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ABSTRACT 

 

 

DESIGN OF H.264/AVC COMPATIBLE INTRA-FRAME VIDEO ENCODER ON 

FPGA PROGRAMMABLE LOGIC DEVICES 

 

 

 

Günay, Ömer 

 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Fatih Kamışlı 

 

 

September 2014, 131 pages 

Video compression is a technique used to reduce the amount of data in a video to 

limit the amount of storage space and bandwidth it requires. H.264/AVC is a widely 

used video compression standard developed together by the ISO (International 

Organization for Standardization) Moving Picture Experts Group (MPEG) and the 

ITU (International Telecommunication Union) Video Coding Experts Group 

(VCEG). H.264/AVC offers an extended range of algorithms for coding digital video 

to achieve superior compression efficiency with respect to previous standards, which 

increases computational complexity of H.264/AVC encoders and decoders.  

 

In this thesis, an H.264/AVC compatible intra-frame video encoder is designed and 

implemented on FPGA devices. First, a reference encoder which includes encoding 

algorithms such as intra prediction, intra mode selection, transform, quantization and 

entropy coding, are implemented and tested in MATLAB environment. Then, the 

reference encoder is coded in VHDL language and tested using the Mentor Graphics 

Modelsim HDL simulation tool. Next, the overall FPGA implementation is tested by 



 

 

vi 

putting the H.264 coded bitstream into transport stream packets, streaming with UDP 

over Ethernet and decoding with VLC Player software on a PC. All video resolutions 

and frame rates defined in H.264 standard are supported by the implemented 

encoder. 

 

Keywords: Video Coding, H.264, FPGA, Intra Prediction, Integer Transform, 

Quantization, Exponential-Golomb Coding, CAVLC 
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ÖZ 

 

 

FPGA PROGRAMLANABİLİR ENTEGRELERİ ÜZERİNDE H.264/AVC 

UYUMLU INTRA-ÇERÇEVE VİDEO KODLAYICI TASARIMI 

 

 

 

Günay, Ömer 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Fatih Kamışlı 

 

 

Eylül 2014, 131 sayfa 

Video sıkıştırma, bir video içerisindeki veri miktarını azaltarak o videonun 

saklanması için gerekli depolama alanını veya iletimi için gerekli bant genişliğini 

sınırlandırmak için kullanılan bir tekniktir.  H.264/AVC Uluslararası Standartlar 

Teşkilatı (ISO) bünyesindeki Hareketli Görüntü Uzmanları Grubu (MPEG) ve 

Uluslararası Telekomünikasyon Birliği (ITU) bünyesindeki Video Kodlama 

Uzmanları Grubu tarafından ortaklaşa geliştirilmiş, geniş çapta kullanım alanına 

sahip bir video sıkıştırma standardıdır. H.264/AVC önceden oluşturulmuş 

standartlarla karşılaştırıldığında daha gelişmiş algoritmalar içerir ve bu standartlara 

göre videoyu daha etkin bir şekilde sıkıştırabilir. Bununla birlikte, artan işlem miktarı 

H.264 uyumlu kodlayıcı ve çözücü tasarımlarını daha zor bir hale getirmiştir.  

Bu çalışmada, FPGA entegreleri üzerinde H.264/AVC uyumlu intra-çerçeve video 

kodlayıcı tasarlanmıştır. İlk etapta, intra kestirim, intra mod seçim, dönüşüm, 

niceleme ve entropi kodlama gibi kodlayıcı algoritmaları MATLAB ortamında 

oluşturulmuş ve test edilmiştir. Daha sonra MATLAB ortamında oluşturulmuş bütün 

kodlar, VHDL donanım tanımlama dilinde yazılmıştır ve VHDL kodları Mentor 
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Graphics firmasına ait Modelsim simülasyon yazılımı kullanılarak test edilmiştir. 

Donanım testleri esnasında kodlanmış bit katarı ilk önce TS (Transport Stream) 

paketi haline getirilmiş, daha sonra da UDP protokolünde Ethernet üzerinden 

aktarılmıştır. En son aşamada ise, H.264 kodlanmış bit katarı VLC Player yazılımı 

kullanılarak başarılı bir şekilde çözümlenmiştir. Tasarlanan kodlayıcı H.264 

standardı tarafından desteklenen bütün seviyeleri desteklemektedir.  

 

Anahtar Kelimeler: Video Kodlama, H.264, FPGA, Intra Kestirim, Tamsayı 

Dönüşüm, Niceleme, Exponential-Golomb Kodlama, CAVLC 
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      CHAPTER 1 

 

1 INTRODUCTION 

 

 

 

H.264, also known as MPEG-4 part 10 or Advanced Video Coding (AVC), is a video 

compression standard, which is a successor to previous H.263 and MPEG-2 

standards [1]. It is currently one of the most commonly used formats for the 

recording, compression, and distribution of video content. H.264/AVC is used in a 

wide range of applications including internet video streaming, digital cinema 

applications, Blu-ray and HD DVD, and television broadcasting [2]. H.264/AVC was 

developed by the ITU-T Video Coding Experts Group (VCEG) together with 

ISO/IEC Moving Picture Experts Group (MPEG) and ratified as an international 

standard in 2003. H.264 aims an average bit rate reduction of 50% given fixed 

fidelity compared to previous standards.  

 

In H.264/AVC, more complicated algorithms are used to achieve superior 

compression with respect to previous standards. Power consumption, logic usage, 

design cost and flexibility are some of the design criterions that should be considered 

while designing an H.264/AVC codec. Depending on the performance requirements 

of the applications, various platforms have been used, such as general purpose (GP) 

processors, multimedia co-processors, ASICs and FPGAs. Encoders on general 

purpose processors have been developed for comparison and development. General 

purpose processors however are not able to meet the constraints of real-time video 

encoding. Multimedia co-processors have focused on smaller frame sizes, generally 

CIF and below with high power consumptions. So they are not a suitable solution for 

portable applications. Due to the parallel processing architecture of ASICs and 
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FPGAs, they are more advantageous in terms of video encoding applications. 

However, the high cost of custom silicon makes ASIC solutions economically 

feasible only in high volume applications. Therefore, in lower-volume type of 

applications, FPGAs are typically preferred.      

 

In this thesis, an H.264/AVC compatible intra-frame video encoder is designed and 

implemented on FPGA programmable devices. First, a reference encoder which 

includes encoding algorithms such as intra prediction, intra mode selection, 

transform, quantization and entropy coding, are implemented and tested in 

MATLAB environment. Then, the reference encoder is coded in VHDL language 

and tested using the Mentor Graphics Modelsim HDL simulation tool. Next, the 

overall FPGA implementation is tested by putting the H.264 coded bitstream into 

transport stream packets, streaming with UDP over Ethernet and decoding with VLC 

Player software on a PC.  

 

The remainder of this thesis is organized as follows: Chapter 2 provides a basic 

overview of video encoding and H.264/AVC video coding standard. In Chapter 3, an 

overview of designed H.264 encoder and some design criteria about encoder design 

are given. Intra prediction and its FPGA implementation are studied in Chapter 4. 

Chapter 5 explains the implementation and theory of residual coding processes, i.e. 

transform and quantization. Entropy coding tools, including Exp-Golomb 

(Exponential-Golomb) coding and CAVLC (Context Adaptive Variable Length 

Coding) are studied in Chapter 6. The results are given in Chapter 7. Finally, Chapter 

8 concludes the paper. 
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      CHAPTER 2 

 

2 AN OVERVIEW OF H.264/AVC 

 

 

 

As shown in Figure 2.1, an H.264/AVC codec is composed of two main parts: video 

encoder and video decoder. The encoder part performs prediction, transforming and 

encoding operations to generate a compressed bitstream. In H.264, while predicting 

the current blocks, previously coded pixels are used. For this reason, in an encoder 

inverse quantization, inverse transformation and reconstruction operations are also 

applied to quantized transform coefficients in order to produce the previously coded 

pixels. The video decoder part performs the complementary operations of decoding, 

inverse transforming and reconstruction to generate a decoded video sequence. The 

compressed H.264/AVC bitstream can be transmitted or stored in different mediums 

such as the internet or DVD disks. Because H.264/AVC is a lossy compression 

standard, in general, there will be some differences between the original video and 

the decoded one.   
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Figure 2.1 Main Parts of an H.264/AVC Codec 

 

 

In this chapter, after defining some basic concepts about digital video and video 

coding, H.264/AVC encoder data flow, H.264/AVC decoder data flow and 

H.264/AVC syntax will be explained.   

2.1 Digital Video Basics 

2.1.1 Digital Video 

Video is the combination of still pictures that are displayed at a high rate to give the 

impression that objects in pictures are moving. Frame rate is the number of still 

pictures per unit of time. Presently, the movie industry uses 24 frame per second 

(fps), while the TV industry 25 (in PAL and SECAM systems) and 30 fps (in NTSC 

system).  Frame resolution specifies the number of pixels used to represent each 

frame (1920x1080, 640x512 etc.). Pixel depth specifies the number of bits that are 

used to represent each pixel (8 bits per pixel, 14 bits per pixel). 
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2.1.2 Progressive and Interlaced Scan 

As shown in Figure 2.2, in progressive scan the horizontal lines are scanned 

successively.  In the interlaced scan, each frame is scanned in two fields and each 

field contains half the number of lines in a frame.  

 

Progressive Scan Interlaced Scan

Field 1 Field 2

 

Figure 2.2 Progressive and Interlaced Scan 

 

Interlaced scan increases temporal resolution. However, it also decreases the vertical 

resolution. So it comes up with a trade-off between temporal and vertical resolution. 

It may allow us more detailed images to be created than would otherwise be possible 

within a given amount of bandwidth. But it may also lead to interlacing artifacts 

especially in high frequency regions.  

2.1.3 Video Format 

In Table 2.1, commonly used video formats are listed. The choice of frame resolution 

depends on the application.  For example, SQCIF or QCIF are appropriate for mobile 

multimedia applications; CIF and QCIF are popular for videoconferencing 

applications; 4CIF is appropriate for standard-definition television and DVD-video; 

HD is appropriate for high-definition television. 
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Table 2.1 Various Video Formats 

 

 

2.1.4 Color Spaces  

Color is described by the luminance and chrominance attributes of light. Luminance 

refers to the perceived brightness of the light, which is proportional to the total 

energy in the visible band. Chrominance describes the perceived color tone of a light, 

which depends on the wavelength composition of the light. Human visual system is 

more sensitive to luminance changes than chrominance. For this reason, representing 

luminance and chrominance components separately is often more efficient. RGB and 

YCbCr are commonly used color spaces.  

In RGB representation, red, green, and blue light are added together in various ways 

to reproduce a broad array of colors. All three components are equally important. 

RGB format is commonly used when displaying and storing an image.  

In the YCbCr representation, Y is the luminance component and Cb, Cr are the 

chroma components.  Y, Cb and Cr components of the image shown in Figure 2.3 are 

represented in Figure 2.4, Figure 2.5 and Figure 2.6, respectively. As shown from 

these figures, luminance component contains more information than chroma 

components. 

Sub-QCIF 128x96

Quarter CIF 176x144

CIF 352x288

4CIF 704x576

720p 1280x720

HD 1920x1080

UHD 3840x2160

Format Resolution
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Figure 2.3 Original Frame 
 

 

 

 

Figure 2.4 Y Component of Picture in Figure 2.3 
 

 

 

 

Figure 2.5 Cb Component of Picture in Figure 2.3 
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Figure 2.6 Cr Component of Picture in Figure 2.3 
 

 

2.1.5 Chroma Sampling Formats 

As mentioned in section 2.1.4, luma component of a frame carries more information 

than chroma components. For this reason, representing chroma components with less 

data usually may give better results in some video compression applications. This is 

achieved as follows: Instead of using one Cb and one Cr pair for each Y component, 

same Cb and Cr pairs are used for more than one Y component.  

In Figure 2.7, three sampling formats that are supported by H.264/AVC are shown. 

In 4:4:4 sampling format, one Cb and one Cr pair is used for each luma component. 

In 4:2:2 sampling format, chroma components are sampled by two in the horizontal 

axis which means the same Cb and Cr components are used for each two horizontally 

neighbor luma components.  In 4:2:0 sampling format, which is commonly used 

format, chroma components are sampled by two both in the horizontal and vertical 

directions.   
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Figure 2.7 Chroma Sampling Formats 

 

2.1.6 Image Buffering 

There are two common memory structures for an image: Planar and Interleaved.  In 

planar images, all of the samples are stored consecutively, and they are consecutive 

in memory as well (YYY…CbCbCb…CrCrCr…). In interleaved images, the 

samples are interleaved with each other in memory (YCbCrYCbCrYCbCr …).  In 

Figure 2.8 and Figure 2.9, interleaved and planar images are shown respectively. 
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Figure 2.8 Interleaved Memory Structure 
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Figure 2.9 Planar Memory Structure 

 

 

2.2 H.264/AVC VIDEO CODING 

2.2.1 H264/AVC Profiles and Levels 

The H.264/AVC standard document does not specify how to encode a digital video. 

It only defines syntax for compressed video and a method for decoding this syntax.  

An encoder may choose any tools defined in the standard. However, a decoder must 

implement a given set of tools and be able to process a given amount of data. These 

are defined as profile and level of a decoder in H.264/AVC standard.  

Each H.264 profile defines a subset of tools and targets specific classes of 

applications.  It places limits on the algorithmic capabilities required of an 

H.264/AVC decoder. The standard defines 21 profiles. But these 21 profiles are 

extended or reduced versions of the baseline profile (BP), main profile (MP) and 

high profile (HP). In general, BP is used for low-cost applications, MP is used for 

standard-definition digital TV broadcasts and HP is used for broadcast and disc 

storage. In Table 2.2, several H.264 profiles are compared (see [2] for more 

information). 
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Table 2.2 Some Tools Used In Several H.264 Profiles 

 

 

H.264/AVC levels define the maximum data processing rate of a decoder. It puts 

constraints on some video parameters such as the maximum frame rate and the 

maximum frame size of a video. In Table 2.3, the minimum required decoder levels 

are listed for some different video formats at various frame rates. 

Profile and level parameters are sufficient to define all the capabilities of a decoder. 

They also give information about the decoder complexity. From BP (Baseline 

Profile) to HP (High Profile) and from level 1 to 5, a decoder complexity and 

capability increase. 

 

Table 2.3 Minimum Decoder Levels for Some Video Formats 

 

 

Feature CBP BP XP MP ProHiP HiP Hi10P Hi422P Hi444PP

Bit depth (per sample) 8 8 8 8 8 8 8 to 10 8 to 10 8 to 14

Chroma formats 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0/4:2:2 4:2:0/4:2:2/4:4:4

Interlaced coding (PicAFF, MBAFF) No No Yes Yes No Yes Yes Yes Yes

B slices No No Yes Yes Yes Yes Yes Yes Yes

CABAC entropy coding No No No Yes Yes Yes Yes Yes Yes

4:0:0 (Monochrome) No No No No Yes Yes Yes Yes Yes

8×8 vs. 4×4 transform adaptivity No No No No Yes Yes Yes Yes Yes

Separate Cb and Cr QP control No No No No Yes Yes Yes Yes Yes

Separate color plane coding No No No No No No No No Yes

Predictive lossless coding No No No No No No No No Yes

Format (luma resolution) Max frames per second Level

QCIF (176x144) 15

30

1, 1b

1.1

CIF (352x288) 15

30

1.2

1.3, 2

525 SD (720x480) 30 3

625 SD (720x576) 25 3

720p HD (1280x720) 30 3.1

1080p HD (1920x1080) 30

60

4, 4.1

4.2

4Kx2K (4096x2048) 30 5.1
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2.2.2 H.264/AVC Encoder Path 

H.264/AVC is a block based video compression standard. Video is processed block 

by block. The main block size in H.264/AVC is 16x16 which is also called as 

macroblock (MB). After encoding one macroblock, the next macroblock is processed 

until all the MBs in a frame are processed in that manner.  

In Figure 2.10, the detailed block diagram of an H.264/AVC encoder is given. An 

H.264/AVC encoder performs prediction, motion estimation and compensation, 

transformation, quantization, entropy encoding operations to compress video blocks. 

