

PARALLEL SPARSE AND BANDED MATRIX – MULTIPLE VECTORS
MULTIPLICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEFTUN CİNCİOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2014

Approval of the thesis:

PARALLEL SPARSE AND BANDED MATRIX – MULTIPLE VECTOR S
MULTIPLICATION

submitted by MEFTUN C İNCİOĞLU in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural And Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Murat Manguoğlu
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Assoc. Prof. Dr. Murat Manguoğlu
Computer Engineering Department, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering Department, METU

Assoc. Prof. Dr. Tolga Can
Computer Engineering Department, METU

Dr. Murat Cenk
Institute of Applied Mathematics, METU

Date:

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last name : Meftun Cincioğlu

 Signature :

v

ABSTRACT

PARALLEL SPARSE AND BANDED MATRIX – MULTIPLE VECTOR S
MULTIPLICATION

Cincioğlu, Meftun
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Murat Manguoğlu
August 2014, 72 pages

In this thesis, performance of two important primitives, namely sparse and banded
matrix – multiple vectors multiplication are studied.

Sparse matrix – multiple vectors multiplication (SpMM) is one of the basic and most
time consuming operations in many problems in science and engineering. Hence, any
improvement in the performance of SpMM operations has a great impact on the wide
spectrum of problems. One of the objectives of this thesis is to improve the
performance of parallel SpMM operation by reducing indirect memory access,
improving communication pattern, and load balancing. For this purpose, partitioning
tools and permutation algorithms are used.

Banded matrix – multiple vectors multiplication is used as a primitive operation in
iterative solution of banded linear systems or in other applications. An improved
method is presented that has an advantage especially for banded matrices having small
bandwidth and multiplied by large number of vectors.

All these numerical experiments are performed in two different computing platforms.

Keywords: Banded matrix, sparse matrix, multiple, vector, multiplication

vi

ÖZ

PARALEL SEYREK VE BANT MATR İS – ÇOKLU VEKTÖR ÇARPIMI

Cincioğlu, Meftun
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Murat Manguoğlu
Ağustos 2014, 72 sayfa

Bu tezde iki önemli işlemin, seyrek ve bant matris – çoklu vektör çarpımının,
performansı incelenmiştir.

Seyrek matris – çoklu vektör çarpımı (SpMM), bilimde ve mühendislikteki çoğu
problem için temel ve çok zaman alan işlemlerden biridir. Dolayısıyla, SpMM
işleminin performansını etkileyecek herhangi bir iyileştirme, çok çeşitli alanlardaki
problemlerin çözümünde büyük etki yaratmaktadır. Bu tezin amaçlarından biri, dolaylı
bellek erişimini azaltarak, iletişim örüntülerini geliştirerek ve yük dengeleyerek
paralel SpMM işleminin performansını arttırmaktır. Bu yüzden bölümlendirme
araçları ve yer değiştirme algoritmaları kullanılmıştır.

Bant matris – çoklu vektör çarpımı, bantlı çizgisel sistemlerin dolaylı yöntemler ile
çözümünde veya diğer uygulamalarda temel işlem olarak kullanılmaktadır. Özellikle
bant genişliği düşük bant matrislerin, çok sayıda vektör ile çarpılmasında avantajları
olan yeni bir yöntem sunulmuştur.

Tüm bu sayısal deneyler, iki farklı bilgisayar ortamında gerçekleştirilmi ştir.

Anahtar Kelimeler: Bant matris, seyrek matris, çoklu, vektör, çarpma

vii

To My Family…

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor, Assoc. Prof. Dr. Murat

Manguoğlu for his valuable guidance, suggestions and encouragement throughout this

study. It is an honor for me to share his knowledge and wisdom.

I am very grateful to my commanders Nazım Yazır, Hakan Kurt, Bora Araz, Erkan

Bulut, Utku Demir and all my colleagues, for their support and insight throughout this

thesis.

The Masters of Science education of the author was supported by The Scientific and

Technological Research Council of Turkey (TUBITAK) with Program No: 2210.

The numerical calculations reported in this thesis were performed at TUBITAK

ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources) and

Department of Computer Engineering, Middle East Technical University.

Finally, I am very thankful to my family for believing in me and supporting me during

this study. I am greatly grateful to the sacrifice they made so that I could have the time

to finish the thesis.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vi

ACKNOWLEDGMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xvi

CHAPTERS

1 INTRODUCTION ... 1

2 BACKGROUND AND RELATED WORK ... 3

2.1 Banded Matrix – Multiple Vectors Multiplication 3

2.2 Sparse Matrix – Multiple Vectors Multiplication 4

3 METHODS AND MOTIVATION ... 9

3.1 Banded Matrix – Multiple Vectors Multiplication 9

3.1.1 DGBMV ... 9

3.1.2 DSBMM ... 10

3.1.3 DSBMM2 ... 12

3.2 Sparse Matrix – Multiple Vectors Multiplication 14

3.2.1 Reading Matrix... 15

3.2.2 Partitioning ... 16

x

3.2.2.1 METIS .. 16

3.2.2.2 PATOH ... 17

3.2.3 Diagonal Block ... 20

3.2.3.1 Permutation .. 20

3.2.3.1.1 HSL MC73 ... 21

3.2.3.1.2 RCM ... 22

3.2.4 Off-Diagonal Blocks .. 23

4 NUMERICAL EXPERIMENTS ... 25

4.1 Computing Platform .. 25

4.2 Programming Environment ... 26

4.3 Experiments and Results ... 27

4.3.1 Banded Matrix – Multiple Vectors Multiplication 27

4.3.2 Sparse Matrix – Multiple Vectors Multiplication 32

4.3.2.1 Matrix Collection ... 33

4.3.2.2 Effect of Permutation on Sequential Sparse Matrix – Multiple
Vectors Multiplication .. 35

4.3.2.3 Parallel Scalability .. 39

4.3.2.3.1 METIS vs. PATOH .. 39

4.3.2.3.2 Parallel Scalability .. 43

5 CONCLUSION AND FUTURE WORK .. 47

REFERENCES ... 49

APPENDICES

A RESULTS OF BANDED MATRIX – MULTIPLE VECTORS
MULTIPLICATION ... 53

xi

B RESULTS OF SPARSE MATRIX – MULTIPLE VECTORS
MULTIPLICATION ... 59

xii

LIST OF TABLES

TABLES

Table 4.1 Platform specifications ... 25

Table 4.2 Programming environment specifications .. 26

Table 4.3 Sequential multiplication time using DGBMV and speedup of banded matrix
– multiple vectors multiplication using DSBMM and DSBMM2 on NAR
 .. 27

Table 4.4 Sequential multiplication time using DGBMV and speedup of banded matrix
– multiple vectors multiplication using DSBMM and DSBMM2 on
MERCAN ... 30

Table 4.5 Matrices used for performance testing ... 33

Table 4.6 Sequential multiplication time of matrix in its original form and the times
for obtaining the permutation using MC73 and RCM 36

Table 4.7 Sequential multiplication time and partitioning time of METIS and PATOH
 .. 40

Table A.1 Multiplication time of banded matrices, having 5, 10 and 20 lower
bandwidth, with multiple vectors on NAR ... 55

Table A.2 Multiplication time of banded matrices, having 50, 100 and 200 lower
bandwidth, with multiple vectors on NAR ... 56

Table A.3 Multiplication time of banded matrices, having 5, 10 and 20 lower
bandwidth, with multiple vectors on MERCAN 57

Table A.4 Multiplication time of banded matrices, having 50, 100 and 200 lower
bandwidth, with multiple vectors on MERCAN 58

Table B.1 Matrix reading time; Sequential multiplication time; Partitioning and
parallel multiplication time of matrix partitioned using METIS on NAR 61

Table B.2 Partitioning and parallel multiplication time of matrix partitioned using
PATOH on NAR .. 62

xiii

Table B.3 Matrix reading time; Sequential multiplication time; Partitioning and
parallel multiplication time of matrix partitioned using METIS on
MERCAN ... 63

Table B.4 Partitioning and parallel multiplication time of matrix partitioned using
PATOH on MERCAN ... 64

Table B.5 Sequential permutation and multiplication time; Partitioning, parallel
permutation and multiplication time of matrix partitioned using METIS and
then permuted using MC73 on NAR ... 65

Table B.6 Partitioning, parallel permutation and multiplication time of matrix
partitioned using PATOH and then permuted using MC73 on NAR 66

Table B.7 Sequential permutation and multiplication time; Partitioning, parallel
permutation and multiplication time of matrix partitioned using METIS and
then permuted using MC73 on MERCAN ... 67

Table B.8 Partitioning, parallel permutation and multiplication time of matrix
partitioned using PATOH and then permuted using MC73 on MERCAN
 .. 68

Table B.9 Sequential permutation and multiplication time; Partitioning, parallel
permutation and multiplication time of matrix partitioned using METIS and
then permuted using RCM on NAR ... 69

Table B.10 Partitioning, parallel permutation and multiplication time of matrix
partitioned using PATOH and then permuted using RCM on NAR 70

Table B.11 Sequential permutation and multiplication time; Partitioning, parallel
permutation and multiplication time of matrix partitioned using METIS and
then permuted using RCM on MERCAN .. 71

Table B.12 Partitioning, parallel permutation and multiplication time of matrix
partitioned using PATOH and then permuted using RCM on MERCAN 72

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 A 9 × 9 square and banded matrix .. 3

Figure 3.1 A 9 × 9 square and banded matrix divided into blocks using DSBMM . 10

Figure 3.2 A 9 × 9 square and banded matrix divided into blocks using DSBMM212

Figure 3.3 Sparsity structure of webbase-1M .. 15

Figure 3.4 Matrix webbase-1M is permuted with partition vector generated using
METIS .. 17

Figure 3.5 Matrix webbase-1M is permuted with partition vector generated using
PATOH ... 18

Figure 3.6 Matrix elements of master process after partitioning 19

Figure 3.7 Diagonal block of matrix of master process ... 19

Figure 3.8 Off-diagonal block of matrix of master process 19

Figure 3.9 Diagonal block of matrix of master process (empty off-diagonal part is
removed) ... 20

Figure 3.10 Diagonal block permuted with permutation vector generated using MC73
 .. 21

Figure 3.11 Diagonal block permuted with permutation vector generated using RCM
 .. 23

Figure 4.1 Speedup chart of banded matrix – multiple vectors multiplication for matrix
having 100,000 rows on NAR .. 28

Figure 4.2 Speedup chart of banded matrix – multiple vectors multiplication for matrix
having 1,500,000 rows on NAR ... 29

xv

Figure 4.3 Speedup chart of banded matrix – multiple vectors multiplication for matrix
having 100,000 rows on MERCAN ... 31

Figure 4.4 Speedup chart of banded matrix – multiple vectors multiplication for matrix
having 1,500,000 rows on MERCAN .. 31

Figure 4.5 Sequential performance comparison chart of SpMM with matrix in its
original form, matrix permuted using MC73 and RCM on NAR (part 1 of
2) .. 37

Figure 4.6 Sequential performance comparison chart of SpMM with matrix in its
original form, matrix permuted using MC73 and RCM on NAR (part 2 of
2) .. 37

Figure 4.7 Sequential performance comparison chart of SpMM with matrix in its
original form, matrix permuted using MC73 and RCM on MERCAN (part
1 of 2) ... 38

Figure 4.8 Sequential performance comparison chart of SpMM with matrix in its
original form, matrix permuted using MC73 and RCM on MERCAN (part
2 of 2) ... 38

Figure 4.9 Speedup comparison chart of partitioning tools on NAR (part 1 of 2) 41

Figure 4.10 Speedup comparison chart of partitioning tools on NAR (part 2 of 2) .. 41

Figure 4.11 Speedup comparison chart of partitioning tools on MERCAN (part 1 of 2)
 .. 42

Figure 4.12 Speedup comparison chart of partitioning tools on MERCAN (part 2 of 2)
 .. 42

Figure 4.13 Speedup comparison chart of matrices on NAR (part 1 of 2) 44

Figure 4.14 Speedup comparison chart of matrices on NAR (part 2 of 2) 44

Figure 4.15 Speedup comparison chart of matrices on MERCAN (part 1 of 2) 45

Figure 4.16 Speedup comparison chart of matrices on MERCAN (part 2 of 2) 45

xvi

LIST OF ABBREVIATIONS

SpMV : Sparse Matrix – Vector Multiplication

SpMM : Sparse Matrix – Matrix Multiplication

ISDA : Invariant Subspace Decomposition Algorithm

BLAS : Basic Linear Algebra Subprograms

MKL : Math Kernel Library

RCM : Reverse Cuthill McKee

MPI : Message Passing Interface

1

CHAPTER 1

1 INTRODUCTION

In iterative solution of banded linear systems, banded matrix – vector multiplication is

a crucial primitive. In the first part of this thesis, an improved algorithm is presented

that has advantage especially for banded matrices that are dense within the band with

a small bandwidth and multiplied by large number of vectors.

Sparse matrix – vector multiplication (SpMV) and sparse matrix – multiple vectors

multiplication (SpMM) are another two important primitives, largely used in iterative

linear system solvers and sparse eigenvalue solvers. Therefore, parallel scalabilities of

SpMV and SpMM operations are crucial.

SpMV operation is defined as y ← α A x + β y, where A is a sparse matrix, x and y are

dense vectors. For simplicity α is assumed one and β is assumed zero. For each nonzero

in matrix A, aij accessed only once, on the other hand, elements of x and y vectors are

accessed multiple times. Thus, optimization of reusability of vector elements has a

significant role in improving the cache utilization.

