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ABSTRACT

PERFORMANCE ANALYSIS OF DIRECTION-OF-ARRIVAL ESTIMATION
ALGORITHMS IN THE PRESENCE OF ARRAY IMPERFECTIONS AND

MULTIPATH FOR DIFFERENT ANTENNA ARRAY GEOMETRIES

Çalışkan, Mustafa

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. T. Engin Tuncer

August 2014, 104 pages

Direction of Arrival (DOA) Estimation is an important topic in signal processing.
In this thesis, DOA estimation is considered when there are gain/phase mismatches,
mutual coupling for the antennas and multipath signals are observed. In the first part,
DOA estimation for uniform linear array (ULA) in the presence of mutual coupling
is considered. Different methods in the literature are investigated and a promising
solution for this case [1] is implemented. Auxiliary sensors are used and MUSIC al-
gorithm is employed for both DOA and mutual coupling coefficient estimation. This
method has extensions for two dimensional case and hence the same problem is con-
sidered for uniform rectangular (URA) array. The simulation results show that DOA
estimation in 2D array can be effectively done in case of mutual coupling. In case
of both gain/phase mismatch and mutual coupling, a self-calibration method is im-
plemented where gain/phase mismatch and mutual coupling are estimated iteratively
for DOA estimation. Different array geometries are considered for the performance
evaluation. The benefit of exploiting prior-knowledge for DOA estimation is consid-
ered. In this case, there are some known sources as well as unknown ones. In addition,
source signals are correlated. Constrained-MUSIC (C-MUSIC) [2] , Prior-knowledge
based DOA estimation (PLEDGE) [3], Prior-Exploiting Orthogonally Weighted Di-
rection Estimator(POWDER) [4], and Forward-backward spatial smoothing and MU-
SIC (FBSS-MUSIC) [5] algorithms are implemented and compared. The scenario is
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also extended to include mutual coupling and multipath.

Keywords: direction-of-arrival estimation, mutual coupling, gain-phase mismatch,
multipath, antenna arrays, sensor array signal processing,
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ÖZ

GELİŞ-AÇISI KESTİRİM ALGORİTMALARININ FARKLI ANTEN DİZİNİ
GEOMETRİLERİ, ÇOKYOLLULUK VE İDEALDEN UZAK ANTEN DİZİLERİ

DURUMUNDA PERFORMANS ANALİZİ

Çalışkan, Mustafa

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. T. Engin Tuncer

Ağustos 2014 , 104 sayfa

Geliş-açısı(GA) kestirimi sinyal işleme alanında önemli bir konudur. Bu tezde, an-
ten dizileri için kazanç/faz uyuşmazlığı ve müşterek bağlaşım varlığında çokyollu
sinyal kaynaklarının geliş açısı kestirimi incelenmiştir. Birinci bölümde, müşterek
bağlaşım durumunda düzenli doğrusal dizilim (ULA) için geliş açısı kestirimi ele
alınmıştır. Literatürdeki farklı yöntemler araştırılmıştır ve bu durum için iyi bir çö-
züm [1] uygulanmıştır. Geliş açılarının ve müşterek bağlaşım katsayılarının kesti-
rimi için yardımcı sensörler ile MUSIC algoritması çalıştırılmıştır. Bu yöntem iki bo-
yutlu durum için genişletilmiştir ve aynı problem düzenli dikdörtgen dizilimi(URA)
için ele alınmıştır. Simülasyon sonuçları müşterek bağlaşım durumunda iki boyutlu
dizilim için geliş açısı kestiriminin etkin olarak yapılabildiğini göstermektedir. Ka-
zanç/faz uyumsuzluğu ve müşterek bağlaşım durumunda, geliş açılarının kestirimi
için müşterek bağlaşım ve kazanç/faz uyumsuzluğu katsayılarını yinelemeli olarak
kestiren bir otomatik kalibrasyon metodu uygulanmıştır. Performans değerlendirmesi
için farklı dizi geometrileri ele alınmıştır. Geliş açısı kestiriminde ön bilgi kullanımı-
nın yararı incelenmiştir. Bu durumda, bazı bilinen kaynakların yanı sıra bilinmeyen
kaynaklar vardır. Bu duruma ek olarak, sinyal kaynakları ilişkilidir. Kısıtlı-MUSIC
(Constrained-MUSIC) [2], Ön Bilgi Tabanlı Geliş Açısı Kestirimi (PLEDGE) [3],
Ön-Bilgi Tabanlı Dik Ağırlıklı Yön Kestirici(POWDER) [4] ve Ön-arka uzaysal dü-
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zeltme MUSIC(FBSS-MUSIC) [5] algoritmaları uygulanarak karşılaştırılmıştır. Se-
naryo ayrıca çokyolluluk ve müşterek bağlaşım durumu içerecek şekilde genişletil-
miştir.

Anahtar Kelimeler: geliş açısı kestirimi, müşterek bağlaşım, kazanç-faz uyuşmazlığı,
çokyolluluk, anten dizileri, sensör dizilimi sinyal işleme
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Previous Works

Direction-of-arrival (DOA) estimation has received considerable amount of interest

in the field of wireless communications during the last few decades. There are many

commercial and military applications in this field such as cellular communication,

radar, sonar, astronomy and seismic explorations. The objective of the DOA estima-

tion methods is to obtain high resolution in the DOA estimates by using the collected

data from an antenna array. In practice, the collected data can be distorted due to

the factors such as mutual coupling between antennas, gain/phase mismatches due to

antenna radiation patterns.

Direction of arrival estimation in the presence of unknown mutual coupling is a chal-

lenging topic in array signal processing. Closely spaced antenna array elements un-

avoidably causes mutual coupling [6]-[7]. Mutual coupling means that current in-

duced on one of the array element produces voltage at the receiver of nearby elements

[8]. This serious effect leads to uncertainties in the array response and degrades the

performance of the estimators.

High resolution eigendecomposition methods such as multiple signal classification

(MUSIC)[9] and estimation of signal parameter via rotational invariance techniques

(ESPRIT)[10] assume that the steering vector is exactly known which depends on the

array geometry and the signal location. However, in real systems the steering vector

may be easily distorted by mutual coupling effect [11]. Therefore, the performance

of these high resolution methods will be greatly degraded when we have some dis-
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turbances in the arrays manifold [12]-[13]-[14] and the practical applications of these

methods are limited [15]. To solve this problem, many calibration algorithms are

proposed in [16]-[17]-[18] to mitigate the mutual coupling effect. Two algorithms

are presented in [16] which require calibration sources to eliminate mutual coupling

effect. Maximum-Likelihood based algorithm in [17] also needs calibration sources

at known positions for mutual coupling compensation. Iterative procedure is given

in [18] to reduce the coupling effect and gain/phase mismatch. However, computa-

tional complexity of the algorithm is high and the algorithm converges slowly. It is

described in [19]-[20] that, the negative effect of unknown sensor coupling can be

diminished by using auxiliary sensors. The estimation accuracy of ESPRIT method

with auxiliary elements is illustrated in [19] in the presence of mutual coupling. Many

auxiliary sensors are used in [20] to estimate DOAs in mutual coupling. It is observed

in [19]-[20] that, using auxiliary sensors increased the estimation accuracy of the al-

gorithms in the presence of unknown sensor coupling.

In the literature, several methods have been proposed to solve the same problem in

two dimensional DOA estimation. As previously stated, subspace based algorithms

such as 2-D MUSIC is suboptimal in the presence of mutual coupling [21]-[22]-

[23]. One-dimensional DOA estimation methods are expanded in [24]-[25] to solve

two-dimensional DOAs. However, these methods are insufficient in the presence

of mutual coupling or any other array imperfections. [26] presented a solution to

estimate 2-D DOAs for uniform circular array in the presence of mutual coupling.

However, the computational complexity of this method for URA is higher than ULA

and UCA. So, extra improvements are required for this method.

In [16]-[27], DOA estimation methods in unknown sensor coupling are presented.

These algorithms need calibration sources for mutual coupling compensation. In [28],

DOA estimation with integer minimization approach in the presence of gain/phase

mismatch is presented. However, these algorithms can only be applicable if there

is only mutual coupling or gain/phase mismatch presented in the system model. If

more than one disruptive effect happen, these algorithms may fail to estimate the

DOA angles. By the way, some methods in [17]-[18] have been proposed to estimate

DOA angles in the presence of more than one type of error is presented. In [17],

maximum-likelihood based calibration algorithm is developed to estimate DOA an-
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gles in unknown sensor coupling, sensor gain/phase error and sensor location error.

This method also needs extra calibration sources in known positions. In [18], recur-

rent method is proposed to estimate DOA angles in mutual coupling and gain/phase

mismatch. However, the method’s computational complexity is high and convergence

rate is slow. In [29], a promising solution is presented to handle both mutual coupling

and gain/phase errors optimally. In chapter 5, the DOA estimation performance of

this method is compared to another popular auto-calibration method proposed in [30]

for ULA and NLA to see the performance of the former method in different scenarios.

In practical DOA estimation applications, we may have prior knowledge of signal

directions such as in a radar application where the emitted signal is reflected from

stationary objects. It is important to use this prior knowledge to estimate the unknown

DOA angles as accurately as possible. Several methods have been proposed to use

the prior information in an estimation algorithm.

In Constrained-MUSIC method [2]-[31], the noisy array output data is orthogonally

projected to the noise subspace spanned by the steering vectors of known DOA an-

gles. The known signal subspace is removed from the array manifold and unknown

DOA angles are estimated from reduced-dimension samples.

In [3], optimal prior knowledge algorithm (PLEDGE) algorithm is proposed. PLEDGE

is the extension of method of direction estimation (MODE) [32] algorithm which is

a Maximum Likelihood based method and estimate the DOA angles with polynomial

rooting. The MODE estimator cannot use prior information about known sources and

estimates whole elements of AOA vector which contains unknown and known DOA

angles, respectively. PLEDGE method, however, uses the prior DOA knowledge in-

formation in polynomial rooting approach. Using the a priori information gives good

estimation results for PLEDGE algorithm as compared to MODE algorithm shown in

[3]-[33].

The correlation state between the unknown and known signals can also be given as

prior information in the applications. Using prior knowledge about known source lo-

cation and correlation state between signal sources is also useful. A new prior knowl-

edge based DOA estimation algorithm expressed as Prior Orthogonally Weighted

Direction Estimator(POWDER) is proposed in [4] recently. In this algorithm, it is
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assumed that known and unknown DOAs are uncorrelated. There is no assumption

made on the correlation state between the signals in the subsets of known and un-

known signals. In this context, it is proposed that POWDER method shows good

accuracy for resolving closely separated multipath signals.

The objective of this thesis study is to examine the performance of direction of arrival

estimation algorithms in the presence of array imperfections and multipath for differ-

ent array geometries. Four main types of direction of arrival estimation approaches

are investigated. In the first part, DOA estimation for ULA in the presence of mutual

coupling is analyzed. A solution described in [1] is implemented. Auxiliary sensors

are used for both DOA and mutual coupling coefficient estimation. DOA estimates

are improved by using estimated mutual coupling coefficients and extended antenna

array output. In the second part, the same problem is considered for uniform rectan-

gular (URA) array. 2-D DOA estimation algorithm described in [34] is employed for

URA in the presence of unknown sensor coupling. The DOA angles are accurately es-

timated with mutual coupling coefficient estimates and full URA array output. In the

third part, DOA estimation in the presence of gain/phase mismatches and unknown

mutual coupling is performed with a self-calibration method described in [29]. The

gain-phase mismatches and mutual coupling coefficients are estimated iteratively for

DOA estimation. The estimation performance of the algorithm is presented with ULA

and NLA. In the fourth part, prior knowledge based DOA estimation algorithms are

implemented and compared with classical subspace based methods to show the ben-

efit of using a-priori knowledge in the estimator. Different scenarios are handled for

performance evaluation of the algorithms. Mutual coupling and multipath effect are

also presented in the simulations.
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1.2 Organization of Thesis

The presentation of this thesis is organized into the following chapters.

In Chapter 2, background information about direction of arrival estimation is re-

viewed.

Chapter 3 describes the problem formulation and solution for DOA estimation in the

presence of mutual coupling for uniform linear array. In addition, simulation results

of the implementation is presented.

Chapter 4 analyzes 2-D DOA estimation for uniform rectangular array in the presence

of unknown sensor coupling. The algorithms steps are explained and the simulation

results are provided at the end of chapter.

Chapter 5 explains detailed steps a self-calibration method for DOAs, gain/phase mis-

matches and mutual coupling coefficients estimation. At the end of the chapter, the

simulation results are performed for different scenarios.

Chapter 6 presents performance analysis of prior knowledge based DOA estimation

algorithms. The detailed information about the algorithms is expressed. The simula-

tion results are presented for different scenarios at the end of the chapter.

Chapter 7 provides a summary and conclusions of this thesis along with further re-

search.
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CHAPTER 2

DOA MODEL AND ESTIMATION METHODS

In this chapter, common DOA estimation methods in the literature and DOA model

used in the estimators are briefly explained. More detailed information about the

subjects can be found in [21]-[35]-[36].

2.1 DOA Model

Most of the modern DOA estimation methods are model-based and they rely on as-

sumptions on the data obtained from antenna array in the real world. The ideal data

model [21] used in the DOA estimation methods will be shortly described in this sec-

tion. Consider the impinging signal on the mth array element with sample index n is

shown as xm(n), for m = 1, · · · , M. The collected N sample data in the array output

vector can be written as x(n) = [x1(n), · · · , xM(n)]T, n = 1, · · · ,N. Then, the ideal

array output without additive noise for a single signal source from the DOA θ can be

written as,

x(n) = a(θ)s(n) (2.1)

where a(θ) and s(n) are the array manifold vector and the signal vector, respectively.

The array manifold vector is defined as

a(θ) = [ejwcτ1(θ), · · · , ejwcτM (θ)]T (2.2)

where wc is the carrier frequency and τM(θ) is the time delay of signal from the DOA

θ at mth array element. By using the linearity and super-position properties of the
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impinging signals, the array output for Q far-field signals can be presented as,

x(n) =

Q∑
q=1

a(θq)sq(n) + n(n) (2.3)

where θq, sq(n) and n(n) denote DOAs of sources, signals and additive noises, re-

spectively. The data model in (2.3) can be written as a matrix form by defining array

steering matrix A(θ) = [a(θ1), · · · , a(θQ)], where θ = [θ1, · · · , θQ] is the vector of

DOAs and the signal vector S = [s1(n), · · · , sQ(n)]. Then, the array output can be

written as,

x(n) = A(θ)s(n) + n(n), n = 1, · · · ,N (2.4)

or, equivalently,

X = [x(1), · · · ,x(N)] = A(θ)S + N (2.5)

The DOA estimation algorithms use the second-order statistics of the collected data

from array output. The array output covariance matrix is written as

R = A(θ)PAH(θ) + σ2I (2.6)

where the signals are stationary and zero-mean random process uncorrelated with the

noise. P = E[s(n)sH(n)] denotes the signal covariance matrix. It is also assumed that

the noise is both spatially and temporally white with variance σ2. The sample covari-

ance matrix is constructed by the collected data from the array output to estimate the

array covariance matrix as,

R̂x =
1

N

N∑
n=1

x(n)xH(n) =
1

N
XXH. (2.7)

Hence, The DOA estimation can be summarized as given an array output data X

formulated in 2.5, estimate the DOA angles θ with using the array manifold and signal

correlation matrix defined in 2.7 in the estimator.
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The following topics are assumed for the narrowband DOA estimation algorithms

[37].

u Homogeneous Transmission Media: The transmission media is considered to be

homogeneous and linear. The signal waveforms show the same characteristics

for all DOA angles and the signals can be linearly added by using linearity and

superposition principles.

u Far-field assumption: The sensor array is positioned in the far-field zone of the

signal sources. The array elements receive equal power signal waveforms with

the same DOA angles incoming from different sources.

u Narrow-band assumption: In the narrow-band signal model, it is considered

that time-bandwidth production is small (Bτ � 1), where B denotes bandwidth

of signal and τ is time that the signal waveform propagates the antenna array.