It also generates H.264/AVC compatible bitstream from the entropy coded video 

blocks and entropy coded video control parameters.  
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Figure 2.10 H.264 Encoder Structure 

 

 

2.2.2.1 Prediction 

In H.264/AVC, a prediction is created for every macroblock by using the previously 

coded pixels. The aim of this operation is to construct a prediction block as close as 

possible to the original block and send the difference (error or residual) between these 

blocks instead of the original block. Error between the original block and the prediction 

block directly affects the compression performance. If the error is small, that means 
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residual block contains less information, the bitrate to transmit the error will be less. So 

the compression efficiency increases.  

H.264/AVC supports two types of prediction methods: Intra prediction and Inter 

prediction. Intra prediction method uses the previously coded data in the current 

frame (Figure 2.11); on the other hand, inter prediction method uses the previously 

coded data in other frame(s) (Figure 2.12).  
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Figure 2.11 Intra Prediction 

 

 

 

Current Frame Future FramePast Frame

 

Figure 2.12 Inter Prediction 
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In intra prediction method, there are three choices of block sizes for luma 

components and there is single choice of block size for chroma components. Block 

sizes for luma components are 16x16, 8x8 and 4x4 (8x8 block size is only used in 

high profiles) and for chroma 8x8. There are 9 different prediction modes for each 

4x4 and 8x8 luma blocks; 4 for a 16x16 luma block and 4 for chroma blocks. 

An efficient encoder should try to decide the optimum prediction size and prediction 

mode before constructing the bitstream. Smaller block sizes commonly provide 

better prediction, but require more bits for signaling the prediction modes. The 

details of intra prediction modes and an efficient mode selection algorithm are 

represented in Chapter 4. 

As mentioned earlier, in contrast to intra prediction, inter prediction uses blocks from 

different frame(s) other than the current frame while constructing the prediction 

block. In H.264/AVC, several inter prediction block sizes are allowed from 16x16 to 

4x4 (Figure 2.13). A macroblock can be divided into two 16x8 blocks or two 8x16 or 

four 8x8 blocks which are called as macroblock partitions. Further, an 8x8 

macroblock partition can be divided into two 4x8 blocks or two 8x4 blocks or four 

4x4 blocks which are called as sub-macroblock partitions. A macroblock can be 

predicted using macroblock partitions from different frames, however, sub-

macroblock partitions of a macroblock partition must be in the same frame. 
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Figure 2.13 Inter Prediction Block Sizes 

 

 

If a macroblock is inter predicted, the reference frame index or indexes and motion 

vector or vectors must be signaled to the decoder side to properly construct the 

decoded picture. 

Some operations, such as reference picture interpolation and loop filtering, may be 

applied before inter prediction to increase the prediction performance. By doing the 

interpolation of the reference pictures, extra pixels are added into the reference frame 

and motion estimation can be achieved at the 1/4 pixel resolution for luma 

components and 1/8 pixel resolution for chroma components. Also an in-loop 

deblocking filter [3] reduces the blocking artifacts.  

2.2.2.2 Transform & Inverse Transform 

As done in the former standards, transform operation is applied after the prediction 

operation to code the prediction error signal. Because of the characteristics of an 

image, the correlation between the pixels is commonly high in the horizontal and 
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vertical directions. There is typically also correlation left in the prediction error 

signal. Transform coding reduces the spatial redundancy of the prediction error 

signal. Former standards such as JPEG, MPEG-2 Video and MPEG-4 Visual applied 

a two dimensional Discrete Cosine Transform (DCT) [4] of size 8x8.  

In H.264/AVC, different types of integer transforms are used to minimize the 

computational complexity and to avoid encoder/decoder mismatch. Equation 2.1 

shows the general transformation equation, where A is the transform matrix, X is the 

residual block and Y is the transformation result. The core transform in H.264/AVC 

is 4x4 or 8x8 integer transform. 8x8 transform is only used in High profiles. 

 

Y = AXA
T 

(2.1) 

 

As mentioned earlier, the size and type of the transform matrix A varies. In Figure 

2.14, transform matrixes used in H.264/AVC are shown. A1 and A4 are the 4x4 and 

8x8 core transforms matrices, respectively. When the luma prediction type is Intra 

16x16, a second transform (also called Hadamard transform) is applied to the DC 

coefficients of each 4x4 blocks after the core transform by using the A2 matrix. A3 

matrix is used for the similar purpose as A2, but this matrix is used for chroma 

components. After the core transformation of chroma blocks, all DC coefficients are 

collected and a second transform is applied to these DC coefficients using the A3 

matrix. 
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1 1 1 1

2 1 -1 -2

1 -1 -1 1

1 -2 2 -1

A1  =

1 1 1 1

1 1 -1 -1

1 -1 -1 1

1 -1 1 -1

A2  =
1 1

1 -1
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3 -6 10 -12 12 -10 6 -3

A4  =

 

Figure 2.14  Transform Matrixes Used in H.264/AVC 

 

 

The inverse integer transform operation shown in Equation 2.2 is similar to the 

integer transform operation. Here W is the inverse transform matrix, X is the matrix 

obtained after the inverse quantization process and Z is the result of the inverse 

transformation.  

 

Z = W
T
XW

 
(2.2) 

 

In Chapter 5, more details about the transform & inverse transform operations are 

given.  

2.2.2.3 Quantization & Inverse Quantization 

After transform operation, transform coefficients are quantized in order to reduce the 

precision of the transform coefficients according to a quantization parameter. The 

basic forward quantizer operation is shown in equation (2.3), where Xij is a transform 

coefficient, Yij is the quantized output and Qstep is the quantization step size.  

 

Yij = round(Xij/Qstep)
 

(2.3) 
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The quantization is the only part of the H.264/AVC that adds intentional errors into 

coding systems. The reason to do is to increase the compression performance with a 

reasonable distortion.  If the quantization step size increases, more quantized 

coefficients will be zero which means less data to represent. This leads to keeping 

only a few coefficients for efficient representation and results in more distortion. It is 

important to note that quantization process directly controls the quality and 

compression ratio for applications. In H.264/AVC 52 different QP values, from 0 to 

51, are supported.  An encoder can control the QP parameter to control the trade-off 

between compression ratio and distortion.  

The inverse quantization does the inverse operation of the quantization process. The 

basic inverse quantizer operation (or rescale) is shown in equation (2.4), where Yij is 

a quantized coefficient, Zij is the inverse quantization output and Qstep is the 

quantization step size.  

 

Zij = Yij.Qstep
 

(2.4) 

 

In Chapter 5, more details about the quantization and inverse quantization operations 

are given.  

2.2.2.4 Entropy Coding 

In Figure 2.15, two 4x4 residual blocks, their transforms and quantization results are 

given (used H.264/AVC JM reference software of version 18.4 and QP is set to 10). 

As seen from these results, after the quantization operation most of the quantized 

coefficients (especially high frequency components) become zero and occurrence of 

some values are more probable than others. Actually we do not need to send all these 

zero-valued coefficients one by one and represent all the symbols with the same 

length of bits.  
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Figure 2.15 Transformation and Quantization Results of Two Residual Blocks 

 

 

Entropy coding is a lossless data compression technique. Entropy coding algorithms 

try to assign shortest codes to the most commonly occurred symbols at the input in 

order to produce smaller bitstream. 

H.264 specifies several methods for coding of symbols. These are fixed length code, 

Exponential-Golomb (Exp-Golomb) variable length code, CAVLC (Context-

Adaptive Variable Length Coding) and CABAC (Context-Adaptive Binary 

Arithmetic Coding). 

While entropy coding quantized transform coefficients, CABAC or CAVLC 

techniques are used. They have major improvements in terms of coding efficiency 

compared to the techniques used in prior video coding standards. Both methods of 

H.264/AVC offer a high degree of adaptation to the underlying source, even though 

at a different complexity-compression trade-off. 

CAVLC is commonly used in baseline profile and simpler than CABAC. However, 

CABAC algorithm can represent the same video data with about 10% fewer bits 

when compared to CAVLC [5].  

In Chapter 6, more details about the entropy coding techniques including Exp-

Golomb and CAVLC are given.  
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2.2.2.5 Bitstream Control 

Bitstream Control block is responsible from the construction of H.264/AVC coded 

bitstream properly. It manages the data flow, takes coded symbols from different 

blocks and combines them with a correct H.264/AVC syntax as will be described in 

section 2.3. 

2.2.3 H.264/AVC Decoder Path 

An H.264/AVC decoder constructs the video from the H.264/AVC coded bitstream. 

As shown in Figure 2.16, firstly the coded bitstream is entropy decoded, then inverse 

quantized and inverse transformed, and finally reconstruction process is applied by 

using prediction parameters and reference pictures or pixels. The inverse 

quantization, inverse transform and reconstruction operations are the same as in the 

encoder side. 

 

 

INVERSE 

QUANTIZATION & 

RESCALING

INVERSE 

TRANSFORM
001111000...

CODED

BITSTREAM ENTROPY 

DECODING

RECONSTRUCTION

+

Construct

Prediction

Previously 

Decoded 

Frame Buffer

Intra

Inter

P
re

d
ic

ti
o

n

Residual Decoded Frame

 

Figure 2.16 Decoder Flow 

 

Although an H.264/AVC encoder must generate a standard compliance bitstream, a 

decoder must decode all the encoded bitstreams for a specific profile and level pair.  

So we can say that, the computational complexity of an encoder is more than a 

decoder but a decoder must cover all the tools defined in a specific profile and level.    
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2.3 H.264/AVC Syntax 

H.264 syntax is defined in the H.264 standard and specifies the exact structure of an 

H.264-compliant video sequence. It defines the syntax elements and the construction 

of the coded bitstreams from these syntax elements.   

Figure 2.17 shows the H.264/AVC syntax hierarchy [6]. H.264/AVC syntax consists 

of different Network Abstraction Layer Unit (NALU). Sequence Parameter Sets 

(SPS) and Picture Parameter Sets (PPS) are NAL units that signal the common 

control parameters about the video and video data is represented by different type of 

slices (IDR slice, I slice, P slice, B slice etc.). 

 

SPS PPS IDR Slice Slice Slice PPS Slice …….

Slice DataSlice Header

MB MB MB MB MB …….

Type Prediction Coded Block Pattern QP Residual

Intra Mode(s) Reference Frame(s) Motion Vectors

INTRA INTER

Network Abstraction Layer

Slice Layer

MB Layer

Luma Blocks Cb Blocks Cr Blocks

 

 

Figure 2.17 H.264/AVC Syntax 
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2.3.1 Video Control NAL Units 

As mentioned above, SPS and PPS contain the common control parameters about the 

video. SPS signals the control parameters about the coded video sequences such as 

profile, level, video resolution and maximum frame number. In Table 2.4, one 

example of SPS is shown (JM 18.4 is used in trace mode). ‘profile_idc’ and 

‘level_idc’ parameters shown in this table signal the profile and level values of the 

coded video sequence, respectively. More details about the meaning and coding of 

each syntax element shown in Table 2.4 can be found in the H.264 standard [1]. 

 

Table 2.4 An Example of SPS Syntax Elements 

 

 

PPS signals the control parameters about the coded pictures such as entropy coding 

technique (CAVLC or CABAC) and the initial value of QP. In Table 2.5, one 

example of PPS is shown (JM 18.4 is used in trace mode). 

‘entropy_coding_mode_flag’ set to 0 means CAVLC technique is used; otherwise, it 

Bit 

Position

NALU 

Type
Parameter Binary Code Symbol

@0 SPS: profile_idc                         1000010 ( 66)

@8 SPS: constrained_set0_flag               0 (  0)

@9 SPS: constrained_set1_flag               0 (  0)

@10 SPS: constrained_set2_flag               0 (  0)

@11 SPS: constrained_set3_flag               0 (  0)

@12 SPS: reserved_zero_4bits                 0 (  0)

@16 SPS: level_idc                           11111 ( 31)

@24 SPS: seq_parameter_set_id                1 (  0)

@25 SPS: log2_max_frame_num_minus4           1 (  0)

@26 SPS: pic_order_cnt_type                  1 (  0)

@27 SPS: log2_max_pic_order_cnt_lsb_minus4   1 (  0)

@28 SPS: num_ref_frames                      10 (  1)

@31 SPS: gaps_in_frame_num_value_allowed_flag 0 (  0)

@32 SPS: pic_width_in_mbs_minus1             1011 ( 10)

@39 SPS: pic_height_in_map_units_minus1      1001 (  8)

@46 SPS: frame_mbs_only_flag                 1 (  1)

@47 SPS: direct_8x8_inference_flag           1 (  1)

@48 SPS: frame_cropping_flag                 0 (  0)

@49 SPS: vui_parameters_present_flag         0 (  0)
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means CABAC technique is used. ‘pic_init_qp_minus26’ syntax element signals the 

initial QP for luma components. In this example, setting this value to 0 means the 

initial QP value is 26 for luma coding. More details about the meaning and coding of 

each syntax element shown in Table 2.5 can be found in the H.264 standard [1]. 

 

Table 2.5 An Example of PPS Syntax Elements 

 

 

2.3.2 Video Coding Layer NAL Unit 

Coded video data is represented with different type of slices (Figure 2.17). Each slice 

consists of a slice header and a slice data. Slice data is a series of coded macroblocks 

and skip macroblock indicators (gaps between macroblocks at macroblock layer 

shown in Figure 2.17) which signal that a macroblock contains no data. A 

macroblock contains syntax elements that represent the macroblock type, prediction 

type, coded block pattern (CBP), quantization parameter offset for a macroblock and 

residual data. Macroblock type shows the macroblock prediction type.  When the 

macroblock type is I/Intra, this macroblock is predicted using only intra prediction 

method. If the macroblock type is P, intra prediction or inter prediction methods 

Bit 

Position

NALU 

Type
Parameter Binary Code Symbol

@50 PPS: pic_parameter_set_id                        1 ( 0 ) 

@51 PPS: seq_parameter_set_id                        1 ( 0 ) 

@52 PPS: entropy_coding_mode_flag                    0 ( 0 ) 

@53 PPS: bottom_field_pic_order_in_frame_present_flag 0 ( 0 ) 

@54 PPS: num_slice_groups_minus1                     1 ( 0 ) 

@55 PPS: num_ref_idx_l0_default_active_minus1        1 ( 0 ) 

@56 PPS: num_ref_idx_l1_default_active_minus1        1 ( 0 ) 

@57 PPS: weighted_pred_flag                          0 ( 0 ) 

@58 PPS: weighted_bipred_idc                         0 ( 0 ) 

@60 PPS: pic_init_qp_minus26                         1 ( 0 ) 

@61 PPS: pic_init_qs_minus26                         1 ( 0 ) 

@62 PPS: chroma_qp_index_offset                      1 ( 0 ) 

@63 PPS: deblocking_filter_control_present_flag      0 ( 0 ) 

@64 PPS: constrained_intra_pred_flag                 0 ( 0 ) 

@65 PPS: redundant_pic_cnt_present_flag              0 ( 0 ) 
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using one reference frame may be used. However, if the macroblock type is B, intra 

prediction or inter prediction methods using one or more reference frames may be 

used.  

If the prediction type is intra, intra prediction modes are specified in prediction 

section (Figure 2.17); otherwise, reference pictures and motion vectors are specified 

in this region. CBP indicates which luma and chroma blocks contain non-zero 

residual coefficients, QP shows the quantization parameter offset for MBs and 

residual data gives the information about the quantized transform coefficients in the 

residual block. 
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CHAPTER 3 

 

3 H.264/AVC ENCODER HARDWARE MODEL AND 

ENCODER DESIGN CRITERIA 

 

 

 

In this chapter, general information about the designed H.264 encoder are given and 

some important encoder design criteria which should be exactly specified before 

starting an encoder designing are discussed.  

3.1 H.264/AVC Encoder Hardware Model 

In this thesis work, we have designed and implemented a baseline profile intra-frame 

H.264/AVC compliant video encoder on FPGA programmable devices. The block 

diagram of our hardware design is shown in Figure 3.1.  

