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ABSTRACT

A MASS DETECTION ALGORITHM FOR MAMMOGRAM IMAGES

YEŞİLKAYA, MUHAMMED

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

Co-Supervisor : Prof. Dr. Nevzat Güneri Gençer

September 2014, 77 pages

Breast cancer is the most common cancer type encountered among woman in the world
and causes many deaths. In order to prevent mastectomies, decrease the probability of
return and reduce mortality, early detection of cancer lesion is crucial. Mammography
is a frequently used screening technique to detect and diagnose lesions. However,
sometimes it is difficult for radiologists to see and diagnose lesions due to low contrast
of mammograms. Computer Aided Detection / Diagnosis (CAD / CADx) systems
have been developed to help radiologists.

In this thesis, we propose a method for classification of mass regions in MLO (Medi-
olateral oblique) view mammograms. The suspicious regions are first determined by
Iris filtering with variable window sizes applied on the breast region without pectoral
muscle. Then classification is applied to textural features obtained using Gabor filter
applied on these suspicious regions. We reduced false detection ratio nearly 50 percent
with a cost of missing 9 percent of true mass regions with classification. For pectoral
muscle region determination a novel algorithm is also proposed. This algorithm is
based on average derivative calculation and line fitting with least square solution. Our
algorithm outperforms other algorithms given in the literature in terms of FP (False
positive) pixel percentage and FN (False negative) pixel percentage metrics.

Keywords: Mass Detection in Mammogram Images, Iris Filter, Gabor Filter Bank

v



ÖZ

MAMMOGRAM GÖRÜNTÜLERİ İÇİN BİR KİTLE TESPİT ALGORİTMASI

YEŞİLKAYA, MUHAMMED

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Ortak Tez Yöneticisi : Prof. Dr. Nevzat Güneri Gençer

Eylül 2014 , 77 sayfa

Meme kanseri, dünyada kadınlar arasında en yaygın kanser tipidir ve ölümlere neden
olmaktadır. Meme amelayatlarını önlemek, nüksetme olasılığını düşürmek ve ölüm ora-
nını azaltmak için kanser lezyonunun erken tespiti çok önemlidir. Mamografi, lezyon
tespit ve teşhisinde sıkça kullanılan bir görüntüleme tekniğidir; fakat meme filmlerinin
düşük kontrastından, lezyonların tespit ve teşhisi bazen radyologlar için zordur. Bu
sebepten radyolaglara yardım etmek için yakın geçmişte, Bilgisayar Destekli Tespit /
Teşhis sistemleri (CAD / CADx) geliştirilmiştir.

Bu tezde, MLO (yandan) görüntülü mammogramlarda kitle bölgelerinin sınıflandırıl-
ması için bir yöntem sunmaktayız. Önceklikle, göğüs kası olmayan meme bölgesine
değişik pencere boyutlarıyla uygulanan Iris süzgeciyle şüpheli bölgeler belirlenmek-
tedir. Sonra Gabor filtrenin bu şüpheli bölgelere uygulanması ile elde edilen doku-
sal (textural) özelliklere sınıflandırma uygulanmaktadır. Sınıflandırma ile doğru kitle
bölgelerinin yüzde dokuzu kaçırılmasına karşın, yanlış tespit edilen bölgeleri yaklaşık
yüzde elli oranında azaltmaktayız. Ayrıca göğüs kası bölgesinin belirlenmesi için yeni
bir algoritma sunulmaktadır. Bu algoritma ortalama türev hesabı ve en küçük kare
çözümü ile doğru uydurmaya dayanmaktadır. Bizim algoritmımız, literatürdeki diğer
algoritmalardan FP (Yanlış pozitif) piksel yüzdesi ve FN (Yanlış pozitif) piksel yüzdesi
açısından daha iyi sonuç vermektedir.

Anahtar Kelimeler: Mammogram Görüntülerinde Kitle Tespiti, Iris Süzgeci, Gabor

Süzgeç Kümesi
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CHAPTER 1

INTRODUCTION

Breast cancer is the most common form of cancer that affects women all over the world
and is considered a major health problem. According to the statistics of National Can-
cer Institute, Surveillance, Epidemiology, and End Results (SEER) program, lifetime
risk of developing breast cancer among American women is 12.2 % [10]. In the Eu-
ropean Community, breast cancer represents 19 % of cancer deaths and 24 % of all
cancer cases [11] [12]. Women diagnosed between ages 40-49 years are the major vic-
tims having about 25 % of all breast cancer deaths. The World Health Organization’s
International Agency for Research on Cancer (IARC) has estimated more than one
million cases of breast cancer to occur annually and reported that more than 400, 000
women die each year from this disease [13]. Therefore, imaging techniques such as
mammography are used for early detection of breast cancer.

1.1 Mammography

Mammography is a particular form of radiography. It uses radiation levels between
specific intervals with a purpose to acquire breast images to diagnose an eventual
presence of structures that indicates a disease, especially cancer. Early detection of
mammary pathologies is extremely important. The technological advances in imaging
have contributed for the increase in the successful detection of breast cancer cases. In
this area, mammography has an important role to detect lesions in early stages and
make a favorable prognosis [6].

Mammography procedure is similar to the other X-Ray procedures. However, low
doses, which presents high quality images with low noise, are used. [14]. It is desirable
to use lowest radiation dose compatible with excellent image quality [6].

In terms of sensitivity and specificity mammography has better performance for fatty
breasts. Dense breast tissue in young women is particularly difficult to assess. Mam-
mography is also used in assisting needle core biopsies and for localization of non-
palpable lesions [15]. In screening mammography breasts are compressed uniformly;
because it is important to ensure image contrast. Thus, these tools have to be highly
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sensitive to identify, as correctly as possible, those tumors that could be malignant.

Breast tissue image acquisition is done using two views in order to assess differences
in density between the breast tissue: a cranio caudal (CC) and mediolateral oblique
(MLO), Figure 1.1.

Figure 1.1: Left:MLO view. Right: CC view [3].

Figure 1.2 shows CC view of a left and right breast couple from Digital Database for
Screening Mammography (DDSM) [4].

Figure 1.2: CC mammogram of a breast couple from DDSM [4].

Figure 1.3 is the MLO view of a left and right breast couple. Generally, on the MLO
view, more breast tissue can be projected than on the CC view because of the slope
and curve of the chest wall [16]. The image should include the free margin of the
pectoral major muscle to ensure that the tail of the breast is imaged [17].
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Figure 1.3: MLO mammogram of a breast couple from DDSM [4].