The array elements are assumed to capture the signals at the same time.

u Noise assumption: The sensor noises are zero-mean, i.i.d, white Gaussian pro-

cesses with common variance σ2, and uncorrelated with the signals.

2.2 Review of DOA Estimation Algorithms

In this section, a brief review of the classical direction-of-arrival estimation tech-

niques such as beamforming, maximum likelihood based DOA estimation and subspace-

based DOA estimation is presented.

2.2.1 Beamforming Techniques

Beamforming is defined as the antenna array is steered in one direction at a time and

the output power is measured [36]. The maximum output power will be monitored,

if the DOA angle is captured in the direction of the antenna array. DOA estimation

algorithms are proposed to construct the appropriate form of output power to esti-

mate the DOA angles. Capon’s Beamformer and Linear Prediction are two common

beamforming methods which will be summarized in the following sections.
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2.2.1.1 Capon’s Beamformer

Capon’s Beamformer is a DOA estimation method which is developed to enhance the

performance of the classical beamformers when multiple narrowband signal sources

impinging on the array from different DOAs. This beamforming technique finds the

maximum-likelihood estimate of power which is incoming from signal of interest

and the other signal sources are assumed to be interference. The objective of this

method is to estimate the signal of interest with good accuracy in terms of phase

and amplitude. The estimation performance of Capon’s Beamformer depends on the

number of array elements and the SNR. When the signal sources are highly correlated,

this method is suboptimal. The advantage of Capon’s Beamformer is that this method

provides nonparametric solution and there is no need for a prior knowledge about the

specific statistical properties [38].

2.2.1.2 Linear Prediction

The prediction error between the output of mth sensor and real output is minimized

in Linear Prediction method [38]. The purpose of this DOA estimation technique is

to find the weights to minimize the prediction error. Choosing the mth array element

output for prediction is random. The choice for prediction may degrade the accuracy

of the estimation. If we choose the central array element for prediction, superposition

of the other array elements can offer better estimation performance because the other

array elements are positioned from the phase center of array. Thus, the performance

of the Linear Prediction method relies on the chosen array element and the weights

which minimize the prediction error. Linear prediction method shows good results

when SNR is low or number of snapshots is limited.

2.2.2 Maximum Likelihood Method

The log-likelihood function is maximized to estimate the DOA angles in Maximum

Likelihood method. The joint PDF of the sampled data given DOA angles is named as

log-likelihood function. The true DOA angles parameterize the log-likelihood func-

tion and this method searches the directions which maximize the log of the likelihood
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function. Maximum Likelihood method shows good estimation accuracy at low SNR

and small snapshots of data or the signal sources are highly correlated or coherent

[39].

2.2.3 Subspace-Based Methods

Subspace based algorithms depend on the eigenstructure of antenna array output cor-

relation matrix. The orthogonal signal and noise subspaces are constructed by the

eigenvectors of the estimated correlation matrix. The signal subspace is spanned

by the steering vectors and the noise subspace is spanned by the eigenvectors cor-

responding to the remaining smaller eigenvalues of sample correlation matrix. MU-

SIC(Multiple Signal Classification) and ESPRIT(Estimation of Signal Parameters via

Rotational Invariance Techniques) are the most common subspace-based algorithms.

Brief information about these algorithms will be given in the upcoming sections [36].

2.2.3.1 MUSIC Method

Multiple Signal Classification (MUSIC) is an eigenstructure based high resolution

direction of arrival estimation method. MUSIC method estimates DOA of signal

sources, number of signals and the strength of the signals. In this method, the sig-

nal sources and additive noise are assumed to be uncorrelated. The DOA angles

are estimated by using the orthogonality between the array steering vectors and the

noise subspace eigenvectors of the array output correlation matrix. Hence, placing

the Frobenius norm of this orthogonality in the denominator results in sharp peaks at

the direction of arrival angles. If the source signals are highly correlated or coherent,

MUSIC method becomes suboptimal [38].

2.2.3.2 ESPRIT Method

ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) method

is the another subspace based, high resolution direction of arrival estimation method.

In this method, two identical subarrays are formed by the same number of array el-
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ements. The matched pair of the sensors with the same separation interval is named

as doublet. The objective of ESPRIT method is to exploit the rotational invariance in

the signal subspace which is composed of two arrays with a translational invariance

model. ESPRIT method is implemented in three steps for DOA estimation. Firstly, a

basis matrix is computed for the estimated signal subspace. Then, the solution of an

invariance equation is computed from the basis matrix. Finally, the DOA angles are

estimated by the eigenvalues of the solution of the invariance equation. This method

is also extended for two dimensional DOA estimation with different antenna array

geometries whose geometry is shift invariant [36].
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CHAPTER 3

DIRECTION OF ARRIVAL ESTIMATION WITH UNIFORM

LINEAR ARRAY IN THE PRESENCE OF UNKNOWN

SENSOR COUPLING

In this chapter, DOA estimation for ULA in the presence of mutual coupling is exam-

ined. To eliminate the mutual coupling effect, the algorithm proposed in [1] is imple-

mented. Firstly, MUSIC algorithm is directly applied for DOA estimation by using

sufficient number of auxiliary sensors in the presence of unknown mutual coupling.

Then, mutual coupling coefficients are estimated with the DOA estimates found in the

first step. With the estimated mutual coupling coefficients, the entire antenna array

output vector is used to improve the DOA estimation. The simulation results show

that the DOA estimation accuracy is increased with the estimated mutual coupling

coefficients. The problem formulation and the performance analysis of the algorithm

in [1] are shown in the following sections. The algorithm [1] which is implemented

in this section is also extended for planar arrays such as URA and UHA for two-

dimensional DOA estimation presented in [34] and [40], respectively.

3.1 Problem Statement

Consider a uniform linear array composed of N sensors with half wavelength,(λ/2),

inter element spacing. We assume that there are M narrow-band signals impinging on

the array from directions θ1, θ2, ..., θM respectively. The antennas are assumed to be

identical and omnidirectional. Far-field assumption is made. The array output can be
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written as,

x(k) = CAs(k) + n(k) (3.1)

where s(k) is a M× 1 signal vector which represents a stationary, zero-mean random

process uncorrelated with the noise. It is assumed that the noise n(k), is both spatially

and temporally white with variance σ2. A = [a(θ1), a(θ2), ..., a(θM)] is the steering

matrix for ULA and the steering vector is given as a(θi) = [1, β(θi), ..., β
N−1(θi)]

T

with β(θi) = exp{j 2πd
λ

sin θi}. C denotes the N× N banded symmetric Toeplitz

mutual coupling matrix(MCM) for the antenna array. It is assumed that the main

diagonal of the MCM is normalized to unity and coupling coefficient vector which

is used to construct C is c = [1, c1, . . . , cP−1] where P is the number of significant

mutual coupling coefficients. The mutual coupling matrix in (3.1) can be written as a

banded Toeplitz matrix for ULA,i.e.,

C =



1 c1 · · · cP−1 · · · 0

c1 1 c1 · · · . . . 0
... c1 1

. . . · · · cP−1

cP−1 · · ·
. . . . . . c1

...

0
. . . · · · c1 1 c1

0 · · · cP−1 · · · c1 1


(3.2)

The array output covariance matrix Rx is

Rx = E
{
x(t)xH(t)

}
= CARsA

HCH + σ2IN (3.3)

where Rs is the source correlation matrix, and IN is the identity matrix. Following

the standard subspace approach we can partition the eigenvectors of array output co-

variance matrix as Es and En which span signal and noise subspace respectively. The

manifold matrix becomes Ca(θ) in case of known mutual coupling. The manifold

matrix is orthogonal to the noise subspace spanned by En. Hence,∥∥EH
n Ca(θi)

∥∥ = 0 for i = 1, · · · ,M. (3.4)

Therefore, MUSIC algorithm can be directly applied as PMU(θ) = 1/
∥∥EH

n Ca(θ)
∥∥2 in

known mutual coupling case. When the mutual coupling coefficients are not known,

we can not estimate the DOA angles by using this method. In unknown mutual cou-

pling case, auxiliary sensors will be used to estimate the true DOA angles.
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3.1.1 Direction Finding in Unknown Mutual Coupling

To reduce the mutual coupling effect, P-1 auxiliary array elements are added on both

sides of the N element ULA. N element middle array output of (N + 2P−2)-element

ULA can be written as,

x(k) = C̃Ãs(k) + n(k) (3.5)

where Ã = [ã(θ1), ã(θ2), ..., ã(θM)]

ã(θi) = [β(θi)
1−P , β(θi)

2−P , ..., β(θi)
−1, 1, β(θi), ...,

β(θi)
N−1, β(θi)

N , ..., β(θi)
N+P−2]T

N× (N + 2P− 2) mutual coupling matrix in (3.5) can be written as in (3.6).

C̃ =



cP−1 · · · c1 1 c1 · · · cP−1 0 0 · · · 0

0 cP−1 · · · c1 1 c1 · · · cP−1 0 · · · 0
... . . . . . . · · · . . . . . . . . . · · · . . . . . . ...

0 · · · 0 cP−1 · · · c1 1 c1 · · · cP−1 0

0 · · · 0 0 cP−1 · · · c1 1 c1 · · · cP−1


(3.6)

The covariance matrix of the array output with auxiliary sensors is

R̃x = E
{
x(t)xH(t)

}
= C̃ÃRsÃ

HC̃H + σ2IN . (3.7)

According to the subspace theory we can find Ẽs and Ẽn, the eigenvectors which span

the signal and noise subspace of R̃x, respectively. Adding P-1 auxiliary sensors on

both side of the ULA, the MUSIC method is applicable in unknown sensor coupling

which will be shown in the following. The steering vector of middle ULA, C̃ã, can

be expressed in terms of the manifold vector of N-element ULA, c(θ)a(θ), as in [1].

C̃ã(θ) = (cp−1β(θ)1−P + · · ·+ 1 + c1β(θ) + · · ·+ cP−1β(θ)P−1)


1

β(θ)
...

β(θ)N−1


= (2

P−1∑
n=1

cn cos(2nπ sin(θ)d/λ) + 1)a(θ)

= c(θ)a(θ)

(3.8)
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where c(θ) indicates the mutual coupling which is scalar and different from zero.

Then, the DOA angles can be estimated directly by using the orthogonality between

ẼH
n and a(θ) [1] as,

ẼH
n C̃ã(θ) = 0 ⇒ c(θ)ẼH

n a(θ) = 0⇒ ẼH
n a(θ) = 0, θ = θi, i = 1, · · · ,M

(3.9)

where M is the number of DOAs. Finally, by using the smaller noise subspace matrix

of extended ULA and the real steering vector of N-element ULA, we can estimate the

DOA angles with MUSIC algorithm,

PMUSIC(θ) =
1∥∥∥ẼH

n a(θ)
∥∥∥2 . (3.10)

3.1.2 Mutual Coupling Coefficient Estimation

The mutual coupling coefficients are estimated by using array output of all sen-

sors(including auxiliary sensors) and the DOA angle estimates of MUSIC algorithm

in(3.10). The covariance matrix of the array output(including auxiliary elements)

is shown as Rx. The eigenvectors of covariance matrix are e1, e2, ..., eN+2P−2 and

noise space eigenvectors are eM+1, eM+2, ..., eN+2P−2. As the mutual coupling ma-

trix of full array C is a band-symmetric Toeplitz matrix, the steering vector can be

rewritten as [41],

Cã(θ) = T [ã(θ)] c (3.11)

where (N+2P−2)× (N+2P−2) C is the mutual coupling matrix of extended ULA

shown in (3.12).

C =



1 c1 · · · cP−1 · · · 0

c1 1 c1 · · · . . . 0
... c1 1

. . . · · · cP−1

cP−1 · · ·
. . . . . . c1

...

0
. . . · · · c1 1 c1

0 · · · cP−1 · · · c1 1


(3.12)

P × 1 vector c is composed of the nonzero entries of first column of C and is given

by (3.13).

ci = Ci1, i = 1, · · · , P. (3.13)
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The (N + 2P − 2) × P matrix T[ã(θ)] can be expressed as the sum of the following

two (N + 2P− 2)× P matrices T1[ã(θ)] and T2[ã(θ)] as

T[ã(θ)] = T1[ã(θ)] + T2[ã(θ)] (3.14)

T1[ã(θ)]i,j =

[ã(θ)]i+j−1 i+ j ≤ N + 2P − 1

0 otherwise.
(3.15)

T2[ã(θ)]i,j =

[ã(θ)]i−j+1 i ≥ j ≥ 2

0 otherwise.
(3.16)

(N + 2P − 2) × P matrix T[ã(θ)] is orthogonal to the noise subspace of full array

output covariance matrix, i.e,

eHi T [ã(θj)] c=0, i=M + 1, · · · , N + 2P − 2, j=1, · · · ,M. (3.17)

Substituting the DOA angle estimates found in (3.10) into (3.17), we define a Q ma-

trix as follows

Q =


E
H

n T [ã(θ1)]
...

E
H

n T [ã(θM)]

 = [q1 q2 · · · ,qP] (3.18)

Then we have,

Qc = 0. (3.19)

Given c(1) = 1, (3.19) can be rewritten as

Q(:, 2 : P )c(2 : P ) = −q1 (3.20)

where c(:, 2 : P) = [c1c2 · · · cP−1]T , Q(:, 2 : P ) = [q2 · · ·qP ]. We can finally apply

the least squares method to find the mutual coupling coefficients in (3.21).

c(2 : P ) = −Q(:, 2 : P )†q1, c(1) = 1. (3.21)

In equation (3.21), (.)† denotes pseudo-inversion. After determining coupling coef-

ficient vector c, we can refine DOA estimation by using estimated mutual coupling

matrix Ĉ and the noise subspace matrix Ên of full array to improve the precision of

estimation.

PMU(θ) =
1∥∥∥EH

n Cã(θ)
∥∥∥2 (3.22)
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3.1.3 The Summary of the Algorithm

The implementation of the applied algorithm [1] for an N + 2P − 2 element ULA

array can be summarized as follows:

1. Compute data covariance matrix of full array with auxiliary sensors and the co-

variance matrix of middle N-element sub-array.

R̂x =
1

K

K∑
i=1

x(i)xH(i) (3.23)

where x(i) = [x1(i), x2(i), · · · , xN+2P−2(i)]
T . The covariance matrix of middle sub-

array can be found as
ˆ̃Rx = R̂x(P:N+P-1,P:N+P-1) (3.24)

2. Get the noise subspace eigenvectors Ên and ˆ̃En of full array and middle sub-array

respectively.

