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ABSTRACT

DECISION MAKING IN TRACKING APPLICATIONS BY USING
DEMPSTER-SHAFER THEORY

Turhan, Hasan İhsan
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Mübeccel Demirekler

July 2014, 107 pages

The aim of this thesis is to study attribute data fusion and decision making for targets
tracked by a sensor network consisting of several radars. As an application deciding
both target class and identity are studied. Since only partial information is available,
Dempster-Shafer theory is used for this application to assign and combine probability
masses. In this study, we focus on the problems of basic probability assignment and
decision/data fusion.

Classification of air vehicles according to their type is studied using the kinematic
features obtained while tracking. The probability masses are obtained from tracker
data and prior information that belong to possible target types. Prior information
is modeled as a Gaussian mixture probability density function, while tracker data is
modeled as a single Gaussian. This new methodology is tested with real data and its
performance is examined by comparing it with the most similar method existing in
the literature.

Special to this type of air vehicle classification problem, a decision fusion approach is
proposed that uses Bayesian formalism. The main difference of the proposed method-
ology from the existing methods is fusing the data before assigning the basic proba-
bilities. Methodology is tested with real data and compared with the existing combi-
nation rules in the literature.
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Target identification is the decision of whether a target is a friend, hostile or neu-
tral. This decision is made by using IFF Mod-4 information, IFF Mod-3 information,
restricted area breach information, air corridor usage information and human-eye
identification information. These piece of information are converted into probabil-
ity masses and combined by using Analytic Hierarchy Process Interrogation methods
and Dempster-Shafer Theory. Methodology is tested by using artificial scenarios.

Keywords: Dempster-Shafer Theory, Belief Functions, Basic Probability (Mass) As-
signment, Dempster-Shafer Reasoning, Conditioning, Combination Rules, Target Track-
ing, Decision Making, Target Classification, Target Identification, Analytic Hierarcy
Process, group aggregation methods, pair-wise comparison, inconsistency check
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ÖZ

HEDEF TAKİP UYGULAMALARINDA DEMPSTER-SHAFER TEORİSİ
KULLANARAK KARAR VERME

Turhan, Hasan İhsan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler

Temmuz 2014 , 107 sayfa

Bu tez çalışmasının amacı çeşitli radarların bağlı olduğu füzyon sistemlerindeki he-
def takip uygulamalarında veri füzyonu ve karar vermedir. Uygulama olarak hedefin
tipine ve niteliğine karar verilmesi gerçekleştirilmiştir. Hedefin tipinin ve niteliğinin
belirlenmesinde, literatürde Demspter-Shafer Teorisi olarak bilinen inanç fonksiyon-
ları kullanılır. Dempster-Shafer Teorisi olaylara olasılıklar atayabilmek için yeterli
istatistiğin olmadığı durumlarda eldeki veriler doğrultusunda olasılık ağırlıklarının
atanması ve sonrasında da gelen tüm bilgilerin birleştirilmesi esasına göre uygula-
nır. Bu tez çalışmasında olasılık ağırlık ataması ve karar verme/birleştirme üzerinde
yoğunlaşılmıştır.

Hedef tipi tespiti izleme sırasında elde edilen kinematik veriler kullanılarak yapı-
lır. Olasılık ağırlık ataması, izleyici çıktısı ve olası hedef tiplerine ait öncül (prior)
bilgilerin birlikte kullanılması yoluyla elde edilmektedir. Öncül bilgi karma Gauss
dağılımlı olasılık yoğunluk işlevleri, izleyici çıktısı olan ölçümler ise Gauss dağılımlı
olasılık yoğunluk işlevleri olarak modellenir. Yöntem gerçek veriler kullanılarak test
edilmiş ve literatürde önerilen yönteme en yakın yöntemler karşılaştırmak suretiyle
performansı irdelenmiştir.

Hedef tipi tespiti konusunda Bayes yaklaşımından yararlanan, bu probleme özgü bir
de birleştirme yöntemi önerilmiştir. Yöntemin literatürdeki diğer yöntemlerden te-
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mel farkı olasılık ağırlıklarını atamadan önce gelen verileri birleştirmesidir. Yöntem
gerçek veriler kullanılarak test edilmiş ve literatürdeki birleştirilme kurallarıyla kar-
şılaştırılmak suretiyle irdelenmiştir.

Hedefin niteliğine karar verilmesi, hedefin dost, düşman ya da tarafsız olduğunun
belirlenmesidir. Bu karar, IFF Mod-4, IFF Mod-3, yasaklı bölge ihlali bilgisi, hava
koridoru kullanım bilgisi ve görsel teşhis bilgisi kullanılarak verilir. Bu kaynaklardan
gelen bilgiler, çoklu karar verme yöntemlerinden biri olan Analitik Hiyerarşi Süreci
(Analytic Hierarcy Process) sorgulama yöntemleri ve Dempster-Shafer Teorisi kulla-
nılarak olasılık ağırlıklarına çevrilir ve birleştirilir. Yöntem yapay veriler kullanılarak
test edilmiştir.

Anahtar Kelimeler: Dempster-Shafer Teorisi İnanç Fonksiyonları, Temel Olasılık (Ağır-
lık) Ataması, Dempster-Shafer Tümevarımı, Koşullandırma, Birleştirme Kuralları,
Hedef Takibi, Karar Verme, Hedef Tipi Belirleme, Hedef Teşhisi Belirleme,Analitik
Hierarşi Süreci, grup karar birleştirme yöntemleri, ikili karşılaştırma, tutarsızlık tes-
piti
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CHAPTER 1

INTRODUCTION

Decision making is a difficult problem for all applications. Decision making has to

somehow map and fuse information that comes from different sources and at differ-

ent time instances. There are several theories for mapping and data fusion: prob-

ability theory, possibility theory, and Dempster-Shafer theory. Every theory has its

own advantages and disadvantages that can change according the availability of the

information.

Major decision making problems in target tracking are:

• Measurement to track association

• Track to track association

• Target classification

• Target identification

• Model selection for robust tracking performance

Target classification and target identification are the main decision making problems

in target tracking, because all other items benefit from classification and identification

results. Hence, this thesis work focuses on target classification and target identifica-

tion.
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1.1 Target Classification

Target classification is an important problem, which is encountered in designing an

efficient air defense system. Basically, targets are classified among predefined target

types like helicopter, fighter, etc. Features used in classification are selected according

to their discriminating powers and availability. In this study, the available information

comes from a target tracker that tracks air vehicles. Tracker provides rich information

about the state of the target, which is composed of velocity and the position vectors,

as a Gaussian density at discrete time instants [5].

Classification of a target is generally done using kinematic features [3, 9, 11, 28, 30,

31]. Besides kinematic features, radar cross section or any other relevant information

like electronic support measures [9, 11, 31] can also be used. Smets et al. [41] uses

IMM mode probabilities beside the kinematic information. Caramicoli et al. [13] and

Ristic and Smets [31] use kinematic features to derive some classification rules.

Most of the related work that exists in the literature uses Dempster-Shafer theory.

However, some authors use some other statistical methods: Angelova et al. [3] use

particle filter and mixture Kalman filter, Ristic et al. [30] use Bayesian match-filter,

Mei et al. [28] and Brooks et al. [12] use Bayesian classifier, Azimi et al. [4] use

wavelets and neural networks.

We also use kinematic information in our study and we develop a new methodology

for assigning masses to classes in the Dempster-Shafer framework. The main dis-

tinction of the mass assignment proposed in this work is all the information, i.e., the

probability density function of the state instead of its mean, provided by the tracker

is utilized. The proposed algorithms assume that the prior probability density func-

tions of all classes and the current measurement are known for some kinematic fea-

tures of the target. Furthermore, as a sensible assumption, we assume that the prior

probability density functions of the related kinematic features of all classes can be

approximated by Gaussian mixtures. Assigning masses by using both prior and mea-

surement probability density functions in Dempster-Shafer framework is one of the

main contributions of this study.
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1.2 Target Identification

Target identification is another important problem which is encountered when de-

signing an efficient air defense system. Target identification can be considered as a

classification problem and classes are defined as friend, foe (hostile) and neutral.

Generally interrogation of friend or foe (IFF) is used for target identification. But

other information sources can also be used for this purpose. For example some coun-

tries use discriminating devices like electronic support measures that can identify the

radar type from its signal. Hence target can be identified as friend or foe by help of

this information. Other possible sources of information that give clues on the identity

of the target are restricted area breach and air corridor usage.

It is difficult to map such all/nothing information into numbers for data fusion. There-

fore Dempster-Shafer Theory is widely used for target identification. Bogler [11],

Caramicoli et al. [13] and Ristic and Smets [31] use radar cross section, IFF, and

electronic support measures. None of them use restricted area breach or air corri-

dor usage for this purpose. Probability masses are assigned almost intuitively. We

use the same information sources given in the literature, but contrary to the works

in the literature we don’t assign the probability masses either intuitively or coarsely.

Instead, we develop a new methodology that uses Analytic Hierarchy Process and

Dempster-Shafer Theory together for assigning masses to classes (identities).

1.3 Motivation

Target classification and identification provide very valuable information in the battle

field, because they can be used for weapon engagement. Furthermore, class and iden-

tity information improve the performance of target trackers. With the help of class

and identity information:

• More accurate models can be chosen for Interacting Multiple Model (IMM)

filters.

• Multiple measurements can be assigned to related tracks in a more correct way.
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• Tracks that belong to the same target can be associated in distributed multi-

source target tracking systems.

The reasons motivating us to utilize Dempster-Shafer theory can be listed as follows:

• Easy way of representing uncertainty

• Availability of a conflict measure

• Suitable mass assignment and combination methods

Finally, our motivation was to develop algorithms that use all available information

in order to provide more correct mapping for attribute data fusion.
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CHAPTER 2

DEMPSTER-SHAFER THEORY

Belief Functions were introduced by Arthur Dempster in 1967 as "upper and lower

probabilities"[16]. Later it was developed as a mathematical theory of evidence in

1976 by Glenn Shafer[38]. Today it is mostly known as Dempster-Shafer Theory.

The theory starts with unknown statistics or evidence of events, and aims to reach a

decision using these unknown and incomplete statistics.

The first step of making a decision is to convert the evidence into numbers. The

second step is combining the evidence expressed as those numbers. From this aspect

the theory reminds us probability theory. However, it differs from probability theory

in the way of mapping evidence into the interval [0,1], combining the evidence, and

its ability to represent uncertainty.

One important difference between the two theories is the representation of uncer-

tainty. Probability theory represents complete loss of information by assigning equal

probability to each event. However, Dempster-Shafer theory assigns "1" to the uni-

versal set and "0" to all other sets.