1.2 Breast Lesion Types

Breast cancer characteristic lesions are: microcalcifications, masses, architectural dis-
tortions and bilateral asymmetry [6]. In the following subsections, each of these lesions
are introduced.

1.2.1 Microcalcifications

Microcalcifications are small deposits of calcium. They are brighter than surrounding
tissues. Size of microcalcifications change from 0,33 to 0,7 mm [6]. Although they
have high inherent attenuation properties, it is difficult to detect them in mammog-
raphy due to their low contrast. Associated with extra cell activity in breast tissue
microcalcifications may show up in clusters or in patterns [18]. A typical mammogram
from mini-MIAS ([5]) database with microcalcifications is shown in Figure 1.4 [19].

A microcalcification cluster normally is more detectable than an isolated microcal-
cification, and contributes for the diagnosis of early stages of breast cancer. These
clusters may have three or more microcalcifications present in a mammogram region
with an area around 1 cm2 [18]. it is important to be able to distinguish benign and
malignant microcalcifications, Table 1.1 presents the grade, degree of suspicion and
mammographic appearance [1].
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Figure 1.4: Microcalcifications in mammograms from mini-MIAS [5].

Table1.1: Grading of imaging reports of microcalcifications according to risk of malig-
nancy [1].

Grades Degree of Suspicion Mammographic Apearance
1 Normal No abnormality seen

2 Consistent with
a benign lesion

Popcorn, ring,
micro cystic or diffuse bilateral

3 Indeterminate but
probably benign

Localized cluster of
round, punctuate

4 Suspicious of malignancy Localized cluster of granular
5 Consistent with malignancy Comedo calcification

1.2.2 Masses

Masses are areas that look abnormal in mammograms and they can be cysts, non-
cancerous solid tumors or cancer. Since features of mass resembles to those of normal
breast tissue, mass lesions are more difficult to detect in mammograms. Mass shape can
be either round, oval, lobulated or irregular, and margins can be from circumscribed
to spiculated, Figure 1.5.

Figure 1.5: Mass Shapes in Mammograms [6].
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After detection it is not easy to distinguish whether it is benign (B) or malignant (M).
However, there are major differences in the shapes and textures ,[20]. Benign masses
are typically smooth and distinct, and they are round shaped. On the other hand,
malignant masses are irregular and their boundaries are usually blurry (Figure 1.6)
[21]. A mass with irregular shape has a higher probability of being malignant; however
a mass with an regular shape has a higher probability of being benign [22].

Figure 1.6: Two malignant mass ROIs cropped from full-sized mammograms with their
pathological characteristics from DDSM [4].

1.2.3 Architectural distortions

Breast includes several linear structures that cause directionally oriented texture in
mammograms and change of this textural orientation is an architectural distortion.
Malignant architectural distortion includes cancer whereas benign includes scar and
soft-tissue damage due to trauma. Due to its subtle appearance and variability in
presentation, architectural distortion is the most commonly missed abnormality in
false negative cases [23].

1.2.4 Bilateral asymmetry

Bilateral asymmetry of breast means a difference between corresponding regions in
left and right breast and can be classified into global asymmetry and focal asymmetry
[24]. The former, happens when a greater volume of fibroglandular tissue is present
in one breast compared to another in the same region. The latter, corresponds to a
circumscribed area of asymmetry seen on two views, and usually is an island of healthy
fibroglandular tissue that is superimposed with surrounding fatty tissue [25].
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1.3 CAD System for Mammograms

Computer aided detection (CAD) is an important application of image processing,
pattern recognition, computer science and analysis techniques, aiming to assist doctors
in making diagnostic decisions. If data is not easily interpretable, CAD systems may
help doctors detecting subtle lesions and reduce the probability of failure. These
computational systems are rising in detection of suspect cases [26]. Thus, in the past
several years, CAD systems and related techniques have attracted attention of both
researchers scientists and radiologists [27].

1.3.1 CAD system evaluation

Result of a CAD system can be false positive (FP), true positive (TP), false negative
(FN), true negative (TN) in terms of detecting the absence or presence of abnormality.
Positive / negative refers the decision made by computer algorithm. False / true refers
to the agreement between the decision and clinical state [28]. False positive cases result
in critical operations such as biopsies.

Performance of a CAD system can be evaluated with two metrics. A CAD system’s
sensitivity (Equation 1.1) is the system success in noticing the abnormalities that really
exist:

sensitivity =
TP

(TP + FN)
(1.1)

Specificity (Equation 1.2), is a measure of how well the algorithm reports normal when
there is no abnormality [29]:

specificity =
TN

(TN + FP )
(1.2)

Possible trade offs between sensitivity and specificity are summarized in a receiver
operating characteristic (ROC) curve, Figure 1.7. ROC curve is typically plotted with
the TPF (True positive fraction = sensitivity) on Y axis and the FPF(False positive
fraction = 1- specificity) on the X axis. Area under the ROC curve (Az) is expected
to be 1 for an ideal detection algorithm.

In the literature, sensitivity concept is given as completeness (CP) in some papers .
There is also correctness (1.3) metric that is related with the false positive rate (FPr)
that FPr = 1 - CR [30]:

CR =
TP

(TP + FP )
(1.3)
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Figure 1.7: ROC curve.

1.3.2 Available databases

Available mammogram databases are given in [31]. DDSM, Digital database for screen-
ing mammography was created by Massachusetts General Hospital, the University of
South Florida, and Sandia [4]. MIAS database was created by the Mammographic
Image Analysis Society (MIAS).

MIAS database contains MLO view mammograms. Mammograms, in this database are
examined by expert radiologists and for every mammogram, information of whether
this mammogram has an abnormality is included. In addition, types of the lesions (mi-
crocalcification, circumscribed mass, spiculated mass, ill-defined masses, architectural
distortions, bilateral asymmetry) and diagnosis results (B, M) are available. Moreover,
the center, radius of the lesions, denseness (fatty, fatty-glandular, dense-glandular) of
breast exist (Figure 1.8). Images are 1024 x 1024, each pixel is 200 µm and 8 bit
depth. Mammograms from mini-MIAS database is used in all phases of this thesis.
229 mammogram images from mini-MIAS database are selected in order to test our
algorithms.

