

DESIGN OF H.264/AVC COMPATIBLE INTRA-FRAME VIDEO ENCODER ON

FPGA PROGRAMMABLE LOGIC DEVICES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖMER GÜNAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2014

ii

iii

Approval of the thesis:

DESIGN OF H.264/AVC COMPATIBLE INTRA-FRAME VIDEO ENCODER

ON FPGA PROGRAMMABLE LOGIC DEVICES

submitted by ÖMER GÜNAY in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen ________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan ________________

Head of Department, Electrical and Electronics Engineering

Assist. Prof. Dr. Fatih Kamışlı ________________

Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar ________________

Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Fatih Kamışlı ________________

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt Bazlamaçcı ________________

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Çağatay Candan ________________

Electrical and Electronics Engineering Dept., METU

İsmail Özsaraç, M.Sc. ________________

Electronics Design Dept., ASELSAN

Date: ________________

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last Name : Ömer GÜNAY

 Signature :

v

ABSTRACT

DESIGN OF H.264/AVC COMPATIBLE INTRA-FRAME VIDEO ENCODER ON

FPGA PROGRAMMABLE LOGIC DEVICES

Günay, Ömer

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Fatih Kamışlı

September 2014, 131 pages

Video compression is a technique used to reduce the amount of data in a video to

limit the amount of storage space and bandwidth it requires. H.264/AVC is a widely

used video compression standard developed together by the ISO (International

Organization for Standardization) Moving Picture Experts Group (MPEG) and the

ITU (International Telecommunication Union) Video Coding Experts Group

(VCEG). H.264/AVC offers an extended range of algorithms for coding digital video

to achieve superior compression efficiency with respect to previous standards, which

increases computational complexity of H.264/AVC encoders and decoders.

In this thesis, an H.264/AVC compatible intra-frame video encoder is designed and

implemented on FPGA devices. First, a reference encoder which includes encoding

algorithms such as intra prediction, intra mode selection, transform, quantization and

entropy coding, are implemented and tested in MATLAB environment. Then, the

reference encoder is coded in VHDL language and tested using the Mentor Graphics

Modelsim HDL simulation tool. Next, the overall FPGA implementation is tested by

vi

putting the H.264 coded bitstream into transport stream packets, streaming with UDP

over Ethernet and decoding with VLC Player software on a PC. All video resolutions

and frame rates defined in H.264 standard are supported by the implemented

encoder.

Keywords: Video Coding, H.264, FPGA, Intra Prediction, Integer Transform,

Quantization, Exponential-Golomb Coding, CAVLC

vii

ÖZ

FPGA PROGRAMLANABİLİR ENTEGRELERİ ÜZERİNDE H.264/AVC

UYUMLU INTRA-ÇERÇEVE VİDEO KODLAYICI TASARIMI

Günay, Ömer

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Fatih Kamışlı

Eylül 2014, 131 sayfa

Video sıkıştırma, bir video içerisindeki veri miktarını azaltarak o videonun

saklanması için gerekli depolama alanını veya iletimi için gerekli bant genişliğini

sınırlandırmak için kullanılan bir tekniktir. H.264/AVC Uluslararası Standartlar

Teşkilatı (ISO) bünyesindeki Hareketli Görüntü Uzmanları Grubu (MPEG) ve

Uluslararası Telekomünikasyon Birliği (ITU) bünyesindeki Video Kodlama

Uzmanları Grubu tarafından ortaklaşa geliştirilmiş, geniş çapta kullanım alanına

sahip bir video sıkıştırma standardıdır. H.264/AVC önceden oluşturulmuş

standartlarla karşılaştırıldığında daha gelişmiş algoritmalar içerir ve bu standartlara

göre videoyu daha etkin bir şekilde sıkıştırabilir. Bununla birlikte, artan işlem miktarı

H.264 uyumlu kodlayıcı ve çözücü tasarımlarını daha zor bir hale getirmiştir.

Bu çalışmada, FPGA entegreleri üzerinde H.264/AVC uyumlu intra-çerçeve video

kodlayıcı tasarlanmıştır. İlk etapta, intra kestirim, intra mod seçim, dönüşüm,

niceleme ve entropi kodlama gibi kodlayıcı algoritmaları MATLAB ortamında

oluşturulmuş ve test edilmiştir. Daha sonra MATLAB ortamında oluşturulmuş bütün

kodlar, VHDL donanım tanımlama dilinde yazılmıştır ve VHDL kodları Mentor

viii

Graphics firmasına ait Modelsim simülasyon yazılımı kullanılarak test edilmiştir.

Donanım testleri esnasında kodlanmış bit katarı ilk önce TS (Transport Stream)

paketi haline getirilmiş, daha sonra da UDP protokolünde Ethernet üzerinden

aktarılmıştır. En son aşamada ise, H.264 kodlanmış bit katarı VLC Player yazılımı

kullanılarak başarılı bir şekilde çözümlenmiştir. Tasarlanan kodlayıcı H.264

standardı tarafından desteklenen bütün seviyeleri desteklemektedir.

Anahtar Kelimeler: Video Kodlama, H.264, FPGA, Intra Kestirim, Tamsayı

Dönüşüm, Niceleme, Exponential-Golomb Kodlama, CAVLC

ix

To My Mother and Father…

x

ACKNOWLEDGMENTS

Firstly, I would like to thank to my supervisor, Assist. Prof. Dr. Fatih Kamışlı, for his

support throughout my master study.

I would like to thank to Yüksel Serdar, Hüseyin Atik, Engin Çağlav and İsmail Özsaraç in

ASELSAN for their support and help.

I would like to thank to İsmail Özsaraç for his valuable discussion, experience and help

during FPGA implementation process.

I would like to thank to İsmail Özsaraç and Erkan Yavuz for his support to implement the

test setup.

I would like to thank Ömer Lütfi Nuzumlalı for his assistance during thesis writing.

I also would like to thank to Aselsan Inc., Middle East Technical University and Ministry of

Science, Industry and Technology for supporting the project under SANTEZ program.

I would like to thank my father Zübeyir Günay, my mother Necla Günay and my brother

Bülent Günay for their infinite support, they are the people who make me as the person I

currently am.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES ... xv

LIST OF FIGURES ... xvii

ABBREVIATIONS ... xx

CHAPTERS…………………………………………………………………………..1

1 INTRODUCTION .. 1

2 AN OVERVIEW OF H.264/AVC .. 3

2.1 Digital Video Basics .. 4

2.1.1 Digital Video .. 4

2.1.2 Progressive and Interlaced Scan .. 5

2.1.3 Video Format ... 5

2.1.4 Color Spaces .. 6

2.1.5 Chroma Sampling Formats .. 8

2.1.6 Image Buffering ... 9

2.2 H.264/AVC VIDEO CODING ... 10

2.2.1 H264/AVC Profiles and Levels ... 10

2.2.2 H.264/AVC Encoder Path .. 12

2.2.3 H.264/AVC Decoder Path ... 21

2.3 H.264/AVC Syntax ... 22

xii

2.3.1 Video Control NAL Units .. 23

2.3.2 Video Coding Layer NAL Unit .. 24

3 H.264/AVC ENCODER HARDWARE MODEL AND ENCODER DESIGN

CRITERIA .. 27

3.1 H.264/AVC Encoder Hardware Model ... 27

3.1.1 Symbol .. 28

3.1.2 Pins Description ... 29

3.2 Encoder Design Criteria .. 30

4 H.264/AVC INTRA PREDICTION AND FPGA IMPLEMENTATION 33

4.1 H.264/AVC Intra Prediction .. 34

4.1.1 Luma Prediction ... 34

4.1.2 Chroma Prediction .. 43

4.2 Intra Mode Selection .. 46

4.2.1 Rate Distortion Optimized (RDO) Mode Selection 47

4.2.2 Luma Mode Selection Algorithm ... 48

4.2.3 Chroma Mode Selection Algorithm ... 51

4.3 FPGA Implementation of 4x4 Intra Prediction ... 52

4.4 FPGA Implementation of 4x4 Intra Mode Selection Algorithm 60

4.5 Resource Usage Summary of 4x4 Intra Prediction and 4x4 Intra Mode

Selection Blocks ... 66

5 H.264/AVC 4x4 TRANSFORM AND QUANTIZATION AND FPGA

IMPLEMENTATIONS .. 69

5.1 Transform Coding .. 71

5.1.1 Luma 4x4 Transform Processes ... 72

5.1.2 Chroma Transform Processes ... 74

5.2 Quantization ... 75

xiii

5.3 4x4 Transform and Quantization Examples .. 77

5.4 FPGA Implementation of Transform Coding ... 78

5.5 FPGA Implementation of Quantization .. 83

5.5.1 Forward Quantization .. 83

5.5.2 Inverse Quantization .. 84

5.6 Resource Usage Summary of Transform and Quantization 87

6 BASELINE PROFILE ENTROPY CODING TECHNIQUES AND THEIR

FPGA IMPLEMENTATIONS .. 89

6.1 Fixed Length Code .. 90

6.2 Exponential-Golomb Code .. 91

6.3 Context-based Adaptive Variable Length Code (CAVLC) 93

6.3.1 Example CAVLC Coding of a 4x4 Block ... 94

6.4 FPGA Implementation of Exponential-Golomb Coding 97

6.4.1 EXP-GOLOMB CODING STATE MACHINE 99

6.4.2 ROM INTRA CBP ... 100

6.4.3 ROM INTER CBP ... 100

6.4.4 Simulation and Implementation Results of Exponential-Golomb

Coding Block .. 100

6.5 FPGA Implementation of CAVLC ... 102

6.5.1 Zigzag Scan .. 106

6.5.2 Scanned Data Control .. 107

6.5.3 Total Coeff ... 108

6.5.4 Total Zeros ... 108

6.5.5 Run Code Control .. 108

6.5.6 Level Code Control .. 108

6.5.7 Bitstream Control ... 110

xiv

6.5.8 Simulation and Implementation Results of CAVLC Coding Block .. 110

7 HARDWARE IMPLEMENTATION AND RESULTS 115

7.1 Test Setup .. 115

7.1.1 Video Source .. 117

7.1.2 Camera Link Interface .. 117

7.1.3 H.264 Encoder .. 118

7.1.4 Transport Stream Generator ... 118

7.1.5 Ethernet Interface ... 118

7.2 Results.. 118

8 CONCLUSIONS AND FUTURE WORK ... 121

8.1 Conclusions.. 121

8.2 Future Work ... 122

REFERENCES ... 125

APPENDICES .. 127

A. EXPONENTIAL- GOLOMB AND CAVLC CODING TABLES 127

xv

LIST OF TABLES

TABLES

Table 2.1 Various Video Formats .. 6

Table 2.2 Some Tools Used In Several H.264 Profiles ... 11

Table 2.3 Minimum Decoder Levels for Some Video Formats 11

Table 2.4 An Example of SPS Syntax Elements ... 23

Table 2.5 An Example of PPS Syntax Elements ... 24

Table 3.1 H.264 Encoder Pins Description .. 30

Table 4.1 Resource Usage Summary of Intra Prediction and Mode Selection 67

Table 5.1 Chroma Sampling Formats and Corresponding Block Sizes 74

Table 5.2 Multiplication Factor (MF) .. 76

Table 5.3 Rescaling Factor (V) .. 76

Table 5.4 Block of Luma or Chroma Samples... 77

Table 5.5 Results of Each Step (Example) .. 77

Table 5.6 FPGA Resource Usage Summary of Transform and Quantization 87

Table 6.1 H.264 Fixed Length Coding Descriptors ... 90

Table 6.2 Some Fixed Length Coded Syntax Elements .. 91

Table 6.3 Exp-Golomb Codewords ... 93

Table 6.4 I/O Signal Descriptions of the EXP-GOLOMB CODING Block 99

Table 6.5 Exp-Golomb Block Delay for Different Mapping Types 102

Table 6.6 FPGA Resource Usage of Exp-Golomb Coding Block 102

Table 6.7 I/O Signal Descriptions of the CAVLC CODING Block 105

Table 6.8 4x4 Zigzag Scan Order .. 107

Table 6.9 4x4 Zigzag Scan Order .. 107

Table 6.10 FPGA Resource Usage of CAVLC Coding Block 114

Table 7.1 Bitrate Comparison of Three Encoder Models .. 120

Table 7.2 Resource Usage of Implemented H.264 Encoder 120

Table A-1 CBP Table (ChromaArrayType is Equal to 1 or 2) 127

Table A-2 CBP Table (ChromaArrayType is Equal to 0 or 3) 128

xvi

Table A-3 Total Coeff Tables .. 129

Table A-4 Total Zeros Table for 4x4 Blocks ... 130

Table A-5 Total Zeros Table for Chroma DC Blocks (4:2:0 Chroma Sampling) 130

Table A-6 Total Zeros Table for Chroma DC Blocks (4:2:2 Chroma Sampling) 131

Table A-7 Run Before Parameter Table ... 131

xvii

LIST OF FIGURES

Figure 2.1 Main Parts of an H.264/AVC Codec .. 4

Figure 2.2 Progressive and Interlaced Scan ... 5

Figure 2.3 Original Frame .. 7

Figure 2.4 Y Component of Picture in Figure 2.3 ... 7

Figure 2.5 Cb Component of Picture in Figure 2.3 .. 7

Figure 2.6 Cr Component of Picture in Figure 2.3 .. 8

Figure 2.7 Chroma Sampling Formats ... 9

Figure 2.8 Interleaved Memory Structure .. 9

Figure 2.9 Planar Memory Structure ... 10

Figure 2.10 H.264 Encoder Structure .. 13

Figure 2.11 Intra Prediction ... 14

Figure 2.12 Inter Prediction ... 14

Figure 2.13 Inter Prediction Block Sizes ... 16

Figure 2.14 Transform Matrixes Used in H.264/AVC ... 18

Figure 2.15 Transformation and Quantization Results of Two Residual Blocks 20

Figure 2.16 Decoder Flow ... 21

Figure 2.17 H.264/AVC Syntax ... 22

Figure 3.1 Encoder FPGA Design Top Block ... 28

Figure 3.2 Top Level Representation of the Designed H.264 Encoder 28

Figure 3.3 Timing Representations of the Input Signals ... 29

Figure 4.1 Encoder/Channel/Decoder Block Representation 34

Figure 4.2 8x8 and 4x4 Scanning of a MB .. 35

Figure 4.3 A 4x4 Block and Neighboring Pixels ... 36

Figure 4.4 Intra 4x4 Prediction Modes .. 36

Figure 4.5 4x4 Luma Prediction Equations ... 39

Figure 4.6 Possible 4x4 Prediction Modes at Various Block Locations inside an

Image .. 40

Figure 4.7 16x16 Prediction Modes ... 40

xviii

Figure 4.8 Possible 16x16 Prediction Modes at Various Block Locations inside an

Image .. 42

Figure 4.9 8x8 Chroma Prediction Equations .. 45

Figure 4.10 Possible Chroma Prediction Modes at Various Block Locations inside

an Image ... 46

Figure 4.11 4x4 Representation of a MB ... 50

Figure 4.12 4x4 Representation of Cb and Cr Components 52

Figure 4.13 4x4 Intra Prediction and Residual Calculation 54

Figure 4.14 “mode_status” Signal Bits and Corresponding Modes 55

Figure 4.15 Similarities between Prediction Equations ... 59

Figure 4.16 Residual Calculation Block Diagram .. 60

Figure 4.17 FPGA Design Architecture of 4x4 Intra Mode Selection Algorithm 61

Figure 4.18 The 4x4 Hadamard Transform Block Modelsim Simulation Results 62

Figure 4.19 The Distortion Calculation Block Modelsim Simulation Results 63

Figure 4.20 The Cost Calculation Block Modelsim Simulation Results 64

Figure 4.21 Find Minimum of Three Numbers Block Modelsim Simulation Results

 .. 65

Figure 4.22 Find Best 4x4 Mode Block Modelsim Simulation Results 66

Figure 5.1 Forward Transform and Quantization ... 70

Figure 5.2 Inverse Transform and Quantization .. 70

Figure 5.3 4x4 and 8x8 Transform Matrixes .. 71

Figure 5.4 Luma Forward Transform: Default ... 72

Figure 5.5 Luma Inverse Transform: Default .. 72

Figure 5.6 Luma Forward Transform: Intra 16x16 Mode .. 73

Figure 5.7 Luma Inverse Transform: Intra 16x16 Mode .. 73

Figure 5.8 Chroma Forward Transform: 4:2:0 Sub-sampling 74

Figure 5.9 Chroma Inverse Transform: 4:2:0 Subsampling 75

Figure 5.10 Block Diagram of Forward Transform ... 78

Figure 5.11 Block Diagram of Inverse Transform and Rounding 78

Figure 5.12 HDL Designer View of “Integer Transform” Block 79

Figure 5.13 HDL Designer View of “Inverse Integer Transform” Block 80

Figure 5.14 Modelsim Simulation Result of “Integer Transform” Block 81

xix

Figure 5.15 Modelsim Simulation Result of “Inverse Integer Transform” Block 82

Figure 5.16 State Diagram of Quantization Process .. 84

Figure 5.17 State Diagram of Inverse Quantization Process 85

Figure 5.18 Modelsim Simulation Results of “Quantization” and “Inverse

Quantization” Process .. 86

Figure 6.1 Exp-Golomb Codeword Structure .. 92

Figure 6.2 Algorithmic Flow of CAVLC .. 94

Figure 6.3 Block Diagram of Exponential-Golomb Coding 98

Figure 6.4 State Diagram of Exponential-Golomb State Machine 100

Figure 6.5 Simulation Result When the Mapping Type is ue(v) 101

Figure 6.6 Simulation Result When the Mapping Type is se(v) 101

Figure 6.7 Simulation Result When the Mapping Type is me(v) 101

Figure 6.8 FPGA Architecture of CAVLC Block Design 104

Figure 6.9 CAVLC Coding Block Working Principle ... 106

Figure 6.10 Algorithmic Flow of Level Parameter Coding 109

Figure 6.11 FPGA Implementation Architecture of Level Parameter Coding 110

Figure 6.12 CAVLC Modelsim Simulation Result (Block Size: 4x4) 111

Figure 6.13 CAVLC Modelsim Simulation Result (Block Size: 2x2) 112

Figure 6.14 Maximum Block Delays (Number of Quantized Coefficient: 16) 113

Figure 6.15 Maximum Block Delays (Number of Quantized Coefficient: 15) 113

Figure 6.16 Maximum Block Delays (Number of Quantized Coefficient: 4) 114

Figure 7.1 H.264 Encoder Hardware Block Diagram .. 116

Figure 7.2 STRATIX V FPGA Development Board ... 116

Figure 7.3 Video Source .. 117

Figure 7.4 Comparison of Implementation Results ... 119

xx

ABBREVIATIONS

ASIC Application Specific Integrated Circuit

AVC Advanced Video Coding

BP Baseline Profile

CABAC Context Adaptive Binary Arithmetic Coding

CAVLC Context Adaptive Variable Length Coding

CBP Coded Block Pattern

CIF Common Intermediate Format

DCT Discrete Cosine Transform

DDR Double Data Rate

DVD Digital Versatile Disk

FIFO First In First Out

FPGA Field Programmable Gate Array

HD High Definition

HDL Hardware Description Language

HP High Profile

HSMC High Speed Mezzanine Card

IDR Instanteneous Decoder Refresh

ISO International Organization for Standardization

ITU International Telecommunication Union

JM Joint Model

JPEG Joint Photographic Experts Group

MB Macroblock

MP Main Profile

MPEG Moving Picture Experts Group

MSE Mean Square Error

NALU Network Abstraction Layer Unit

PC Personal Computer

xxi

PHY Physical

PPS Picture Parameter Set

PSNR Peak Signal-to-Noise Ratio

RAM Random Access Memory

RDO Rate Distortion Optimization

ROM Read Only Memory

QCIF Quarter Common Intermediate Format

QP Quantization Parameter

SAD Sum of Absolute Difference

SATD Sum of Absolute Transformed Difference

SDRAM Synchronous Dynamic Random Access Memory

SSD Sum of Squared Difference

VCEG Video Coding Video Coding Experts Group

VCL Video Coding Layer

VHDL Very High Speed Integrated Circuits Hardware Description Language

VLC VideoLAN Client

TS Transport Stream

UDP User Datagram Protocol

1

 CHAPTER 1

1 INTRODUCTION

H.264, also known as MPEG-4 part 10 or Advanced Video Coding (AVC), is a video

compression standard, which is a successor to previous H.263 and MPEG-2

standards [1]. It is currently one of the most commonly used formats for the

recording, compression, and distribution of video content. H.264/AVC is used in a

wide range of applications including internet video streaming, digital cinema

applications, Blu-ray and HD DVD, and television broadcasting [2]. H.264/AVC was

developed by the ITU-T Video Coding Experts Group (VCEG) together with

ISO/IEC Moving Picture Experts Group (MPEG) and ratified as an international

standard in 2003. H.264 aims an average bit rate reduction of 50% given fixed

fidelity compared to previous standards.