In this design, only intra prediction technique is used while predicting the 

macroblocks of an image. Low complexity mode selection algorihm in JM reference 

software of version 18.4 is implemented in order to select the prediction modes 

efficiently. Because this is a baseline profile encoder, 4x4 core transform and 

CAVLC entropy coding technique are used. 
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Figure 3.1 Encoder FPGA Design Top Block 

 

3.1.1 Symbol 

Figure 3.2 represents the top level signals of the designed H.264 encoder. It takes 

video signals (active_frame, active_line, pixel_valid and pixel_data) as inputs and 

outputs the H.264/AVC coded stream. 

 

 

Figure 3.2 Top Level Representation of the Designed H.264 Encoder 
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Designed encoder supports only 4:2:0 chroma sampling format, and expects one 

chroma component (Cb or Cr) after two luminance components while the pixel_valid 

signal is high. Figure 3.3 shows encoder input signals and their orientation according 

to each other. As shown from this figure, after two Y components, one Cb 

component should come and after the next two Y components, one Cr component 

should come (YYCbYYCrYYCb…). 

 

clk

rstn

active_frame

active_line

pixel_valid

pixel_data

…..

…..

…..

Y Y Cb Y Y Cr Y Y Cb Y Y Cr Y Y Cb Y Y Cr…..Y CrY

LINE 1 LINE 2 LINE M

 

Figure 3.3 Timing Representations of the Input Signals 

 

 

3.1.2 Pins Description 

Implemented H.264/AVC encoder core uses only unidirectional pins. With the 

exception of the rstn input port signal, which is an asynchronous reset, all ports 

operate synchronously to the clock input clk. 

Table 3.1 shows the top level signals and gives the definitions of these signals. 
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Table 3.1 H.264 Encoder Pins Description 

 

 

3.2 Encoder Design Criteria 

While designing an encoder, there are some parameters that should be exactly 

specified before starting an encoder design. Some of them are listed below. 

 Compression Performance 

 Encoder Delay 

 Logic Usage 

 Target Video Resolution and Frame Rate 

 Power Consumption 

 Maximum Frequency Used in FPGA Fabric 

 

The importance of these parameters changes from one application to another. For 

example, if you store a movie, most probably the coding performance will be more 

important. Or in military applications, if you desire to transmit video from an aircraft 

to ground station, not only the coding performance but also the video delay may be 

very important. Designers should define all these requirements with respect to their 

applications before starting their designs.  

Port Name Direction
Polarity/

Bus Size
Description

rstn IN LOW Optional global asynchronous active low reset

clk IN RISING Encoder clock input

active_frame IN HIGH Video frame valid

active_line IN HIGH Video line valid

pixel_valid IN HIGH Video pixel data valid

pixel_data IN [7..0] Video pixel data

bitstream_valid OUT HIGH Byte stream data valid

bitstream OUT [31..0] Annex B NAL byte stream data

System Interface

Video Data Interface

NAL Data Interface
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In our encoder design, encoder delay, target video resolution and frame rate and 

maximum frequency used in FPGA fabric are the key design criteria. Our encoder 

needs one clock signal and this signal must be equal to the component frequency of 

the input video data. For this reason, in order to code videos at different resolution 

and frame rate, the only thing that must be applied is changing the input clock 

frequency with respect to the input video. 
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CHAPTER 4 

 

4 H.264/AVC INTRA PREDICTION AND FPGA 

IMPLEMENTATION 

 

 

 

As mentioned in Chapter 2, intra prediction uses previously coded pixels in the same 

frame while constructing the prediction information of the current macroblock. 

However, inter prediction uses previously coded MBs which are in different frame or 

frames and typically provides better compression. The first frame must be coded 

using intra frame because there is no reference frame before the first frame. 

However, intra frame is not only used for the first frame. There are two main reasons 

for this: 

1) A decoder must know the reference frame(s) while constructing the decoded 

picture from the coded bitstream. For example, if the only first frame is intra 

coded (IPPPPP…), a decoder that misses the first frame would never decode 

the remaining part of the coded video.  

2) I frames prevent error propagation. The same reference frame(s) must be used 

both in the encoder and decoder sides. Otherwise, the prediction blocks at the 

encoder and decoder will be different which may result with an unexpected 

error while decoding the video. In real life, the bitstream at the encoder 

output will be not always the same as the bitstream at the decoder input due 

to some noise (Figure 4.1). If an inter-coded frame uses an erroneously 

constructed reference frame, this previously occurred error will affect the 

current frame and error will be propagated with an increasing manner. In 
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order to prevent this error propagation, intra coded frames are commonly 

inserted between inter coded frames. 

 

 

ENCODER DECODER+

ENCODER DECODERCHANNEL

noise

Encoded 

Bitstream

Corrupted 

Bitstream

 

Figure 4.1 Encoder/Channel/Decoder Block Representation 

 

 

An overview of the remainder of this chapter is as follows. In section 4.1, 

H.264/AVC intra prediction for luma and chroma components is explained. In 

section 4.2, an intra mode selection algorithm is presented. All intra prediction and 

mode selection algorithms represented in section 4.1 and 4.2 are fully implemented 

in MATLAB environment. In section 4.3, FPGA implementation of intra 4x4 

predictions is given. In section 4.4, FPGA implementation of intra mode selection 

algorithm is shown. Finally, FPGA resource usage summary of intra prediction 

method and intra mode selection algorithm is presented in section 4.5. 

4.1 H.264/AVC Intra Prediction 

4.1.1 Luma Prediction 

There are two types of prediction size while predicting the luma components of an 

image: 4x4 and 16x16. In 4x4 intra prediction, first a MB is divided into four 8x8 
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blocks and then each 8x8 block is divided into four 4x4 blocks as shown in Figure 

4.2. The 4x4 prediction is processed block by block in the order shown in Figure 4.2. 

On the other hand, when 16x16 block size is used, a MB is directly predicted from its 

neighboring pixels without partitioning it. 

 

MACROBLOCK

16

16

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

4

4

0 1

2 3

8

8

 

Figure 4.2 8x8 and 4x4 Scanning of a MB  

 

 

There are nine intra 4x4 luma prediction modes and four intra 16x16 luma prediction 

modes. The 16x16 modes are generally used for homogeneous areas where there is 

relatively little difference, such as background, and 4x4 prediction block sizes are 

commonly used in areas of greater detail. Most of the time, using 4x4 prediction 

sizes gives better results than using 16x16 block sizes. However, signaling the 

prediction modes of each 4x4 block requires more bits than signaling the 16x16 

prediction mode. So, in order to code an intra-frame efficiently, encoders should 

make a good decision while selecting the prediction mode and block size.    

 

4.1.1.1 Luma 4x4 Intra Prediction 

Figure 4.3 shows a 4x4 block (a, b, c, …, p) and neighboring pixels (A, B, C, …, M) 

that are used while forming the prediction of a 4x4 block.  
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Nine available prediction modes are shown in Figure 4.4. The arrows indicate the 

direction of each prediction mode.  

 

 

a b

e f

c d

g h

i j

m n

k l

o p

A B C D E F G H

I

J

K

L

M

 

Figure 4.3 A 4x4 Block and Neighboring Pixels 
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Figure 4.4 Intra 4x4 Prediction Modes 
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Figure 4.5 shows pixel by pixel equations for each luma 4x4 prediction modes. In 

this figure, pred(y,x) with 0 ≤ x, y ≤ 3 represents the prediction result. The prediction 

equations implement the directional copying operations shown in Figure 4.4 (>> 

indicates bitwise right shift). The top left, top right, bottom left and bottom right 

positions of a 4x4 block are denoted as pred(0,0), pred(0,3), pred(3,0) and pred(3,3), 

respectively. 

 

 

 

(a) Vertical (b) Horizontal

pred(0,0) = pred(0,1) = pred(0,2) = pred(0,3) = I
pred(1,0) = pred(1,1) = pred(1,2) = pred(1,3) = J

 pred(2,0) = pred(2,1) = pred(2,2) = pred(2,3) = K

pred(3,0) = pred(3,1) = pred(3,2) = pred(3,3) = L

pred(0,0) = pred(1,0) = pred(2,0) = pred(3,0) = A

pred(0,1) = pred(1,1) = pred(2,1) = pred(3,1) = B

pred(0,2) = pred(1,2) = pred(2,2) = pred(3,3) = C

pred(0,3) = pred(1,3) = pred(2,3) = pred(3,3) = D

 

 

 

 

pred(y,x) = (A + B + C + D + I + J + K + L + 4) >> 3

pred(y,x) = (I + J + K + L + 2) >> 2

pred(y,x) = (A + B + C + D + 2) >> 2

pred(y,x) = 128

(Left and upper pixels are both available)

(Only left pixels are available)

(Only left pixels are available)

(Only left pixels are available)
(c) DC  
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pred(0, 0) = A + 2B + C + 2 >> 2
pred(0, 1) = B + 2C + D + 2 >> 2
pred(0, 2) = C + 2D + E + 2 >> 2
pred(0, 3) = D + 2E + F + 2 >> 2
pred(1, 0) = B + 2C + D + 2 >> 2
pred(1, 1) = C + 2D + E + 2 >> 2
pred(1, 2) = D + 2E + F + 2 >> 2
pred(1, 3) = E + 2F + G + 2 >> 2
pred(2, 0) = C + 2D + E + 2 >> 2
pred(2, 1) = D + 2E + F + 2 >> 2
pred(2, 2) = E + 2F + G + 2 >> 2
pred(2, 3) = F + 2G + H + 2 >> 2
pred(3, 0) = D + 2E + F + 2 >> 2
pred(3, 1) = E + 2F + G + 2 >> 2
pred(3, 2) = F + 2G + H + 2 >> 2
pred(3, 3) = G + 3H + 2 >> 2

pred(0, 0) = A + 2M + I + 2 >> 2
pred(0, 1) = M + 2A + B + 2 >> 2
pred(0, 2) = A + 2B + C + 2 >> 2
pred(0, 3) = B + 2C + D + 2 >> 2
pred(1, 0) = M + 2I + J + 2 >> 2
pred(1, 1) = A + 2M + I + 2 >> 2
pred(1, 2) = M + 2A + B + 2 >> 2
pred(1, 3) = A + 2B + C + 2 >> 2
pred(2, 0) = I + 2J + K + 2 >> 2
pred(2, 1) = M + 2I + J + 2 >> 2
pred(2, 2) = A + 2M + I + 2 >> 2
pred(2, 3) = M + 2A + B + 2 >> 2
pred(3, 0) = J + 2K + L + 2 >> 2
pred(3, 1) = I + 2J + K + 2 >> 2
pred(3, 2) = M + 2I + J + 2 >> 2
pred(3, 3) = A + 2M + I + 2 >> 2

(d) Diagonal Down Left (e) Diagonal Down Right

 

pred(0, 0) = M + A + 1 >> 1
pred(0, 1) = A + B + 1 >> 1
pred(0, 2) = B + C + 1 >> 1
pred(0, 3) = C + D + 1 >> 1
pred(1, 0) = I + 2M + A + 2 >> 2
pred(1, 1) = M + 2A + B + 2 >> 2
pred(1, 2) = A + 2B + C + 2 >> 2
pred(1, 3) = B + 2C + D + 2 >> 2
pred(2, 0) = M + 2I + J + 2 >> 2
pred(2, 1) = M + A + 1 >> 1
pred(2, 2) = A + B + 1 >> 1
pred(2, 3) = B + C + 1 >> 1
pred(3, 0) = I + 2J + K + 2 >> 2
pred(3, 1) = I + 2M + A + 2 >> 2
pred(3, 2) = M + 2A + B + 2 >> 2
pred(3, 3) = A + 2B + C + 2 >> 2

pred(0, 0) = M + I + 1 >> 1
pred(0, 1) = I + 2M + A + 2 >> 2
pred(0, 2) = B + 2A + M + 2 >> 2
pred(0, 3) = C + 2B + A + 2 >> 2
pred(1, 0) = I + J + 1 >> 1
pred(1, 1) = M + 2I + J + 2 >> 2
pred(1, 2) = M + I + 1 >> 1
pred(1, 3) = I + 2M + A + 2 >> 2
pred(2, 0) = J + K + 1 >> 1
pred(2, 1) = I + 2J + K + 2 >> 2
pred(2, 2) = I + J + 1 >> 1
pred(2, 3) = M + 2I + J + 2 >> 2
pred(3, 0) = K + L + 1 >> 1
pred(3, 1) = J + 2K + L + 2 >> 2
pred(3, 2) = J + K + 1 >> 1
pred(3, 3) = I + 2J + K + 2 >> 2

(f) Vertical Right (g) Horizontal Down  
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pred(0, 0) = A + B + 1 >> 1
pred(0, 1) = B + C + 1 >> 1
pred(0, 2) = C + D + 1 >> 1
pred(0, 3) = D + E + 1 >> 1
pred(1, 0) = A + 2B + C + 2 >> 2
pred(1, 1) = B + 2C + D + 2 >> 2
pred(1, 2) = C + 2D + E + 2 >> 2
pred(1, 3) = D + 2E + F + 2 >> 2
pred(2, 0) = B + C + 1 >> 1
pred(2, 1) = C + D + 1 >> 1
pred(2, 2) = D + E + 1 >> 1
pred(2, 3) = E + F + 1 >> 1
pred(3, 0) = B + 2C + D + 2 >> 2
pred(3, 1) = C + 2D + E + 2 >> 2
pred(3, 2) = D + 2E + F + 2 >> 2
pred(3, 3) = E + 2F + G + 2 >> 2

pred(0, 0) = I + J + 1 >> 1
pred(0, 1) = I + 2J + K + 2 >> 2
pred(0, 2) = J + K+ 1 >> 1
pred(0, 3) = J + 2K + L + 2 >> 2
pred(1, 0) = J + K+ 1 >> 1
pred(1, 1) = J + 2K + L + 2 >> 2
pred(1, 2) = K + L + 1 >> 1
pred(1, 3) = K + 3L + 2 >> 2
pred(2, 0) = K + L + 1 >> 1
pred(2, 1) = K + 3L + 2 >> 2
pred(2, 2) = L
pred(2, 3) = L
pred(3, 0) = L
pred(3, 1) = L
pred(3, 2) = L
pred(3, 3) = L

(h) Vertical Left (i) Horizontal Up

 

Figure 4.5 4x4 Luma Prediction Equations 

 

The number of possible intra 4x4 prediction modes for a block varies with respect to 

the block positions. For example, upper reference pixels (A to H) are not available at 

the upper border of an image, so one cannot use intra 4x4 prediction modes of 0, 3, 4, 

5, 6 and 7 while predicting these blocks. We can divide an image into four regions 

with respect to the possible intra 4x4 prediction modes that can be applied during the 

prediction of these blocks (Figure 4.6). As seen from Figure 4.6, the DC mode (mode 

2) is the only mode which is always used. 

As shown from Figure 4.4, Diagonal Down-Left and Vertical Left prediction modes 

needs upper eight pixels (A to H) in order to form the prediction. However, while 

predicting the fourth 4x4 blocks of an 8x8 block (blocks 3,7,11 and 15 in Figure 4.2), 

the reconstructed pixels E, F, G and H are not available. This problem is solved by 

the H.264/AVC standard as follows: If the top right pixels (E, F, G and H) are not 

available, use the nearest available pixel value (pixel D) instead of these pixels.     
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Figure 4.6 Possible 4x4 Prediction Modes at Various Block Locations inside an 

Image 

 

4.1.1.2 Luma 16x16 Intra Prediction 

Four intra 16x16 prediction modes are represented in Figure 4.7. The arrows indicate 

the direction of each prediction mode. The prediction equations that implement these 

intra 16x16 luma prediction modes are shown in equations 3.1 to 3.4 where (y, x) 

denotes the position of pixels, p represents the neighboring pixel values and Clip1Y 

function in equation 3.4 clips the result into [0 - 255] range (actually the range is [0 - 

(2
pixel depth

-1)]). 
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Figure 4.7 16x16 Prediction Modes 

 



 

 

41 

 

predver(y,x) = p(-1,x)   with x, y = 0..15
 

(3.1) 

  

  

predhor(y,x) = p(y,-1)   with x, y = 0..15
 

(3.2) 

  

  

preddc(y,x) =    x, y = 0 .. 15
 

(3.3a) 

(If both upper and left neighbor pixels are available)  

  

preddc(y,x) =   with x, y = 0 .. 15
 

(3.3b) 

(If left neighbor pixels are not available)  

  

preddc(y,x) =   with  x, y = 0 .. 15
 (3.3c) 

(If upper neighbor pixels are not available)  

  

preddc(y,x) = 128    with x, y = 0 .. 15
  

(3.3d) 

(If both upper and left neighbor pixels are not available)  

  

predpl(y,x) = Clip1Y((a + b * (x - 7) + c * (y - 7) + 16) >>5)   x, y = 0..15
 

(3.4) 

 

where, 
 

  

     a = 16 * (p(15,-1) + p(-1,15) )
 

(3.4a) 
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     b = (5 * H + 32 ) >> 6
 

(3.4b) 

  

     c = (5 * V + 32 ) >> 6 

 
(3.4c) 

     where,  

          H = 
 (3.4d) 

  

          V = 
 

 (3.4e) 

  

  

Figure 4.8 shows the possible intra 16x16 prediction modes of an image with respect 

to MB positions. The DC mode (mode 2) is the only mode which is always used. 