In distributed memory environments, SpMV operation can be performed concurrently

within processes by distributing rows or columns (or both) of a sparse matrix A, input

vector x and output vector y to processes. Each process multiplies nonzeros in A with

input vector x and partially obtains the result in y. In order to provide efficient

parallelization and to reduce communication cost between processes, distribution of

nonzero elements has a significant role. Another important objective is balancing the

computation load. In the second part of the thesis, partitioning tools and permutation

algorithms are compared within different computing platforms and the matrices from

different application areas.

2

The remaining of this thesis is arranged as follows. In Chapter 2, background

information is given and related work is reviewed. In Chapter 3, the methods used in

banded matrix – multiple vectors multiplication and sparse matrix – multiple vectors

multiplication are proposed and compared with highly optimized routines in existing

libraries. In Chapter 4, computing platform and programming environment is given.

Moreover, numerical experiments are presented. Conclusion and future work is stated

in Chapter 5. The complete measurements of numerical experiments are presented in

the Appendices.

3

CHAPTER 2

2 BACKGROUND AND RELATED WORK

2.1 Banded Matrix – Multiple Vectors Multiplication

A banded matrix is a matrix in which the non-zero elements are located around the

main diagonal, i.e., for all elements outside a banded area are zero. In a formal way,

take an n × n matrix A, aij is the element of ith row and jth column; aij = 0 if i > j + ml

or j > i + mu, where ml, mu ≥ 0. The lower and upper bandwidth are denoted by ml and

mu, respectively. In Figure 2.1, a 9 × 9 square and banded matrix having the same

lower and upper bandwidth (ml = mu = 2) is given. The bandwidth of the matrix is ml

+ mu + 1; for the sample matrix below, it has a value of five.

Figure 2.1 A 9 × 9 square and banded matrix

4

Banded matrix multiplication is needed in Invariant Subspace Decomposition

Algorithm (ISDA) [1]. Even though, ISDA uses multiplication of banded matrices, it

can be formed as banded matrix – multiple vectors multiplication. Banded matrix –

vector multiplication is used as a primitive in solving banded linear systems and

eigenvalue problems. These systems arise in the discretization of several partial and

ordinary differential equations [2]–[4], computational fluid dynamics [5] and

computational nano-electronics [6].

Tsao and Turnbull compared several methods for multiplying banded matrices. They

stated that good results could be achieved for matrices having bandwidth smaller than

the order of matrix [7]. Remon and Quintana-Orti stated that in existing Basic Linear

Algebra Subprograms (BLAS) libraries, there is no BLAS Level 3 routines for banded

matrices. In fact, BLAS Level 2 routines do not sufficiently optimize the operations

on banded matrices [8]. There are two routines in Intel Math Kernel Library (MKL)

[9] that can be used for banded matrix – multiple vectors multiplication. The first one

is xCSRMM, a sparse BLAS Level 3 routine, suits for SpMM. The second one is

xGBMV, a BLAS Level 2 routine, suits for banded matrix – vector multiplication.

Using xGBMV multiple times for each vector appears to be more appropriate than

using former since the matrix is banded and not sparse. Remon and Quintana-Orti also

stated that the performance of the banded BLAS Level 2 routine is highly dependent

on the bandwidth and matrix size [8].

Spike [10], a parallel environment for solving banded linear systems, has banded

primitives. Polizzi splits banded matrix into square dense blocks and triangular

matrices. The method used for banded matrix – matrix multiplication in Spike is

DSBMM. In this thesis, an improved version of it, named DSBMM2 is developed. The

algorithm and results are presented in Section 3.1.

2.2 Sparse Matrix – Multiple Vectors Multiplication

SpMV operation is defined as y ← α A x + β y, where A is an n × n sparse matrix, x

and y are dense vectors of length n. For simplicity α is assumed one and β is assumed

zero. For each nonzero in A, aij accessed only once, on the other hand, elements of x

5

and y are accessed multiple times. Moreover, elements of A and y are accessed

contiguously but there is a random access to elements of vector x. Thus, reusability of

vector elements should be optimized to increase utilization. This optimization has been

well studied before, see [11]–[14] for example.

Sparse matrix – multiple vectors multiplication (can also be defined as sparse matrix

– general matrix multiplication) computes a set of dense output vectors Y as a product

of a sparse matrix A and a set of dense input vectors X, can be shown as,

 Y ← α A X + β Y (1)

For simplicity, it is considered that α is one and β is zero. SpMM is used when solving

a blocked linear system with multiple right-hand sides [15], and in blocked eigenvalue

algorithms, such as block Lanczos and block Arnoldi methods [16]–[18].

If matrix A is multiplied with only one vector, elements of A are accessed only once.

In this thesis, there are multiple vectors, eventually, reusability of matrix elements are

needed to be well considered as well. Im, Yelick and Vuduck showed that in sparse

matrix – multiple vectors multiplication, reuse of matrix elements in cache, which is

not possible with a single vector, provides large opportunities for performance gains,

such as storing ith row of all vectors contiguously [19]. This optimization proposed in

[19] was implemented by looping across the fixed number of vectors as fully unrolled.

In this thesis, it is implemented without unrolling and looping. The ith row of all vectors

are multiplied with nonzeros in matrix as a block. Block size is equal to the number of

vectors.

Sparse algebra kernels have low processor utilization, typically in the range of 10 -

20% of processor peak [20]. One of the reason for the low utilization is that the amount

of computational power is increasing with a higher rate than the rate of increase of

memory bandwidth [21]. This difference is stated as “a memory bandwidth starved

multicore world” by Williams [22].

The low utilization could be improved by lowering indexing overheads of matrix A. In

order to lower the overheads associated with storing and accessing elements of sparse

6

matrices, Kannan introduced a blocked sparse format, called mapped blocked row

sparse format that can be used in sequential SpMV [21]. Pinar and Heath proposed

packing all the nonzeros in contiguous locations into a block, named blocked

compressed row storage format and compared with 1 × 2 blocks [14].

Another option to lowering indexing overhead is register blocking. Geus and Röllin

used fixed size small dense blocks in sequential SpMV [12]. Toledo proposed handling

the 1 × 2 blocks of a matrix separately [13]. Im, Yelick and Vuduck used rectangular

register blocking in different platforms. They conclude that a small change in block

size can make a large difference in performance. However the reason of it is not clear,

they stated that compiler and memory structure are important factors [19]. Generally,

in all previous studies about register blocking optimization, it is the common outcome

that machine specific tuning is worthy.

To balance the workload of parallel SpMM operation, matrix partitioning is used in

general. It means that subset of matrix A and corresponding input vectors X are

distributed according to partition vector. Hence, each process multiplies and obtains

output vectors Y that it owns.

There are two types of one-dimensional decomposition of sparse matrices, which are

graph partitioning and hypergraph partitioning. Graph partitioning approximates the

volume of nonzero elements in off-diagonal matrix blocks. But hypergraph

partitioning reflects the actual communication volume by making nonzero elements in

off-diagonal matrix blocks to be column aligned [23]. In this thesis, both a graph

partitioning tool METIS [24] and a hypergraph partitioning tool PATOH [25] are used.

Another option to increase low utilization is reducing irregular memory accesses. It

can be done by reordering the matrix to access input vector elements contiguously and

to have a high cache reuse. Pinar and Heath stated that noteworthy improvement in

SpMV performance could be achieved by reordering the matrix, which they showed

to be NP-Complete. They also stated that the cost of reordering is often amortized over

repeated SpMV operations with the same matrix, which also means SpMM operation.

They proposed traveling salesman problem ordering and compared with Reverse

7

Cuthill McKee (RCM) ordering [14]. Toledo explored Cuthill McKee ordering yields

an excellent results on a variety of matrices [13]. In this thesis, RCM [26] and HSL

MC73 [27] algorithms are investigated for improving the cache utilization in parallel

sparse matrix – multiple vectors multiplication.

8

9

CHAPTER 3

3 METHODS AND MOTIVATION

3.1 Banded Matrix – Multiple Vectors Multiplication

A banded matrix A with bandwidth ml, input vector x and output vector y are given.

Banded matrix – vector multiplication is defined as y ← α A x + β y. For simplicity, it

is considered that α is one and β is zero. In Figure 2.1, a 9 × 9 square and banded matrix

having the same lower and upper bandwidth with value of two is given.

In this chapter, serial implementation of banded matrix – multiple vectors

multiplication primitives DGBMV and DSBMM are studied. Moreover, an improved

variation of DSBMM, which is called DSBMM2, is proposed and implemented.

3.1.1 DGBMV

In Intel MKL library or in any other BLAS implementations, there is no BLAS Level

3 routine for banded matrix – multiple vectors multiplication. Instead, there is a BLAS

Level 2 routine called DGBMV, double-precision type of GBMV. In this thesis, it is

used for multiple vectors multiplication by calling it k times, where k is the number of

vectors.

DGBMV implementation is used as a reference in banded matrix – multiple vectors

multiplication as it is the only banded matrix – vector multiplication routine in existing

optimized BLAS libraries.

10

3.1.2 DSBMM

DSBMM [28] is a method in Spike library [10], which multiplies banded matrices with

multiple vectors. The method accepts only structurally symmetric matrices.

DSBMM divides matrix into square blocks of sizes ml and triangular blocks. Square

blocks are multiplied with the block of vectors using DGEMM, a BLAS Level 3

routine used for general matrix – matrix multiplication. Triangular blocks are

multiplied using DTRMM, another BLAS Level 3 routine used for triangular matrix –

matrix multiplication. In Figure 3.1, square blocks are marked with gray background;

triangular blocks are marked with polka dot background.

Figure 3.1 A 9 × 9 square and banded matrix divided into blocks using DSBMM

While FORTRAN programming language uses column-major order for array storage,

C programming language uses row-major order. As DSBMM is implemented in

FORTRAN, diagonals are given in columns so that the matrix elements are contiguous.

The pseudo-code of DSBMM for the given n × n matrix A, input vectors X, output

vectors Y, number of rows of matrix and vectors n, number of vectors k and

lower/upper bandwidth ml, is given in Algorithm 1.

11

Algorithm 1 Pseudo-code of DSBMM (A, X, Y, n, k, ml)

1: bl ← n / ml ► Number of square blocks

2: for each square block with size ml

3: call DGEMM (Apartial, Xpartial, Ypartial, k, ml)

4: end for

5: last_bl ← n – (bl * ml) ► Size of last square block

6: if last_bl > 0 then

7: call DGEMM (Apartial, Xpartial, Ypartial, k, last_bl)

8: end if

9: for each lower sub-diagonal (triangular) block do

10: Z (ml, k) ← Xpartial ► Z is a temporary matrix

11: call DTRMM (Apartial, Xpartial, Ypartial, k, ml, UPPER)

12: Add Z to Ypartial

13: end for

14: if last_bl > 0 then

15: Z (last_bl, k) ← Xpartial

16: call DTRMM (Apartial, Xpartial, Ypartial, k, last_bl, UPPER)

17: Add Z to Ypartial

18: /* Rectangular part of the last lower sub-diagonal block */

19: call DGEMM (Apartial, Xpartial, Ypartial, k, ml – last_bl)

20: end if

21: for each upper sub-diagonal (triangular) block do

22: Z (ml, k) ← Xpartial

23: call DTRMM (Apartial, Xpartial, Ypartial, k, ml, LOWER)

24: Add Z to Ypartial

25: end for

26: if last_bl > 0 then

12

Algorithm 1 Pseudo-code of DSBMM (A, X, Y, n, k, ml) (continued)

27: Z (last_bl, k) ← Xpartial

28: call DTRMM (Apartial, Xpartial, Ypartial, k, last_bl, LOWER)

29: Add Z to Ypartial

30: /* Rectangular part of the last upper sub-diagonal block */

31: call DGEMM (Apartial, Xpartial, Ypartial, k, ml – last_bl)

32: end if

3.1.3 DSBMM2

In this thesis, an improved variation of DSBMM, which is called DSBMM2, is

proposed and implemented. DSBMM2 has slightly larger square blocks with the size

(ml + 1). Eventually the number of triangular blocks become fewer, because dense

square blocks are larger. Hence, a better utilization of the cache is obtained. An

example partitioning using DSBMM2 for the same matrix in Figure 3.1 is given in

Figure 3.2.

Figure 3.2 A 9 × 9 square and banded matrix divided into blocks using DSBMM2

13

DSBMM2 is implemented in C programming language, so diagonals are given in rows.

The pseudo-code of DSBMM2 for the given n × n matrix A, input vectors X, output

vectors Y, number of rows of matrix and vectors n, number of vectors k and

lower/upper bandwidth ml, is given in Algorithm 2.

Algorithm 2 Pseudo-code of DSBMM2 (A, X, Y, n, k, ml)

1: bl ← n / (ml + 1) ► Number of square blocks

2: for each square block with size ml

3: call DGEMM (Apartial, Xpartial, Ypartial, k, ml + 1)

4: end for

5: last_bl ← n – (bl * (ml + 1)) ► Size of last square block

6: if last_bl > 0 then

7: call DGEMM (Apartial, Xpartial, Ypartial, k, last_bl)

8: end if

9: for each lower sub-diagonal (triangular) block do

10: Z (ml, k) ← Xpartial ► Z is a temporary matrix

11: call DTRMM (Apartial, Xpartial, Ypartial, k, ml, UPPER)

12: Add Z to Ypartial

13: end for

14: if last_bl > 0 then

15: Z (last_bl, k) ← Xpartial

16: call DTRMM (Apartial, Xpartial, Ypartial, k, last_bl, UPPER)

17: Add Z to Ypartial

18: /* Rectangular part of the last lower sub-diagonal block */

19: call DGEMM (Apartial, Xpartial, Ypartial, k, ml – last_bl)

20: end if

21: for each upper sub-diagonal (triangular) block do

22: Z (ml, k) ← Xpartial

14

Algorithm 2 Pseudo-code of DSBMM2 (A, X, Y, n, k, ml) (continued)

23: call DTRMM (Apartial, Xpartial, Ypartial, k, ml, LOWER)

24: Add Z to Ypartial

25: end for

26: if last_bl > 0 then

27: Z (last_bl, k) ← Xpartial

28: call DTRMM (Apartial, Xpartial, Ypartial, k, last_bl, LOWER)

29: Add Z to Ypartial

30: /* Rectangular part of the last upper sub-diagonal block */

31: call DGEMM (Apartial, Xpartial, Ypartial, k, ml – last_bl)

32: end if

In both DSBMM and DSBMM2, matrix is multiplied with input vectors not one by

one but in blocks. Hence, they have better utilization than DGBMV for multiple

vectors.