In H.264/AVC, more complicated algorithms are used to achieve superior

compression with respect to previous standards. Power consumption, logic usage,

design cost and flexibility are some of the design criterions that should be considered

while designing an H.264/AVC codec. Depending on the performance requirements

of the applications, various platforms have been used, such as general purpose (GP)

processors, multimedia co-processors, ASICs and FPGAs. Encoders on general

purpose processors have been developed for comparison and development. General

purpose processors however are not able to meet the constraints of real-time video

encoding. Multimedia co-processors have focused on smaller frame sizes, generally

CIF and below with high power consumptions. So they are not a suitable solution for

portable applications. Due to the parallel processing architecture of ASICs and

2

FPGAs, they are more advantageous in terms of video encoding applications.

However, the high cost of custom silicon makes ASIC solutions economically

feasible only in high volume applications. Therefore, in lower-volume type of

applications, FPGAs are typically preferred.

In this thesis, an H.264/AVC compatible intra-frame video encoder is designed and

implemented on FPGA programmable devices. First, a reference encoder which

includes encoding algorithms such as intra prediction, intra mode selection,

transform, quantization and entropy coding, are implemented and tested in

MATLAB environment. Then, the reference encoder is coded in VHDL language

and tested using the Mentor Graphics Modelsim HDL simulation tool. Next, the

overall FPGA implementation is tested by putting the H.264 coded bitstream into

transport stream packets, streaming with UDP over Ethernet and decoding with VLC

Player software on a PC.

The remainder of this thesis is organized as follows: Chapter 2 provides a basic

overview of video encoding and H.264/AVC video coding standard. In Chapter 3, an

overview of designed H.264 encoder and some design criteria about encoder design

are given. Intra prediction and its FPGA implementation are studied in Chapter 4.

Chapter 5 explains the implementation and theory of residual coding processes, i.e.

transform and quantization. Entropy coding tools, including Exp-Golomb

(Exponential-Golomb) coding and CAVLC (Context Adaptive Variable Length

Coding) are studied in Chapter 6. The results are given in Chapter 7. Finally, Chapter

8 concludes the paper.

3

 CHAPTER 2

2 AN OVERVIEW OF H.264/AVC

As shown in Figure 2.1, an H.264/AVC codec is composed of two main parts: video

encoder and video decoder. The encoder part performs prediction, transforming and

encoding operations to generate a compressed bitstream. In H.264, while predicting

the current blocks, previously coded pixels are used. For this reason, in an encoder

inverse quantization, inverse transformation and reconstruction operations are also

applied to quantized transform coefficients in order to produce the previously coded

pixels. The video decoder part performs the complementary operations of decoding,

inverse transforming and reconstruction to generate a decoded video sequence. The

compressed H.264/AVC bitstream can be transmitted or stored in different mediums

such as the internet or DVD disks. Because H.264/AVC is a lossy compression

standard, in general, there will be some differences between the original video and

the decoded one.

4

Reconstruction

VIDEO DECODER

Inverse

Transform&

Quantization

Entropy

Decode

Prediction

VIDEO ENCODER

Transform&

Quantization
Entropy Encode

video

source

video

output

co
m

p
re

ss
ed

H
.2

6
4

 s
y

n
ta

x

Inverse

Transform&

Quantization

Reconstruction

Figure 2.1 Main Parts of an H.264/AVC Codec

In this chapter, after defining some basic concepts about digital video and video

coding, H.264/AVC encoder data flow, H.264/AVC decoder data flow and

H.264/AVC syntax will be explained.

2.1 Digital Video Basics

2.1.1 Digital Video

Video is the combination of still pictures that are displayed at a high rate to give the

impression that objects in pictures are moving. Frame rate is the number of still

pictures per unit of time. Presently, the movie industry uses 24 frame per second

(fps), while the TV industry 25 (in PAL and SECAM systems) and 30 fps (in NTSC

system). Frame resolution specifies the number of pixels used to represent each

frame (1920x1080, 640x512 etc.). Pixel depth specifies the number of bits that are

used to represent each pixel (8 bits per pixel, 14 bits per pixel).

5

2.1.2 Progressive and Interlaced Scan

As shown in Figure 2.2, in progressive scan the horizontal lines are scanned

successively. In the interlaced scan, each frame is scanned in two fields and each

field contains half the number of lines in a frame.

Progressive Scan Interlaced Scan

Field 1 Field 2

Figure 2.2 Progressive and Interlaced Scan

Interlaced scan increases temporal resolution. However, it also decreases the vertical

resolution. So it comes up with a trade-off between temporal and vertical resolution.

It may allow us more detailed images to be created than would otherwise be possible

within a given amount of bandwidth. But it may also lead to interlacing artifacts

especially in high frequency regions.

2.1.3 Video Format

In Table 2.1, commonly used video formats are listed. The choice of frame resolution

depends on the application. For example, SQCIF or QCIF are appropriate for mobile

multimedia applications; CIF and QCIF are popular for videoconferencing

applications; 4CIF is appropriate for standard-definition television and DVD-video;

HD is appropriate for high-definition television.

6

Table 2.1 Various Video Formats

2.1.4 Color Spaces

Color is described by the luminance and chrominance attributes of light. Luminance

refers to the perceived brightness of the light, which is proportional to the total

energy in the visible band. Chrominance describes the perceived color tone of a light,

which depends on the wavelength composition of the light. Human visual system is

more sensitive to luminance changes than chrominance. For this reason, representing

luminance and chrominance components separately is often more efficient. RGB and

YCbCr are commonly used color spaces.

In RGB representation, red, green, and blue light are added together in various ways

to reproduce a broad array of colors. All three components are equally important.

RGB format is commonly used when displaying and storing an image.

In the YCbCr representation, Y is the luminance component and Cb, Cr are the

chroma components. Y, Cb and Cr components of the image shown in Figure 2.3 are

represented in Figure 2.4, Figure 2.5 and Figure 2.6, respectively. As shown from

these figures, luminance component contains more information than chroma

components.

Sub-QCIF 128x96

Quarter CIF 176x144

CIF 352x288

4CIF 704x576

720p 1280x720

HD 1920x1080

UHD 3840x2160

Format Resolution

7

Figure 2.3 Original Frame

Figure 2.4 Y Component of Picture in Figure 2.3

Figure 2.5 Cb Component of Picture in Figure 2.3

8

Figure 2.6 Cr Component of Picture in Figure 2.3

2.1.5 Chroma Sampling Formats

As mentioned in section 2.1.4, luma component of a frame carries more information

than chroma components. For this reason, representing chroma components with less

data usually may give better results in some video compression applications. This is

achieved as follows: Instead of using one Cb and one Cr pair for each Y component,

same Cb and Cr pairs are used for more than one Y component.

In Figure 2.7, three sampling formats that are supported by H.264/AVC are shown.

In 4:4:4 sampling format, one Cb and one Cr pair is used for each luma component.

In 4:2:2 sampling format, chroma components are sampled by two in the horizontal

axis which means the same Cb and Cr components are used for each two horizontally

neighbor luma components. In 4:2:0 sampling format, which is commonly used

format, chroma components are sampled by two both in the horizontal and vertical

directions.

9

Figure 2.7 Chroma Sampling Formats

2.1.6 Image Buffering

There are two common memory structures for an image: Planar and Interleaved. In

planar images, all of the samples are stored consecutively, and they are consecutive

in memory as well (YYY…CbCbCb…CrCrCr…). In interleaved images, the

samples are interleaved with each other in memory (YCbCrYCbCrYCbCr …). In

Figure 2.8 and Figure 2.9, interleaved and planar images are shown respectively.

Cb

Cb

Cb

Y

Y

Y

Cr

Cr

Cr

Cb

Cb

Cb

Y

Y

Y

Cr

Cr

Cr

Cb

Cb

Cb

Y

Y

Y

Cr

Cr

Cr

Figure 2.8 Interleaved Memory Structure

10

Y

Y

Y

Y

Y

Y

Y

Y

Y

Cb

Cb

Cb

Cb

Cb

Cb

Cb

Cb

Cb

Cr

Cr

Cr

Cr

Cr

Cr

Cr

Cr

Cr

Figure 2.9 Planar Memory Structure

2.2 H.264/AVC VIDEO CODING

2.2.1 H264/AVC Profiles and Levels

The H.264/AVC standard document does not specify how to encode a digital video.

It only defines syntax for compressed video and a method for decoding this syntax.

An encoder may choose any tools defined in the standard. However, a decoder must

implement a given set of tools and be able to process a given amount of data. These

are defined as profile and level of a decoder in H.264/AVC standard.

Each H.264 profile defines a subset of tools and targets specific classes of

applications. It places limits on the algorithmic capabilities required of an

H.264/AVC decoder. The standard defines 21 profiles. But these 21 profiles are

extended or reduced versions of the baseline profile (BP), main profile (MP) and

high profile (HP). In general, BP is used for low-cost applications, MP is used for

standard-definition digital TV broadcasts and HP is used for broadcast and disc

storage. In Table 2.2, several H.264 profiles are compared (see [2] for more

information).

11

Table 2.2 Some Tools Used In Several H.264 Profiles

H.264/AVC levels define the maximum data processing rate of a decoder. It puts

constraints on some video parameters such as the maximum frame rate and the

maximum frame size of a video. In Table 2.3, the minimum required decoder levels

are listed for some different video formats at various frame rates.

Profile and level parameters are sufficient to define all the capabilities of a decoder.

They also give information about the decoder complexity. From BP (Baseline

Profile) to HP (High Profile) and from level 1 to 5, a decoder complexity and

capability increase.

Table 2.3 Minimum Decoder Levels for Some Video Formats

Feature CBP BP XP MP ProHiP HiP Hi10P Hi422P Hi444PP

Bit depth (per sample) 8 8 8 8 8 8 8 to 10 8 to 10 8 to 14

Chroma formats 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0/4:2:2 4:2:0/4:2:2/4:4:4

Interlaced coding (PicAFF, MBAFF) No No Yes Yes No Yes Yes Yes Yes

B slices No No Yes Yes Yes Yes Yes Yes Yes

CABAC entropy coding No No No Yes Yes Yes Yes Yes Yes

4:0:0 (Monochrome) No No No No Yes Yes Yes Yes Yes

8×8 vs. 4×4 transform adaptivity No No No No Yes Yes Yes Yes Yes

Separate Cb and Cr QP control No No No No Yes Yes Yes Yes Yes

Separate color plane coding No No No No No No No No Yes

Predictive lossless coding No No No No No No No No Yes

Format (luma resolution) Max frames per second Level

QCIF (176x144) 15

30

1, 1b

1.1

CIF (352x288) 15

30

1.2

1.3, 2

525 SD (720x480) 30 3

625 SD (720x576) 25 3

720p HD (1280x720) 30 3.1

1080p HD (1920x1080) 30

60

4, 4.1

4.2

4Kx2K (4096x2048) 30 5.1

12

2.2.2 H.264/AVC Encoder Path

H.264/AVC is a block based video compression standard. Video is processed block

by block. The main block size in H.264/AVC is 16x16 which is also called as

macroblock (MB). After encoding one macroblock, the next macroblock is processed

until all the MBs in a frame are processed in that manner.

In Figure 2.10, the detailed block diagram of an H.264/AVC encoder is given. An

H.264/AVC encoder performs prediction, motion estimation and compensation,

transformation, quantization, entropy encoding operations to compress video blocks.

It also generates H.264/AVC compatible bitstream from the entropy coded video

blocks and entropy coded video control parameters.

13

UNCOMPRESSED

INPUT VIDEO

INTEGER

TRANSFORM

QUANTIZATION&

SCALING

ENTROPY

CODING

001111000...

PREDICTION

INTRA

INTER

INVERSE

INTEGER

TRANSFORM

INVERSE

QUANTIZATION&

SCALING

Reconstructed

Frame(s)

Current Frame

STRUCTURE OF THE H.264/AVC

ENCODER

Residual

Frame

R
e
fe

ra
n

ce

F
ra

m
e(

s)

Q
u
a
n
ti

z
e
d

C
o
e
ff

ic
ie

n
ts

P
re

d
ic

te
d

F
ra

m
e

DEBLOCKING

FILTER

Reconstructed Pixels

for Intra Prediction

Prediction Parameters (MB Type, Motion Vectors,

Prediction Mode, Prediction Block Size etc.)

S
li

c
e

D
at

a

CODED

BITSTREAM

EXP-GOLOMB& FIXED

LENGTH CODING

VIDEO CONTROL

PARAMETERS

VIDEO&USER

DEFINED

PARAMETERS

BITSTREAM

CONTROL

Slice Header &

Video Control

SLICE HEADER

CONTROL

Figure 2.10 H.264 Encoder Structure

2.2.2.1 Prediction

In H.264/AVC, a prediction is created for every macroblock by using the previously

coded pixels. The aim of this operation is to construct a prediction block as close as

possible to the original block and send the difference (error or residual) between these

blocks instead of the original block. Error between the original block and the prediction

block directly affects the compression performance. If the error is small, that means

14

residual block contains less information, the bitrate to transmit the error will be less. So

the compression efficiency increases.

H.264/AVC supports two types of prediction methods: Intra prediction and Inter

prediction. Intra prediction method uses the previously coded data in the current

frame (Figure 2.11); on the other hand, inter prediction method uses the previously

coded data in other frame(s) (Figure 2.12).

Previously Coded Pixels

P
re

v
io

u
sl

y
 C

o
d
e
d
 P

ix
el

s

Current Block

Figure 2.11 Intra Prediction

Current Frame Future FramePast Frame

Figure 2.12 Inter Prediction

15

In intra prediction method, there are three choices of block sizes for luma

components and there is single choice of block size for chroma components. Block

sizes for luma components are 16x16, 8x8 and 4x4 (8x8 block size is only used in

high profiles) and for chroma 8x8. There are 9 different prediction modes for each

4x4 and 8x8 luma blocks; 4 for a 16x16 luma block and 4 for chroma blocks.

An efficient encoder should try to decide the optimum prediction size and prediction

mode before constructing the bitstream. Smaller block sizes commonly provide

better prediction, but require more bits for signaling the prediction modes. The

details of intra prediction modes and an efficient mode selection algorithm are

represented in Chapter 4.

As mentioned earlier, in contrast to intra prediction, inter prediction uses blocks from

different frame(s) other than the current frame while constructing the prediction

block. In H.264/AVC, several inter prediction block sizes are allowed from 16x16 to

4x4 (Figure 2.13). A macroblock can be divided into two 16x8 blocks or two 8x16 or

four 8x8 blocks which are called as macroblock partitions. Further, an 8x8

macroblock partition can be divided into two 4x8 blocks or two 8x4 blocks or four

4x4 blocks which are called as sub-macroblock partitions. A macroblock can be

predicted using macroblock partitions from different frames, however, sub-

macroblock partitions of a macroblock partition must be in the same frame.

16

Figure 2.13 Inter Prediction Block Sizes

If a macroblock is inter predicted, the reference frame index or indexes and motion

vector or vectors must be signaled to the decoder side to properly construct the

decoded picture.

Some operations, such as reference picture interpolation and loop filtering, may be

applied before inter prediction to increase the prediction performance. By doing the

interpolation of the reference pictures, extra pixels are added into the reference frame

and motion estimation can be achieved at the 1/4 pixel resolution for luma

components and 1/8 pixel resolution for chroma components. Also an in-loop

deblocking filter [3] reduces the blocking artifacts.

2.2.2.2 Transform & Inverse Transform

As done in the former standards, transform operation is applied after the prediction

operation to code the prediction error signal. Because of the characteristics of an

image, the correlation between the pixels is commonly high in the horizontal and

17

vertical directions. There is typically also correlation left in the prediction error

signal. Transform coding reduces the spatial redundancy of the prediction error

signal. Former standards such as JPEG, MPEG-2 Video and MPEG-4 Visual applied

a two dimensional Discrete Cosine Transform (DCT) [4] of size 8x8.

In H.264/AVC, different types of integer transforms are used to minimize the

computational complexity and to avoid encoder/decoder mismatch. Equation 2.1

shows the general transformation equation, where A is the transform matrix, X is the

residual block and Y is the transformation result. The core transform in H.264/AVC

is 4x4 or 8x8 integer transform. 8x8 transform is only used in High profiles.

Y = AXA
T

(2.1)

As mentioned earlier, the size and type of the transform matrix A varies. In Figure

2.14, transform matrixes used in H.264/AVC are shown. A1 and A4 are the 4x4 and

8x8 core transforms matrices, respectively. When the luma prediction type is Intra

16x16, a second transform (also called Hadamard transform) is applied to the DC

coefficients of each 4x4 blocks after the core transform by using the A2 matrix. A3

matrix is used for the similar purpose as A2, but this matrix is used for chroma

components. After the core transformation of chroma blocks, all DC coefficients are

collected and a second transform is applied to these DC coefficients using the A3

matrix.

18

1 1 1 1

2 1 -1 -2

1 -1 -1 1

1 -2 2 -1

A1 =

1 1 1 1

1 1 -1 -1

1 -1 -1 1

1 -1 1 -1

A2 =
1 1

1 -1
A3 =

8 8 8 8 8 8 8 8

12 10 6 3 -3 -6 -10 -12

8 4 -4 -8 -8 -4 4 8

10 -3 -12 -6 6 12 3 -10

8 -8 -8 8 8 -8 -8 8

6 -12 3 10 -10 -3 12 -6

4 -8 8 -4 -4 8 -8 4

3 -6 10 -12 12 -10 6 -3

A4 =

Figure 2.14 Transform Matrixes Used in H.264/AVC

The inverse integer transform operation shown in Equation 2.2 is similar to the

integer transform operation. Here W is the inverse transform matrix, X is the matrix

obtained after the inverse quantization process and Z is the result of the inverse

transformation.

Z = W
T
XW

(2.2)

In Chapter 5, more details about the transform & inverse transform operations are

given.