Horizontal and DC modes are used at the upper image boundaries, vertical and DC 

modes are used at the left image boundaries. 

  

0: Vertical

1: Horizontal

2: DC

3: Plane

All Modes

1,2

0

2

2

16

16

 

Figure 4.8 Possible 16x16 Prediction Modes at Various Block Locations inside 

an Image 
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4.1.2 Chroma Prediction 

Each chroma component of a macroblock is predicted from the previously encoded 

chroma samples above and/or to the left of the macroblock. One prediction block is 

generated for each chroma component. Both chroma components must use the same 

prediction mode in H.264/AVC. There are four possible intra prediction modes and 

they are very similar to the intra 16x16 prediction modes described in section 4.1.1.2, 

except that the numbering of the modes are different.  

Figure 4.9 shows chroma 8x8 prediction mode equations where (y, x) denotes the 

position of pixels, p represents the neighboring pixel values and Clip1 function clips 

the result into [0-255] range (actually the range is [0 - (2
pixel depth

-1)]). Figure 4.10 

shows possible chroma 8x8 prediction modes of an image with respect to 8x8 block 

positions. The DC mode is the only mode used for the prediction of all chroma 

blocks. Horizontal and DC modes are used at the upper image boundaries and 

vertical and DC modes are used at the left image boundaries. 

pred(y, 0) = p(-1, 0)
pred(y, 1) = p(-1, 1)
pred(y, 2) = p(-1, 2)
pred(y, 3) = p(-1, 3)
pred(y, 4) = p(-1, 4)
pred(y, 5) = p(-1, 5)
pred(y, 6) = p(-1, 6)
pred(y, 7) = p(-1, 7)

(a) Vertical

0 ≤ y ≤ 7

pred(0, x) = p(0, -1)
pred(1, x) = p(1, -1)
pred(2, x) = p(2, -1)
pred(3, x) = p(3, -1)
pred(4, x) = p(4, -1)
pred(5, x) = p(5, -1)
pred(6, x) = p(6, -1)
pred(7, x) = p(7, -1)

0 ≤ x ≤ 7

(b) Horizontal
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                                            pred(y, x) = (Σ p(x’, -1) + Σ p(-1, y’) + 4) >> 3
                          (If p(x’, –1) with x’ = 0..3, and p(–1, y’) and y’ = 0..3 are available)

                                            pred(y, x) = (Σ p(x’, -1) + 2) >> 2
(Else If p(x’, –1) with x’ = 0..3 are available and p(–1, y’) and y’ = 0..3 are not available)

                                             pred(y, x) = (Σ p(-1, y’) + 2) >> 2
(Else If p(–1, y’) and y’ = 0..3 are available and p(x’, –1) with x’ = 0..3 are not available)

                                                         pred(y, x) = 128
         (Else If p(x’, –1) with x’ = 0..3, and p(–1, y’) and y’ = 0..3 are not available

(c-1) DC

 0 ≤ x ≤ 3 and  0 ≤ y ≤ 3

 

 

                                                      pred(y, x) = (Σ p(x’, -1) + 2) >> 2
                                                  (If p(x’, –1) with x’ = 4..7 are available)

                                                     pred(y, x) = (Σ p(-1, y’) + 2) >> 2
                                               (Else If p(–1, y’) and y’ = 0..3 are available)
                                                                  pred(y, x) = 128
                                                                         (Else)

(c-2) DC

 4 ≤ x ≤ 7 and  0 ≤ y ≤ 3

 

                                                      pred(y, x) = (Σ p(-1, y’) + 2) >> 2
                                                 (If p(–1, y’) and y’ = 4..7 are available)

                                                      pred(y, x) = (Σ p(x’, -1) + 2) >> 2
                                             (Else If p(x’, –1) with x’ = 0..3 are available)
                                                                pred(y, x) = 128
                                                                         (Else)

(c-3) DC

 0 ≤ x ≤ 3 and  4 ≤ y ≤ 7
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                                           pred(y, x) = (Σ p(x’, -1) + Σ p(-1, y’) + 4) >> 3
                     (If p(x’, –1) with x’ = 4..7, and p(–1, y’) and y’ = 4..7 are available)

                                                   pred(y, x) = (Σ p(x’, -1) + 2) >> 2
        (Else If p(x’, –1) with x’ = 4..7 are available and p(–1, y’) and y’ = 4..7 are not available)

                                                   pred(y, x) = (Σ p(-1, y’) + 2) >> 2
         (Else If p(–1, y’) and y’ = 4..7 are available and p(x’, –1) with x’ = 4..7 are not available)

                                                                pred(y, x) = 128
                    (Else If p(x’, –1) with x’ = 4..7, and p(–1, y’) and y’ = 4..7 are not available)

(c-4) DC

 4 ≤ x ≤ 7 and  4 ≤ y ≤ 7

 

                                  pred(y,x) = Clip1 (((a + b * (x – 3) + c * (y – 3) + 16) >> 5)
                                                          a = 16 *(p(-1,7) + p(7,-1))
                                                          b = (5 * H + 32) >> 6
                                                          c = (5 * V + 32) >> 6

                                           H = Σ (x’+1)*( p(-1,4 + x’) + p(-1, 2- x’))
                                                              (x’ = 0, 1, 2, 3)

                                            V = Σ (y’+1)*( p(4 + y’,-1) + p( 2- y’,-1))
                                                              (y’ = 0, 1, 2, 3)

             (d) Plane

 

Figure 4.9 8x8 Chroma Prediction Equations 
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Figure 4.10 Possible Chroma Prediction Modes at Various Block Locations 

inside  an Image 

 

4.2 Intra Mode Selection 

A video encoder aims to minimize coded bitrate and maximize decoded video 

quality. One way to achieve this aim is deciding the best prediction mode. Because 

there are many possible combinations of encoding parameters, deciding the best 

tradeoff between minimizing bitrate and minimizing distortion is a challenging task. 

An intra-frame H.264/AVC video encoder may choose many different modes. These 

include: 

 Luma Macroblock Intra Mode: 16x16 intra vs. 4x4 intra 

 For 16x16 Intra: one of four 16x16 intra modes 

 For 4x4 Intra: one of nine 4x4 intra modes for each 4x4 block in macroblock 

 For Chroma: one of four intra chroma modes 

The best choice of mode depends on the particular characteristics of the MB and the 

chosen weighting between distortion and rate. In our encoder design, a rate distortion 

optimization (RDO) based mode selection algorithm ([7], [8]) is implemented. 
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4.2.1 Rate Distortion Optimized (RDO) Mode Selection 

This algorithm attempts to find a mode that minimizes the joint cost J shown in 

equation 3.5. The joint cost J depends on the bitrate cost R and distortion cost D. The 

tradeoff between distortion (D) and rate (R) is controlled by the Lagrange multiplier 

λ. If λ is small, encoder will give more emphasis to minimizing the distortion which 

results with a higher bitrate. However, a larger λ will tend to minimize R at the 

expense of higher distortion. Usually, these two cases are both not desired. Desired is 

a working point at which both the distortion and the rate are minimized together. 

 

J = D + λR
 

(3.5) 

 

The general formula for the Lagrangian parameter λ is shown in equation 3.6. As 

seen from this equation, λ depends on the quantization parameter QP and selected 

scaling factor, LambdaWeight. Setting the LambdaWeight to 0.85 usually gives good 

results. However, different LambdaWeight values, such as 0.57, 0.65, 0.68 and 0.85, 

are used in JM reference software while coding different type of slices. 

 

 λ = LambdaWeight * 2
(QP-12)/3 

(3.6) 

 

Different metrics can be used to calculate the distortion. Sum of Absolute 

Transformed Differences (SATD), Sum of Absolute Differences (SAD) and Sum of 

Squared Differences (SSD) are the commonly used distortion functions. SAD, shown 

in equation 3.7, calculates sum of the absolute difference between pairs of samples b 

and b’. SSD, shown in equation 3.8, calculates the sum of the squared difference 

between pairs of samples b and b’ and more computationally intensive when 

compared to SAD.    
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DSAD = b(x, y) – b’(x, y)|  (3.7) 

 

 
 

  DSSD = b(x, y) – b’(x, y))
2
  (3.8) 

 

The residual block, difference between the original and the prediction block, is 

usually highly correlated in spatial domain. After calculating the residual, transform 

operation is applied to further eliminate this redundancy. If the residual block 

contains more spatial redundancy, transformed and quantized block contains less 

number of nonzero coefficients which results with a better compression. SATD 

distortion metric (eq. 3.9) is developed for this purpose. The residual block is 

Hadamard transformed to count the spatial redundancy while calculating the mode 

error. T operation in equation 3.9 takes the Hadamard transform of the input block. 

 

DSATD = b(x, y) – b’(x, y))|
 

(3.9) 

 

4.2.2 Luma Mode Selection Algorithm 

In this work, an RDO based mode decision algorithm is used. This algorithm is also 

used in H.264/AVC reference model which is also called as low complexity mode 

decision algorithm.  

In our implementation, SATD metric is used for the calculation of distortion and 

LambdaWeight parameter is set to 0.85. 

4.2.2.1 Intra 4x4 Mode Selection 

The following 8-step algorithm is used to determine the best 4x4 intra mode for a 

4x4 block. 
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1. For each 4x4 prediction modes, find the 4x4 residual matrices by using 

equation 3.10.  

RES4x4 =    , where 0 ≤ i, j ≤3 (3.10) 

 

2. Find the Hadamard transform of matrix RES4x4. 

 

                                        SATD = H * RES4x4 * H
T 

(3.11) 

  

              

H =where,

 

 

                           

3. Calculate distortion D by using equation 3.12. 

 

D = ((  (3.12) 

 

4. Find the most probable mode. If both upper and left blocks of the current 

block are available, the most probable mode is the smaller one of these 

blocks; otherwise the most probable mode is 2. 

 

5. Calculate R. 

If (prediction mode is equal to the most probable mode) 

   R=1 

Else 

   R=4 

End 
 

6. Calculate λ by using equation 3.13. 
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λ = [(0.85 * 2
(QP-12)/3

 )
1/2 

+ 1] >> 1
 

(3.13) 

 

7. Use equation 3.14 to find the cost of each mode 

 

J = D + λR
 

(3.14) 

  

8. Choose the mode with the minimum cost. 

 

4.2.2.2 Intra 16x16 Mode Selection 

The following 7-step algorithm is used to determine the best 16x16 intra mode for a 

16x16 block. 

1. Divide a MB into 16 4x4 blocks as shown in Figure 4.11. 

 

                                        

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

4

 

Figure 4.11 4x4 Representation of a MB 

 

2.  Find residual for each 4x4 block (RES16x16) by using the equation 3.15. 

 

RES16x16 =    , where 0 ≤ i, j ≤3 (3.15) 
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3. Find the Hadamard transform of matrix RES16x16. 

SATD = (H * RES16x16 * H
T
) >> 1 (3.16) 

 

4. Take the DC coefficients of the transformed matrixes in step 3 and shift 

them logically one bit right. 

5. Hadamard transform the DC coefficients one more time by applying the 

equation 3.16.  

6. Take the absolute values of AC coefficients obtained after step 3 and DC 

coefficients obtained after step 5 and sum all of them. The summation result 

is equal to the cost. 

7. Choose the mode with the minimum cost. 

 

4.2.2.3 Mode Selection between Intra 4x4 and Intra 16x16 

After finding the best 4x4 modes and the best 16x16 mode of a MB, encoder must 

select one of the prediction sizes. The steps for this are as follows: 

1. Sum all the costs of selected intra 4x4 modes. These costs are calculated in 

section 4.2.2.1. 

2. Add an offset of 6λ to the summation obtained in step 1. This value is the 

total cost of intra 4x4 prediction, J4x4. 

3. Total cost of intra 16x16 prediction, J16x16, is the minimum cost found in 

section 4.2.2.2 at step 7. 

4. Compare J4x4 and J16x16. If J4x4 < J16x16, chose 4x4 block size; otherwise 

chose 16x16 block size. 

4.2.3 Chroma Mode Selection Algorithm 

The following steps are applied to find the prediction mode of the chroma blocks. 

1. Divide each Cb and Cr MBs into 4x4 blocks as shown in Figure 4.12. 
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2. For each 4x4 prediction modes, find the 4x4 residual matrixes by using 

equation 3.10.  

3. Apply equation 3.11 to all residual matrixes in order to find the Hadamard 

transform of these matrixes. 

4. Calculate the distortion for each 4x4 block by applying the equation 3.12. 

5. Sum all the distortion results for each mode. The summation result is the 

total cost of the corresponding prediction mode. 

6. Choose the prediction mode which results with the minimum cost after step 

5. 

 

0 1

2 3

4

4

Cb

4 5

6 7

Cr
 

Figure 4.12 4x4 Representation of Cb and Cr Components 

 

4.3 FPGA Implementation of 4x4 Intra Prediction 

The necessary FPGA blocks and signals for the 4x4 Intra prediction method are 

given and explained in this section. VHDL (Very High Speed Integrated Circuit 

Hardware Description Language) language is used to code this block. The 4x4 intra 

prediction and residual calculation FPGA block diagram is represented in Figure 

4.13. This diagram is composed of two main parts: “Video Flow Control” and “4x4 

Residual Calculation”. 

“Video Flow Control” block is responsible from the macroblock by macroblock 

processing of the video data. It takes video data and stores it in two different Line 
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RAMs. Each Line RAM (Random Access Memory) can store 16 lines of video data. 

In H.264/AVC, MB is the main processing unit. In order to start the coding 

operation, one MB data must be captured. For this reason, 16 lines of video data are 

stored in FPGA internal block RAMs. When 16 lines are captured from the sensor, 

video coding operation starts. While video data in one Line RAM is processed, the 

next video lines are stored in the other Line RAM. Video Flow Control block reads 

one MB data from the Line RAMs and passes the data to 4x4 Residual Calculation 

block. It also gives information if the MB is at the upper border or left border of the 

video frame. As explained in section 4.1.1.1, border information of a MB is 

necessary while predicting the MB.  
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Figure 4.13 4x4 Intra Prediction and Residual Calculation  

 

 

The “4x4 Residual Calculation” block calculates the residual data for each prediction 

mode. As shown in Figure 4.13, it is composed of five sub-blocks: “4x4 Flow 

Control”, “4x4 Prediction”, “Residual Calculation”, “Mode FIFO (First In First 

Out)” and “Reconstructed Pixels FIFO”. 

The “4x4 Flow Control” block manages the whole 4x4 intra prediction system. It 

takes the MB data and processes it as 4x4 blocks as shown in Figure 4.2. This block 

sends the neighboring pixels and the border information of the current 4x4 block to 

the “4x4 Prediction” block in order to construct the prediction data for each mode. It 
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also controls “Residual Calculation” block to construct the residual data by sending a 

start flag and original pixels of the current 4x4 block. 