3.2 Sparse Matrix – Multiple Vectors Multiplication

In this chapter, the following techniques are used while performing sparse matrix –

multiple vectors multiplication.

• Partitioning the matrix to move most nonzeros in the diagonal block.

• Permuting the matrix to move most nonzeros contiguously.

• Storing vectors to be able to do multiplication as a block operation.

Spy plots of a sample sparse matrix – multiple vectors multiplication have been given

in each subsection of this section. As an example, “webbase-1M” matrix has been

partitioned using METIS and has been multiplied with multiple vectors within four

processes.

15

3.2.1 Reading Matrix

The matrices used in this section (given in Section 4.3.2.1) are all in Matrix Market

format [29]. In Matrix Market format, general information (e.g. name, title, ID, kind,

author, etc.) and structure summary (e.g. sparse or dense, real or pattern, symmetric or

general) are given on the header of the file. MMIO library [30] is used when reading

the header to check whether the matrix is suitable for the operations used in this thesis.

Following the header lines, there are triplets (i, j, aij) for each nonzero, representing

row index, column index and matrix value respectively.

The matrices used in this section are all sparse and square; entries of them are double-

precision numbers. The matrices are read by master MPI process (process having rank

of zero). Other processes get nonzeros via MPI communication routines. In Figure 3.3,

there is a spy plot showing a sample matrix, webbase-1M, after reading it from file.

Figure 3.3 Sparsity structure of webbase-1M

16

3.2.2 Partitioning

One dimensional block distribution is distributing rows or columns of a matrix to

different processes. In this thesis, row-wise distribution is used. Hence, for an n × n

matrix and number of parts k, n / k rows are assigned to each process.

When multiplying sparse matrix with vector(s), the nonzeros in the diagonal blocks do

not need to access vector elements on other processes. Partitioning tools are used to

move most nonzeros of the matrix to the diagonal blocks.

Partitioning tools, such as METIS and PATOH, generate a permutation vector (which

gives the permutation matrix P) to partition the matrix.

 A0 ← P A PT (2)

Rows and columns of the matrix are permuted with permutation vector and transpose

of permutation vector respectively. After the symmetric permutation is applied, a

permuted matrix A0 is obtained. Equation of this operation is given above. Input and

output vectors are permuted with the same permutation vector as well.

In this thesis, row-wise partitioning is used, so row i of the matrix, input and output

vectors are all assigned to the same process. Calling partitioning method, getting the

partitioning vector and permuting the matrix according to partition vector are all done

by master MPI process. Number of partitions is equal to the number of running MPI

processes. Hence, each process gets a part of matrix and vectors.

3.2.2.1 METIS

METIS is a sequential tool for partitioning graphs, partitioning finite element meshes

and computing fill-reducing orderings of sparse matrices [24]. In addition, there is

another tool called ParMETIS [31]. ParMETIS is an MPI-based parallel version of

METIS.

There are two possible algorithms while partitioning graphs using METIS. They are

multilevel recursive bisection and multilevel k-way partitioning.

17

In this thesis, k-way partitioning is used with the “minimizing total communication

volume” parameter is set. The other parameter for objective type is edge-cut

minimization, which is proven that it does not model the actual communication volume

by Catalyurek and Aykanat [32], [33].

METIS requests input matrix to be symmetric, so for non-symmetric matrices, |A| +

|A|T is given as the input. For the sample matrix in Figure 3.3, it is permuted with

partition vector generated using METIS. The resulting reordered matrix using four

partitions is given in Figure 3.4.

Figure 3.4 Matrix webbase-1M is permuted with partition vector generated using METIS

3.2.2.2 PATOH

PATOH is a sequential multi-level and multi-constraint hypergraph partitioning tool.

It divides a hypergraph into two or more roughly equal sized parts such that a cost

function on the hyperedges connecting vertices in different parts is minimized [25],

[32].

18

Before calling partitioning method of PATOH, parameters are initialized to their

default values and memory allocation is done. Afterwards, partitioning method is

called with set as to use recursive multilevel hypergraph bisection algorithm. For the

sample matrix in Figure 3.3, it is permuted with partition vector generated using

PATOH. The resulting reordered matrix using four partitions is given in Figure 3.5.

Figure 3.5 Matrix webbase-1M is permuted with partition vector generated using PATOH

Devine et al. stated that hypergraphs can model communication volume more precisely

and can represent non-symmetric problems better [34]. In this thesis, both a graph

partitioner, METIS and a hypergraph partitioner, PATOH are used. The results are

given in Section 4.3.2.3.1.

Once the permutation of matrix and input vectors are finished, it is time to send them

other MPI processes to do multiplication. Matrix elements of master process after it is

partitioned using METIS, are given in Figure 3.6.

19

Figure 3.6 Matrix elements of master process after partitioning

After each MPI process obtains its block matrix, it is further partitioned into diagonal

and off-diagonal blocks, shown in Figure 3.7 and Figure 3.8 respectively. This

operation can be shown as;

 D + R ← A (3)

Figure 3.7 Diagonal block of matrix of master process

Figure 3.8 Off-diagonal block of matrix of master process

There is no need to communicate with other processes when multiplying nonzeros of

D (diagonal block). On the contrary, communication is required when multiplying

nonzeros of R (off-diagonal block). Because some elements of input vectors of other

processes are required to do multiplication.

20

3.2.3 Diagonal Block

Diagonal block, D has much more nonzeros than off-diagonal block owing to

partitioning tools. To illustrate, empty off-diagonal part in Figure 3.7 is removed and

it becomes as in Figure 3.9.

Figure 3.9 Diagonal block of matrix of master process (empty off-diagonal part is removed)

While multiplying sparse matrix with multiple vectors, DCSRMM, a sparse BLAS

Level 3 routine is used. In order to improve cache-hit ratio, ith rows of all vectors are

stored contiguously. Hence, it provides usability of BLAS Level 3 routines rather than

calling BLAS Level 2 routines many times for each vector.

3.2.3.1 Permutation

The objective of using permutation is to improve the speedup of sparse matrix –

multiple vectors multiplication by moving most nonzeros contiguously as much as

possible. To achieve that matrices are permuted with two different algorithms. After

the permutation is done, the matrix is multiplied with multiple vectors using

DCSRMM routine. Results of the experiments are given in Section 4.3.2.2.

21

Both permutation algorithms, HSL MC73 and RCM request input matrix to be

symmetric, so for non-symmetric matrices, |A| + |A|T is given as the input matrix.

3.2.3.1.1 HSL MC73

HSL MC73 is a library that computes Fiedler vector of Laplacian matrix and computes

a symmetric permutation that aims to reduce the profile and wavefront [35]. In this

thesis, MC73 is used to move most nonzeros of matrix near the main diagonal.

Three different algorithms can be used while computing a symmetric permutation.

They are multilevel Sloan, multilevel spectral ordering and hybrid ordering

algorithms. In this thesis, multilevel spectral ordering algorithm is used. This

algorithm computes the approximate Fiedler vector of the Laplacian of each

component and then sorts the entries of this vector in non-decreasing order [27].

MC73 tries to move most all nonzeros near the main diagonal as it can be seen in figure

below. For the sample diagonal block in Figure 3.9, it is permuted with the permutation

vector generated using MC73. The resulting diagonal block is given in Figure 3.10.

Figure 3.10 Diagonal block permuted with permutation vector generated using MC73

22

3.2.3.1.2 RCM

Reverse Cuthill McKee (RCM) algorithm [26] computes a symmetric permutation that

reduces the bandwidth of sparse symmetric matrices. Algorithm of RCM for the given

graph G (n) is given below [36].

Algorithm 3 Algorithm of RCM

1: Q ← { } ► Initialize an empty queue, Q

2: R ← { } ► Initialize an empty result array, R

3: if there are unexplored nodes then

4: P ← The node with the lowest degree in G (n)

5: Add P in the first free position of R

6:

 Q ← Q + { All the nodes adjacent with P in the increasing order of
their degree }

7: C ← The first node from the queue

8: Q ← Q – { C }

9: while Q ≠ { } do

10: if C has not previously been inserted in R then

11: Add C in the first free position of R

12:

 Q ← Q + { All the neighbors of C that are not in R in
the increasing order of their degree }

13: end if

14: end while

15: end if

16: Swap R [i] with R [n + 1 - i] ► Reverse the order of elements in R

The vector elements accessed while multiplying ith row of the sparse matrix are

accessed again in the following row, owing to reduced bandwidth that RCM algorithm

provides. In this thesis, RCM is used and advantage of reduced bandwidth is observed.

Results of the experiments are given in Section 4.3.2.2.

23

For the sample diagonal block in Figure 3.9, it is permuted with the permutation vector

generated using RCM. The resulting diagonal block is given in Figure 3.11.

Figure 3.11 Diagonal block permuted with permutation vector generated using RCM

3.2.4 Off-Diagonal Blocks

Off-diagonal blocks, R, have much smaller number of nonzeros than the diagonal

blocks. While multiplying nonzeros in R with input vectors, communication is

required. Because vector elements that is going to be multiplied with nonzeros in off-

diagonal block, are all owned by other processes. While sending these vector elements,

non-blocking MPI send routines are used to have the possibility to continue

computation. Upon vector elements are received, they are multiplied with the nonzeros

in R.

Im, Yelick and Vuduck stated that for computations involving multiple vectors,

reorganizing them to perform the entire set of multiplications as a single operation

provides significant performance improvement [19]. In this thesis, ith row of all vectors

are stored contiguously. Hence, reuse of nonzeros in matrix R has been provided when

multiplying.

24

Output vectors Y is formed after multiplying all nonzeros in D and R. If the matrix A

is permuted with HSL MC73 or RCM, inverse permutation should be done to achieve

final output vectors.

25

CHAPTER 4

4 NUMERICAL EXPERIMENTS

In the previous chapter, the methods used in implementation and the algorithm that is

developed are described. In this chapter, the computing and programming environment

are given and performance results are presented.

4.1 Computing Platform

The numerical computations reported in this thesis are performed using two different

computing platforms. NAR is a cluster at Department of Computer Engineering,

Middle East Technical University [37]. MERCAN is the other cluster at TUBITAK

ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources) [38].

Specifications of two platforms are given below. Entire node is allocated while

operating.

Table 4.1 Platform specifications

Specification NAR MERCAN

Architecture Intel Xeon E5430 AMD Opteron 6176

CPU Frequency 2.66 GHz 2.3 GHz

Number of CPUs
Number of Cores

2 CPU x 4 core 2 CPU x 12 core

L1 Cache
2 x 4 x 32 KB instruction

2 x 4 x 32 KB write-back data

2 x 12 x 64 KB instruction

2 x 12 x 64 KB data

L2 Cache 2 x 2 x 6 MB 2 x 12 x 512 KB

L3 Cache N / A 2 x 2 x 6 MB

26

Table 4.1 Platform specifications (continued)

RAM 8 x 2 GB 667 MHz (total 16 GB) 128 GB 1600 MHz

Network 20 Gbps Infiniband 40 Gbps QDR Infiniband

4.2 Programming Environment

Specifications of programming environment are stated in Table 4.2, followed by

versions of other used libraries.

Table 4.2 Programming environment specifications

Specification NAR MERCAN

Operating System Scientific Linux 5.2 64-bit Scientific Linux 6.2 64-bit

Linux Kernel 2.6.18-92.1.17.el5 x86_64 2.6.32-220.23.1.el6 x86_64

MPI MVAPICH2 v1.2p1 OpenMPI v1.4.3

MKL Intel MKL v10.1 Intel MKL v11.1.073

Fortran Compiler ifort v11.0 ifort v12.1.3

C Compiler mpicc (icc v11) mpicc (icc v12.1.3)

METIS version 5.1.0, a fill-reducing matrix reordering and a sequential graph

partitioning algorithm; PATOH version 3.2, a multilevel hypergraph partitioning

algorithm; HSL MC73 [35] version 1.2, a fast multilevel fiedler and profile reduction

algorithm; RCM [39], an algorithm that reorders a sparse matrix into a band matrix

with a small bandwidth; Sparsekit [40], a basic toolkit for sparse matrix operations;

MMIO library [30], a library for files in Matrix Market format; CSPY, a MATLAB

function in CSparse library [41] for spy plotting matrices, are used in the

implementation of this thesis.

27

4.3 Experiments and Results

4.3.1 Banded Matrix – Multiple Vectors Multiplication

In this section, only square, banded and structurally symmetric (means having the same

upper and lower bandwidths) matrices are used. Matrix entries are double-precision

numbers and they are created randomly.

The results are evaluated in terms of speedup varying the number of rows, number of

vectors, bandwidth, implementation type and computing platform. Multiplication time

using DGBMV (in seconds) and speedup values using DSBMM and DSBMM2 are

given in Table 4.3 and Table 4.4 for NAR and MERCAN platforms respectively. No

threads are used in the implementation of this section and the implementation runs

sequentially.