Figure 1.8: Benign circumscribed mass from mini-MIAS.
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1.4 Literature Review

Generally, there are four basic steps of a conventional mass detection algorithm: pre-
processing, segmentation, feature extraction, and classification as given in Figure 1.9.
Background noise and mammogram labels are subtracted in the pre-processing step.
Pectoral region segmentation and mass detection operations are implemented in seg-
mentation step. Features of possible mass regions are determined and classification
is made in feature extraction and classification steps. Following sections are the lit-
erature review of these steps. Literature review of pre-processing is not given since
background is subtracted with simple image processing techniques in the literature.
Segmentation includes pectoral muscle segmentation and mass detection steps for MLO
view mammograms. Therefore, literature reviews of these two steps are given in stead
of segmentation. Lastly, literature review of feature extraction and classification are
given. Specifically, classification of textural features is concerned.

Figure 1.9: Conventional CAD mass detection algorithm [7].

1.4.1 Pectoral muscle segmentation

Pectoral muscle sometimes affects the performance of the algorithm due to its similar
characteristic with abnormal tissues for MLO view mammograms. Mass detection
should be done separately for pectoral muscle region. Therefore, pectoral muscle should
be segmented before abnormal tissue search [32]. Several approaches were proposed on
automatic identification of pectoral muscle in recent past. Some papers used straight
line approximation [33]; Radon transform has been used to approximate the boundary
with straight line in [34]. However, these methods fail when the boundary is curved.
A curved edge is obtained by Hough transform in [35]. The problem is solved with
Gabor filter bank in [36]. A discrete time Markov chain was applied in [37]. Two
graph - based detection methods used in [38]. An iterative thresholding and gradient
- based searching is applied in [39]. Average derivative and shape based features are
used in [32] to obtain straight line. Then local maximum gradient search is made on
this straight line to find pectoral muscle curve. The highest performance has been
obtained in [32] in terms of FP pixel percentage and FN pixel percentage performance
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metrics.

1.4.2 Mass detection

Mass detection procedure can be carried out by implementation of one step or two
distinct steps.

In the first approach regional feature extraction and classification are made. Since
masses are small, these steps must be done in small regions to decide on whether there
is a mass or not in a region. However, the breast region is very large when compared
with mass region. Therefore, window with adequate size must be scrolled across the
breast region. The drawbacks of this procedure is that it is time consuming.

In the second procedure, firstly suspicious regions are detected, then feature extraction
and classification steps are applied to these suspicious regions. Detection stage aims to
catch all masses in other words, it aims high sensitivity. False positives are acceptable
because, false positives will be eliminated in the classification stage.

In this thesis, second procedure is implemented. Firstly, suspicious mass regions are
detected with a gradient direction based adaptive filter, then classification is applied
to these regions.

Low contrast characteristic of mammograms is the most important problem in the
detection performance. An algorithm, resistant to low contrast is needed in order to
detect all possible mass regions. Iris filter (Section 3.1) is suggested firstly in [40]
and it depends only on the gradient directions of the image. Algorithm does not
depend on gradient magnitudes on the image, so that it is resistant to low contrast
property of mammogram images. Masses are mostly detected with Iris filter. It has
the highest sensitivity performance when compared other techniques [30]. That is the
main reason that we choose Iris filter in our possible mass region determination step.
However, usually a large average FPpI performance is obtained when this filter is used.

First implementation of the Iris filter to detect masses in mammograms is done in [40].
After detection of suspicious regions, SNAKES algorithm is applied in order to ob-
tain approximate boundary and 9 features’ effect on the classification is discussed [40].
Mean shift algorithm and Iris filter detector is used in [41]. Mean shift segmentation
is done before Iris filter implementation and the detection performance is discussed. A
detailed study about the performance comparison of Iris filter in terms of implementa-
tion step size (grid size) and threshold values is made in [42]. Optimum threshold levels
(highest sensitivity and lowest correctness) for different breast densities are explored
in [30].

No classification step is performed in [30] [41] and [42] although large number of FPs
are produced after mass detection.
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1.4.3 Classification of textural features

Textural information such as edges, spots, lines, flat areas are important part of the
visual world of animals and humans; they can successfully detect, discriminate, and
segment textural characteristics using their visual systems [43]. It is not new to use
textural information in order to reduce FPs of mass detection algorithms. Previous
classification algorithms, using textural features of suspicious regions, are given in [2].
In addition, a new texture analysis technique using Local Binary Patterns (LBP) is
offered in [2]. Classification performance with SVM is explored. The performance of
the algorithm is compared with previous algorithms in Table 1.2.

Table1.2: Performance comparision of different textural approaches ([2]).

Work Year Features Classifier ROIs
with mass

Normal
with mass ROIs Az

[44] 1996 Texture,
morphologic LDA, NNet 168 504 0,90

[45] 2001 Texture,
shape NNet 200 600 0,86

[46] 2005 Gray - level NNet 681 984 0,84
[47] 2007 2DPCA NN 256 1536 0,86
[2] 2009 LBP SVM 512 512 0,94

Gabor filters have been used (e.g. see [48] and references therein) in order to detect
breast cancer; however Gabor filters are applied on the whole image for extracting
textural features, in these approaches.

Gabor filter bank is applied on different sub-regions of the ROIs extracted from mam-
mograms and the moment based features from the magnitude Gabor responses are
extracted in [49]. 256 normal and 256 mass regions are selected from DDSM database
in [49]. SVM classifier is used and a performance of Az = 0,995 is obtained. Such a
high performance has not been obtained before so that we use the procedure applied
in [49] in the feature extraction and classification steps.

1.5 Contributions

Steps of the proposed algorithm in this thesis is also parallel to the conventional
algorithms. We propose an algorithm given in Figure 1.10. Firstly, we subtract the
background region of mammogram in the pre-processing step. Secondly, segmentation
of pectoral region is implemented. Thirdly, we determine suspicious mass regions
with Iris filter which is an edge detection based adaptive filter. Fourthly, we extract
textural features of these suspicious regions using Gabor filter bank. Lastly, we make
classification with SVM classifier. Contributions are given in the following sections.
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Figure 1.10: Proposed mass detection algorithm.