Another fundemental difference is the probability assignment. In probability theory,

probability function that maps the field elements into the interval [0,1] has certain

properties. One of the properties is the probability of the set that is the union of two

disjoint sets is equal to sum of their probabilities. However, union sets represent the

local uncertainty in Demspter-Shafer theory and masses/probabilities of these union

sets are assigned in a different manner. Even if a set consists of two disjoint sets,

mass/probability of that set is not equal to sum of their probabilities.
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Besides these differences Demspter-Shafer theory has one more important difference

in combination of evidence. It has its own combination methods as well as own prob-

ability assignment methods. Dempster-Shafer theory assumes that the available in-

formation may be inconsistent, and distinct from probability theory, introduces a new

concept which is called conflict. Conflict arises when different information sources

assign different probability masses to the events.

In this chapter, Dempster-Shafer Theory is introduced with its basics, and probability

assignment and combination (conditioning) methods.

2.1 The Basics of the Dempster-Shafer Theory

Suppose that Θ is a finite set, and let 2Θ denote all subsets of Θ.

Θ = {θ1, θ2, ..., θn}

2Θ = {φ, {θ1}, {θ2}, ...{θn}, {θ1, θ2}, ..., {θ1, θ2, ..., θn}}

where φ denotes the empty set.

Belief functions are constructed over basic probability assignments (bpa). Basic prob-

abilities, in other words probability masses, map the evidence into [0, 1] interval. Ba-

sic probabilities are defined by using partial information that is available and assigned

to the subsets of Θ. They are defined as follows:

m : 2Θ → [0, 1] (2.1)

The function m satisfies the following conditions:

(1) m(φ) = 0

(2)
∑
X∈2Θ

m(X) = 1

The belief function is defined over Θ as follows:

Bel : 2Θ → [0, 1] (2.2)

The function Bel satisfies the following conditions:
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(1) Bel(φ) = 0

(2) Bel(Θ) = 1

(3) Bel(A) =
∑
X⊆A

m(X)

The theory defines belief functions as "lower probabilities". Besides belief func-

tions, there are plausibility functions that can be defined as "upper probabilities"[16].

Plausibility function is also constructed using basic probability assignments. The

construction is as follows:

Pl : 2Θ → [0, 1] (2.3)

The function Pl satisfies the following conditions:

(1) Pl(φ) = 0

(2) Pl(Θ) = 1

(3) Pl(A) =
∑

X∩A 6=φ
m(X)

(4) Pl(A) = 1−Bel(Ā)

2.2 Basic Probability Assignment

Basic probability assignment is one of the main steps in any application of the Dempster-

Shafer theory. The methods of basic probability assignment in the literature are nu-

merous. At the early stages of the theory, probability masses are assigned according

to the expert opinion in various applications. Afterwards, various models are used

for this purpose. Yager [44] used belief functions as a fuzzy measure. Zhu et al.

[47] used membership functions. Florea et al. [20] used membership values as prob-

ability masses. Römer et al. [32] used possibility and necessity measures of fuzzy

logic theory for defining belief functions. Bloch [10], Jiang et al. [25], and Masson

et al. [27] used distances to cluster centers for basic probability assignment. Utkin

[15] used imprecise Dirichlet model. Bendjebbour et al. [8], Hagarat-Mascle et al.

[23], Salzestein et al. [36], and Xu et al. [42] used probabilities for basic probability

assignment.

In the remaining part of this section we classify the existing methods and give brief

descriptions for each of them.
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Clustering Based Basic Probability Assignment

This method is inspired from clustering algorithms. The basic idea behind cluster-

ing is grouping similar data for classification. Clustering algorithms can be mainly

classified into two families: hierarchical partitioning and hard/fuzzy partitioning [27].

There are two types of hierarchical clustering methods: agglomerative and divisive.

Agglomerative methods take each element of the data set as a cluster and merge

similar ones by using a similarity measure. Divisive methods take the whole data

set as one cluster, and divide it by using a dissimilarity measure between its elements.

Hard/fuzzy partitioning determines an initial cluster and modifies it by increasing the

inter distance of clusters and decreasing the intra distance of a cluster. The distance

is measured by some appropriate objective function.

In hard partitioning clusters are generated in such a way that each data point belongs

to only own cluster. However, in fuzzy partitioning, an element can belong to more

than one cluster with a different membership degree where the sum of the membership

degrees is 1.

The evidential partitioning algorithm arises from fuzzy partitioning. Basic probability

assignment can be made by using distance to cluster centers [27]. Distance measures

can be different from algorithm to algorithm [10, 25] . The steps of clustering based

basic probability assignment are as follows:

Training:

• Generate the clusters

• Find cluster centers by using an objective function. Objective function uses

two main metrics: distances between clusters and distances between cluster

elements within the same cluster.

Probability mass assignment:

• Find the distance of new inputs (possibly a measurement) to each cluster center.

• Use a function of the computed distance to assign masses to each cluster.
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• Finally apply normalization.

Fuzzy Logic Based Basic Probability Assignment

Ordinary set theory claims that an element can belong to only one set; but, fuzzy set

theory claims that a member of one set can also be a member of another set. Here

membership function definition shows up.

Membership function is a continuous mapping, µ : feature set→ [0, 1], which maps

the data points to the closed interval [0, 1]. The value µ(x) shows the membership

degree.

Like other theories, fuzzy set theory is also adapted to the Dempster-Shafer theory.

The related part of fuzzy logic with belief functions is the membership functions.

Membership functions are obtained by using logic-based rules. Mass assignment is

done according to the membership values [47].

Probability Density Function Based Basic Probability Assignment

Mass assignment from a probability density function (pdf) is a relatively new concept.

This concept can be used for systems that we have prior data. Prior data is used to

generate the prior probability density functions of the events. Xu et al. [42] produce

Gaussian densities using the training data and propose a new methodology for basic

probability assignment. We explain the method of Xu et al. [42] on a generic example

of Θ = {A,B,C}. The probability density functions of the three classes are shown

in Figure 2.1 for the feature ’x’.

It is assumed that a result of an experiment gives x as x = 850. ’x’ is shown in

Figure 2.1 by black dotted line. The likelihood values of each class is read from the

prior probability density functions as shown in the Figure 2.1. Note that pA(850) >

pB(850) > pC(850).

pA(850) is assigned to the set {A} directly. So, m({A}) ∝ pA(850). pB(850) is

assigned to the set {A,B}, since it is also under the pdf curve of A. So, the decision
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Figure 2.1: Probability density functions

is: it cannot be determined whether it is A or B, so m({A,B}) ∝ pB(850). pC(850)

is assigned to the set {A,B,C}, since it is both under the pdf curve of A and B. So,

the decision is: it cannot be determined whether it is A, B or C, so m({A,B,C}) ∝
pV (850). Finally all three values are normalized, so that their some is 1.

2.3 Combination of Evidence

In this section we give a brief summary of combination rules that exist in the lit-

erature. At the very beginning of this theory, Dempster combination rule has been

used for combining evidence. But, later it is criticized about not giving reasonable

results in case of conflict. This fact is first discovered and criticized by Zadeh [45].

This drawback has been tried to be solved by assigning some probability masses to

the uncertainty [38]. However in applications it is observed that probability masses

assigned to uncertainty drop quickly to zero after few combinations. Some effort is

spent to overcome this problem and a set of combination rules are proposed. Before

explaining these combination rules, we need to make the following definitions.

Conflict: Conflict means opposite opinions of decision makers on an event. If we

examine conflict on the basis of the universal set and its subsets, we get two definitions

for conflict, namely partial conflict and total conflict.
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Let m1(.) and m2(.) be two probability mass function defined over 2Θ.

Partial conflict: Partial conflict is the conflict among two subsets of Θ, and is defined

as the multiplication of the masses assigned to the two (or more) sets that have empty

intersection. The partial conflict among m1(.) and m2(.) for the sets A and B is

defined as

kAB12 = m1(A).m2(B), where A,B ⊆ 2Θ and A ∩B = φ

Total conflict: Total conflict is equal to total probability masses that correspond to

the empty set. The total conflict among m1(.) and m2(.) is defined as the sum of all

partial conflicting masses.

k12 =
∑

X1,X2⊆2Θ

X1∩X2=φ

m1(X1).m2(X2)

VBA (Vacuous Belief Assignment): This occurs at total ignorance condition. This

type of bpa does not contain any information. It gives all probability masses to the

universal set and this means that the decision maker has total ignorance on the subject.

mv(φ) = 0

mv(Θ) = 1

Combination of two decisions can be considered as an operator acting on two basic

probability assignment functions and generating a new one. Combination operator is

denoted by the symbol⊕. While examining the performance of different combination

techniques we need the following definitions.

Commutativity: An operator is said to be commutative if,

m1 ⊕m2 = m2 ⊕m1

Associativity: An operator is said to be associative if,

(m1 ⊕m2)⊕m3 = m1 ⊕ (m2 ⊕m3)

Neutral Impact of VBA: As defined earlier VBA occurs at total ignorance condition.

Therefore the VBA mv should not affect the result.

(ms ⊕mv) = ms

Coherence of the Combination Rules in all Possible Cases: Combination Rules

should give reasonable results for any number of sources, any values of basic prob-
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ability assignments (bpa) and any types of frames and models which may change or

stay invariant over time. This rule is not precisely defined and it is somehow subjec-

tive. Decision on the satisfaction of the rule usually depends on expert opinion.

Reliability: Information sources can give false or imprecise information because of

quality or trustability of the sources. So reliability of a source should be taken into

account in combination rules.

Dempster’s Combination Rule

Historically Dempster’s combination rule is the first rule ever proposed [38]. All oth-

ers are derived to overcome its shortages. Equation 2.4 gives the rule. In this equation

the probability masses assigned by the first expert are denoted by the subscript 1 and

the second expert by the subscript 2.

mDS(φ) = 0 (2.4a)

mDS(X) =

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1).m2(X2)

1−
∑

X1,X2∈2Θ

X1∩X2=φ

m1(X1).m2(X2)
(2.4b)

X It satisfies the Commutativity property.

X It satisfies the Associativity property.

X It satisfies Neutral Impact of VBA.

× It is not coherent to all possible cases. (Zadeh’s example [45])

× Reliability of the sources is not taken into consideration.

Example:

Let m1(.) and m2(.) be two probability mass function defined for Θ = {θ1, θ2, θ3}.
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m1({θ1}) = 0.2

m1({θ3}) = 0.4

m1({θ1, θ3}) = 0.2

m2({θ1}) = 0.5

m2({θ2}) = 0.3

m2({θ1, θ2}) = 0.2

Table 2.1: Unnormalized results of Dempster’s combination rule

m1({θ1}) = 0.2 m1({θ3}) = 0.4 m1({θ1, θ3}) = 0.2

m2({θ1}) = 0.5 m12({θ1}) = 0.1 m12({φ}) = 0.06 m12({θ1}) = 0.02

m2({θ2}) = 0.3 m12({φ}) = 0.2 m12({φ}) = 0.12 m12({φ}) = 0.08

m2({θ1, θ2}) = 0.2 m12({θ1}) = 0.1 m12({φ}) = 0.06 m12({θ1}) = 0.04

Table 2.1 illustrates the un-normalized masses assigned by the Dempster combination

rule. Each cell of this table, which contains a mass corresponding to the empty set,

shows the partial conflict among the corresponding sets (events) and the total con-

flicting mass which is calculated as:

k12 =
∑

X1,X2∈2Θ

X1∩X2=φ

m1(X1).m2(X2) = 0.52

The normalized masses, i.e., the result of combination, are obtained by normalizing

the above given result. For this example the combination gives mass values as follows:

mDS({θ1}) = 1

Yager’s Combination Rule

In historical perspective, the first rule after Dempster’s combination rule is Yager’s

rule. It was proposed in 1987 by Yager. Yager’s rule assigns the conflicting masses to
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the universal set [43].

mY (φ) = 0 (2.5a)

mY (X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1).m2(X2) (2.5b)

mY (Θ) = m1(Θ).m2(Θ) +
∑

X1,X2∈2Θ

X1∩X2=φ

m1(X1).m2(X2) (2.5c)

X It satisfies the Commutativity property.