As mentioned earlier, because intra prediction uses neighboring pixels which belong 

to the previously coded left and upper blocks, the previously coded 4x4 blocks must 

be reconstructed in order to start the prediction operation of the current block. The 

previously reconstructed pixels are kept in the “Reconstructed Pixels FIFO”. The 

“4x4 Flow Control” block reads the reconstructed pixel values from this FIFO when 

they are necessary. 

The “4x4 Flow Control” block drives res_ready signal to high when the residuals 

for the current 4x4 block is ready. It also sends mode_status, left_mode, 

upper_mode, left_border and upper_border signals for different purposes.  

The mode_status is a 9 bit signal (Figure 4.14) and used during the mode selection 

operation to decide the valid prediction modes of the current block. Each bit in this 

signal corresponds to a specific mode. A value of logical ‘1’ states that the 

corresponding mode is applicable for the current block.  

The left_mode and upper_mode signals are used by the mode selection block while 

calculating the rate information (R) which is shown in equation 3.5. They are also 

used together with left_border and upper_border signals while signalling the 

prediction mode of the current block. 

 

Bit Location018 7 6 5 4 3 2

 

Figure 4.14 “mode_status” Signal Bits and Corresponding Modes 
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The “4x4 Prediction block” in Figure 4.13 calculates the prediction information of 

the nine different modes for the current block by using the neighboring pixels. It 

performs this operation in a parallel manner. All the prediction results are valid at the 

same clock cycle. 

In intra prediction equations shown in Figure 4.5, there are some common parts and 

some of equations are the same. This information can be used in order to reduce the 

computation complexity, computation time and to save the hardware resources. Intra 

prediction equations are reorganized as shown in Figure 4.15 to exploit these 

redundancies. 

While calculating the prediction information, firstly the equations shown in Figure 

4.15 are performed. At the next clock cycle, the concatenation and bit shifting 

operations are performed. For this reason, it takes 2 clock cycles to construct the 

prediction results from the neighboring pixels. 

 

(a) Vertical Prediction  

 

(b) Horizontal Prediction  
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(If upper and left neighboring pixels are available)

(If only upper neighboring pixels are available)

(If only left neighboring pixels are available)

(If neither upper and left neighboring pixels are available)

(c) DC Prediction  

 

(d) Diagonal Down-Left  

 

(e) Diagonal Down-Right  
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(f) Vertical Right  

 

(g) Horizontal Down  

 

(h) Vertical Left  
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(i) Horizontal Up  

Figure 4.15 Similarities between Prediction Equations 

 

The “Residual Calculation” block calculates the residual data of the nine prediction 

modes by using the original and predicted pixels. The detailed block diagram of this 

block is shown in Figure 4.16. There is a residual calculation sub-block for each 

mode. In each of this sub-block, there are sixteen subtraction blocks which are used 

to subtract the predicted pixels from the original ones. After subtractions, the pixels 

are concatenated and stored in a FIFO. The subtraction operation is synchronous and 

takes one clock cycle. The residual calculation needs 2 clock cycles: One for 

subtraction and one for concatenation and FIFO write operations. 

The “Mode FIFO” and the “Reconstructed Pixels FIFO” are used to store the mode 

and reconstructed pixels information which will be used while coding the next 

blocks. These FIFOs are controlled by the “4x4 Flow Control” block. 
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Figure 4.16 Residual Calculation Block Diagram 

 

4.4 FPGA Implementation of 4x4 Intra Mode Selection Algorithm 

FPGA implementation of intra 4x4 mode selection algorithm is explained in this 

section. Like intra prediction, this block is also coded by VHDL. FPGA sub-blocks 

of mode selection algorithm are represented in Figure 4.17. 

In this design model, all of the rate, distortion and cost values (equation 3.5) of each 

mode are calculated in parallel.  After finding the costs of each mode, nine cost 

values are divided into three groups to find the minimum cost. Each group takes 

three cost values and finds the minimum of these. Finally the three minimum costs 

are sorted again and the minimum of these are found. At this stage, the mode that 

corresponds to the minimum cost is selected as the best prediction mode. The 

residual and mode information associated with this mode is sent to the other blocks. 
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Figure 4.17 FPGA Design Architecture of 4x4 Intra Mode Selection Algorithm 

 

 

The “4x4 Hadamard Transform” block in Figure 4.17 calculates the Hadamard 

transform of the residual block as shown in equation 3.11. It applies a two 

dimensional Hadamard transform, firstly in the horizontal axis and secondly in the 

vertical axis. The Modelsim simulation results of this block are shown in                     

Figure 4.18. As shown from this figure, when pred_4x4_res_valid flag is asserted, 

Hadamard transformation operation starts and after two clock cycles the transformed 

results are driven by asserting the hadamard_valid signal. 

The “Distortion Calculation” block calculates the distortion by using the equation 

3.12. It takes the Hadamard transformed residual block and calculates the sum of 
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transformed coefficients. The distortion calculation process is started when the 

Hadamard transformation results are valid (hadamard_valid is high) and the end of 

the process is declared by asserting the distortion_valid signal. The Modelsim 

simulation results of this block are shown in Figure 4.19. 

 

 

 

                    Figure 4.18 The 4x4 Hadamard Transform Block Modelsim 

Simulation Results 
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Figure 4.19 The Distortion Calculation Block Modelsim Simulation Results 

 

 

“The Rate Calculation” block and “Most Probable Mode” block calculates the rate 

values of each mode. “Most Probable Mode” block finds the most probable mode 

and “Rate Calculation” block calculates the rates of each mode as shown in section 

4.2.2.1 at steps 4 and 5, respectively. 

“Cost Calculation” block calculates the cost of each mode by using the rate and 

distortion values by applying equation 3.14. The cost calculation process is started 

when the distortion_valid signal is high and the end of the process is declared by 

asserting the cost_valid signal. The Modelsim simulation results of this block are 

shown in Figure 4.20. 
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                Figure 4.20 The Cost Calculation Block Modelsim Simulation Results 

 

 

“Find Minimum of Three Numbers” blocks find the smallest one of the three natural 

numbers (numbers are the cost values in this case). This block uses probable_modes 

signal to know which prediction modes are valid. If the corresponding bit of a mode 

in this signal is ‘0’, the cost value of this mode is discarded and this mode is never 

selected. The Modelsim simulation results of this block are shown in Figure 4.21. 
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Figure 4.21 Find Minimum of Three Numbers Block Modelsim Simulation 

Results 

. 

“Find Best 4x4 Mode” block finds the mode that results with the minimum cost and 

outputs the related residual block and the prediction mode of this block. The 

Modelsim simulation results of this block are shown in Figure 4.22. As shown from 

this figure, residual data and prediction mode information are valid when the 

best_4x4_mode_valid signal is high. 
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Figure 4.22 Find Best 4x4 Mode Block Modelsim Simulation Results 

 

4.5 Resource Usage Summary of 4x4 Intra Prediction and 4x4 Intra Mode 

Selection Blocks 

In Table 4.1, resource usage summary of “4x4 Flow Control”, “4x4 Prediction”, 

“Residual Calculation” and “Mode Selection” are given. “Mode Selection” block 

consumes more FPGA logic than others; because cost calculation of each intra 

prediction mode requires many arithmetic and logical operations (especially 

“Hadamard Transform” and “Distortion Calculation” operations) and these costs of 

each nine prediction modes are calculated in parallel.  
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Table 4.1 Resource Usage Summary of Intra Prediction and Mode Selection 

 

 

 

Block Name ALMs Dedicated Logic Registers Block Memory Bits M20Ks DSP Blocks

4x4 Flow Control 647/234720 1256/469440 0/52428800 0/2560 0/256

4x4 Prediction 289/234720 265/469440 0/52428800 0/2560 0/256

Residual Calculation 1002/234720 2162/469440 258048/52428800 18/2560 0/256

Mode Selection 9436/234720 8812/469440 0/52428800 0/2560 0/256
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      CHAPTER 5 

 

5 H.264/AVC 4x4 TRANSFORM AND QUANTIZATION                                             

AND                                                                                             

FPGA IMPLEMENTATIONS 

 

 

 

After prediction, the transform coding operation is applied to reduce the spatial 

redundancy of the prediction error signal. All former standards such as MPEG-1 and 

MPEG-2 used a 2-D DCT of the size 8x8 with floating point arithmetic. Instead, 

different integer transforms of 4x4 or 8x8 size and corresponding quantization 

processes are used to approximate the orthonormal 2-D DCT transform. 

After transform coding, dynamic range of the transform coefficients is high. For this 

reason, transform coefficients are quantized. Quantization reduces the precision of 

the transform coefficients according to a quantization parameter (QP). Typically, the 

result of quantization is a block in which most or all of the coefficients are zero, with 

a few non-zero coefficients. In Figure 5.1, the forward transform and quantization 

processes block diagram is shown. 
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Figure 5.1 Forward Transform and Quantization 

 

 

Because an encoder uses the previously coded pixels for intra prediction, the 

quantized video data must be reconstructed not only at the decoder but also at the 

encoder side. For this reason, inverse operations of transform and quantization are 

implemented also in an encoder. These inverse operations are exactly defined in 

H.264/AVC standard documentation. The inverse transform and inverse quantization 

processes are shown in Figure 5.2.  
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Figure 5.2 Inverse Transform and Quantization 

 

 

In this section, transform, inverse transform, quantization and inverse quantization 

methods used in H.264/AVC and proposed FPGA implementations of these methods 

are explained. 
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5.1 Transform Coding 

In H.264/AVC, different types of integer transforms are used to minimize 

computational complexity and to avoid encoder/decoder mismatch. Equation 4.1 

shows the general transformation equation, where A is the transform matrix, X is the 

residual block and Y is the transformation result. The core transform in H.264/AVC 

is 4x4 or 8x8 integer transform. 8x8 transform is only used in High profiles. 4x4 and 

8x8 core transform matrices are shown in Figure 5.3. As shown from these matrices, 

transform operation can be applied without using any multiplication. It can be 

achieved by using only addition, subtraction and bit shift operations. 

 

Y = AXA
T 

(4.1) 

 

T4x4 = T8x8  =

 

Figure 5.3 4x4 and 8x8 Transform Matrixes 

 

The inverse integer transform operation shown in equation 4.2 is similar to the 

integer transform operation. Here W is the inverse transform matrix, X is the matrix 

obtained after the inverse quantization process and Z is the result of the inverse 

transformation.  

Z = W
T
XW

 
(4.2) 
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5.1.1 Luma 4x4 Transform Processes 

The default 4x4 forward and inverse transform processes for luma samples are 

shown in Figure 5.4 and Figure 5.5, respectively. In this case, a macroblock is 

divided into 16 4x4 blocks and each 4x4 block is transformed, scaled and quantized. 

The quantized coefficients blocks are coded and transmitted in the order shown, from 

0 to 15. 
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Figure 5.4 Luma Forward Transform: Default 
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Figure 5.5 Luma Inverse Transform: Default 

 

 

If the macroblock is predicted using one of the four 16x16 intra prediction modes 

(Figure 5.6), by using the DC coefficients of the first transform one more transform 

is performed.  
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Figure 5.6 Luma Forward Transform: Intra 16x16 Mode 

 

 

As shown in Figure 5.6, first each 4x4 block is transformed by using 4x4 core 

transform matrix. Then, the DC coefficients of each 4x4 transformed block are 

collected to form a 4x4 DC coefficient block. This DC block is further transformed 

using a 4x4 Hadamard transform. The DC block and 15 AC blocks are scaled and 

quantized and transmitted in the order shown in Figure 5.6.  

In the reverse path (Figure 5.7), first the DC block is inverse Hadamard transformed 

and then rescaling, inverse quantization and inverse transform operations are applied. 
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Figure 5.7 Luma Inverse Transform: Intra 16x16 Mode 
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5.1.2 Chroma Transform Processes 

While coding the chroma components of an image, the number of 4x4 blocks that 

will be coded and transmitted varies with respect to the chroma sampling format 

(Table 5.1).  

 

Table 5.1 Chroma Sampling Formats and Corresponding Block Sizes 

Sampling 

Format 
Chroma Macroblock Size Number of 4x4 Blocks 

4:2:0 8x8 4 

4:2:2 16x8 8 

4:4:4 16x16 16 

 

The chroma transform operation is similar to the transform process of the intra 16x16 

luma blocks.  In Figure 5.8 and Figure 5.9, the block diagrams of the chroma forward 

and inverse transform processes are represented when the sampling format is 4:2:0. 

As shown from these figures, first the chroma blocks are 4x4 transformed and the 

DC coefficients of the transformed blocks are collected and further transformed by 

using a 2x2 Hadamard matrix (the size of this Hadamard matrix changes with respect 

to the sampling format). Then, the DC blocks and 8 AC blocks are scaled, quantized 

and transmitted in the order shown in Figure 5.8.  
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Figure 5.8 Chroma Forward Transform: 4:2:0 Sub-sampling 
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Figure 5.9 Chroma Inverse Transform: 4:2:0 Subsampling 

 

 

In the reverse path (Figure 5.9), first the DC blocks are inverse Hadamard 

transformed and then rescaling, inverse quantization and inverse transform 

operations are applied. 

5.2 Quantization  

After the transform operation, the transformed coefficients are quantized. This is the 

point after which lossy compression is achieved. The loss of insignificant data starts 

from this point depending upon the parameter known as Quantization Parameter 

(QP).  

H. 264/AVC supports 52 different QP values. By using bigger QP values, one can 

represent a video with a less number of bits at the expense of reduced video quality. 

H.264 uses a scalar quantizer. The forward quantization operation is described by 

equation 4.3. In this equation, MF is the Multiplication Factor, >> indicates a binary 

shift right, f controls the rounding and qbits is described as shown in equation 4.4. 

The floor operation in equation 4.4 rounds the input to the nearest integer less than or 

equal to this input. In the reference software model, f is 2
qbits/3

 for intra blocks or 

2
qbits/6

 for inter blocks. The Multiplication Factor (MF) depends on the QP value and 

is given in Table 5.2. 
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|Zij| = (|Wij|.MF + f) >> qbits 

                                      sign(Zij) = sign(Wij)
 

(4.3) 

 

                                      qbits = 15 + floor(QP/6) (4.4) 

 

Table 5.2 Multiplication Factor (MF) 

 

 

The inverse quantization operation is described by equation 4.5. In this equation, V 

is the rescaling factor and given in Table 5.3. 

 

                                      Wij = Zij.Vij.2
floor(QP/6)

  (4.5) 

 

Table 5.3 Rescaling Factor (V) 

 

QP%6

Positions

(0,0),(2,0),(2,2),(0,2)

Positions

(1,1),(1,3),(3,1),(3,3) Other Positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

QP%6

Positions

(0,0),(2,0),(2,2),(0,2)

Positions

(1,1),(1,3),(3,1),(3,3) Other Positions

0 10 16 13

1 11 18 14

2 13 20 16

3 14 23 18

4 16 25 20

5 18 29 23



 

 

77 

5.3 4x4 Transform and Quantization Examples 

In Table 5.4, one block of luma or chroma samples is shown. 4x4 transform, 

quantization, inverse quantization and inverse transform operations are applied to 

this sample block and the results are shown in Table 5.5. 

As can be seen from these tables, when the QP parameter increases, more quantized 

coefficients get zero (more compression). However, the difference (error) between 

the original block and the recovered block increases. 

 

Table 5.4 Block of Luma or Chroma Samples 

 

 

 

Table 5.5 Results of Each Step (Example) 

 

 

 

 

85 83 79 91

76 76 75 81

79 83 86 89

80 85 81 56

1285 12 -11 -9 1285 12 -11 -9 1285 12 -11 -9 1285 12 -11 -9

43 -106 95 -63 43 -106 95 -63 43 -106 95 -63 43 -106 95 -63

-5 76 -21 13 -5 76 -21 13 -5 76 -21 13 -5 76 -21 13

94 -88 30 -24 94 -88 30 -24 94 -88 30 -24 94 -88 30 -24

285 2 -2 -1 160 1 -1 -1 49 0 0 0 5 0 0 0

6 -9 13 -5 3 -5 7 -3 1 -2 2 -1 0 0 0 0

-1 10 -4 2 0 6 -2 1 0 2 -1 0 0 0 0 0

13 -8 4 -2 7 -4 2 -1 2 -1 1 0 0 0 0 0

85 82 79 91 85 83 78 90 84 82 79 91 80 80 80 80

76 76 75 80 75 76 74 81 74 74 76 83 80 80 80 80

79 83 86 89 78 83 85 88 81 78 84 88 80 80 80 80

80 85 80 57 81 85 80 58 81 85 80 58 80 80 80 80

QP=40QP=5 QP=10 QP = 20

Core Transform

Quantization

Inverse

Transform&Quantization



 

 

78 

5.4 FPGA Implementation of Transform Coding 

In this section, FPGA design of forward and inverse integer transforms are 

illustrated. The HDL implementation is written in VHDL language. 

