. Comparison of Mach Contours-AKN Model .............................................. 59 

Figure 5.11. Comparison of Mach Contours-Wall Function ........................................... 60 

Figure 5.12. Comparison of Turbulence Kinetic Energy Contours-Abid’s Model ......... 61 

Figure 5.13. Comparison of Turbulence Kinetic Energy Contours-AKN Model ............ 61 



xiii 

Figure 5.14. Comparison of Turbulence Kinetic Energy Contours-Wall Function ........ 62 

Figure 5.15 Comparison of Turbulent Viscosity Contours-Abid’s Model ..................... 63 

Figure 5.16. Comparison of Turbulent Viscosity Contours-AKN Model ...................... 63 

Figure 5.17. Comparison of Turbulent Viscosity Contours-Wall Function.................... 64 

Figure 5.18. Boundary Layer Velocity Profile over RAE 2822 at x/c=0.404 ................ 65 

Figure 5.19. Boundary Layer Velocity Profile over RAE 2822 at x/c=0.574 ................ 65 

Figure 5.20. Boundary Layer Velocity Profile over RAE 2822 at x/c=0.750 ................ 66 

Figure 5.21. Boundary Layer Velocity Profile over RAE 2822 at x/c=0.900 ................ 66 

Figure 5.22. Pressure Coefficient Distribution over RAE 2822 ..................................... 67 

Figure 5.23. Skin Friction Coefficient Distribution at the Upper Surface of RAE 2822 67 

Figure 5.24. Sketch of NACA 0012 Airfoil .................................................................... 68 

Figure 5.25. Mach Number Contours around NACA 0012 ............................................ 69 

Figure 5.26. Mach Number Contours around NACA 0012 ............................................ 69 

Figure 5.27. Turbulence Kinetic Energy Contours around NACA 0012 ........................ 70 

Figure 5.28. Turbulence Kinetic Energy Contours around NACA 0012 ........................ 71 

Figure 5.29. Turbulent Viscosity Contours around NACA 0012 ................................... 72 

Figure 5.30. Turbulent Viscosity Contours around NACA 0012 ................................... 72 

Figure 5.31: Lift and Drag Coefficients for NACA 0012 ............................................... 73 

Figure 5.32. Pressure Coefficient Distribution over NACA 0012 .................................. 74 

Figure 5.33. Parallel Speedup Performance of HYP2D .................................................. 76 

Figure 5.34. Parallel Efficiency of HYP2D .................................................................... 76 

  



xiv 

LIST OF SYMBOLS 

a   speed of sound 

B   empirical log-law constant ( 5 ) 

CFL  Courant-Friedrichs-Lewy number 

1c    turbulence model constant ( 1.44 )  

2c     turbulence model constant( 1.92 ) 

c
  turbulence model constant ( 0.09 ) 

pc   specific heat of fluid at constant pressure 

E   empirical log-law constant ( 9.793 ) 

Te   total energy of fluid 

   dissipation rate of turbulence kinetic energy 

F   convective flux 

Bf


  body forces 

G   viscous flux 

k   turbulence kinetic energy 

K   thermal conductivity of fluid 

lK   laminar (molecular) thermal conductivity of fluid 

tK   turbulent thermal conductivity 

   von Karman constant ( 0.41 ) 

L    characteristic length 

M   Mach number 

Mt   turbulent Mach number 

ns    time level 

p   fluid pressure 

Pr  Prandtl number 



xv 

Prt   turbulent Prandtl number 

   any flow variable 

   source term of turbulence 

Q   flow variables 

Q   spatial difference of flow variables 

R   residual 

Re  Reynolds number 

q

   heat transfer rate at the boundaries 

ijS   strain rate tensor 

t    time 

t   time step size 

T   temperature of fluid 

w   wall shear stress 

u    x-component of fluid velocity 

u   friction velocity 

V


  velocity vector 

v    y-component of fluid velocity 




  stress tensor 

k   turbulent Prandtl number for turbulence kinetic energy 

   turbulent Prandtl number for dissipation rate of turbulence kinetic energy 

ij   shear stress tensor 

   fluid viscosity 

l   laminar (molecular) viscosity of fluid 

t   turbulent viscosity 

ij   Kronecker delta 

γ  specific heat ratio 

ρ  density 



xvi 

 

   control volume 

S   face of the control volume 

 

Subscripts: 

    free stream value 

B    value at the boundary cell center 

eff    effective 

j    face value 

L    left state value 

norm  normal to face 

P    value at the computational cell center 

R   right state value 

t    turbulent value 

tang  tangent to face 

 

Superscripts: 

'    fluctuating value 

*   non-dimensional value 

ns    value at time step ns  

    non-dimensionalized values near the wall   



1 

CHAPTER 1 

1 INTRODUCTION 

INTRODUCTION 

Computational Fluid Dynamics (CFD) plays a key role in technological development of 

the industry. In particular, the design departments of the aerospace companies and 

institutes use CFD as an essential tool both for optimized flying structures and for 

routine applications. The rapid development of computer technology, in terms of 

accessibility of the ability to program any kind of application even on smart phones and 

the power that the processors have been gaining, provides the CFD community solving 

the most complex problems in fluid flow. Just remembering the words of Sir Horace 

Lamb at a meeting of British Association in London, 1932 [1], the most complex 

phenomenon in fluid dynamics can be realized: “I am an old man now, and when I die 

and go to heaven there are two matters on which I hope for enlightenment. One is 

quantum electrodynamics, and the other is the turbulent motion of fluids. And about 

former I am rather optimistic.” Fortunately, the developing computer technology helps 

the scientists and engineers to understand the main properties of turbulent motion of 

fluids. In the very near future, people may find answers for the big questions about 

turbulence even they are alive. 

The most of the flows are turbulent in aerospace applications. Therefore, efforts have 

been spent for many years in order to deal with the solution of turbulence which entirely 

affects the properties of flow. However, the models developed for approximating the 

physical properties and behaviors of turbulence have not achieved to be accepted by 

most of the fluid mechanics society. An ideal model development studies capturing the 

physics of the turbulence without much complexity are still conducted all over the 

world, even though some models are more popular. 
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This study is mainly focused on implementation of one of these popular turbulence 

model to a finite volume based CFD solver developed for 2D hybrid grids (Structured + 

unstructured), which is called HYP2D. 

1.1 Characteristics of Turbulence 

Turbulence is a word which cannot be defined properly in dictionary. Therefore, the 

pioneer of the turbulence research become an important guide for defining the term, 

turbulence. In 1937, G.I. Taylor and T. von Karman stated that [2]“Turbulence is an 

irregular motion which in general makes its appearance in fluids, gaseous or liquid, 

when they flow past solid surfaces or even when neighboring streams of the same fluid 

flow past or over one another.” 

Another definition of turbulence is made by Hinze [3]:“Turbulent fluid motion is an 

irregular condition of flow in which the various quantities show a random variation 

with time and space coordinates, so that statistically distinct average values can be 

discerned.” 

From these definitions the main characteristics of the turbulence can be derived as the 

randomness in time and space, irregularity and deterministic feature of average values. It 

can also be added that turbulence is essentially three dimensional because of the 

structures of the vortices which generate the turbulence. Another important 

characteristic of turbulence is that it is not a property of fluid but fluid flow [4].  

1.2 Turbulence Modeling 

Çıray [5] puts the reason of the need for modeling the turbulence as insufficient 

knowledge about it. Because of the inherently chaotic characteristic of turbulence, there 

is no unique or general model which approximates the essence of physics of turbulence. 

Indeed, it is seen that in order to find the Reynolds stresses by using Navier-Stokes 

equations one needs to solve infinite number of equations for infinite number of 

variables. Therefore, the only solution is to develop models specific to the flow problem 
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and considering the relevant flow variables. Many models have been developed with 

many specific assumptions related to the problem. However, most of them are usually 

not applicable when the flow properties or the assumptions change. 

The main target of turbulence modeling is to model the Reynolds stresses. The first 

approach was the Boussinesq’s model [6] proposed in 1877 in which the Reynolds 

stresses are defined by a relation similar to Newton’s tangential (shear) stress equation. 

In this hypothesis, Boussinesq assumed that Reynolds stresses are governed by a 

turbulent viscosity or eddy viscosity which is supposed to be constant. 

The second historical step to model Reynolds stresses are developed by G.I. Taylor [7] 

and L. Prandtl [8], separately, in 1915 and 1925, respectively. This model is called as 

mixing length model. In this approach, a physical model or a paradigm for the behavior 

of turbulence is assumed. Thus, this method is a phenomenological model. Mixing 

length model is a semi-empirical model for which a closure constant is determined by 

experiments and proper calibration. 