Table 4.3 Sequential multiplication time using DGBMV and speedup of banded matrix –

multiple vectors multiplication using DSBMM and DSBMM2 on NAR

Number
of Rows

Lower
Band-
width

Implementation
Type

 Number of Vectors

1 10 100

DGBMV
Mult.

Time(sec)
Speedup

DGBMV
Mult.

Time(sec)
Speedup

DGBMV
Mult.

Time(sec)
Speedup

100,000 10 DSBMM
0.01

0.25
0.07

0.91
0.71

1.55

100,000 10 DSBMM2 0.24 1.14 2.42

100,000 50 DSBMM
0.03

0.52
0.27

2.69
2.71

5.25

100,000 50 DSBMM2 0.34 2.10 5.52

100,000 200 DSBMM
0.09

0.70
0.92

3.89
9.23

8.18

100,000 200 DSBMM2 0.49 2.63 7.86

1,500,000 10 DSBMM
0.11

0.25
1.08

0.91
10.77

1.52

1,500,000 10 DSBMM2 0.24 1.15 2.44

1,500,000 50 DSBMM
0.41

0.52
4.07

2.70
40.71

5.26

1,500,000 50 DSBMM2 0.33 2.11 5.53

1,500,000 200 DSBMM
1.39

0.70
13.86

3.88
138.59

8.18

1,500,000 200 DSBMM2 0.49 2.62 7.86

28

The matrices used in test case have 100,000, 400,000, 1,500,000 and 3,000,000 rows.

Only matrices having 100,000 and 1,500,000 rows are shown in this section.

Remaining results are given in the Appendix A.

Eighteen vertical bars are shown in-group of six for varying number of vectors in each

of Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4. Each group represents speedup

values of DSBMM and DSBMM2 relative to DGBMV for each bandwidth.

Chosen values for number of vectors are 1, 10 and 100; for lower bandwidth are 10,

50, and 200. Detailed test results can be found in Appendix A.

Figure 4.1 Speedup chart of banded matrix – multiple vectors multiplication for matrix having

100,000 rows on NAR

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M
2

m
l=

1
0

, D
S

B
M

M
2

m
l=

1
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M
2

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

2

m
l=

2
0

0
, D

S
B

M
M

2

m
l=

2
0

0
, D

S
B

M
M

2

0

1

2

3

4

5

6

7

8

9

1 10 100

S
p

ee
d

u
p

Number of Vectors

NAR - 100,000 Rows

29

Figure 4.2 Speedup chart of banded matrix – multiple vectors multiplication for matrix having

1,500,000 rows on NAR

Figure 4.1 and Figure 4.2 show that DSBMM and DSBMM2 have a better speedup

while number of vectors increases. The reason for this behavior is that when the

number of vectors increases, more consecutive vector entries stay loaded in the cache

and reusability of the values in cache is much higher than DGBMV. DSBMM2 is

roughly 1.6 times faster than DSBMM if the bandwidth is 10 and the number of vectors

is 100. For large number of vectors and bandwidth, however, DSBMM is slightly

better.

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M
2

m
l=

1
0

, D
S

B
M

M
2

m
l=

1
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M
2

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

2

m
l=

2
0

0
, D

S
B

M
M

2

m
l=

2
0

0
, D

S
B

M
M

2

0

1

2

3

4

5

6

7

8

9

1 10 100

S
p

ee
d

u
p

Number of Vectors

NAR - 1,500,000 Rows

30

Table 4.4 Sequential multiplication time using DGBMV and speedup of banded matrix –

multiple vectors multiplication using DSBMM and DSBMM2 on MERCAN

Number of
Rows

Lower
Band-
width

Implementation
Type

 Number of Vectors

1 10 100

DGBMV
Mult.

Time(sec)
Speedup

DGBMV
Mult.

Time(sec)
Speedup

DGBMV
Mult.

Time(sec)
Speedup

100,000 10 DSBMM
0.01

0.20
0.06

0.72
0.66

1.12

100,000 10 DSBMM2 0.13 0.86 2.04

100,000 50 DSBMM
0.02

0.43
0.18

1.81
1.78

2.90

100,000 50 DSBMM2 0.19 1.51 2.80

100,000 200 DSBMM
0.06

0.70
0.61

2.64
6.07

4.08

100,000 200 DSBMM2 0.28 2.33 4.08

1,500,000 10 DSBMM
0.10

0.20
0.97

0.70
9.76

0.91

1,500,000 10 DSBMM2 0.13 0.85 2.01

1,500,000 50 DSBMM
0.26

0.43
2.62

1.78
26.22

2.74

1,500,000 50 DSBMM2 0.19 1.49 2.75

1,500,000 200 DSBMM
0.91

0.70
9.09

2.62
90.90

4.05

1,500,000 200 DSBMM2 0.28 2.31 4.05

31

Figure 4.3 Speedup chart of banded matrix – multiple vectors multiplication for matrix having

100,000 rows on MERCAN

Figure 4.4 Speedup chart of banded matrix – multiple vectors multiplication for matrix having

1,500,000 rows on MERCAN

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M
2

m
l=

1
0

, D
S

B
M

M
2

m
l=

1
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M
2

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

2

m
l=

2
0

0
, D

S
B

M
M

2

m
l=

2
0

0
, D

S
B

M
M

2

0

1

2

3

4

5

6

7

8

9

1 10 100

S
p

ee
d

u
p

Number of Vectors

MERCAN - 100,000 Rows

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M

m
l=

1
0

, D
S

B
M

M
2

m
l=

1
0

, D
S

B
M

M
2

m
l=

1
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M

m
l=

5
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M
2

m
l=

5
0

, D
S

B
M

M
2

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

m
l=

2
0

0
, D

S
B

M
M

2

m
l=

2
0

0
, D

S
B

M
M

2

m
l=

2
0

0
, D

S
B

M
M

2

0

1

2

3

4

5

6

7

8

9

1 10 100

S
p

ee
d

u
p

Number of Vectors

MERCAN - 1,500,000 Rows

32

The four figures above indicate that DGBMV is better than DSBMM and DSBMM2

if banded matrix is multiplied with a single vector. Nevertheless, DSBMM and

DSBMM2 provide a better speedup as the bandwidth and/or number of vectors

increase in both platforms. DSBMM2 is roughly 1.8 times faster than DSBMM if the

bandwidth is 10 and the number of vectors is 100 because of using square dense blocks

more effectively and lowering the number of triangular blocks, seen in Figure 3.2.

As the bandwidth increases, DSBMM is faster for smaller number of vectors but they

have almost equal performance if the number of vectors is 100. A possible reason for

this behavior is that DSBMM is implemented in FORTRAN language whether

DSBMM2 is implemented in C language.

The maximum speedup observed for DSBMM and DSBMM2 are 8.18 and 7.86

respectively. It is observed when the number of vectors is 100 and lower bandwidth is

200 on NAR platform. The results show that performance of the implementation grows

linearly with the increasing number of processes, which means that they are suitable

for multiprocessors.

Overall, considering either DSBMM or DSBMM2, it is observed that NAR has better

speedup than MERCAN. Most probably, the reason for this behavior is that NAR has

Intel processors and MERCAN has AMD processors. Intel MKL library is optimized

for Intel platforms.

Matrices having 100,000 and 1,500,000 rows follow the same speedup trend. Other

matrices having different number of rows follow the same trend as well.

4.3.2 Sparse Matrix – Multiple Vectors Multiplication

Three different set of experiments for sparse matrix – multiple vectors multiplication

are performed. The first one is comparing matrix in its original form with matrix

permuted using MC73 and RCM algorithms. After finding the best one, it will be used

on the following set of experiments. The second one is comparing METIS and PATOH

33

partitioning tools. The best one will be used on the following experiment. The last one

is comparing the parallel scalability.

No threads are used in the implementations of this section and all tests are done in two

different computing platforms.

4.3.2.1 Matrix Collection

The matrices used in experiments in this section are all sparse and square; matrix

entries are double precision numbers. They all are obtained from the University of

Florida Sparse Matrix Collection [42]. Their basis properties are given in Table 4.5.

All matrices are treated as general even if they are symmetric.

Table 4.5 Matrices used for performance testing

Matrix Name Spy Plot Application
Sym-
metric

Number of
Rows and
Columns

Number of
Nonzeros

(NNZ)

NNZ /
Row

af_shell10

structural
problem

Yes 1,508,065 52,259,885 34.65

atmosmodd

computational
fluid dynamics

No 1,270,432 8,814,880 6.94

atmosmodl

computational
fluid dynamics

No 1,489,752 10,319,760 6.93

cage14

directed weighted
graph

No 1,505,785 27,130,349 18.02

34

Table 4.5 Matrices used for performance testing (continued)

dielFilterV3real

electromagnetic Yes 1,102,824 89,306,020 80.98

G3_circuit

circuit simulation Yes 1,585,478 7,660,826 4.83

Geo_1438

structural
problem

Yes 1,437,960 60,236,322 41.89

Hamrle3

circuit simulation No 1,447,360 5,514,242 3.81

Hook_1498

structural
problem

Yes 1,498,023 59,374,451 39.64

kkt_power

circuit
optimization

Yes 2,063,494 12,771,361 6.19

memchip

circuit simulation No 2,707,524 13,343,948 4.93

nlpkkt80

optimization Yes 1,062,400 28,192,672 26.54

35

Table 4.5 Matrices used for performance testing (continued)

Serena

structural
problem

Yes 1,391,349 64,131,971 46.09

StocF-1465

computational
fluid dynamics

Yes 1,465,137 21,005,389 14.34

thermal2

thermal problem Yes 1,228,045 8,580,313 6.99

webbase-1M

weighted directed
graph

No 1,000,005 3,105,536 3.11

4.3.2.2 Effect of Permutation on Sequential Sparse Matrix – Multiple Vectors
Multiplication

In this section, three different forms of matrix are compared. They are,

• Matrix in its original form

• Matrix permuted with permutation vector generated using MC73

• Matrix permuted with permutation vector generated using RCM

The matrix in all forms is multiplied with 100 vectors using DCSRMM, a sparse BLAS

Level 3 routine. The multiplication time of matrix in the first form is used as a

reference in this section. These operations are carried out sequentially, i.e., using a

single core of a processor. The results are evaluated in terms of speedup varying

matrix, reordering technique (stated above) and computing platform. Multiplication

time of the original matrix, times for obtaining the permutation using MC73 and RCM

for both platforms are given in Table 4.6. Values in the table are given in second.

36

Table 4.6 Sequential multiplication time of matrix in its original form and the times for

obtaining the permutation using MC73 and RCM

Matrix

NAR MERCAN

Orig. Form
Mult. Time

(sec)

MC73 Time
(sec)

RCM Time
(sec)

Orig. Form
Mult. Time

(sec)

MC73 Time
(sec)

RCM Time
(sec)

af_shell10 10.87 5.33 0.69 30.16 6.69 0.81

atmosmodd 2.60 2.51 0.45 15.65 2.80 0.47

atmosmodl 3.05 3.05 0.51 19.41 3.35 0.55

cage14 7.89 8.73 1.48 36.36 9.75 1.42

dielFilterV3real 19.26 11.02 1.27 54.83 13.08 1.63

G3_circuit 2.44 3.29 0.35 16.78 3.66 0.50

Geo_1438 13.64 7.82 0.78 39.62 9.42 0.94

Hamrle3 2.29 22.14 1.03 13.47 27.08 0.88

Hook_1498 12.74 7.97 0.80 39.07 9.55 0.96

kkt_power 5.82 31.73 3.41 31.80 32.73 2.62

memchip 5.58 9.36 1.30 29.65 10.34 1.35

nlpkkt80 5.54 6.90 0.62 22.50 8.51 0.73

Serena 13.48 8.18 0.76 40.42 9.76 0.93

StocF-1465 5.32 5.53 0.93 26.09 6.35 1.02

thermal2 2.93 3.78 0.55 15.45 4.16 0.58

webbase-1M 1.43 35.72 0.28 8.52 38.47 0.29

RCM requires at least one-sixth of MC73. Even though times to obtain the

permutations on both platforms are nearly same, multiplication times are quite

different. The reason for this difference is that NAR has Intel processors and

MERCAN has AMD processors. Intel MKL library is optimized for Intel platforms.

Sequential performance comparison of sparse matrix – multiple vectors multiplication

with matrix in its original form, matrix permuted using MC73 and RCM on NAR

platform is given in Figure 4.5 and Figure 4.6. Figure 4.7 and Figure 4.8 gives the

same comparison on MERCAN platform.

37

Figure 4.5 Sequential performance comparison chart of SpMM with matrix in its original form,

matrix permuted using MC73 and RCM on NAR (part 1 of 2)

Figure 4.6 Sequential performance comparison chart of SpMM with matrix in its original form,

matrix permuted using MC73 and RCM on NAR (part 2 of 2)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

S
p

ee
d

u
p

NAR - 1 MC73 RCM

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

S
p

ee
d

u
p

NAR - 2 MC73 RCM

38

Figure 4.7 Sequential performance comparison chart of SpMM with matrix in its original form,

matrix permuted using MC73 and RCM on MERCAN (part 1 of 2)

Figure 4.8 Sequential performance comparison chart of SpMM with matrix in its original form,

matrix permuted using MC73 and RCM on MERCAN (part 2 of 2)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

S
p

ee
d

u
p

MERCAN - 1 MC73 RCM

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

S
p

ee
d

u
p

MERCAN - 2 MC73 RCM

39

In both platforms, matrix permuted using MC73 shows no speedup except kkt_power,

memchip and thermal2 matrices, which arise in circuit and thermal application areas.

The reason is that MC73 dissolves any existing dense block substructure, particularly

on cage14, Geo_1438, nlpkkt80 and Serena matrices, most of them represent a

structural problem. MC73 shows a better speedup than RCM only on memchip matrix,

which represents a circuit simulation problem.