2.2.2.3 Quantization & Inverse Quantization

After transform operation, transform coefficients are quantized in order to reduce the

precision of the transform coefficients according to a quantization parameter. The

basic forward quantizer operation is shown in equation (2.3), where Xij is a transform

coefficient, Yij is the quantized output and Qstep is the quantization step size.

Yij = round(Xij/Qstep)

(2.3)

19

The quantization is the only part of the H.264/AVC that adds intentional errors into

coding systems. The reason to do is to increase the compression performance with a

reasonable distortion. If the quantization step size increases, more quantized

coefficients will be zero which means less data to represent. This leads to keeping

only a few coefficients for efficient representation and results in more distortion. It is

important to note that quantization process directly controls the quality and

compression ratio for applications. In H.264/AVC 52 different QP values, from 0 to

51, are supported. An encoder can control the QP parameter to control the trade-off

between compression ratio and distortion.

The inverse quantization does the inverse operation of the quantization process. The

basic inverse quantizer operation (or rescale) is shown in equation (2.4), where Yij is

a quantized coefficient, Zij is the inverse quantization output and Qstep is the

quantization step size.

Zij = Yij.Qstep

(2.4)

In Chapter 5, more details about the quantization and inverse quantization operations

are given.

2.2.2.4 Entropy Coding

In Figure 2.15, two 4x4 residual blocks, their transforms and quantization results are

given (used H.264/AVC JM reference software of version 18.4 and QP is set to 10).

As seen from these results, after the quantization operation most of the quantized

coefficients (especially high frequency components) become zero and occurrence of

some values are more probable than others. Actually we do not need to send all these

zero-valued coefficients one by one and represent all the symbols with the same

length of bits.

20

Transform

Transform Quantization

Quantization

Figure 2.15 Transformation and Quantization Results of Two Residual Blocks

Entropy coding is a lossless data compression technique. Entropy coding algorithms

try to assign shortest codes to the most commonly occurred symbols at the input in

order to produce smaller bitstream.

H.264 specifies several methods for coding of symbols. These are fixed length code,

Exponential-Golomb (Exp-Golomb) variable length code, CAVLC (Context-

Adaptive Variable Length Coding) and CABAC (Context-Adaptive Binary

Arithmetic Coding).

While entropy coding quantized transform coefficients, CABAC or CAVLC

techniques are used. They have major improvements in terms of coding efficiency

compared to the techniques used in prior video coding standards. Both methods of

H.264/AVC offer a high degree of adaptation to the underlying source, even though

at a different complexity-compression trade-off.

CAVLC is commonly used in baseline profile and simpler than CABAC. However,

CABAC algorithm can represent the same video data with about 10% fewer bits

when compared to CAVLC [5].

In Chapter 6, more details about the entropy coding techniques including Exp-

Golomb and CAVLC are given.

21

2.2.2.5 Bitstream Control

Bitstream Control block is responsible from the construction of H.264/AVC coded

bitstream properly. It manages the data flow, takes coded symbols from different

blocks and combines them with a correct H.264/AVC syntax as will be described in

section 2.3.

2.2.3 H.264/AVC Decoder Path

An H.264/AVC decoder constructs the video from the H.264/AVC coded bitstream.

As shown in Figure 2.16, firstly the coded bitstream is entropy decoded, then inverse

quantized and inverse transformed, and finally reconstruction process is applied by

using prediction parameters and reference pictures or pixels. The inverse

quantization, inverse transform and reconstruction operations are the same as in the

encoder side.

INVERSE

QUANTIZATION &

RESCALING

INVERSE

TRANSFORM
001111000...

CODED

BITSTREAM ENTROPY

DECODING

RECONSTRUCTION

+

Construct

Prediction

Previously

Decoded

Frame Buffer

Intra

Inter

P
re

d
ic

ti
o

n

Residual Decoded Frame

Figure 2.16 Decoder Flow

Although an H.264/AVC encoder must generate a standard compliance bitstream, a

decoder must decode all the encoded bitstreams for a specific profile and level pair.

So we can say that, the computational complexity of an encoder is more than a

decoder but a decoder must cover all the tools defined in a specific profile and level.

22

2.3 H.264/AVC Syntax

H.264 syntax is defined in the H.264 standard and specifies the exact structure of an

H.264-compliant video sequence. It defines the syntax elements and the construction

of the coded bitstreams from these syntax elements.

Figure 2.17 shows the H.264/AVC syntax hierarchy [6]. H.264/AVC syntax consists

of different Network Abstraction Layer Unit (NALU). Sequence Parameter Sets

(SPS) and Picture Parameter Sets (PPS) are NAL units that signal the common

control parameters about the video and video data is represented by different type of

slices (IDR slice, I slice, P slice, B slice etc.).

SPS PPS IDR Slice Slice Slice PPS Slice …….

Slice DataSlice Header

MB MB MB MB MB …….

Type Prediction Coded Block Pattern QP Residual

Intra Mode(s) Reference Frame(s) Motion Vectors

INTRA INTER

Network Abstraction Layer

Slice Layer

MB Layer

Luma Blocks Cb Blocks Cr Blocks

Figure 2.17 H.264/AVC Syntax

23

2.3.1 Video Control NAL Units

As mentioned above, SPS and PPS contain the common control parameters about the

video. SPS signals the control parameters about the coded video sequences such as

profile, level, video resolution and maximum frame number. In Table 2.4, one

example of SPS is shown (JM 18.4 is used in trace mode). ‘profile_idc’ and

‘level_idc’ parameters shown in this table signal the profile and level values of the

coded video sequence, respectively. More details about the meaning and coding of

each syntax element shown in Table 2.4 can be found in the H.264 standard [1].

Table 2.4 An Example of SPS Syntax Elements

PPS signals the control parameters about the coded pictures such as entropy coding

technique (CAVLC or CABAC) and the initial value of QP. In Table 2.5, one

example of PPS is shown (JM 18.4 is used in trace mode).

‘entropy_coding_mode_flag’ set to 0 means CAVLC technique is used; otherwise, it

Bit

Position

NALU

Type
Parameter Binary Code Symbol

@0 SPS: profile_idc 1000010 (66)

@8 SPS: constrained_set0_flag 0 (0)

@9 SPS: constrained_set1_flag 0 (0)

@10 SPS: constrained_set2_flag 0 (0)

@11 SPS: constrained_set3_flag 0 (0)

@12 SPS: reserved_zero_4bits 0 (0)

@16 SPS: level_idc 11111 (31)

@24 SPS: seq_parameter_set_id 1 (0)

@25 SPS: log2_max_frame_num_minus4 1 (0)

@26 SPS: pic_order_cnt_type 1 (0)

@27 SPS: log2_max_pic_order_cnt_lsb_minus4 1 (0)

@28 SPS: num_ref_frames 10 (1)

@31 SPS: gaps_in_frame_num_value_allowed_flag 0 (0)

@32 SPS: pic_width_in_mbs_minus1 1011 (10)

@39 SPS: pic_height_in_map_units_minus1 1001 (8)

@46 SPS: frame_mbs_only_flag 1 (1)

@47 SPS: direct_8x8_inference_flag 1 (1)

@48 SPS: frame_cropping_flag 0 (0)

@49 SPS: vui_parameters_present_flag 0 (0)

24

means CABAC technique is used. ‘pic_init_qp_minus26’ syntax element signals the

initial QP for luma components. In this example, setting this value to 0 means the

initial QP value is 26 for luma coding. More details about the meaning and coding of

each syntax element shown in Table 2.5 can be found in the H.264 standard [1].

Table 2.5 An Example of PPS Syntax Elements

2.3.2 Video Coding Layer NAL Unit

Coded video data is represented with different type of slices (Figure 2.17). Each slice

consists of a slice header and a slice data. Slice data is a series of coded macroblocks

and skip macroblock indicators (gaps between macroblocks at macroblock layer

shown in Figure 2.17) which signal that a macroblock contains no data. A

macroblock contains syntax elements that represent the macroblock type, prediction

type, coded block pattern (CBP), quantization parameter offset for a macroblock and

residual data. Macroblock type shows the macroblock prediction type. When the

macroblock type is I/Intra, this macroblock is predicted using only intra prediction

method. If the macroblock type is P, intra prediction or inter prediction methods

Bit

Position

NALU

Type
Parameter Binary Code Symbol

@50 PPS: pic_parameter_set_id 1 (0)

@51 PPS: seq_parameter_set_id 1 (0)

@52 PPS: entropy_coding_mode_flag 0 (0)

@53 PPS: bottom_field_pic_order_in_frame_present_flag 0 (0)

@54 PPS: num_slice_groups_minus1 1 (0)

@55 PPS: num_ref_idx_l0_default_active_minus1 1 (0)

@56 PPS: num_ref_idx_l1_default_active_minus1 1 (0)

@57 PPS: weighted_pred_flag 0 (0)

@58 PPS: weighted_bipred_idc 0 (0)

@60 PPS: pic_init_qp_minus26 1 (0)

@61 PPS: pic_init_qs_minus26 1 (0)

@62 PPS: chroma_qp_index_offset 1 (0)

@63 PPS: deblocking_filter_control_present_flag 0 (0)

@64 PPS: constrained_intra_pred_flag 0 (0)

@65 PPS: redundant_pic_cnt_present_flag 0 (0)

25

using one reference frame may be used. However, if the macroblock type is B, intra

prediction or inter prediction methods using one or more reference frames may be

used.

If the prediction type is intra, intra prediction modes are specified in prediction

section (Figure 2.17); otherwise, reference pictures and motion vectors are specified

in this region. CBP indicates which luma and chroma blocks contain non-zero

residual coefficients, QP shows the quantization parameter offset for MBs and

residual data gives the information about the quantized transform coefficients in the

residual block.

26

27

CHAPTER 3

3 H.264/AVC ENCODER HARDWARE MODEL AND

ENCODER DESIGN CRITERIA

In this chapter, general information about the designed H.264 encoder are given and

some important encoder design criteria which should be exactly specified before

starting an encoder designing are discussed.

3.1 H.264/AVC Encoder Hardware Model

In this thesis work, we have designed and implemented a baseline profile intra-frame

H.264/AVC compliant video encoder on FPGA programmable devices. The block

diagram of our hardware design is shown in Figure 3.1.

In this design, only intra prediction technique is used while predicting the

macroblocks of an image. Low complexity mode selection algorihm in JM reference

software of version 18.4 is implemented in order to select the prediction modes

efficiently. Because this is a baseline profile encoder, 4x4 core transform and

CAVLC entropy coding technique are used.

28

Intra 4x4

Prediction

Intra 16x16

Prediction

MB

Reconstruction

T Q

 T-1 Q-1

Entropy Coding

(CAVLC)

Control&Status Interface

V
id

eo
 I

n
p
u
t

In
te

rf
a
ce

M
o
d
e

S
el

ec
ti

o
n

B
y
te

 S
tr

ea
m

 G
en

er
at

io
n

Lowest Cost

Residual

Residual

Lowest Cost

Residual

P
re

d
ic

ti
o

n

Reconstructed

Residual

VIDEO IN

4:2:0

8 Bit

H.264 Annex B

NAL Byte Stream

Host Control

Figure 3.1 Encoder FPGA Design Top Block

3.1.1 Symbol

Figure 3.2 represents the top level signals of the designed H.264 encoder. It takes

video signals (active_frame, active_line, pixel_valid and pixel_data) as inputs and

outputs the H.264/AVC coded stream.

Figure 3.2 Top Level Representation of the Designed H.264 Encoder

29

Designed encoder supports only 4:2:0 chroma sampling format, and expects one

chroma component (Cb or Cr) after two luminance components while the pixel_valid

signal is high. Figure 3.3 shows encoder input signals and their orientation according

to each other. As shown from this figure, after two Y components, one Cb

component should come and after the next two Y components, one Cr component

should come (YYCbYYCrYYCb…).

clk

rstn

active_frame

active_line

pixel_valid

pixel_data

…..

…..

…..

Y Y Cb Y Y Cr Y Y Cb Y Y Cr Y Y Cb Y Y Cr…..Y CrY

LINE 1 LINE 2 LINE M

Figure 3.3 Timing Representations of the Input Signals

3.1.2 Pins Description

Implemented H.264/AVC encoder core uses only unidirectional pins. With the

exception of the rstn input port signal, which is an asynchronous reset, all ports

operate synchronously to the clock input clk.

Table 3.1 shows the top level signals and gives the definitions of these signals.

30

Table 3.1 H.264 Encoder Pins Description

3.2 Encoder Design Criteria

While designing an encoder, there are some parameters that should be exactly

specified before starting an encoder design. Some of them are listed below.

 Compression Performance

 Encoder Delay

 Logic Usage

 Target Video Resolution and Frame Rate

 Power Consumption

 Maximum Frequency Used in FPGA Fabric

The importance of these parameters changes from one application to another. For

example, if you store a movie, most probably the coding performance will be more

important. Or in military applications, if you desire to transmit video from an aircraft

to ground station, not only the coding performance but also the video delay may be

very important. Designers should define all these requirements with respect to their

applications before starting their designs.

Port Name Direction
Polarity/

Bus Size
Description

rstn IN LOW Optional global asynchronous active low reset

clk IN RISING Encoder clock input

active_frame IN HIGH Video frame valid

active_line IN HIGH Video line valid

pixel_valid IN HIGH Video pixel data valid

pixel_data IN [7..0] Video pixel data

bitstream_valid OUT HIGH Byte stream data valid

bitstream OUT [31..0] Annex B NAL byte stream data

System Interface

Video Data Interface

NAL Data Interface

31

In our encoder design, encoder delay, target video resolution and frame rate and

maximum frequency used in FPGA fabric are the key design criteria. Our encoder

needs one clock signal and this signal must be equal to the component frequency of

the input video data. For this reason, in order to code videos at different resolution

and frame rate, the only thing that must be applied is changing the input clock

frequency with respect to the input video.

33

CHAPTER 4

4 H.264/AVC INTRA PREDICTION AND FPGA

IMPLEMENTATION

As mentioned in Chapter 2, intra prediction uses previously coded pixels in the same

frame while constructing the prediction information of the current macroblock.

However, inter prediction uses previously coded MBs which are in different frame or

frames and typically provides better compression. The first frame must be coded

using intra frame because there is no reference frame before the first frame.

However, intra frame is not only used for the first frame. There are two main reasons

for this:

1) A decoder must know the reference frame(s) while constructing the decoded

picture from the coded bitstream. For example, if the only first frame is intra

coded (IPPPPP…), a decoder that misses the first frame would never decode

the remaining part of the coded video.

2) I frames prevent error propagation. The same reference frame(s) must be used

both in the encoder and decoder sides. Otherwise, the prediction blocks at the

encoder and decoder will be different which may result with an unexpected

error while decoding the video. In real life, the bitstream at the encoder

output will be not always the same as the bitstream at the decoder input due

to some noise (Figure 4.1). If an inter-coded frame uses an erroneously

constructed reference frame, this previously occurred error will affect the

current frame and error will be propagated with an increasing manner. In

34

order to prevent this error propagation, intra coded frames are commonly

inserted between inter coded frames.

ENCODER DECODER+

ENCODER DECODERCHANNEL

noise

Encoded

Bitstream

Corrupted

Bitstream

Figure 4.1 Encoder/Channel/Decoder Block Representation

An overview of the remainder of this chapter is as follows. In section 4.1,

H.264/AVC intra prediction for luma and chroma components is explained. In

section 4.2, an intra mode selection algorithm is presented. All intra prediction and

mode selection algorithms represented in section 4.1 and 4.2 are fully implemented

in MATLAB environment. In section 4.3, FPGA implementation of intra 4x4

predictions is given. In section 4.4, FPGA implementation of intra mode selection

algorithm is shown. Finally, FPGA resource usage summary of intra prediction

method and intra mode selection algorithm is presented in section 4.5.

4.1 H.264/AVC Intra Prediction

4.1.1 Luma Prediction

There are two types of prediction size while predicting the luma components of an

image: 4x4 and 16x16. In 4x4 intra prediction, first a MB is divided into four 8x8

35

blocks and then each 8x8 block is divided into four 4x4 blocks as shown in Figure

4.2. The 4x4 prediction is processed block by block in the order shown in Figure 4.2.

On the other hand, when 16x16 block size is used, a MB is directly predicted from its

neighboring pixels without partitioning it.

MACROBLOCK

16

16

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

4

4

0 1

2 3

8

8

Figure 4.2 8x8 and 4x4 Scanning of a MB

There are nine intra 4x4 luma prediction modes and four intra 16x16 luma prediction

modes. The 16x16 modes are generally used for homogeneous areas where there is

relatively little difference, such as background, and 4x4 prediction block sizes are

commonly used in areas of greater detail. Most of the time, using 4x4 prediction

sizes gives better results than using 16x16 block sizes. However, signaling the

prediction modes of each 4x4 block requires more bits than signaling the 16x16

prediction mode. So, in order to code an intra-frame efficiently, encoders should

make a good decision while selecting the prediction mode and block size.

4.1.1.1 Luma 4x4 Intra Prediction

Figure 4.3 shows a 4x4 block (a, b, c, …, p) and neighboring pixels (A, B, C, …, M)

that are used while forming the prediction of a 4x4 block.

36

Nine available prediction modes are shown in Figure 4.4. The arrows indicate the

direction of each prediction mode.

a b

e f

c d

g h

i j

m n

k l

o p

A B C D E F G H

I

J

K

L

M

Figure 4.3 A 4x4 Block and Neighboring Pixels

Vertical

A B C D E F G H

I

J

K

L

M

Horizontal

A B C D E F G H

I

J

K

L

M

DC

A B C D E F G H

I

J

K

L

M

Diagonal Down-Left

A B C D E F G H

I

J

K

L

M VerticalA B C D E F G H

I

J

K

L

M

Diagonal Down-Right

A B C D E F G H

I

J

K

L

M

Vertical Left

A B C D E F G H

I

J

K

L

M

Horizontal Up

A B C D E F G H

I

J

K

L

M

Vertical Right

A B C D E F G H

I

J

K

L

M

Horizontal Down

Mean

(A...D

 I...L)

Figure 4.4 Intra 4x4 Prediction Modes

37

Figure 4.5 shows pixel by pixel equations for each luma 4x4 prediction modes. In

this figure, pred(y,x) with 0 ≤ x, y ≤ 3 represents the prediction result. The prediction

equations implement the directional copying operations shown in Figure 4.4 (>>

indicates bitwise right shift). The top left, top right, bottom left and bottom right

positions of a 4x4 block are denoted as pred(0,0), pred(0,3), pred(3,0) and pred(3,3),

respectively.