The third important step is triggered by the development of CPUs. The “equation 

models” with too many variations are born to resolve to Reynolds stresses appearing in 

the Reynolds-Averaged Navier-Stokes Equations (RANS). Direct Numerical Simulation 

(DNS) for limited size of flow domain is performed for unsteady Navier-Stokes 

equations in order to realize the turbulence behavior. The weakness of all other models 

in predicting the large eddies are minimized with the help of Large Eddy Simulation 

(LES) model. This model is still more promising approach in order to solve turbulent 

flows with a relatively satisfactory precision. 

1.2.1 Algebraic Models 

Algebraic models are based on the mixing length model. Smagorinsky (1963) [9], 

Cebeci and Smith (1967) [10] and Baldwin and Lomax (1978) [11] proposed different 

approaches to the relationship between mixing length of turbulence and eddy viscosity. 
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Although Cebeci-Smith and Baldwin-Lomax models provide mixing length 

specifications that yield quite accurate results for attached boundary layer flows, the 

mixing length property is to be specified and heavily geometry-dependent. 

1.2.2 One-Equation Models 

One-Equation Models are called after the number of additional differential equations to 

be solved in order for modeling eddy viscosity. The first successful model is proposed 

by Bradshaw, Ferriss and Atwell (1967) [12]. After many years, some renewed interest 

in one-equation models have been shown by Baldwin and Barth(1990) [13] and Spalart 

and Allmaras(1992) [14]. Spalart-Allmaras model becomes very popular for the solution 

of turbulent flows in aerodynamics.  

1.2.3 Two-Equation Models 

The first two-equation model proposed by Kolmogorov (1942) [15] was the k-ω model, 

nevertheless it remained in obscurity until the use of computers. However, Launder, 

Jones and Spalding (1972) [16-17] made the most important contribution to the 

development of two-equation models, representing the k-ε model. This model is still the 

most popular turbulence model used in engineering application which is proved by an 

informal survey conducted over the ASME Journal of Fluids Engineering publications 

between 2009 and 2011 [18], see Figure 1.1. As it can be seen more than one half of 

these papers, different versions of the k-ε model are applied. 
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Figure 1.1. RANS Simulations Reported in ASME Journal of Fluids Engineering, 2009-

2011 [18] 

The efforts spent for k-ω model are also noteworthy. Wilcox [19] has contributed the 

further development of this model. 

1.2.4 Large Eddy Simulation 

Larger, three dimensional, unsteady turbulent motions which are geometry dependent, 

anisotropic and containing most of the energy are directly represented (computed 

explicitly), whereas the effects of smaller scale motions (which have more or less 

universal character) are modeled. There are four conceptual steps in Large Eddy 

Simulation (LES). The first is the filtering of Navier-Stokes equations in order to divide 

the properties into filtered (resolved) and sub-grid-scale (SGS) component. The second 

is the deriving the governing equations for the filtered component from Navier-Stokes 
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equations. Then SGS stress tensor is modeled to include the effect of small scale eddies. 

Finally, the filtered equations are solved.  

1.2.5 Direct Numerical Simulation 

In Direct Numerical Simulation (DNS), there is no need to model the turbulence since 

Navier-Stokes equations are solved numerically. Therefore, turbulence is directly solved 

for its whole range of time and length scales. In order to resolve even the smallest 

dissipative eddies (Kolmogorov scale) the computational grid should be adopted to be 

consisted of the length smaller than Kolmogorov scale. Therefore, DNS is still an 

expensive method for most of the flow problems. 

1.3 Objective of the Thesis 

The aim of this study is implementing a two-equation eddy viscosity turbulence model, 

k-ε model, to a parallel, two-dimensional, explicit, collocated finite volume solver for 

hybrid grids, HYP2D. Since, it is still the most popular model in turbulence community, 

k-ε turbulence model is preferred. 

For the solution of the most critical phenomenon encountered in turbulent flows, near-

wall effects, a numerically stable, computationally cheap and fast in convergence model 

is applied. So-called wall function approach avoids the very fine grid resolution near the 

wall region which makes this model attractive for engineering applications. In addition, 

two low-Reynolds-Numbers near-wall models (Abid [38] and Abe-Kondoh-Nagano 

[39]) are implemented for the comparison of wall functions and near-wall models.  

The validation of the implementation is performed by comparing the results with the 

experiments and other numerical simulations.  
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CHAPTER 2  

2 GOVERNING EQUATIONS 

GOVERNING EQUATIONS 

In this chapter, the general governing equations which describe the turbulent fluid 

motion are represented.  

2.1 Conservation Equations 

Laws of nature can be defined under three main laws: basic laws which are valid for 

systems and independent of substance and coordinate system, conservation laws, and 

subsidiary laws which are applicable only for a given substance and also particle 

dependent. There are mainly two ways of studying the laws of nature: following the 

system and control volume approach. The most common way, however, is transforming 

from system to the control volume by using Reynolds transport theorem [20]. The 

change in any property of the system with time can be expressed by the time rate of 

change of the property in a volume that the system has occupied at any time (control 

volume) and the net flux through the surface of this control volume at that time. 

Therefore, the conservation laws can be written for any control volume. 

The conservation of mass for a control volume  , is described as follows: 

 0
S

d V dS
t

 



  

  
 
   (2.1.1) 

where S  is the surface of control volume  (control surface),  is density of fluid, V


is 

the velocity of fluid and dS


is an infinitesimal control surface vector. 

Similarly, the conservation of linear momentum becomes: 
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   B

S S

Vd V V dS f d dS
t

  
 


    

    
      
    (2.1.2) 

Here, Bf


 represents the body force acting on the control volume which is not only 

weight but also some forces in rotating systems, and 


 is the stress tensor. The stress 

tensor for Newtonian fluids with Stokes assumption is expressed as follows: 

 
2

2
3

ij ij ijp S   
 

    
 

  (2.1.3) 

where p is fluid pressure,  is fluid viscosity,   is the time rate of change of relative 

volumetric deformation and 
ijS is the strain rate tensor which is defined as 

 0.5 i j j iu x u x     . In addition, 
ij  represents the Kronecker delta function which 

returns 1 while i and j is equal, 0 otherwise. The stress tensor can be divided in to two 

parts: 

 
ij ij ijp       (2.1.4) 

where 
ij is deviatoric stress. 

The third conservation law which is written for the total energy is such that: 

    T T B

S S S

e d e V dS q dS f Vd V dS
t

   
 


          

     
        

     (2.1.5) 

where Te  indicates the total energy of fluid per unit mass, q

 shows the heat transfer rate 

at the boundaries, which is also defined by the heat conductivity of fluid and 

temperature gradient such that q k T  

 . 

The derivations of the conservation laws and manipulations of these equations can be 

found in many fluid mechanics books such as [21], [22]. 
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2.2 Reynolds-Averaged Navier-Stokes Equations 

According to Reynolds [23] the instantaneous variables can be decomposed into mean 

and fluctuating parts. 

 

u u u

v v v

p p p

T T T

   

 

 

 

 

  (2.2.1) 

Here, the bar top of the letters defines the mean value of this property and the 

apostrophe represents the fluctuation of this property from the mean value. 

Substituting the decomposed variables into the conservation of mass and momentum 

equations and applying the properties of averaging operation with some manipulations, 

the Reynolds-Averaged Navier Stokes (RANS) equations can be easily obtained. RANS 

equations in derivative and Cartesian tensor form, neglecting the body forces, are such 

that: 

   0i

i

u
t x




 
 

 
  (2.2.2) 

    2

3

ji k
i i j ij i j

j i j j i k j

uu up
u u u u u

t x x x x x x x
    

                                  
  (2.2.3) 

 where, the mean properties are represented by dropping the bar sign. However, the last 

term in right hand side of Equation (2.2.3) appears as the mean of the correlation of 

velocity fluctuations which represents the effects of turbulence. The additional term 

i ju u    is called the Reynolds stress tensor which is to be modeled. Wilcox [19] 

defines these additional terms as the fundamental problem of turbulence since the 
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symmetrical Reynolds stress tensor produces six unknowns without any additional 

equation which brings a closure problem to the equations system of turbulent flows. 

Therefore, turbulence modeling is indeed to model the Reynolds stresses appropriately 

to satisfy a closed-system. 