In Figure 5.10 and Figure 5.11, the block diagrams of forward transform and inverse 

transform are given. As shown from these figures, in each case the two dimensional 

transform operations are divided into two parts: vertical and horizontal. When the 

data at the input port is valid, first the vertical transform is applied and then the 

horizontal transform operation is applied by using the results of the vertical 

transform. By doing so, same FPGA resources are used for the horizontal and the 

vertical transform operations.  Transform operation is realized by using sixteen 13 bit 

4 input adders.  

 

 

Vertical 

Transform

Horizontal 

Transformresidual_valid

residual

16

integer_transform_valid

integer_transform

16

FORWARD TRANSFORM  

Figure 5.10 Block Diagram of Forward Transform 

 

 

Vertical 

Transform

Horizontal

Transforminverse_quant_valid

inverse_quant

16

inverse_trans_valid

inverse_trans

16

INVERSE TRANSFORM

Rounding

 

Figure 5.11 Block Diagram of Inverse Transform and Rounding 
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As shown from Figure 5.11, rounding operation is applied after vertical and 

horizontal inverse transforms. This rounding block shifts left the results of the 

horizontal transformed values by 6 bits. 

In Figure 5.12 and Figure 5.13, HDL designer view of integer transform and inverse 

integer transform blocks are represented. HDL designer is an FPGA design tool that 

visualizes the FPGA designs and commonly used in team based designs. HDL 

Designer also makes the design of hierarchical blocks easier and increases design 

reusability. 

  

 

 

Figure 5.12 HDL Designer View of “Integer Transform” Block 
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Figure 5.13 HDL Designer View of “Inverse Integer Transform” Block 

 

 

The Modelsim simulation results of forward and inverse integer transform operations 

are given in Figure 5.14 and Figure 5.15, respectively. As shown from these figures, 

integer transform operation takes 2 clock cycles and inverse integer transform 

operation takes 3 clock cycles: one clock cycle for vertical transform, one clock 

cycle for horizontal transform and one clock cycle for rounding operation. 
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             Figure 5.14 Modelsim Simulation Result of “Integer Transform” Block 
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                 Figure 5.15 Modelsim Simulation Result of “Inverse Integer 

Transform” Block 
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5.5 FPGA Implementation of Quantization 

5.5.1 Forward Quantization 

In order to achieve the quantization operation, the algorithmic steps shown in Figure 

5.16 are implemented. As shown in this figure, there are four states: IDLE, WAIT1, 

ADD_OFFSET and INV_QUANT_MULT. In the IDLE state, the sign of each 

transformed coefficients are stored, the transform coefficients and the corresponding 

multiplication factors are sent to the multiplier blocks and the rounding offset f 

(equation 4.3) is calculated as described in equation 4.6. Actually this f value adds 

1/3 to each coefficient before rounding. By doing this operation as shown in equation 

4.6, the division operation is achieved only using the bit shift operations. So we do 

not need a divider block.  

 

                                      f = 682*2
(4 + floor(QP,6))

  (4.6) 

 

In the WAIT1 state, we wait for the multiplication result and then go to the 

ADD_OFFSET state. In this state, the calculated offset in the IDLE state and the 

multiplication result is added. In the final state, INV_QUANT_MULT, the 

coefficients are right shifted with qbits and the result is written into a FIFO for 

entropy coding.  

In H.264/AVC, if the entropy coding type is CAVLC, the quantized coefficients 

must be in the range of (-2063, 2063). So if a coefficient is not in this range, this 

coefficient is limited with these boundaries before writing it into the FIFO. This 

check is also done in INV_QUANT_MULT state. 

In our design, inverse quantization and rescaling operation starts just after the 

quantization operation. So in order to save 1 clock cycle, we feed each multiplier 
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block with the quantized coefficients and the corresponding inverse multiplication 

factor (V) in INV_QUANT_MULT state. 

IDLE

ADD 

OFFSET

WAIT1

INV 

QUANT 

MULT

Store sign 

            Multiply with MF

        Calculate offset

Wait multiplication result

Add offset

                          Round the quantized coefficients

                                    Write the rounded coefficients to FIFO 

Multiply with V

 

Figure 5.16 State Diagram of Quantization Process 

 

5.5.2 Inverse Quantization 

In this part, the inverse quantization and rescaling equation (equation 4.5) is 

implemented. The state diagram of this process is represented in Figure 5.17. As 

shown in this figure, the inverse quantization operation is divided into three states. In 

the IDLE state, the multiplication result of the quantized coefficients with the reverse 

multiplication factor (Zij.Vij in equation 4.5) is waited. In the next state, 

PROCESS_INV_SCALED_DATA, the rescaling of the multiplication result with a 



 

 

85 

factor of 2
floor(QP/6)

 is done. In the final state, the sign of each coefficient is added. In 

this step, the stored sign data in the quantization process is used.  

IDLE

PROCESS 

SIGN 

DATA

PROCESS 

INV 

SCALED

DATA

Wait multiplication result

Do rescaling

Process sign data

 

Figure 5.17 State Diagram of Inverse Quantization Process 

 

In Figure 5.18, Modelsim simulation results of quantization and inverse quantization 

process are given. The quantization process takes 4 clock cycles and inverse 

quantization operation takes 3 clock cycles. So obtaining the inverse quantization 

coefficients from the inverse transformed coefficients takes totally 7 clock cycles. 

In the design of quantization process sixteen 18x18 multipliers are used and the same 

multipliers are also used during the inverse quantization process in order to save 

FPGA’s multipliers.  
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Figure 5.18 Modelsim Simulation Results of “Quantization” and “Inverse 

Quantization” Process 
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5.6 Resource Usage Summary of Transform and Quantization 

FPGA resource usage summary of integer transform, inverse integer transform, 

quantization and inverse quantization blocks are given in Table 5.6. Actually, 

forward integer transform and backward integer transform are same in H.264 

literature. But in our implementation (see Figure 5.11), “Inverse Integer Transform” 

block includes one more block besides “Horizontal Transform” and “Vertical 

Transform” blocks which is called as “Rounding”. This block is needed to scale the 

inverse transformed coefficients. For this reason, logic usage of “Inverse Integer 

Transform” block is higher than logic usage of “Integer Transform”. 

 

        Table 5.6 FPGA Resource Usage Summary of Transform and Quantization 

  

Block Name ALMs Dedicated Logic Registers Block Memory Bits M20Ks DSP Blocks

Integer Transform 832/234720 824/469440 0/52428800 0/2560 0/256

Inverse Integer Transform 1458/234720 1318/469440 0/52428800 0/2560 0/256

Quantization&Inverse Quantization 2572/234720 1039/469440 0/52428800 0/2560 16/256
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CHAPTER 6 

 

6 BASELINE PROFILE ENTROPY CODING TECHNIQUES 

AND THEIR FPGA IMPLEMENTATIONS 

 

 

 

As mentioned in Chapter 2 (Figure 2.1), the last part of an H.264/AVC video encoder 

is the entropy coding part. In this part, the previously coded symbols (parameters, 

identifiers, prediction types, motion vectors and quantized transform coefficients) are 

coded to generate the H.264/AVC syntax described in section 2.3. Entropy coding is 

a lossless data compression technique. Entropy coding algorithms try to assign 

shortest codes to the most commonly occurred symbols at the input in order to 

produce smaller bitstream. 

The H.264/AVC standard specifies several entropy coding methods. These methods 

are fixed length code, Exponential-Golomb variable length code, CAVLC (Context-

based Adaptive Variable Length Coding) and CABAC (Context-based Adaptive 

Binary Arithmetic Coding). As mentioned in section 2.2.2.4 (Entropy Coding), an 

encoder may use CAVLC or CABAC while coding the symbols at the slice data 

level and below (see Figure 2.17). CABAC algorithm is more complex but on the 

average gives about 10% better results when compared to CAVLC [9]. In the 

baseline profile, only CAVLC method is allowed and CABAC tool is not supported. 

So in our encoder implementation CAVLC method is used. 
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In the following sections of this chapter, firstly the details of fixed-length coding, 

Exponential-Golomb variable length coding and CAVLC coding methods are given 

and then FPGA implementations of these algorithms are studied. 

6.1 Fixed Length Code 

In fixed length coding, a binary code is generated for a symbol with a specific length 

(n bits). In H.264, the descriptor f(n), i(n), u(n) and b(8) are used for syntax elements 

which are coded with fixed length code. Here “n” represents the length of the coded 

symbol. In Table 6.1, fixed length coding descriptors used in H.264/AVC and their 

meanings are given. 

 

Table 6.1 H.264 Fixed Length Coding Descriptors 

 

 

In Table 6.2, some H.264/AVC syntax elements which are coded by using the fixed 

length coding method are shown. 

 

 

 

 

Descriptor Description

f(n) Fixed-pattern bit string using n bits.

i(n)
Signed integer bit string using n bits. When “n” is “v”, the number of bits 

varies in a manner dependent on the value of other syntax elements.

u(n)
Unsigned integer using n bits. When “n” is “v” the number of bits varies in 

a manner dependent on the value of other syntax elements.

b(n) Byte having any pattern of bit string (8 bits).
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Table 6.2 Some Fixed Length Coded Syntax Elements 

Syntax Element Descriptor 

forbidden_zero_bit f(1) 

emulation_prevention_three_byte f(8) 

cabac_zero_word f(16) 

rbsp_stop_one_bit f(1) 

rbsp_alignment_zero_bit f(1) 

time_offset i(v) 

nal_ref_idc u(2) 

nal_unit_type u(2) 

profile_idc u(8) 

level_idc u(8) 

rbsp_byte b(8) 

user_data_payload_byte b(8) 
 

 

6.2 Exponential-Golomb Code 

Exponential Golomb codes are binary codes with varying lengths generated using a 

regular pattern. Short codewords are assigned to frequently-occurring symbols. In 

this way, data can be denoted in a compressed form. In Table 6.3 some symbols 

represented by code_num and their corresponding Exp-Golomb codewords are 

given. 

The structure of an Exp-Golomb codeword is shown in Figure 6.1. The codeword 

consist of M zeros, a 1 and M-bit information field, INFO. Codewords are generated 

from the parameter code_num as specified below: 

M       = floor (log2 (code_num + 1)) 

INFO  = code_num + 1 -2
M 

 

First by using code_num, the length of INFO (M) is calculated and then using M and 

code_num the INFO field is calculated.  
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M bit 0's 1 M bit INFO

2M + 1 bits
 

Figure 6.1 Exp-Golomb Codeword Structure 

 

 

In Table 6.3, some code_num and their corresponding Exp-Golomb codewords are 

given. As shown from this table, codeword length increases when the parameter 

code_num increases. So in order to use Exp-Golomb codes efficiently, one should 

assign smaller code_num to most probable symbols. 

H.264/AVC standard defines that, for each symbol “k” to be coded with Exp-

Golomb, there is a rule that maps the “k” value to non-negative and integer values. 

This rule indicates how the symbol “k” must be mapped to a CodeNum value. There 

are four mapping possibilities, depending on the element type: ue(v) (unsigned Exp-

Golomb), te(v) (truncated Exp-Golomb), se(v) (signed Exp-Golomb) and me(v) 

(mapped Exp-Golomb). 

ue(v): Unsigned direct mapping. Code_num = k. Used for mb_type, 

intra_chroma_pred_mode and others. 

te(v): Truncated mapping.  If the largest possible value of “k” is 1, then a single bit b 

is sent where b =! code_num (! Means Boolean logical “not”), otherwise “ue” 

mapping is used. Reference picture index is coded with truncated mapping. 

se(v): Signed mapping.  “k” is mapped to code_num as specified below: 

      code_num = 2|k| (k≤0)                

      code_num = 2|k| - 1 (k>0)                 

and code_num is mapped to “k” as follows: 

      k = (-1)
 code_num + 1

ceil (code_num/2) 
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Motion vector differences and quantization parameters are coded with signed Exp-

Golomb coding. 

me(v):  Mapped symbols, k is mapped to code_num according to a table.  

coded_block_pattern is coded with mapped Exp-Golomb coding (Appendix A). 

 

Table 6.3 Exp-Golomb Codewords 

code_num Codeword 

0 1 

1 010 

2 011 

3 00100 

4 00101 

5 00110 

 

 

6.3 Context-based Adaptive Variable Length Code (CAVLC) 

CAVLC is a form of entropy coding methods used in H.264/AVC. CAVLC is used 

to encode residual, scan ordered from 4x4 or 2x2 blocks of transform coefficients. 

CAVLC is supported in all H.264 profiles.  

CAVLC is designed to take advantage of several characteristics of quantized 

coefficient blocks [10]:  Figure 6.2 shows the general flow of CAVLC coding. It 

takes 4x4 or 2x2 quantized coefficients and performs the following operations:  

 

1. The input quantized block is reordered using zigzag or field scan. 

2. The number of trailing ones (T1’s) and the total number of non-zero 

coefficients are coded together (coeff_token).   

3. Each sign of T1’s are encoded. 
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4. The level, sign and magnitude, of each remaining non-zero coefficients are 

encoded. 

5. The total number of zero coefficients before the first non-zero coefficient is 

encoded (total_zeros).   

6. The number of zero valued coefficients before each non-zero coefficient (run 

before) is encoded. 

 

 

12 1 0-6

4 -1 03

1 -1 00

0 0 00

Zigzag or 

Field Scan

Encode 

coeff_token

Encode sign 

of each T1

Encode Level
Encode 

total_zeros

Encode each 

run of zeros

Quantized 

Coefficient Block

Ordered 

Coefficients

CAVLC

CAVLC Coded 

Bitstream

001111000...

 

Figure 6.2 Algorithmic Flow of CAVLC 

 

 

The details of CAVLC coding algorithm (shown in Figure 6.2) are not explained in 

this thesis work. You can find the details of this algorithm in [9]. In the next section, 

a 4x4 block is coded by using CAVLC method.  

6.3.1 Example CAVLC Coding of a 4x4 Block 

In this section, CAVLC coding of the 4x4 block shown below is explained in details. 
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5 2 0 0 

-1 -2 0 0 

0 1 -1 0 

0 0 0 0 

 

 

       Step 1: Zigzag Scan 

 

5 2

-1 -2

0 1

0 0

0 0

0 0

-1 0

0 0

5 2 -1 0 -2 0 0 0 1 0 0 -1 0 0 0 0scan

Reordered Block

 

 

Step 2: Encode coeff_token 

 

As shown below, the total number of non-zero coefficients is 6 and the total 

number of trailing ones is 2. As explained in [9], the table that will be used to 

code the symbol coeff_token depends on the parameter nC. In this example, 

nL and nU are assumed to be zero, so the value of nC is also zero and the 

VLC table 1 (see Table A-3) is chosen while coding the parameter 

coeff_token. When we look at the VLC table 1, the corresponding codeword 

is ‘0000000101’. 
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5 2 -1 0 -2 0 0 0 1 0 0 -1 0 0 0 0

Total Coeff Counter

T1 Counter

1 2 3 4 5 6

2 1

 

 

Step 3: Encode Sign of Each Trailing Ones 

 

There are two trailing ones. The sign of the first one is –, and the second one 

is +.  So the code for T1 is ‘10’. 

Step 4: Encode Level 

 

The four level values and the corresponding codes are shown below. So the 

codeword for level parameter is ‘0111010000010’. 