(a) Vertical (b) Horizontal

pred(0,0) = pred(0,1) = pred(0,2) = pred(0,3) = I
pred(1,0) = pred(1,1) = pred(1,2) = pred(1,3) = J

 pred(2,0) = pred(2,1) = pred(2,2) = pred(2,3) = K

pred(3,0) = pred(3,1) = pred(3,2) = pred(3,3) = L

pred(0,0) = pred(1,0) = pred(2,0) = pred(3,0) = A

pred(0,1) = pred(1,1) = pred(2,1) = pred(3,1) = B

pred(0,2) = pred(1,2) = pred(2,2) = pred(3,3) = C

pred(0,3) = pred(1,3) = pred(2,3) = pred(3,3) = D

pred(y,x) = (A + B + C + D + I + J + K + L + 4) >> 3

pred(y,x) = (I + J + K + L + 2) >> 2

pred(y,x) = (A + B + C + D + 2) >> 2

pred(y,x) = 128

(Left and upper pixels are both available)

(Only left pixels are available)

(Only left pixels are available)

(Only left pixels are available)
(c) DC

38

pred(0, 0) = A + 2B + C + 2 >> 2
pred(0, 1) = B + 2C + D + 2 >> 2
pred(0, 2) = C + 2D + E + 2 >> 2
pred(0, 3) = D + 2E + F + 2 >> 2
pred(1, 0) = B + 2C + D + 2 >> 2
pred(1, 1) = C + 2D + E + 2 >> 2
pred(1, 2) = D + 2E + F + 2 >> 2
pred(1, 3) = E + 2F + G + 2 >> 2
pred(2, 0) = C + 2D + E + 2 >> 2
pred(2, 1) = D + 2E + F + 2 >> 2
pred(2, 2) = E + 2F + G + 2 >> 2
pred(2, 3) = F + 2G + H + 2 >> 2
pred(3, 0) = D + 2E + F + 2 >> 2
pred(3, 1) = E + 2F + G + 2 >> 2
pred(3, 2) = F + 2G + H + 2 >> 2
pred(3, 3) = G + 3H + 2 >> 2

pred(0, 0) = A + 2M + I + 2 >> 2
pred(0, 1) = M + 2A + B + 2 >> 2
pred(0, 2) = A + 2B + C + 2 >> 2
pred(0, 3) = B + 2C + D + 2 >> 2
pred(1, 0) = M + 2I + J + 2 >> 2
pred(1, 1) = A + 2M + I + 2 >> 2
pred(1, 2) = M + 2A + B + 2 >> 2
pred(1, 3) = A + 2B + C + 2 >> 2
pred(2, 0) = I + 2J + K + 2 >> 2
pred(2, 1) = M + 2I + J + 2 >> 2
pred(2, 2) = A + 2M + I + 2 >> 2
pred(2, 3) = M + 2A + B + 2 >> 2
pred(3, 0) = J + 2K + L + 2 >> 2
pred(3, 1) = I + 2J + K + 2 >> 2
pred(3, 2) = M + 2I + J + 2 >> 2
pred(3, 3) = A + 2M + I + 2 >> 2

(d) Diagonal Down Left (e) Diagonal Down Right

pred(0, 0) = M + A + 1 >> 1
pred(0, 1) = A + B + 1 >> 1
pred(0, 2) = B + C + 1 >> 1
pred(0, 3) = C + D + 1 >> 1
pred(1, 0) = I + 2M + A + 2 >> 2
pred(1, 1) = M + 2A + B + 2 >> 2
pred(1, 2) = A + 2B + C + 2 >> 2
pred(1, 3) = B + 2C + D + 2 >> 2
pred(2, 0) = M + 2I + J + 2 >> 2
pred(2, 1) = M + A + 1 >> 1
pred(2, 2) = A + B + 1 >> 1
pred(2, 3) = B + C + 1 >> 1
pred(3, 0) = I + 2J + K + 2 >> 2
pred(3, 1) = I + 2M + A + 2 >> 2
pred(3, 2) = M + 2A + B + 2 >> 2
pred(3, 3) = A + 2B + C + 2 >> 2

pred(0, 0) = M + I + 1 >> 1
pred(0, 1) = I + 2M + A + 2 >> 2
pred(0, 2) = B + 2A + M + 2 >> 2
pred(0, 3) = C + 2B + A + 2 >> 2
pred(1, 0) = I + J + 1 >> 1
pred(1, 1) = M + 2I + J + 2 >> 2
pred(1, 2) = M + I + 1 >> 1
pred(1, 3) = I + 2M + A + 2 >> 2
pred(2, 0) = J + K + 1 >> 1
pred(2, 1) = I + 2J + K + 2 >> 2
pred(2, 2) = I + J + 1 >> 1
pred(2, 3) = M + 2I + J + 2 >> 2
pred(3, 0) = K + L + 1 >> 1
pred(3, 1) = J + 2K + L + 2 >> 2
pred(3, 2) = J + K + 1 >> 1
pred(3, 3) = I + 2J + K + 2 >> 2

(f) Vertical Right (g) Horizontal Down

39

pred(0, 0) = A + B + 1 >> 1
pred(0, 1) = B + C + 1 >> 1
pred(0, 2) = C + D + 1 >> 1
pred(0, 3) = D + E + 1 >> 1
pred(1, 0) = A + 2B + C + 2 >> 2
pred(1, 1) = B + 2C + D + 2 >> 2
pred(1, 2) = C + 2D + E + 2 >> 2
pred(1, 3) = D + 2E + F + 2 >> 2
pred(2, 0) = B + C + 1 >> 1
pred(2, 1) = C + D + 1 >> 1
pred(2, 2) = D + E + 1 >> 1
pred(2, 3) = E + F + 1 >> 1
pred(3, 0) = B + 2C + D + 2 >> 2
pred(3, 1) = C + 2D + E + 2 >> 2
pred(3, 2) = D + 2E + F + 2 >> 2
pred(3, 3) = E + 2F + G + 2 >> 2

pred(0, 0) = I + J + 1 >> 1
pred(0, 1) = I + 2J + K + 2 >> 2
pred(0, 2) = J + K+ 1 >> 1
pred(0, 3) = J + 2K + L + 2 >> 2
pred(1, 0) = J + K+ 1 >> 1
pred(1, 1) = J + 2K + L + 2 >> 2
pred(1, 2) = K + L + 1 >> 1
pred(1, 3) = K + 3L + 2 >> 2
pred(2, 0) = K + L + 1 >> 1
pred(2, 1) = K + 3L + 2 >> 2
pred(2, 2) = L
pred(2, 3) = L
pred(3, 0) = L
pred(3, 1) = L
pred(3, 2) = L
pred(3, 3) = L

(h) Vertical Left (i) Horizontal Up

Figure 4.5 4x4 Luma Prediction Equations

The number of possible intra 4x4 prediction modes for a block varies with respect to

the block positions. For example, upper reference pixels (A to H) are not available at

the upper border of an image, so one cannot use intra 4x4 prediction modes of 0, 3, 4,

5, 6 and 7 while predicting these blocks. We can divide an image into four regions

with respect to the possible intra 4x4 prediction modes that can be applied during the

prediction of these blocks (Figure 4.6). As seen from Figure 4.6, the DC mode (mode

2) is the only mode which is always used.

As shown from Figure 4.4, Diagonal Down-Left and Vertical Left prediction modes

needs upper eight pixels (A to H) in order to form the prediction. However, while

predicting the fourth 4x4 blocks of an 8x8 block (blocks 3,7,11 and 15 in Figure 4.2),

the reconstructed pixels E, F, G and H are not available. This problem is solved by

the H.264/AVC standard as follows: If the top right pixels (E, F, G and H) are not

available, use the nearest available pixel value (pixel D) instead of these pixels.

40

All Modes

1,2,8

0

2

3

7

2

4

4

0: Vertical

1: Horizontal

2: DC

3: Diagonal Down-Left

4: Diagonal Down-Right

5: Vertical Right

6: Horizontal Down

7: Vertical Left

8: Horizontal Up

Figure 4.6 Possible 4x4 Prediction Modes at Various Block Locations inside an

Image

4.1.1.2 Luma 16x16 Intra Prediction

Four intra 16x16 prediction modes are represented in Figure 4.7. The arrows indicate

the direction of each prediction mode. The prediction equations that implement these

intra 16x16 luma prediction modes are shown in equations 3.1 to 3.4 where (y, x)

denotes the position of pixels, p represents the neighboring pixel values and Clip1Y

function in equation 3.4 clips the result into [0 - 255] range (actually the range is [0 -

(2
pixel depth

-1)]).

H

V

H

V
Mean

(H+V)

H

V

H

V………

…
…

…

Horizontal Vertical DC Plane

Figure 4.7 16x16 Prediction Modes

41

predver(y,x) = p(-1,x) with x, y = 0..15

(3.1)

predhor(y,x) = p(y,-1) with x, y = 0..15

(3.2)

preddc(y,x) = x, y = 0 .. 15

(3.3a)

(If both upper and left neighbor pixels are available)

preddc(y,x) = with x, y = 0 .. 15

(3.3b)

(If left neighbor pixels are not available)

preddc(y,x) = with x, y = 0 .. 15
 (3.3c)

(If upper neighbor pixels are not available)

preddc(y,x) = 128 with x, y = 0 .. 15

(3.3d)

(If both upper and left neighbor pixels are not available)

predpl(y,x) = Clip1Y((a + b * (x - 7) + c * (y - 7) + 16) >>5) x, y = 0..15

(3.4)

where,

 a = 16 * (p(15,-1) + p(-1,15))

(3.4a)

42

 b = (5 * H + 32) >> 6

(3.4b)

 c = (5 * V + 32) >> 6

(3.4c)

 where,

 H =
 (3.4d)

 V =

 (3.4e)

Figure 4.8 shows the possible intra 16x16 prediction modes of an image with respect

to MB positions. The DC mode (mode 2) is the only mode which is always used.

Horizontal and DC modes are used at the upper image boundaries, vertical and DC

modes are used at the left image boundaries.

0: Vertical

1: Horizontal

2: DC

3: Plane

All Modes

1,2

0

2

2

16

16

Figure 4.8 Possible 16x16 Prediction Modes at Various Block Locations inside

an Image

43

4.1.2 Chroma Prediction

Each chroma component of a macroblock is predicted from the previously encoded

chroma samples above and/or to the left of the macroblock. One prediction block is

generated for each chroma component. Both chroma components must use the same

prediction mode in H.264/AVC. There are four possible intra prediction modes and

they are very similar to the intra 16x16 prediction modes described in section 4.1.1.2,

except that the numbering of the modes are different.

Figure 4.9 shows chroma 8x8 prediction mode equations where (y, x) denotes the

position of pixels, p represents the neighboring pixel values and Clip1 function clips

the result into [0-255] range (actually the range is [0 - (2
pixel depth

-1)]). Figure 4.10

shows possible chroma 8x8 prediction modes of an image with respect to 8x8 block

positions. The DC mode is the only mode used for the prediction of all chroma

blocks. Horizontal and DC modes are used at the upper image boundaries and

vertical and DC modes are used at the left image boundaries.

pred(y, 0) = p(-1, 0)
pred(y, 1) = p(-1, 1)
pred(y, 2) = p(-1, 2)
pred(y, 3) = p(-1, 3)
pred(y, 4) = p(-1, 4)
pred(y, 5) = p(-1, 5)
pred(y, 6) = p(-1, 6)
pred(y, 7) = p(-1, 7)

(a) Vertical

0 ≤ y ≤ 7

pred(0, x) = p(0, -1)
pred(1, x) = p(1, -1)
pred(2, x) = p(2, -1)
pred(3, x) = p(3, -1)
pred(4, x) = p(4, -1)
pred(5, x) = p(5, -1)
pred(6, x) = p(6, -1)
pred(7, x) = p(7, -1)

0 ≤ x ≤ 7

(b) Horizontal

44

 pred(y, x) = (Σ p(x’, -1) + Σ p(-1, y’) + 4) >> 3
 (If p(x’, –1) with x’ = 0..3, and p(–1, y’) and y’ = 0..3 are available)

 pred(y, x) = (Σ p(x’, -1) + 2) >> 2
(Else If p(x’, –1) with x’ = 0..3 are available and p(–1, y’) and y’ = 0..3 are not available)

 pred(y, x) = (Σ p(-1, y’) + 2) >> 2
(Else If p(–1, y’) and y’ = 0..3 are available and p(x’, –1) with x’ = 0..3 are not available)

 pred(y, x) = 128
 (Else If p(x’, –1) with x’ = 0..3, and p(–1, y’) and y’ = 0..3 are not available

(c-1) DC

 0 ≤ x ≤ 3 and 0 ≤ y ≤ 3

 pred(y, x) = (Σ p(x’, -1) + 2) >> 2
 (If p(x’, –1) with x’ = 4..7 are available)

 pred(y, x) = (Σ p(-1, y’) + 2) >> 2
 (Else If p(–1, y’) and y’ = 0..3 are available)
 pred(y, x) = 128
 (Else)

(c-2) DC

 4 ≤ x ≤ 7 and 0 ≤ y ≤ 3

 pred(y, x) = (Σ p(-1, y’) + 2) >> 2
 (If p(–1, y’) and y’ = 4..7 are available)

 pred(y, x) = (Σ p(x’, -1) + 2) >> 2
 (Else If p(x’, –1) with x’ = 0..3 are available)
 pred(y, x) = 128
 (Else)

(c-3) DC

 0 ≤ x ≤ 3 and 4 ≤ y ≤ 7

45

 pred(y, x) = (Σ p(x’, -1) + Σ p(-1, y’) + 4) >> 3
 (If p(x’, –1) with x’ = 4..7, and p(–1, y’) and y’ = 4..7 are available)

 pred(y, x) = (Σ p(x’, -1) + 2) >> 2
 (Else If p(x’, –1) with x’ = 4..7 are available and p(–1, y’) and y’ = 4..7 are not available)

 pred(y, x) = (Σ p(-1, y’) + 2) >> 2
 (Else If p(–1, y’) and y’ = 4..7 are available and p(x’, –1) with x’ = 4..7 are not available)

 pred(y, x) = 128
 (Else If p(x’, –1) with x’ = 4..7, and p(–1, y’) and y’ = 4..7 are not available)

(c-4) DC

 4 ≤ x ≤ 7 and 4 ≤ y ≤ 7

 pred(y,x) = Clip1 (((a + b * (x – 3) + c * (y – 3) + 16) >> 5)
 a = 16 *(p(-1,7) + p(7,-1))
 b = (5 * H + 32) >> 6
 c = (5 * V + 32) >> 6

 H = Σ (x’+1)*(p(-1,4 + x’) + p(-1, 2- x’))
 (x’ = 0, 1, 2, 3)

 V = Σ (y’+1)*(p(4 + y’,-1) + p(2- y’,-1))
 (y’ = 0, 1, 2, 3)

 (d) Plane

Figure 4.9 8x8 Chroma Prediction Equations

46

0: DC

1: Horizontal

2: Vertical

3: Plane

All Modes

0,1

0

2

0

8

8

Figure 4.10 Possible Chroma Prediction Modes at Various Block Locations

inside an Image

4.2 Intra Mode Selection

A video encoder aims to minimize coded bitrate and maximize decoded video

quality. One way to achieve this aim is deciding the best prediction mode. Because

there are many possible combinations of encoding parameters, deciding the best

tradeoff between minimizing bitrate and minimizing distortion is a challenging task.

An intra-frame H.264/AVC video encoder may choose many different modes. These

include:

 Luma Macroblock Intra Mode: 16x16 intra vs. 4x4 intra

 For 16x16 Intra: one of four 16x16 intra modes

 For 4x4 Intra: one of nine 4x4 intra modes for each 4x4 block in macroblock

 For Chroma: one of four intra chroma modes

The best choice of mode depends on the particular characteristics of the MB and the

chosen weighting between distortion and rate. In our encoder design, a rate distortion

optimization (RDO) based mode selection algorithm ([7], [8]) is implemented.

47

4.2.1 Rate Distortion Optimized (RDO) Mode Selection

This algorithm attempts to find a mode that minimizes the joint cost J shown in

equation 3.5. The joint cost J depends on the bitrate cost R and distortion cost D. The

tradeoff between distortion (D) and rate (R) is controlled by the Lagrange multiplier

λ. If λ is small, encoder will give more emphasis to minimizing the distortion which

results with a higher bitrate. However, a larger λ will tend to minimize R at the

expense of higher distortion. Usually, these two cases are both not desired. Desired is

a working point at which both the distortion and the rate are minimized together.

J = D + λR

(3.5)

The general formula for the Lagrangian parameter λ is shown in equation 3.6. As

seen from this equation, λ depends on the quantization parameter QP and selected

scaling factor, LambdaWeight. Setting the LambdaWeight to 0.85 usually gives good

results. However, different LambdaWeight values, such as 0.57, 0.65, 0.68 and 0.85,

are used in JM reference software while coding different type of slices.

 λ = LambdaWeight * 2
(QP-12)/3

(3.6)

Different metrics can be used to calculate the distortion. Sum of Absolute

Transformed Differences (SATD), Sum of Absolute Differences (SAD) and Sum of

Squared Differences (SSD) are the commonly used distortion functions. SAD, shown

in equation 3.7, calculates sum of the absolute difference between pairs of samples b

and b’. SSD, shown in equation 3.8, calculates the sum of the squared difference

between pairs of samples b and b’ and more computationally intensive when

compared to SAD.

48

DSAD = b(x, y) – b’(x, y)| (3.7)

 DSSD = b(x, y) – b’(x, y))
2
 (3.8)

The residual block, difference between the original and the prediction block, is

usually highly correlated in spatial domain. After calculating the residual, transform

operation is applied to further eliminate this redundancy. If the residual block

contains more spatial redundancy, transformed and quantized block contains less

number of nonzero coefficients which results with a better compression. SATD

distortion metric (eq. 3.9) is developed for this purpose. The residual block is

Hadamard transformed to count the spatial redundancy while calculating the mode

error. T operation in equation 3.9 takes the Hadamard transform of the input block.

DSATD = b(x, y) – b’(x, y))|

(3.9)

4.2.2 Luma Mode Selection Algorithm

In this work, an RDO based mode decision algorithm is used. This algorithm is also

used in H.264/AVC reference model which is also called as low complexity mode

decision algorithm.

In our implementation, SATD metric is used for the calculation of distortion and

LambdaWeight parameter is set to 0.85.

4.2.2.1 Intra 4x4 Mode Selection

The following 8-step algorithm is used to determine the best 4x4 intra mode for a

4x4 block.

49

1. For each 4x4 prediction modes, find the 4x4 residual matrices by using

equation 3.10.

RES4x4 = , where 0 ≤ i, j ≤3 (3.10)

2. Find the Hadamard transform of matrix RES4x4.

 SATD = H * RES4x4 * H
T

(3.11)

H =where,

3. Calculate distortion D by using equation 3.12.

D = (((3.12)

4. Find the most probable mode. If both upper and left blocks of the current

block are available, the most probable mode is the smaller one of these

blocks; otherwise the most probable mode is 2.

5. Calculate R.

If (prediction mode is equal to the most probable mode)

 R=1

Else

 R=4

End

6. Calculate λ by using equation 3.13.

50

λ = [(0.85 * 2
(QP-12)/3

)
1/2

+ 1] >> 1

(3.13)

7. Use equation 3.14 to find the cost of each mode

J = D + λR

(3.14)

8. Choose the mode with the minimum cost.

4.2.2.2 Intra 16x16 Mode Selection

The following 7-step algorithm is used to determine the best 16x16 intra mode for a

16x16 block.

1. Divide a MB into 16 4x4 blocks as shown in Figure 4.11.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

4

Figure 4.11 4x4 Representation of a MB

2. Find residual for each 4x4 block (RES16x16) by using the equation 3.15.

RES16x16 = , where 0 ≤ i, j ≤3 (3.15)

51

3. Find the Hadamard transform of matrix RES16x16.

SATD = (H * RES16x16 * H
T
) >> 1 (3.16)

4. Take the DC coefficients of the transformed matrixes in step 3 and shift

them logically one bit right.

5. Hadamard transform the DC coefficients one more time by applying the

equation 3.16.

6. Take the absolute values of AC coefficients obtained after step 3 and DC

coefficients obtained after step 5 and sum all of them. The summation result

is equal to the cost.