In general, matrices permuted using RCM show a better speedup than the matrices

permuted using MC73 and in its original form. Particularly on atmosmodl,

dielFilterV3real, kkt_power and thermal2 matrices, RCM yields a good speedup.

These matrices arise in computational fluid dynamics, electromagnetic, circuit

optimization and thermal application areas respectively. It is roughly 1.16 times faster

than reference multiplication for these matrices.

4.3.2.3 Parallel Scalability

In the previous section, the forms of matrix are studied and the matrix permuted using

RCM shows a better speedup. Hence, in this section all operations are done with

matrices permuted using RCM.

4.3.2.3.1 METIS vs. PATOH

In this section, a graph partitioning tool METIS and a hypergraph partitioning tool

PATOH are compared. All the operations in this section are operated within 16

processes. Thus, matrix is partitioned into 16 parts by the partitioning tool. Then each

process multiplies the permuted matrix with 100 vectors using DCSRMM, a sparse

BLAS Level 3 routine.

The sequential multiplication time of matrix, permuted using RCM is used as a

reference in this section. The results are evaluated in terms of speedup varying matrix,

partitioning tool and computing platform. Sequential multiplication time, partitioning

time of METIS and PATOH for both platforms are given in Table 4.7. Values in the

table are given in second.

40

Table 4.7 Sequential multiplication time and partitioning time of METIS and PATOH

Matrix

NAR MERCAN

Seq. Mult.
Time (RCM)

(sec)

METIS
Partitioning
Time (sec)

PATOH
Partitioning
Time (sec)

Seq. Mult.
Time (RCM)

(sec)

METIS
Partitioning
Time (sec)

PATOH
Partitioning
Time (sec)

af_shell10 10.85 4.23 90.80 30.19 2.59 65.83

atmosmodd 2.53 4.44 35.24 14.39 2.28 20.55

atmosmodl 2.96 4.03 43.10 16.88 2.36 24.64

cage14 7.39 51.06 236.83 36.91 24.09 127.80

dielFilterV3real 16.85 10.20 400.92 43.63 5.88 279.45

G3_circuit 2.70 2.85 24.99 16.29 1.68 14.23

Geo_1438 13.04 7.41 156.51 39.54 4.55 109.10

Hamrle3 2.65 132.74 18.70 16.22 63.08 10.90

Hook_1498 12.74 7.19 155.44 40.13 4.34 108.40

kkt_power 4.92 10.00 98.20 26.56 5.37 54.00

memchip 5.47 8.67 39.81 31.31 3.99 20.35

nlpkkt80 5.58 8.00 93.87 26.57 4.42 60.96

Serena 13.47 8.74 168.40 41.64 5.15 117.16

StocF-1465 5.29 5.83 73.01 25.83 3.35 43.89

thermal2 2.46 2.62 26.03 15.25 1.48 14.54

webbase-1M 1.38 3.70 18.45 8.20 2.33 12.23

Partitioning time of METIS is approximately one-seventh of PATOH partitioning

time. Partitioning time of both tools on MERCAN is approximately two times better

than on NAR due to higher memory capacity and computational power on MERCAN.

On the contrary, sequential multiplication time of matrix on NAR is approximately

one-fourth of multiplication time on MERCAN. The reason for this difference is that

NAR has Intel processors and MERCAN has AMD processors. Intel MKL library is

optimized for Intel platforms.

The speedup is measured using RCM and 16 processes compared to the sequential

running time. Speedup plots using METIS and PATOH with RCM reordering for the

diagonal block on NAR platform are given in Figure 4.9 and Figure 4.10. Figure 4.11

and Figure 4.12 gives the same comparison on MERCAN platform.

41

Figure 4.9 Speedup comparison chart of partitioning tools on NAR (part 1 of 2)

Figure 4.10 Speedup comparison chart of partitioning tools on NAR (part 2 of 2)

0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

NAR - 1 METIS PATOH

0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

NAR - 2 METIS PATOH

42

Figure 4.11 Speedup comparison chart of partitioning tools on MERCAN (part 1 of 2)

Figure 4.12 Speedup comparison chart of partitioning tools on MERCAN (part 2 of 2)

0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

MERCAN - 1 METIS PATOH

0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

MERCAN - 2 METIS PATOH

43

On both platforms, matrices partitioned using METIS and PATOH show nearly the

same speedup. The only exception is Hamrle3 matrix, which is one of the most sparse

matrix in the collection with 3.81 nonzeros per row. On NAR platform, due to smaller

cache size, Hamrle3 matrix does not show speedup in both partitioning methods. On

the contrary, the largest speedup difference between partitioning tools is observed with

the same matrix on MERCAN platform.

As a result, PATOH shows slightly a better speedup. The reason is that hypergraph

based partitioning methods (e.g. PATOH) defines the communication problem better

than graph based ones (e.g. METIS).

4.3.2.3.2 Parallel Scalability

In the last two sections, partitioning tools and permutation of matrix are studied. The

matrix partitioned using PATOH and permuted using RCM shows a better speedup.

Hence, in this section all operations are done with matrices partitioned using PATOH

and then the diagonal blocks are permuted using RCM. The matrix is multiplied with

a block of 100 vectors using DCSRMM, a sparse BLAS Level 3 routine.

In this section, parallel scalability for each matrix is given. The results are evaluated

in terms of speedup varying matrix, number of processes and computing platform. The

number of processes used for each test starts from one (also called sequentially) and

continues with the power of two up to 16.

The sequential multiplication time of the matrix, permuted using RCM is used as a

reference in this section. Sequential multiplication time is given in Table 4.7 above.

Values in the table are given in second.

44

Figure 4.13 Speedup comparison chart of matrices on NAR (part 1 of 2)

Figure 4.14 Speedup comparison chart of matrices on NAR (part 2 of 2)

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2

2

4
4 4

4

4

4
4

4

8

8 8 8

8

8

8

8

16

16 16
16

16

16

16

16

0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

NAR - 1

1 process 2 processes 4 processes 8 processes 16 processes

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

4
4 4

4 4 4 4
4

8

8 8

8

8

8 8

8

16

16 16
16

16

16
16

16

0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

NAR - 2

1 process 2 processes 4 processes 8 processes 16 processes

45

Figure 4.15 Speedup comparison chart of matrices on MERCAN (part 1 of 2)

Figure 4.16 Speedup comparison chart of matrices on MERCAN (part 2 of 2)

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

4 4 4 4 4 4
4

4

8 8 8 8 8 8 8

8
16 16 16

16
16 16

16

16

0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

MERCAN - 1

1 process 2 processes 4 processes 8 processes 16 processes

1 1 1 1 1 1 1 1
2 2 2

2 2 2 2 2

4 4 4
4

4
4 4 4

8
8

8

8

8
8

8
8

16
16

16

16

16

16

16

16

0

2

4

6

8

10

12

14

16

18

S
p

ee
d

u
p

MERCAN - 2

1 process 2 processes 4 processes 8 processes 16 processes

46

On NAR platform, speedup continues to increase up to eight processes, and then there

is a drop. The reason for the drop is that a node on NAR has eight cores and each

process is mapped onto a single core. If the number of processes exceeds eight, more

than one node are used and communication between nodes is required. Even it has an

Infiniband switch between nodes, it is slower than on-chip communication.

Unlike NAR, speedup continues to increase on MERCAN, which has 24 cores in each

node. Moreover, MERCAN shows approximately two times better speedup than NAR.

The reason for this dissimilarity is that MERCAN has higher cache capacity. Namely,

more vector entries can remain in the cache, reducing misses when the algorithm tries

to access them again.

On MERCAN platform, Geo_1438, Hamrle3, nlpkkt80, StocF-1465 matrices, show a

better speedup acceleration according to increasing number of processes. These

matrices arise in structural problem, circuit simulation, optimization and

computational fluid dynamics application areas respectively.

To provide an effective load balancing and a good parallel scalability, partitioning

tools and permutation algorithms are used. The results show that performance of the

implementation grows linearly with the increasing number of processes, which means

that they are suitable for multiprocessors.

47

CHAPTER 5

5 CONCLUSION AND FUTURE WORK

This thesis presented and compared different techniques for improving multiplication

of sparse and banded matrices with multiple vectors. For banded matrices, an improved

method called DSBMM2 was presented that has advantage especially for banded

matrices having small bandwidth and multiplied with large number of vectors.

DSBMM2 is roughly 1.8 times faster than DSBMM if the bandwidth is 10 and the

number of vectors is 100 on both platforms.

Whether DSBMM or DSBMM2 are used, machine specific tuning is worthy as the

ideal size of square and triangular blocks, namely bandwidth, is dependent on cache

size of platform.

For sparse matrices, it was shown that partitioning tools provide an effective load

balancing and a good parallel scalability. To improve memory efficiency, each row of

vectors were stored contiguously. Hence, reduced number of cache misses were

observed while multiplying with multiple vectors, particularly on MERCAN platform,

which has larger cache and memory size. Permuting the matrix with RCM was

recommended rather than with MC73 in order to group nonzeros contiguously.

Numerical experiments showed that matrices permuted using RCM yield

approximately 10% speedup.

With the increasing multi-core environments, parallel scalability of primitive

operations (such as SpMV, SpMM banded matrix – vector multiplication and banded

matrix – multiple vectors multiplication) are becoming more important. For future

work, block storage formats could be used to improve cache-hit ratio, platform

dependent tuning (such as various block size, prefetching matrix and vector elements,

48

etc.) could be done to achieve better speedup. TRACEMIN-Fiedler method [43] could

also be compared with RCM and MC73.

49

REFERENCES

[1] C. Bischof, X. Sun, A. Tsao, and T. Turnbull, “A Study of the Invariant
Subspace Decomposition Algorithm for Banded Symmetric Matrices,” Proc.
Fifth SIAM Conf. Appl. Linear Algebr., pp. 321–325, 1994.

[2] L. M. Adams and R. J. Leveque, “Analysis of the SOR iteration for the 9-point
Laplacian,” SIAM J. Numer. Anal., vol. 25, pp. 1156–1180, 1998.

[3] P. Amodio and F. Mazzia, “A parallel Gauss-Seidel method for block
tridiagonal linear systems,” SIAM J. Sci. Comput., vol. 16, no. 6, pp. 1451–
1461, 1995.

[4] J. M. Ortega, Introduction to parallel and vector solution of linear systems. New
York: Plenum Press, 1988.

[5] A. H. Sameh and V. Sarin, “Hybrid Parallel Linear System Solvers,” Int. J.
Comput. Fluid Dyn., vol. 12, pp. 213–223, 1998.

[6] E. Polizzi and N. Ben Abdallah, “Subband decomposition approach for the
simulation of quantum electron transport in nanostructures,” J. Comput. Phys.,
vol. 202, no. 1, pp. 150–180, 2004.

[7] A. Tsao and T. Turnbull, A Comparison of Algorithms for Banded Matrix
Multiplication. Supercomputing Research Center, 1993, pp. 1–9.

[8] A. Remon, E. S. Quintana-Orti, and G. Quintana-Orti, “The Implementation of
BLAS for Band Matrices,” Parallel Process. Appl. Math., vol. 4967, pp. 668–
677, 2008.

[9] “Intel Corporation, Intel Math Kernel Library (Intel MKL), 2014 (Version
11.1).” [Online]. Available: https://software.intel.com/en-us/intel-mkl.
[Accessed: 01-Jul-2014].

[10] E. Polizzi and A. Sameh, “SPIKE: A parallel environment for solving banded
linear systems,” Comput. Fluids, vol. 36, no. 1, pp. 113–120, Jan. 2007.

[11] R. Bisseling and W. Meesen, “Communication balancing in parallel sparse
matrix-vector multiplication,” Electron. Trans. Numer. …, vol. 21, pp. 47–65,
2005.

50

[12] R. Geus and S. Röllin, “Towards a fast parallel sparse matrix-vector
multiplication.,” E.H. D’Hollander, J.R. Joubert, F.J. Peters, H. Sips (Editors),
Proc. Int. Conf. Parallel Comput. (ParCo), Imp. Coll. Press, pp. 308–315,
1999.

[13] S. Toledo, “Improving the memory-system performance of sparse-matrix vector
multiplication,” IBM J. Res. Dev., vol. 41, no. 6, pp. 711–725, Nov. 1997.

[14] A. Pinar and M. T. Heath, “Improving performance of sparse matrix-vector
multiplication,” Proc. 1999 ACM/IEEE Conf. …, 1999.

[15] A. H. Baker, J. M. Dennis, and E. R. Jessup, “On Improving Linear Solver
Performance: A Block Variant of GMRES,” SIAM J. Sci. Comput, vol. 27, p.
2006, 2006.

[16] R.-C. Li and L.-H. Zhang, “Convergence of the Block Lanczos Method for
Eigenvalue Clusters Convergence of the Block Lanczos Method,” 2013.

[17] G. H. Golub and R. Underwood, “The Block Lanczos Method for Computing
Eigenvalues,” J. R. Rice, Ed. Math. Softw. III, Acad. Press. New York, pp. 361–
377, 1977.

[18] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for
the Solution of Algebraic Eigenvalue Problems: A Practical Guide. 2000, p.
316.

[19] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization Framework for
Sparse Matrix Kernels,” Int. J. High Perform. Comput. Appl., vol. 18, no. 1, pp.
135–158, Feb. 2004.

[20] M. Manguoglu, A. Sameh, and O. Schenk, “PSPIKE : A Parallel Hybrid Sparse
Linear,” Euro-Par 2009 Parallel Process., vol. 5704, pp. 797–808, 2009.

[21] R. Kannan, “Efficient sparse matrix multiple-vector multiplication using a
bitmapped format,” High Perform. Comput. 2013, pp. 286–294, 2012.