× It does satisfy the Associativity property.

X It satisfies Neutral Impact of VBA.

× It is not coherent to all possible cases. (Partial conflicts are not taken into

consideration.)

× Reliability of the sources is not taken into consideration.

Dubois’ and Parade’s Combination Rule

After Yager, Dubois and Parade introduced a new combination rule in 1988. The new

combination rule deals with the conflicting cases in a different manner. It assigns

mass of conflict to the sets that are the union of conflicting sets [18].

mDB(φ) = 0 (2.6a)

mDB(X) =
∑

X1,X2∈2Θ

X1∩X2=X
X1∩X2 6=φ

m1(X1).m2(X2) +
∑

X1,X2∈2Θ

X1∪X2=X
X1∩X2=φ

m1(X1).m2(X2) (2.6b)

X It satisfies the Commutativity property.

× It does not satisfy the Associativity property.

X It satisfies Neutral Impact of VBA.
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× It is not coherent to all possible cases.

× Reliability of the sources is not taken into consideration.

Smets’ Combination Rule

In 1994, Smets proposed the Transferable Belief Model. With this model conflicting

masses are transferred to the empty set. Decisions based on the result of the combi-

nation are made among remaining alternatives by using the Pignistic Transformation.

This modeling assumes open world and speculates that universal set is not really uni-

versal and there are possibilities other than the set 2Θ [40].

mS(φ) =
∑

X1,X2∈2Θ

X1∩X2=φ

m1(X1).m2(X2) (2.7a)

mS(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1).m2(X2) (2.7b)

X It satisfies the Commutativity property.

X It satisfies the Associativity property.

X It satisfies Neutral Impact of VBA.

X Open world assumption is done and this provides coherency to all possible

cases.

× Reliability of the sources is not taken into consideration.

The transferable belief model concept uses pignistic probability while making de-

cisions among combined evidences. Pignistic probability just a classical probability

measure and it is derived from the mass function. It is denoted byBetP and is defined

as follows [40];

BetP (A) =
∑
B∈2Θ

m(B)
|A ∩B|
|B|

(2.8)

15



Here, |X| denotes cardinality of set X.

Weighted Average Operator

In 2003, Jøsang, Daniel and Vannoorenberghe proposed a new method which redis-

tributes the conflicting masses to all sets in the core. The distribution is proportional

to the masses of these sets [26].

mWAO(φ) = 0 (2.9a)

mWAO(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1).m2(X2) + w(x)
∑

X1,X2∈2Θ

X1∩X2=φ

m1(X1).m2(X2) (2.9b)

w(x) =
1

2
(m1(X) +m2(X)) (2.9c)

X It satisfies the Commutativity property.

X It satisfies the Associativity property.

× Conflicting masses are redistributed to all sets. This removes Neutral Impact of

VBA.

× Redistribution of the conflict to all sets also removes coherency to all possible

cases.

× Reliability of the sources is not taken into consideration.

Daniel’s minC Rule

Again in 2003, Daniel proposed to redistribute the total conflicting masses to all sub-

sets of Θ without considering whether they cause conflict or not, in order to retain

minimum conflict [15].

X It satisfies Commutativity property.

X It satisfies Associativity property.
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× Conflicting masses are redistributed to all sets. This removes both Neutral Im-

pact of VBA

× Redistribution of the conflict to all sets also removes coherency to all possible

cases.

× Reliability of the sources is not taken into consideration.

Principal Conflict Redistribution Rule

In 2004, Smarandache and Dezert examined all these rules and revealed their draw-

backs. Then, they proposed a new partial conflict redistribution (PCR) rule [39].

mPCR1(φ) = 0 (2.10a)

mPCR1(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1).m2(X2) +
c12(X)

d12

∑
X1,X2∈2Θ

X1∩X2=φ

m1(X1).m2(X2)

(2.10b)

c12(X) = m1(X) +m2(X) (2.10c)

d12 =
∑
X∈2Θ

c12(X) (2.10d)

X It satisfies Commutativity property.

X It satisfies Associativity property.

× Conflicting masses are redistributed to all sets. This removes Neutral Impact of

VBA

× Redistribution of the conflict to all sets also removes coherency to all possible

cases.

× Reliability of the sources is not taken into consideration.
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Later in 2006, they proposed 5 new PCR rules, which also provide Neutral Impact of

VBA and coherency to all possible cases [17]. Only the last one is given here.

mPCR6(φ) = 0 (2.11a)

mPCR6(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1).m2(X2)

+
∑
Y ∈2Θ

c(X1∩X2)=φ

m1(X)2.m2(Y )

m1(X) +m2(Y )
+

m2(X)2.m1(Y )

m2(X) +m1(Y )

(2.11b)

X It satisfies Commutativity property.

X It satisfies Associativity property.

X It provides Neutral Impact of VBA. Because conflicting masses are redistributed

to only conflicting sets.

X It provides coherency to all possible cases because of the same reason.

× Reliability of the sources is not taken into consideration.

Florea’s Combination Rule

In 2009, Florea criticized all proposed combination rules about not considering relia-

bility of sources. Then, he proposed a new method, which takes into account reliabil-

ity of sources [21].

mFlo(φ) = 0 (2.12a)

mFlo(X) =
1

1− k − k2

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1).m2(X2)

+
k

1− k − k2

∑
X1,X2∈2Θ

X1∪X2=X

m1(X1).m2(X2)

(2.12b)
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k = 0→ Both sources are coherent and reliable, Conjunctive Combination Rule.

k = 1→ Total Conflict. Disjunctive Combination Rule.

k = 0.5→ Unknown Case.

X It satisfies Commutativity property.

× It does not satisfy Associativity property.

X It provides Neutral Impact of VBA.

X Reliability of sources is taken into consideration.

× But, reliability cannot be known for all cases. Therefore coherency to all pos-

sible cases is an open problem.
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CHAPTER 3

ANALYTIC HIERARCHY PROCESS

The analytic hierarchy process (AHP) is a very popular method for the multi-criteria

decision making problem. AHP was introduced by Saaty in 1980 [37]. AHP is suit-

able for both individual and group decision making. Group decision making suit-

ability was studied by Dyer and Foreman in 1992 [22]. The main idea behind AHP

is defining a common hierarchy of criteria and pair-wise comparison of those crite-

ria. The pair-wise comparison provides ranking of each criterion for selecting the

optimum.

AHP is a powerful tool for multi-criteria decision making; however, AHP has some

problems like determining the weights of the criteria and aggregating those weights

on group decisions. In 1983 Belton and Gear examined the Saaty’s method and crit-

icized its weight determination [7]. According Belton and Gear if one alternative is

taken out, the order of the other alternatives changes, in other words the best alterna-

tive is not the best alternative anymore. Dyer also criticized Saaty’s method in 1990

for the same reason [19]. Saaty replied to the criticism in 1983 [35] and 1990 [34];

but these replies were not enough.

Another criticism to AHP is about group decision. AHP assumes that groups are

homogeneous. According to Zahir this assumption does not hold in large groups

[46]. Large groups do not lead to a unique decision among available alternatives.

Even if they are allowed to share their ideas with each other as expressed in [46],

some cluster of decision ranking forms. People in large groups split into subgroups

while making a decision and this situation is the second problem in AHP.
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One solution can be consensus voting that is proposed by Saaty [33]. In this approach,

the problem should be well defined and understood clearly from the decision makers.

However, this takes a long time. Even if groups are not homogeneous, individual

judgments are combined somehow in group decision making problems.

In 1983, Aczel and Saaty proposed the geometric mean method that gives same im-

portance to the judgments of all group members [1]. After that Basak and Saaty

proposed a weighted geometric mean method giving much attention to some dom-

inant group members in 1993 [6]. In 1994, Ramanathan and Ganesh evaluated the

geometric mean method and the weighted arithmetic mean method. They criticized

the geometric mean method about not satisfying the "Pareto optimality axiom" [29].

Pareto optimality axiom says that a solution is the optimum point if it is impossible to

make any improvement without making any regression. On the other hand arithmetic

mean method satisfies social axioms.

3.1 Hierarchical Model on Decision

The goal of the AHP is to choose the best alternative. For this purpose the first step

of the AHP is building a model for hierarchy, in order to decide as shown in Figure

3.1

Figure 3.1: Hierarchical Model for AHP
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For example the goal may be selecting a new car and the alternatives for selecting a

car may be fuel consumption, price, size, etc. Sub-alternatives may be car models.

3.2 Pair-wise Comparison

The key idea of AHP for choosing the best alternative is pair-wise comparison. All

alternatives are evaluated in some hierarchy level according to Table 3.1.

Table 3.1: Evaluation table for AHP

Importance
Level

Explanation

1 Equally important
2
3 More important
4
5 Much more important
6
7 Very much more important
8
9 Absolutely important

Every importance level shows how much the first alternative is important than the

second alternative. 2, 4, 6, 8 are the intermediate values. One can write
1

3
, if one

thinks that the second alternative is more important than the first alternative. As an

example by using Table 3.1 pair-wise comparison matrices are built up as given in

Table 3.2.

Table 3.2: Example pair-wise comparison matrix A

Alternative 1 Alternative 2 ... Alternative n
Alternative 1 1 1

3
... 4

Alternative 2 3 1 ... 6
...

...
... . . . ...

Alternative n 1
4

1
6

... 1
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3.2.1 Pair-wise Comparison Matrix Evaluation

Once the pair-wise comparison matrix, i.e. the matrix A, is obtained, weights of the

alternatives are obtained. The following example is given to illustrate the methods of

computation of weights.

Example: Suppose that matrix A is

A =


1 2 1

2

1
2

1 2

2 1
2

1


The rows of this matrix should be the ratio of the weights as

Ã =


w1

w1

w1

w2

w1

w3

w2

w1

w2

w2

w2

w3

w3

w1

w2

w2

w3

w3


Observation 1: For this example it is not possible to find a set w1, w2, w3 that gives

the matrix A. That is obvious from the interpretation of the first and the second rows

of A. First row indicates that w3 < w1 < w2. On the contrary the second row

indicates that w1 < w2 < w3. The contradiction between the two rows indicates the

non-existence of a solution. Any matrix that has rank greater than 1 has no solution.