1.5.1 Pectoral muscle segmentation

• We use average derivative approach ([32]) on a pre-determined region of inter-
est and calculate minimum derivative points for each raw, firstly. Secondly, we
obtain a guaranteed curve very close to real pectoral boundary for the top part
of pectoral boundary. Instead of local search on a long straight line as imple-
mented in [32], we make local search on short lines that are assumed to be the
continuation of guaranteed curve on the region that boundary is not so clear. We
assume that guaranteed curve continues as a line with the same slope of the last
portion of curve. We call this line "line piece". Then, local minimum derivative
is calculated for each raw of the line piece. We fit optimum line piece for calcu-
lated minimum derivative points. Line fitting is made with least square solution
[50]. We carry on this line piece fitting procedure until all boundary is found.
We obtain the best performance in terms of FN pixel percentage and FP pixel
percentage when compared to other algorithms that are used in the literature.

1.5.2 Mass detection

• We apply Iris filters with different support regions to the breast regions without
pectoral muscle. We determine potential mass regions’ sizes compatible with
the support regions of the applied Iris filters. It is seen that the performance of
classification algorithm, offered in [49] for regions with constant size, increases
due to adaptive region size determination (Section 4.2.2).

• We add SVM classification step, based on features obtained by Gabor filter
([49]), to the mass detection step by Iris filter. FPpI ratio, obtained after mass
detection step, is reduced 50 percent with a cost of missing 9 percent of the true
mass regions.
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1.6 Outline of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 gives an overview of background subtraction and pectoral muscle segmen-
tation. Algorithm developed for the pectoral muscle segmentation is explained.

Chapter 3 includes overview on Iris filter and its application on mammograms to detect
possible mass regions.

Chapter 4 explains how textural features of suspicious regions are extracted with Ga-
bor filter bank application. Moreover, SVM classification performance with respect
to changing SVM parameters is discussed. Furthermore, classification of suspicious
regions is given.

Chapter 5 discusses the results of the implemented classification in terms of sensitivity
and specificity metrics.

Chapter 6 concludes the thesis.
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CHAPTER 2

BACKGROUND SUBTRACTION AND PECTORAL
MUSCLE REGION SEGMENTATION

Background subtraction and pectoral region segmentation algorithms are presented in
this chapter.

2.1 Image Processing Techniques Used in Background Subtraction

Binary erosion and dilation are the operators that use subtraction and addition of
set elements. The dilation operation usually uses a structuring element for expanding
the shapes contained in the input image whereas, erosion operation uses a structuring
element for narrowing the shapes. They are morphologically dual of each other [51].

Erosion operation is defined in Equation 2.1 and illustrated on the left side of Figure
2.1. "A" is a binary image and pixels in blue region is 1. "B" is called structuring
element with pixel values 1. Any point in region "B" is "b". While moving structuring
element on binary image, erosion of A by B can be understood as the intersection of
points reached by the center of B. For example, the erosion of a square of side 10 by a
disc of radius 3 is a square of side 4. Erosion result of blue region is the green region.

A	B =
⋂
b∈B

A−b (2.1)

Dilation operation is dual of erosion and defined in Equation 2.2, illustrated on the
right side of Figure 2.1. While moving structuring element B on binary image "A",
union set of "A" and "B" regions constitute dilation result. Dilation of a square of
side 10, by a disk of radius 3 is a square of side 16 with rounded corners. Radius of
the rounded corners is 3. Dilation result of blue region is the green region.

A⊕B =
⋃
b∈B

Ab (2.2)
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Figure 2.1: Left:Erosion operation and illustration, Right:Dilation operation and illus-
tration [8].

Sometimes it is necessary to find of values connected pixels (1) are need to be found
(Figure 2.2 left) on the binary image in image processing problems. They are found
with 8 pixel neighbour search. If any pixel among 8 neighbour pixels is equal to pixel
of interest this neighbor pixel and the pixel of interest are assumed connected pixels.
Searching whole image, all connected components are found all labelled (Figure 2.2
right). In other words, a number is given for each component.

Figure 2.2: Left:Determination of connected components, Right:Labeling of connected
components [9].

2.2 Background Subtraction

Mammogram images in mini-MIAS database are not obtained from a digital mammog-
raphy but from a conventional one. They are digitized form of analog mammogram
images and undesired parts such as label of the mammogram, noise, etc. exist on
mammogram images. Therefore, background region must be discriminated from the
breast region.

Global threshold is applied. Pixels below a threshold level are assigned 0 and over
1. This threshold level is chosen experimentally such that any breast region is not
eliminated. After threshold operation, a binary image is obtained. Next operations
are done on this binary image Figure 2.3 (Step 1). It is aimed to make all breast
region pixels 1 and background pixels 0. Erosion operation is applied in order to
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delete unnecessary parts, such as mammogram labels, over mammograms on binary
image (Step 2). Mammogram label is deleted. However, while eroding binary image
not only mammogram labels but also some part of breast region is also eroded. Thus,
dilation operation is applied on image and the lost breast region is recovered (Step 3).

Operations are done on the binary image as mentioned. After the dilation operation,
connected component labeling is required. Therefore, it is aimed to find all connected
pixels for each region and each region is labelled (Step 4). Label of breast region is
found and other regions’ pixel values are set to 0. Consequently, only breast region
with pixel values 1 and background region with pixel values 0, remains. This binary
image is multiplied pixel by pixel with the original mammogram image and background
is subtracted so that only breast region remains (Step 5).

Figure 2.3: Background subtraction, Step1:Binary image obtainment after threshold,
Step2:Erosion operation to eliminate mammogram label, Step3:Dilation operation to
get back regions lost on mammograms after erosion step, Step4:Connected component
labeling to discriminate breast region from other unnecassary parts.

2.3 Pectoral Muscle Segmentation

2.3.1 Pectoral muscle segmentation algorithm

Figure 2.4 shows the algorithm applied in this thesis. Pectoral region is assumed to be
always at the top left of the image. Therefore, all of the left turned breasts are rotated
180 degrees to satisfy this condition. 1024 x 1024 mammograms are resized to size of
512 x 512 in order to run the algorithms faster.

Firstly, ROI (Region of Interest) is determined. For this purpose edge point at the top
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Figure 2.4: Pectoral muscle segmentation algorithm.

raw of the mammogram (A) and the bottom left point of the mammogram (B) are
joined to designate hypotenuse edge of ROI as given in Figure 2.5.