Boussinesq [6] proposed the relation between the Reynolds stresses and the mean 

velocity gradients, which is commonly known as Boussinesq hypothesis: 

 2 2

3 3

ji k
i j t ij ij

j i k

uu u
u u k

x x x
    

            

  (2.2.4) 

where t demonstrates the eddy viscosity or turbulent viscosity and k  is the turbulence 

kinetic energy which is defined as: 

 
1

2
i ik u u    (2.2.5) 

Applying the Boussinesq hypothesis to the RANS equations it is quite easy to close the 

equation system by modeling the turbulent viscosity. 

2.3 k-ε Turbulence Model Equations 

Although the first efforts trace to 1945s, works of Chou [24], the commonly accepted 

representation of k-ε turbulence model is developed by Jones and Launder [16] in 1972. 

In 1974, Launder and Sharma [25] and Launder and Spalding [26] represented the fine-

tuned coefficients of the model and near wall effects on the model. 

In order to model the turbulent viscosity, two transport equations are solved for 

turbulence kinetic energy, k , and turbulence dissipation rate,  . Once this properties 

obtained the turbulent viscosity is calculated as a function of k  and  . The turbulent 

viscosity is related to this turbulent properties as follows: 
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2

t

k
f c  


   (2.3.1) 

where c
 is the model constant while f

 is damping function near the wall. The 

turbulent viscosity is assumed to be an isotropic scalar quantity. This assumption works 

well for many flow types, but, is not completely true. 

The transport equation of k  is derived from the exact Navier-Stokes equations, while 

the transport equation of    is modeled since the exact equation for   yields too many 

double and triple correlations of fluctuating properties which becomes nearly impossible 

to measure with any accuracy. Securing the physics of turbulence the transport 

equations for k  and   are presented such that: 

   

Convection Diffusion

Production -Destruction -Dilatation

k k

t
i l k k k

i j k j

k
k u k

t x x x


  



     
     

       

 (2.3.2) 

    

Convection Diffusion

Production -Destructiont
i l

i j j

u
t x x x

 

 



 
   



     
     

       

  (2.3.3) 

where l  defines the laminar or molecular viscosity, k  and  are turbulent Prandtl 

numbers for k  and  , respectively. The terms in the transport equation of k  are given 

below: 

 
' 'Production j

k i j

i

u
u u

x



 


  (2.3.4) 

 Destructionk    (2.3.5) 

 2Dilatation 2 Mk t   (2.3.6) 
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where Mt  is the turbulent Mach number defined as: 

 
2

Mt

k

a
   (2.3.7) 

Here, a  is speed of sound. The dissipation dilatation term is included only in 

compressible flows, in order to take into account of the effect of compressibility on the 

turbulent shear layers. This term is modeled according to Sarkar [27]. 

The terms in the transport equation of   are as follows: 

 
1 1Production Productionkf c

k
 


   (2.3.8) 

 
2

2 2Destruction f c
k

 


   (2.3.9) 

where, 1c   and 2c   are the coefficients of the model, while 1f  and 2f  are the damping 

functions for the low-Reynolds-number models. The effect of buoyancy in turbulence 

kinetic energy production is neglected, so that production of turbulence kinetic energy 

is, only, due to velocity gradients. 

The model constants suggested for the models studied in the context of this thesis are 

given in Table 2.1. 
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Table 2.1. k-ε Turbulence Model Coefficients 

Model 1
c   2

c   k
    c  

Wall Function 1.44 1.92 1.0 1.3 0.09 

Abid’s Model 1.45 1.83 1.0 1.4 0.09 

Abe-Kondoh-Nagano’s Model  1.5 1.9 1.4 1.4 0.09 
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CHAPTER 3 

3 SOLUTION ALGORITHM 

SOLUTION ALGORITHM 

In this chapter, the methodology to solve the governing equations of turbulent flow is 

proposed.  

3.1 Non-dimensionalization 

In order to reduce flow parameters to specific non-dimensional free parameters, such as 

Reynolds number, Mach number, Prandtl number, etc., the RANS equations and the 

turbulence model equations are non-dimensionalized using proper scales. The scales are 

as follows: 

 * x
x

L
   (3.1.1) 

 * y
y

L
   (3.1.2) 

 * ta
t

L
   (3.1.3) 

 * u
u

a

   (3.1.4) 

 * v
v

a

   (3.1.5) 

 * 




   (3.1.6) 
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 *

2

p
p

a 

   (3.1.7) 

 * l
l






   (3.1.8) 

 * t
t






   (3.1.9) 

 *

2
T

T

e
e

a

   (3.1.10) 

 * T
T

T

   (3.1.11) 

 *

2

k
k

a

   (3.1.12) 

 *

4a

 





 

   (3.1.13) 

where, the subscript   represents the free stream values and L  is the characteristic 

length, for instance, chord length of airfoils or inner diameter of pipes. 

The variables given in the RANS equations and k-ε turbulence model equations are 

replaced with the non-dimensionalized versions. Therefore, dropping the asterisk sign, 

the non-dimensional RANS equations for 2D turbulent flows are derived as follows: 

       0u v
t x y

  
  

  
  

  (3.1.14) 

          2 M M

Re Re
xx xyu u p uv

t x y x y
     

 

    
    

    
  (3.1.15) 
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          2 M M

Re Re
xy yyv uv v p

t x y x y
     

 

    
    

    
  (3.1.16) 

 

     

 
 

 

 
 

 

M M1 1

Re 1 Pr Re

M M1 1

Re 1 Pr Re

T T T

xx xy x

xy yy y

e e u pu e v pv
t x y

u v q
x x

u v q
y y

  

 


 


 

  

 

  

  
   

  

 
  

  

 
  

  

  (3.1.17) 

where the shear stresses ij  are defined as 

 

laminar turbulent

2 2
2 2 2

3 3
xx l t

u v u v
k

x y x y
   

      
       

       

  (3.1.18) 

 

laminar turbulent

2 2
2 2 2

3 3
yy l t

v u v u
k

y x y x
   

      
       

       

  (3.1.19) 

 

laminar turbulent

xy yx l t

u v u v

y x y x
   

      
       

       

  (3.1.20) 

and the heat fluxes are as follows: 

 

laminar turbulent

2

3
x l t

T T
q k k uk

x x


 
   

 
  (3.1.21) 

 

laminar turbulent

2

3
y l t

T T
q k k vk

y y


 
   

 


  (3.1.22) 

Here, turbulent thermal conductivity tk  can be found such that: 
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Pr

p t

t

t

c
k


   (3.1.23) 

where pc  is the specific heat of fluid at constant pressure and Prt  is the turbulent 

Prandtl number and has an average value of 0.85 for air. 

k-ε turbulence model equations are also non-dimensionalized for convenience and given 

below: 

 

     

M M

Re Re

M Re Re
Production - Dissipation - Dilatation

Re M M

t t
l l

k k

k k k

k uk vk
t x y

k k

x x y y

  

 
 

 
 

 

  

  

  
 

  

         
         

         



  (3.1.24) 

 

     

M M

Re Re

M Re
Production - Dissipation

Re M

t t
l l

u v
t x y

x x y y 

 

    

  
 

 
 

 

 

 

  
 

  

         
         

         



  (3.1.25) 

Note that, all the variables are dimensionless, although the asterisk sign is not shown. 

 

3.2 Discretization of RANS Equations 

Non-dimensional RANS equations can be written as a linear system of equations: 
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 
 

 

2

2

0 0

M M

Re Re

M M

Re Re

M M M1 1 1

Re 1 Pr Re Re

T T T

xx xy

xy yy

xx xy x xy yy

u v

u u p uv

v uv v pt x y

e ue pu ve pv

x y

u v q u v

  

  

  

  

 

 

   
 

 

 

 

 

  

   

     
             
       
     

      

 
 
 
 

  
   

 
 
    
    

M1

1 Pr Re
yq

 

 
 
 
 
 
 
 
 
 
  

  (3.2.1) 

In Equation (3.2.1), the first term on the left hand side represents the conservative flow 

variables to be solved. The second and third terms on the left hand side are the x- and y- 

components of the convective flux of the conservative flow variables through the control 

volume faces. On the right hand side of the equation, the x- and y- components of the 

viscous and heat flux term are represented, respectively. 