Observation 2: The rank of the matrix Ã is 1 since all rows are proportional to each

other, so its 2 out of 3 eigenvalues are 0. The remaining eigenvalue is 3, and its corre-

sponding eigenvector is the weight vector since Ãw = 3w where w = [w1, w2, w3]T .

It is easy to see that this statement is correct for an arbitrary ’consistent’ Ã matrix of

any size. The following 3 algorithms that are mostly used to compute the weights are

based on these observations.

Eigenvector Method

This method is proposed by Saaty [35]. If A corresponds to a pair-wise comparison

matrix and w corresponds to a weight vector.
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

1
w1

w2

...
w1

wn
w2

w1

1 ...
w2

wn...
... . . . ...

wn
w1

wn
w2

... 1




w1

w2

...

wn

 =


nw1

nw2

...

nwn



A.w = n.w

For such a positive matrix, n corresponds to the maximum eigenvalue. Then the

weight vector is selected as the eigenvector that corresponds to the maximum eigen-

value.

A.w = λmax.w (3.1)

λmax is the maximum eigenvalue of A and w is the corresponding eigenvector.

Least Squares Method

IfA = [aij]NxN corresponds to a pair-wise comparison matrix and w = [wi]1xN
T cor-

responds to a weight vector, then the least squares method is defined as follows [2]:

min
n∑
i=1

n∑
j=1

(aij −
wi
wj

)2 (3.2)

n∑
i=1

wi = 1

wi > 0 for i = 1, ..., n

Logarithmic Least Squares Method

If A = [aij]NxN corresponds to a pair-wise comparison matrix and w = [wi]1xN
T

corresponds to a weight vector, then the logarithmic least squares method is defined

as follows [2]:
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min
∑
i<j

n∑
j=1

[ln aij − ln(
wi
wj

)]2

n∏
i=1

wi = 1

wi > 0 for i = 1, ..., n

The logarithmic least squares method can be solved analytically. Let xi = ln(wi) and

yi = ln(aij). With this definition the optimization problem is converted to a quadratic

function of the form given below.∑
i<j

n∑
j=1

[yij − xj + xi]
2

The derivative of the above expression is equated to 0 to find the optimum point:

nxi −
n∑
j=1

xj =
n∑
j=1

yij i = 1, ..., n,

under the constraint
n∑
j=1

xj = 0

The optimum point is obtained as

xi =
1

n

n∑
j=1

yij i = 1, ..., n,

So the weights can be expressed in the following form [14]:

wi = (
n∏
j=1

aij)

1

n (3.3)

3.2.2 Aggregation Methods

In previous sections, individual decision making methodology of AHP is introduced.

This section introduces how the individual decisions of group members’ are aggre-

gated.

Geometric Mean Method

Suppose we have n different weights from n different group members:
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Then the group decision on weights is obtained as follows [1]:

wj = (
n∏
i=1

wji)

1
n

(3.4)

Weighted Arithmetic Mean Method

If w = [wi]
T corresponds to a weight vector and a = [aj]

T corresponds to weights of

individual judgments, final weights are obtained as follows [29]:

waggregatedi =
m∑
j=1

ajwi (3.5)

3.2.3 Consistency Check

The final step of the AHP is the consistency check. Consistency check is made over a

consistency ratio (CR), which can be defined as the reliability measure for the answers

given to pair-wise comparisons.

It is assumed that the number of weights n corresponds to the maximum eigenvalue

λmax of the pair-wise comparison matrix. The judgments become more consistent

as λmax gets closer to n. So, the difference between λmax and n can be used as

a consistency measure. Instead of using λmax − n directly, another measure called

consistency index (CI), which was proposed by Saaty [37], is used. Consistency ratio

is defined using consistency index as follows:

CI =
λmax − n
n− 1

(3.6)

CR =
CI

R
(3.7)

R is is chosen from Table 3.3 according to the number of weights.
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Table 3.3: Consistency Table [33]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

TheR values given in Table 3.3 are the expected value of the maximum eigenvalue for

random reciprocal positive matrices. Consistency ratio CR should be smaller than 0.1

for a consistent judgment. The following example is given to clarify the consistency

check concept.

Example: Consider the given pair-wise comparison matrix A

A =


1 2 1

3

1
2

1 1
4

3 4 1


The maximum eigenvalue of this matrix is λmax = 3.0183, then

CI =
3.0183− 3

3− 1
= 0.0091

and CR is:

CR =
0.0091

0.58
= 0.0158

The consistency ratio CR = 0.0158 < 0.1, so this pair-wise comparison matrix is

consistent.
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CHAPTER 4

A NOVEL METHODOLOGY FOR TARGET

CLASSIFICATION BASED ON DEMPSTER-SHAFER

THEORY

In all classification problems, features are selected according to their discriminating

powers and availability. In this study, the available information comes from a radar

target tracker that tracks air vehicles. Tracker provides rich information about the

state of the target, which is composed of the velocity and the position vectors [5].

Tracker provides the probability density function of the state as a Gaussian density at

discrete time instants [5].

Most of the related work that exists in the literature uses Dempster-Shafer theory for

target classification. Classification of a target is made using kinematic features or

radar cross section or any other relevant information like electronic support measures

[9, 11, 31]. Caramicoli et al. [13] and Ristic and Smets [31] use kinematic features to

derive some classification rules.

We also use kinematic information in our study and we develop a new methodology

for assigning masses to classes. The main distinction of the mass assignment method

proposed in this work is to use all available information, i.e., the probability density

function of the state, instead of only its mean. The algorithm assumes that the prior

probability density functions of all classes and the current measurement are known

for some kinematic features of the target. Furthermore, as a sensible assumption, we

assume that prior probability density functions of the related kinematic features of

all classes can be approximated by Gaussian mixtures. Assigning masses using both
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prior and measurement probability density functions in Dempster-Shafer framework

is the one of the main contributions of this study.

4.1 Dempster-Shafer Framework from Tracking Perspective

In tracking problems, the tracker output is the only information that we can get. Sen-

sors give the state vector of the target with some uncertainty as its probability density

function, which is Gaussian. The state vector usually consists of the position and the

velocity of the target. The problem is to classify the target as one of the predefined

types by using this information. Our first approach is to convert this information to

probability masses and combine them, as the information is collected in time. Our

application is the classification of air vehicles, so we use the speed and the altitude

of the aircraft as discriminating features. The proposed method assigns masses to

classes in a novel way. The combination of the masses is done by using Dempster’s

rule of combination. Our second approach is to combine information first, and then

turn them into probability masses.

4.1.1 Basic Probability Assignment

Speed and altitude of an air vehicle are selected as discriminating features for clas-

sification. It is assumed that these two variables are independent, hence estimating

individual densities is sufficient. The application classifies air targets into four classes,

which are bomber and surveillance plane, helicopter, fighter, and unmanned air vehi-

cle.

The prior information about the features for different classes has been collected mainly

from Jane’s book [24] and the internet. Nominal and maximum speeds, and altitudes

of the above defined air vehicle types are used to generate prior probability density

functions as mixtures of Gaussians. For each class prior speed and altitude are rep-

resented by N Gaussians, where N is selected according to the available data. The

probability density functions are obtained by applying the kernel smoothing method

to the collected data. The resultant prior probability density functions are given in

Section 4.1.1.3.
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A tracker gives the (Gaussian) probability density function of the velocity and the

position of the target at each time instant, which is considered as the ’measurement’.

Altitude, which is one of the features, is already part of the state vector. Hence its

probability density function is available. The probability density function of the speed

on the other hand should be calculated from the velocity vector. Speed is defined as:

sk =
√
v2
x + v2

y + v2
z (4.1)

The probability density function of sk can be approximated as a non-central chi square

distribution with 3 degrees of freedom. In this work we obtained the probability

density function of the speed from the given Gaussian distribution of the velocity and

Equation 4.1 using Monte Carlo methods.

4.1.1.1 The Novel Basic Probability Assignment Method

We describe the mass assignment algorithm for a three-class case. Generalization of

the algorithm to any number of classes is trivial. Since the number of classes is three,

the universal set contains three elements denoted by A, B and C, that is

Θ = {A,B,C}

Figure 4.1a gives typical prior and measurement probability density functions. The

points a, b and c are the equal likelihood points of the corresponding classes and

they are used for mass assignments. In order to obtain masses, the measurement

probability density function is multiplied by the prior probability density function

of each class. The resultant curves are the unnormalized posterior probability density

functions, which are shown in Figure 4.1b. The masses are selected to be proportional

to the areas under the curves over some selected intervals after multiplication. Formal

definitions of the associated masses for a three-class problem are given below.
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(a) Prior and measurement probability density functions

(b) Unnormalized posterior probability density functions

Figure 4.1: Probability Density Functions

Let pA(x), pB(x) and pC(x) be prior probability density functions of the A, B and

C. Let p(x) be the probability density function of the measurement. Then the masses
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assigned to the sets are:

m({A}) =

∫
x∈SA

pA(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx (4.2a)

SA = {x|pA > pB and pA > pC} (4.2b)

m({B}) =

∫
x∈SB

pB(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx (4.2c)

SB = {x|pB > pA and pB > pC} (4.2d)

m({C}) =

∫
x∈SC

pC(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx (4.2e)

SC = {x|pC > pA and pC > pB} (4.2f)

m({A,C}) =

∫
x∈SAC

pA(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

+

∫
x∈SCA

pC(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

(4.2g)

SAC = {x|pA < pC and pA > pB} and SCA = {x|pC < pA and pC > pB} (4.2h)

m({A,B}) =

∫
x∈SAB

pA(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

+

∫
x∈SBA

pB(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

(4.2i)

SAB = {x|pA < pB and pA > pC} and SBA = {x|pB < pA and pB > pC} (4.2j)

m({B,C}) =

∫
x∈SBC

pB(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

+

∫
x∈SCB

pC(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

(4.2k)

SBC = {x|pB < pC and pB > pA} and SCB = {x|pC < pB and pC > pA} (4.2l)

33



m({B,C}) =

∫
x∈SABC

pA(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

+

∫
x∈SBAC

pB(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

+

∫
x∈SCAB

pC(x)p(x)

pA(x)p(x) + pB(x)p(x) + pC(x)p(x)
dx

(4.2m)

SABC = {x|pA < pB and pA < pC} , SBAC = {x|pB < pA and pB < pC} and

SCAB = {x|pC < pA and pC < pB}

(4.2n)

Note that the procedure formulated above gives the normalized masses, so their sum

is unity.

4.1.1.2 Analysis of the Proposed Basic Probability Assignment Method

The analysis of the new methodology is done by comparing it with the basic proba-

bility assignment method of Xu et al. [42], which is the most similar method to ours.

The following example is introduced both to demonstrate the performance of the new

method and to compare it with the method of [42]. A two class artificial scenario

is generated for this purpose. Since Xu et al. [42] use Gaussian densities, we se-

lected the prior probability density functions of the two classes and the measurement

as Gaussian.

Example

Consider a two-class classification problem. The available information is the prior

probability density functions (pdf) of both of the classes and the measurement.