7. Choose the mode with the minimum cost.

4.2.2.3 Mode Selection between Intra 4x4 and Intra 16x16

After finding the best 4x4 modes and the best 16x16 mode of a MB, encoder must

select one of the prediction sizes. The steps for this are as follows:

1. Sum all the costs of selected intra 4x4 modes. These costs are calculated in

section 4.2.2.1.

2. Add an offset of 6λ to the summation obtained in step 1. This value is the

total cost of intra 4x4 prediction, J4x4.

3. Total cost of intra 16x16 prediction, J16x16, is the minimum cost found in

section 4.2.2.2 at step 7.

4. Compare J4x4 and J16x16. If J4x4 < J16x16, chose 4x4 block size; otherwise

chose 16x16 block size.

4.2.3 Chroma Mode Selection Algorithm

The following steps are applied to find the prediction mode of the chroma blocks.

1. Divide each Cb and Cr MBs into 4x4 blocks as shown in Figure 4.12.

52

2. For each 4x4 prediction modes, find the 4x4 residual matrixes by using

equation 3.10.

3. Apply equation 3.11 to all residual matrixes in order to find the Hadamard

transform of these matrixes.

4. Calculate the distortion for each 4x4 block by applying the equation 3.12.

5. Sum all the distortion results for each mode. The summation result is the

total cost of the corresponding prediction mode.

6. Choose the prediction mode which results with the minimum cost after step

5.

0 1

2 3

4

4

Cb

4 5

6 7

Cr

Figure 4.12 4x4 Representation of Cb and Cr Components

4.3 FPGA Implementation of 4x4 Intra Prediction

The necessary FPGA blocks and signals for the 4x4 Intra prediction method are

given and explained in this section. VHDL (Very High Speed Integrated Circuit

Hardware Description Language) language is used to code this block. The 4x4 intra

prediction and residual calculation FPGA block diagram is represented in Figure

4.13. This diagram is composed of two main parts: “Video Flow Control” and “4x4

Residual Calculation”.

“Video Flow Control” block is responsible from the macroblock by macroblock

processing of the video data. It takes video data and stores it in two different Line

53

RAMs. Each Line RAM (Random Access Memory) can store 16 lines of video data.

In H.264/AVC, MB is the main processing unit. In order to start the coding

operation, one MB data must be captured. For this reason, 16 lines of video data are

stored in FPGA internal block RAMs. When 16 lines are captured from the sensor,

video coding operation starts. While video data in one Line RAM is processed, the

next video lines are stored in the other Line RAM. Video Flow Control block reads

one MB data from the Line RAMs and passes the data to 4x4 Residual Calculation

block. It also gives information if the MB is at the upper border or left border of the

video frame. As explained in section 4.1.1.1, border information of a MB is

necessary while predicting the MB.

54

Video Flow Control

Line RAM

Line RAM

4x4 Flow Control

4x4

Prediction

Residual

Calculation

v
id

e
o

 in

mode fifo

reconstructed

pixels fifo

M
B

 d
a
ta

M
B

 c
o

n
tro

l

M
B

 b
o

rd
e
r

in
fo

fifo control

signals

fifo control

signals

N
e
ig

h
b

o
rin

g

p
ix

e
ls

4
x

4
 b

o
rd

e
r

in
fo

…
mode0_prediction

mode1_prediction

mode8_prediction

o
rijin

a
l

b
lo

c
k

c
a
lc

u
la

tio
n

sta
rt

mode_status

res_ready

left&upper mode

…

residual0

residual1

residual8

RAM control

signals

RAM control

signals

4x4 Residual Calculation

left&upper border

Figure 4.13 4x4 Intra Prediction and Residual Calculation

The “4x4 Residual Calculation” block calculates the residual data for each prediction

mode. As shown in Figure 4.13, it is composed of five sub-blocks: “4x4 Flow

Control”, “4x4 Prediction”, “Residual Calculation”, “Mode FIFO (First In First

Out)” and “Reconstructed Pixels FIFO”.

The “4x4 Flow Control” block manages the whole 4x4 intra prediction system. It

takes the MB data and processes it as 4x4 blocks as shown in Figure 4.2. This block

sends the neighboring pixels and the border information of the current 4x4 block to

the “4x4 Prediction” block in order to construct the prediction data for each mode. It

55

also controls “Residual Calculation” block to construct the residual data by sending a

start flag and original pixels of the current 4x4 block.

As mentioned earlier, because intra prediction uses neighboring pixels which belong

to the previously coded left and upper blocks, the previously coded 4x4 blocks must

be reconstructed in order to start the prediction operation of the current block. The

previously reconstructed pixels are kept in the “Reconstructed Pixels FIFO”. The

“4x4 Flow Control” block reads the reconstructed pixel values from this FIFO when

they are necessary.

The “4x4 Flow Control” block drives res_ready signal to high when the residuals

for the current 4x4 block is ready. It also sends mode_status, left_mode,

upper_mode, left_border and upper_border signals for different purposes.

The mode_status is a 9 bit signal (Figure 4.14) and used during the mode selection

operation to decide the valid prediction modes of the current block. Each bit in this

signal corresponds to a specific mode. A value of logical ‘1’ states that the

corresponding mode is applicable for the current block.

The left_mode and upper_mode signals are used by the mode selection block while

calculating the rate information (R) which is shown in equation 3.5. They are also

used together with left_border and upper_border signals while signalling the

prediction mode of the current block.

Bit Location018 7 6 5 4 3 2

Figure 4.14 “mode_status” Signal Bits and Corresponding Modes

56

The “4x4 Prediction block” in Figure 4.13 calculates the prediction information of

the nine different modes for the current block by using the neighboring pixels. It

performs this operation in a parallel manner. All the prediction results are valid at the

same clock cycle.

In intra prediction equations shown in Figure 4.5, there are some common parts and

some of equations are the same. This information can be used in order to reduce the

computation complexity, computation time and to save the hardware resources. Intra

prediction equations are reorganized as shown in Figure 4.15 to exploit these

redundancies.

While calculating the prediction information, firstly the equations shown in Figure

4.15 are performed. At the next clock cycle, the concatenation and bit shifting

operations are performed. For this reason, it takes 2 clock cycles to construct the

prediction results from the neighboring pixels.

(a) Vertical Prediction

(b) Horizontal Prediction

57

(If upper and left neighboring pixels are available)

(If only upper neighboring pixels are available)

(If only left neighboring pixels are available)

(If neither upper and left neighboring pixels are available)

(c) DC Prediction

(d) Diagonal Down-Left

(e) Diagonal Down-Right

58

(f) Vertical Right

(g) Horizontal Down

(h) Vertical Left

59

(i) Horizontal Up

Figure 4.15 Similarities between Prediction Equations

The “Residual Calculation” block calculates the residual data of the nine prediction

modes by using the original and predicted pixels. The detailed block diagram of this

block is shown in Figure 4.16. There is a residual calculation sub-block for each

mode. In each of this sub-block, there are sixteen subtraction blocks which are used

to subtract the predicted pixels from the original ones. After subtractions, the pixels

are concatenated and stored in a FIFO. The subtraction operation is synchronous and

takes one clock cycle. The residual calculation needs 2 clock cycles: One for

subtraction and one for concatenation and FIFO write operations.

The “Mode FIFO” and the “Reconstructed Pixels FIFO” are used to store the mode

and reconstructed pixels information which will be used while coding the next

blocks. These FIFOs are controlled by the “4x4 Flow Control” block.

60

Residual

Calculation

Mode 0

Residual

Calculation

Mode 1

Residual

Calculation

Mode 8

…

Subtract

1

Subtract

2

Subtract

16

…

Construct

Residual

Residual

FIFO

orijinal

prediction0

orijinal

prediction1

orijinal

prediction8

residual0

residual1

residual8

data1
data2

data1
data2

data1
data2

res00

res01

res33

Residual Calculation Mode0

residual

read

Residual

Calculation

residual

write

Figure 4.16 Residual Calculation Block Diagram

4.4 FPGA Implementation of 4x4 Intra Mode Selection Algorithm

FPGA implementation of intra 4x4 mode selection algorithm is explained in this

section. Like intra prediction, this block is also coded by VHDL. FPGA sub-blocks

of mode selection algorithm are represented in Figure 4.17.

In this design model, all of the rate, distortion and cost values (equation 3.5) of each

mode are calculated in parallel. After finding the costs of each mode, nine cost

values are divided into three groups to find the minimum cost. Each group takes

three cost values and finds the minimum of these. Finally the three minimum costs

are sorted again and the minimum of these are found. At this stage, the mode that

corresponds to the minimum cost is selected as the best prediction mode. The

residual and mode information associated with this mode is sent to the other blocks.

61

4x4

Hadamard

Transform

Distortion

Calculation

Cost

Calculation Find

Minimum of

Three

Numbers

Find

Minimum of

Three

Numbers

Find Best

4x4

Mode

Find

Minimum of

Three

Numbers

Most

Probable

Mode
Rate

Calculation

residual0

residual_valid

hadamard0

hadamard

valid

distortion0

distortion

valid

mode_left

mode_up

most probable

mode

lambda

4x4

Hadamard

Transform

Distortion

Calculation

residual1

residual_valid
hadamard1 distortion1

4x4

Hadamard

Transform

Distortion

Calculation

residual8

residual_valid
hadamard8 distortion8

…
..

rate0

rate1

rate8

cost0

probable modes

...

cost

valid

minimum

valid

minimum

cost0

mode

info0

best 4x4

mode

best mode

valid

minimum

cost1

mode

info1

minimum

cost2

mode

info2

Mode Selection

cost1

cost2

cost3

cost4

cost5

cost6

cost7

cost8

best 4x4

residual

Figure 4.17 FPGA Design Architecture of 4x4 Intra Mode Selection Algorithm

The “4x4 Hadamard Transform” block in Figure 4.17 calculates the Hadamard

transform of the residual block as shown in equation 3.11. It applies a two

dimensional Hadamard transform, firstly in the horizontal axis and secondly in the

vertical axis. The Modelsim simulation results of this block are shown in

Figure 4.18. As shown from this figure, when pred_4x4_res_valid flag is asserted,

Hadamard transformation operation starts and after two clock cycles the transformed

results are driven by asserting the hadamard_valid signal.

The “Distortion Calculation” block calculates the distortion by using the equation

3.12. It takes the Hadamard transformed residual block and calculates the sum of

62

transformed coefficients. The distortion calculation process is started when the

Hadamard transformation results are valid (hadamard_valid is high) and the end of

the process is declared by asserting the distortion_valid signal. The Modelsim

simulation results of this block are shown in Figure 4.19.

 Figure 4.18 The 4x4 Hadamard Transform Block Modelsim

Simulation Results

63

Figure 4.19 The Distortion Calculation Block Modelsim Simulation Results

“The Rate Calculation” block and “Most Probable Mode” block calculates the rate

values of each mode. “Most Probable Mode” block finds the most probable mode

and “Rate Calculation” block calculates the rates of each mode as shown in section

4.2.2.1 at steps 4 and 5, respectively.

“Cost Calculation” block calculates the cost of each mode by using the rate and

distortion values by applying equation 3.14. The cost calculation process is started

when the distortion_valid signal is high and the end of the process is declared by

asserting the cost_valid signal. The Modelsim simulation results of this block are

shown in Figure 4.20.

64

 Figure 4.20 The Cost Calculation Block Modelsim Simulation Results

“Find Minimum of Three Numbers” blocks find the smallest one of the three natural

numbers (numbers are the cost values in this case). This block uses probable_modes

signal to know which prediction modes are valid. If the corresponding bit of a mode

in this signal is ‘0’, the cost value of this mode is discarded and this mode is never

selected. The Modelsim simulation results of this block are shown in Figure 4.21.

65

Figure 4.21 Find Minimum of Three Numbers Block Modelsim Simulation

Results

.

“Find Best 4x4 Mode” block finds the mode that results with the minimum cost and

outputs the related residual block and the prediction mode of this block. The

Modelsim simulation results of this block are shown in Figure 4.22. As shown from

this figure, residual data and prediction mode information are valid when the

best_4x4_mode_valid signal is high.

66

Figure 4.22 Find Best 4x4 Mode Block Modelsim Simulation Results

4.5 Resource Usage Summary of 4x4 Intra Prediction and 4x4 Intra Mode

Selection Blocks

In Table 4.1, resource usage summary of “4x4 Flow Control”, “4x4 Prediction”,

“Residual Calculation” and “Mode Selection” are given. “Mode Selection” block

consumes more FPGA logic than others; because cost calculation of each intra

prediction mode requires many arithmetic and logical operations (especially

“Hadamard Transform” and “Distortion Calculation” operations) and these costs of

each nine prediction modes are calculated in parallel.

67

Table 4.1 Resource Usage Summary of Intra Prediction and Mode Selection

Block Name ALMs Dedicated Logic Registers Block Memory Bits M20Ks DSP Blocks

4x4 Flow Control 647/234720 1256/469440 0/52428800 0/2560 0/256

4x4 Prediction 289/234720 265/469440 0/52428800 0/2560 0/256

Residual Calculation 1002/234720 2162/469440 258048/52428800 18/2560 0/256

Mode Selection 9436/234720 8812/469440 0/52428800 0/2560 0/256

69

 CHAPTER 5

5 H.264/AVC 4x4 TRANSFORM AND QUANTIZATION

AND

FPGA IMPLEMENTATIONS

After prediction, the transform coding operation is applied to reduce the spatial

redundancy of the prediction error signal. All former standards such as MPEG-1 and

MPEG-2 used a 2-D DCT of the size 8x8 with floating point arithmetic. Instead,

different integer transforms of 4x4 or 8x8 size and corresponding quantization

processes are used to approximate the orthonormal 2-D DCT transform.

After transform coding, dynamic range of the transform coefficients is high. For this

reason, transform coefficients are quantized. Quantization reduces the precision of

the transform coefficients according to a quantization parameter (QP). Typically, the

result of quantization is a block in which most or all of the coefficients are zero, with

a few non-zero coefficients. In Figure 5.1, the forward transform and quantization

processes block diagram is shown.

70

Forward

Transform

Scaling and

Quantization

Residual Luma and

Chroma Blocks

Quantized

Coefficients

Figure 5.1 Forward Transform and Quantization

Because an encoder uses the previously coded pixels for intra prediction, the

quantized video data must be reconstructed not only at the decoder but also at the

encoder side. For this reason, inverse operations of transform and quantization are

implemented also in an encoder. These inverse operations are exactly defined in

H.264/AVC standard documentation. The inverse transform and inverse quantization

processes are shown in Figure 5.2.

Inverse

Quantization

and Rescaling

Inverse

Transform

Quantized

Coefficients

Reconstructed

Residual Luma and

Chroma Blocks

Figure 5.2 Inverse Transform and Quantization

In this section, transform, inverse transform, quantization and inverse quantization

methods used in H.264/AVC and proposed FPGA implementations of these methods

are explained.

71

5.1 Transform Coding

In H.264/AVC, different types of integer transforms are used to minimize

computational complexity and to avoid encoder/decoder mismatch. Equation 4.1

shows the general transformation equation, where A is the transform matrix, X is the

residual block and Y is the transformation result. The core transform in H.264/AVC

is 4x4 or 8x8 integer transform. 8x8 transform is only used in High profiles. 4x4 and

8x8 core transform matrices are shown in Figure 5.3. As shown from these matrices,

transform operation can be applied without using any multiplication. It can be

achieved by using only addition, subtraction and bit shift operations.

Y = AXA
T

(4.1)

T4x4 = T8x8 =

Figure 5.3 4x4 and 8x8 Transform Matrixes

The inverse integer transform operation shown in equation 4.2 is similar to the

integer transform operation. Here W is the inverse transform matrix, X is the matrix

obtained after the inverse quantization process and Z is the result of the inverse

transformation.

Z = W
T
XW

(4.2)

72

5.1.1 Luma 4x4 Transform Processes

The default 4x4 forward and inverse transform processes for luma samples are

shown in Figure 5.4 and Figure 5.5, respectively. In this case, a macroblock is

divided into 16 4x4 blocks and each 4x4 block is transformed, scaled and quantized.

The quantized coefficients blocks are coded and transmitted in the order shown, from

0 to 15.

Core 4x4

Transform

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Scaling and

Quantization

16x16 luma block Transform Coefficients Quantized Coefficients

Figure 5.4 Luma Forward Transform: Default

Rescaling and

Inverse

Quantization

Inverse 4x4

Transform

Transform Coefficients 16x16 luma blockQuantized Coefficients

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Figure 5.5 Luma Inverse Transform: Default

If the macroblock is predicted using one of the four 16x16 intra prediction modes

(Figure 5.6), by using the DC coefficients of the first transform one more transform

is performed.

73

Core 4x4

Transform

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

Scaling and

Quantization

16x16 luma block Transform Coefficients Quantized Coefficients

4x4 DC

TransformDC

AC

0

DC

AC

Figure 5.6 Luma Forward Transform: Intra 16x16 Mode

As shown in Figure 5.6, first each 4x4 block is transformed by using 4x4 core

transform matrix. Then, the DC coefficients of each 4x4 transformed block are

collected to form a 4x4 DC coefficient block. This DC block is further transformed

using a 4x4 Hadamard transform. The DC block and 15 AC blocks are scaled and

quantized and transmitted in the order shown in Figure 5.6.

In the reverse path (Figure 5.7), first the DC block is inverse Hadamard transformed

and then rescaling, inverse quantization and inverse transform operations are applied.

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

Quantized Coefficients

0

DC

AC

4x4 DC

Inverse

Transform

Inverse

4x4

Transform

Transform Coefficients

Rescaling

and Inverse

Quantization

16x16 luma blockQuantized Coefficients

AC

DC

Figure 5.7 Luma Inverse Transform: Intra 16x16 Mode

74

5.1.2 Chroma Transform Processes

While coding the chroma components of an image, the number of 4x4 blocks that

will be coded and transmitted varies with respect to the chroma sampling format

(Table 5.1).

Table 5.1 Chroma Sampling Formats and Corresponding Block Sizes

Sampling

Format
Chroma Macroblock Size Number of 4x4 Blocks

4:2:0 8x8 4

4:2:2 16x8 8

4:4:4 16x16 16

The chroma transform operation is similar to the transform process of the intra 16x16

luma blocks. In Figure 5.8 and Figure 5.9, the block diagrams of the chroma forward

and inverse transform processes are represented when the sampling format is 4:2:0.

As shown from these figures, first the chroma blocks are 4x4 transformed and the

DC coefficients of the transformed blocks are collected and further transformed by

using a 2x2 Hadamard matrix (the size of this Hadamard matrix changes with respect

to the sampling format). Then, the DC blocks and 8 AC blocks are scaled, quantized

and transmitted in the order shown in Figure 5.8.

Core 4x4

Transform

2 3

4 5

Scaling and

Quantization

8x8 Cb and Cr Blocks Transform Coefficients Quantized Coefficients

2x2 DC

Transform

DC

AC

0

DC

AC

6 7

8 9

1

DC

AC

Cb Cr

Figure 5.8 Chroma Forward Transform: 4:2:0 Sub-sampling

75

2 3

4 5

Quantized Coefficients

0

DC

AC

6 7

8 9

1

DC

AC

Cb Cr

2x2 DC

Inverse

Transform

Rescaling

and Inverse

Quantization

Inverse

4x4

Transform

AC

DC

Quantized Coefficients Transform Coefficients 8x8 Cb and Cr Blocks

Figure 5.9 Chroma Inverse Transform: 4:2:0 Subsampling

In the reverse path (Figure 5.9), first the DC blocks are inverse Hadamard

transformed and then rescaling, inverse quantization and inverse transform

operations are applied.