The new variables for the above linear system of equations are defined in a vector form 

as follows: 

 : Flow Variables Vector

T

u
Q

v

e









 
 
 
 
 
 


  (3.2.2) 

 
2

:  Convective Flux Vector in x-directionx

T

u

u p
F

uv

ue pu









 
  
 
 

 


  (3.2.3) 
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2

:  Convective Flux Vector in y-directiony

T

v

uv
F

v p

ve pv









 
 
 
 
 

 


  (3.2.4) 

 
 

0

M

Re

:  Viscous Flux Vector in x-directionM

Re

M M1 1

Re 1 Pr Re

xx

x
xy

xx xy x

G

u v q





 










 

  

 
 
 
 
 

  
 
 
  
  


 (3.2.5) 

 
 

0

M

Re

:  Viscous Flux Vector in y-directionM

Re

M M1 1

Re 1 Pr Re

xy

y
yy

xy yy y

G

u v q





 










 

  

 
 
 
 
 

  
 
 
  
  


 (3.2.6) 

Equation (3.2.1) can now be simplified as 

 x y x yQ F F G G
t x y x y

    
   

    

    
  (3.2.7) 

The RANS equations can be integrated over the control volume Ω  for which the 

boundary of it is defined as S, in vector form such as: 

 dΩ
S S

Q F ds G ds
t




   

   
    
    (3.2.8) 
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While performing the flux calculation, coordinate transformation is applied for the 

momentum equations. Instead of global x-y coordinate system, a local n-t coordinate 

system is defined. This local coordinate system is shown in Figure 3.1. In this figure, the 

red dotted axes which are labeled as n for the face normal direction and t for the face 

tangential direction are calculated for each cell face locally. 

 

Figure 3.1. Coordinate Rotation for Flux Calculation 

In this study, the momentum flux is assumed to be convected in the n-direction. 

Therefore, the momentum vectors are rotated to the normal direction of the surface 

using direction cosines while calculating the convective flux through the surface. 

          cos sin
norm

u u v        (3.2.9) 

          sin cos
tang

v u v         (3.2.10) 

After flux calculation, the terms including the momentum vector are rotated back to the 

x-y coordinate system as follows: 
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          
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  (3.2.11) 
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sin costangnorm norm
vV p j u p u v       
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  (3.2.12) 

3.2.1 Discretization of Inviscid Fluxes 

First, spatial discretization of the convective flux is proposed. The integral form of the 

RANS equations (see Equation(3.2.8)) will be used for this procedure. The convective 

flux term which is integrated over the control volume surface can be simply discretized 

by a second order numerical integration: 
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facen

j j
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F ds F S


  
   

   (3.2.13) 

In order to make the discretization clear, the surface vector is represented in Figure 3.2. 

 

Figure 3.2. Components of Surface Vector in Cartesian Coordinate System 
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The surface vector of AB face of the control volume has the length of SAB. This surface 

vector is defined using the cartesian coordinates of the nodes A and B. 

 AB ABdy dxABS i j 
  

  (3.2.14) 

where 

 ABdx B Ax x    (3.2.15) 

 ABdy B Ay y    (3.2.16) 

The convective flux vector F


 can be decomposed to its Cartesian component. 

 +x yF F i F j
  

  (3.2.17) 

Multiplying flux vector (Equation(3.2.17)) and surface vector (Equation(3.2.14)) yields 
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1 1
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j j x y j
j j

F S F F
 

   
 

  (3.2.18) 

The same discretization procedure can be applied for the viscous flux term. Thus, 

  
1 1

dy dx
face facen n

j j x y j
j j

G S G G
 

   
 

  (3.2.19) 

The transient term is simply treated as follows: 

 dΩ Ω
Q

Q
t t



 


 


  (3.2.20) 

The convective fluxes are calculated using Roe flux-difference splitting scheme [28]. 
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3.2.2 Discretization of Viscous Fluxes 

Combining the Equations(3.2.18), (3.2.19) and (3.2.20) the discretized finite volume 

form of the integral RANS equations for a cell becomes: 

    
1 1

Ω dy dx dy dx
face facen n

x y x yj j
j j

Q
F F G G

t  


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
    (3.2.21) 
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j
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Q
F G F G

t 


   

   (3.2.22) 

For viscous flows, the gradients of velocity components, temperature and turbulent 

properties become important. The gradient of any variable φ, for a given cell is obtained 

based on the Green’s divergence theorem: 
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S

ds  
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   (3.2.23) 

This gradient can be calculated numerically such that: 
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1 1

1 1
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j j j
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   
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  (3.2.24) 

where  

 
2

L R
j

 



   (3.2.25) 

Note that the gradients are calculated at the cell center. The gradient of a variable, by 

definition, is as follows:  
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The gradients of the velocity components and temperature then become: 
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  (3.2.29) 

While calculating the viscous fluxes, it is necessary to compute the gradients of velocity 

components and temperature at the faces of the control volumes. The initial approach for 

calculation of face gradients is just simply averaging the gradients of the cells which 

share the related face. However, this may result to oscillatory solutions [32]. In order to 

avoid the oscillations and take into account of the non-orthogonality of the grid 

structure, the face gradient of dummy variable φ, is calculated as follows: 

 ˆ ˆj i

ij ij ij ij ij
ij

r r
r r

 
  

 
     
 
 

  
    (3.2.30) 

Here, the average of cell center gradients, ij


 which is defined such that  

  1

2
ij i j     

  
  (3.2.31) 
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is summed by the cross diffusion component and simple average of cell center values of 

the two adjacent cells. In addition, the unit vector îjr  from cell i to cell j is represented as 

follows where ir


 and jr


 are the state vectors of the two cell centers. 

 ˆ j i

ij

j i

r r
r

r r






 

    (3.2.32) 

Then, using these face gradient values viscous stresses and the heat flux vector 

components at the faces are computed according to the Equations (3.1.18), (3.1.19), 

(3.1.20), (3.1.21) and (3.1.22).  

Using Equations (3.2.5), (3.2.6) and (3.2.19), the viscous flux is computed and then 

subtracted from the convective flux to satisfy the Equation (3.2.22). 
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where 
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  (3.2.34) 

Here, the subscript j  shows that the value is calculated at the related j th face of the 

cell. 
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3.2.3 Temporal Discretization 

After the flux calculations, temporal discretization is performed depending on the 

method preferred, implicit or explicit. In this study an explicit 3-step Runge-Kutta 

formulation is applied. For the nth cell, 
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Ω 0
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  (3.2.35) 
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
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  (3.2.36) 

If the equations are discretized at the lime level ns, forward time differencing is 

employed for the time derivatives. 
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Therefore, an explicit solution method is given as follows: 
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Ω
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n

t
Q Q R 

    (3.2.38) 

For 3-stage Runge-Kutta method, the solution becomes 

 1(0)ns ns
n nQ Q    (3.2.39) 
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where 
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  (3.2.43) 

In order to obtain a faster steady state solution, a local time stepping scheme [33] is 

applied. The maximum allowable time step is calculated by two parts. The inviscid time 

step 
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    (3.2.44) 

and viscous time step  
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  (3.2.45) 

are combined to obtain a final time step size for a stable solution with CFL number is 

less than 1 such that 

 i v

i v

t t
t CFL

t t

 
 

 
  (3.2.46) 

Here, the maximum characteristic variable max  and characteristic length scale L  are 

calculated as follows: 
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3.3 Discretization of k-ε Turbulence Model Equations 

k-ε turbulence model equations are calculated separate from the RANS equations. This 

segregated approach brings the disadvantage of computational effort spent for the 

calculation of a new equation system. On the other hand, it is more flexible to work with 

a segregated turbulence model approach. 

Non-dimensional form of turbulence equations can be written as a linear system of 

equations. 
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  (3.3.1) 

Integrating Equation (3.3.1) over the control volume and applying the same numerical 

integration used for RANS equations turbulence model equations are discretized as 

follows: 
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where tF


 stands for turbulent convective flux and similarly tG


 is the turbulent diffusive 

flux. Terms represented by   are the source terms which are appearing in the k-ε 

turbulence model equations. The definitions of these properties are presented in vector 

form: 
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For incompressible flows, 3  vanishes. While calculating the turbulent convective flux, 

the convected properties are upwinded on the direction of the flow. 

The explicit 3-stage Runge-Kutta scheme is also applied for the calculation of the time 

derivative tem of turbulence quantities in Equation(3.3.2).  
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3.4 Boundary Conditions 

In this section, the boundary conditions applied in this study are explained. In 

aerodynamics, the most encountered boundaries are the wall and far-field inlet and 

outlet. The formulation and discretization for these boundary conditions are represented 

in the following sub-sections. 

3.4.1 Far-Field Boundary Condition 

Two types of far-field boundary are defined depending on the flow direction. If the flow 

is entering to the domain, the boundary is called as inlet boundary, otherwise it is an 

outlet boundary. The graphical representation of the inlet boundary is demonstrated in 

Figure 3.3. 