3. Estimate the DOA angles with MUSIC algorithm using the smaller noise subspace

matrix ˆ̃En.

PMU(θ) =
1∥∥∥ ˆ̃EH

n a(θ)
∥∥∥2 ; (3.25)

4. Estimate the mutual coupling matrix Ĉ by solving equation (3.21) with estimated

DOA angles found in step-3.

5. Using estimated mutual coupling matrix Ĉ and full array output noise subspace

matrix Ên, improve the DOA angle estimates with (3.26).

PMU(θ) =
1∥∥∥∥ÊH

n Ĉã(θ)

∥∥∥∥2 (3.26)

3.2 Simulation Results

In this part of the study, the simulation results are shown to illustrate the performance

of applied algorithm [1]. We use 10 element ULA as the base array for the simula-

tions. The distance between adjacent elements in the ULA is half a wavelength, i.e.,
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λ/2. The number of mutual coupling coefficients is three. Therefore, two auxiliary

sensors are added on each side of the array to form a new ULA with the same array

configuration of base array. The sources are generated as equal power and they are

uncorrelated with each other. Source signals are Gaussian process and noise is both

spatially and temporally white with variance σ2. Then, the input SNR of ith signal can

be shown as 10 log10(σ2
i /σ

2). In simulations, source angles are considered between

-90 and 90 degrees and the spectrum search step size is 0.1◦. The mutual coupling

vector is assumed to be c = [1, 0.43301 − 0.25i, 0.14142 − 0.14142i]T . The num-

ber of snapshots is selected as 100. In the first simulation, the estimation resolution

and accuracy of the method is presented. We consider two independent signals, M=2

arrive at the array from θ1 = 15◦ and θ2 = θ1 + ∆θ. There are 100 Monte Carlo

trials, L=100 for each experiment. The RMSE for DOA angle estimation is defined

as RMSEθ =

√
1
ML

∑L
l=1

∑M
i=1

(
θ̂il − θi

)2

, where θ̂il is the estimation of θi in the

lth experiment. The RMSE versus the angle separation is shown in Figure 3.1. The

applied method is compared with algorithm in [41] and MUSIC algorithm in different

array and coupling conditions. From Figure 3.1 to Figure 3.6, the applied method is

shown as line with circle. The algorithm in [41] is shown as line with triangle. The

simulation results of MUSIC algorithm is shown as line with star, square and cross

in different conditions. As it is seen from Figure 3.1, by using auxiliary sensors in

unknown mutual coupling , the estimation accuracy of applied method is nearly equal

to the algorithm [41] with known coupling. The performance of the applied method

is also nearly same with MUSIC algorithm in no coupling case as angle interval in-

creases from 8◦ to 15◦.

Figure 3.2 shows the DOA estimation performance for different SNR levels. There

are three distinct sources (M=3) arrive at the array from θ1 = −30◦, θ2 = 15◦ and

θ3 = 45◦. The DOA angles are estimated with auxiliary sensors in unknown mutual

coupling. It is seen that applying MUSIC algorithm with extended ULA, the results

are nearly same with the 10 sensor array with no mutual coupling for high SNR.

Figure 3.3 shows the DOA estimation performance in the same scenario in terms of

the number of snapshots. The number of snapshots increased from 50 to 1000 at SNR

=0dB. As the number of snapshots is increased the performance of MUSIC algorithm

with auxiliary sensors improves and approaches to the results in [41] with known
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Figure 3.1: Performance of the algorithms for the angle interval when two sources

are located at 15 and 15 + ∆θ, snapshots = 100 and SNR = 0dB
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Figure 3.2: Performance for three sources located at -30, 15 and 45 degrees with

respect to increasing SNR, snapshots = 100
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coupling and the MUSIC algorithm without mutual coupling.
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Figure 3.3: Performance for three sources located at -30, 15 and 45 degrees with

respect to increasing snapshots, SNR = 0dB

In Figure 3.4, algorithms are compared when the array elements change from 8 to 32.

As the array elements increase, the RMSE of applied algorithm with auxiliary sensors

becomes nearly equal with the method in [41] with known coupling and MUSIC

algorithm without mutual coupling.

Next, we illustrate the DOA estimation performance of applied algorithm for corre-

lated sources with different SNR levels and number of snapshots. There are three

correlated signals where θ1 = −30◦, θ2 = 15◦ and θ3 = 45◦. The positive semi-

definite correlation matrix of the far-field source signals defined in [1] can be written

as,

Rs =


1 0.3 exp(−0.3jπ) 0.3 exp(−0.3jπ)

0.3 exp(0.3jπ) 1 0.3 exp(0.3jπ)

0.3 exp(0.3jπ) 0.3 exp(−0.3jπ) 1

 .
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Figure 3.4: Performance for three sources located at -30, 15 and 45 degrees with

respect to increasing array elements, snapshots = 100, SNR = 0dB

Figure 3.5 and Figure 3.6 show the performance results for correlated signals. It is

seen that, the applied method with auxiliary sensors shows good estimation accuracy

in the presence of independent or correlated sources for the given scenario.
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Figure 3.5: Performance for three correlated sources located at -30, 15 and 45 degrees

with respect to increasing SNR, snapshots = 100
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Figure 3.6: Performance for three correlated sources located at -30, 15 and 45 degrees

with respect to increasing snapshots, SNR = 0dB
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In Figure 3.7 and 3.8, RMSE results of mutual coupling coefficient estimation is il-

lustrated for increasing SNR levels and snapshots respectively. DOA angle estimates

are used for coupling coefficient estimation as stated previously in section 3.1.2. The

RMSE for coupling estimation is defined as

√
1

L(P−1)

∑L
l=1

∑P−1
i=1

(
ĉpl − cp

)2

, where

ĉpl is the estimation of cp in the lth Monte Carlo trial. It is seen that coupling coef-

ficient estimation performance increases with increasing SNR levels and snapshot

values.
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Figure 3.7: Mutual coupling coefficient estimation performance with respect to in-

creasing SNR, snapshots = 100

In the last simulation, the DOA estimates are refined by using the estimated coupling

coefficients and the larger noise subspace of 14-element ULA. The applied algorithm

results are compared with MUSIC algorithm estimates which are found in the pres-

ence of unknown and no mutual coupling case with the same array configuration for

different SNR levels, number of snapshots and number of array elements.

As it is seen from Figure 3.9, 3.10 and 3.11 that by using estimated coupling coeffi-

cients, the estimation accuracy increases and the resulting RMSE value approach to

the RMSE value found in no coupling condition.
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Figure 3.8: Mutual coupling coefficient estimation performance with respect to in-

creasing snapshots, SNR = 0dB
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Figure 3.9: DOA estimation performance of the algorithms with respect to increasing

SNR, snapshots = 100
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Figure 3.10: DOA estimation performance of the algorithms with respect to increas-

ing snapshots, SNR = 0dB
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Figure 3.11: DOA estimation performance of the algorithms with respect to increas-

ing array elements, SNR = 0dB, snapshots = 100
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CHAPTER 4

TWO DIMENSIONAL DOA ESTIMATION USING UNIFORM

RECTANGULAR ARRAY WITH MUTUAL COUPLING

In this chapter, joint estimation of azimuth and elevation angles with uniform rect-

angular array(URA) in the presence of mutual coupling is presented. Firstly, 2-D

DOA angles are estimated in the presence of unknown sensor coupling. Then, mutual

coupling coefficients are estimated with the DOA estimates obtained in the first step.

Finally, two dimensional refined search of the DOA angles performed with the esti-

mated mutual coupling coefficients. Several Monte Carlo experiments are realized

and it is observed that the refined angle estimates are more accurate than the initial

DOA estimates in unknown mutual coupling. The computational load of two dimen-

sional spectrum search is reduced and the negative effect of mutual coupling between

the sensors is eliminated with the algorithm in [34]. The organization of this chapter

is as follows. In the first part, problem formulation and algorithm steps are explained.

In the second part, the simulation results for 2-D spectral MUSIC and the method in

[34] are presented.
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4.1 Problem Statement

In this section, DOA estimation in the presence of known and unknown mutual cou-

pling and estimation of mutual coupling coefficients will be presented. Applied algo-

rithm steps [34] will be described.

4.1.1 DOA estimation with Known Mutual Coupling

It is assumed that uniform rectangular array is composed of M × N array elements

which are positioned with half wavelength, λ/2 , interval. K narrow-band source

signals ,(θ1, ϕ1), ..., (θK , ϕK), are uncorrelated with noise n(t) which is zero-mean,

white and Gaussian with variance σ2. θ and ϕ are the azimuth and elevation angles

of source signals respectively. If the sensors are identical and far-field assumption is

made, sensor output vector of M ×N element array is given as:

x(t) = CAs(t) + n(t) (4.1)

where C is MN×MN mutual coupling matrix, A is the steering matrix, s(t) is source

signal vector and n(t) is noise vector respectively. Columns of the steering matrix A

are composed of steering vectors a(θi, ϕi) which is defined as

a(θi, ϕi) = ay(θi, ϕi)⊗ ax(θi, ϕi), i = 1, .., K (4.2)

where K is the number of sources and the expression ⊗ denotes the Kronecker tensor

product. ay(θi, ϕi) and ax(θi, ϕi) are phase expression caused by the propagation

delay of the array elements and A = [a(θ1, ϕ1), . . . , a(θK , ϕK)] is the array steering

matrix composed of a(θi, ϕi).

ap(θi, ϕi) = [1, βp(θi, ϕi), ..., βp
N−1(θi, ϕi)]

T , p = x, y (4.3)

βx(θi, ϕi) = exp{j 2πdx
λ

cos θisinϕi}, p = x (4.4)

βy(θi, ϕi) = exp{j 2πdy
λ

sin θisinϕi}, p = y (4.5)

In (4.4) and (4.5), dx and dy are the distance between the sensors in x and y axis, λ,

is the wavelength, θi and ϕi are the azimuth and elevation angles which the estimator
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try to find respectively. Mutual coupling coefficients are expressed as cx, cy, cxy.

Mutual coupling is rapidly decreasing with increasing distance between the array

elements.MN×MN mutual coupling matrix is band symmetric Toeplitz matrix and

given as in (4.6).

C =



C1 C2 0 . . . 0

C2 C1 C2 . . . 0
... . . . . . . . . . ...

0 . . . C2 C1 C2

0 . . . 0 C2 C1


(4.6)

C1 = toeplitz{[1, cx, 0, . . . , 0]} (4.7)

C2 = toeplitz{[cx, cxy, 0, . . . , 0]} (4.8)

The covariance matrix of y(t) can be derived as,

Rx = E
{
x(t)xH(t)

}
= CARsA

HCH + σ2I (4.9)

where (.)H denotes the conjugate transpose of a matrix, Rs is the source correlation

matrix, and I is the identity matrix. Es and En are the eigenvectors obtained from the

singular value decomposition of sample correlation matrix and they span the signal

and noise subspaces respectively. The manifold matrix is defined as Ca(θ, ϕ) in

mutual coupling condition and it is orthogonal to the noise subspace matrix En.∥∥EH
n Ca(θi, ϕi)

∥∥2

2
= 0, for i = 1, 2, . . . , K. (4.10)

In known mutual coupling case, 2-D MUSIC algorithm estimates the DOA angles as

the maxima of the following spectrum,

PMUSIC(θ, ϕ) =
1

‖EH
n Ca(θ, ϕ)‖2 (4.11)

4.1.2 DOA estimation with Unknown Mutual Coupling

DOA estimation performance of 2-D MUSIC algorithm degrades if the mutual cou-

pling matrix, C, is unknown. To resolve mutual coupling effect, the sensors located

on the boarders of URA are set as auxiliary sensors. (M− 2)× (N− 2) size of the
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central portion of the array output is used for DOA angle estimation. The signals

received in new condition is modeled as in (4.12),

x̃(t) = Px(t) = PCAs(t) + Pn(t) (4.12)

where P is a [(M− 2)× (N− 2)]×MN matrix and J is a (N− 2)× N size matrix

defined in (4.13) and (4.14).

P =


O J . . . O O
...

... . . . ...
...

O O . . . J O

 (4.13)

where O is a zero matrix of size (N− 2)× N.

J =


0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0

 (4.14)

If we define,

Pn(t) = ñ(t), PC = C̃ (4.15)

The signals received from the middle subarray of URA can be written as

x̃(t) = C̃As(t) + ñ(t) (4.16)

Then, correlation matrix of the received signals can be shown as in (4.17).

R̃x = E
{
x̃(t)x̃H(t)

}
= C̃ARsA

HC̃H + σ2Ĩ (4.17)

Using singular value decomposition, we can obtain Ẽs and Ẽn matrices whose columns

span the signal and noise subspaces of middle subarray correlation matrix respec-

tively. The steering matrix of the middle subarray of URA, ã(θ, ϕ), can be defined as

follows,

ã(θ, ϕ) = ãy(θ, ϕ)⊗ ãx(θ, ϕ) (4.18)

ãx(θ, ϕ) =
[
1, βx(θ, ϕ), . . . , βN−3

x (θ, ϕ)
]T

(4.19)

ãy(θ, ϕ) =
[
1, βy(θ, ϕ), . . . , βM−3

y (θ, ϕ)
]T

(4.20)
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The middle URA manifold vector in unknown sensor coupling is presented as C̃a(θ, ϕ).

The manifold vector can be rewritten in terms of the ideal manifold vector of central

portion of URA as c(θ, ϕ)ã(θ, ϕ) which will be illustrated from (4.21) to (4.23) [34].

The steering matrix C̃a can be reformulated as,

C̃a =


C̃2 C̃1 C̃2 0 . . . 0

0 C̃2 C̃1 C̃2 . . . 0
...

... . . . . . . . . . ...

0 . . . 0 C̃2 C̃1 C̃2




ax

axβy
...

axβ
M−1
y


= ãy ⊗

(
C̃2ax + C̃1axβy + C̃2axβ

2
y

)
(4.21)

where C̃1 and C̃2 are the (M− 2)× N matrices which construct the mutual coupling

matrix of middle URA. ax and ãy are the steering vectors defined in (4.3) and (4.20),

respectively. The same approach in (4.21) can also be applied for C̃1 and C̃2 matrices

as,

C̃1ax =
(
cx + βx + cxβ

2
x

)
ãx

C̃2ax =
(
cxy + cyβx + cxyβ

2
x

)
ãx.

(4.22)

Then, utilizing (4.22) in (4.21) we get,

C̃a =
(
βxβy + βy

(
1 + β2

x

)
cx + βx

(
1 + β2

y

)
cy

+
(
1 + β2

x

) (
1 + β2

y

)
cxy
)
ãy ⊗ ãx

= c(θ, ϕ)ã(θ, ϕ).

(4.23)

where c(θ, ϕ) denotes mutual coupling which is scalar and different from zero. Then,

the DOAs can be estimated directly by using the orthogonality between ã(θi, ϕi) and

ẼH
n as in (4.24) [34].∥∥∥ẼH

n C̃a(θi, ϕi)
∥∥∥ = 0 =⇒

∥∥∥ẼH
n ã(θi, ϕi)

∥∥∥ = 0, for i = 1, . . . , K (4.24)

where K is the number of uncorrelated signals. Finally, we estimate DOA angles in

the presence of unknown mutual coupling with the K largest peaks of the function

defined in (4.25).