5.2 Quantization

After the transform operation, the transformed coefficients are quantized. This is the

point after which lossy compression is achieved. The loss of insignificant data starts

from this point depending upon the parameter known as Quantization Parameter

(QP).

H. 264/AVC supports 52 different QP values. By using bigger QP values, one can

represent a video with a less number of bits at the expense of reduced video quality.

H.264 uses a scalar quantizer. The forward quantization operation is described by

equation 4.3. In this equation, MF is the Multiplication Factor, >> indicates a binary

shift right, f controls the rounding and qbits is described as shown in equation 4.4.

The floor operation in equation 4.4 rounds the input to the nearest integer less than or

equal to this input. In the reference software model, f is 2
qbits/3

 for intra blocks or

2
qbits/6

 for inter blocks. The Multiplication Factor (MF) depends on the QP value and

is given in Table 5.2.

76

|Zij| = (|Wij|.MF + f) >> qbits

 sign(Zij) = sign(Wij)

(4.3)

 qbits = 15 + floor(QP/6) (4.4)

Table 5.2 Multiplication Factor (MF)

The inverse quantization operation is described by equation 4.5. In this equation, V

is the rescaling factor and given in Table 5.3.

 Wij = Zij.Vij.2
floor(QP/6)

 (4.5)

Table 5.3 Rescaling Factor (V)

QP%6

Positions

(0,0),(2,0),(2,2),(0,2)

Positions

(1,1),(1,3),(3,1),(3,3) Other Positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

QP%6

Positions

(0,0),(2,0),(2,2),(0,2)

Positions

(1,1),(1,3),(3,1),(3,3) Other Positions

0 10 16 13

1 11 18 14

2 13 20 16

3 14 23 18

4 16 25 20

5 18 29 23

77

5.3 4x4 Transform and Quantization Examples

In Table 5.4, one block of luma or chroma samples is shown. 4x4 transform,

quantization, inverse quantization and inverse transform operations are applied to

this sample block and the results are shown in Table 5.5.

As can be seen from these tables, when the QP parameter increases, more quantized

coefficients get zero (more compression). However, the difference (error) between

the original block and the recovered block increases.

Table 5.4 Block of Luma or Chroma Samples

Table 5.5 Results of Each Step (Example)

85 83 79 91

76 76 75 81

79 83 86 89

80 85 81 56

1285 12 -11 -9 1285 12 -11 -9 1285 12 -11 -9 1285 12 -11 -9

43 -106 95 -63 43 -106 95 -63 43 -106 95 -63 43 -106 95 -63

-5 76 -21 13 -5 76 -21 13 -5 76 -21 13 -5 76 -21 13

94 -88 30 -24 94 -88 30 -24 94 -88 30 -24 94 -88 30 -24

285 2 -2 -1 160 1 -1 -1 49 0 0 0 5 0 0 0

6 -9 13 -5 3 -5 7 -3 1 -2 2 -1 0 0 0 0

-1 10 -4 2 0 6 -2 1 0 2 -1 0 0 0 0 0

13 -8 4 -2 7 -4 2 -1 2 -1 1 0 0 0 0 0

85 82 79 91 85 83 78 90 84 82 79 91 80 80 80 80

76 76 75 80 75 76 74 81 74 74 76 83 80 80 80 80

79 83 86 89 78 83 85 88 81 78 84 88 80 80 80 80

80 85 80 57 81 85 80 58 81 85 80 58 80 80 80 80

QP=40QP=5 QP=10 QP = 20

Core Transform

Quantization

Inverse

Transform&Quantization

78

5.4 FPGA Implementation of Transform Coding

In this section, FPGA design of forward and inverse integer transforms are

illustrated. The HDL implementation is written in VHDL language.

In Figure 5.10 and Figure 5.11, the block diagrams of forward transform and inverse

transform are given. As shown from these figures, in each case the two dimensional

transform operations are divided into two parts: vertical and horizontal. When the

data at the input port is valid, first the vertical transform is applied and then the

horizontal transform operation is applied by using the results of the vertical

transform. By doing so, same FPGA resources are used for the horizontal and the

vertical transform operations. Transform operation is realized by using sixteen 13 bit

4 input adders.

Vertical

Transform

Horizontal

Transformresidual_valid

residual

16

integer_transform_valid

integer_transform

16

FORWARD TRANSFORM

Figure 5.10 Block Diagram of Forward Transform

Vertical

Transform

Horizontal

Transforminverse_quant_valid

inverse_quant

16

inverse_trans_valid

inverse_trans

16

INVERSE TRANSFORM

Rounding

Figure 5.11 Block Diagram of Inverse Transform and Rounding

79

As shown from Figure 5.11, rounding operation is applied after vertical and

horizontal inverse transforms. This rounding block shifts left the results of the

horizontal transformed values by 6 bits.

In Figure 5.12 and Figure 5.13, HDL designer view of integer transform and inverse

integer transform blocks are represented. HDL designer is an FPGA design tool that

visualizes the FPGA designs and commonly used in team based designs. HDL

Designer also makes the design of hierarchical blocks easier and increases design

reusability.

Figure 5.12 HDL Designer View of “Integer Transform” Block

80

Figure 5.13 HDL Designer View of “Inverse Integer Transform” Block

The Modelsim simulation results of forward and inverse integer transform operations

are given in Figure 5.14 and Figure 5.15, respectively. As shown from these figures,

integer transform operation takes 2 clock cycles and inverse integer transform

operation takes 3 clock cycles: one clock cycle for vertical transform, one clock

cycle for horizontal transform and one clock cycle for rounding operation.

81

 Figure 5.14 Modelsim Simulation Result of “Integer Transform” Block

82

 Figure 5.15 Modelsim Simulation Result of “Inverse Integer

Transform” Block

83

5.5 FPGA Implementation of Quantization

5.5.1 Forward Quantization

In order to achieve the quantization operation, the algorithmic steps shown in Figure

5.16 are implemented. As shown in this figure, there are four states: IDLE, WAIT1,

ADD_OFFSET and INV_QUANT_MULT. In the IDLE state, the sign of each

transformed coefficients are stored, the transform coefficients and the corresponding

multiplication factors are sent to the multiplier blocks and the rounding offset f

(equation 4.3) is calculated as described in equation 4.6. Actually this f value adds

1/3 to each coefficient before rounding. By doing this operation as shown in equation

4.6, the division operation is achieved only using the bit shift operations. So we do

not need a divider block.

 f = 682*2
(4 + floor(QP,6))

 (4.6)

In the WAIT1 state, we wait for the multiplication result and then go to the

ADD_OFFSET state. In this state, the calculated offset in the IDLE state and the

multiplication result is added. In the final state, INV_QUANT_MULT, the

coefficients are right shifted with qbits and the result is written into a FIFO for

entropy coding.

In H.264/AVC, if the entropy coding type is CAVLC, the quantized coefficients

must be in the range of (-2063, 2063). So if a coefficient is not in this range, this

coefficient is limited with these boundaries before writing it into the FIFO. This

check is also done in INV_QUANT_MULT state.

In our design, inverse quantization and rescaling operation starts just after the

quantization operation. So in order to save 1 clock cycle, we feed each multiplier

84

block with the quantized coefficients and the corresponding inverse multiplication

factor (V) in INV_QUANT_MULT state.

IDLE

ADD

OFFSET

WAIT1

INV

QUANT

MULT

Store sign

 Multiply with MF

 Calculate offset

Wait multiplication result

Add offset

 Round the quantized coefficients

 Write the rounded coefficients to FIFO

Multiply with V

Figure 5.16 State Diagram of Quantization Process

5.5.2 Inverse Quantization

In this part, the inverse quantization and rescaling equation (equation 4.5) is

implemented. The state diagram of this process is represented in Figure 5.17. As

shown in this figure, the inverse quantization operation is divided into three states. In

the IDLE state, the multiplication result of the quantized coefficients with the reverse

multiplication factor (Zij.Vij in equation 4.5) is waited. In the next state,

PROCESS_INV_SCALED_DATA, the rescaling of the multiplication result with a

85

factor of 2
floor(QP/6)

 is done. In the final state, the sign of each coefficient is added. In

this step, the stored sign data in the quantization process is used.

IDLE

PROCESS

SIGN

DATA

PROCESS

INV

SCALED

DATA

Wait multiplication result

Do rescaling

Process sign data

Figure 5.17 State Diagram of Inverse Quantization Process

In Figure 5.18, Modelsim simulation results of quantization and inverse quantization

process are given. The quantization process takes 4 clock cycles and inverse

quantization operation takes 3 clock cycles. So obtaining the inverse quantization

coefficients from the inverse transformed coefficients takes totally 7 clock cycles.

In the design of quantization process sixteen 18x18 multipliers are used and the same

multipliers are also used during the inverse quantization process in order to save

FPGA’s multipliers.

86

Figure 5.18 Modelsim Simulation Results of “Quantization” and “Inverse

Quantization” Process

87

5.6 Resource Usage Summary of Transform and Quantization

FPGA resource usage summary of integer transform, inverse integer transform,

quantization and inverse quantization blocks are given in Table 5.6. Actually,

forward integer transform and backward integer transform are same in H.264

literature. But in our implementation (see Figure 5.11), “Inverse Integer Transform”

block includes one more block besides “Horizontal Transform” and “Vertical

Transform” blocks which is called as “Rounding”. This block is needed to scale the

inverse transformed coefficients. For this reason, logic usage of “Inverse Integer

Transform” block is higher than logic usage of “Integer Transform”.

 Table 5.6 FPGA Resource Usage Summary of Transform and Quantization

Block Name ALMs Dedicated Logic Registers Block Memory Bits M20Ks DSP Blocks

Integer Transform 832/234720 824/469440 0/52428800 0/2560 0/256

Inverse Integer Transform 1458/234720 1318/469440 0/52428800 0/2560 0/256

Quantization&Inverse Quantization 2572/234720 1039/469440 0/52428800 0/2560 16/256

88

89

CHAPTER 6

6 BASELINE PROFILE ENTROPY CODING TECHNIQUES

AND THEIR FPGA IMPLEMENTATIONS

As mentioned in Chapter 2 (Figure 2.1), the last part of an H.264/AVC video encoder

is the entropy coding part. In this part, the previously coded symbols (parameters,

identifiers, prediction types, motion vectors and quantized transform coefficients) are

coded to generate the H.264/AVC syntax described in section 2.3. Entropy coding is

a lossless data compression technique. Entropy coding algorithms try to assign

shortest codes to the most commonly occurred symbols at the input in order to

produce smaller bitstream.

The H.264/AVC standard specifies several entropy coding methods. These methods

are fixed length code, Exponential-Golomb variable length code, CAVLC (Context-

based Adaptive Variable Length Coding) and CABAC (Context-based Adaptive

Binary Arithmetic Coding). As mentioned in section 2.2.2.4 (Entropy Coding), an

encoder may use CAVLC or CABAC while coding the symbols at the slice data

level and below (see Figure 2.17). CABAC algorithm is more complex but on the

average gives about 10% better results when compared to CAVLC [9]. In the

baseline profile, only CAVLC method is allowed and CABAC tool is not supported.

So in our encoder implementation CAVLC method is used.

90

In the following sections of this chapter, firstly the details of fixed-length coding,

Exponential-Golomb variable length coding and CAVLC coding methods are given

and then FPGA implementations of these algorithms are studied.

6.1 Fixed Length Code

In fixed length coding, a binary code is generated for a symbol with a specific length

(n bits). In H.264, the descriptor f(n), i(n), u(n) and b(8) are used for syntax elements

which are coded with fixed length code. Here “n” represents the length of the coded

symbol. In Table 6.1, fixed length coding descriptors used in H.264/AVC and their

meanings are given.

Table 6.1 H.264 Fixed Length Coding Descriptors

In Table 6.2, some H.264/AVC syntax elements which are coded by using the fixed

length coding method are shown.

Descriptor Description

f(n) Fixed-pattern bit string using n bits.

i(n)
Signed integer bit string using n bits. When “n” is “v”, the number of bits

varies in a manner dependent on the value of other syntax elements.

u(n)
Unsigned integer using n bits. When “n” is “v” the number of bits varies in

a manner dependent on the value of other syntax elements.

b(n) Byte having any pattern of bit string (8 bits).

91

Table 6.2 Some Fixed Length Coded Syntax Elements

Syntax Element Descriptor

forbidden_zero_bit f(1)

emulation_prevention_three_byte f(8)

cabac_zero_word f(16)

rbsp_stop_one_bit f(1)

rbsp_alignment_zero_bit f(1)

time_offset i(v)

nal_ref_idc u(2)

nal_unit_type u(2)

profile_idc u(8)

level_idc u(8)

rbsp_byte b(8)

user_data_payload_byte b(8)

6.2 Exponential-Golomb Code

Exponential Golomb codes are binary codes with varying lengths generated using a

regular pattern. Short codewords are assigned to frequently-occurring symbols. In

this way, data can be denoted in a compressed form. In Table 6.3 some symbols

represented by code_num and their corresponding Exp-Golomb codewords are

given.

The structure of an Exp-Golomb codeword is shown in Figure 6.1. The codeword

consist of M zeros, a 1 and M-bit information field, INFO. Codewords are generated

from the parameter code_num as specified below:

M = floor (log2 (code_num + 1))

INFO = code_num + 1 -2
M

First by using code_num, the length of INFO (M) is calculated and then using M and

code_num the INFO field is calculated.

92

M bit 0's 1 M bit INFO

2M + 1 bits

Figure 6.1 Exp-Golomb Codeword Structure

In Table 6.3, some code_num and their corresponding Exp-Golomb codewords are

given. As shown from this table, codeword length increases when the parameter

code_num increases. So in order to use Exp-Golomb codes efficiently, one should

assign smaller code_num to most probable symbols.

H.264/AVC standard defines that, for each symbol “k” to be coded with Exp-

Golomb, there is a rule that maps the “k” value to non-negative and integer values.

This rule indicates how the symbol “k” must be mapped to a CodeNum value. There

are four mapping possibilities, depending on the element type: ue(v) (unsigned Exp-

Golomb), te(v) (truncated Exp-Golomb), se(v) (signed Exp-Golomb) and me(v)

(mapped Exp-Golomb).

ue(v): Unsigned direct mapping. Code_num = k. Used for mb_type,

intra_chroma_pred_mode and others.

te(v): Truncated mapping. If the largest possible value of “k” is 1, then a single bit b

is sent where b =! code_num (! Means Boolean logical “not”), otherwise “ue”

mapping is used. Reference picture index is coded with truncated mapping.

se(v): Signed mapping. “k” is mapped to code_num as specified below:

 code_num = 2|k| (k≤0)

 code_num = 2|k| - 1 (k>0)

and code_num is mapped to “k” as follows:

 k = (-1)
 code_num + 1

ceil (code_num/2)

93

Motion vector differences and quantization parameters are coded with signed Exp-

Golomb coding.

me(v): Mapped symbols, k is mapped to code_num according to a table.

coded_block_pattern is coded with mapped Exp-Golomb coding (Appendix A).

Table 6.3 Exp-Golomb Codewords

code_num Codeword

0 1

1 010

2 011

3 00100

4 00101

5 00110

6.3 Context-based Adaptive Variable Length Code (CAVLC)

CAVLC is a form of entropy coding methods used in H.264/AVC. CAVLC is used

to encode residual, scan ordered from 4x4 or 2x2 blocks of transform coefficients.

CAVLC is supported in all H.264 profiles.

CAVLC is designed to take advantage of several characteristics of quantized

coefficient blocks [10]: Figure 6.2 shows the general flow of CAVLC coding. It

takes 4x4 or 2x2 quantized coefficients and performs the following operations:

1. The input quantized block is reordered using zigzag or field scan.

2. The number of trailing ones (T1’s) and the total number of non-zero

coefficients are coded together (coeff_token).

3. Each sign of T1’s are encoded.

94

4. The level, sign and magnitude, of each remaining non-zero coefficients are

encoded.

5. The total number of zero coefficients before the first non-zero coefficient is

encoded (total_zeros).

6. The number of zero valued coefficients before each non-zero coefficient (run

before) is encoded.

12 1 0-6

4 -1 03

1 -1 00

0 0 00

Zigzag or

Field Scan

Encode

coeff_token

Encode sign

of each T1

Encode Level
Encode

total_zeros

Encode each

run of zeros

Quantized

Coefficient Block

Ordered

Coefficients

CAVLC

CAVLC Coded

Bitstream

001111000...

Figure 6.2 Algorithmic Flow of CAVLC

The details of CAVLC coding algorithm (shown in Figure 6.2) are not explained in

this thesis work. You can find the details of this algorithm in [9]. In the next section,

a 4x4 block is coded by using CAVLC method.

6.3.1 Example CAVLC Coding of a 4x4 Block

In this section, CAVLC coding of the 4x4 block shown below is explained in details.

95

5 2 0 0

-1 -2 0 0

0 1 -1 0

0 0 0 0

 Step 1: Zigzag Scan

5 2

-1 -2

0 1

0 0

0 0

0 0

-1 0

0 0

5 2 -1 0 -2 0 0 0 1 0 0 -1 0 0 0 0scan

Reordered Block

Step 2: Encode coeff_token

As shown below, the total number of non-zero coefficients is 6 and the total

number of trailing ones is 2. As explained in [9], the table that will be used to

code the symbol coeff_token depends on the parameter nC. In this example,

nL and nU are assumed to be zero, so the value of nC is also zero and the

VLC table 1 (see Table A-3) is chosen while coding the parameter

coeff_token. When we look at the VLC table 1, the corresponding codeword

is ‘0000000101’.

96

5 2 -1 0 -2 0 0 0 1 0 0 -1 0 0 0 0

Total Coeff Counter

T1 Counter

1 2 3 4 5 6

2 1

Step 3: Encode Sign of Each Trailing Ones

There are two trailing ones. The sign of the first one is –, and the second one

is +. So the code for T1 is ‘10’.

Step 4: Encode Level

The four level values and the corresponding codes are shown below. So the

codeword for level parameter is ‘0111010000010’.

level level_prefix level_suffix code

-2 01 - 01

-1 1 1 11

2 01 0 010

5 00001 0 000010

Step 5: Encode total_zeros

The number of total zeros is six, so the corresponding codeword is ‘011’.

97

5 2 -1 0 -2 0 0 0 1 0 0 -1 0 0 0 0

Total Zeros

Counter
123456

First non-zero

coefficient

Step 6: Encode run of zeros

The three (run, zeros_left) pairs and the corresponding codes are shown

below. The code for run parameter is ‘0010010’.

5 2 -1 0 -2 0 0 0 1 0 0 -1 0 0 0 0

(Run, Zeros Left)(2,6)(3,4)(1,1)

(run, zeros_left) code

(2,6) 001

(3,4) 001

(1,1) 0

6.4 FPGA Implementation of Exponential-Golomb Coding

FPGA design architecture of Exponential-Golomb coding block is represented in

Figure 6.3. As shown from this figure, Exponential-Golomb coding block consists of

three subblocks: EXP-GOLOMB STATE MACHINE, ROM INTRA CBP and ROM

INTER CBP.

98

In Table 6.4, the input and output signal definitions, length and modes are given.