Case 1: Assume that the prior and the measurement probability density functions are

as illustrated in Figure 4.2, and are given as:

Prior pdf for class A : N(x; 1000, 3002)

Prior pdf for class B : N(x; 2000, 3002)
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pdf of the measurement: N(x; 1513, 1002)

Figure 4.2: Prior and measurement probability density functions

Under these conditions the proposed method assigns the following masses:

m({A}) = 0.3062

m({B}) = 0.3961

m({A,B}) = 0.2977

Case 2: Measurement probability density function is changed to N(x; 1700, 1002) as

shown in Figure 4.3. The new probability masses are as follows.

m({A}) = 0.0101

m({B}) = 0.8741

m({A,B}) = 0.1158

Comparison of the two results shows that when the data is more informative about

class identity as in the second case, the mass assignments change accordingly.

To compare the output of the proposed method with Xu et al. [42], we assume that

the actual measurement is some x drawn from the measurement probability density
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Figure 4.3: Prior and measurement probability density functions

function. Xu et al. [42] assign the masses according to the actual measurement as

given below.

m(.) =

m({A}) = αpA(x) and m({A,B}) = αpB(x), if pA(x) > pB(x)

m({B}) = αpB(x) and m({A,B}) = αpA(x), if pB(x) > pA(x)

(4.3)

Note that in this formulation the uncertainty of the measurement is not used. Tables

4.1 and 4.2 are generated from masses that are assigned by drawing 30 samples from

the given measurement probability density function as shown in Figures 4.2 and 4.3

according to Xu et al. [42]. The mass values for these 30 samples are illustrated in

Figures 4.4 and 4.5 for Case 1 and Case 2 respectively. Figures indicate that the mass

values vary according to the selected sample.

Table 4.1: Mean and Standard Deviation Values of the method of Xu et al. [42] for
the first case

Mean Standard Deviation
m({A}) 0.2907 0.3453
m({B}) 0.3908 0.3618
m({A,B}) 0.3186 0.1232
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Table 4.2: Mean and Standard Deviation Values of the method of Xu et al. [42] for
the second case

Mean Standard Deviation
m({A}) 0.0198 0.1083
m({B}) 0.8305 0.1920
m({A,B}) 0.1497 0.1208

From the results, it can be concluded that the mean values of probability masses that

are assigned with the method of Xu et al. [42] coincide with the probability masses

that are assigned with the proposed method. However, standard deviations for the

30 samples that are obtained for Case 1 are large enough to take into consideration.

Considering the fast convergence in some combination methods, this may create a

problem. The proposed method can handle such uncertain data and gives reasonable

results compared to the other method. This is because our method uses whole in-

formation (the probability density function of the measurement), whereas the other

method uses one realization of the measurement.

Figure 4.4: Basic probability assignments for the randomly selected 30 samples for

the first case
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Figure 4.5: Basic probability assignments for the randomly selected 30 samples for

the second case

4.1.1.3 Experimental Results

We have conducted two target tracking experiments to examine the proposed method

and to compare proposed method with the one that uses only the mean value. The

second approach is similar to the approach of Xu et al. [42]. The experiments use

real data.

Four air vehicle types are to be classified: Bomber and surveillance planes (P), fighter

planes (F), helicopters (H), and unmanned air vehicles (U). In other words the univer-

sal set consists of four elements.

Θ = {P, F,H, U}

The features used for classification are the speed and the altitude of the air vehicle. To

apply the method, first the prior speed and altitude information of the classes, which

are collected from open sources, are transformed into probability density functions.

These functions are illustrated in Figure 4.6. Mass assignments are done using the

tracker outputs, which are probability density functions.
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In the first experiment we used fighter data. In the second experiment we used heli-

copter data. The trajectories and the tracker outputs are given in Figures 4.7 and 4.8

for both of the experiments.

(a) Speed

(b) Altitude

Figure 4.6: Prior probability density functions
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(a) 3D view

(b) x-y plane view

Figure 4.7: True trajectory and the tracker output for Fighter
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(a) 3D view

(b) x-y plane view

Figure 4.8: True trajectory and the tracker output for Helicopter
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Experiment 1

In the first experiment a fighter is tracked. Its route and tracker output are shown in

Figure 4.7. The air vehicle begins its journey at high speeds that only a fighter can

achieve. So, the proposed algorithm that uses speed classifies the target as fighter.

However towards the end of the scenario it slows down. So, proposed algorithm

assigns high probability masses to set {P} and some probability masses to the set

{F, P} towards the end of the scenario. The instantaneous mass assignments due to

speed are given in Figure 4.9a.

The target flies at low altitudes. So, the algorithm that uses altitude assigns high

probability masses to the set {H} and some probability masses to the sets {H,U},
{P,H,U} and Θ.

The instantaneous masses are combined in time. As seen in Figure 4.14a the com-

bination of probability masses according to speed assigns high probability masses to

the fighter up to 134 seconds and then switches to plane. This undesired effect can

be eliminated by constraining the decision as: once the decision is a fighter then it

cannot be switched to any other type. The result of the constraining the decision can

be seen from Figure 4.15. The idea behind constraining the decision is using limits of

the physical capabilities of the air vehicles. For example none of the air vehicles can

reach the speed of a fighter. Once the target is classified as a fighter with a probability

greater than 0.98, the class of the air vehicle cannot be changed.

We have compared the results of the proposed method with the method that uses only

the mean (or the estimate) of the features and it is similar to the one given in Xu et

al. [42]. The results of instantaneous mass assignments for both proposed method

and method proposed in Xu et al. [42] are given in Figures 4.9, 4.10 and 4.11. The

results of combined mass assignments in time for both proposed method and method

proposed in Xu et al. [42] are given in Figures 4.12, 4.13 and 4.14.

Comparison of the two methods shows that the method that uses only mean values

is more certain about its decisions while the proposed method is more conservative.

That is an expected result since the proposed one uses the uncertainty as well. The

certainty is good when the models are good, as in this example, but some conser-

42



vativeness is necessary when the estimates deviate from the true value as the next

example shows.

(a) Proposed method

(b) Method that uses the mean

Figure 4.9: Instantaneous mass assignment for speed
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(a) Proposed method

(b) Method that uses the mean

Figure 4.10: Instantaneous mass assignment for altitude
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(a) Proposed method

(b) Method that uses the mean

Figure 4.11: Instantaneous combined masses of features (speed and altitude)
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(a) Proposed method

(b) Method that uses the mean

Figure 4.12: Combined masses from initial time to final time for speed

46



(a) Proposed method

(b) Method that uses the mean

Figure 4.13: Combined masses from initial time to final time for altitude

47



(a) Proposed method

(b) Method that uses the mean

Figure 4.14: Combined masses from initial time to final time of features (speed and

altitude)
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Figure 4.15: Thresholded combined masses from initial time to final time of features

(speed and altitude)

Experiment 2

In the second experiment a helicopter is tracked. Its route and tracker output are

shown in Figure 4.8. From the beginning to the end of the trajectory, the proposed

algorithm assigns high probability masses to the set {H} and some probability masses

to other sets. For an ultimate decision, first, the instantaneous masses obtained from

the speed and the altitude are combined, then these instantaneous decisions from the

initial time to the final time are combined. The target is classified as a helicopter at

all times after the 8th second with a mass greater than 0.98.

To make a comparison, we also applied the method of Xu et al. [42] to the same

data by considering the measurements to be the mean value of the features that are

provided by the tracker. The results of instantaneous and combined mass assignments

for both the proposed method and the method proposed in Xu et al. [42] are given in

Figures 4.16, 4.17 4.18, 4.19, 4.20 and 4.21.

The method that uses only the mean value makes wrong assignments in quite a num-
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ber of instances since the mean alone may give low likelihood value due to the un-

smooth nature of the speed of the helicopter. This results in a wrong decision.

(a) Proposed method

(b) Method that uses the mean

Figure 4.16: Instantaneous mass assignment for speed
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(a) Proposed method

(b) Method that uses the mean

Figure 4.17: Instantaneous mass assignment for altitude
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(a) Proposed method

(b) Method that uses the mean

Figure 4.18: Instantaneous combined masses of features (speed and altitude)
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(a) Proposed method

(b) Method that uses the mean

Figure 4.19: Combined masses from initial time to final time for speed
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(a) Proposed method

(b) Method that uses the mean

Figure 4.20: Combined masses from initial time to final time for altitude
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(a) Proposed method

(b) Method that uses the mean

Figure 4.21: Combined masses from initial time to final time of features (speed and

altitude)
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4.1.1.4 Evaluation of the Basic Probability Assignment Methodology

The proposed method is tested with real data. Results are compared with another

methodology that uses only the mean estimates of the features that can be considered

quite similar to the one given in Xu et al. [42]. Test results show that using the whole

probability density function of the features provided by the tracker brings significant

advantages for classification compared to using only the mean of the features.

When a measurement comes, the algorithm assigns the probability masses instanta-

neously for every feature and combines them. The computation time spent to reach

the overall decision is about 0.2843 seconds on an Intel i7 computer with 8 GB RAM

and Matlab 2012a. Considering that the air defense radars produce measurement re-

ports with periods in the order of seconds, the algorithm is certainly fast enough for

real time operation.

4.1.2 Combination of Evidence

The combination of evidence as combination of different mass assignments is another

important concept in Dempster-Shafer theory. There is a huge literature on this topic

and it is given in Section 2.3.

Here, specific to our problem, we propose a new methodology. Instead of combining

mapped information we combine the whole information, i.e. the probability density

functions. This new methodology postpones the mass assignment until a reasonable

amount of information, i.e. probability density functions, is collected. Thus, we claim

that this new methodology prevents information loss. If the collected probability den-

sity functions are assumed to be independent then they can be multiplied to obtain

the overall probability density function at all times. The mass assignment algorithm

given in Section 4.1.1.1 can be applied to the new combined probability density func-

tion. However, the independence assumption is not correct since the output of the

tracker gives the processed data. A de-correlation algorithm is used to overcome this

problem.
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4.1.2.1 The Combination Methodology

The combination methodology is simple:

• Decorrelate the measurements,

• Combine them by multiplication.

pfinal(x) =
n∏
i=1

pi(x) (4.4)

4.1.2.2 Analysis of the Combination Methodology

The proposed method is analyzed by comparing the combination performance of

some well-known combination rules in the literature. In order to analyze efficiency

and reliability of the methodology, two artificial scenarios are constructed. The first

scenario is given below and it is illustrated in Figure 4.22.

Figure 4.22: Measurement and the prior probability functions
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Prior probability density function of class A : N(x; 1000, 3002)

Prior probability density function of class B : N(x; 2000, 3002)

Probability density function of the 1st measurement: N(x; 800, 1002)

Probability density function of the 2st measurement: N(x; 790, 1002)

Probability density function of the 3st measurement: N(x; 870, 1002)

Probability density function of the 4st measurement: N(x; 950, 1002)

Probability density function of the 5st measurement: N(x; 750, 2002)

Probability density function of the 6st measurement: N(x; 1750, 2002)

The basic probability assignment for each measurement is given in Table 4.3, and the

results of different combination rules are given in Table 4.4.