PMU(θ, ϕ) =
1∥∥∥ẼH

n ã(θ, ϕ)
∥∥∥2 (4.25)

31



4.1.3 Mutual Coupling Coefficient Estimation

Mutual coupling coefficients are estimated using estimated DOA angles obtained in

section 4.1.2 and the output of full array including auxiliary sensors. Utilizing the

band symmetric Toeplitz property of C1 and C2 matrices which form the mutual

coupling matrix, the following equation can be written [27, 30].

Ciax = Txci i = 1, 2 (4.26)

where c1 = [1, cx]
T , c2 = [cy, cxy]

T and Tx = (Tx1 + Tx2) is a matrix of size N× 2.

We also define Ty = (Ty1 + Ty2), which is a matrix of size M× 2. Tx and Ty

matrices are defined as,

Tx1ij =

axi+j−1
i+ j ≤ N + 1

0 otherwise.
(4.27)

Tx2ij =

axi−j+1
i ≥ j ≥ 2

0 otherwise.
(4.28)

Ty1ij =

ayi+j−1
i+ j ≤M + 1

0 otherwise.
(4.29)

Ty2ij =

ayi−j+1
i ≥ j ≥ 2

0 otherwise.
(4.30)

Then, rewriting (4.26) with Tx and Ty matrices, we have the following equation to

solve the mutual coupling coefficients.

Ca = (Ty ⊗Tx)

 c1

c2

 = Tc (4.31)

T is orthogonal to the matrix, En, which spans the noise subspace of full array output

covariance matrix.

∥∥EH
n T(θi, ϕi)c

∥∥2

2
= 0, i = 1, 2, ...K (4.32)
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where K is the number of sources. Estimated DOA angles in section 4.1.2 are written

in (4.32), and we define a Q matrix in equation (4.33).

Q =


EH

n T(θ̃1, ϕ̃1)
...

EH
n T(θ̃K , ϕ̃K)

 = [q1 q2 q3 q4] (4.33)

Define a Q2 = [ q2 q3 q4] matrix and apply least squares method to the equations in

(4.32) and (4.33), mutual coupling coefficients can be estimated as in (4.34).

[cx, cy, cxy]
T = Q2

†q1 (4.34)

where (.)† denotes pseudo-inversion of a matrix.

4.2 Simulation Results

In this section, performance of the applied algorithm [34] for URA composed of 10

rows and 10 columns with half wavelength, λ/2 ,interval is shown with different

simulations. The source signals are generated equal power and they are uncorre-

lated with each other. Source signals are Gaussian processes and the additive noise

is assumed to be temporally and spatially stationary, zero-mean white Gaussian and

statistically independent of the signals term. To resolve the uncorrelated signals, the

scanning is performed over angle area [0◦, 90◦] × [0◦, 90◦] for azimuth and elevation

angles. Rough search precision and refined search precision are 1◦ and 0.1◦ respec-

tively. Mutual coupling coefficients are assumed to be cx = cy = 0.3527 + 0.4854i,

cxy = 0.0927 − 0.2853i. The simulation model consists of four signal arriving at

angles (74◦.132, 35◦.095), (40◦.125, 20◦.142), (54◦.112, 66◦.131),

(28◦.119, 41◦.086). The estimation accuracy is measured by RMSE of 100 indepen-

dent Monte Carlo trials for different SNR levels and snapshots.
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In Figure 4.1, 4.2, 4.3 and 4.4 are the simulation results of SNR and number of snap-

shots dependencies of four sources. The performance of applied method and standard

MUSIC algorithm is simulated in the presence of unknown mutual coupling.

In Figure 4.1 and 4.2, SNR level increased from -10dB to 10dB for azimuth and

elevation estimation and in Figure 4.3 and 4.4, the number of snapshots increased

form 50 to 1000 to compare the RMSE of the applied method with the MUSIC al-

gorithm. As seen in these figures, the applied method has an important performance

increase over the standard MUSIC algorithm. The RMSE of applied algorithm de-

creases close to zero as SNR level or snapshots increases while the RMSE of the

standard MUSIC algorithm remains at a constant error value. If the two-dimensional

spectrum search is done with a resolution 0.1◦, then 901 × 901 = 811801 spectral

point must be calculated by using MUSIC algorithm. Using twice search method in

[34] 91× 91+4× (21× 21) = 10045 spectrum points are calculated.
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Figure 4.1: Performance of the algorithms for azimuth angle estimation with respect

to increasing SNR, snapshots = 500
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Figure 4.2: Performance of the algorithms for elevation angle estimation with respect

to increasing SNR, snapshots = 500
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Figure 4.3: Performance of the algorithms for azimuth angle estimation with respect

to increasing snapshots, SNR = -10dB
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Figure 4.4: Performance of the algorithms for elevation angle estimation with respect

to increasing snapshots, SNR = -10dB
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In Figure 4.5 and 4.6, mutual coupling coefficient estimation performance of the ap-

plied algorithm is simulated for different SNR levels and snapshots. The estimated

DOA angles in Figure 4.1, 4.2, 4.3 and 4.4 are used for estimation of coupling co-

efficients. In Figure 4.5 SNR level is increased form -10dB to 10dB. In Figure 4.6

number of observations increased from 50 to 1000.

In Figure 4.5 and 4.6, it is illustrated that RMSE of coupling coefficients approaches

to zero and estimated coefficient values are approximate to the actual values as the

SNR level and snapshots increase. We also observe that estimated azimuth and el-

evation angles in previous step increased the coupling coefficient estimation perfor-

mance.
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Figure 4.5: Performance of the algorithms for mutual coupling coefficients estimation

with respect to increasing SNR, snapshots = 500
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Figure 4.6: Performance of the algorithms for mutual coupling coefficients estimation

with respect to increasing snapshots, SNR = 0dB
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In Figure 4.7, 4.8, 4.9 and 4.10 are simulation results of DOA estimation using esti-

mated coupling coefficients and full array output of URA including auxiliary sensors.

The results are compared to the applied algorithm’s DOA estimation performance in

the presence of unknown mutual coupling.

In Figure 4.7 and 4.8 SNR level increased from -10dB to 10dB and in Figure 4.9 and

4.10 number of snapshots increased form 50 to 1000 to estimate azimuth and elevation

angles of source signals. We observe from figures that, DOA estimation accuracy of

the applied algorithm which uses estimated coupling coefficients and the full array

output vector is better than the DOA estimation results obtained in the presence of

unknown mutual coupling. Thus, negative effect of mutual coupling is eliminated in

DOA estimation.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

SNR(dB)

R
M

S
E

 o
f 
A

zi
m

u
th

 (
D

e
g

re
e

)

 

 
RMSE of azimuth angle for algorithm in [34] with unknown coupling
RMSE of azimuth angle for standard MUSIC with estimated coupling

Figure 4.7: Performance of the algorithms for azimuth angle estimation with respect

to increasing SNR, snapshots = 500
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Figure 4.8: Performance of the algorithms for elevation angle estimation with respect

to increasing SNR, snapshots = 500
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Figure 4.9: Performance of the algorithms for azimuth angle estimation with respect

to increasing snapshots, SNR = -10dB
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Figure 4.10: Performance of the algorithms for elevation angle estimation with re-

spect to increasing snapshots, SNR = -10dB
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CHAPTER 5

DOA ESTIMATION WITH NONUNIFORM LINEAR ARRAY

IN THE PRESENCE OF MUTUAL COUPLING AND

GAIN-PHASE MISMATCH

In this chapter, direction of arrival estimation with nonuniform linear array(NLA)

in the presence of mutual coupling and gain-phase mismatches is considered. Self-

calibration method in [29] is implemented to estimate DOAs, gain-phase mismatches

and mutual coupling coefficients iteratively without using any calibration sources.

The performance results of the algorithms in [29] and [30] are compared with various

simulations.The estimation accuracy of the DOA angles is highly dependent to mu-

tual coupling and gain/phase mismatch coefficients estimation. The self-calibration

method in [29] is an eigenstructure based method which estimates mutual coupling

and gain/phase mismatch error coefficients by using the eigenvector corresponding

to the smallest eigenvalue of a matrix. The estimated coefficients are used to mini-

mize the criterion functions to refine the DOA estimates iteratively. Meanwile, the

iterative method proposed in [30] minimizes the cost functions of mutual coupling

and gain/phase mismatch with a Capon-based search function. The array perturba-

tion coefficients are estimated iteratively to minimize the estimation error below a

defined threshold level. The organization of this chapter is as follows. In the first

part, nonuniform linear array signal model will be described. The detailed steps of

joint estimation of DOAs, gain/phase error and mutual coupling coefficients are ex-

plained in the second part. In the third part, simulation results of algorithms with

different array models is presented.
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5.1 Signal Model

Consider K narrow-band uncorrelated signals s1(t), s2(t), ..., sK(t) impinging on an

M element ULA from directions θ1, θ2, ..., θK respectively, where inter element spac-

ing is equal to half wavelength, (λ/2). It is assumed that signals are stationary, zero-

mean random process and uncorrelated with the noise. Sensor noises are zero-mean,

white and Gaussian with variance σ2. The array output is written as [30],

x(t) = CΓAs(t) + n(t) (5.1)

where x(t) = [x1(t), x2(t), · · · , xM(t)]T , A = [a(θ1), a(θ2), ..., a(θK)],

s(t) = [s1(t), s2(t), · · · , sK(t)]T and n(t) = [n1(t), n2(t), · · · nM(t)]T denote re-

ceived signal vector, ideal steering matrix, source signal vector and noise vector, re-

spectively. The columns of steering matrix A is constructed by the steering vectors

a(θ) defined as a(θk) = [1, β1
k , β

2
k , · · · , βM−1

k ]T where βk = exp(−jπ sin(θk)), (k =

1, 2, · · · , K).C denotes M×M mutual coupling matrix constructed by 1×M mutual

coupling coefficient vector, c = [c0, · · · , ct]T and Γ = diag{µ1 exp−jΨ1 , µ2 exp−jΨ2 ,

· · · , µM exp−jΨM} is the M×M gain/phase error matrix where µm and Ψm denotes

the gain and phase of m-th sensor. NLA discussed in this algorithm is not an arbitrary

nonuniform linear array. NLA is an array with N sensors which are located at some

N places of M-element ULA defined in (5.1). Inter-element spacing between (n-1)-th

and n-th sensor is λ
2
dn where dn is an integer. So, the n-th array element in NLA is

located on the mn-th position in the ULA, as

mn = 1 +
n∑
k=

dk. (5.2)

where 1 + d1 + d2 + · · · + dN = M . Hence, the array output of the NLA is defined

as

x̃(t) = F′CFΓAs(t) + F′n(t) (5.3)

where

[F′]ij =

1 i = n, j = mn

0 otherwise is a N ×M matrix,
(5.4)

[F]ij =

1 i = j = mn

0 otherwise is a M ×M matrix.
(5.5)
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5.2 Joint Estimation of DOAs and Array Perturbations

We can interpret the array covariance matrix as

R = E[x̃(t)x̃H(t)] = F′CFΓARsA
HΓHFHCHF′H + σ2IN (5.6)

where Rs is source correlation matrix and and IN is the identity matrix. Performing

eigendecomposition of R, we can obtain Es and En matrices which span signal and

noise subspace of array output covariance matrix respectively. Columns of F′CFΓA

span the signal subspace, its column F′CFΓa(θi), (i = 1, · · · ,K) will be orthogonal

to noise subspace. We can obtain the following equation to estimate DOA angles.

‖EH
NF′CFΓa(θi)‖2 = 0, i = 1, 2, · · · , K. (5.7)

The minimization of equation (5.7) with respect to [30] will be described by an itera-

tive process in the following steps.

5.2.1 A:Initialization

1-)Set the iteration number to zero: i=0.

2-)Set the initial mutual coupling matrix and gain-phase matrix as an M×M identity

matrix.

C(0) = IM ,Γ
(0) = IM , (5.8)

3-) Compute the sample covariance matrix from Nsnap samples.

R̂ =
1

Nsnap

Nsnap∑
n=1

x̃(n)x̃(n)H (5.9)

4-)Perform eigendecomposition on sample covariance matrix, R̂, and get the noise

subspace matrix EN .

5.2.2 B:DOA Estimation

1-)Search the K highest peaks of the following spatial spectrum to estimate DOAs.

P (θ)(i) =
1

‖EH
NF′C(i)FΓ(i)a(θ))‖2

(5.10)
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5.2.3 C:Gain and Phase Estimation

1-)Calculate the N× N matrix Z(i) defined as

Z(i) =
K∑
k=1

{(EH
NF′C(i−1)Q

(i)
k F′H)HEH

NF′C(i−1)Q
(i)
k F′H} (5.11)

where Q
(i)
k = diag{a(θ

(i−1)
k )}.

2-)Perform eigendecomposition on Z(i) matrix to get the eigenvector g̃(i) which cor-

responds to the minimum eigenvalue of Z(i)

g̃(i) = Vmin{Z(i)} =
[
[Γ](i)m1m1

[Γ](i)m2m2
, . . . [Γ](i)mNmN

]T
. (5.12)

Then, gain/phase matrix Γ(i) can be computed from g̃(i) as

Γ(i) = F′Hdiag{g̃(i)}F′. (5.13)

5.2.4 D:Mutual Coupling Estimation

1-)Calculate the M ×M matrix W(i) defined as

W(i) =
K∑
k=1

{(EH
NF′T

(i)
k )HEH

NF′T
(i)
k } (5.14)

where M × (t+ 1) matrix T ≡ T1 + T2 as

[T1]p,q =

[β]p+q−1 p+ q ≤M + 1

0 otherwise
(5.15)

[T2]p,q =

[β]p+q−1 p ≥ q ≥ 2

0 otherwise
(5.16)

and β is a M× 1 vector defined as

β
(i)
K = FΓ(i)a(θk

(i−1)) (5.17)

2-)Perform eigendecomposition on W(i) matrix to get the eigenvector c(i) which cor-

responds to the minimum eigenvalue of W(i) and as well as the 1×M mutual coupling

coefficient vector.

c(i) = Vmin{W (i)} = [c0, · · · , ct]T (5.18)

Then, mutual coupling matrix C(i) can be computed from

C(i) = toeplitz(c(i)). (5.19)
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5.2.5 E:Convergence Check

Repeat steps B to D until

‖C(i)FΓ(i)A(i−1) −C(i−1)FΓ(i−1)A(i−2)‖2 < δ (5.20)

where δ is a threshold value.

5.3 Simulations

In this section, performance of the applied method in [29] is compared with the

method in [30] with three simulation scenarios. The estimation performance of DOAs,

gain/phase error and mutual coupling coefficients are simulated for ULA and NLA

array geometries with different SNR levels and snapshots.