 

Figure 3.3. Far-Field Inlet Boundary 

It is assumed that there is a ghost cell adjacent to the far-field inlet boundary in which 

the free stream values of the variables are stored. Therefore, 
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and for the turbulence conservative variables 
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Likewise, the pressure at the ghost inlet cell is equal to the free stream pressure. 

 Bp p   (3.4.3) 

The other far-field boundary type is encountered if the flow is leaving the domain, 

called as far-field outlet boundary. The outlet boundary is depicted in Figure 3.4.  

 

Figure 3.4. Far-Field Outlet Boundary 

All variables but pressure at the ghost outlet cell center are equal to the interior outlet 

cell center values. Pressure is defined by user or taken as free stream pressure. Thus, 
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and for turbulent properties 
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Equation (3.4.3) is also applicable for the pressure at far-field outlet boundaries. 

3.4.2 Wall Boundary Condition 

Since turbulent flows are considered, no-slip condition is applied at the wall boundary. 

In addition, Neumann type boundary condition is performed for the turbulent kinetic 

energy. Therefore,  
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are valid for this purpose. The wall boundary type is presented in Figure 3.5.  
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Figure 3.5. Wall Boundary 

For the wall boundary condition, flow variables defined at the cell center of the ghost 

wall cell are: 
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It is crucial to note that, the velocities at the ghost wall center are linked with the face 

normal and tangential components of the wall adjacent cell velocity. Pressure is also 

taken from the wall adjacent cell such that: 

 B Pp p   (3.4.8) 
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It is not that straightforward to describe the turbulence kinetic energy and its dissipation 

rate at the ghost wall cell center and the boundary conditions depend on the model used. 

Therefore, the details of wall boundary condition applied for the turbulence model 

equations are explained in Chapter 4 Near Wall Treatment. 

3.5 Parallel Computations 

Parallel computations are based on domain decomposition. In order to decompose the 

grid into partitions METIS-Serial Graph Partitioning and Fill-reducing Matrix Ordering 

[37] is used. A graph file which actually includes the neighbor connectivity of the cells 

is fed to METIS. The partitioning of the domain is achieved by using the kmetis 

program included in METIS software. During the partitioning, each cell is weighted by 

its number of edges so that each partition has about the same number of total edges to 

improve the load balancing in parallel computations. 

The massage-passing libraries of Parallel Virtual Machine (PVM) are used in order to 

achieve the inter-process communication in a master-worker algorithm. In this 

algorithm, “the master” is responsible for performing input and output processes, 

starting PVM up, spawning the worker processes and sending the initial data to the 

workers. On the other hand, “the worker” solves the governing equations in the 

corresponding partition and applies the boundary conditions for both real boundaries 

and interface boundaries. The turbulent flow variables at the boundaries of partitions are 

exchanged between the neighboring partitions at each time step for interface boundary 

condition implementation. 
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CHAPTER 4 

4 MODELING NEAR WALL REGION 

MODELING NEAR-WALL REGION 

One of the most important problem for the turbulence models is the implementation of 

wall boundary condition since the turbulence is influenced by an adjacent wall. The 

presence of the wall in the flow domain damps the components normal to the wall, 

which in turn makes the turbulent flow anisotropic. The wall also causes the production 

of turbulence to increase through the shearing layer occurring in the flow. 

In wall bounded flows, a boundary layer develops along the wall in which the velocity 

vanishes at the wall (no-slip condition) and reaches to its free stream value at the top. 

The highest gradients occurs at the near-wall region since the variation is largest. Since 

shear stress at the wall (or friction) is derived using the gradients of velocity and other 

flow properties, it is crucial to capture the near-wall accurately. 

There exists mainly two methods in order to study the near-wall region. The standard 

method is to use a very fine grid resolution in the vicinity of wall so as to calculate the 

flow variables for these fine scales. This is an integration type methodology and requires 

a low-Reynolds-number (LRN) turbulence model. On the other hand, the increase in 

Reynolds number causes the region under the wall effect to decrease. But, the 

calculation of the gradients close to the wall is still quite important. At this point, an 

engineering approach is applied which introduces a function. This function constructs a 

bridge between the wall and the flow domain without a need for a very fine grid 

resolution, thus, reducing the computational cost significantly. This methodology is 

called wall function approach which requires a high-Reynolds-number (HRN) 

turbulence model. 



38 

4.1 Physics near the Wall 

The near-wall region is generally divided into three layers [4]: 

 Viscous sub-layer ( 0 5y  ) 

 Buffer layer (5 30y  ) 

 Fully turbulent region or inertial sub-layer  ( 30y  )  

where y
 is dimensionless distance from the wall defined as 

 
u y

y 


    (4.1.1) 

Here u  is called as friction velocity which is represented as 

 wu




   (4.1.2) 

w  is used for the representation of wall shear stress. 

Among these layers, turbulence is negligible in viscous sub-layer, whereas the viscous 

effects are quite small in the fully turbulent region. However, both viscous effects and 

turbulence are important in the buffer layer [29]. Depending on the distance from the 

wall the effects of turbulence and viscosity are given in Figure 4.1 obtained from DNS 

of a channel flow. 
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Figure 4.1. Laminar and Turbulent Shear in near-wall region [29] 

4.1.1 Viscous sub-layer 

In this region, flow is almost laminar and the molecular viscosity is dominant over the 

turbulent viscosity and plays an important role in momentum and heat transfer. The flow 

variables such as velocity, temperature and turbulence properties, like turbulence kinetic 

energy and its dissipation rate follow an asymptotic trend depending on the distance 

from the wall: 
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where the constants are 1 0.1C   and 2 0.2C  . The comparison of this model equations 

with the DNS of a channel flow is given in Figure 4.2. It can be seen from the figure that 

all the variables but turbulence kinetic energy yield similar results with DNS. However, 

turbulence kinetic energy is over-estimated. Therefore, this property should not be set a 

priori, but it should be solved.   

 

Figure 4.2. Near-wall variations of flow properties [29] 

4.1.2 Fully Turbulent Region 

In this region, beyond 30y  , the variation of the properties are assumed to be [19] 

 
1

lnu y B


     (4.1.7) 
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    (4.1.9) 

 
u y




 
    (4.1.10) 

where 0.41  , 0.09C   and 5B   are tuned by DNS-data. The coefficients for 

temperature are presented by Kays and Crawford [30] for air, such that 

Pr 0.48T t    and 3.9TB  . 

These models are also compared with the DNS data in Figure 4.3. Although velocity and 

temperature yield a great agreement, turbulent properties are less accurate. 

 

Figure 4.3. Fully turbulent region variations of flow properties [29] 
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4.1.3 Buffer Layer 

From the latest DNS data, it can be seen that the maximum turbulence production is 

generated in the buffer layer. This also means that the largest variations in the 

turbulence source terms occurs in this layer which makes the modeling this region very 

difficult. Therefore, there is no general model in which the first computational node is 

placed in the buffer layer. Instead, the first near-wall node is located in either the fully 

turbulent region (HRN) or the viscous sub-layer (LRN). 

4.2 Law-of-the-Wall 

In the light of the prescribed variations of flow variables in the previous section, the law 

of the wall for the momentum can be summarized as given in Figure 4.4.  

 

Figure 4.4. Log law of the Wall [4] 
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Here U u  represents the non-dimensional velocity which is described in viscous sub-

layer with the expression given in Equation (4.1.3) while in fully turbulent region 

Equation (4.1.7) is used to define it according to law-of-the-wall. 

4.3 Wall Function Approach 

In this study, a HRN-based model is applied for the modeling of turbulence near the 

walls. Wall functions are applied to predict the turbulence properties in the vicinity of 

the wall with relatively coarse near wall grid resolution. This approach avoids 

generating very fine grids close to the wall. The first near wall computational node (P) is 

placed in the fully turbulent region while adopting the mesh. 

The wall function methodology proposed by Launder and Spalding [26] is implemented 

in order to avoid the weakness of standard wall functions’ in predicting the re-

circulating flows, where the turbulence kinetic energy becomes zero in separating and 

re-attachment points [29]. In this approach, the momentum equation in the first near-

wall cell is solved with a modified viscosity, defined as: 

 
 

1 4

*ln

P P

eff

P

C k y

Ey

 
    (4.3.1) 

where 9.793E   is an empirical constant and *
Py  is defined with k  as 

 
1 4

* P P P

P

C k y
y 


   (4.3.2) 

Then, the turbulence kinetic energy equation is solved for the wall adjacent cell with a 

modified integrated production term: 
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Dissipation rate equation is not solved for the wall adjacent cell, instead it is set by using 

the following equation: 

 
3 4 3 23

P

P

C ku

y y


 

    (4.3.4) 

which is derived under the assumption of local equilibrium hypothesis which states that 

the production of turbulence kinetic energy and its dissipation rate are equal in the wall-

adjacent control volume. 