Along the x axis in Figure 2.5 average derivative (Equation 2.3 [32]) is calculated for
all x on y = 1. A typical average derivative change with respect to x is given in
Figure 2.6. Use of average derivative reduces the effect of high intensity variation of
noise spike and curvilinear structures [32]. The minimum gradient (actually maximum
in magnitude but negative) point is assumed to be edge point for raw of interest.
Therefore, point A is the pixel satisfying the minimum derivative condition for the
first raw of the mammogram image.

Average derivative(x, y) =
1

N

N∑
i=1

I (x+ i, y)− I (x− i, y)
2i

(2.3)

where

(x, y) is coordinate of the pixel where derivative is calculated.

N is the number of pixel pairs used for average derivative computation.
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Figure 2.5: ROI determination.

I(x, y) is the intensity at (x, y) position.

Figure 2.6: Average derivative calculation for each raw and a typical average derivative
plot

Pectoral muscle boundary points are aimed to be found for each y of the ROI. For
this purpose, average derivative plot is obtained for each raw and minimum average
derivative value is determined for each plot (Figure 2.6).

For each y value in the ROI, an x value through which the pectoral muscle boundary
is expected to pass, will be calculated. However, due to intensity variations apart from
pectoral muscle boundary region in the ROI, the points determined will not always be
on the pectoral muscle boundary (Figure 2.7). The points’ x coordinate variation with
respect to y is noisy.
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Figure 2.7: Minimum derivative points for each raw in ROI.

Smoothing is required to clarify the pectoral muscle boundary; therefore two step
moving average filter is applied (Figure 2.8, Figure 2.9).

Figure 2.8: Minimum derivative points for each raw in ROI after first step moving
average operation.

It is observed that after some y value, determined curve behaves very different from
pectoral muscle boundary. However, it is not expected from pectoral boundary to have
abrupt saliencies. In fact, it is generally line or curved line. As a result of this fact, it
is meaningful to obtain angle of curvature plot of each point (Figure 2.10). Angle of
curvatures are calculated by Equation 2.4.
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Figure 2.9: Minimum derivative points for each raw in ROI after second step moving
average operation.

m1 =
x (y + δy)− x (y)

δy
(2.4a)

m2 =
x (y)− x (y − δy)

δy
(2.4b)

θ (y) = atan

[
(m1−m2)

(1 +m1m2)

]
(2.4c)

where

(x, y) is the coordinate of a current pixel (i,j) on the curve.

θ (y) is the angle of curvature at y.

δy is the difference in y axis, between the pixel of which, angle of curvature will
be determined and other two points (3 points needed to find the angle between
two lines). It is chosen as 5 in this thesis.

If angle of curvature is above a positive threshold level or under a threshold level the
incoming points after this point will be thrown away. In this thesis, this threshold levels
are determined experimentally. Threshold level is 16 for positive curvature angles and
-16 for negative curvature angles. In addition, if there are still saliencies a line will be
fitted instead of this saliency. An acceptable curve close to the pectoral boundary has
been obtained after this operation (Figure 2.11).

An acceptable curve, which is very close to real boundary, is obtained for one part of the
boundary. In order to obtain the rest of the boundary curve where more uncertainty
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Figure 2.10: Angle of curvature values for the points, on pectoral muscle boundary.

Figure 2.11: Pectoral muscle boundary points after the removal of saliencies.

exist in terms of boundary clearness, an algorithm based on local minimum derivative
search and least square solution has been implemented.

Firstly, it is assumed that obtained curve continues with an imaginary line piece having
the same slope with the last portion of the curve as shown in Figure 2.12. The size of
the line piece is assumed to be the vertical size of the line piece.

At this point it should be mentioned that line piece size is not distinct and different line
piece sizes result in different boundary curves. Radiologist or the expert will decide on
which line piece size is producing the best looking boundary among different boundaries
produced with different line piece sizes. Thus, offered algorithm is a semi-automatic
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one. Line piece size is chosen 70 for this mammogram.

Figure 2.12: Imaginary line for horizontal derivative search muscle.

Derivative of each point on the horizontal line is drawn for every pixel on the line piece
(Figure 2.13). The size of horizontal line is chosen as 21. 10 pixels, on the left size and
10 pixels, on the right side of the pixel of interest on line piece. There are as many
horizontal line as the line piece size. Determined pixels, having minimum derivatives,
are seen as black around the imaginary red line in Figure 2.13.

Figure 2.13: Minimum derivative calculation on the horizontal lines passing through
imaginary line piece added.
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Best line passing through these calculated pixels, is aimed to be estimated. An over
determined system, as given in Equation 2.5, must be solved. Least square solution is
offered in the literature to find unknowns for an overdetermined system [50]:



y1

y2

y3

.

yi

.

yn


=



x1 1

x2 1

x3 1

. .

xi 1

. .

xn 1


[
a

b

]
(2.5)

where

(xi, yi) is the coordinate of a pixel after minimum derivative calculation.

y = ax+ b is the best line fitted to the pixels after minimum derivative calcula-
tion.

Least square solution is applied to this problem to estimate the optimum (a, b) pair as
given in Equation 2.6:
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(2.6)

Estimated line will be added to the end of the last boundary curve obtained after
removal of saliencies. The resultant boundary curve is given in Figure 2.14.

This procedure is repeated until the line piece approaches to the left boundary of
breast. For this mammogram image at 3 steps the curve reaches left boundary of
breast. The results after minimum derivative pixels and least square calculations for
second and third steps are given in Figures 2.15, 2.16, 2.17, 2.18 respectively.

After reaching the left side of the breast region a moving average smoothing filter is
applied on boundary curve and pectoral boundaries are obtained.

Different line piece sizes produce different pectoral boundaries as mentioned before.
Pectoral boundaries, which are obtained for different line piece sizes, are given in Figure
2.19.
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Figure 2.14: Least square solution applied to pixels.

Figure 2.15: Minimum derivative calculation on the horizontal lines passing through
imaginary line piece added (Second step).

Pectoral muscle boundary curves, calculated for some mammogram images, are given
in Figure 2.20.

2.4 Evaluation of pectoral muscle segmentation algorithm

If the line piece is chosen to be constant and 30, we obtain satisfactory results for nearly
80 percent of pectoral boundaries. However, a semi-automatic algorithm, mentioned
above, is offered for unsatisfactory boundaries and this may be the main drawback of
proposed pectoral discrimination algorithm. In other words, someone has to compare
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Figure 2.16: Least square solution applied to pixels (Second step).