5.3.1 Simulation-1:NLA Simulation Results

In the first simulation, the method in [29] and [30] are simulated for N=7 element

nonuniform linear array. K = 2 uncorrelated sources with the assumed DOAs from

−20◦ and 30◦ impinges to the array. The additive sensor noises are, zero-mean, i.i.d

and white Gaussian process with variance σ2. Suppose the Gaussian signals are of

equal power, σ2
K . Then, the input SNR is defined as 10 log10(σ2

K/σ
2). The inter-

element spacing of the NLA is d1 = 0 , d2 = 1 , d3 = 1 , d4 = 1 , d5 = 2 ,

d6 = 1 , d7 = 3. Mutual coupling coefficient vector is, c = [1, 0.4 + 0.3j,−0.16 +

0.12j]T . The gain/phase error coefficients are given by, [1, 1.1375+0.2376j, 0.9464+

0.5511j, 1.0981 + 0.0622j, 1.0838 + 0.11j, 1.0331 + 0.4140j, 1.1399 + 0.1125j]. The

performance of the algorithms are shown with root mean square error(RMSE) of the

estimates for DOA, gain/phase error coefficients and mutual coupling coefficients

from 100 Monte Carlo trials for each SNR levels and snapshots as:

RMSEθ =

√√√√ 1

100K
(

100∑
n=1

L∑
n=1

‖θn − θ‖2
F ) (5.21)

RMSEΓ =

√√√√ 1

100
(

100∑
n=1

‖g̃n − g̃‖2
F/‖g̃‖2

F ) (5.22)
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RMSEc =

√√√√ 1

100
(

100∑
n=1

‖cn − c‖2
F/‖c‖2

F ) (5.23)

where θn, g̃n and c are the estimates of DOA angle, gain-phase and mutual coupling

matrix at the n-th Monte Carlo trial, respectively. The algorithm proposed in [30] is

expressed as "Friedlander’s method" and the algorithm in [29] is expressed as "self-

calibration method" in the following simulation results.

In Figure 5.1 and 5.2 are the estimation results of the algorithms for two uncorre-

lated source signals with respect to increasing SNR and number of snapshots. The

RMSE of the self-calibration method decreases to zero as the SNRs and number of

snapshots increase. The RMSE values of Friedlander’s method is larger than the self-

calibration method for all SNR levels and number of snapshots. As it is seen from

these figures, the self-calibration method shows good estimation accuracy comparing

to Friedlander’s method.

The RMSE performance of gain/phase error coefficients estimation versus different

SNR levels and number of snapshots are presented in Figure 5.3 and 5.4, respectively.

It is observed that, the self-calibration method achives lower RMSE bound comparing

to Friedlander’s method for all SNRs and snapshots of data.

In Figure 5.5 and 5.6, the performance of the algorithms for mutual coupling coef-

ficients estimation with respect to increasing SNR and number of snapshots is illus-

trated. We see that, the RMSE of self-calibration method decreases to an acceptable

level as SNR and number of snapshots increase. However, the RMSE of Friedlander’s

method stays at a constant error level at high SNRs and number of snapshots.

In Simulation-1, it is concluded that, the self-calibration method is optimal for es-

timating DOA angles, gain-phase and mutual coupling coefficients with NLA con-

figuration as compared Friedlander’s method. The RMSE of self-calibration method

decrease close to zero as SNR level and number of snapshots increase. However, the

RMSE of Friedlander’s algorithm can’t decrease below a constant error value as SNR

level and number of snapshots increase. The reason of the simulation results from

Figure 5.1 to 5.6 is that the DOA estimation performance depends on the estimation

accuracy of gain/phase error and mutual coupling coefficients. To apply Friedlander’s
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method with 7-element NLA geometry, three rows of a steering matrix are set to zero

for 10-element ULA. Also, Friedlander’s method needs to calculate the inverse of the

Z(i) and W(i) matrices to estimate gain/phase and coupling coefficients in Equation

(5.11) and (5.14), respectively. So, the singularity in these matrices causes degrada-

tion of estimation accuracy and increase RMSE of simulation results. Meanwhile,

the self-calibration method uses the eigendecomposition method to estimate the array

perturbations instead of calculating the inverse matrix. Thus, the estimation accuracy

of self calibration method is better than Friedlander’s method with nonuniform linear

array.
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DOA estimation, method in [29] with NLA
DOA estimation, method in [30] with NLA

Figure 5.1: Simulation-1: DOA estimation performance of the algorithms for NLA

with respect to increasing SNR, snapshots = 500
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DOA estimation, method in [30] with NLA

Figure 5.2: Simulation-1: DOA estimation performance of the algorithms for NLA

with respect to increasing snapshots, SNR = 0dB
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Gain/Phase estimation, method in [30] with NLA

Figure 5.3: Simulation-1: Gain/Phase estimation performance of the algorithms for

NLA with respect to increasing SNR, snapshots = 500
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Gain/Phase estimation, method in [29] with NLA
Gain/Phase estimation, method in [30] with NLA

Figure 5.4: Simulation-1: Gain/Phase estimation performance of the algorithms for

NLA with respect to increasing snapshots, SNR = 0dB
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Figure 5.5: Simulation-1: Mutual Coupling estimation performance of the algorithms

for NLA with respect to increasing SNR, snapshots = 500
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Figure 5.6: Simulation-1: Mutual Coupling estimation performance of the algorithms

for NLA with respect to increasing snapshots, SNR = 0dB
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5.3.2 Simulation-2:NLA and ULA Simulation Results

In the second simulation, the self-calibration method and Fridlander’s method are

compared with the same parameters in Simulation-1, except Friedlander’s method

is applied with 7-element ULA and the self-calibration method is applied with 7-

element NLA configurations. The aim of the second simulation part is to see the

performance of the algorithms with the array models where they are proposed to show

the optimal performance to estimate DOA angles, mutual coupling and gain/phase

error coefficients.

The RMSE performance of DOA estimation versus SNR and number of snapshots are

presented in Figure 5.7 and 5.8. As seen in these figures, the RMSE of Friedlander’s

method shows slightly better performance than the self-calibration method because

of no singularity problem for estimating coupling and gain/phase error coefficients.

Meanwhile, DOA estimation performance of self-calibration method approaches to

Friedlander’s method as SNRs and number of snapshots increase.

In Figure 5.9 and 5.10, we have the estimation performance of the algorithms for

gain/phase error coefficients with respect to increasing SNR and snapshots. As it is

seen from these figures, Friedlander’s method again shows better performance than

self-calibration method owing to the better estimation accuracy of the DOA angle

estimates found in the first step.

Figure 5.11 and 5.12 show the results of the algorithms for mutual coupling coeffi-

cient estimation in terms of SNRs and number of snapshots, respectively. It is ob-

served that, the self-calibration method can’t achieve the RMSE bound of Friedlan-

der’s method because the estimated DOAs and gain/phase error coefficients by Fried-

lander’s method are more accurate than the estimates found in the self-calibration

method which are used for mutual coupling coefficient estimation.

As a result, Friedlander’s method has better performance than the self-calibration

method because of no missing row existence in steering matrix of ULA array and

no singularity problem exists to calculate the inverse of Z(i) and W(i) matrices in

perturbation coefficients estimation.
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DOA estimation, method in [29] with NLA
DOA estimation, method in [30] with ULA

Figure 5.7: Simulation-2: DOA estimation performance of the algorithms for NLA

and ULA with respect to increasing SNR, snapshots = 500
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DOA estimation, method in [30] with ULA

Figure 5.8: Simulation-2: DOA estimation performance of the algorithms for NLA

and ULA with respect to increasing snapshots, SNR = 0dB
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Figure 5.9: Simulation-2: Gain/Phase estimation performance of the algorithms for

NLA and ULA with respect to increasing SNR, snapshots = 500
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Gain/Phase estimation, method in [29] with NLA
Gain/Phase estimation, method in [30] with ULA

Figure 5.10: Simulation-2: Gain/Phase estimation performance of the algorithms for

NLA and ULA with respect to increasing snapshots, SNR = 0dB
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Mutual coupling estimation, method in [29] with NLA
Mutual coupling estimation, method in [30] with ULA

Figure 5.11: Simulation-2: Mutual Coupling estimation performance of the algo-

rithms for NLA and ULA with respect to increasing SNR, snapshots=500
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Mutual coupling estimation, method in [29] with NLA
Mutual coupling estimation, method in [30] with ULA

Figure 5.12: Simulation-2: Mutual Coupling estimation performance of the algo-

rithms for NLA and ULA with respect to increasing snapshots, SNR = 0dB

56



5.3.3 Simulation-3:ULA Simulation Results

In the last simulation, the self-calibration method and Fridlander’s method are ap-

plied with 7-element ULA. The remaining simulation parameters are same with the

previous simulations.

In Figure 5.13 and 5.14, the performance results of the algorithms are illustrated

for DOA estimation with respect to increasing SNR and number of snapshots. As

seen in these figures, the RMSE of Friedlander’s method decrease to zero as SNR

and number of snapshots increase. However, the RMSE of self-calibration method

stays at a constant level at high SNRs and number of snapshots. It can be observed

that, Friedlander’s method estimates coupling and gain/phase coefficients accurately

comparing to self-calibration method for ULA which are used in the estimation of

DOAs.

In Figure 5.15 and 5.16 are the simulation results of SNR and number of snapshots

dependencies of the algorithms for gain/phase error coefficients estimation. In Figure

5.15, it is illustrated that Friedlander’s method shows better RMSE performance for

all SNR values comparing to the self-calibration method. In Figure 5.16, it is seen

that the RMSE of Friedlander’s method decrease to zero for increasing number of

snapshots whereas the RMSE values of the self-calibration method stay at a constant

level at high SNR values. It can be seen that, the estimated DOA angles in the first

step has an important affect for gain/phase error coefficients estimation.

Figure 5.17 and Figure 5.18 present the results of the algorithms for mutual coupling

coefficient estimation. As seen in these figures, Friedlander’s method achieves lower

RMSE bound for all SNRs and number of snapshots comparing to the self-calibration

method. As the estimated DOAs and gain/phase error coefficients are used in the

mutual coupling coefficients estimation, the accuracy of these estimates has a large

impact for mutual coupling coefficients estimation.

We can conclude that, the self-calibration algorithm which estimates DOAs, gain/phase

error and mutual coupling coefficients with the eigenvector that corresponds to the

minimum eigenvalue of Z(i) and W(i) matrices can’t provide good estimation ac-

curacy with uniform linear array. Friedlander’s method, which minimizes the cost
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function of array perturbations with Capon-based search function provides good esti-

mation performance with ULA configuration.
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DOA estimation, method in [29] with ULA
DOA estimation, method in [30] with ULA

Figure 5.13: Simulation-3: DOA estimation performance of the algorithms for ULA

with respect to increasing SNR, snapshots = 500
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DOA estimation, method in [29] with ULA
DOA estimation, method in [30] with ULA

Figure 5.14: Simulation-3: DOA estimation performance of the algorithms for ULA

with respect to increasing snapshots, SNR = 0dB
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Gain/Phase estimation, method in [29] with ULA
Gain/Phase estimation, method in [30] with ULA

Figure 5.15: Simulation-3: Gain/Phase estimation performance of the algorithms for

ULA with respect to increasing SNR, snapshots = 500
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Gain/Phase estimation, method in [29] with ULA
Gain/Phase estimation, method in [30] with ULA

Figure 5.16: Simulation-3: Gain/Phase estimation performance of the algorithms for

ULA with respect to increasing snapshots, SNR = 0dB
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Mutual coupling estimation, method in [29] with ULA
Mutual coupling estimation, method in [30] with ULA

Figure 5.17: Simulation-3: Mutual Coupling estimation performance of the algo-

rithms for ULA with respect to increasing SNR, snapshots = 500
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Mutual coupling estimation, method in [29] with ULA
Mutual coupling estimation, method in [30] with ULA

Figure 5.18: Simulation-3: Mutual Coupling estimation performance of the algo-

rithms for ULA with respect to increasing snapshots, SNR = 0dB
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CHAPTER 6

PERFORMANCE COMPARISON OF PRIOR KNOWLEDGE

BASED DOA ESTIMATION ALGORITHMS

In this chapter, direction of arrival estimation using a-priori knowledge about the lo-

cation and correlation state of the signal sources is presented. Taking into account

this prior knowledge in the estimation of the unknown sources, performance compar-

ison of these algorithms is implemented with different conditions. It is observed from

the simulations that, prior knowledge about some of the source positions and their

correlation state is useful to estimate coherent or highly correlated sources which are

closely separated. In this chapter, performance comparison of prior knowledge based

methods such as Constrained MUSIC [2], PLEDGE [3]-[33], POWDER [4] and the

subspace based Forward Backward Spatial Smoothing MUSIC(FBSS-MUSIC) in [5]

and Root-MUSIC in [42] are presented with various simulations. The estimation

accuracy of the methods for different correlation level of signal sources are also pre-

sented in the simulations.

DOA estimation problem is turned into a polynomial rooting problem in the ULA

geometry for POWDER and PLEDGE methods. PLEDGE method is an extension

of MODE [32] method which is an ML based method proposed for ULA. POWDER

method is also applicable for any array geometries. However, the computational com-

plexity in minimization step of POWDER method increases for other array geome-

tries. POWDER method has less computational load for ULA implementation [4].

Constrained MUSIC method estimates DOA angles with examining the roots of the

spectrum polynomial for ULA. Constrained MUSIC method also has an extension

for 2-D DOA estimation. This method is applicable for UCA array to estimate the
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azimuth and elevation angles. The DOAs are estimated with spectral search based ap-

proach for UCA. Root MUSIC is a fast subspace method which estimates DOAs with

polynomial rooting for ULA. FBSS-MUSIC method is a search based method which

can be only applied for ULA due to the Vandermode structure of array manifold. The

organization of this chapter is as follows. The signal model and algorithm steps of

prior knowledge based methods are given in the second and third part, respectively.

In the fourth part, simulation results of the algorithms are illustrated.

6.1 Signal Model

Assume that d narrow-band signals impinging on an m element ULA from directions

θ̄ =
[
θT ϑT

]T where θ and ϑ indicate DOA angles of unknown and known sources,

respectively. Inter element spacing between the array elements is equal to half wave-

length as (λ/2). The signals and noise are modeled as zero-mean, i.i.d. circularly

symmetric complex Gaussian random processes. The array output is written as [43],

y(t) = A(θ̄)x(t) + n(t), t = 0, . . . , N − 1. (6.1)

where x(t) ∈ Cd×1 denotes signal vector, A(θ̄) ∈ Cm×d denotes array steering matrix

and n(t) ∈ Cm×1 denotes noise vector, respectively. Here, m indicates the number of

array elements and d is the number of signal sources. The unknown and known terms

are stated as subindexes u and k, i.e, du means the number of unknown signals. The

spatial covariance matrices of signal and noise vectors represented as cov(x(t)) = P

and cov(n(t)) = σ2I. Then, the covariance matrix of array output can be written as,

R = APAH + σ2I (6.2)

where (.)H denotes conjugate-transpose operator. The steering matrix and covariance

matrix of signal vector are represented as,

A(θ̄) = [A(θ) A(ϑ)] , [Au Ak] (6.3)

P =

Pu Puk

PH
uk Pk

 (6.4)
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In (6.3), Au and Ak denote the steering matrix of unknown sources and known

sources, respectively. In (6.4), Pu, Pk and Puk matrices denote correlation matrix of

unknown signals, known signals and cross correlation matrix of unknown and known

signals, respectively. The assumptions about prior information about known signals

and correlation between the unknown and known signals will be explained in the

algorithm steps of prior-knowledge based methods.