The scenario is selected so that the first 5 measurements are consistent, however the

last one is different from the first 5. The combination results are given in Table 4.4.

First row of the Table 4.4 shows that the unnormalized masses. Note that mass as-

signed to the empty set (given in the last column) is large and it is an indicator of

inconsistency. Different combination algorithms distribute this mass differently. The

inconsistent data can be interpreted in several ways:

• The last measurement can be wrong

• Data can be time varying

Table 4.3: Basic Probability Assignments for the measurements

pdfs
Probability Masses

m({A}) m({B}) m({A,B})
N(x; 800, 1002) 0.9991 0.0000 0.0009
N(x; 790, 1002) 0.9992 0.0000 0.0008
N(x; 870, 1002) 0.9982 0.0000 0.0018
N(x; 950, 1002) 0.9959 0.0000 0.0041
N(x; 750, 1002) 0.0577 0.8511 0.0912
N(x; 1750, 2002) 0.9994 0.0000 0.0006
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Figure 4.23: Measurement and the prior probability functions

Table 4.4: Combination results

Combination Rule
Probability Masses

m({A}) m({B}) m({A,B}) m({φ})
Unnormalized masses 0.1489 0.0000 0.0000 0.8511

Dempster’ rule 1.0000 0.0000 0.0000 0.0000
PCR6 0.8758 0.1242 0.0000 0.0000

Yager’s rule 0.4552 0.0296 0.5152 0.0000
Proposed method 0.9989 0.0000 0.0011 0.0000

According to the results given in Table 4.4, the proposed method assigns high prob-

ability mass to class A like all other combination methods do; however, it assigns

some probability mass to uncertainty contrary to Demspter’s rule and PCR6 rule. Ac-

cording to the first interpretation given above this result is reasonable. There are five

consistent measurements and they provide high probability mass to class A. On the

other hand, there is one inconsistent measurement that indicates classB; but consider-

ing five consistent measurements this can be a wrong measurement, so the proposed

method gives some credit to uncertainty instead of class B. If the interpretation is

’data is time varying’ then again it is reasonable not to assign probability mass to
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class B immediately.

The second scenario is designed to see the effect of uncertain prior probability density

functions. The prior probability density functions are selected very close to each other

and the performance of the proposed method is analyzed under such uninformative

prior cases. The prior and the measurement probability density functions are given

below and are illustrated in Figure 4.24.

Prior probability density function of class A : N(x; 2000, 3002)

Prior probability density function of class B : N(x; 2001, 3002)

Probability density function of the 1st measurement: N(x; 1300, 1002)

Probability density function of the 2st measurement: N(x; 1290, 1002)

Probability density function of the 3st measurement: N(x; 1270, 1002)

Probability density function of the 4st measurement: N(x; 1250, 1002)

Probability density function of the 5st measurement: N(x; 2700, 2002)

Figure 4.24: Measurement and the prior probability functions

The basic probability assignment for each measurement is given in Table 4.5 and the

results of different combination rules are given in Table 4.6.
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Figure 4.25: Measurement and the prior probability functions

Table 4.5: Basic Probability Assignments for the measurements

pdfs
Probability Masses

m({A}) m({B}) m({A,B})
N(x; 1300, 1002) 0.5017 0.0000 0.4983
N(x; 1290, 1002) 0.5018 0.0000 0.4982
N(x; 1270, 1002) 0.5018 0.0000 0.4982
N(x; 1250, 1002) 0.5019 0.0000 0.4981
N(x; 2700, 2002) 0.0009 0.5004 0.4987

Table 4.6: Combination results

Combination Rule
Probability Masses

m({A}) m({B}) m({A,B}) m({φ})
Unnormalized masses 0.4688 0.0308 0.0307 0.4696

Dempster’ rule 0.8840 0.0581 0.0579 0.0000
PCR6 0.6703 0.1248 0.2049 0.0000

Yager’s rule 0.4688 0.0308 0.5322 0.0000
Proposed method 0.5017 0.0000 0.4983 0.0000
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According to the results in Table 4.6, the proposed method assigns some probability

mass to class A and some probability mass to uncertainty as all other combination

methods do; however, it does not assign any probability mass to class B, contrary to

all other rules. Intution says that this five consistent measurements should provide

some credit to class A. But, the last measurement should not provide any credit to

class B unless some other measurements strengthen this decision.

4.1.2.3 Experimental Results

The real fighter data that is used in Section 4.1.1.3 is utilized for comparing the

methodology with other combination rules. The combination results are obtained

only for speed information from initial time to final time. Tables 4.7, 4.8, 4.9, 4.10

and 4.11 show overall combination results for Unnormalized Dempster’s rule, Dem-

spter’s rule, PCR6 rule, Yager’s rule and the proposed method respectively.

Table 4.7: Unnormalized probability masses

m({φ}) m({P}) m({F}) m({P, F}) m({U}) m({F,U})
0.8507 0.0205 0.1196 0.0091 0.0000 0.0000

Table 4.8: Dempster’s rule

m({φ}) m({P}) m({F}) m({P, F}) m({U}) m({F,U})
0.0000 0.1377 0.8016 0.0607 0.0000 0.0000

Table 4.9: PCR6 rule

m({φ}) m({P,U}) m({H,F}) m({P,H,U}) m({P,H, F}) m({H,F, U}) m({Θ})
0.0000 0.0098 0.0093 0.3372 0.4062 0.2067 0.0308

Table 4.10: Yager’s rule

m({φ}) m({P}) m({F}) m({P, F}) m({U}) m({F,U}) m({Θ})
0.0000 0.0205 0.1196 0.0091 0.0000 0.0000 0.8507
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Table 4.11: Proposed method

m({F}) m({P, F})
0.7795 0.2205

The results show that PCR6 rule and Yager’s rule could not converge to a singleton set

whereas Dempster’s rule and the proposed method do. Dempster’s rule gives some

credit to set {P}, whereas the proposed method does not. The air vehicle slows down

towards the end of the scenario. This causes increase in probability masses of the

set {P} for Dempster’s rule. On the other hand, the proposed method increases the

mass of the set {P, F} instead of the set {P}, because there are enough consistent

measurements that support fighter decision. It seems reasonable to increase the mass

corresponding to the set {P, F} until enough information comes that supports the set

{P}.

4.1.2.4 Evaluation of the Combination Methodology

The proposed method can be evaluated as follows according to the general terms that

are explained in section 2.3:

pfinal(x) =
n∏
i=1

pi(x)

X It satisfies the Commutativity property.

X It satisfies the Associativity property.

X For the total uninformative case it satisfies the Neutral Impact of VBA. How-

ever, it is hard to obtain such a condition for this method.

X It is coherent to possible cases and this can be seen in section 4.1.2.3.

× Reliability of the sources is not taken into consideration.
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CHAPTER 5

A NOVEL METHODOLOGY FOR TARGET

IDENTIFICATION

5.1 Target Identification Problem

Target Identification is another important concept for air defense systems like target

classification. Air defense systems supply plenty of information to identify a target

as friend, hostile or neutral. The information sources that are used in this study are as

follows:

• Interrogation of friend or foe (IFF) - Mod 4

• Interrogation of friend or foe (IFF) - Mod 3

• Restricted area breach (RAB)

• Air corridor usage (ACU)

• Human-eye identification information (HII)

The information that is supplied by these sources is verbal. For example the infor-

mation comes in the form ’The answer given to an IFF Mod-4 interrogation is not

valid’ or ’Target X is made a RAB’. Because of non-quantitative nature of the infor-

mation as valid/invalid or all/nothing it cannot be used directly in a fusion system that

uses numerical values. To fuse them, all information that comes from different types

of sources should be converted by some mapping to a form that a decision making

system can use. This can be possible by a rule-based inference system.
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Rule-based systems are used in both target classification and target identification

problems [13, 31]. A typical example for a rule-based system is given below [31]:

Example

Assume that Θ = {f(friend), h(hostile), n(neutral)}

Rule: If a target responds to IFF correctly, then it is identified as friend. Basic prob-

ability assignments are made as follows:

m({f}) = 0.9

m({Θ}) = 0.1

Note that in this example, even if the target responds to IFF correctly some mass value

is assigned to the set Θ which would be useful when combining this information with

another one, which may be conflicting. This type of basic probability assignment is

quite coarse and is far from being objective.

Target identification problem can be considered as a multi-criteria decision mak-

ing problem. We also want to assign probabilities to alternatives beyond making a

decision. Besides, the information sources supply the information asynchronously.

Hence, in this thesis we propose to use analytic hierarchy process for assigning prob-

ability masses in a distinct manner and to use Dempster-Shafer Theory for asyn-

chronous information fusion.

5.2 Analytic Hierarchical Process for Target Identification based on Dempster-

Shafer Theory

5.2.1 Hierarchy

Analytic Hierarchy Process (AHP) gives us the weights of events that can be used in

mass assignment. To do that we have to first define a hierarchy. The hierarchy for

target identification is a two level hierarchy that is illustrated in Figure 5.1.
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Figure 5.1: AHP Model for Target Identification
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The first level of hierarchy defines all possible information sources and computes

their relevance to the decision. The second level of hierarchy concentrates on final

decision.

5.2.2 Pair-wise Comparison

Second step is the pair-wise comparison. Pair-wise comparison is applied to see

which alternative is more effective on decisions. This aim is achieved by asking

some questions to an expert group. For this purpose a questionnaire is built for eval-

uating every level of the hierarchy separately. The way of preparing and applying

the questionnaire is new and is somehow different from the AHP studies given in the

literature.

The questionnaire consists of two main parts:

1. Defining the order of importance of the information sources

2. Defining friend, foe (hostile) and neutral probability masses for every response

of the information sources.

5.2.2.1 First Level: Order of Importance of the Information Sources

For pair-wise comparison it is asked which information source is more important,

and how much it is important for identifying the target. The question of how much

important is answered according to Table 5.1.

Every importance level shows how much more important the chosen alternative is

compared with the other alternative. 2, 4, 6, 8 are the intermediate values. The

question of which information source is more important is answered according to

Table: 5.2
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Table 5.1: Evaluation table for the Order of Importance of Information Sources

Importance
Level

Explanation

1 Equally important
2
3 More important
4
5 Much more important
6
7 Very much more important
8
9 Absolutely more impor-

tant

Table 5.2: Evaluation table for the Order of Information Sources

Order Explanation
0 Both alternatives are equally important
1 First alternative is more important
2 Second alternative is more important

In order to explain how the questions are answered, three generic examples are given

below.

Question:

Which one? How much?
Considering IFF Mod-4 and IFF Mod-3, which one
of these two sources is more important and how
much?

Answer: If one thinks that IFF Mod-4 is absolutely more important than the IFF
Mod-3, one should answer the above question as follows:

Which one? How much?
Considering IFF Mod-4 and IFF Mod-3, which one
of these two sources is more important and how
much?

1 9
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"1" in "which one" column shows that the first alternative IFF Mod-4 is more impor-

tant than the second alternative IFF Mod-3. "9" in "how much" column shows that

the chosen alternative is absolutely more important than the other alternative.