 

level level_prefix level_suffix code 

-2 01 - 01 

-1 1 1 11 

2 01 0 010 

5 00001 0 000010 

 

Step 5: Encode total_zeros 

 

The number of total zeros is six, so the corresponding codeword is ‘011’. 
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5 2 -1 0 -2 0 0 0 1 0 0 -1 0 0 0 0

Total Zeros 

Counter
123456

First non-zero 

coefficient

 

 

 

Step 6: Encode run of zeros 

 

The three (run, zeros_left) pairs and the corresponding codes are shown 

below. The code for run parameter is ‘0010010’. 

 

5 2 -1 0 -2 0 0 0 1 0 0 -1 0 0 0 0

(Run, Zeros Left)(2,6)(3,4)(1,1)

 

 

(run, zeros_left) code 

(2,6) 001 

(3,4) 001 

(1,1) 0 

 

 

6.4 FPGA Implementation of Exponential-Golomb Coding  

FPGA design architecture of Exponential-Golomb coding block is represented in 

Figure 6.3. As shown from this figure, Exponential-Golomb coding block consists of 

three subblocks: EXP-GOLOMB STATE MACHINE, ROM INTRA CBP and ROM 

INTER CBP. 
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In Table 6.4, the input and output signal definitions, length and modes are given. 

EXP-GOLOMB CODING block works as follows: If the start flag 

(exp_golomb_start) is high, EXP-GOLOMB STATE MACHINE block reads the 

parameter that will be coded (exp_golomb_k_param), parameter mapping type 

(exp_golomb_mode) and prediction type (exp_golomb_mode_p) of the current 

block. By using these signals, it constructs the code that corresponds to the current 

symbol and outputs the code (exp_golomb_output) and its length 

(exp_golomb_length) with a ready flag (exp_golomb_valid). Users should observe 

the ready flag to understand the end of the coding operation and to code the next 

symbol. 

 

EXP-GOLOMB 

STATE MACHINE

ROM

INTRA CBP

ROM

INTER CBP

exp_golomb_start

exp_golomb_k_param

exp_golomb_mode_p
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Figure 6.3 Block Diagram of Exponential-Golomb Coding  
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Table 6.4 I/O Signal Descriptions of the EXP-GOLOMB CODING Block 

 

 

 

6.4.1 EXP-GOLOMB CODING STATE MACHINE 

This block is responsible from the generation of the coded bitstream. It includes four 

states (Table 6.4). In the first state, the code_num is calculated by using the 

exp_golomb_k_param and exp_golomb_mode. In the second state, the length of 

INFO field (M) is calculated and in the third state, by using code_num and M 

parameters INFO field of the bitstream is constructed. In the last state, the output 

codeword and its length are generated by using M and INFO variables. 

 

Signal Length Description Input/Output

exp_golomb_start 1 Indicates the start of coding operation. Input

exp_golomb_k_param 6 The value of coding parameter. Input

exp_golomb_mode 2

Indicates the mapping type of the coding parameter.

"00" => ue(v)

"01" => sev(v)

"10" => me(v)

"11" => te(v)

Input

exp_golomb_mode_p 1

Prediction type of the coding parameter. Valid only if the mapping type is me(v).

'0' => Intra

'1' => Inter

Input

exp_golomb_valid 1 If high indicates that the coding result of the current symbol is ready. Output

exp_golomb_length 4 The length of the coded symbol. Output

exp_golomb_output 13 The generated code for the current symbol. Output
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1
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 Code Num
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3
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 INFO
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Output

 

Figure 6.4 State Diagram of Exponential-Golomb State Machine 

 

6.4.2 ROM INTRA CBP 

This ROM keeps the corresponding value of code_num parameters for the coded 

block pattern (CBP) symbol when the prediction type is INTRA. While reading the 

code_num value, ROM address must be set to the CBP value. The ROM size is 48x6. 

6.4.3 ROM INTER CBP 

This ROM keeps the corresponding value of code_num parameters for the coded 

block pattern (CBP) symbol when the prediction type is INTER. While reading the 

code_num value, ROM address must be set to the CBP value. The ROM size is 48x6. 

6.4.4 Simulation and Implementation Results of Exponential-Golomb Coding 

Block  

In Figure 6.5, Figure 6.6 and Figure 6.7, the Modelsim simulation results of the Exp-

Golomb block are given when the mapping type is ue(v), se(v) and me(v), 
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respectively. In Table 6.5, the required clock delay of the Exp-Golomb block is given 

for various mapping types. 

 

 

Figure 6.5 Simulation Result When the Mapping Type is ue(v) 

 

 

Figure 6.6 Simulation Result When the Mapping Type is se(v) 

 

 

Figure 6.7 Simulation Result When the Mapping Type is me(v) 
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Table 6.5 Exp-Golomb Block Delay for Different Mapping Types 

 

 

The logic utilization of Exponential-Golomb coding algorithm is given in Table 6.6. 

 

Table 6.6 FPGA Resource Usage of Exp-Golomb Coding Block  

 

 

6.5 FPGA Implementation of CAVLC  

In this section, circuit design of CAVLC coding is studied. CAVLC block is also 

written in VHDL language. 

The FPGA architecture of CAVLC design is shown in Figure 6.8 and I/O 

(Input/Output) signals of this block are given in Table 6.7. This block includes 

several subblocks in order to efficiently generate the H.264 coded bitstream from the 

quantized coefficients. These blocks are: “Zigzag Scan”, “Scanned Data Control”, 

“Total Coeff”, “Total Zeros”, “Level Code Control”, “Run Code Control”, 

“Bitstream Control” and “ROM Blocks”. The details of each block are given in the 

following sections. 

CAVLC coding block starts the coding operation when the cavlc_start signal is high. 

When this signal is driven high, all the remaining input signals must be set to the true 

values to code the current quantized coefficients block correctly. If the data at the 

input ports are ready, firstly the quantized coefficients are zigzag scanned. Then the 

Mapping Type Delay(system_clk)

ue(v) 4

se(v) 4

me(v) 6

te(v) 2 or 4

Block Name ALMs Dedicated Logic Registers Block Memory Bits M20Ks DSP Blocks

Exp-Golomb Coding 100/234720 60/469440 288/52428800 1/2560 0/256
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number of trailing ones, the total number of nonzero coefficients and the total 

number of zero valued coefficients before the highest nonzero coefficient is 

calculated by the scanned data control block. Scanned data control block also writes 

the run and level data to the corresponding FIFOs. Finally, all the VLC parameters 

are generated by using the scanned data control block and driven as output under the 

control of bitstream control block.  
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Figure 6.8 FPGA Architecture of CAVLC Block Design 
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Table 6.7 I/O Signal Descriptions of the CAVLC CODING Block 

 

 

 

The design of CAVLC coding block is very critical. It should process a block in 

limited clock cycles and use acceptable FPGA resources. Otherwise, the working 

frequency must be increased. This situation is not desired, especially coding an HD 

(1920x1080) video. In order to meet all these requirements, CAVLC coding block 

designed to work in a parallel and pipelined manner. The design is separated into 

Sinyal Length Description Input/Output

q00_4x4 

q01_4x4 
…

q33_4x4 

q00_2x2

q01_2x2

q10_2x2

q11_2x2

cavlc_start 1 When this signal is high, input parameters are valid and start to code quantized input data. Input

nL 6 Number of nonzero  coefficients of the left block. Input

nU 6 Number of nonzero  coefficients of the upper block. Input

availability 2

Indicates the availabity of the previously coded left and upper blocks with respect to the 

current block.

"00" both of them are not available.

"01" left available, upper not.

"10" upper available, left not.

"11" both of them are available.

Input

block_type 2

Indicates the type of the block.

"00" luma4x4

"01" luma4x4AC or chroma4x4AC

"10" chromaDC

Input

total_coeff_number 4 Number of nonzero coefficients of the currently coded block. Output

data_ready 1 Indicates the output data is ready or not. '1' ready, '0' not ready. Output

process_next_block 1
If high the output data is read by upper block and the coding block can process the next 

data.
Output

block_scanning 1
If high block scanning process of the current block is not finished yet. Observe this signal 

before sending new quantized coefficients.
Output

total_coeff_length 5 Length of total_coeff data. Output

total_coeff 16 Total_coeff data. Output

trailing_one_length 2 Length of trailing ones data. Output

trailing_one 3 Trailing ones data. Output

total_zeros_length 4 Length of total_zeros data. Output

total_zeros 9 total_zeros data. Output

run_data_length 5 Length of run data. Output

run_data 25 Run data. Output

levelfifo_wrreq 1 Level FIFO write request. Output

levelfifo_data 33 Level FIFO write data. [27:0] coded level data, [31:28] length of the coded level data. Output

level_read_number 5 Number of level data written to the level data FIFO. Output

16 Quantized 4x4 Luma, LumaDC or ChromaAC block. Input

16 Quantized 2x2 ChromaDC block Input
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three independent blocks (Figure 6.9) which may run in parallel. While scanning a 

quantized block, another quantized block can be processed or the results can be sent 

to the output ports. By doing so, the block delay is minimized without increasing 

logic usage. 

The delay of each step varies because the number of coefficients that will be coded 

changes from one block to another. Coding a 2x2 block requires less clock cycles 

than coding a 4x4 clock, or coding a block that contains more zero coefficients will 

need less clock cycles than coding a block that contains less number of zero 

coefficients. In these cases, coding delay of a block will be the greatest one of all the 

three delay values.  
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Block 0

Bitstream Control

Block0

Zigzag Scan

Block 0

Data Process

Block 1

Bitstream Control

Block1

Zigzag Scan

Block 1

Data Process

Block 2

Bitstream Control

Block 2

Zigzag Scan

Block 2

Block 0 Coded

Block 1 Coded

Block 2 Coded

 

Figure 6.9 CAVLC Coding Block Working Principle 

 

 

CAVLC coding methodology of a 2x2 block, 4x4 AC block or 4x4 DC block are 

very similar. There are small differences while processing these blocks. The 

implemented CAVLC coding block process all type of blocks by using same FPGA 

circuit. This feature reduces the logic usage. The block type of the current block is 

chosen by using the block_type input signal. 

In the following sections, the details of CAVLC coding block are given. 

6.5.1 Zigzag Scan 

This block scans the 4x4 and 2x2 blocks of quantized coefficients in the order shown 

in Table 6.8 and Table 6.9, respectively. In order to start the scanning process, 
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cavlc_start signal must be high and block_scanning signal must be low. After 

completing the block scanning operation, scan_end signal is set to high in order to 

declare the end of scanning process to the other blocks. 

 

Table 6.8 4x4 Zigzag Scan Order  

 

 

 

Table 6.9 4x4 Zigzag Scan Order  

 

 

6.5.2 Scanned Data Control 

This block is composed of two subblocks: “Counter Control” and “FIFO Control”. 

“Counter Control” block counts the number of nonzero coefficients, the number of 

trailing ones and the number of zeros before the highest frequency nonzero 

coefficient in a quantized block.  

“FIFO Control” block writes the level and run values of a scanned block to the 

corresponding FIFOs to be processed later by the level code control and run code 

control blocks. 

 

 

 

idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

zigzag c00 c01 c10 c20 c11 c02 c03 c12 c21 c30 c31 c22 c13 c23 c32 c33

idx 0 1 2 3

zigzag c00 c01 c10 c11
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6.5.3 Total Coeff 

This block reads the total_coeff parameter from the ROMs by using the 

total_coeff_counter and T1_counter. The total_coeff parameter is stored in five 

different ROMs. Encoder chooses one of them by using the signals nL and nU.  

6.5.4 Total Zeros 

This block reads the total_zeros parameter from the ROM by using the 

total_coeff_counter and total_zeros_counter signals.  

6.5.5 Run Code Control 

Firstly, this block reads each run value in block from the run FIFO. Then, the 

corresponding codeword of each run value are read from the RUN ROM block. 

Finally, all codeword are combined and sent to the bitstream control block. The 

maximum number of required bits to code all run values are 28. So, the length of the 

output signal is 33. First 28 bits represents the run code and the next 5 bits indicates 

its length. 

6.5.6 Level Code Control 

This block reads the level signals from the level FIFO and constructs the 

corresponding level code. In order to start the coding of level values, total number of 

nonzero coefficients (total_coeff_counter) and the total number of trailing ones must 

be known. For this reason, this block must wait the end of the block scanning 

operation. 

In Figure 6.10, the algorithmic flow in order to code the level parameters is shown. 

During the implementation of this algorithm, parallel processing architecture of the 

FPGA devices is used and a structure shown in Figure 6.11 is implemented. When 
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we look at this figure, most of the operations are achieved in parallel which reduces 

the processing time.  
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Figure 6.10 Algorithmic Flow of Level Parameter Coding 
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Figure 6.11 FPGA Implementation Architecture of Level Parameter Coding 

 

6.5.7 Bitstream Control 

This block reads all the VLC parameters from others blocks and sets the data_ready 

flag when all the data is ready.  

6.5.8 Simulation and Implementation Results of CAVLC Coding Block 

In Figure 6.12 and Figure 6.13, Modelsim simulation results of CAVLC coding 

implementation are given. In Figure 6.12, the coded block size is 4x4 (block_type is 

00) and in Figure 6.13 block size is 2x2 (block_type is 10).  
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                       Figure 6.12 CAVLC Modelsim Simulation Result (Block Size: 4x4) 

 

 



 

 

112 

 

                     Figure 6.13 CAVLC Modelsim Simulation Result (Block Size: 2x2) 
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As mentioned earlier, CAVLC coding delay varies with respect to the block type 

(luma4x4, luma16x16 AC, luma16x16 DC, chroma AC, chroma DC) and the content 

of the block (the number of zero valued coefficients, the number of trailing ones 

etc.). In Figure 6.14, Figure 6.15 and Figure 6.16, the worst case delays are given 

when the maximum numbers of coefficients in a block are 16, 15 and 4, respectively. 
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Figure 6.14 Maximum Block Delays (Number of Quantized Coefficient: 16) 
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Figure 6.15 Maximum Block Delays (Number of Quantized Coefficient: 15) 
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Figure 6.16 Maximum Block Delays (Number of Quantized Coefficient: 4) 

 

 

The logic utilization of CAVLC coding algorithm is given in Table 6.10. 

 

Table 6.10 FPGA Resource Usage of CAVLC Coding Block 

 

 

 

 

 

 

 

 

 

 

 

Block Name ALMs Dedicated Logic Registers Block Memory Bits M20Ks DSP Blocks

CAVLC 1460/234720 512/469440 320/52428800 2/2560 1/256
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CHAPTER 7 

 

7        HARDWARE IMPLEMENTATION AND RESULTS  

 

 

 

This chapter discusses the test setup implementation and test results obtained from 

the designed H.264 hardware encoder.    

7.1 Test Setup 

In order to test the designed H.264 encoder on hardware, the block diagram shown in 

Figure 7.1 is implemented. In this implementation, a video is captured from a 

camera. Then, this captured video is received, encoded and transmitted from the 

FPGA in real time. The encoded video is decoded on a standard PC by using VLC 

Player software. 

The proposed architecture is implemented in VHDL language and tested by using the 

ALTERA STRATIX V FPGA development board shown in Figure 7.2. In this board, 

there is a STRATIX V 5SGXEA7C2F40 FPGA, SDRAMs, Ethernet PHY and two 

HSMC (High Speed Mezzanine Connector) connectors. In order to take the sensor 

data into FPGA board, one more board is used. This board receives camera link 

signals and sends to FPGA board by using one of the HSMC connectors. The project 

is analyzed, synthesized, placed and routed to the STRATIX V FPGA using 

ALTERA QUARTUS 13.1 software. 
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Figure 7.1 H.264 Encoder Hardware Block Diagram 
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Figure 7.2 STRATIX V FPGA Development Board 
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7.1.1 Video Source 

The camera shown in Figure 7.3 is used as the video source. This is a commercial 

camera and outputs a video of resolution 640x512 at 25 frames per second. 

 

 

 

Figure 7.3 Video Source 

 

 

7.1.2 Camera Link Interface 

This FPGA block is a bridge between the camera sensor and video encoder. It 

analyses the camera link [11] signals and converts these signals into a format that is 

appropriate to the encoder input. 

This block is fully implemented during this thesis work to implement the test set up 

shown in Figure 7.1. 
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7.1.3 H.264 Encoder 

This block encodes video at the input ports. The output data length is 32 which 

means the coded data is sent in a four byte aligned format. This block is completely 

implemented during this thesis work. 