In the fully turbulent region laminar shear stress l l U y     is negligible and, 

assuming the shear stress is constant through the wall adjacent cell, the turbulent shear 

stress, t  is equal to the wall shear. Wall shear stress is defined by the effective 

viscosity given in Equation (4.3.1): 
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    (4.3.5) 

Chieng and Launder [34] improved the above methodology by taking into account of 

viscosity-affected region. In this model, turbulent kinetic energy is assumed to be 

varying as a parabolic function. This assumption proposes that in the viscous sublayer, 

the fluctuating velocity increases linearly with the distance from wall. However, the 

turbulent shear stress is zero within the viscous sublayer since turbulent viscosity is 

dominated by the molecular viscosity. Just over the viscous sublayer turbulent shear 

stress undergoes an abrupt increase and varies linearly over the top of the cell. This 

physical assumption is depicted in Figure 4.5 where vy  represents the edge of the 

viscous sublayer and ny  is the maximum distance of the cell faces to the wall.   
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Figure 4.5. Variation of Variables in the Wall Adjacent Cell, Chieng-Launder Model 

In this model, the near-wall cell is divided into two sublayers: viscous sublayer next to 

the wall and fully turbulent region away from the wall. Since turbulent viscosity is 

assumed to be zero within the viscous sublayer, production of turbulence kinetic energy 

vanishes in this region. The thickness of the viscous sublayer is assumed to be related to 

a dimensionless wall distance parameter * 20vy  . 
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The average of the production of turbulence kinetic energy over the near wall cell is 

obtained using the below equation: 
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The dissipation rate of turbulence kinetic energy is assumed to be remain constant in the 

viscous sublayer and it is same as given by Equation(4.3.4) within the fully turbulent 
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region. The cell-averaged dissipation rate for calculating the transport equation of 

turbulence kinetic energy is obtained as 
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  (4.3.8) 

Similar to Launder-Spalding model, the transport equation for dissipation rate is not 

solved in the wall-adjacent cell. Instead, the value of dissipation rate in near-wall cells 

are computed by using Equation(4.3.4). 

4.4 Near Wall Modeling Approach 

Near wall models are based on LRN approach for which the flow field is calculated 

directly down to the wall. This methods requires very fine grids in vicinity of the wall, 

i.e. y+≈1. The sense that these models make is that they use damping functions to predict 

the damping effects of presence of wall in the flow field. These damping functions are 1 

for wall functions, however, they are related to non-dimensional turbulent properties for 

LRN models. In this study, Abid’s model [38] and Abe-Kondoh-Nagano [39] model are 

applied for near wall treatment  

4.4.1 Abid’s k-ε Turbulence Model 

The damping function suggested by Abid [38] are given in Table 4.1. 

Table 4.1. Damping functions for Abid’s Model 
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where the non-dimensional turbulent Reynolds numbers are defined such that 
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The boundary conditions at the wall is the other important parameter for LRN number. 

In Abid’s model both the velocities and turbulent kinetic energy is set to zero while 

dissipation rate of turbulence kinetic energy at the wall is as follows: 
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4.4.2 Abe-Kondoh-Nagano Turbulence Model 

In order to calculate the complex turbulent flows and heat transfer in separating and 

reattaching flows, Abe, Kondoh and Nagano [39] suggests a turbulence model which is 

known as AKN model in literature. They introduce the Kolmogorov velocity scale u  

instead of friction velocity u  to account for the near-wall and LRN effects in attached 

and detached flows. The damping functions for AKN model is presented in Table 4.2. 

Table 4.2. Damping functions for AKN Model  

f  1f   2f   

2
*

2

3 4

1 exp
14

Re5
1 exp

Re 200
t

t

y
   

   
   

    
     

     

  1.0 

2
*

2

1 exp
3.1

Re
1 0.3exp

6.5
t

y
   

   
   

    
     

     

  



48 

The non-dimensional wall distance is defined by Kolmogorov velocity scale such that 
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where u  is 
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The boundary conditions applied at the wall is similar to Abid’s model, but w  is 

defined as 
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CHAPTER 5 

5 RESULTS AND DISCUSSIONS 

RESULTS AND DISCUSSIONS 

In this chapter, validation of the developed turbulent flow solver is presented in this 

chapter. For this purpose, turbulent flat plate case is studied, first. The flow over RAE 

2822 transonic airfoil and NACA 0012 are solved using the implemented turbulent 

models. The near-wall characteristics are compared with experimental data and a 

commercial CFD solver, Fluent.  

5.1 Validation of the Solver 

For the validation of the implementation of k-ε turbulence model to the base flow solver, 

flow over a turbulent flat plate and RAE 2822 are studied.  

5.1.1 Turbulent Flat Plate Solutions 

In order to assess the accuracy of the k-ε turbulence model implemented in the HYP2D 

code, first, a simple turbulent flat plate case is studied. The flow conditions are given in 

Table 5.1.  

Table 5.1. Flow Conditions over for the Turbulent Flat Plate Case 

M∞ 0.2 

α 0° 

Re 4.8 x 106 

 

For this incompressible case, a fully quadrilateral grid is generated by using GAMBIT. 

The problem is also solved using the popular commercial CFD solver Fluent with the 

same grid. The boundary conditions and the grid generated are represented in Figure 5.1. 
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Figure 5.1. Grid Generated for Turbulent Flat Plate Case 

The above grid can be used for only to obtain solutions using wall functions since the 

near wall resolution is about order of y+≈80. In order to test the LRN models, a quite 

fine mesh resolution is performed in the near-wall region. Near-wall grid resolutions for 

wall functions and LRN models are compared in Figure 5.2 at the same portion of the 

solution domain. It can be seen that, for the LRN models one should put the first 

computation node about 100 times lower than the one put for wall function models. 
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Figure 5.2. Near-Wall Grid Resolutions for Wall Functions and LRN Models 

The solutions are performed for the free stream conditions given in Table 5.1 both by 

using wall function approach and the LRN near-wall modeling approach. The same 

models are also used for the calculations performed by Fluent. 

 

Figure 5.3. Velocity Profile in the Boundary Layer at x=0.4 (LRN Models) 
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One of the most important parameter in terms of validation of a turbulence model in 

wall-bounded flows is the boundary layer velocity profile. The velocity profile in the 

boundary layer which is developed over a flat plate obeys the law-of-the-wall (See 

Chapter 4.2). Therefore, the velocity profile results obtained over the flat plate at x=0.4 

are compared with the law-of-the-wall. Figure 5.3 shows the convenience of the LRN 

model solutions with the law-of-the-wall. In addition, the results show good agreement 

with the results of Fluent software in which the same LRN models are applied. 

In Figure 5.4, the results obtained from the simulations using Launder-Spalding Wall 

Function and Chieng-Launder Wall Function methods are compared with both law-of-

the-wall and Fluent’s Wall Function method applied for the near-wall treatment in k-ε 

turbulence model. Since, the center of the first computational cell next to the wall is 

placed in the fully turbulent region, one should expect that the comparison is to be 

performed in that region. This argument is completely true for computational means, 

however, the velocity profile in the viscous sublayer can be approximated using the wall 

shear stress. In viscous sublayer, wall shear stress can be calculated using the following 

equation. 

 w

U

y
 





  (5.1.1) 

As stated in Chapter 4.3, the wall shear stress is computed with Equation(4.3.5). 