Question:

Which one? How much?
Considering air corridor usage information and
human-eye identification information, which one of
these two sources is more important and how much?

Answer: If one thinks that human-eye identification information is much more im-
portant than the air corridor usage information, one should answer the above question
as follows:

Which one? How much?
Considering air corridor usage information and
human-eye identification information, which one of
these two sources is more important and how much?

2 5

"2" in "which one" column shows that the second alternative human-eye identification

information is more important than the first alternative air corridor usage information.

"5" in "how much" column shows that the chosen alternative is much more important

than the other alternative.

Question:

Which one? How much?
Considering air corridor usage information and
human-eye identification information, which one of
these two sources is more important and how much?

Answer: If one thinks that both of the alternatives are equally important, one should
answer the above question as follows:
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Which one? How much?
Considering air corridor usage information and
human-eye identification information, which one of
these two sources is more important and how much?

0 1

"0" in which one column and "5" in how much column show that the both of the

alternatives are equally important.
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The Questionnaire

The questionnaire built for the first level of the hierarchy is given in Table 5.3 below.

Table 5.3: The questionnaire for built for the first level of the hierarchy

Which one? How much?
Considering IFF Mod-4 and IFF Mod-3, which one
of these two sources is more important and how
much?
Considering IFF Mod-4 and restricted area breach
information, which one of these two sources is more
important and how much?
Considering IFF Mod-4 and air corridor usage in-
formation, which one of these two sources is more
important and how much?
Considering IFF Mod-4 and human-eye identifica-
tion information, which one of these two sources is
more important and how much?
Considering IFF Mod-3 and restricted area breach
information, which one of these two sources is more
important and how much?
Considering IFF Mod-3 and air corridor usage in-
formation, which one of these two sources is more
important and how much?
Considering IFF Mod-3 and human-eye identifica-
tion information, which one of these two sources is
more important and how much?
Considering restricted area breach information and
air corridor usage information, which one of these
two sources is more important and how much?
Considering restricted area breach information and
human-eye identification information, which one of
these two sources is more important and how much?
Considering air corridor usage information and
human-eye identification information, which one of
these two sources is more important and how much?
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5.2.2.2 Second Level: Friend, foe (hostile) and neutral probability mass assign-

ments

To assign masses to classes, pairwise comparison is applied again with a new set of

questions. The structure of the questions is also changed. Instead of asking which

alternative is more important now we ask which event is more probable. The quan-

tization levels of the answers of the "how much probable" part is done according to

Table 5.4:

Table 5.4: Evaluation table for defining friend, foe and neutral probability masses

Probability
Level

Explanation

1 Equally probable
2
3 More probable
4
5 Much more probable
6
7 Very much more probable
8
9 Absolutely more probable

Every probability level shows that how much the chosen event is more probable than

the other event. 2, 4, 6, 8 are the intermediate values. The question of which event is

more probable is answered according to Table 5.5

Table 5.5: Evaluation table for the Order of Information Sources

Order Explanation
0 Both events are equally probable
1 First event is more probable
2 Second event is more probable

In order to explain how the questions are answered, three generic examples are given

below.

Question:
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Which one? How much?
If a target responds IFF Mod-4 correctly, which iden-
tity is more probable among being friend or hostile?
How much?

Answer: If one thinks that target is more probable to be a friend, because of the
target’s correct response to IFF Mod-4, one should answer the above question as
follows:

Which one? How much?
If a target responds IFF Mod-4 correctly, which iden-
tity is more probable among being friend or hostile?
How much?

1 7

"1" in which one column shows that the first identity friend is more probable than the

second identity hostile. "7" in how much column shows that the chosen event is very

much more probable than the other event.

Question:

Which one? How much?
If a target responds IFF Mod-4 correctly, which iden-
tity is more probable among being hostile or neutral?
How much?

Answer: If one thinks that target is more probable to be a neutral, because of the
target’s correct response to IFF Mod-4, one should answer the above question as
follows:

Which one? How much?
If a target responds IFF Mod-4 correctly, which iden-
tity is more probable among being hostile or neutral?
How much?

2 5

"2" in which one column shows that the second identity neutral is more probable than

the first identity. "5" in how much column shows that the chosen event is much more

probable than the other event.
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Question:

Which one? How much?
If a target responds IFF Mod-4 correctly, which iden-
tity is more probable among being friend or neutral?
How much?

Answer: If one thinks that both of the alternatives are equally important, one should
answer the above question as follows:

Which one? How much?
If a target responds IFF Mod-4 correctly, which iden-
tity is more probable among being friend or neutral?
How much?

0 1

"0" in which one column and "1" in how much column show that the both of the

events are equally probable.

A questionnaire is built for the second level of the hierarchy and it is given in Ap-

pendix A.

5.2.2.3 Weight Calculation

Weight calculation is explained by using a generic example:

Example: Suppose that pair-wise comparison matrix A for the first hierarchy level is

obtained as follows:

Table 5.6: Pair-wise comparison matrix for information sources

IFF Mod-4 IFF Mod-3 RAB ACU HII
IFF Mod-4 1 5 9 9 6
IFF Mod-3 1/5 1 5 7 6

RAB 1/9 1/5 1 9 3
ACU 1/9 1/7 1/9 1 1/3

HII 1/9 1/6 1/3 3 1
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After building the pair-wise comparison matrix, the first step is summing all column

elements as shown in last row of Table 5.7. Smaller sum indicates that this source is

more important compared to the other sources in determining the target identity.

Table 5.7: Pair-wise comparison matrix for information sources after the first step

IFF Mod-4 IFF Mod-3 RAB ACU HII
IFF Mod-4 1 5 9 9 6
IFF Mod-3 1/5 1 5 7 6

RAB 1/9 1/5 1 9 3
ACU 1/9 1/7 1/9 1 1/3

HII 1/9 1/6 1/3 3 1

1.5333 6.5095 15.4444 29.0000 16.3333

Later, all column elements are normalized according to the sums in Table 5.7 and the

normalized values are obtained as in Table 5.8. Normalization gives large values to

important sources.

Table 5.8: Normalized Pair-wise comparison matrix for information sources

IFF Mod-4 IFF Mod-3 RAB ACU HII
IFF Mod-4 0.6522 0.7681 0.5827 0.3103 0.3673
IFF Mod-3 0.1304 0.1536 0.3237 0.2414 0.3673

RAB 0.0725 0.0307 0.0647 0.3103 0.1837
ACU 0.0725 0.0219 0.0072 0.0345 0.0204
HII 0.0725 0.0256 0.0216 0.1034 0.0612

1 1 1 1 1

Finally, the weights are found by calculating the arithmetic mean of each row as

shown in last column of Table 5.9 that gives an average importance value.
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Table 5.9: Normalized Pair-wise comparison matrix for information sources with
weights

IFF Mod-4 IFF Mod-3 RAB ACU HII
IFF Mod-4 0.6522 0.7681 0.5827 0.3103 0.3673 0.5361
IFF Mod-3 0.1304 0.1536 0.3237 0.2414 0.3673 0.2433

RAB 0.0725 0.0307 0.0647 0.3103 0.1837 0.1324
ACU 0.0725 0.0219 0.0072 0.0345 0.0204 0.0313
HII 0.0725 0.0256 0.0216 0.1034 0.0612 0.0569

1 1 1 1 1 1

5.2.3 Basic Probability Assignment for Target Identification

In order to calculate probability masses, firstly, the prepared questionnaires are ap-

plied to a small group that consists of 4 people. Pair-wise comparison matrices give

the order of importance and the raw probability masses for each information source

response. Final order of importance and raw probability masses are calculated using

arithmetic mean method. Order of importance values are given in Table 5.10

Table 5.10: Final order of importance values of the information sources

IFF Mod-4 0.6297
IFF Mod-3 0.1966

RAB 0.0610
ACU 0.0636
HII 0.0490

The first level of AHP gives the weights of all sources. The probability mass of each

class is obtained by considering the two levels together. The pair-wise comparison

matrices of the second level are obtained again by the answers of 4 people. The

interpretation of the matrices is similar to the first level. Applying same operations

raw probability masses of each information source response are obtained. Results

are given in Table 5.11. Finally the raw probability masses are multiplied by the

corresponding weights given in Table 5.10 to obtain final probability masses.

As an example final probability mass calculation is given for one information source
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response. Rest of the probability mass calculation is trivial.

To find the probability masses for the target that gives valid response to IFF Mod-4,

firstly the raw probability masses for IFF Mod-4 valid response are multiplied with

the importance level of IFF Mod-4.

0.6297.


0.7668

0.0985

0.1347

 =


0.4829

0.0620

0.0848


and probability masses are obtained as follows:

Friend 0.4829
Hostile 0.0620
Neutral 0.0848

After calculating probability masses for the pre-defined identities, mass of set Θ is

computed as follows:

m({Θ}) = 1− (0.4829 + 0.0620 + 0.0848)

= 0.3703

These steps are repeated for all responses to calculate the final probability masses.

Final probability masses are given in Table 5.12.
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5.2.4 Analysis of the Novel Basic Probability Assignment Methodology for Tar-

get Identification

The method is firstly analyzed to observe the reactions of the system to different out-

comes of interrogations or other clues of being friend, hostile or neutral. 5 different

experiments were conducted for this purpose. The number of interrogations for IFF

is chosen as 10 since air defense radars make 10 interrogations for each target. Re-

stricted area breach, air corridor usage and human-eye identification information are

used at different rates. Dempster’s rule is used for information fusion. Note that it

satisfies the commutativity property so the order of the responses or the order of the

information sources is not important.

The second part of the analysis section is about the convergence rates and decision

rates of each source. 12 experiments were conducted for this purpose.

5.2.4.1 The First Group of Experiments

For the first scenario, 10 IFF interrogations were made. 5 interrogations ended up

with valid response and 5 interrogations ended up with no response. Basic probability

assignments were mainly shaped according to the these responses. This result seems

reasonable considering IFF Mod-4 is the most reliable information source according

to the answers of the Analytic Hierarchy Process questionnaire that is given in Table

5.3.

The first scenario gives probability of being friend prominence, whereas the second

scenario gives probability of being hostile prominence. At the beginning of the third

scenario, getting no response from IFF interrogations causes an increase in the mass

of being hostile; however, incoming valid answer to the following interrogations

changes the decision from hostile to friend. Scenario 4 shows how the probability

masses are assigned, when two of the three situations (valid response/invalid respon-

se/no response) of IFF reveal.
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Scenario 1:

Probability masses are computed as shown in Figure 5.2, with the following responses

from the information sources.

• 5 times IFF Mod-4 interrogations ended up with valid response.

• 1 time Restricted Areas are breached.

• 4 times Air Corridors are used correctly.

• 5 IFF Mod-4 interrogations ended up with no response.

• 3 times Restricted Areas are not breached.

Figure 5.2: Combined basic probability assignments for the above responses

Scenario 2:

Probability masses are computed as shown in Figure 5.3, with the following responses

from the information sources.
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• 5 times IFF Mod-4 interrogations ended up with invalid response.