Figure 2.17: Minimum derivative calculation on the horizontal lines passing through
imaginary line piece added (Third step).

different discrimination results, which are obtained with different line piece sizes, and
choose the best line. On the other hand, pectoral boundaries, which are drawn with
our algorithm, are better when compared to the other implemented algorithms in the
literature.

In order to evaluate performance of the applied algorithm mammogram images are
printed on A4 papers, firstly. Secondly, real boundary is drawn with a colored pen and
photos of mammograms are taken with a professional camera (Nikon D7000). Thirdly,
taken photos are transferred to computer. Green line on Figure 2.21 is true boundary
whereas black line is drawn with offered algorithm.
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Figure 2.18: Least square solution applied to pixels (Third step).

Performance of algorithm is determined for each mammogram in terms of two metrics:
FP pixel percentage and FN pixel percentage. FP and FN pixel percentages are
mathematically defined in Equations 2.7 and 2.8, respectively:

FP pixel percentage =
|A ∩B| − |B|

|B|
100% (2.7)

FN pixel percentage =
|A ∩B| − |A|

|B|
100% (2.8)

where

A is pectoral muscle region bounded with boundary obtained by offered algo-
rithm

B is true pectoral muscle region

We applied the proposed algorithm on 201 mammograms from mini-MIAS database.
We calculated mean and standard deviation of FP pixel percentage, FN pixel per-
centage and compared with previous algorithms. 80 mammograms were used from
mini-MIAS database in the previous works. Success of previously applied algorithms
and offered algorithm is given in Table 2.1. It can be observed that offered method
is more successful than applied methods in [32] and [36] in terms of both FP and FN
pixel percentages. However, as mentioned earlier that it is a semi-automatic algorithm.
It may be a disadvantage.
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Figure 2.19: Calculated pectoral muscle boundaries with different line piece sizes for
the same mammogram; First raw:8 , 12, 16, 24, Second raw:32, 36, 52, 60

2.5 Contrast Enhancement and Mass detection in the Pectoral Re-
gions

Textural structures of pectoral region and breast region without pectoral muscle is very
different. Therefore, image enhancement algorithms should be applied to these regions
separately. For pectoral region, contrast enhancement is an important issue. In this
thesis, conventional histogram equalization ([52]) is applied to the pectoral region,
however satisfactory results are not obtained. It is thought that regional contrast
enhancement would be a better solution for the contrast enhancement of pectoral
regions. In addition, different mass detection and classification algorithms should be
applied on pectoral regions. Since we do not have pectoral regions with mass, we could
not applied any mass detection and classification algorithm for the pectoral regions. In
this thesis, we handle only breast region without pectoral muscle for our mass detection
and classification algorithms. Next chapter explains detection of possible mass regions
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Figure 2.20: Calculated pectoral muscle boundaries for some mammograms, from mini-
MIAS database.

Figure 2.21: Mammogram image, taken with a camera.

in the breast region without pectoral region.
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Table2.1: Mean and standard deviation of FP, FN pixel percentages for mammograms
from mini-MIAS database.

Performance metric Proposed method [32] [36]
FP pixel percentage 1,30 ± 2.56 1,84 ± 2,83 4,64 ± 5,03
FN pixel percentage 2,57 ± 1,84 6.56 ± 6,48 4,33 ± 5,63
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CHAPTER 3

DETECTION OF POSSIBLE MASS REGIONS WITH
IRIS FILTER

Mass detection with Iris filter in the breast region without pectoral muscle, is given
in this chapter. Firstly, Iris filter is introduced. Secondly, Iris filter usage in the mass
detection algorithm is explained. Thirdly, success of the algorithm is discussed in
terms of sensitivity and FPpI performances.

3.1 Iris Filter

Iris filter evaluates the degree of convergence of the gradient vectors within its region
of support (support region = region between Rmin (Rin) and Rmax (Rout) circles)
toward a pixel of interest [53] (Figure 3.1). Degree of convergence is related to the
distribution of the directions of the gradient vectors and not to their magnitudes.
Convergence index of a gradient vector at a given pixel is defined as the cosine of
its orientation with respect to the line connecting the pixel and the pixel of interest.
Equation 3.1 is the calculation of the convergence index of a gradient vector:

f(Li) =

0, if |g| = 0.

cos (β) , otherwise.
(3.1)

where

Li is a given pixel, Figure 3.1

β is the angle between gradient vector at Li and the vector from Li to pixel of
interest (P ), Figure 3.1.

g is the gradient at pixel Li.

f(Li) is the convergence index of gradient at point Li
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Figure 3.1: Iris filter definition.

The convergence degree of gradient vectors on the line of PjLi, Ci can be defined as
the average of convergence indexes over the length PjLi as given in Equation 3.2:

Ci =

∫ Li
Pj
f(Li) dl.

|PjLi|
(3.2)

where

Pj is the intersection pixel of j th line with the circle of radius Rmin, Figure 3.1.

l is length on line, PjLi.

Ci is the convergence degree of gradient vectors on the line, PjLi.

j is line number, defined in the interval [0, N − 1], N is the total number of
lines.

The maximum convergence degree Ci0 on the j th line is given in Equation 3.3:

Ci0 = max(Ci), Li ∈ [Pj , Qj ] (3.3)

where

Ci0 is the maximum convergence degree.

Qj is the intersection pixel of j th line with the circle of radius Rmax, Figure
3.1.
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Output of the Iris filter is the average of the convergence degree within its region of
support and lies within the range [−1, 1]:

C (x, y) =
1

N

N−1∑
j=0

Ci0 (3.4)

where

C (x, y) is output of the Iris filter at the pixel of interest (x, y).

3.2 Suspicious ROI Detection Algorithm

Generally, there is an increase in terms of intensity from border to center in a mass
region. Sometimes this increase ends up in a local maximum point in the region as
shown in Figure 3.1. All gradient vectors on the edge pixels are directed towards the
mass region. Moreover, in mass region gradient vectors are directed towards a local
maximum point. Iris filter application to mass detection arises from this idea indeed. If
Iris filter’s pixel of interest is on such a local maximum, the output of filter will be very
close to 1. However, region of support of the filter is very critical. Gradient vectors in
the region of support must be directed towards pixel of interest to obtain high output
values. Otherwise, if the gradient vectors, directed toward pixel of interest, are out of
this support region it is meaningless in terms of contribution to filter output.