6.2 POWDER Method

Prior Orthogonally Weighted Direction Estimator (POWDER) algorithm [4] exploits

the prior knowledge about some of the DOAs associated to signal sources are known

and correlation state between some of the signal sources. Using the prior information

in the estimator is beneficial as it will be shown in the simulation results. POWDER

algorithm assumes that known and unknown signals are uncorrelated (Puk = 0).

There is no assumption made about the correlation between the subset of unknown

and known signals. Pu and Pk matrices can be uncorrelated or coherent. The algo-

rithm steps of POWDER estimator in [4] will be explained in the following.

Firstly, the noise-free array output covariance matrix is obtained.

R− σ2I = APAH = [Au Ak]

Pu Puk

PH
uk Pk

AH
u

AH
k

 (6.5)

Then, the known signal subspace of the steering matrix is removed by multiplying

the orthogonal projector matrix Π⊥Ak
from the left of equation (6.2) (AH

k Π⊥Ak
= 0)

[3]-[33] as

(R− σ2I)Π⊥Ak
= AuPuA

H
u Π⊥Ak

+ AkP
H
ukA

H
u Π⊥Ak

= AuPuA
H
u Π⊥Ak

= UsΣsV
H
s

(6.6)

In equation (6.6), the second equality is obtained because of Puk = 0. In third equal-

ity, Us,Σs and Vs terms are the singular values of the unknown signal sources gener-

ated by singular value decomposition. In practice, we compute the sample covariance

matrix to estimate R from the array output,

R̂ =
1

N

N∑
t=1

y(t)yH(t) (6.7)
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Performing eigendecomposition of R̂, we can obtain Ês and Ên matrices which span

signal and noise subspace of array output covariance matrix respectively.

R̂ = ÊsΛ̂sÊ
H
s + ÊnΛ̂nÊ

H
n (6.8)

The noise power can be estimated as

σ̂2 =
1

m− d′
Tr(Λ̂n) (6.9)

d′ is the rank of the signal subspace. (d′ = rank(Puk) + rank(Pk)). Using sample

covariance matrix in (6.7) and the noise power estimate in (6.9), (6.6) can be rewritten

as (
R̂− σ̂2I

)
Π⊥Ak

= ÛsΣ̂sV̂
H
s + ÛnΣ̂nV̂

H
n (6.10)

In (6.10), the singular vectors corresponding to unknown source signals are shown

with Ûs and Σ̂s and the ones corresponding to noise subspace are shown with Ûn

and Σ̂n. Using the orthogonality between V̂s and V̂H
n , (6.10) is written as

Ûs =
(
R̂− σ̂2I

)
Π⊥Ak

V̂sΣ̂
−1
s (6.11)

To estimate the unknown signals from Ûs, we define B ∈ Cm×m−du matrix which

spans the null space of steering matrix corresponding to the unknown signals AH
u (i.e

BHAu = 0). Using (6.11) and the equality BHUs = 0, we can write the criterion

function as,

BHÛs = BH
(
R̂− σ̂2I

)
Π⊥Ak

V̂sΣ̂
−1
s (6.12)

where B matrix defined as

B(θ) =


b0 b1 · · · bdu 0

. . . . . . . . .

0 b0 b1 · · · bdu


T

(6.13)

and bi are the coefficients of the polynomial

b0

du∏
i=1

(z − e−jπ sin(θi)) , b0z
du + b1z

du−1 + . . .+ bdu (6.14)

The true DOA angles parameterize B matrix through (6.14), so minimization of

(6.12) with respect to B matrix gives unknown DOA angle estimates. So the DOA es-

timation problem is reduced to polynomial rooting for ULA. A search based method
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should be used for arbitrary arrays in general.

Now, we will express the detailed steps of criterion function minimization. To con-

struct the criterion function, residual vector is defined as ε = vec(ÛH
s B). Then, the

criterion function becomes,

θ̂ = arg min
θ

εHWε (6.15)

where W > 0 is a positive definite weighting matrix. The weighting matrix is chosen

to minimize the asymptotic variance of the unknown doa angle estimates. The ele-

ments of B matrix are collected as vector b = [b0 b1 · · · bdu]T . Using the coefficient

vector b, the residual vector can be written as

ε = vec
(
ÛH
s B
)

=
(
Im−d ⊗ ÛH

s

)
vec(B) , Kb (6.16)

where K = (Im−d ⊗ ÛH
s )Ψ. The selection matrix Ψ is obtained from vec(B) = Ψb.

The identity vec(ABC) = (CT ⊗A)vec(B) is used in (6.16) where the A, B and C

matrices are compatible in dimension. Using (6.16), the criterion function in (6.15)

can be written as

V (θ) = εHWε = bHKHWKb (6.17)

The minimization of the criterion function in (6.17) is done according to weighting

matrix W. The weighting matrix is defined as

W = E[εεH ]−1 (6.18)

which produces the minimum variance estimates of unknown DOAs in (6.17) [44].

In order to find a solution to the weighting matrix in (6.18), using (6.10) the residual

vector in (6.16) is rewritten as

ε = vec
(
ÛH
s B
)

=
(
BT ⊗Σ−1

s VH
s Π⊥Ak

)
vec
(
R̂− σ̂2I

)
, Mf̂

(6.19)

where M = (BT ⊗ Σ−1
s VH

s Π⊥Ak
) and f̂ = vec(R̂ − σ̂2I), respectively. The noise

power estimate can be written as in [45], σ̂2 = 1
m−d′vecH(Im − EsE

H
s )vec(R̂), then

using the noise power estimate in (6.19), f̂ can be written as

f̂ = vec(R̂)− 1

m− d′
vec(Im)vecH(Im − EsE

H
s )vec(R̂) (6.20)
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H matrix can be defined as

H = M

(
Im2 − 1

m− d′
vec(Im)vecH(Im − EsE

H
s )

)
(6.21)

The residual vector can be written in terms of H matrix as, ε = Hvec(R̂). Using the

result in [44], the covariance matrix of R̂ is cov(vec(R̂)) = N−1(RT ⊗ R) Hence,

we find

E[εεH ] =
1

N
H(RT ⊗R)HH (6.22)

which is a full rank matrix respectively. Using (6.22) in (6.18), we can find the

weighting matrix to minimize the cost function in (6.17).

The summary of POWDER method is given as follows [4]:

u 1: Input estimated covariance matrix (R̂), number of source signals (d), num-

ber of non-coherent unknown DOA (du
′), number of non-coherent known DOA

(dk
′), DOA parameters of known sources ϑ, tolerance factor for estimated un-

known DOA angles (tol) or maximum iteration number for minimization(iter).

u 2: Find from the Input, the number of array elements(m), the selection ma-

trix (Ψ), projection matrix orthogonal to the known signal subspace (Π⊥Ak
),

noise subspace eigenvalues of estimated covariance matrix (Λ̂n), signal sub-

space eigenvector of estimated covariance matrix (Ês).

u 3: Estimate the noise power as, (σ̂2 = 1
m−d′Tr(Λ̂n)).

u 4: Find the singular vectors Ûs,Σ̂s and V̂H
s corresponding to (du

′) principal

singular values from the SVD of (R̂− σ̂2I)Π⊥Ak
.

u 5: Initialize B matrix from b = [1 0 · · · 0],K matrix from K = (Im−d⊗ÛH
s )Ψ,

and iteration number to zero (iter = 0).

u 6: repeat

– 7: Find the weighting matrix, Ŵiter.

– 8: Find the estimated unknown DOA angles θ̂iter+1 by minimizing (6.17).

– 9: Find Biter+1 matrix from θ̂iter+1 and update M̂iter+1 from the equation

M = (BT ⊗Σ−1
s VH

s Π⊥Ak
).
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– 10: Increase the iteration number.

u 11: until (|θ̂iter - θ̂iter-1| < tol) OR (iter > itermax).

u 12: Output: θ̂iter as the final estimated unknown DOA angle.

6.3 PLEDGE Method

Prior Knowledge(PLEDGE) [3]-[33] is an extension of Method of Direction Esti-

mation (MODE)[32] algorithm. MODE is a Maximum Likelihood estimator which

minimizes a criterion function according to subspace projection. MODE estimates

all of the angles of arrival and does not use the a-priori information about the known

DOAs. There is no assumption made for signal correlation matrix P for MODE.

Eigendecomposition of sample correlation matrix R̂ as in (6.8) is performed to find

the eigenvectors and eigenvalues Ês, Λ̂s and Ên, Λ̂n corresponding to signal and

noise subspace, respectively. The derivation of MODE and PLEDGE algorithms will

be given from [33] in this section. Define a polynomial which is based on the true

DOA angles as,

b0z
d + b1z

d−1 + . . .+ bd = b0

d∏
i=1

(z − e−jπ sin(θi)). (6.23)

Roots of the polynomial are on the unit circle and conjugate symmetric, where bi =

bd−i
H . Using the polynomial coefficients in (6.23), BH ∈ C(m−d)×m matrix is defined

as

BH =


bd b1 · · · bd0 0

. . . . . . . . .

0 bd · · · b1 b0


T

(6.24)

and bi are the coefficients of the polynomial in (6.23). The criterion function for

MODE algorithm is defined as [32],

VMODE(b) = Tr[B(B̂HB̂)−1BHÊsΛ̂ÊH
s ] (6.25)

where Λ̂ = Λ̂s

−1
(Λ̂s− σ̂2I)2 is the noise free signal subspace eigenvalue matrix, and

(σ̂2 = 1
m−d′Tr(Λ̂n)) is the noise power estimate. B̂ is defined from the estimate of

b = [b0, b1, · · · , bd]T . (B̂HB̂) = I is initialized and the cost function of MODE in
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(6.25) is minimized with estimated b̃ coefficients in iterative process. The criterion

function in (6.25) can be written as

VMODE(b) = ‖Hb‖2 (6.26)

where H matrix is estimated with the coefficient vector b̃. The true DOA angles pa-

rameterize B̂ matrix through equation (6.23), so minimization of (6.26) with respect

to B̂ matrix gives unknown DOA angle estimates. The angles of the roots found from

polynomial (6.23) provide the DOA angle estimates.

We will give a brief summary about the estimation of H matrix from [32] which is

used for minimizing the cost function of MODE and PLEDGE algorithms. Consider

n narrow-band signals on m-element ULA. The rank of signal correlation matrix is

shown as d′. The noise power estimate is calculated from the noise subspace eigen-

values as in (6.27).

σ̂2 =
1

(m− n)
Tr(Λ̂n) (6.27)

The cost function for MODE method is defined as,

θ̂ = arg min
b∈D

fW (b) (6.28)

where the initial value of W is an identity matrix and W = (B̂HB̂). B̂ is constructed

by the estimated b̃ coefficients. In (6.28), D is the non-zero roots of polynomial

defined in (6.23). A matrix with size (m× d′) is defined as,

[s̃1, · · · , s̃n] =


s̃1,1 · · · s̃1,n

· · · · · · · · ·
s̃m,1 · · · s̃m,n

 = Ŝ
(
Λ̂− σ̂I

)1/2

(6.29)

where Ŝ is the (m×d′) signal subspace matrix, and
(
Λ̂− σ̂I

)1/2

is the (d′×d′) square

root of noise free signal subspace eigenvalues. Then, it is observed from (6.29) that,

an equality in (6.30) can be defined as,

BH s̃k =


s̃n+1,k · · · s̃1,k

· · · · · · · · ·
s̃m,k · · · s̃m−n,k

b , S̃kb (6.30)

where BH is an (m−n)×m Slyvester matrix formed in (6.24) and s̃k is a (m×1) vec-

tor which is the nth column of (6.29). S̃k is a (m−n)×(n+1) non-symmetric Toeplitz
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matrix which is formed by the each column of (6.30). Then, assume Cholesky multi-

plier of W matrix is W1/2. Then, a matrix is defined as,

H =


W̃1/2 S̃1

· · · · · ·
W̃1/2 S̃n

 (6.31)

where the size of H matrix is n(m− n)× (n + 1).

Hence, the criterion function for MODE method defined in 6.28 can be rewritten in

terms of H as,

fW (b)‖Hb‖2 (6.32)

where ‖.‖2 denotes the norm of a matrix. Thus, the derivation of H matrix and the

criterion function of MODE in terms of H matrix is summarized.

PLEDGE algorithm is applied to the MODE to use the a-priori knowledge in the

estimator. In PLEDGE, knowing some of the DOA angles means knowing some of

the roots of the polynomial defined in (6.23). The polynomial can be splitted into two

parts as

b0 =
d∏
i=1

(z − e−jπ sin(θi)) = Pk(z)Pu(z) (6.33)

where

Pu(z) = b̃0

du∏
i=1

(z − e−jπ sin(θ̄i)) = b̃0z
du + . . .+ b̃du (6.34)

and

Pk(z) = b̃0

d∏
i=du+1

(z − e−jπ sin(θ̄i)) = c0z
dk + . . .+ cdk (6.35)

Pk(z) is the polynomial of the known DOA angles with dk roots and Pu(z) has du

roots related to the unknown DOA angles. The polynomial coefficients of Pk(z) and

Pu(z) are defined as c = [c0, . . . , cdk ] and b̃ = [b̃0, b̃1, . . . , ˜bdu ], respectively. The

polynomial coefficients of (6.33) can be written as convolution of b̃ and c in the form

of matrix as

b = Cb̃ (6.36)

where C ∈ C(du+1)×(d+1) is a Toeplitz matrix

C =


c0 c1 · · · cdk 0

. . . . . . . . .

0 · · · c0 c1 cdk


T

(6.37)
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and the elements of C matrix is constructed from the known DOAs coefficient vector

c. Using (6.36) in (6.26), the criterion function for the PLEDGE algorithm is defined

as

VPLEDGE(b) = ‖HCb̃‖2 (6.38)

The summary of the PLEDGE algorithm is given as follows [33]:

u 1: Compose Toeplitz C matrix with the known DOA angles.

u 2: Eigendecompose the sample covariance matrix R̂ and initialize

(B̂HB̂)−1 = I. Then form H with the equalities from (6.27) to (6.31).

u 3: Minimizing the cost function in (6.38), find the estimates of b̃ which are

conjugate symmetric and ‖b‖ = 1. Using the estimated coefficients b̃ in (6.36),

form (B̂HB̂)−1 matrix and update H matrix.

u 4: Minimize the PLEDGE cost function in (6.38) again to find polynomial co-

efficients b̃, then find the unknown DOAs by rooting the polynomial in (6.34).