• 2 times Restricted Areas are not breached.

• 4 times Air Corridors are used correctly.

• 5 IFF Mod-4 interrogations ended up with no response.

• 2 times Restricted Areas are breached.

Figure 5.3: Combined basic probability assignments for the above responses

Scenario 3:

Probability masses are computed as shown in Figure 5.4, with the following responses

from the information sources.

• 5 times IFF Mod-4 interrogations ended up with no response.

• 2 times Restricted Areas are not breached.

• 4 times Air Corridors are used correctly.

• 5 IFF Mod-4 interrogations ended up with valid response.
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• 2 times Restricted Areas are breached.

Figure 5.4: Combined basic probability assignments for the above responses

Scenario 4:

Probability masses are computed as shown in Figure 5.5, with the following responses

from the information sources.

• 5 times IFF Mod-4 interrogations ended up with invalid response.

• 2 times Restricted Areas are not breached.

• 4 times Air Corridors are used correctly.

• 3 IFF Mod-4 interrogations ended up with valid response.

• 2 IFF Mod-4 interrogations ended up with no response.

• 2 times Restricted Areas are breached.
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Figure 5.5: Combined basic probability assignments for the above responses

Scenario 5:

Probability masses are computed as shown in Figure 5.6, with the following responses

from the information sources.

• 3 times IFF Mod-4 interrogations ended up with invalid response.

• 2 times identified as neutral according to the Human-eye Identification Infor-

mation.

• 2 times Restricted Areas are not breached.

• 4 times Air Corridors are used correctly.

• 3 IFF Mod-4 interrogations ended up with valid response.

• 4 IFF Mod-4 interrogations ended up with no response.

• 2 times Restricted Areas are breached.
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Figure 5.6: Combined basic probability assignments for the above responses

5.2.4.2 The Second Group of Experiments

The aim of the second group of experiments is to evaluate the influence of each re-

sponse of each information source. For this purpose, it is assumed that there is only

one information source and it gives the same response at each interrogation. The time

of converging to the indicated identity with a high probability is analyzed.

Human-eye identification information is in the form of all/nothing, so order of im-

portance of human-eye identification information is directly used for assigning the

probability mass of the incoming identity.

The convergence speed to friend and hostile decisions are presented in Tables 5.13

and 5.14 respectively.
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Table 5.13: Convergences speed for friend decision

IFF Mod-4 - valid response 8
IFF Mod-3 - valid response 48

RAB - no breach 207
ACU - correct usage 159

HII - friend 92

Table 5.14: Convergences speed for hostile decision

IFF Mod-4 - invalid response 21
IFF Mod-4 - no response 26

IFF Mod-3 - invalid response 93
IFF Mod-3 - no response 114

RAB - breach 197
ACU - incorrect usage 341

HII - hostile 92

The second columns of the tables show the number of responses in order to converge

to 0.9999 for the corresponding information source responses.

The results show that

• The decision of friend is given quicker than the decision of hostile, as expected

for all information sources.

• The convergence speed is proportional to order of importance of the informa-

tion sources, as expected for all responses.

Figures from 5.7 to 5.18 give more information about the rate of convergence.
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IFF Mod-4

Figure 5.7: IFF Mod-4 valid response

Figure 5.8: IFF Mod-4 invalid response
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Figure 5.9: IFF Mod-4 invalid response

IFF Mod-3

Figure 5.10: IFF Mod-3 valid response
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Figure 5.11: IFF Mod-3 invalid response

Figure 5.12: IFF Mod-3 invalid response
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Restricted Area Breach

Figure 5.13: Restricted Area Breach - Breach

Figure 5.14: Restricted Area Breach - No Breach
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Air Corridor Usage

Figure 5.15: Air Corridor Usage - Correct

Figure 5.16: Air Corridor Usage - Incorrect
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Human-eye Identification Information

Figure 5.17: Human-eye Identification - Friend

Figure 5.18: Human-eye Identification - Hostile
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis target classification and target identification problems, which have close

relationship with target tracking, are concerned. In this respect we have concentrated

on air vehicles.

Classification means the determination of target type as bomber and surveillance

plane, helicopter, fighter or UAV and it is made by using the probability density

function of the state provided by the tracker. On the other hand, identification is

the determination of a target as friend, hostile or neutral and it is made by using IFF

interrogations, restricted area breach, air corridor usage and human-eye identification

information.

Both of the problems require the combination of evidences as they are collected in

time and from different sources. Dempster-Shafer Theory is utilized for this purpose.

Dempster-Shafer Theory requires mass assignment to the events for combination of

evidence. For this purpose we propose different methodologies in sense of target

classification and identification.

The methodology proposed for target classification utilizes all information provided

by the tracker which is given in the form of a Gaussian probability density function,

unlike the alternative methods in the literature which use only the mean. The pro-

posed method for target classification is tested with real data. Results are compared

with another method that uses only the mean estimates of the features that can be
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considered quite similar to the one given in Xu et. al [42]. Test results show that

using the whole probability density function of the features provided by the tracker

brings significant advantages for classification compared to using only the mean of

the features.

The proposed fusion method is also inspired from the idea of using all available

information and preventing information loss. For this purpose probability density

functions of the measurements are combined before converting them into probability

masses. That gives us a new combination method. The methodology is tested with

real data and compared with the major combination rules existing in the literature.

Test results show that the proposed method gives reasonable results for the cases that

probability density function of the state is available.

The proposed method for target identification utilizes all available information as

all other algorithms in the literature do. However, differing from the existing algo-

rithms, it uses Analytic Hierarchy Process for basic mass assignment. In the proposed

methodology the evidences are evaluated according to their importance. In order to

obtain importance of the information sources and for mass assignment according to

this importances level, Analytic Hierarchy Process is adapted to the target identifi-

cation problem. The adaptation and the way of mass assignment are novel in the

literature and constitute another main contribution of this thesis.

6.2 Future Work

In this thesis, for classification, features are selected according to their reliability and

direct availability from the tracker. Other than the speed and the altitude, acceleration

and micro Doppler can be added into the feature vector to improve the performance

of the target classifier. In order to do that related prior information should be collected

for the predefined target types.

The probability density function of the speed is obtained by using Monte Carlo meth-

ods from the velocity vector as a non-parametric density. Unscented transform is a

way for estimating a nonlinear function of a Gaussian random variable as a Gaussian.

This approach may be used to obtain the probability density function of the speed.
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The questionnaires that are constituted for target identification were applied to a small

group. Applying these questionnaires to large expert groups and including electronic

support measures to the information sources will improve identification performance.
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APPENDIX A

THE QUESTIONNAIRE FOR THE SECOND LEVEL OF THE

HIERARCHY OF AHP MODEL FOR TARGET

IDENTIFICATION

This questionnaire is built for the second level of the hierarchy. According to the

target’s response to any of the questions, target is wanted to be identified as friend or

hostile or neutral.

Tables from A.1 to A.6 are for IFF interrogations. There are 3 tables for IFF Mod-4

and 3 tables for IFF Mod-3. These 3 tables correspond to 3 different responses as

valid response, invalid response and no response respectively.

Table A.1: Questions for IFF Mod-4 valid response situation

Which one? How much?
If a target gives valid response to IFF Mod-4, which
identity is more probable among being friend or hos-
tile? How much?
If a target gives valid response to IFF Mod-4, which
identity is more probable among being friend or neu-
tral? How much?
If a target gives valid response to IFF Mod-4, which
identity is more probable among being hostile or
neutral? How much?
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Table A.2: Questions for IFF Mod-4 invalid response situation

Which one? How much?
If a target gives invalid response to IFF Mod-4,
which identity is more probable among being friend
or hostile? How much?
If a target gives invalid response to IFF Mod-4,
which identity is more probable among being friend
or neutral? How much?
If a target gives invalid response to IFF Mod-4,
which identity is more probable among being hos-
tile or neutral? How much?

Table A.3: Questions for IFF Mod-4 no response situation

Which one? How much?
If a target gives no response to IFF Mod-4, which
identity is more probable among being friend or hos-
tile? How much?
If a target gives no response to IFF Mod-4, which
identity is more probable among being friend or neu-
tral? How much?
If a target gives no response to IFF Mod-4, which
identity is more probable among being hostile or
neutral? How much?

Table A.4: Questions for IFF Mod-3 valid response situation

Which one? How much?
If a target gives valid response to IFF Mod-3, which
identity is more probable among being friend or hos-
tile? How much?
If a target gives valid response to IFF Mod-3, which
identity is more probable among being friend or neu-
tral? How much?
If a target gives valid response to IFF Mod-3, which
identity is more probable among being hostile or
neutral? How much?
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Table A.5: Questions for IFF Mod-3 invalid response situation

Which one? How much?
If a target gives invalid response to IFF Mod-3,
which identity is more probable among being friend
or hostile? How much?
If a target gives invalid response to IFF Mod-3,
which identity is more probable among being friend
or neutral? How much?
If a target gives invalid response to IFF Mod-3,
which identity is more probable among being hos-
tile or neutral? How much?

Table A.6: Questions for IFF Mod-3 no response situation

Which one? How much?
If a target gives no response to IFF Mod-3, which
identity is more probable among being friend or hos-
tile? How much?
If a target gives no response to IFF Mod-3, which
identity is more probable among being friend or neu-
tral? How much?
If a target gives no response to IFF Mod-3, which
identity is more probable among being hostile or
neutral? How much?

Tables A.7 and A.8 are for the restricted area breach information. First table is for

breach case and second table is for no breach case.
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Table A.7: Questions for RAB breach situation

Which one? How much?
If a target breaches the restricted area, which iden-
tity is more probable among being friend or hostile?
How much?
If a target breaches the restricted area, which iden-
tity is more probable among being friend or neutral?
How much?
If a target breaches the restricted area, which iden-
tity is more probable among being hostile or neutral?
How much?

Table A.8: Questions for RAB no breach situation

Which one? How much?
If a target does not breaches the restricted area,
which identity is more probable among being friend
or hostile? How much?
If a target does not breaches the restricted area,
which identity is more probable among being friend
or neutral? How much?
If a target does not breaches the restricted area,
which identity is more probable among being hos-
tile or neutral? How much?

Tables A.9 and A.10 are for the air corridor usage information. First table is for

correct usage case and second table for incorrect usage case.
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Table A.9: Questions for ACU correct usage situation

Which one? How much?
If a target uses air corridors correctly, which iden-
tity is more probable among being friend or hostile?
How much?
If a target uses air corridors correctly, which iden-
tity is more probable among being friend or neutral?
How much?
If a target uses air corridors correctly, which iden-
tity is more probable among being hostile or neutral?
How much?

Table A.10: Questions for ACU incorrect usage situation

Which one? How much?
If a target uses air corridors incorrectly, which iden-
tity is more probable among being friend or hostile?
How much?
If a target uses air corridors incorrectly, which iden-
tity is more probable among being friend or neutral?
How much?
If a target uses air corridors incorrectly, which iden-
tity is more probable among being hostile or neutral?
How much?
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