[22] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix–vector multiplication on emerging multicore
platforms,” Parallel Comput., vol. 35, no. 3, pp. 178–194, Mar. 2009.

[23] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based
decomposition for parallel sparse-matrix vector multiplication,” IEEE Trans.
Parallel Distrib. Syst., vol. 10, pp. 673–693, 1999.

[24] G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme for Irregular
Graphs,” J. Parallel Distrib. Comput., vol. 48, pp. 96–129, 1998.

51

[25] U. V. Catalyurek and C. Aykanat, “PaToH (Partitioning Tool for Hypegraphs),”
Encycl. Parallel Comput. Springer, Ed. D. Padua, pp. 1479–1487, 2011.

[26] E. Cuthill and J. Mckee, “Reducing the bandwidth of sparse symmetric
matrices,” Proc. 24th Natl. Conf. Assoc. Comput. Mach. New York, pp. 157–
172, 1969.

[27] Y. Hu and J. Scott, “HSL MC73: a fast multilevel Fiedler and profile reduction
code,” Rutherford Appleton Laboratory, Oxfordshire, UK, 2003.

[28] E. Polizzi, “Subroutine DSBMM.” [Online]. Available:
https://github.com/certik/feast/blob/master/src/lbprim.f90. [Accessed: 01-Jan-
2014].

[29] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra, “Matrix
Market : A Web Resource for Test Matrix Collections,” R. Boisvert, Ed. Qual.
Numer. Softw. Assess. Enhanc., pp. 125–137, 1997.

[30] N. I. of S. and T. Mathematical and Computational Sciences Division,
Information Technology Laboratory, “ANSI C library for Matrix Market I/O.”
[Online]. Available: http://math.nist.gov/MatrixMarket/mmio-c.html.
[Accessed: 01-Jan-2014].

[31] G. Karypis, “METIS and ParMETIS,” Encycl. Parallel Comput. Springer, Ed.
D. Padua, pp. 1117–1124, 2011.

[32] U. V. Catalyurek, “Hypergraph Models for Sparse Matrix Partitioning and
Reordering. PhD Thesis,” Bilkent University, 1999.

[33] U. V. Catalyurek and C. Aykanat, “Decomposing Irregularly Sparse Matrices
for Parallel Matrix-Vector Multiplication,” Lect. Notes Comput. Sci., vol. 1117,
pp. 75–86, 1996.

[34] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V.
Catalyurek, “Parallel hypergraph partitioning for scientific computing,” 20th
Int. Parallel Distrib. Process. Symp., 2006.

[35] “HSL(2013). A collection of Fortran codes for large scale scientific
computation.” [Online]. Available: http://www.hsl.rl.ac.uk. [Accessed: 01-Jan-
2014].

[36] C. Zavoianu, “Tutorial: Bandwidth reduction - The CutHill-McKee Algorithm.”
[Online]. Available: http://ciprian-zavoianu.blogspot.com.tr/2009/01/project-
bandwidth-reduction.html. [Accessed: 01-Jul-2014].

52

[37] “Department of Computer Engineering, Middle East Technical University,
High Performance Computing Facility.” [Online]. Available:
http://www.ceng.metu.edu.tr/hpc/index. [Accessed: 01-Jul-2014].

[38] “Turkish Academic Network and Information Center, Turkish Science e-
Infrastructure, TRUBA.” [Online]. Available: http://www.truba.gov.tr/eng/.
[Accessed: 01-Jul-2014].

[39] J. Burkardt, “Reverse Cuthill McKee Ordering.” [Online]. Available:
http://people.sc.fsu.edu/~jburkardt/cpp_src/rcm/rcm.html. [Accessed: 01-Jan-
2014].

[40] Y. Saad, “SPARSKIT : A Basic Tool Kit for Sparse Matrix Computations,”
Minneapolis, 1994.

[41] T. A. Davis, Direct Methods for Sparse Linear Systems. Philadelphia: Part of
the SIAM Book Series on the Fundamentals of Algorithms, 2006.

[42] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix Collection,”
ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1 – 1:25, 2011.

[43] M. Manguoglu, E. Cox, F. Saied, and A. Sameh, “TRACEMIN-Fiedler : A
Parallel Algorithm for Computing the Fiedler Vector,” Lect. Notes Comput. Sci.
(proceedings High Perform. Comput. Comput. Sci. – VECPAR10), vol. 6449,
no. 1, pp. 449–455, 2011.

53

APPENDIX A

A RESULTS OF BANDED MATRIX – MULTIPLE VECTORS
MULTIPLICATION

Banded matrix – multiple vectors multiplication operations are done varying;

• Number of rows of the matrix

o 100,000

o 400,000

o 1,500,000

o 3,000,000

• Multiplication method

o DGBMV

o DSBMM

o DSBMM2

• Lower/upper bandwidth size

o 5

o 10

o 20

o 50

o 100

o 200

• Number of vectors

o 1

o 10

o 100

• Computing platform

o NAR

54

o MERCAN

For NAR platform, the times are given in Table A.1 and Table A.2. For MERCAN

platform, they are given in Table A.3 and Table A.4. Values in the tables are given in

second.

55

Table A.1 Multiplication time of banded matrices, having 5, 10 and 20 lower bandwidth, with multiple vectors on NAR

Number of
Rows

Implementation
Type

ml = 5 ml = 10 ml = 20

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

100,000 DGBMV 0.00 0.03 0.34 0.01 0.07 0.71 0.01 0.12 1.18

100,000 DSBMM 0.03 0.09 0.54 0.03 0.08 0.46 0.03 0.06 0.34

100,000 DSBMM2 0.02 0.04 0.24 0.03 0.06 0.29 0.04 0.08 0.35

400,000 DGBMV 0.01 0.14 1.44 0.03 0.29 2.86 0.05 0.47 4.74

400,000 DSBMM 0.12 0.36 2.43 0.11 0.31 1.98 0.13 0.25 1.44

400,000 DSBMM2 0.07 0.18 0.96 0.12 0.25 1.18 0.17 0.31 1.39

1,500,000 DGBMV 0.05 0.54 5.44 0.11 1.08 10.77 0.18 1.78 17.78

1,500,000 DSBMM 0.47 1.42 8.34 0.43 1.19 7.08 0.49 0.95 5.20

1,500,000 DSBMM2 0.27 0.67 3.61 0.45 0.94 4.41 0.63 1.18 5.21

3,000,000 DGBMV 0.11 1.09 10.88 0.22 2.15 21.53 0.35 3.56 35.55

3,000,000 DSBMM 0.94 2.81 16.47 0.86 2.36 14.15 0.98 1.90 10.46

3,000,000 DSBMM2 0.55 1.33 7.21 0.89 1.87 8.82 1.26 2.35 10.41

56

Table A.2 Multiplication time of banded matrices, having 50, 100 and 200 lower bandwidth, with multiple vectors on NAR

Number of
Rows

Implementation
Type

ml = 50 ml = 100 ml = 200

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

100,000 DGBMV 0.03 0.27 2.71 0.05 0.54 5.42 0.09 0.92 9.23

100,000 DSBMM 0.05 0.10 0.52 0.08 0.14 0.69 0.13 0.24 1.13

100,000 DSBMM2 0.08 0.13 0.49 0.13 0.20 0.72 0.19 0.35 1.18

400,000 DGBMV 0.11 1.09 10.85 0.22 2.17 21.67 0.37 3.69 36.95

400,000 DSBMM 0.21 0.40 2.08 0.33 0.58 2.77 0.53 0.95 4.52

400,000 DSBMM2 0.33 0.51 1.96 0.52 0.82 2.90 0.76 1.41 4.70

1,500,000 DGBMV 0.41 4.07 40.71 0.81 8.13 81.27 1.39 13.86 138.59

1,500,000 DSBMM 0.79 1.51 7.74 1.22 2.17 10.38 1.99 3.57 16.95

1,500,000 DSBMM2 1.22 1.93 7.36 1.94 3.07 10.86 2.84 5.28 17.64

3,000,000 DGBMV 0.81 8.14 81.44 1.62 16.25 162.57 2.77 27.70 277.02

3,000,000 DSBMM 1.57 3.02 15.50 2.44 4.34 20.77 3.98 7.14 33.92

3,000,000 DSBMM2 2.45 3.86 14.72 3.89 6.14 21.73 5.67 10.56 35.29

57

Table A.3 Multiplication time of banded matrices, having 5, 10 and 20 lower bandwidth, with multiple vectors on MERCAN

Number of
Rows

Implementation
Type

ml = 5 ml = 10 ml = 20

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

100,000 DGBMV 0.00 0.03 0.35 0.01 0.06 0.66 0.01 0.09 0.94

100,000 DSBMM 0.04 0.12 0.78 0.03 0.09 0.59 0.03 0.07 0.48

100,000 DSBMM2 0.04 0.07 0.26 0.05 0.07 0.32 0.06 0.08 0.41

400,000 DGBMV 0.01 0.14 1.40 0.03 0.26 2.61 0.04 0.37 3.75

400,000 DSBMM 0.17 0.50 3.95 0.13 0.38 3.01 0.11 0.29 2.23

400,000 DSBMM2 0.17 0.28 1.04 0.20 0.30 1.29 0.25 0.33 1.65

1,500,000 DGBMV 0.05 0.52 5.18 0.10 0.97 9.76 0.14 1.40 14.03

1,500,000 DSBMM 0.64 1.81 14.03 0.47 1.40 10.67 0.41 1.07 8.13

1,500,000 DSBMM2 0.65 1.03 3.88 0.77 1.15 4.85 0.92 1.26 6.16

3,000,000 DGBMV 0.10 1.04 10.37 0.19 1.95 19.49 0.28 2.80 28.00

3,000,000 DSBMM 1.27 3.62 27.77 0.94 2.80 21.49 0.81 2.14 16.14

3,000,000 DSBMM2 1.31 2.07 7.79 1.53 2.29 9.68 1.84 2.53 12.38

58

Table A.4 Multiplication time of banded matrices, having 50, 100 and 200 lower bandwidth, with multiple vectors on MERCAN

Number of
Rows

Implementation
Type

ml = 50 ml = 100 ml = 200

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

1 Vector
(sec)

10 Vectors
(sec)

100 Vectors
(sec)

100,000 DGBMV 0.02 0.18 1.78 0.03 0.32 3.19 0.06 0.61 6.07

100,000 DSBMM 0.04 0.10 0.61 0.06 0.14 0.95 0.09 0.23 1.49

100,000 DSBMM2 0.09 0.12 0.64 0.14 0.16 0.93 0.22 0.26 1.49

400,000 DGBMV 0.07 0.70 6.99 0.13 1.27 12.71 0.24 2.43 24.26

400,000 DSBMM 0.16 0.38 2.52 0.22 0.55 3.84 0.35 0.93 5.98

400,000 DSBMM2 0.36 0.46 2.55 0.55 0.65 3.72 0.87 1.05 5.96

1,500,000 DGBMV 0.26 2.62 26.22 0.48 4.77 47.56 0.91 9.09 90.90

1,500,000 DSBMM 0.60 1.48 9.56 0.83 2.09 14.49 1.31 3.48 22.44

1,500,000 DSBMM2 1.35 1.77 9.54 2.05 2.49 13.96 3.28 3.94 22.35

3,000,000 DGBMV 0.51 5.23 52.33 0.95 9.52 95.63 N/A N/A N/A

3,000,000 DSBMM 1.19 2.93 19.00 1.65 4.17 29.03 N/A N/A N/A

3,000,000 DSBMM2 2.71 3.53 19.26 4.11 4.99 27.92 N/A N/A N/A

On MERCAN, the tests with matrix having 3,000,000 rows and 200 lower bandwidth, give memory error. (N/A means not available)

59

APPENDIX B

B RESULTS OF SPARSE MATRIX – MULTIPLE VECTORS
MULTIPLICATION

Sparse matrix – multiple vectors multiplication operations are done varying;

• Form of the matrix

o Matrix in its original form

o Matrix permuted with permutation vector generated using MC73

o Matrix permuted with permutation vector generated using RCM

• Partitioning tool

o METIS

o PATOH

• Number of processes

o 1 (Sequential)

o 2

o 4

o 8

o 16

• Computing platform

o NAR

o MERCAN

The results of SpMM with matrix in its original form are given in Table B.1, Table

B.2, Table B.3 and Table B.4.

The results of SpMM with matrix permuted with permutation vector generated using

MC73 are given in Table B.5, Table B.6, Table B.7 and Table B.8.

60

The results of SpMM with matrix permuted with permutation vector generated using

RCM are given in Table B.9, Table B.10, Table B.11 and Table B.12.

Sequential permutation and multiplication time of each form of the matrix are given

in the first appearance of combination of matrix form and platform in the following

tables. They are given in Table B.1 and Table B.3 for original form; Table B.5 and

Table B.7 for MC73; Table B.9 and Table B.11 for RCM.

Matrix reading time for each platform are given only in tables having the results of

matrix in its original form. They are given in Table B.1 and Table B.3 for NAR and

MERCAN platforms, respectively.

Values in the tables are given in second.