7.1.4 Transport Stream Generator 

This block generates Transport Stream (TS) packets from the coded video data. An 

existing VHDL code for this block is modified in order to implement the test setup 

shown in Figure 7.1.  

7.1.5 Ethernet Interface 

This block takes Transport Stream packets, encapsulates them into UDP (User 

Datagram Protocol) packets and sends the UDP packets over the gigabit Ethernet 

interface. UDP protocol is commonly applied in real-time applications, because 

dropping packets is preferable to waiting delayed packets in time-sensitive 

applications.  

This block is fully implemented during this thesis work to implement the test set up 

shown in Figure 7.1. 

7.2 Results 

In Figure 7.4, our encoder model compression results are compared with High 

Complexity and Low Complexity modes of JM 18.4 reference software. In this 

figure, x axis and y axis represents bitrate and PSNR values, respectively. In this 

comparison, 13 QCIF frames (foreman test sequence) are coded in all modes using 

several QP values. 

In the high complexity mode, prediction results of all the prediction modes are 

transformed, quantized, inverse transformed, inverse quantized and entropy coded. 
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Mode selection is done by using the results of these operations. As shown from 

Figure 7.4, using this technique increases compression efficiency; however, the 

complexity of the encoder increases much more. Implemented encoder architecture is 

similar to the low complexity mode of the reference software. In both 

implementations, mode selection is done just after the block prediction operation and 

same algorithms are used in the mode selection process. But in low complexity mode 

many algorithms, such as adaptive rounding, RDO-based (Rate Distortion 

Optimization) quantization etc., may be used which is not implemented in our 

encoder.  

 

 

Figure 7.4 Comparison of Implementation Results 
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In Table 7.1, bit reductions of “High Complexity Mode” are compared with the 

“Low Complexity Mode” and “Our Implementation” results at 3 different qualities 

(28 dB, 35 dB, 40 dB). This table shows that “High Complexity Mode” results with 

2.6% bitrate reduction when compared to “Low Complexity Mode” and 7.3% bitrate 

reduction when compared to “Our Implementation” on the average. 

 

Table 7.1 Bitrate Comparison of Three Encoder Models 

 

 

 

Implemented H.264 encoder has a low delay. It is about 1 ms which is almost 

negligible. The resource usage summary of the implemented H.264 encoder design is 

given in Table 7.2. All video resolutions and frame rates defined in H.264 standard 

are supported by the implemented encoder. Finally, the maximum frequency used in 

FPGA fabric is equal to the component frequency of the input video. 

 

Table 7.2 Resource Usage of Implemented H.264 Encoder 

 

 

Low Complexity Our Implementation Low Complexity Our Implementation Low Complexity Our Implementation

High Complexity 2.46% 8.80% 2.16% 7.60% 3.14% 5.39%

28 dB 35 dB 40 dB

Used Available

Logic Usage (ALM) ~19000 (~8%) 234720

DSP Block 17(<7%) 256

Memory Bits (Mbits) 0.96(<2%) 50

PLL 0(0%) 28
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CHAPTER 8 

 

8 CONCLUSIONS AND FUTURE WORK 

 

 

 

8.1 Conclusions 

In this thesis work, an H.264 compliant intra frame coder hardware has been 

implemented on FPGA devices targeting all levels of baseline profile. First, a 

reference encoder which includes encoding algorithms such as intra prediction, intra 

mode selection, transform, quantization and entropy coding, are implemented and 

tested in MATLAB environment. Then, the reference encoder is coded in VHDL 

language and tested using the Mentor Graphics Modelsim HDL simulation tool. 

Next, the overall FPGA implementation is tested by putting the H.264 coded 

bitstream into transport stream packets, streaming with UDP over Ethernet and 

decoding with VLC Player software on a PC. During the hardware verification 

process, a 640x512 video at 25 frames per second is coded on Altera Stratix V FPGA 

development kit.  

 

We can summarize the critical tasks that we have faced during the implementation 

stage and our contributions to these tasks as follows:  

 Storing the quantized block data in FIFOs allows modules to remain weakly 

coupled. This made the design and test of our encoder easier. The quantized 
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coefficients are stored in a FIFO. CAVLC block reads these data and 

generates the coded block data. 

 An encoder codes different parameters and generates H.264 compliant 

bitstream which must be byte aligned. Our encoder outputs the coded data in 

32 bit format. Firstly, we combined all the coded parameters in an 8 bit 

format but this created timing problems when the bitrate is high (QP is 

smaller than 10). So we have processed the coded parameters in 16 bit format 

rather than 8 bit. Resource usage increased a bit; however, our encoder now 

can encode high bitrate video data. 

 While implementing an encoder on the hardware, the target application and 

video properties are very important. For example, coding a QCIF video will 

be completely different than coding an HD video. We can make more 

improvements in QCIF video if we desire to lower the resource usage or 

power. Because the pixel frequency of the QCIF video is very small when 

compared to the HD video.  

 In our encoder design, about 50 percent of all the used FPGA resources are 

consumed by the intra mode selection block. This represents that, mode 

selection stage is the most challenging part while designing an encoder.  

8.2 Future Work 

Several improvements can be made to our design: 

 An efficient intra mode selection algorithm can be developed and 

implemented to decrease logic usage. 

 Inter frames can be added to increase the encoder performance. Correlation 

between frames in a video (inter prediction) is higher than correlation 

between pixels in a frame (intra prediction). So using inter-coded frames 

commonly increases coding efficiency. 

 CABAC algorithm can be used instead of CAVLC. CABAC algorithm can 

represent the same video data 10% fewer bits when compared to CAVLC [5]. 
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 Deblocking filter can be applied to reduce blocking artifacts. 

 A constant bitrate algorithm can be implemented for the applications which 

desire a specific value of bitrate. 

 The implemented design can be modified as an ASIC implementation. 

 The power consumption of the implemented design can be analyzed and 

some techniques can be applied to reduce its power consumption. 
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               APPENDIX A 

 

EXPONENTIAL- GOLOMB AND CAVLC CODING TABLES 

 

 

Table A-1 CBP Table (ChromaArrayType is Equal to 1 or 2) 

 

codeNum

Intra_4x4, Intra_8x8 Inter

0 47 0

1 31 16

2 15 1

3 0 2

4 23 4

5 27 8

6 29 32

7 30 3

8 7 5

9 11 10

10 13 12

11 14 15

12 39 47

13 43 7

14 45 11

15 46 13

16 16 14

17 3 6

18 5 9

19 10 31

20 12 35

21 19 37

22 21 42

23 26 44

24 28 33

25 35 34

26 37 36

27 42 40

28 44 39

29 1 43

30 2 45

31 4 46

32 8 17

33 17 18

34 18 20

35 20 24

36 24 19

37 6 21

38 9 26

39 22 28

40 25 23

41 32 27

42 33 29

43 34 30

44 36 22

45 40 25

46 38 38

47 41 41

coded_block_pattern
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Table A-2 CBP Table (ChromaArrayType is Equal to 0 or 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

codeNum

Intra_4x4, Intra_8x8 Inter

0 15 0

1 0 1

2 7 2

3 11 4

4 13 8

5 14 3

6 3 5

7 5 10

8 10 12

9 12 15

10 1 7

11 2 11

12 4 13

13 8 14

14 6 6

15 9 9

coded_block_pattern
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Table A-3 Total Coeff Tables 
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Table 1                           

0 <= nC < 2

Table 2                         

2 <= nC < 4

Table 3               

4 <= nC < 8

Table 4         

8 <= nC

Table 5         

nC = = −1

 Table 6                  

nC = = −2

0 0 1 11 1111 0000 11 01 1

0 1 0001 01 0010 11 0011 11 0000 00 0001 11 0001 111

1 1 01 10 1110 0000 01 1 01

0 2 0000 0111 0001 11 0010 11 0001 00 0001 00 0001 110

1 2 0001 00 0011 1 0111 1 0001 01 0001 10 0001 101

2 2 001 011 1101 0001 10 001 001

0 3 0000 0011 1 0000 111 0010 00 0010 00 0000 11 0000 0011 1

1 3 0000 0110 0010 10 0110 0 0010 01 0000 011 0001 100

2 3 0000 101 0010 01 0111 0 0010 10 0000 010 0001 011

3 3 0001 1 0101 1100 0010 11 0001 01 0000 1

0 4 0000 0001 11 0000 0111 0001 111 0011 00 0000 10 0000 0011 0

1 4 0000 0011 0 0001 10 0101 0 0011 01 0000 0011 0000 0010 1

2 4 0000 0101 0001 01 0101 1 0011 10 0000 0010 0001 010

3 4 0000 11 0100 1011 0011 11 0000 000 0000 01

0 5 0000 0000 111 0000 0100 0001 011 0100 00 - 0000 0001 11

1 5 0000 0001 10 0000 110 0100 0 0100 01 - 0000 0001 10

2 5 0000 0010 1 0000 101 0100 1 0100 10 - 0000 0010 0

3 5 0000 100 0011 0 1010 0100 11 - 0001 001

0 6 0000 0000 0111 1 0000 0011 1 0001 001 0101 00 - 0000 0000 111

1 6 0000 0000 110 0000 0110 0011 10 0101 01 - 0000 0000 110

2 6 0000 0001 01 0000 0101 0011 01 0101 10 - 0000 0001 01

3 6 0000 0100 0010 00 1001 0101 11 - 0001 000

0 7 0000 0000 0101 1 0000 0001 111 0001 000 0110 00 - 0000 0000 0111

1 7 0000 0000 0111 0 0000 0011 0 0010 10 0110 01 - 0000 0000 0110

2 7 0000 0000 101 0000 0010 1 0010 01 0110 10 - 0000 0000 101

3 7 0000 0010 0 0001 00 1000 0110 11 - 0000 0001 00

0 8 0000 0000 0100 0 0000 0001 011 0000 1111 0111 00 - 0000 0000 0011

1 8 0000 0000 0101 0 0000 0001 110 0001 110 0111 01 - 0000 0000 0101

2 8 0000 0000 0110 1 0000 0001 101 0001 101 0111 10 - 0000 0000 0100

3 8 0000 0001 00 0000 100 0110 1 0111 11 - 0000 0000 100

0 9 0000 0000 0011 11 0000 0000 1111 0000 1011 1000 00 - -

1 9 0000 0000 0011 10 0000 0001 010 0000 1110 1000 01 - -

2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 - -

3 9 0000 0000 100 0000 0010 0 0011 00 1000 11 - -

0 10 0000 0000 0010 11 0000 0000 1011 0000 0111 1 1001 00 - -

1 10 0000 0000 0010 10 0000 0000 1110 0000 1010 1001 01 - -

2 10 0000 0000 0011 01 0000 0000 1101 0000 1101 1001 10 - -

3 10 0000 0000 0110 0 0000 0001 100 0001 100 1001 11 - -

0 11 0000 0000 0001 111 0000 0000 1000 0000 0101 1 1010 00 - -

1 11 0000 0000 0001 110 0000 0000 1010 0000 0111 0 1010 01 - -

2 11 0000 0000 0010 01 0000 0000 1001 0000 1001 1010 10 - -

3 11 0000 0000 0011 00 0000 0001 000 0000 1100 1010 11 - -

0 12 0000 0000 0001 011 0000 0000 0111 1 0000 0100 0 1011 00 - -

1 12 0000 0000 0001 010 0000 0000 0111 0 0000 0101 0 1011 01 - -

2 12 0000 0000 0001 101 0000 0000 0110 1 0000 0110 1 1011 10 - -

3 12 0000 0000 0010 00 0000 0000 1100 0000 1000 1011 11 - -

0 13 0000 0000 0000 1111 0000 0000 0101 1 0000 0011 01 1100 00 - -

1 13 0000 0000 0000 001 0000 0000 0101 0 0000 0011 1 1100 01 - -

2 13 0000 0000 0001 001 0000 0000 0100 1 0000 0100 1 1100 10 - -

3 13 0000 0000 0001 100 0000 0000 0110 0 0000 0110 0 1100 11 - -

0 14 0000 0000 0000 1011 0000 0000 0011 1 0000 0010 01 1101 00 - -

1 14 0000 0000 0000 1110 0000 0000 0010 11 0000 0011 00 1101 01 - -

2 14 0000 0000 0000 1101 0000 0000 0011 0 0000 0010 11 1101 10 - -

3 14 0000 0000 0001 000 0000 0000 0100 0 0000 0010 10 1101 11 - -

0 15 0000 0000 0000 0111 0000 0000 0010 01 0000 0001 01 1110 00 - -

1 15 0000 0000 0000 1010 0000 0000 0010 00 0000 0010 00 1110 01 - -

2 15 0000 0000 0000 1001 0000 0000 0010 10 0000 0001 11 1110 10 - -

3 15 0000 0000 0000 1100 0000 0000 0000 1 0000 0001 10 1110 11 - -

0 16 0000 0000 0000 0100 0000 0000 0001 11 0000 0000 01 1111 00 - -

1 16 0000 0000 0000 0110 0000 0000 0001 10 0000 0001 00 1111 01 - -

2 16 0000 0000 0000 0101 0000 0000 0001 01 0000 0000 11 1111 10 - -

3 16 0000 0000 0000 1000 0000 0000 0001 00 0000 0000 10 1111 11 - -
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Table A-4 Total Zeros Table for 4x4 Blocks 

 

 

 

 

Table A-5 Total Zeros Table for Chroma DC Blocks (4:2:0 Chroma Sampling) 

 

total_zeros

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 111 0101 0001 1 0101 0000 01 0000 01 0000 01 0000 01 0000 1 0000 0000 000 00 0

1 011 110 111 111 0100 0000 1 0000 1 0001 0000 00 0000 0 0001 0001 001 01 1

2 010 101 110 0101 0011 111 101 0000 1 0001 001 001 01 1 1 -

3 0011 100 101 0100 111 110 100 011 11 11 010 1 01 - -

4 0010 011 0100 110 110 101 011 11 10 10 1 001 - - -

5 0001 1 0101 0011 101 101 100 11 10 001 01 011 - - - -

6 0001 0 0100 100 100 100 011 010 010 01 0001 - - - - -

7 0000 11 0011 011 0011 011 010 0001 001 0000 1 - - - - - -

8 0000 10 0010 0010 011 0010 0001 001 0000 00 - - - - - - -

9 0000 011 0001 0001 0010 0000 1 001 0000 00 - - - - - - - -

10 0000 010 0001 0001 0001 0 0001 0000 00 - - - - - - - - -

11 0000 0011 0000 0000 0000 1 0000 0 - - - - - - - - - -

12 0000 0010 0000 0000 0000 0 - - - - - - - - - - -

13 0000 0001 1 0000 0000 - - - - - - - - - - - -

14 0000 0001 0 0000 - - - - - - - - - - - - -

15 0000 0000 1 - - - - - - - - - - - - - -

TotalCoeff

total_zeros

1 2 3

0 1 1 1

1 01 01 0

2 001 00 -

3 000 - -

TotalCoeff
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Table A-6 Total Zeros Table for Chroma DC Blocks (4:2:2 Chroma Sampling) 

 

 

 

Table A-7 Run Before Parameter Table 

 

total_zeros

1 2 3 4 5 6 7

0 1 000 000 110 00 00 0

1 010 01 001 00 01 01 1

2 011 001 01 01 10 1 -

3 0010 100 10 10 11 - -

4 0011 101 110 111 - - -

5 0001 110 111 - - - -

6 0000 1 111 - - - - -

7 0000 0 - - - - - -

TotalCoeff

1 2 3 4 5 6 > 6

0 1 1 11 11 11 11 111

1 0 01 10 10 10 000 110

2 - 00 01 01 011 001 101

3 - - 00 001 010 011 100

4 - - - 000 001 010 011

5 - - - - 000 101 010

6 - - - - - 100 001

7 - - - - - - 0001

8 - - - - - - 00001

9 - - - - - - 000001

10 - - - - - - 0000001

11 - - - - - - 00000001

12 - - - - - - 000000001

13 - - - - - - 0000000001

14 - - - - - 00000000001

zerosLeft
run_before