Therefore, U y   can easily be calculated with assuming wall shear stress is constant 

throughout the viscous sublayer. Applying this procedure the velocity profile in the 

viscous sublayer can be obtained. It can be clearly seen that the velocity profiles over 

the turbulent flat plate obtained from the k-ε turbulence model with wall functions are in 

good agreement with the law-of-the-wall even in viscous sublayer.   
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Figure 5.4. Velocity Profile in the Boundary Layer at x=0.4 (Wall Functions) 

In order to validate the implementation of the turbulence models in HYP2D code skin 

friction coefficients through the flat plate are compared. The comparison are performed 

using the same strategy given above. First, LRN models are compared with each other 

and the theoretical data which is taken from White’s fluid mechanics book [34]. Then, 

the values are checked whether the LRN models yield similar results with Fluent. Figure 

5.5 shows the skin friction coefficient over the flat plate which is calculated using 

following expression: 

 
0.5

w
fC

U



 

   (5.1.2) 

The results point out that the skin friction coefficients obtained by the LRN models are 

quite similar to theoretical data. However, Abid’s model calculates the wall shear stress 

higher.  
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Figure 5.5. Skin Friction Coefficient over the Flat Plate (LRN Models) 

It can be seen from Figure 5.6 that the Wall Function results are in the same fashion 

with the LRN models’. The results are in agreement with Fluent and theoretical skin 

friction coefficient. 
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Figure 5.6. Skin Friction Coefficient over the Flat Plate (Wall Functions) 

 

5.1.2 RAE 2822 Airfoil Solutions 

The RAE 2822 airfoil was tested at several conditions by Cook, McDonald and Firmin 

[35]. The experimental data include the boundary layer velocity profile, pressure 

coefficient distribution, skin friction coefficient distribution and velocity profile at wake 

region. This rich database makes RAE 2822 an attractive choice for turbulence modelers 

for validating their models and implementation. In this study, a detailed comparison 

performed using different near-wall approaches for k-ε turbulence model. 

The test case presented here corresponds to Case 9 of the referenced experiment set. The 

tests are conducted at an angle of attack of 3.19°. The tunnel corrected angle of attack is 
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taken as 2.8° which is suggested by Coakley [36]. The flow conditions for the RAE 

2822 case is given in Table 5.2. 

Table 5.2. Flow Conditions for RAE 2822 Airfoil Simulations 

M∞ 0.73 

α 2.8° 

Re 6.5 x 106 

 

Two C-type hybrid grids are generated for the solutions over RAE 2822 airfoil, one for 

the LRN models and the other for the Wall Functions. The boundary layer is composed 

of quadrilateral control volumes and remaining is meshed by triangular control volumes. 

The total grid size is 36710 for the Wall Function solutions and 48500 for the LRN 

models. The grid extends approximately 20 chords from the airfoil and is divided into 8 

partitions for the parallel computing. In order to avoid grid dependency of the solution 5 

grid domain are generated for wall function solutions and LRN model solutions. The 

number of points placed on the airfoil upper surface are selected as the comparison 

parameter for grid independency. The resultant lift and drag coefficients for different 

grid size and grid resolution on the upper surface of airfoil are compared in Figure 5.7 

until the results do not change. It is decided to study with a grid where the airfoil surface 

consists of 160 intervals since Cl and Cd values does not change for grids which have 

more intervals. The grid generated for RAE 2822 simulations with wall function method 

is represented in Figure 5.8.  
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Figure 5.7. Grid Independency Study for RAE 2822 Simulations (left: LRN models, 

right: Wall Function models) 

First, the flow field is represented for the transonic airfoil with a comparative point of 

view by using the same color scale for all turbulence models. Mach number contours 

around the airfoil under given flow conditions are represented for Abid’s model, AKN 

model and wall functions in Figure 5.9, Figure 5.10 and Figure 5.11, respectively. 

Although the contour plots seem quite comparable for all models, it can be stated that 

the shock formation on the upper surface of airfoil is captured smoothly by Abid’s 

model while AKN model and wall functions show a sharper shock profile. Morever, 

Abid’s model is less dissipative than other models in terms of velocity. All models show 

good agreement with the results obtain by Fluent. 
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Figure 5.8. Grid for RAE 2822 Simulations 
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Figure 5.9. Comparison of Mach Contours-Abid’s Model (left: HYP2D, right: Fluent) 

 

Figure 5.10. Comparison of Mach Contours-AKN Model (left: HYP2D, right: Fluent) 
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Figure 5.11. Comparison of Mach Contours-Wall Function (left: HYP2D, right: Fluent) 

The turbulence kinetic energy distribution around the airfoil is given with contour plots 

by comparing the Fluent’s solution. Like Mach number contours, turbulence kinetic 

energy fields are represented in a 2-column figure in which HYP2D solutions are given 

on the left and Fluent on the right in Figure 5.12, Figure 5.13 and Figure 5.14 for Abid’s 

model, AKN model and wall functions respectively. The comparisons with the Fluent 

results are quite successful for all models. However, AKN model underpredicts the 

turbulence kinetic energy on the lower surface of airfoil. This results to a fast 

destruction of turbulence kinetic energy just behind the trailing edge. The dissipation of 

energy at the wake region takes longer for the other models.   
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Figure 5.12. Comparison of Turbulence Kinetic Energy [m2/s2] Contours-Abid’s Model 

(left: HYP2D, right: Fluent) 

 

Figure 5.13. Comparison of Turbulence Kinetic Energy [m2/s2] Contours-AKN Model 

(left: HYP2D, right: Fluent) 
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Figure 5.14. Comparison of Turbulence Kinetic Energy [m2/s2] Contours-Wall Function 

(left: HYP2D, right: Fluent) 

The other important parameter is turbulent viscosity which affects the momentum of the 

flow directly for viscous flows. Turbulent viscosity fields around the airfoil and at the 

wake region are given in Figure 5.15, Figure 5.16 and Figure 5.17. The contour plots 

show that AKN model underpredicts the turbulent viscosity at the wake region. In 

addition, the turbulent viscosity values obtained at the wake region of airfoil using 

HYP2D are a little bit smaller than predictions of Fluent resulting to narrower band of 

turbulent viscosity effected region. 
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Figure 5.15 Comparison of Turbulent Viscosity [kg/m s] Contours-Abid’s Model (left: 

HYP2D, right: Fluent) 

 

Figure 5.16. Comparison of Turbulent Viscosity [kg/m s] Contours-AKN Model (left: 

HYP2D, right: Fluent) 
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Figure 5.17. Comparison of Turbulent Viscosity [kg/m s] Contours-Wall Function (left: 

HYP2D, right: Fluent) 

After presenting and comparing the flow field around RAE 2822, the boundary layer 

velocity profile on the upper surface of the airfoil is assessed. Similar to the flat plate 

case, the LRN and HRN type models are compared with models which are members of 

their own groups. The results are also checked with the experimental data and the results 

obtained from Fluent. In addition, the boundary layer profile is compared with the 

solutions obtained from the simulations performed using the Spalart-Allmaras 

turbulence model which has been already implemented in HYP2D. The velocity profiles 

normalized by the velocity at the edge of the boundary layer at x/c=0.404, x/c=0.574, 

x/c= 0.750 and x/c=0.900 in Figure 5.18, Figure 5.19, Figure 5.20 and Figure 5.21, 

respectively. It can be stated that, Abid’s model fits best to the experimental data among 

k-ε turbulence models. However, Spalart-Allmaras model seems to be more successful 

in predicting the velocity profile in the near-wall region. All models are convenient with 

the experimental data for x/c=0.404, x/c=0.574, however, the convenience is lost near 

the trailing edge, although LRN models and Spalart-Allmaras model show agreement at 

this region. This region is likely to be the region behind the shock. 
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Figure 5.18. Boundary Layer Velocity Profile over RAE 2822 at x/c=0.404 

 

Figure 5.19. Boundary Layer Velocity Profile over RAE 2822 at x/c=0.574 
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Figure 5.20. Boundary Layer Velocity Profile over RAE 2822 at x/c=0.750 

 

Figure 5.21. Boundary Layer Velocity Profile over RAE 2822 at x/c=0.900 

Pressure coefficient distributions are represented in Figure 5.22. The wall function 

models of Launder-Spalding and Chieng-Launder are in a good agreement with 

experimental data and Fluent solution. On the other hand, Abid’s model cannot capture 

the shock well and predicts the location of the shock wrong. The same comment can be 

made by analyzing the Mach number contour plot Abid’s model. 
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Figure 5.22. Pressure Coefficient Distribution over RAE 2822 

In Figure 5.23, the skin friction coefficients on the upper surface of the airfoil are given 

comparing with Fluent and experimental data as well as Spalart-Allmaras model. The 

results show that all models but Abid are in the same trend with the experimental data. 

However, Abid’s model overpredicts the skin friction coefficient. The success of 

Spalart-Allmaras in predicting the near-wall velocity profile can be seen from the skin 

friction distribution.  

 

Figure 5.23. Skin Friction Coefficient Distribution at the Upper Surface of RAE 2822 
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5.2 NACA 0012 Airfoil Application 

After validating the several turbulence models, the applications of the models for flow 

over well-known symmetric airfoil NACA 0012 are performed. Harris from Langley 

Research Center [31] conducted a series of experiments for different angles of attack at 

all flow regimes but supersonic in order to determine the pressure distribution over 

NACA 0012 airfoil. The sketch of the airfoil is given in Figure 5.24. 