Figure 3.2: Left:Gradient map of the mass region with one local maximum, Right:Mass
region.
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Sometimes gradient vectors are directed towards more than one local maximum points
as shown in Figure 3.3. Gradient vectors are directed towards the mass region on the
edge pixels for this scenario, too. An Iris filter with a region of support including the
edge pixels of the mass region will produce high output value for a pixel of interest
in the mass region. However, if one of local maximums is the pixel of interest and
we select the region of support such that it includes the gap between local maximums
(Gradient vectors are not directed towards local maximum points in this region.) the
Iris filter output will not be highest value.

Figure 3.3: Left:Gradient map of the mass region with two local maximums,
Right:Mass region.

Masses are detected by Iris filter generally when the edge region of the masses are in
the region of support. When the region of support is chosen to be in the mass region,
Iris filter may produce high values or not, it depends on the gradient vectors in the
mass region. This situation is illustrated in Figure 3.4.

In order to understand this situation better convergence index maps are obtained for
different support regions. Chosen pixel of interest and the convergence index map for
a region of support, with Rmin = 2 and Rmax = 62 pixels, are given in Figure 3.5.
Pixel of interest is chosen to be a point in a mass region to observe the change in
convergence index map with respect to changing region of support. Different regions
of support, that will be mentioned below, are obtained from this large region.

Figure 3.6 shows the convergence index map for a region of support with Rmin = 2 and
Rmax = 22, pixels. It should be noted that the high convergence index values do not
start at pixels very close to Rmin. Probably, these pixels are not on the edge region
of the mass but in the mass region. Looking at the overall Iris filter algorithm this
convergence index map may produce high filter output value for the pixel of interest,
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Figure 3.4: Iris filter’s support region and mass detection. Left:Mass edge falls between
Rmin circle and Rmax circle. Middle:Mass is smaller than Rmin circle. Right:Mass
region covers Rout circle.

Figure 3.5: Left:Pixel of interest on the mammogram, Right:Convergence index map
for each pixel in the region of support for chosen pixel of interest (Rmin = 2, Rmax =
62).

.

but not the highest one since pixels close to Rmin have small convergence index values
and the integral of convergence degree starts from Rmin.

Figure 3.7 shows the convergence index map for a region of support with Rmin = 12

and Rmax = 32. It should be noted that the high convergence index values start at
pixels very close to Rmin. Probably, these pixels are in the edge region of the mass on
the yellow region drawn. Looking at the overall Iris filter algorithm this convergence
index map may produce highest output value for the pixel of interest.

Figure 3.8 shows the convergence index map for a region of support with Rmin = 22

and Rmax = 42. The highest values of convergence index map are on the top right
part of the convergence index map. This region is breast boundary region drawn with
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Figure 3.6: Left:Convergence index map for region of support, with Rmin = 2 and
Rmax = 22, Right:Convergence index map for region of support with Rmin = 32 and
Rmax = 52.

.

Figure 3.7: Left:Convergence index map for region of support, with Rmin = 12 and
Rmax = 32, Right:Pixel of interest and largest convergence index region.

.

yellow color in the figure. Breast boundary region is one of the source of false positives.

Figure 3.6 shows the convergence index map for a region of support with Rmin = 32

and Rmax = 52. As in the previous map, the effect of breast boundary is also absolutely
seen on this map.

Masses have different diameters from 3mm (15 pixels for an image in mini-MIAS) to
40 mm (200 pixels for an image in mini-MIAS) [30]. Hence, mass radius can occur
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Figure 3.8: Left:Convergence index map for each pixel in the region of support, with
Rmin = 22 and Rmax = 42, for chosen pixel of interest, Right:Pixel of interest and
largest convergence index region.

.

between 4 pixels and 50 pixels for mammograms with dimension 512 x 512. Mass size
must be taken into account while running the Iris filter algorithm. In this thesis, five
different Iris filters are applied on mammograms. The Rmin and Rmax values of these
filters are given in Table 3.1. Regions are overlapping and wide enough not to miss
masses.

Table3.1: Rmin, Rmax values of Iris filters.

Filter Rmin Rmax

Iris filter 1 2 22
Iris filter 2 12 32
Iris filter 3 22 42
Iris filter 4 32 52
Iris filter 5 42 62

3.2.1 Iris filter implementation

Iris filter implementation algorithm is given in Figure 3.9. Firstly, Iris filters, with
different support regions, are applied on mammogram. Therefore, 5 different Iris filter
outputs are obtained. Simple threshold operation is implemented on these outputs;
but the threshold levels may be different for each filter. Connected component analysis
is made and the centers of the suspicious mass regions are calculated for each candidate
region. Finally, regions of size 128 x 128 or 256 x 256 are obtained for each candidate
mass center.
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Figure 3.9: Iris filter implementation.

Iris filter may be time consuming in accordance with the chosen line number. Compu-
tation of convergence index and convergence degree for the pixels through which the
lines pass, need process time. In [30] line number is determined as 20. In this thesis,
detailed results of Iris filters are expected so that Iris filter with 360 lines are applied
on mammograms.

Another critical thing that may be time consuming is the grid size. Grid size is the
concept that the space difference between one pixel of interest and the other one, i.e
if grid size is 1 the process will be done for all pixels. If grid size is different from
one then for a horizontal or vertical line, the process will be done for one pixel among
pixels as many as the grid size number. Disadvantage of this technique is that for large
grid sizes the risk of missing masses is high since masses may occur in small sizes, too.

In this thesis, the process is done for selected pixels; it is not done randomly as grid
size approach. In grid size approach the selected pixels may be a low intensity pixel
(fat tissue etc.). However, it is known that masses are mostly high intensity looking
parts of a mammogram. Therefore, pixel selection is done according to its density.

Firstly, conventional histogram equalization ([52]) is done on breast region without
pectoral muscle. Histograms of an original breast region without pectoral muscle and
histogram equalized image are given in Figure 3.10, 3.11, respectively.

Secondly, pixels close to intensity value 0,5 are found on histogram equalized image.
Mean of these pixels’ intensities on the original mammogram is calculated and this
value is designated as a threshold value for Iris filter implementation. If the intensity
value of the pixel of interest in the original image is greater than this value then Iris
filter process is done for this pixel. If it is smaller, no process is done and 0 is assigned
to this pixel on the Iris filter output. It is crucial to note that the task of histogram
equalization is only determination of this intensity value. Iris filters are implemented
on the breast region, without pectoral muscle, of original mammogram.