EXP-GOLOMB CODING block works as follows: If the start flag

(exp_golomb_start) is high, EXP-GOLOMB STATE MACHINE block reads the

parameter that will be coded (exp_golomb_k_param), parameter mapping type

(exp_golomb_mode) and prediction type (exp_golomb_mode_p) of the current

block. By using these signals, it constructs the code that corresponds to the current

symbol and outputs the code (exp_golomb_output) and its length

(exp_golomb_length) with a ready flag (exp_golomb_valid). Users should observe

the ready flag to understand the end of the coding operation and to code the next

symbol.

EXP-GOLOMB

STATE MACHINE

ROM

INTRA CBP

ROM

INTER CBP

exp_golomb_start

exp_golomb_k_param

exp_golomb_mode_p

exp_golomb_mode

exp_golomb_length

exp_golomb_output

exp_golomb_valid

in
te

r_
ro

m
_

rd
d

a
ta

in
te

r_
ro

m
_

rd
re

q

in
te

r_
ro

m
_

rd
d

a
ta

in
te

r_
ro

m
_

rd
re

q

EXP-GOLOMB

CODING

Figure 6.3 Block Diagram of Exponential-Golomb Coding

99

Table 6.4 I/O Signal Descriptions of the EXP-GOLOMB CODING Block

6.4.1 EXP-GOLOMB CODING STATE MACHINE

This block is responsible from the generation of the coded bitstream. It includes four

states (Table 6.4). In the first state, the code_num is calculated by using the

exp_golomb_k_param and exp_golomb_mode. In the second state, the length of

INFO field (M) is calculated and in the third state, by using code_num and M

parameters INFO field of the bitstream is constructed. In the last state, the output

codeword and its length are generated by using M and INFO variables.

Signal Length Description Input/Output

exp_golomb_start 1 Indicates the start of coding operation. Input

exp_golomb_k_param 6 The value of coding parameter. Input

exp_golomb_mode 2

Indicates the mapping type of the coding parameter.

"00" => ue(v)

"01" => sev(v)

"10" => me(v)

"11" => te(v)

Input

exp_golomb_mode_p 1

Prediction type of the coding parameter. Valid only if the mapping type is me(v).

'0' => Intra

'1' => Inter

Input

exp_golomb_valid 1 If high indicates that the coding result of the current symbol is ready. Output

exp_golomb_length 4 The length of the coded symbol. Output

exp_golomb_output 13 The generated code for the current symbol. Output

100

1

Calculate

 Code Num

2

Calculate

 M

3

Calculate

 INFO

4

Construct

Output

Figure 6.4 State Diagram of Exponential-Golomb State Machine

6.4.2 ROM INTRA CBP

This ROM keeps the corresponding value of code_num parameters for the coded

block pattern (CBP) symbol when the prediction type is INTRA. While reading the

code_num value, ROM address must be set to the CBP value. The ROM size is 48x6.

6.4.3 ROM INTER CBP

This ROM keeps the corresponding value of code_num parameters for the coded

block pattern (CBP) symbol when the prediction type is INTER. While reading the

code_num value, ROM address must be set to the CBP value. The ROM size is 48x6.

6.4.4 Simulation and Implementation Results of Exponential-Golomb Coding

Block

In Figure 6.5, Figure 6.6 and Figure 6.7, the Modelsim simulation results of the Exp-

Golomb block are given when the mapping type is ue(v), se(v) and me(v),

101

respectively. In Table 6.5, the required clock delay of the Exp-Golomb block is given

for various mapping types.

Figure 6.5 Simulation Result When the Mapping Type is ue(v)

Figure 6.6 Simulation Result When the Mapping Type is se(v)

Figure 6.7 Simulation Result When the Mapping Type is me(v)

102

Table 6.5 Exp-Golomb Block Delay for Different Mapping Types

The logic utilization of Exponential-Golomb coding algorithm is given in Table 6.6.

Table 6.6 FPGA Resource Usage of Exp-Golomb Coding Block

6.5 FPGA Implementation of CAVLC

In this section, circuit design of CAVLC coding is studied. CAVLC block is also

written in VHDL language.

The FPGA architecture of CAVLC design is shown in Figure 6.8 and I/O

(Input/Output) signals of this block are given in Table 6.7. This block includes

several subblocks in order to efficiently generate the H.264 coded bitstream from the

quantized coefficients. These blocks are: “Zigzag Scan”, “Scanned Data Control”,

“Total Coeff”, “Total Zeros”, “Level Code Control”, “Run Code Control”,

“Bitstream Control” and “ROM Blocks”. The details of each block are given in the

following sections.

CAVLC coding block starts the coding operation when the cavlc_start signal is high.

When this signal is driven high, all the remaining input signals must be set to the true

values to code the current quantized coefficients block correctly. If the data at the

input ports are ready, firstly the quantized coefficients are zigzag scanned. Then the

Mapping Type Delay(system_clk)

ue(v) 4

se(v) 4

me(v) 6

te(v) 2 or 4

Block Name ALMs Dedicated Logic Registers Block Memory Bits M20Ks DSP Blocks

Exp-Golomb Coding 100/234720 60/469440 288/52428800 1/2560 0/256

103

number of trailing ones, the total number of nonzero coefficients and the total

number of zero valued coefficients before the highest nonzero coefficient is

calculated by the scanned data control block. Scanned data control block also writes

the run and level data to the corresponding FIFOs. Finally, all the VLC parameters

are generated by using the scanned data control block and driven as output under the

control of bitstream control block.

104

SCANNED DATA

CONTROL

ZIGZAG

SCAN

COUNTER

CONTROL

q00_2x2
q01_2x2

q11_2x2
q10_2x2

cavlc_start

block_type

scanned
data

TOTAL

COEFF

RUN

CODE

CONTROL

to
ta

l_
c
o
e
ff

c
o
u
n
te

r

T
1

c
o
u
n
te

r

nL
nU

availability

s
c
a
n

e
n
d

total_coeff length

total_coeff

T1 counter

T1 sign

TOTAL

ZEROS

total_zeros
counter

scan
end

total_zeros

total_zeros
length

..
.

q01_4x4
q00_4x4

q33_4x4

TABLE1

ROM

TABLE2

ROM

TABLE3

ROM

TABLE4

ROM

TABLE5

ROM

rd
_
re

q
1

rd
_
re

q
2

rd
_
re

q
3

rd
_
re

q
5

rd
_
re

q
4

rd
_
d
a
ta

1

rd
_
d
a
ta

2

rd
_
d
a
ta

3

rd
_
d
a
ta

4

rd
_
d
a
ta

5

ZEROS

ROM

FIFO

CONTROL

RUN

FIFO

LEVEL

FIFO

levelfifo
wrreq

levelfifo
data

ru
n
fi
fo

w
rr

e
q

ru
n
fi
fo

d
a
ta

LEVEL

CODE

CONTROL

rd
_
d
a
ta

1

rd
_
re

q
1

block
type

rd
_
re

q

e
m

p
ty

rd
_
d
a
ta

e
m

p
ty

rd
_
d
a
ta

rd
_
re

q

run

run length

RUN

ROM rd_data1

rd_req1

total_coeff ready

total_zeros
ready

run ready

total_coeff_length
total_coeff

data ready

process next block

total_coeff
number

process
next block

process next block

process
next block

process next block

process next block

CAVLC CODING

s
c
a
n

e
n
d

to
ta

l_
z
e
ro

s
c
o
u
n
te

r

scan
end

block_scanning

trailing_one_length
trailing_one

total_zeros_length
total_zeros

run_data_length

run_dataBITSTREAM

CONTROL level_data_length

level_data

level_read_number

Figure 6.8 FPGA Architecture of CAVLC Block Design

105

Table 6.7 I/O Signal Descriptions of the CAVLC CODING Block

The design of CAVLC coding block is very critical. It should process a block in

limited clock cycles and use acceptable FPGA resources. Otherwise, the working

frequency must be increased. This situation is not desired, especially coding an HD

(1920x1080) video. In order to meet all these requirements, CAVLC coding block

designed to work in a parallel and pipelined manner. The design is separated into

Sinyal Length Description Input/Output

q00_4x4

q01_4x4
…

q33_4x4

q00_2x2

q01_2x2

q10_2x2

q11_2x2

cavlc_start 1 When this signal is high, input parameters are valid and start to code quantized input data. Input

nL 6 Number of nonzero coefficients of the left block. Input

nU 6 Number of nonzero coefficients of the upper block. Input

availability 2

Indicates the availabity of the previously coded left and upper blocks with respect to the

current block.

"00" both of them are not available.

"01" left available, upper not.

"10" upper available, left not.

"11" both of them are available.

Input

block_type 2

Indicates the type of the block.

"00" luma4x4

"01" luma4x4AC or chroma4x4AC

"10" chromaDC

Input

total_coeff_number 4 Number of nonzero coefficients of the currently coded block. Output

data_ready 1 Indicates the output data is ready or not. '1' ready, '0' not ready. Output

process_next_block 1
If high the output data is read by upper block and the coding block can process the next

data.
Output

block_scanning 1
If high block scanning process of the current block is not finished yet. Observe this signal

before sending new quantized coefficients.
Output

total_coeff_length 5 Length of total_coeff data. Output

total_coeff 16 Total_coeff data. Output

trailing_one_length 2 Length of trailing ones data. Output

trailing_one 3 Trailing ones data. Output

total_zeros_length 4 Length of total_zeros data. Output

total_zeros 9 total_zeros data. Output

run_data_length 5 Length of run data. Output

run_data 25 Run data. Output

levelfifo_wrreq 1 Level FIFO write request. Output

levelfifo_data 33 Level FIFO write data. [27:0] coded level data, [31:28] length of the coded level data. Output

level_read_number 5 Number of level data written to the level data FIFO. Output

16 Quantized 4x4 Luma, LumaDC or ChromaAC block. Input

16 Quantized 2x2 ChromaDC block Input

106

three independent blocks (Figure 6.9) which may run in parallel. While scanning a

quantized block, another quantized block can be processed or the results can be sent

to the output ports. By doing so, the block delay is minimized without increasing

logic usage.

The delay of each step varies because the number of coefficients that will be coded

changes from one block to another. Coding a 2x2 block requires less clock cycles

than coding a 4x4 clock, or coding a block that contains more zero coefficients will

need less clock cycles than coding a block that contains less number of zero

coefficients. In these cases, coding delay of a block will be the greatest one of all the

three delay values.

Data Process

Block 0

Bitstream Control

Block0

Zigzag Scan

Block 0

Data Process

Block 1

Bitstream Control

Block1

Zigzag Scan

Block 1

Data Process

Block 2

Bitstream Control

Block 2

Zigzag Scan

Block 2

Block 0 Coded

Block 1 Coded

Block 2 Coded

Figure 6.9 CAVLC Coding Block Working Principle

CAVLC coding methodology of a 2x2 block, 4x4 AC block or 4x4 DC block are

very similar. There are small differences while processing these blocks. The

implemented CAVLC coding block process all type of blocks by using same FPGA

circuit. This feature reduces the logic usage. The block type of the current block is

chosen by using the block_type input signal.

In the following sections, the details of CAVLC coding block are given.

6.5.1 Zigzag Scan

This block scans the 4x4 and 2x2 blocks of quantized coefficients in the order shown

in Table 6.8 and Table 6.9, respectively. In order to start the scanning process,

107

cavlc_start signal must be high and block_scanning signal must be low. After

completing the block scanning operation, scan_end signal is set to high in order to

declare the end of scanning process to the other blocks.

Table 6.8 4x4 Zigzag Scan Order

Table 6.9 4x4 Zigzag Scan Order

6.5.2 Scanned Data Control

This block is composed of two subblocks: “Counter Control” and “FIFO Control”.

“Counter Control” block counts the number of nonzero coefficients, the number of

trailing ones and the number of zeros before the highest frequency nonzero

coefficient in a quantized block.

“FIFO Control” block writes the level and run values of a scanned block to the

corresponding FIFOs to be processed later by the level code control and run code

control blocks.

idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

zigzag c00 c01 c10 c20 c11 c02 c03 c12 c21 c30 c31 c22 c13 c23 c32 c33

idx 0 1 2 3

zigzag c00 c01 c10 c11

108

6.5.3 Total Coeff

This block reads the total_coeff parameter from the ROMs by using the

total_coeff_counter and T1_counter. The total_coeff parameter is stored in five

different ROMs. Encoder chooses one of them by using the signals nL and nU.

6.5.4 Total Zeros

This block reads the total_zeros parameter from the ROM by using the

total_coeff_counter and total_zeros_counter signals.

6.5.5 Run Code Control

Firstly, this block reads each run value in block from the run FIFO. Then, the

corresponding codeword of each run value are read from the RUN ROM block.

Finally, all codeword are combined and sent to the bitstream control block. The

maximum number of required bits to code all run values are 28. So, the length of the

output signal is 33. First 28 bits represents the run code and the next 5 bits indicates

its length.

6.5.6 Level Code Control

This block reads the level signals from the level FIFO and constructs the

corresponding level code. In order to start the coding of level values, total number of

nonzero coefficients (total_coeff_counter) and the total number of trailing ones must

be known. For this reason, this block must wait the end of the block scanning

operation.

In Figure 6.10, the algorithmic flow in order to code the level parameters is shown.

During the implementation of this algorithm, parallel processing architecture of the

FPGA devices is used and a structure shown in Figure 6.11 is implemented. When

109

we look at this figure, most of the operations are achieved in parallel which reduces

the processing time.

Is there any level

parameter left?

Y

Start

Initialize

suffix_length

Calculate

level_code

Construct

level_prefix

Construct

level_suffix

End

Update

 suffix_length

Is there any level

parameter left?
N

Y

N

Send level FIFO

read request

Figure 6.10 Algorithmic Flow of Level Parameter Coding

110

Initialize

suffix_length

Send read

request

Is level FIFO

empty?

Yes
Output level

bitstream

No

Calculate

level_code

Is level FIFO

empty?

Send read

request

No

Construct

level_suffix

Construct

level_prefix

Update

suffix_length

Is level FIFO

empty?

Send read

request

Calculate

level_code

No

Yes
Construct

level_suffix

Construct

level_prefix

Yes

Figure 6.11 FPGA Implementation Architecture of Level Parameter Coding

6.5.7 Bitstream Control

This block reads all the VLC parameters from others blocks and sets the data_ready

flag when all the data is ready.

6.5.8 Simulation and Implementation Results of CAVLC Coding Block

In Figure 6.12 and Figure 6.13, Modelsim simulation results of CAVLC coding

implementation are given. In Figure 6.12, the coded block size is 4x4 (block_type is

00) and in Figure 6.13 block size is 2x2 (block_type is 10).

111

 Figure 6.12 CAVLC Modelsim Simulation Result (Block Size: 4x4)

112

 Figure 6.13 CAVLC Modelsim Simulation Result (Block Size: 2x2)

113

As mentioned earlier, CAVLC coding delay varies with respect to the block type

(luma4x4, luma16x16 AC, luma16x16 DC, chroma AC, chroma DC) and the content

of the block (the number of zero valued coefficients, the number of trailing ones

etc.). In Figure 6.14, Figure 6.15 and Figure 6.16, the worst case delays are given

when the maximum numbers of coefficients in a block are 16, 15 and 4, respectively.

Zigzag Scan

(1 clk)

Scanned Data Control

(16 clk)

Total Coeff

(3 clk)

Level Code Control

(19 clk)

Total Zeros

(4 clk)

Run Code Control

(20 clk)

Bitstream Control

(1 clk)

Figure 6.14 Maximum Block Delays (Number of Quantized Coefficient: 16)

Zigzag Scan

(1 clk)

Scanned Data Control

(15 clk)

Total Coeff

(3 clk)

Level Code Control

(18 clk)

Total Zeros

(4 clk)

Run Code Control

(19 clk)

Bitstream Control

(1 clk)

Figure 6.15 Maximum Block Delays (Number of Quantized Coefficient: 15)

114

Zigzag Scan

(1 clk)

Scanned Data Control

(4 clk)

Total Coeff

(3 clk)

Level Code Control

(7 clk)

Total Zeros

(1 clk)

Run Code Control

(8 clk)

Bitstream Control

(1 clk)

Figure 6.16 Maximum Block Delays (Number of Quantized Coefficient: 4)

The logic utilization of CAVLC coding algorithm is given in Table 6.10.

Table 6.10 FPGA Resource Usage of CAVLC Coding Block

Block Name ALMs Dedicated Logic Registers Block Memory Bits M20Ks DSP Blocks

CAVLC 1460/234720 512/469440 320/52428800 2/2560 1/256

115

CHAPTER 7

7 HARDWARE IMPLEMENTATION AND RESULTS

This chapter discusses the test setup implementation and test results obtained from

the designed H.264 hardware encoder.

7.1 Test Setup

In order to test the designed H.264 encoder on hardware, the block diagram shown in

Figure 7.1 is implemented. In this implementation, a video is captured from a

camera. Then, this captured video is received, encoded and transmitted from the

FPGA in real time. The encoded video is decoded on a standard PC by using VLC

Player software.

The proposed architecture is implemented in VHDL language and tested by using the

ALTERA STRATIX V FPGA development board shown in Figure 7.2. In this board,

there is a STRATIX V 5SGXEA7C2F40 FPGA, SDRAMs, Ethernet PHY and two

HSMC (High Speed Mezzanine Connector) connectors. In order to take the sensor

data into FPGA board, one more board is used. This board receives camera link

signals and sends to FPGA board by using one of the HSMC connectors. The project

is analyzed, synthesized, placed and routed to the STRATIX V FPGA using

ALTERA QUARTUS 13.1 software.

116

Camlink Interface
H.264 Intra-Frame

Encoder

Transport Stream

Generator
Ethernet Interface

Video

Source

PC

FPGA

Video In

H.264 Coded

Video Data

VLC

PLAYER

Figure 7.1 H.264 Encoder Hardware Block Diagram

FPGA

SDRAMs

STRATIX V

Development

Board

Ethernet

PHY

HSMC

Connectors

Camlink

Connector

Gigabit

Ethernet

Port

Figure 7.2 STRATIX V FPGA Development Board

117

7.1.1 Video Source

The camera shown in Figure 7.3 is used as the video source. This is a commercial

camera and outputs a video of resolution 640x512 at 25 frames per second.

Figure 7.3 Video Source

7.1.2 Camera Link Interface

This FPGA block is a bridge between the camera sensor and video encoder. It

analyses the camera link [11] signals and converts these signals into a format that is

appropriate to the encoder input.

This block is fully implemented during this thesis work to implement the test set up

shown in Figure 7.1.

118

7.1.3 H.264 Encoder

This block encodes video at the input ports. The output data length is 32 which

means the coded data is sent in a four byte aligned format. This block is completely

implemented during this thesis work.

7.1.4 Transport Stream Generator

This block generates Transport Stream (TS) packets from the coded video data. An

existing VHDL code for this block is modified in order to implement the test setup

shown in Figure 7.1.

7.1.5 Ethernet Interface

This block takes Transport Stream packets, encapsulates them into UDP (User

Datagram Protocol) packets and sends the UDP packets over the gigabit Ethernet

interface. UDP protocol is commonly applied in real-time applications, because

dropping packets is preferable to waiting delayed packets in time-sensitive

applications.

This block is fully implemented during this thesis work to implement the test set up

shown in Figure 7.1.