 

Figure 5.24. Sketch of NACA 0012 Airfoil 

In the scope of this thesis, three of the cases reported in [31] and a higher angle of attack 

case are studied in detailed for which the specifications of the flow are given in Table 

5.3. 

Table 5.3. Flow Conditions for NACA 0012 Airfoil Simulations 

 Case 1 Case 2 Case 3 Case 4 

M∞ 0.5 0.5 0.5 0.5 

α 1.86° 5.86° 10.86° 12° 

Re 9 x 106 9 x 106 9 x 106 9 x 106 

 

Although simulations performed for all cases using both wall functions and LRN 

models, the flow around the airfoil is represented by the results obtain from the 

simulations conducted using Launder-Spalding wall functions. Mach number 

distributions around NACA 0012 under given conditions in Table 5.3 are presented in 

Figure 5.25 and Figure 5.26.  It can be seen from the related figures that flow detaches 

on the upper surface of airfoil at 10.86° and it becomes more definite in 12°. Since 
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pressure difference between the upper and lower surfaces of the airfoil widens, the lift 

generation increases up to the stall angle.   

 

Figure 5.25. Mach Number Contours around NACA 0012 (left: Case 1, right: Case 2) 

 

Figure 5.26. Mach Number Contours around NACA 0012 (left: Case 3, right: Case 4) 
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The turbulence characteristics are presented by turbulence kinetic energy contours for 

different angle of attacks in Figure 5.27 and Figure 5.28. It can be clearly seen that the 

generation of turbulence kinetic energy due to velocity gradients on the upper surface of 

airfoil increases the turbulence kinetic energy directly. In addition, the dissipation rate is 

also low to destruct this energy at high angle of attacks. Therefore, it is inevitable to face 

high turbulent effects on the upper surface and wake region. 

 

Figure 5.27. Turbulence Kinetic Energy [m2/s2] Contours around NACA 0012 (left: 

Case 1, right: Case 2) 
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Figure 5.28. Turbulence Kinetic Energy [m2/s2] Contours around NACA 0012 (left: 

Case 3, right: Case 4) 

The effect of turbulence on the fluid motion can be summarized by representing the 

amount of turbulent viscosity. In Figure 5.29 and Figure 5.30, viscosity effects due to 

turbulence on the flow are given by means of turbulent viscosity contour plots. At low 

angle of attacks the turbulence becomes relatively unimportant around the airfoil, 

although it is quite important in boundary layers. Because of high energy of eddies over 

the airfoil, viscosity generated by the turbulent eddies affects the diffusion of flow 

parameters highly in the high angle of attack cases. This phenomenon can be seen in 

Figure 5.30. The turbulent viscosity near of the trailing edge increases up to 1000 times 

of molecular viscosity of air for Case 4. Therefore, it is very important to include the 

effects of turbulence for such cases. 
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Figure 5.29. Turbulent Viscosity [kg/m s] Contours around NACA 0012 (left: Case1, 

right: Case 2) 

 

Figure 5.30. Turbulent Viscosity [kg/m s] Contours around NACA 0012 (left: Case3, 

right: Case 4) 

The aerodynamic coefficients with respect to angle of attack obtained from simulations 

are submitted in Figure 5.31. The models exhibit the same trends for lift coefficient for 

low angle of attacks. Between 10.86° and 12° wall functions predict a stall-like 
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characteristic while LRN models do not. The predictions of drag coefficients are 

consistent for LRN models and wall functions although there is a small discrepancy. 

 

Figure 5.31: Lift and Drag Coefficients with respect to Angle of Attack for NACA 0012 

Given the turbulent flow field and aerodynamic loads around NACA 0012 at different 

angle of attacks, pressure coefficient distributions obtained from LRN models and wall 

functions are compared with the data gathered from the works of Harris [31] in Figure 

5.32. Since there is no data available for Case 4, comparison of pressure coefficient 

distribution for this case is not performed. All models yield similar results with each 

other and experimental data. For Case 3, all models gives a little higher pressure 

distribution than the experiments. 
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Figure 5.32. Pressure Coefficient Distribution over NACA 0012 (top left: Case 1, top 

right: Case 2, bottom: Case 3) 

In order to assess the parallel performance of the code, the several simulations are 

performed using different number of processors. CPU time of the solutions are given in 

Table 5.4.  
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Table 5.4. CPU Times on Parallel Computations 

Number of Processors CPU Time (sec) 

1 8163 

2 4155 

4 2735 

8 1499 

16 1317 

32 1122 

 

The performance of parallel computations are compared in terms of parallel speedup and 

parallel efficiency. Speedup, nS , is defined as the ratio of CPU time spent on serial 

computation and parallel computation. 

 1
n

n

T
S

T
   (5.2.1) 

Here, 1T  represents the CPU time on serial computation where nT  is the CPU time on n 

processors. The parallel speedup performance of HYP2D is plotted in Figure 5.33. It can 

clearly be seen that, after 8-processor run the speedup performance of the code is far 

from the ideal case. For such 2-dimensional grids, parallelization is limited in terms of 

speedup performance. Parallel efficiency of HYP2D is determined using the following 

definition of efficiency: 

 1 n
n

n

ST

T n n
  


  (5.2.2) 

Parallel efficiency of HYP2D for different number of processors is given in Figure 5.34. 

The efficiency of the code decreases drastically for the parallel solutions using 
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processors more than 8. Therefore, it can be stated that the most efficient solutions for 

2D hybrid grids is obtained using 8 processors for HYP2D solver. It is obvious that 

more number of processors is likely to yield more efficient computing for 3D cases. 

 

Figure 5.33. Parallel Speedup Performance of HYP2D 

 

Figure 5.34. Parallel Efficiency of HYP2D 

  

0

5

10

15

20

25

30

35

0 10 20 30 40

Sp
ee

d
u

p

Number of Processors

Parallel Speedup Performance

HYP2D

ideal

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40

Ef
fi

ci
en

cy

Number of Processors

Parallel Efficiency

HYP2D



77 

CHAPTER 6 

6 CONCLUSIONS 

CONCLUSIONS 

In this study, the implementation of k-ε turbulence model to a parallel, two-dimensional 

explicit, collocated, density-based finite volume solver developed for hybrid grids 

(HYP2D) is performed. In the scope of this thesis, near wall modeling of the turbulence 

is achieved by applying the wall functions proposed by Launder-Spalding and Chieng-

Launder and low-Reynolds-number models of Abid and Abe-Kondoh-Nagano. 

Validation of the implementation is performed by simulating the turbulent flow over a 

flat plate and the flow over RAE 2822 transonic airfoil. After accomplishing the 

validation successfully, an application to simulate the flow over NACA 0012 is 

performed and results are presented.  

For incompressible free stream conditions the velocity profile in the boundary layer over 

the flat plate are compared with law-of-the-wall theory and results obtained from Fluent 

software. Skin friction coefficient over the flat plate is also compared by the theoretical 

values and Fluent results. All comparisons yield good agreement with references. 

Applying a high subsonic free stream condition to simulate the flow over RAE 2822 

computations are performed and turbulent flow fields are compared with Fluent by 

means of contour plots and consistency is achieved for all models. The velocity profile 

comparisons show the similar plots before the shock formation. After the shock, LRN 

models performed better than wall functions in predicting the velocity profile. In 

addition, pressure coefficient and skin friction coefficients are compared and all models 

but Abid’s LRN model yield similar results. Abid’s model shows difficulties in 

capturing and predicting the shock location. Comparison of k-ε turbulence models with 

Spalart-Allmaras model points out that Spalart-Allmaras model is more successful in 

predicting the near-wall region shear stress. 
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The application of the turbulence models, after successful validation, is conducted on 

NACA 0012 symmetric airfoil. Four near-wall treatment models are applied for four 

different angle of attacks 1.86°, 5.86°, 10.86° and 12°. The turbulent flow field is 

represented and effects of turbulent quantities on mean flow are discussed. In addition, 

aerodynamic coefficients at different angle of attacks and pressure distribution are 

submitted and discussed. The prediction of stall angle of LRN models and wall 

functions shows disagreement. The parallel performance of HYP2D solver is also 

demonstrated in terms of speedup and efficiency. 

6.1 Future Works 

For this study; 

 Modification of the wall functions with more physical assumptions 

 Implementation of other eddy viscosity models and comparison with k-ε 

turbulence model 

 Application of the k-ε turbulence model on 3-D grids 

will be the future work for more research. 
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