61

Table B.1 Matrix reading time; Sequential multiplication time; Partitioning and parallel multiplication time of matrix partitioned using METIS on NAR

Matrix Name
Reading

Matrix (sec)

1 Process 2 Processes 4 Processes 8 Processes 16 Processes

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

af_shell10 26.87 10.87 2.08 5.50 2.04 2.75 2.09 1.69 4.23 1.82

atmosmodd 7.77 2.60 1.66 1.38 1.73 0.97 1.98 1.02 4.64 1.31

atmosmodl 6.46 3.05 1.98 1.62 2.05 1.13 2.30 1.17 4.13 1.40

cage14 22.04 7.89 7.99 4.97 12.92 3.39 18.44 2.97 50.54 3.92

dielFilterV3real 66.02 19.26 3.41 9.85 3.47 5.23 3.95 3.18 9.99 3.38

G3_circuit 3.79 2.44 1.55 1.31 1.59 0.94 1.60 0.95 2.76 1.20

Geo_1438 31.71 13.64 3.06 6.79 3.14 3.57 3.35 2.18 7.39 2.42

Hamrle3 4.39 2.29 14.08 1.75 24.05 1.63 40.58 1.89 132.52 3.50

Hook_1498 32.77 12.74 3.06 6.46 3.19 3.46 3.37 2.10 7.09 2.32

kkt_power 8.36 5.82 3.71 2.70 4.16 1.69 4.51 1.56 10.00 1.90

memchip 13.95 5.58 4.18 2.86 4.23 2.04 4.27 1.98 8.08 2.16

nlpkkt80 12.40 5.54 2.58 2.87 2.90 1.68 3.32 1.33 8.01 1.63

Serena 31.65 13.48 3.19 6.93 3.36 3.69 3.59 2.22 8.64 2.49

StocF-1465 11.74 5.32 2.11 2.78 2.21 1.60 2.55 1.26 5.83 1.48

thermal2 4.97 2.93 1.36 1.50 1.39 0.95 1.41 0.94 2.52 1.01

webbase-1M 2.13 1.43 1.77 0.78 1.85 0.58 1.99 0.57 3.62 0.63

62

Table B.2 Partitioning and parallel multiplication time of matrix partitioned using PATOH on NAR

Matrix Name

2 Processes 4 Processes 8 Processes 16 Processes

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

af_shell10 12.13 5.19 23.65 2.75 34.73 1.69 91.00 1.80

atmosmodd 6.31 1.39 10.50 0.98 14.45 1.03 35.41 1.20

atmosmodl 7.68 1.62 13.09 1.13 17.67 1.17 43.07 1.42

cage14 38.97 4.84 70.98 3.28 96.95 3.09 237.04 4.40

dielFilterV3real 53.30 9.87 104.66 5.23 154.10 3.15 401.59 3.31

G3_circuit 3.98 1.31 7.30 0.94 10.21 0.95 25.07 1.12

Geo_1438 23.17 6.73 42.18 3.56 60.97 2.16 157.35 2.50

Hamrle3 3.14 2.11 5.60 2.02 7.79 2.20 18.86 3.65

Hook_1498 21.90 6.53 41.50 3.48 60.03 2.08 155.57 2.37

kkt_power 18.01 2.77 32.56 1.75 41.91 1.56 98.20 1.73

memchip 6.14 2.87 11.35 2.04 16.11 1.97 39.85 2.11

nlpkkt80 14.44 2.82 26.17 1.59 37.28 1.28 94.20 2.09

Serena 24.05 6.85 45.23 3.69 65.26 2.22 169.02 2.54

StocF-1465 11.01 2.71 20.26 1.59 28.69 1.25 72.99 1.50

thermal2 4.01 1.48 7.39 0.95 10.40 0.95 25.77 1.03

webbase-1M 2.73 0.81 5.09 0.61 7.24 0.60 19.19 0.75

63

Table B.3 Matrix reading time; Sequential multiplication time; Partitioning and parallel multiplication time of matrix partitioned using METIS on

MERCAN

Matrix Name
Reading

Matrix (sec)

1 Process 2 Processes 4 Processes 8 Processes 16 Processes

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

af_shell10 23.97 30.16 2.59 15.13 2.50 7.81 2.55 4.50 2.59 2.69

atmosmodd 6.97 15.65 1.67 7.55 1.73 4.02 1.99 2.24 2.24 1.28

atmosmodl 5.91 19.41 1.97 9.54 2.04 5.03 2.25 2.73 2.34 1.62

cage14 20.77 36.36 8.47 19.50 12.54 10.37 17.45 5.67 23.90 3.50

dielFilterV3real 58.17 54.83 4.33 26.99 4.41 14.43 4.91 7.64 5.84 4.58

G3_circuit 3.58 16.78 1.58 8.45 1.60 4.69 1.64 2.77 1.67 1.50

Geo_1438 28.71 39.62 3.84 19.60 3.90 10.42 4.14 5.62 4.56 3.33

Hamrle3 3.88 13.47 13.51 7.38 22.11 4.01 37.79 2.39 62.52 1.45

Hook_1498 29.34 39.07 3.75 19.36 3.90 10.66 4.11 5.78 4.34 3.38

kkt_power 7.69 31.80 3.93 14.97 4.47 7.23 4.81 4.62 5.38 2.48

memchip 12.16 29.65 3.81 14.97 3.86 8.61 3.94 4.78 4.01 2.93

nlpkkt80 11.69 22.50 3.08 11.03 3.36 6.18 3.69 3.16 4.39 1.87

Serena 28.72 40.42 4.00 20.02 4.21 11.12 4.45 6.02 5.06 3.51

StocF-1465 10.66 26.09 2.48 12.69 2.61 6.84 2.97 3.71 3.33 2.23

thermal2 4.73 15.45 1.42 7.90 1.43 4.18 1.48 2.35 1.49 1.28

webbase-1M 1.98 8.52 1.80 4.44 1.92 2.31 2.04 1.39 2.32 0.81

64

Table B.4 Partitioning and parallel multiplication time of matrix partitioned using PATOH on MERCAN

Matrix Name

2 Processes 4 Processes 8 Processes 16 Processes

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

Partitioning
(sec)

Multiplica-
tion (sec)

af_shell10 17.20 15.07 33.71 8.23 49.87 4.41 65.74 2.66

atmosmodd 6.28 7.56 11.38 4.05 16.09 2.24 20.57 1.28

atmosmodl 7.69 9.62 13.76 5.20 19.21 2.50 24.51 1.55

cage14 39.37 19.88 72.13 10.14 101.09 5.55 128.47 3.35

dielFilterV3real 72.52 26.18 142.89 12.91 212.64 7.80 279.57 4.50

G3_circuit 4.03 8.49 7.64 4.68 11.14 2.55 14.34 1.40

Geo_1438 30.67 19.41 56.96 10.41 83.15 5.70 109.34 3.32

Hamrle3 3.21 5.71 5.85 2.73 8.44 1.60 10.75 0.98

Hook_1498 29.46 19.30 56.39 10.78 82.74 5.32 108.47 3.32

kkt_power 16.95 15.15 31.11 7.93 42.34 4.17 53.58 2.44

memchip 5.63 15.20 10.87 8.40 15.82 4.81 20.43 2.98

nlpkkt80 17.40 10.27 32.46 5.75 47.00 3.39 60.78 1.79

Serena 32.29 19.87 61.17 11.15 89.75 5.51 117.50 3.24

StocF-1465 12.12 12.59 23.18 6.56 33.98 3.63 44.11 2.05

thermal2 4.17 7.87 7.81 4.36 11.34 2.31 14.57 1.35

webbase-1M 3.28 4.44 6.27 2.30 9.11 1.36 12.21 0.79

65

Table B.5 Sequential permutation and multiplication time; Partitioning, parallel permutation and multiplication time of matrix partitioned using METIS

and then permuted using MC73 on NAR

Matrix Name

1 Process 2 Processes 4 Processes 8 Processes 16 Processes

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

af_shell10 5.33 11.25 2.08 2.71 5.49 2.04 1.59 2.92 2.09 1.37 1.87 4.23 0.48 1.87

atmosmodd 2.51 3.10 1.66 1.40 1.65 1.73 0.72 1.03 1.98 0.50 1.23 3.96 0.15 1.24

atmosmodl 3.05 3.50 1.98 1.68 1.83 2.05 0.87 1.30 2.30 0.69 1.18 4.82 0.18 1.54

cage14 8.73 12.15 7.98 4.94 7.88 12.90 3.98 5.44 18.42 1.42 4.00 50.53 0.41 4.77

dielFilterV3real 11.02 20.63 3.36 5.63 10.82 3.46 3.22 5.51 3.94 3.10 3.39 10.01 2.05 3.27

G3_circuit 3.29 2.61 1.55 1.80 1.38 1.59 0.87 0.88 1.60 0.65 0.85 3.25 0.16 1.04

Geo_1438 7.82 18.17 3.06 3.85 8.55 3.14 2.16 4.32 3.36 1.71 3.18 7.40 0.76 2.84

Hamrle3 22.14 2.94 14.15 11.52 2.17 24.14 2.66 1.96 40.52 1.40 2.25 132.66 0.47 3.08

Hook_1498 7.97 15.49 3.06 3.91 7.73 3.20 2.18 4.11 3.39 1.70 2.85 7.20 0.83 2.93

kkt_power 31.73 5.22 3.73 20.10 2.77 4.17 6.23 1.69 4.51 3.70 1.68 10.00 1.33 1.84

memchip 9.36 4.78 4.18 4.04 2.52 4.23 2.26 1.62 4.27 1.69 1.44 8.08 0.38 1.45

nlpkkt80 6.90 10.87 2.58 3.59 6.27 2.91 1.69 3.34 3.33 1.10 2.71 8.01 0.45 2.58

Serena 8.18 19.81 3.20 4.12 9.26 3.37 2.30 4.91 3.60 1.82 3.11 8.79 1.07 3.02

StocF-1465 5.53 6.58 2.12 2.95 3.52 2.21 1.33 2.43 2.55 0.89 2.20 5.83 0.35 2.04

thermal2 3.78 2.50 1.36 1.68 1.31 1.39 1.07 0.80 1.41 0.61 0.66 2.47 0.18 1.04

webbase-1M 35.72 1.46 1.77 17.63 0.80 1.85 7.80 0.58 1.98 3.81 0.54 3.62 1.83 0.64

66

Table B.6 Partitioning, parallel permutation and multiplication time of matrix partitioned using PATOH and then permuted using MC73 on NAR

Matrix Name

2 Processes 4 Processes 8 Processes 16 Processes

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

af_shell10 12.09 2.73 5.49 23.59 1.59 2.89 34.63 1.31 1.84 90.77 0.48 1.89

atmosmodd 6.10 1.36 1.59 10.50 0.73 1.03 14.52 0.56 1.08 35.17 0.18 1.05

atmosmodl 7.55 1.60 1.79 13.03 0.86 1.16 17.64 0.66 1.26 43.09 0.19 1.24

cage14 38.98 3.59 7.38 69.62 1.85 4.92 96.84 0.93 4.07 237.37 0.43 4.86

dielFilterV3real 53.37 5.59 10.79 104.48 3.23 5.48 154.15 2.43 3.29 401.26 0.81 3.02

G3_circuit 4.00 1.73 1.39 7.35 0.93 0.87 10.25 0.61 0.85 25.25 0.14 1.12

Geo_1438 23.17 3.79 8.44 42.45 2.13 4.29 61.12 1.70 2.92 157.01 0.84 2.82

Hamrle3 3.13 4.97 2.38 5.59 1.56 2.06 7.77 0.19 2.33 18.73 0.02 3.17

Hook_1498 21.93 3.87 7.69 41.30 2.14 4.10 59.98 1.74 2.70 155.21 0.96 2.74

kkt_power 18.34 9.30 2.72 31.17 4.08 1.66 41.02 1.87 1.59 99.04 0.75 1.69

memchip 6.16 3.49 2.51 11.37 1.99 1.59 16.13 1.57 1.43 39.81 0.39 1.54

nlpkkt80 14.14 3.10 5.66 26.24 1.67 2.89 37.04 1.09 2.79 94.22 0.43 2.18

Serena 24.00 3.84 9.27 45.13 2.09 4.71 65.25 1.71 3.06 168.79 0.92 2.93

StocF-1465 10.92 2.86 3.30 20.19 1.34 2.21 28.86 1.05 2.21 73.00 0.36 1.87

thermal2 4.02 1.65 1.32 7.39 1.00 0.80 10.42 0.48 0.65 26.06 0.17 0.81

webbase-1M 2.73 8.73 0.83 5.08 5.51 0.56 7.28 0.86 0.55 18.36 0.74 0.60

67

Table B.7 Sequential permutation and multiplication time; Partitioning, parallel permutation and multiplication time of matrix partitioned using METIS

and then permuted using MC73 on MERCAN

Matrix Name

1 Process 2 Processes 4 Processes 8 Processes 16 Processes

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

af_shell10 6.69 34.28 2.60 3.36 16.53 2.51 1.64 8.57 2.58 0.81 4.80 2.61 0.44 2.52

atmosmodd 2.80 16.31 1.68 1.55 8.16 1.75 0.73 4.32 2.00 0.35 2.44 2.24 0.19 1.35

atmosmodl 3.35 19.08 1.99 1.82 9.68 2.02 0.89 5.19 2.26 0.46 2.82 2.38 0.23 1.63

cage14 9.75 47.99 8.50 5.62 25.75 12.55 4.29 13.23 17.51 0.95 6.92 24.00 0.48 3.54

dielFilterV3real 13.08 60.40 4.30 6.46 29.66 4.42 3.18 15.44 4.95 1.83 7.79 5.89 1.01 4.27

G3_circuit 3.66 17.27 1.58 1.97 8.67 1.64 0.87 4.84 1.62 0.43 2.53 1.65 0.22 1.59

Geo_1438 9.42 55.41 3.88 4.67 26.69 3.94 2.25 12.47 4.18 1.11 6.38 4.56 0.59 3.80

Hamrle3 27.08 16.76 13.53 12.48 8.84 22.15 2.90 4.76 38.06 1.21 2.76 61.99 0.56 1.49