7.2 Results

In Figure 7.4, our encoder model compression results are compared with High

Complexity and Low Complexity modes of JM 18.4 reference software. In this

figure, x axis and y axis represents bitrate and PSNR values, respectively. In this

comparison, 13 QCIF frames (foreman test sequence) are coded in all modes using

several QP values.

In the high complexity mode, prediction results of all the prediction modes are

transformed, quantized, inverse transformed, inverse quantized and entropy coded.

119

Mode selection is done by using the results of these operations. As shown from

Figure 7.4, using this technique increases compression efficiency; however, the

complexity of the encoder increases much more. Implemented encoder architecture is

similar to the low complexity mode of the reference software. In both

implementations, mode selection is done just after the block prediction operation and

same algorithms are used in the mode selection process. But in low complexity mode

many algorithms, such as adaptive rounding, RDO-based (Rate Distortion

Optimization) quantization etc., may be used which is not implemented in our

encoder.

Figure 7.4 Comparison of Implementation Results

0 1 2 3 4 5 6 7

x 10
5

25

30

35

40

45

Bitrate (bits)

P
S

N
R

 (
d
B

)

Our Implementation

High Complexity (JM 18.4)

Low Complexity (JM 18.4)

120

In Table 7.1, bit reductions of “High Complexity Mode” are compared with the

“Low Complexity Mode” and “Our Implementation” results at 3 different qualities

(28 dB, 35 dB, 40 dB). This table shows that “High Complexity Mode” results with

2.6% bitrate reduction when compared to “Low Complexity Mode” and 7.3% bitrate

reduction when compared to “Our Implementation” on the average.

Table 7.1 Bitrate Comparison of Three Encoder Models

Implemented H.264 encoder has a low delay. It is about 1 ms which is almost

negligible. The resource usage summary of the implemented H.264 encoder design is

given in Table 7.2. All video resolutions and frame rates defined in H.264 standard

are supported by the implemented encoder. Finally, the maximum frequency used in

FPGA fabric is equal to the component frequency of the input video.

Table 7.2 Resource Usage of Implemented H.264 Encoder

Low Complexity Our Implementation Low Complexity Our Implementation Low Complexity Our Implementation

High Complexity 2.46% 8.80% 2.16% 7.60% 3.14% 5.39%

28 dB 35 dB 40 dB

Used Available

Logic Usage (ALM) ~19000 (~8%) 234720

DSP Block 17(<7%) 256

Memory Bits (Mbits) 0.96(<2%) 50

PLL 0(0%) 28

121

CHAPTER 8

8 CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis work, an H.264 compliant intra frame coder hardware has been

implemented on FPGA devices targeting all levels of baseline profile. First, a

reference encoder which includes encoding algorithms such as intra prediction, intra

mode selection, transform, quantization and entropy coding, are implemented and

tested in MATLAB environment. Then, the reference encoder is coded in VHDL

language and tested using the Mentor Graphics Modelsim HDL simulation tool.

Next, the overall FPGA implementation is tested by putting the H.264 coded

bitstream into transport stream packets, streaming with UDP over Ethernet and

decoding with VLC Player software on a PC. During the hardware verification

process, a 640x512 video at 25 frames per second is coded on Altera Stratix V FPGA

development kit.

We can summarize the critical tasks that we have faced during the implementation

stage and our contributions to these tasks as follows:

 Storing the quantized block data in FIFOs allows modules to remain weakly

coupled. This made the design and test of our encoder easier. The quantized

122

coefficients are stored in a FIFO. CAVLC block reads these data and

generates the coded block data.

 An encoder codes different parameters and generates H.264 compliant

bitstream which must be byte aligned. Our encoder outputs the coded data in

32 bit format. Firstly, we combined all the coded parameters in an 8 bit

format but this created timing problems when the bitrate is high (QP is

smaller than 10). So we have processed the coded parameters in 16 bit format

rather than 8 bit. Resource usage increased a bit; however, our encoder now

can encode high bitrate video data.

 While implementing an encoder on the hardware, the target application and

video properties are very important. For example, coding a QCIF video will

be completely different than coding an HD video. We can make more

improvements in QCIF video if we desire to lower the resource usage or

power. Because the pixel frequency of the QCIF video is very small when

compared to the HD video.

 In our encoder design, about 50 percent of all the used FPGA resources are

consumed by the intra mode selection block. This represents that, mode

selection stage is the most challenging part while designing an encoder.

8.2 Future Work

Several improvements can be made to our design:

 An efficient intra mode selection algorithm can be developed and

implemented to decrease logic usage.

 Inter frames can be added to increase the encoder performance. Correlation

between frames in a video (inter prediction) is higher than correlation

between pixels in a frame (intra prediction). So using inter-coded frames

commonly increases coding efficiency.

 CABAC algorithm can be used instead of CAVLC. CABAC algorithm can

represent the same video data 10% fewer bits when compared to CAVLC [5].

123

 Deblocking filter can be applied to reduce blocking artifacts.

 A constant bitrate algorithm can be implemented for the applications which

desire a specific value of bitrate.

 The implemented design can be modified as an ASIC implementation.

 The power consumption of the implemented design can be analyzed and

some techniques can be applied to reduce its power consumption.

125

REFERENCES

[1] International Standard Organization and Information Technology-Coding of

Audio-Visual Objects. Part10-Advanced Video Coding. ISO/IEC 14496-10.

[2] http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC, last access: 12 April 2014

[3] P. List, A. Joch, J. Lainema, G. Bjontegaard and M. Karczewicz, ‘Adaptive

Deblocking Filter’, IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, July 2003, pp. 614–619.

[4] N. Ahmed, T. Natarajan, and R. Rao, “Discrete Cosine Transform” IEEE

Transactions on Computers, vol. C-23, pp. 90-93, Jan. 1974.

[5] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.

Stockhammer, and T. Wedi, “Video Coding with H.264/AVC: Tools,

Performance, and Complexiy”, IEEE Circuits and Systems Magazine, 2004.

[6] I. E. Richardson (2010). H.264 Syntax. In: The H.264 Advanced Video

Compression Standard. 2nd ed. UK: John Wiley&Sons Ltd. 100-134

[7] O. and K. Ramchandran , “Rate-distortion methods for image and video

compression, ” IEEE Signal Processing Magazine, vol. 15, no.6, pp. 23-50,

Nov. 1998.

[8] G.J. Sullivan and T. Wiegand, “Rate-distortion optimization for video

compression,” IEEE Signal Processing Magazine, vol. 15, pp. 74-90, Nov.

1998.

[9] I. E. Richardson (2010). Context Adaptive Variable Length Coding.

In: The H.264 Advanced Video Compression Standard. 2nd ed.

UK: John Wiley&Sons Ltd. 100-134.

[10] http://en.wikipedia.org/wiki/H.264/Camera_Link, last access: 3 August 2014.

[11] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, "Low-

ComplexityTransform and Quantization in H.264/AVC," IEEE Transactions

on Circuits and Systems for Video Technology, vol. 13, no. 7, July 2003.

[12] T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, "Overview of the

H.264/AVC Video Coding Standard," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 13, no. 7, July 2003.

[13] Y. Katayama, “Protection From IDCT Mismatch,” Tech. Rep. MPEG 93/283,

ISO/IEC JTC1/SC2/WG11, 1993.

[14] "Video and Image Processing Design Using FPGAs (white paper)," ALTERA

WP-VIDEO0306-1.1 March 2007.

[15] B. Carle, "How Does H.264 Work? (white paper)," Salient Systems Corp.

http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC,%20last%20access:%2012%20April%202014
http://en.wikipedia.org/wiki/H.264/Camera_Link,%20last%20access:%203%20August%202014.

126

[16] I. E. Richardson, "4x4 Transform and Quantization in H.264/AVC (white

paper)," Vcodex Limited,Ver. 1.2, November 2010.

[17] I. E. Richardson, "H.264/AVC Context Adaptive Variable Length Coding

(white paper)," Vcodex, 2002-2010.

[18] I. E. Richardson, "An Overview of H.264 Advanced Video Coding (white

paper)," Vcodex/OneCodec, 2007-2011.

[19] I. E. Richardson, "H.264/AVC Intra Prediction (white paper)," Vcodex, 2002

2011.

[20] I. E. Richardson, "H.264/MPEG-4 Part 10: Transform&Quantization (white

paper)," Vcodex, 2003.

[21] M. Tikekar, II 2012, 'Circuit Implementations for High-Efficiency Video

Coding Tools', Massachusetts Institute of Technology, Boston.

[22] E. Şahin, II 2006, 'An Efficient H.264 Intra Frame Coder Hardware Design',

Sabancı University, İstanbul.

[23] JM reference software version 18.4, http://iphome.hhi.de/suehring/tml/, July

2013

[24] S. W. Golomb, ‘Run-length encoding’, IEEE Transactions on Information

Theory, vol. IT-12, pp. 399–401, 1966.

[25] S. Nargundmath, A. Nandibewoor, "Entropy Coding of H.264/AVC using

Exp-Golomb Coding and CAVLC Coding," ICANMEET-2013, July 2013.

[26] W. Di, G. Wen, H. Mingzeng, and J. Zhenzhou, "An Exp-Golomb Coder and

Decoder Architecture for JVT/AVS," IEEE Trans. On Circuits and Systems

for Video Technology, vol.2, n.21-24, p. 910-913, 2003.

127

 APPENDIX A

EXPONENTIAL- GOLOMB AND CAVLC CODING TABLES

Table A-1 CBP Table (ChromaArrayType is Equal to 1 or 2)

codeNum

Intra_4x4, Intra_8x8 Inter

0 47 0

1 31 16

2 15 1

3 0 2

4 23 4

5 27 8

6 29 32

7 30 3

8 7 5

9 11 10

10 13 12

11 14 15

12 39 47

13 43 7

14 45 11

15 46 13

16 16 14

17 3 6

18 5 9

19 10 31

20 12 35

21 19 37

22 21 42

23 26 44

24 28 33

25 35 34

26 37 36

27 42 40

28 44 39

29 1 43

30 2 45

31 4 46

32 8 17

33 17 18

34 18 20

35 20 24

36 24 19

37 6 21

38 9 26

39 22 28

40 25 23

41 32 27

42 33 29

43 34 30

44 36 22

45 40 25

46 38 38

47 41 41

coded_block_pattern

128

Table A-2 CBP Table (ChromaArrayType is Equal to 0 or 3)

codeNum

Intra_4x4, Intra_8x8 Inter

0 15 0

1 0 1

2 7 2

3 11 4

4 13 8

5 14 3

6 3 5

7 5 10

8 10 12

9 12 15

10 1 7

11 2 11

12 4 13

13 8 14

14 6 6

15 9 9

coded_block_pattern

129

Table A-3 Total Coeff Tables

T
ra

ili
ng

O
ne

s

(
co

ef
f_

to
ke

n
)

T
ot

al
C

oe
ff

(
co

ef
f_

to
ke

n
)

Table 1

0 <= nC < 2

Table 2

2 <= nC < 4

Table 3

4 <= nC < 8

Table 4

8 <= nC

Table 5

nC = = −1

 Table 6

nC = = −2

0 0 1 11 1111 0000 11 01 1

0 1 0001 01 0010 11 0011 11 0000 00 0001 11 0001 111

1 1 01 10 1110 0000 01 1 01

0 2 0000 0111 0001 11 0010 11 0001 00 0001 00 0001 110

1 2 0001 00 0011 1 0111 1 0001 01 0001 10 0001 101

2 2 001 011 1101 0001 10 001 001

0 3 0000 0011 1 0000 111 0010 00 0010 00 0000 11 0000 0011 1

1 3 0000 0110 0010 10 0110 0 0010 01 0000 011 0001 100

2 3 0000 101 0010 01 0111 0 0010 10 0000 010 0001 011

3 3 0001 1 0101 1100 0010 11 0001 01 0000 1

0 4 0000 0001 11 0000 0111 0001 111 0011 00 0000 10 0000 0011 0

1 4 0000 0011 0 0001 10 0101 0 0011 01 0000 0011 0000 0010 1

2 4 0000 0101 0001 01 0101 1 0011 10 0000 0010 0001 010

3 4 0000 11 0100 1011 0011 11 0000 000 0000 01

0 5 0000 0000 111 0000 0100 0001 011 0100 00 - 0000 0001 11

1 5 0000 0001 10 0000 110 0100 0 0100 01 - 0000 0001 10

2 5 0000 0010 1 0000 101 0100 1 0100 10 - 0000 0010 0

3 5 0000 100 0011 0 1010 0100 11 - 0001 001

0 6 0000 0000 0111 1 0000 0011 1 0001 001 0101 00 - 0000 0000 111

1 6 0000 0000 110 0000 0110 0011 10 0101 01 - 0000 0000 110

2 6 0000 0001 01 0000 0101 0011 01 0101 10 - 0000 0001 01

3 6 0000 0100 0010 00 1001 0101 11 - 0001 000

0 7 0000 0000 0101 1 0000 0001 111 0001 000 0110 00 - 0000 0000 0111

1 7 0000 0000 0111 0 0000 0011 0 0010 10 0110 01 - 0000 0000 0110

2 7 0000 0000 101 0000 0010 1 0010 01 0110 10 - 0000 0000 101

3 7 0000 0010 0 0001 00 1000 0110 11 - 0000 0001 00

0 8 0000 0000 0100 0 0000 0001 011 0000 1111 0111 00 - 0000 0000 0011

1 8 0000 0000 0101 0 0000 0001 110 0001 110 0111 01 - 0000 0000 0101

2 8 0000 0000 0110 1 0000 0001 101 0001 101 0111 10 - 0000 0000 0100

3 8 0000 0001 00 0000 100 0110 1 0111 11 - 0000 0000 100

0 9 0000 0000 0011 11 0000 0000 1111 0000 1011 1000 00 - -

1 9 0000 0000 0011 10 0000 0001 010 0000 1110 1000 01 - -

2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 - -

3 9 0000 0000 100 0000 0010 0 0011 00 1000 11 - -

0 10 0000 0000 0010 11 0000 0000 1011 0000 0111 1 1001 00 - -

1 10 0000 0000 0010 10 0000 0000 1110 0000 1010 1001 01 - -

2 10 0000 0000 0011 01 0000 0000 1101 0000 1101 1001 10 - -

3 10 0000 0000 0110 0 0000 0001 100 0001 100 1001 11 - -

0 11 0000 0000 0001 111 0000 0000 1000 0000 0101 1 1010 00 - -

1 11 0000 0000 0001 110 0000 0000 1010 0000 0111 0 1010 01 - -

2 11 0000 0000 0010 01 0000 0000 1001 0000 1001 1010 10 - -

3 11 0000 0000 0011 00 0000 0001 000 0000 1100 1010 11 - -

0 12 0000 0000 0001 011 0000 0000 0111 1 0000 0100 0 1011 00 - -

1 12 0000 0000 0001 010 0000 0000 0111 0 0000 0101 0 1011 01 - -

2 12 0000 0000 0001 101 0000 0000 0110 1 0000 0110 1 1011 10 - -

3 12 0000 0000 0010 00 0000 0000 1100 0000 1000 1011 11 - -

0 13 0000 0000 0000 1111 0000 0000 0101 1 0000 0011 01 1100 00 - -

1 13 0000 0000 0000 001 0000 0000 0101 0 0000 0011 1 1100 01 - -

2 13 0000 0000 0001 001 0000 0000 0100 1 0000 0100 1 1100 10 - -

3 13 0000 0000 0001 100 0000 0000 0110 0 0000 0110 0 1100 11 - -

0 14 0000 0000 0000 1011 0000 0000 0011 1 0000 0010 01 1101 00 - -

1 14 0000 0000 0000 1110 0000 0000 0010 11 0000 0011 00 1101 01 - -

2 14 0000 0000 0000 1101 0000 0000 0011 0 0000 0010 11 1101 10 - -

3 14 0000 0000 0001 000 0000 0000 0100 0 0000 0010 10 1101 11 - -

0 15 0000 0000 0000 0111 0000 0000 0010 01 0000 0001 01 1110 00 - -

1 15 0000 0000 0000 1010 0000 0000 0010 00 0000 0010 00 1110 01 - -

2 15 0000 0000 0000 1001 0000 0000 0010 10 0000 0001 11 1110 10 - -

3 15 0000 0000 0000 1100 0000 0000 0000 1 0000 0001 10 1110 11 - -

0 16 0000 0000 0000 0100 0000 0000 0001 11 0000 0000 01 1111 00 - -

1 16 0000 0000 0000 0110 0000 0000 0001 10 0000 0001 00 1111 01 - -

2 16 0000 0000 0000 0101 0000 0000 0001 01 0000 0000 11 1111 10 - -

3 16 0000 0000 0000 1000 0000 0000 0001 00 0000 0000 10 1111 11 - -

130

Table A-4 Total Zeros Table for 4x4 Blocks

Table A-5 Total Zeros Table for Chroma DC Blocks (4:2:0 Chroma Sampling)

total_zeros

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 111 0101 0001 1 0101 0000 01 0000 01 0000 01 0000 01 0000 1 0000 0000 000 00 0

1 011 110 111 111 0100 0000 1 0000 1 0001 0000 00 0000 0 0001 0001 001 01 1

2 010 101 110 0101 0011 111 101 0000 1 0001 001 001 01 1 1 -

3 0011 100 101 0100 111 110 100 011 11 11 010 1 01 - -

4 0010 011 0100 110 110 101 011 11 10 10 1 001 - - -

5 0001 1 0101 0011 101 101 100 11 10 001 01 011 - - - -

6 0001 0 0100 100 100 100 011 010 010 01 0001 - - - - -

7 0000 11 0011 011 0011 011 010 0001 001 0000 1 - - - - - -

8 0000 10 0010 0010 011 0010 0001 001 0000 00 - - - - - - -

9 0000 011 0001 0001 0010 0000 1 001 0000 00 - - - - - - - -

10 0000 010 0001 0001 0001 0 0001 0000 00 - - - - - - - - -

11 0000 0011 0000 0000 0000 1 0000 0 - - - - - - - - - -

12 0000 0010 0000 0000 0000 0 - - - - - - - - - - -

13 0000 0001 1 0000 0000 - - - - - - - - - - - -

14 0000 0001 0 0000 - - - - - - - - - - - - -

15 0000 0000 1 - - - - - - - - - - - - - -

TotalCoeff

total_zeros

1 2 3

0 1 1 1

1 01 01 0

2 001 00 -

3 000 - -

TotalCoeff

131

Table A-6 Total Zeros Table for Chroma DC Blocks (4:2:2 Chroma Sampling)

Table A-7 Run Before Parameter Table

total_zeros

1 2 3 4 5 6 7

0 1 000 000 110 00 00 0

1 010 01 001 00 01 01 1

2 011 001 01 01 10 1 -

3 0010 100 10 10 11 - -

4 0011 101 110 111 - - -

5 0001 110 111 - - - -

6 0000 1 111 - - - - -

7 0000 0 - - - - - -

TotalCoeff

1 2 3 4 5 6 > 6

0 1 1 11 11 11 11 111

1 0 01 10 10 10 000 110

2 - 00 01 01 011 001 101

3 - - 00 001 010 011 100

4 - - - 000 001 010 011

5 - - - - 000 101 010

6 - - - - - 100 001

7 - - - - - - 0001

8 - - - - - - 00001

9 - - - - - - 000001

10 - - - - - - 0000001

11 - - - - - - 00000001

12 - - - - - - 000000001

13 - - - - - - 0000000001

14 - - - - - 00000000001

zerosLeft
run_before