6.4 Constrained-MUSIC Method

Constrained MUSIC(C-MUSIC) [2] method uses a-priori information about the known

DOAs in the estimator. This method applies orthogonal projection to the sample co-

variance matrix of the array output. The known signal subspace extracted by pre-

and post-multiplying orthogonal projection matrix with the sample covariance ma-

trix. Thus, reduced dimension data set only includes signal subspace of unknown

signals. The derivation of the C-MUSIC algorithm [2] is given in this section. The

sample covariance matrix R̂ is calculated from the array output. The eigenstructure

of the covariance matrix is shown as

R̂ = V̂Λ̂V̂H =
[
V̂s V̂n

]Λ̂s 0

0 Λ̂n

V̂H
s

V̂H
n

 (6.39)

where V̂s,Λs and V̂n,Λn denotes signal and noise subspace eigenvectors and eigen-

values, respectively. Define Ac matrix whose columns are constructed from steering
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vectors of known signals. Then, applying QR decomposition to Ac we have,

Ac =
[
Q

(m×dk)
c1 Q

(m×(m−dk))
c2

] T
(dk×dk)
c1

0(m−dk)×dk)

 (6.40)

where m is the number of array elements, dk is number of known signals and (.)H

denotes conjugate transpose, respectively. In (6.40), Qc1 has an orthonormal basis

for the columns of Ac matrix. Spectral MUSIC algorithm [9] minimizes following

function without using the a-priori knowledge about the known sources as,

f(θ) = arg min
θ

aH(θ)V̂nV̂
H
n a(θ) (6.41)

where V̂n is the noise subspace eigenvector of R̂. To use the constrained information

in Qc1 about known DOAs, pre- and post- multiply the correlation matrix with pro-

jection matrix Qc2Q
H
c2 which is orthogonal to the known signals found in (6.40) as,

R̂c = Qc2Q
H
c2R̂Qc2Q

H
c2 (6.42)

where R̂c matrix contains only the unknown signals and noise subspace. The eigen-

structure of R̂c matrix can give the estimates of unknown signals. In [2], another

efficient method is given to estimate unknown signals.

Define Ŝc matrix from (6.42) as

Ŝc = QH
c2R̂Qc2 (6.43)

and (6.42) can be rewritten in terms of Ŝc.

R̂c = Qc2ŜcQ
H
c2 (6.44)

The sample covariance matrix R̂ is m × m, but the Sc matrix is (m − dk) × (m −
dk). Because the known signal subspace removed by Qc2 matrix. The efficiency of

estimating unknown DOA angles with Ŝc instead of R̂c is given in the following.

The eigenstructure of Ŝc matrix is given as,

Ŝc = ÛcΛ̂cÛ
H
c =

[
Û(m−dk×d−dk)
cs Û(m−dk×m−d)

cn

]
×

Λ̂
(d−dk×d−dk)
cs 0

0 Λ̂
(m−d×m−d)
cn


×

ÛH
cs

ÛH
cn


(6.45)
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Multiply ŜcÛc = ÛcΛ̂c from the left by Qc2 and using QH
c2Qc2 = I,we obtain

Qc2ŜcQ
H
c2Qc2Ûc = Qc2ÛcΛ̂c (6.46)

As Qc2ŜcQ
H
c2 = R̂c is defined in (6.43), then (6.46) becomes,

R̂cQc2Ûc = Qc2ÛcΛ̂c. (6.47)

It can be seen from (6.47) that, Qc2Ûc denotes the eigenvectors of R̂c with respect to

the eigenvalues of unknown signals. The criterion function for C-MUSIC method in

terms the eigenstructure of Ŝc becomes,

f(θ) = arg min
θ

aH(θ)Qc2ÛcnÛ
H
cnQ

H
c2a(θ) (6.48)

Thus, the eigenstructure of Sc matrix should be estimated instead of Rc to implement

C-MUSIC effectively. The roots of the f(θ) which are closest to the unit circle are

computed with root-MUSIC.

The estimation performance of the prior knowledge based methods and subspace

based FBSS-MUSIC and Root-MUSIC methods can be summarized in Table 6.1 ac-

cording to the correlation state between the unknown and known signal sources. Pu,

Pk, Puk denotes the signal correlation between unknown signals, known signals and

cross correlation between known and unknown signals. The X expression in the table

implies that the algorithm has good estimation performance for the given scenario.

Table 6.1: Summary of the Prior-Knowledge Based and Subspace Based Methods

Correlation State POWDER Method PLEDGE Method C-MUSIC Method FBSS-MUSIC Method Root MUSIC Method
Uncorrelated Signals

Puk = 0

Pu,Pk diagonal.
X X X

Coherent Signals
Puk = 0

Pu,Pk rank deficient.
X X X

Coherent Signals
Puk 6= 0

Pu,Pk rank deficient.
X X

Partially Correlated Signals
Puk 6= 0

Pu,Pk diagonal.
X X

Partially Correlated Signals
Puk = 0

Pu,Pk rank deficient.
X
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6.5 Simulations

In this section, performance of prior-knowledge based methods, C-MUSIC method

[2], PLEDGE method [3]-[33], POWDER method [4] and classical subspace based

methods which cannot exploit the a-priori information, FBSS-MUSIC [5] and Root-

MUSIC in [42] are compared with different simulations. Number of sources, SNR

level and number of snapshots, correlation degree between source signals and posi-

tion of known signals are varied to see the estimation accuracy of the algorithms. The

direction of arrival angles are closely separated to increase the difficulty for the esti-

mation problem. Also, the effect of mutual coupling for a non-iterative algorithm in

[46] is compared with PLEDGE method to see the estimation performance of latter

in the presence of multipath and unknown sensor coupling. The performance of the

algorithms are shown with root mean square error(RMSE) of the estimates for DOAs

from L Monte Carlo trials for each SNR levels and snapshots as:

RMSEi =

√√√√ 1

L

L∑
k=1

(
θ̂ik − θi

)2

, i = 1, . . . , du (6.49)

where θi,k is the kth estimate of ith DOA angle and L is the number of Monte Carlo

trials.

In the first simulation, suppose four equal power, Gaussian source signals are assumed

impinging on a 10 element ULA from directions ϑ = [12◦20◦] and θ = [10◦ 15◦].

The additive noise is assumed to be temporally and spatially stationary, zero-mean

white Gaussian and statistically independent of the signals term. The unknown and

known subset of signals are coherent(Pk and Pu are both coherent) and the cross

correlation between unknown and known signals is zero (Puk = 0). The estimation

performance is given by 1000 independent Monte Carlo trials for different SNR level

and snapshots.

Figure 6.1 and 6.2 show the estimation results of the methods for θ1 with increasing

SNR level and number of snapshots. POWDER method has good estimation accu-

racy compared to the other methods. Required SNR level for the same estimation

accuracy decreased 20dB comparing to the PLEDGE and FBSS-MUSIC methods.

Constrained-MUSIC method fails to separate the coherent sources and has a high
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RMSE value. Constrained-MUSIC method removes the known signal subspace from

the sample covariance matrix using a-priori information. However, the coherency

between the unknown signals makes C-MUSIC method suboptimal in this simula-

tion. FBSS-MUSIC method smoothes the correlation matrix and reduces the corre-

lation between the signals. The performance of FBSS-MUSIC method approaches

to PLEDGE method for increasing SNR level and number of snapshots. The estima-

tion performance of PLEDGE and POWDER methods are better than FBSS-MUSIC

method because of using a-priori knowledge about known DOAs and correlation state

between the signal sources in the estimator.

In Figure 6.3 and 6.4, the algorithms are compared for their SNR and number of

snapshots performances for the unknown source located at θ2. As it is seen from these

figures, POWDER method outperforms other algorithms for increasing SNR level

and number of snapshots. PLEDGE method and FBSS-MUSIC method have nearly

same resolution at high SNR levels and number of snapshots. C-MUSIC shows poor

estimation performance because of coherence between the unknown source signals.
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Figure 6.1: Coherent sources: Block Diagonal P, with Pk and Pu both coherent.

Known sources: ϑ = [12◦20◦]T , Unknown sources: θ = [10◦15◦]T . Showing RMSE

of θ1 versus SNR with 1000 snapshots.
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Figure 6.2: Coherent sources: Showing RMSE of θ1 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.1.
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Figure 6.3: Coherent sources: Showing RMSE of θ2 versus SNR with

1000 snapshots; other parameters are identical to the case in Figure 6.1.
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Figure 6.4: Coherent sources: Showing RMSE of θ2 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.1.

Figure 6.5, 6.6, 6.7 and 6.8 are the estimation results for uncorrelated source signals.

The signal covariance matrix P is diagonal. The other parameters are all same with

the first simulation.

It is seen from Figure 6.5 and 6.7 that, at low SNR levels POWDER method has better

performance as compared to other methods. The estimation accuracy of POWDER,

PLEDGE and C-MUSIC methods becomes nearly same as SNR level increases. The

RMSE of Root-MUSIC method decreases as SNR level and number of snapshots

increases. However, Root-MUSIC method cannot reach to the accuracy bound of

other methods because of not using a-priori knowledge in the estimator.

In Figure 6.6 and 6.8, SNR = 25dB and number of snapshots varied. It is seen that,

POWDER, PLEDGE and C-MUSIC methods show almost same estimation accuracy

for uncorrelated source signals as the number of snapshots increases. The RMSE

of Root-MUSIC method is higher than other algorithms because this method can

pair the estimated signals with known signals. So, using a-priori knowledge about

known DOAs enhanced the accuracy of prior knowledge based methods as compared

to Root-MUSIC method for uncorrelated source signals.
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Figure 6.5: Uncorrelated sources: Diagonal P, with Pk and Pu both uncorrelated.

Known sources: ϑ = [12◦20◦]T , Unknown sources: θ = [10◦15◦]T . Showing RMSE

of θ1 versus SNR with 1000 snapshots.
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Figure 6.6: Uncorrelated sources: Showing RMSE of θ1 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.5.

79



−15 −10 −5 0 5 10 15 20 25 30 35
10

−2

10
−1

10
0

10
1

10
2

SNR(dB)

R
M

S
E

 o
f 
θ 

2

 

 
POWDER method
PLEDGE method
C−MUSIC method
Root−MUSIC method

Figure 6.7: Uncorrelated sources: Showing RMSE of θ2 versus SNR with

1000 snapshots; other parameters are identical to the case in Figure 6.5.
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Figure 6.8: Uncorrelated sources: Showing RMSE of θ2 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.5.
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In the second simulation, the source signals are partially correlated. The DOAs as-

sociated to the signal sources are θ = [θ1 θ2 ϑ]T = [10◦ 15◦ 12◦], where ϑ = 12◦ is the

known DOA angle. The second unknown signal is uncorrelated with other coherent

signals. The correlation coefficients between signals are given as ρ12 = ρ23 = 0 and

ρ13 = exp (−jπ/12). There exists coherence between the unknown source signal at

θ1 and known source signal at ϑ = 12◦. The estimation results for unknown DOA

angles are presented in terms of SNR level and number of snapshots.

In Figure 6.9, the estimation results of the algorithms presented for θ1 with increas-

ing SNR level. RMSE of POWDER method stays at a constant error value as SNR

increases because of correlation between θ1 and known signal. However, POW-

DER method shows good estimation accuracy comparing to the other methods at

low SNR levels. PLEDGE method also outperforms C-MUSIC and FBSS-MUSIC at

low SNRs. C-MUSIC method removes the coherent signal subspace by using a-priori

knowledge about known DOA angle. So, the estimation performance of C-MUSIC

method is nearly same with PLEDGE method at high SNRs. The performance of

FBSS-MUSIC degrades at low SNR values as compared to the other methods be-

cause of matching closely seperated unknown signal with known signal.

In Figure 6.10, the performance of the methods are compared for θ1 with increasing

snapshots of data. POWDER method again has constant RMSE value due to the cross

correlation between unknown and known sources. PLEDGE and C-MUSIC methods

show almost same estimation performance as snapshots increases. The performance

of FBSS-MUSIC method is degraded at lower snapshots of data because the estimated

unknown DOAs are paired with the known DOAs. The RMSE value of FBSS-MUSIC

method approaches to PLEDGE and C-MUSIC methods as the number of snapshots

increases.

In Figure 6.11, the estimation results of θ2 with increasing SNR level is illustrated.

θ2 is uncorrelated with other mutually coherent sources. It is seen that, POWDER

method can achive the same accuracy with lower SNR levels as compared to other

methods. The estimation performance of PLEDGE and C-MUSIC methods are al-

most same at high SNRs. The partial correlation between signal sources decreased

the estimation performance of FBSS-MUSIC as compared to the case where the sig-
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nal sources are uncorrelated.

In Figure 6.12, the estimation results of θ2 with increasing number of snapshots is

presented. POWDER method outperforms other algorithms by using the a-priori

knowledge about known DOAs and the correlation state between the signal sources

in the estimator. PLEDGE and C-MUSIC methods show almost same estimation

performance as the number of snapshots increases. Prior knowledge based methods

enhance their estimation performance by exploiting a-priori information in the esti-

mator at low snapshots of data comparing to FBSS-MUSIC method. The performance

of FBSS-MUSIC method is improved as the number of snapshots increases.

It is seen that, utilizing a-priori knowledge about cross correlation between the known

and unknown signal sources has a significant role for POWDER method. PLEDGE

method which removes the correlation between known and unknown signals in the

estimator shows good estimation accuracy for partially correlated sources. PLEDGE

method is applicable for estimating coherent, partially correlated and uncorrelated

source signals. C-MUSIC removes the coherency between partially correlated signals

and estimates remaining uncorrelated signals effectively. Due to the coherency be-

tween the closely separated unknown and known signals, the performance of FBSS-

MUSIC is degraded at low SNR levels and snapshots as compared to the other algo-

rithms.
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Figure 6.9: Partially-correlated sources: Equipowered source vector: θ = [θ1 θ2 ϑ]T =

[10◦ 15◦ 12◦]. θ2 is uncorrelated with other coherent sources, where, ρ12 = ρ23 = 0

ρ13 = exp (−jπ/12). Showing RMSE of θ1 versus SNR with 1000 snapshots.
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Figure 6.10: Partially-correlated sources: Showing RMSE of θ1 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.9
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Figure 6.11: Partially-correlated sources: Showing RMSE of θ2 versus SNR with

1000 snapshots; other parameters are identical to the case in Figure 6.9
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Figure 6.12: Partially-correlated sources: Showing RMSE of θ2 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.9
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In Figure 6.13, 6.14, 6.15 and 6.16, all simulation parameters are same with the sec-

ond simulation, except all sources coherent. The correlation coefficients between

signals are given as ρ12 = ρ13 = exp (−jπ/48) ρ23 = 1.

In Figures 6.13 and 6.15, the estimation results of the algorithms are illustrated for

unknown signals with increasing SNR level. The performance of POWDER method

declined due to the coherence between unknown and known signals. The RMSE of

POWDER method remains at a constant error value after -5dB SNR. However, POW-

DER method shows good estimation accuracy comparing to the other methods till

10dB SNR. C-MUSIC method is suboptimal because the orthogonal projection to the

known signal subspace cannot resolve the coherency between remaining unknown

signals. PLEDGE method shows good estimation performance and this method can

handle both correlated and coherent signals optimally. The RMSE of FBSS-MUSIC

is high at lower SNRs because of pairing the unknown signal estimate with known

one. However, the estimation accuracy of FBSS-MUSIC method approximates to

PLEDGE method as SNR level increases because FBSS-MUSIC smoothes the corre-

lation matrix and reduces the coherence between the source signals.