Hook_1498 9.55 50.26 3.77 4.73 24.63 3.94 2.32 12.64 4.12 1.13 6.60 4.37 0.62 3.37

kkt_power 32.73 28.24 3.93 20.64 13.87 4.49 7.39 7.47 4.82 3.36 4.12 5.32 1.14 2.42

memchip 10.34 30.33 3.86 4.21 15.40 3.87 2.00 8.43 3.90 0.96 4.89 4.03 0.48 2.50

nlpkkt80 8.51 34.42 3.08 4.29 17.05 3.38 2.02 8.33 3.74 0.85 4.35 4.41 0.52 2.18

Serena 9.76 61.59 4.03 4.89 27.74 4.21 2.39 13.43 4.46 1.18 7.03 5.14 0.60 3.65

StocF-1465 6.35 30.12 2.50 3.34 14.53 2.62 1.45 8.25 2.99 0.75 4.08 3.35 0.37 2.14

thermal2 4.16 15.79 1.42 1.86 7.93 1.44 1.19 4.34 1.47 0.51 2.45 1.50 0.25 1.30

webbase-1M 38.47 8.42 1.82 19.23 4.78 1.91 9.47 3.12 2.06 4.39 1.45 2.33 2.00 0.88

68

Table B.8 Partitioning, parallel permutation and multiplication time of matrix partitioned using PATOH and then permuted using MC73 on MERCAN

Matrix Name

2 Processes 4 Processes 8 Processes 16 Processes

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

af_shell10 17.21 3.37 16.10 33.62 1.66 8.86 49.82 0.81 5.19 65.73 0.43 3.04

atmosmodd 6.32 1.46 8.11 11.38 0.71 4.49 16.20 0.38 2.35 20.63 0.20 1.37

atmosmodl 7.66 1.68 9.54 13.74 0.85 5.20 19.25 0.48 3.04 24.68 0.22 1.59

cage14 40.09 3.98 25.88 72.52 1.74 13.35 102.07 0.76 6.90 128.33 0.42 3.66

dielFilterV3real 72.53 6.39 29.75 143.22 3.16 14.54 213.00 1.67 7.52 280.02 0.88 4.10

G3_circuit 4.08 1.92 8.80 7.68 0.89 4.75 11.13 0.41 2.72 14.40 0.22 1.49

Geo_1438 30.64 4.60 25.02 57.11 2.22 12.67 83.48 1.13 7.02 109.33 0.60 3.48

Hamrle3 3.23 6.31 7.00 5.95 1.60 3.11 8.45 0.23 1.69 10.89 0.04 0.94

Hook_1498 29.55 4.67 24.80 56.24 2.28 12.53 82.76 1.13 6.87 108.27 0.61 3.54

kkt_power 16.74 10.76 14.11 30.54 4.82 7.34 42.95 2.09 4.01 54.03 0.95 2.33

memchip 5.59 3.72 15.75 10.86 1.79 8.96 15.79 0.86 5.00 20.43 0.47 2.67

nlpkkt80 17.47 3.95 16.82 32.47 1.77 8.35 46.83 1.01 4.26 60.95 0.43 2.14

Serena 32.58 4.65 27.09 61.51 2.17 13.82 90.17 1.11 6.54 117.20 0.55 3.66

StocF-1465 12.18 3.26 14.30 23.02 1.48 7.33 33.71 0.80 4.06 44.26 0.37 2.18

thermal2 4.14 1.83 7.90 7.81 0.92 4.26 11.38 0.45 2.29 14.79 0.23 1.31

webbase-1M 3.30 9.37 4.49 6.27 5.15 2.40 9.17 0.87 1.32 12.24 0.66 0.82

69

Table B.9 Sequential permutation and multiplication time; Partitioning, parallel permutation and multiplication time of matrix partitioned using METIS

and then permuted using RCM on NAR

Matrix Name

1 Process 2 Processes 4 Processes 8 Processes 16 Processes

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

af_shell10 0.69 10.85 2.08 0.35 5.42 2.04 0.19 2.78 2.09 0.14 1.78 4.23 0.04 1.79

atmosmodd 0.45 2.53 1.67 0.16 1.35 1.73 0.10 0.90 1.98 0.05 0.97 4.44 0.02 1.05

atmosmodl 0.51 2.96 1.98 0.20 1.58 2.04 0.14 1.05 2.30 0.07 1.13 4.03 0.01 1.24

cage14 1.48 7.39 7.95 0.68 4.79 12.82 0.38 3.42 18.31 0.26 2.81 51.06 0.03 3.77

dielFilterV3real 1.27 16.85 3.36 0.53 8.50 3.47 0.36 4.40 3.93 0.21 2.54 10.20 0.07 3.01

G3_circuit 0.35 2.70 1.55 0.20 1.48 1.59 0.08 1.02 1.60 0.05 1.10 2.85 0.02 1.21

Geo_1438 0.78 13.04 3.07 0.56 6.61 3.15 0.24 3.54 3.36 0.16 2.29 7.41 0.05 2.43

Hamrle3 1.03 2.65 14.01 0.42 1.93 23.90 0.19 1.77 40.33 0.11 2.04 132.74 0.02 3.03

Hook_1498 0.80 12.74 3.06 0.38 6.54 3.20 0.23 3.53 3.38 0.21 2.31 7.19 0.06 2.57

kkt_power 3.41 4.92 3.71 1.23 2.63 4.15 0.47 1.78 4.49 0.46 1.62 10.00 0.03 1.76

memchip 1.30 5.47 4.18 0.45 2.97 4.23 0.20 2.01 4.27 0.14 1.83 8.67 0.04 1.99

nlpkkt80 0.62 5.58 2.57 0.28 2.84 2.89 0.13 1.73 3.32 0.09 1.41 8.00 0.02 1.67

Serena 0.76 13.47 3.20 0.65 6.96 3.38 0.24 3.77 3.59 0.26 2.31 8.74 0.08 2.52

StocF-1465 0.93 5.29 2.12 0.34 2.77 2.21 0.16 1.57 2.56 0.12 1.25 5.83 0.03 1.73

thermal2 0.55 2.46 1.36 0.21 1.29 1.39 0.11 0.78 1.42 0.06 0.66 2.62 0.02 0.86

webbase-1M 0.28 1.38 1.77 0.12 0.77 1.85 0.05 0.59 1.98 0.03 0.57 3.70 0.01 0.64

70

Table B.10 Partitioning, parallel permutation and multiplication time of matrix partitioned using PATOH and then permuted using RCM on NAR

Matrix Name

2 Processes 4 Processes 8 Processes 16 Processes

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

af_shell10 12.09 0.27 5.43 23.60 0.17 2.80 34.67 0.10 1.73 90.80 0.04 1.68

atmosmodd 6.05 0.16 1.36 10.44 0.07 0.90 14.40 0.05 0.93 35.24 0.01 1.03

atmosmodl 7.71 0.19 1.59 12.96 0.10 1.04 17.68 0.07 1.12 43.10 0.01 1.16

cage14 39.10 0.67 4.52 70.88 0.34 3.11 96.88 0.22 2.82 236.83 0.03 3.86

dielFilterV3real 53.34 0.52 8.49 104.63 0.33 4.42 154.08 0.27 2.43 400.92 0.14 2.74

G3_circuit 3.99 0.17 1.46 7.31 0.08 1.04 10.25 0.05 1.06 24.99 0.01 1.07

Geo_1438 23.08 0.36 6.68 42.46 0.21 3.52 61.03 0.16 2.26 156.51 0.04 2.44

Hamrle3 3.13 2.04 2.14 5.59 0.04 2.05 7.79 0.02 2.24 18.70 0.01 3.22

Hook_1498 21.95 0.37 6.42 41.52 0.21 3.47 59.97 0.15 2.18 155.44 0.05 2.40

kkt_power 18.08 1.00 2.68 31.45 0.56 1.75 41.67 0.49 1.61 98.20 0.03 1.77

memchip 6.13 0.45 2.97 11.37 0.20 1.99 16.11 0.13 1.91 39.81 0.03 1.99

nlpkkt80 14.50 0.19 2.84 26.30 0.12 1.58 37.19 0.09 1.33 93.87 0.02 1.58

Serena 24.14 0.38 6.86 45.14 0.23 3.72 65.16 0.15 2.26 168.40 0.07 2.57

StocF-1465 10.96 0.25 2.72 20.25 0.14 1.58 28.86 0.09 1.25 73.01 0.03 1.59

thermal2 4.01 0.21 1.29 7.37 0.10 0.79 10.39 0.06 0.63 26.03 0.02 0.88

webbase-1M 2.73 0.12 0.82 5.07 0.03 0.58 7.36 0.02 0.55 18.45 0.00 0.63

71

Table B.11 Sequential permutation and multiplication time; Partitioning, parallel permutation and multiplication time of matrix partitioned using METIS

and then permuted using RCM on MERCAN

Matrix Name

1 Process 2 Processes 4 Processes 8 Processes 16 Processes

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

af_shell10 0.81 30.19 2.58 0.43 14.79 2.50 0.20 8.00 2.57 0.11 4.41 2.59 0.05 2.42

atmosmodd 0.47 14.39 1.70 0.23 7.20 1.77 0.12 3.89 2.03 0.05 2.27 2.28 0.02 1.32

atmosmodl 0.55 16.88 2.00 0.27 8.45 2.05 0.15 4.64 2.29 0.05 2.48 2.36 0.02 1.47

cage14 1.42 36.91 8.51 0.75 19.70 12.58 0.37 10.67 17.58 0.12 5.72 24.09 0.07 3.28

dielFilterV3real 1.63 43.63 4.34 0.64 21.41 4.47 0.36 10.76 4.99 0.18 6.29 5.88 0.09 3.60

G3_circuit 0.50 16.29 1.60 0.23 8.28 1.62 0.09 4.67 1.63 0.04 2.72 1.68 0.02 1.47

Geo_1438 0.94 39.54 3.86 0.62 18.97 3.91 0.23 10.47 4.14 0.11 6.16 4.55 0.06 3.37

Hamrle3 0.88 16.22 13.57 0.39 8.39 22.35 0.20 5.00 38.40 0.07 2.92 63.08 0.03 1.61

Hook_1498 0.96 40.13 3.73 0.45 19.56 3.89 0.22 10.54 4.09 0.14 5.88 4.34 0.08 3.32

kkt_power 2.62 26.56 3.91 0.99 13.32 4.51 0.42 8.37 4.87 0.16 4.01 5.37 0.09 2.46

memchip 1.35 31.31 3.77 0.51 15.98 3.86 0.24 8.55 3.93 0.12 5.01 3.99 0.06 2.82

nlpkkt80 0.73 26.57 3.06 0.36 11.99 3.37 0.15 5.98 3.73 0.07 3.23 4.42 0.04 1.68

Serena 0.93 41.64 4.03 0.75 20.50 4.21 0.24 11.21 4.44 0.17 5.58 5.15 0.08 3.57

StocF-1465 1.02 25.83 2.50 0.44 12.13 2.60 0.21 5.70 2.97 0.13 3.44 3.35 0.06 1.90

thermal2 0.58 15.25 1.40 0.24 7.68 1.43 0.11 4.13 1.46 0.05 2.32 1.48 0.02 1.27

webbase-1M 0.29 8.20 1.82 0.14 5.31 1.91 0.08 2.75 2.04 0.03 1.39 2.33 0.01 0.88

72

Table B.12 Partitioning, parallel permutation and multiplication time of matrix partitioned using PATOH and then permuted using RCM on MERCAN

Matrix Name

2 Processes 4 Processes 8 Processes 16 Processes

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

Parti-
tioning
(sec)

Permu-
tation
(sec)

Multipli-
cation
(sec)

af_shell10 17.25 0.39 14.88 33.81 0.19 8.84 49.89 0.09 4.40 65.83 0.05 2.61

atmosmodd 6.43 0.23 7.09 11.26 0.10 3.96 16.15 0.04 2.13 20.55 0.02 1.28

atmosmodl 7.57 0.26 8.43 13.68 0.12 4.65 19.04 0.05 2.56 24.64 0.03 1.52

cage14 38.83 0.65 18.96 72.72 0.28 10.42 100.20 0.11 5.88 127.80 0.05 3.12

dielFilterV3real 72.33 0.64 21.51 142.71 0.32 11.80 212.66 0.18 6.95 279.45 0.09 3.96

G3_circuit 4.03 0.19 8.36 7.69 0.09 4.54 11.02 0.04 2.47 14.23 0.02 1.51

Geo_1438 30.48 0.44 18.82 57.11 0.22 9.57 83.21 0.12 5.59 109.10 0.06 3.01

Hamrle3 3.24 0.28 6.66 5.91 0.06 3.23 8.50 0.02 1.56 10.90 0.01 1.02

Hook_1498 29.55 0.46 19.79 56.31 0.23 10.64 82.54 0.12 5.73 108.40 0.06 3.40

kkt_power 16.57 0.88 13.05 30.47 0.44 7.56 42.60 0.16 4.20 54.00 0.08 2.47

memchip 5.63 0.51 16.31 10.79 0.23 8.52 15.83 0.12 4.60 20.35 0.05 2.77

nlpkkt80 17.26 0.29 11.19 32.55 0.15 5.77 47.12 0.07 3.34 60.96 0.03 1.87

Serena 32.47 0.46 20.17 61.38 0.22 12.11 89.90 0.11 6.09 117.16 0.06 3.53

StocF-1465 12.22 0.34 11.67 23.11 0.18 6.29 33.55 0.07 3.48 43.89 0.04 1.82

thermal2 4.18 0.23 7.60 7.89 0.11 4.15 11.27 0.05 2.27 14.54 0.02 1.30

webbase-1M 3.28 0.08 4.26 6.27 0.03 2.35 9.10 0.02 1.38 12.23 0.01 0.81