Figure 6.14 and 6.16 show the performance of the algorithms for coherent sources

with increasing number of snapshots. PLEDGE method outperforms other methods

because there is no assumed structure for signal correlation matrix. PLEDGE method

removes the correlation between unknown and known source signals accurately with

using the a-priori information about known DOAs. FBSS-MUSIC also shows good

performance compared to C-MUSIC and POWDER methods. The RMSE of FBSS-

MUSIC method approaches to the PLEDGE method as the number of snapshots in-

creases. FBSS-MUSIC method clearly identified the coherent signal sources and the

smaller correlation between source signals improves the threshold behaviour of this

method. The RMSE of C-MUSIC method is not decreasing with increasing snapshots

because the coherence between unknown signals cannot be removed by orthogonal

projection to the known signal subspace. The performance of POWDER method de-

graded due to the correlation between the known and unknown signals. However,

POWDER method shows good estimation accuracy compared to C-MUSIC method.
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Figure 6.13: Coherent sources: Equipowered source vector: θ = [θ1 θ2 ϑ]T =

[10◦ 15◦ 12◦]. All sources coherent, where, ρ12 = ρ13 = exp (−jπ/48) ρ23 = 1.

Showing RMSE of θ1 versus SNR with 1000 snapshots.
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Figure 6.14: Coherent sources: Showing RMSE of θ1 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.13
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Figure 6.15: Coherent sources: Showing RMSE of θ2 versus SNR with

1000 snapshots; other parameters are identical to the case in Figure 6.13
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Figure 6.16: Coherent sources: Showing RMSE of θ2 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.13
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In Figure 6.17, 6.18, 6.19 and 6.20, all simulation parameters are same with the sec-

ond simulation, except all sources are uncorrelated.

In Figure 6.17 and 6.19, the algorithms are compared for their SNR performances.

POWDER, PLEDGE and C-MUSIC methods show almost same estimation accuracy

with increasing SNR. The prior knowledge based methods have better resolution than

Root-MUSIC method because of using a-priori knowledge about known DOAs in the

estimator. Meanwhile, for a given accuracy the required SNR for POWDER method

is lower than PLEDGE and C-MUSIC methods at low SNRs.

In Figure 6.18 and 6.20, RMSE performance of the algorithms versus number of

snapshots are presented for uncorrelated signals. It is seen that, prior knowledge

based methods have the same estimation accuracy as the number of snapshots in-

creases. These methods perform better than Root-MUSIC method due to exploiting

the a-priori information in the estimator. We can observe that when the SNR or snap-

shots grows very large the prior-knowledge based methods have the same estimation

performance and converge to the same RMSE.
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Figure 6.17: Uncorrelated sources: Equipowered source vector: θ = [θ1 θ2 ϑ]T =

[10◦ 15◦ 12◦]. All sources uncorrelated, where, ρ12 = ρ13 = ρ23 = 0. Showing RMSE

of θ1 versus SNR with 1000 snapshots.
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Figure 6.18: Uncorrelated sources: Showing RMSE of θ1 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.17
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Figure 6.19: Uncorrelated sources: Showing RMSE of θ2 versus SNR with

1000 snapshots; other parameters are identical to the case in Figure 6.17
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Figure 6.20: Uncorrelated sources: Showing RMSE of θ2 versus snapshots

with SNR = 25dB; other parameters are identical to the case in Figure 6.17

In the third simulation, the effect of varying the location of signal sources is analyzed.

In the first scenario, there are two uncorrelated signals in the problem. One of the

signal source DOA angle is known a-priori. The known source location is shifted

and the estimation results of the algorithms for the unknown source DOA angle is

illustrated. In the second scenario, there are three uncorrelated source signals and

DOA angle of one of the signal source is known a-priori. In this case, there is prior

knowledge about one known and two unknown DOA angles. One of the unknown

source is varied and the estimation results of the unknown signal sources is presented.

In Figure 6.21, the known source location is varied from 10 to 13 degrees with 0.1

degree resolution. The RMSE performances of the algorithms are compared for es-

timation of unknown source located at θ = 10◦. There are only two equal power

Gaussian source signals impinging on a 10 element ULA. The source signals and

additive sensor noise are uncorrelated with each other and 1000 independent Monte

Carlo trials applied for the simulation with SNR = 25dB and 1000 snapshots of data.
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In Figure 6.21, it is seen that POWDER method shows the best performance as com-

pared to the other methods. Since there is no correlation between known and un-

known signal sources, POWDER method can accurately estimate the closely sepa-

rated sources. PLEDGE and C-MUSIC methods can’t ensure the RMSE bound of

POWDER method because of not using the a-priori knowledge about the correla-

tion state between the source signals. PLEDGE and C-MUSIC methods have nearly

same estimation performance as the separation between signal sources increases. The

performance of Root-MUSIC is degraded because of coupling known source signal

with unknown for close separations, hence the RMSE of Root-MUSIC method begins

to saturate at high SNR values compared to other prior knowledge based methods.

Prior knowledge about the known source location has a large impact on POWDER,

PLEDGE and C-MUSIC methods for resolving closely separated signals. The RMSE

of POWDER method increases as the source separation expands. Because when the

source separation increases, the benefit of a-priori knowledge diminishes and classi-

cal subspace based algorithms can estimate the sources with a constant error without

using a-priori knowledge.
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Figure 6.21: Varying the location of known signal: Equal power, uncorrelated

sources. Showing RMSE of θ = 10◦ versus varying position of known source.
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In Figure 6.22, the known source is located at θ3 = 10◦. One of the unknown DOA

angle is located at θ1 = 14◦ and the position of other unknown source DOA angle

is varied from 14 to 17 degrees with 0.1 degree resolution. The estimation perfor-

mance of the algorithms for unknown DOAs is presented. The remaining simulation

parameters are same with the first scenario in the third simulation.

It is seen from Figure 6.22 that, POWDER method outperforms other methods for re-

solving two closely separated unknown DOA angles. As the separation between the

unknown signal sources increases, the RMSE level of POWDER method decreases to

an acceptable level. Meanwhile, using a-priori knowledge about the cross-correlation

between unknown and known signal sources improves the performance of the POW-

DER method comparing to PLEDGE and C-MUSIC methods which only use the lo-

cation of known source DOA angle as a-priori information in the estimator. PLEDGE

method has better estimation performance than C-MUSIC and Root-MUSIC algo-

rithms when the space between the unknown DOAs is smaller than 1 degree. How-

ever, PLEDGE and C-MUSIC methods show nearly same performance as the dis-

tance between unknown DOAs increases. Root-MUSIC method is suboptimal for the

case where the separation between the unknown DOAs is smaller than 1 degree be-

cause this method cannot use a-priori knowledge in the estimator and may pair the

unknown and known signals with each other. The RMSE of Root-MUSIC decreases

as the space between the unknown DOAs increases. But, the other prior knowledge

based methods shows better performance than Root-MUSIC method for all intervals.

In the last simulation, mutual coupling and multipath effect for PLEDGE method is il-

lustrated. The RMSE performances of PLEDGE method and the algorithm proposed

by Ye et. al in [46] are presented in the simulations. Two uncorrelated signals and two

coherent signal groups with five coherent signals impinging on a 10 element ULA.

Two uncorrelated sources come from [−36◦, 24◦]. The first coherent signal group

come from [−28◦, 30◦] with fading coefficients [1, 0.8 expj114.32] and the other coher-

ent group come from [−20◦, 5◦, 42◦] with fading coefficients [1, 0.9 expj135.23, 0.8

expj254.78]. First group of coherent signals are assumed to be known for PLEDGE

method. The mutual coupling coefficients are given as [1, 0.37 + 0.42j, 0.09−0.21j].

The estimation performance is given by 1000 independent Monte Carlo trials with

SNR = 5dB and 500 snapshots of data.
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Figure 6.22: Varying the location of unknown source: Equal power, uncorrelated

sources located at θ = [θ1 θ2 ϑ]T = [14◦, 14 + ∆θ, 10◦]. Showing RMSE of unknown

DOAs versus varying position of one of the unknown source with ∆θ = 0.1◦ interval.

In Figure, 6.23 and 6.24, RMSE of the DOA estimates versus input SNR and number

of snapshots are presented, respectively. It is seen that, the performance of PLEDGE

method is degraded in the presence of mutual coupling. In Ye’s non-iterative method,

uncorrelated signals and mutual coupling coefficients are estimated with good preci-

sion, hence the coherent signals are estimated with low RMSE. Ye’s method shows

better estimation accuracy as compared to PLEDGE method.

In Figure 6.25 and 6.26, RMSE of the mutual coupling coefficients estimates versus

input SNR and number of snapshots are presented, respectively. As seen in these fig-

ures, Ye’s non-iterative method offers promising solution for mutual coupling coeffi-

cient estimation. PLEDGE method has low estimation precision for mutual coupling

because the estimated unknown signals are not as accurate as the findings in the other

algorithm.
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Figure 6.23: Performance of the algorithms for DOA estimation with respect to in-

creasing SNR with snapshots = 500 for uncorrelated and coherent signals.

100 200 300 400 500 600 700 800 900 1000

10
0

snapshots

R
M

S
E

(d
e

g
)

 

 

PLEDGE Method(Coherent signals)
PLEDGE Method(Uncorrelated signals)
Method in [46](Coherent signals)
Method in [46](Uncorrelated signals)

Figure 6.24: Performance of the algorithms for DOA estimation with respect to in-

creasing snapshots with SNR = 5dB for uncorrelated and coherent signals.
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Figure 6.25: Performance of the algorithms for mutual coupling coefficients estima-

tion with respect to increasing SNR with snapshots = 500.
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Figure 6.26: Performance of the algorithms for mutual coupling coefficients estima-

tion with respect to increasing snapshots with SNR = 5dB.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, performance analysis of direction of arrival estimation algorithms in

the presence of array imperfections and multipath for different array geometries pre-

sented. A literature survey is done in order to find the DOA estimation techniques

which are suitable to implement for different array geometries. The objective is to

show the effect of array imperfections and antenna array geometry selection on DOA

estimation application. The benefit of exploiting prior-knowledge for DOA estima-

tion is also illustrated with different scenarios. The algorithms are examined primarily

in four parts.

In the first chapter, DOA estimation for ULA in the presence of mutual coupling is

analyzed. Auxiliary sensors are used and the method in [1] is implemented for both

DOA and mutual coupling coefficient estimation. It is seen that, estimated coupling

coefficients provide accurate DOA angle estimates in the simulations. The perfor-

mance results approach to the optimum case in [41] where mutual coupling is known.

DOA estimation in higher precision is achieved as compared to standard MUSIC

method with no auxiliary sensors. Correlated and independent sources are estimated

successfully in unknown sensor coupling.

In the second chapter, 2-D DOA estimation for uniform rectangular array in the pres-

ence of unknown sensor coupling is considered. The algorithm in [34] is performed

for 2-D DOAs and mutual coupling coefficient estimation. During simulations we ob-

served that the DOA estimation performance of the algorithm is better than straight

forward 2-D spectral MUSIC method in coupling conditions. The computational

complexity of two dimensional spectrum search is decreased to a fair level by ap-
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plying twice search method in the algorithm. Also, DOA refinement with estimated

coupling coefficients increased the estimation accuracy.

In the third chapter, direction of arrival estimation in the presence of gain/phase mis-

matches and mutual coupling is performed. Friedlander’s method in [30] and self-

calibration method in [29] are compared for ULA and NLA.

In the first simulation, the algorithms are implemented for NLA. It is seen that, self-

calibration method outperforms Friedlander’s method in DOAs, gain/phase mismatch

and mutual coupling coefficients estimation. Calculating the inverse of singular ma-

trices for cost function minimization and rank deficiency in the steering matrix cause

the degradation for Friedlander’s method.

In the second simulation, the self-calibration method and Friedlander’s method are

performed for NLA and ULA, respectively. The estimation performance of the al-

gorithms are presented with the array models where the algorithms are proposed to

show the optimal performance to estimate DOAs, mutual coupling and gain/phase

error coefficients. In this scenario, Friedlander’s method shows slightly better per-

formance than self-calibration method. Because there is no missing row existence in

steering matrix and no singularity problem for calculating the inverse of matrices in

gain/phase and coupling coefficient estimation. The self-calibration algorithm also

shows good estimation accuracy comparing to Friedlander’s method.

In the third simulation, both algorithms are implemented for ULA. It is observed that,

Friedlander’s method outperforms the self-calibration method for ULA because the

cost function minimization is performed with Capon-based searching in Friedlander’s

method. Also, there is no singularity problem as in the first simulation for calculating

the inverse of the matrices in minimization step. The self-calibration method performs

eigendecomposition for the criterion function to estimate the gain/phase and coupling

coefficients. However, Friedlander’s method shows good accuracy compared to self-

calibration method for ULA.
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In the last chapter, the performance analysis of prior knowledge based DOA estima-

tion algorithms presented. Constrained-MUSIC (C-MUSIC) [2] , Prior-knowledge

based DOA estimation (PLEDGE) [3], Prior-Exploiting Orthogonally Weighted Di-

rection Estimator(POWDER) [4], and Forward-backward spatial smoothing and MU-

SIC (FBSS-MUSIC) [5] algorithms are implemented and compared. It is seen that,

POWDER method outperforms other algorithms if there is no correlation between

the signals from unknown and known directions. The signals in the subset of known

or unknown directions can be fully coherent with each other. POWDER method can

estimate accurately the multipath signals by using a-priori knowledge about known

signal directions and cross correlation between the signal groups.

PLEDGE method has no assumed structure about the signal correlation matrix. This

method uses the prior information about signal directions to extract the known signal

subspace from the cost function by polynomial rooting. PLEDGE method can handle

both uncorrelated and fully coherent sources optimally. However, POWDER method

shows better performance rather than PLEDGE method if the cross correlation matrix

of known and unknown signals is equal to zero.

C-MUSIC method is applicable when the signals are uncorrelated or known signals

are coherent with the unknown signals. C-MUSIC method uses the prior information

to subtract the known signal subspace from the array output covariance matrix by

orthogonal projection. C-MUSIC method has almost same estimation accuracy with

PLEDGE method at high SNRs. However, C-MUSIC is suboptimal when the signals

are fully coherent or unknown signals are mutually coherent.

The performance of FBSS-MUSIC is also presented in the simulations. FBSS-MUSIC

can’t exploit the prior information. FBSS-MUSIC shows better performance than C-

MUSIC method when all signals are coherent because FBSS-MUSIC method smooths

the array output covariance matrix and reduces the correlation between the signals.

However, PLEDGE and POWDER method shows better results than FBSS-MUSIC

in multipath because FBSS-MUSIC method can match the estimated signals from

unknown directions to known ones which are closely separated. It is seen that POW-

DER, PLEDGE and C-MUSIC methods benefit from a-priori information to estimate

the multipath signals accurately.
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The impact of multipath and mutual coupling on DOA estimation is also presented in

this chapter. PLEDGE algorithm is compared with Ye’s non-iterative method in [46]

to observe the performance of PLEDGE algorithm. There is no assumed structure

for signal correlation matrix in this scenario, hence PLEDGE algorithm is applied

to estimate the unknown signals in different correlation degrees. It is seen that, the

estimation performance of PLEDGE algorithm is degraded in the presence of mu-

tual coupling. Ye’s non-iterative method estimates the uncorrelated signals, coherent

signals and mutual coupling coefficients with good precision compared to PLEDGE

method.

As a future work, prior knowledge based methods can be employed for URA in the

presence of mutual coupling. The DOAs and mutual coupling coefficients estimation

performance of the algorithms can be observed in 2-D case. Additionally, the a-priori

knowledge based algorithms can be modified using auxiliary sensors in the estimator.

Thus, we may improve the performance in the applications where mutual coupling

and gain/phase mismatches exists.
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