Separate runs are not made for different Iris filters, instead one run is made for a
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Figure 3.10: Original breast region and its histogram.

region of support including all other filter support regions. For instance, for Iris filters
determined above only one convergence index map (Rmin = 2, Rmax = 62) is obtained
and from this map, convergence degree and filter outputs are calculated to shorten run
time.

3.2.2 Outputs of Iris filters

Output of "Iris filter 1", applied on breast region, is given on the left side of Figure
3.12. Black regions on the breast texture are the pixels that no filter calculation is
done and 0 is assigned to.

Pixels below the threshold level are assigned 0 and over the threshold level are assigned
1. Threshold applied result of Iris filter output, summed with original mammogram, is
given on the right side of Figure 3.12. Although high threshold level is applied, great
number of false positives come from this filter because the possibility of finding local
maximum points with small region is high for a mammogram image.

Radius of the mass on top region of the mammogram given in right side of Figure 3.12
is 39. However, the suspicious points are found in the mass region. Actually, these
points are local maximums on the mass region as mentioned before.
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Figure 3.11: Histogram equalized breast region and its histogram.

Output of "Iris filter 2", applied on breast region is given on the left side of Figure
3.13.

Threshold applied result of Iris filter output, summed with original mammogram, is
given on the right side of Figure 3.13. Mass edge falls in region of support for a pixel
of interest on the mass region so that so many suspicious points are signed on the
mass region. There are false positive pixels, having higher intensity values than the
surrounding tissues.

Output of "Iris filter 3", applied on breast region, is given on the left side of Figure
3.14.

Threshold applied result of Iris filter output, summed with original mammogram, is
given on the right side of Figure 3.14. Mass edge falls in region of support for a pixel
of interest on the mass region so that many suspicious points are signed on the mass
region. However, this time since radius of the mass falls between Rmin and Rmax

values, the suspicious pixels clustered on the center of the mass region. It is also
observed that some of the false positives signed on the left part of the breast are due
to the breast boundary falling into the region of support.

Output of "Iris filter 4", applied on breast region, is given on the left side of Figure
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Figure 3.12: Left:Output of Iris filter 1, Right: Threshold level = 0,90 applied to filter
output added to original mammogram.

Figure 3.13: Left:Output of Iris filter 2, Right: Threshold level = 0,75 applied to filter
output added to original mammogram.
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Figure 3.14: Left:Output of Iris filter 3, Right: Threshold level = 0,75 applied to filter
output added to original mammogram.

3.15.

Threshold applied result of Iris filter output, summed with original mammogram, is
given on the right side of Figure 3.15. If the suspicious pixels on the mass region are
examined it is not difficult to see that the right part of the mass region falls in support
region for these pixels and the left part of the region of support falls close to breast
boundary. Since threshold is 0,75 it is possible for these pixels to exceed the threshold
level and labeled as suspicious point.

Output of "Iris filter 5", applied on breast region, is given on left side of Figure 3.16.

Threshold applied result of Iris filter output, summed with original mammogram, is
given on the right side of Figure 3.16. No pixel exceeds the threshold level for this
filter output. If the mammogram is examined carefully correctness of this situation
may be observed because there is not any region with an edge of this size.

3.2.3 Designation of suspicious regions

It is easily observed that the suspicious pixels are clustered and connected. Perhaps
the choice of one region can contain all suspicious pixels. Therefore, a center may be
designated for each pixel group then region may be determined. In order to group
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Figure 3.15: Left:Output of Iris filter 4, Right: Threshold level = 0,75 applied to filter
output added to original mammogram.

Figure 3.16: Left:Output of Iris filter 5, Right: Threshold level = 0,75 applied to filter
output added to original mammogram.
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suspicious pixels, connected component labeling is used.

After all groups are found the center of each group is calculated. The center is assumed
to be simply the mean of the pixel coordinates in a group.

Center determination results of filtering and threshold operations for Iris filters 2 and
3 are given in Figure 3.17 and 3.18, respectively.

Figure 3.17: Left:Suspicious pixels obtained after filtering and threshold operation for
Iris filter 2, Right:Connected component labeling and center determination result.

1024 x 1024 images from database were resized to dimension 512 x 512 before pectoral
boundary calculations. The centers are calculated for images of size 512 x 512. Here-
after, the center pixel coordinates will be found on original images of dimension 1024
x 1024 and the regions will be selected from these images.

128 x 128 regions are obtained for center outputs of filtering with Iris filters 1 and 2.
The center is assumed to be in the middle of the region (Figure 3.19). In addition, 256 x
256 regions are obtained for center outputs of filtering with Iris filters 3, 4 and 5 (Figure
3.20). Reason of region extraction with different dimensions is given in Section 4.2.2.
This region dimension determination is critical in terms of classification performance.
In other words, adaptive region size determination is one of the contributions of this
thesis that affects the performance of the classification (Section 4.2.2).

In some cases while defining the region boundary for a center, second center may fall
in the region as illustrated in Figure 3.21. Circle is drawn on the second center pixel
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Figure 3.18: Left:Suspicious pixels obtained after filtering and threshold operation for
Iris filter 3, Right:Connected component labeling and center determination result.

Figure 3.19: Region determination for centers obtained by Iris filters 1, 2 cases.
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Figure 3.20: Region determination for centers obtained by Iris filters 3, 4, 5 cases.

with a radius Rmax of the support region. If this circle is inside the region then no
region determination is done for the second center and it is assumed to be in the region
determined by the first center (Figure 3.21).

3.3 Results of Suspicious ROI Detection Algorithm

Iris filter approach is satisfactory in terms of sensitivity as mentioned before. Mass
regions, in mammograms, are expected to be detected. All masses are detected except
one mass, in this thesis. One spiculated malignant mass is not detected with Iris filter
approach. Malignant mass and its gradient map are given in Figure 3.22. It is observed
that gradients on the edge of mass are not directed towards a point in the mass region.
Hence, Iris filters do not produce high outputs and pixels inside mass region stays
below threshold levels for all filters.

Statistic of false regions detected by Iris filters is given in Table 3.2. It was previously
mentioned that filter produces high FPpI rate. It is observed that different filters have
different FPpI performance. Most of the FPs are gained from "Iris filter 1" although
threshold level chosen is the highest one for this filter output. Moreover, in case of
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Figure 3.21: Region determination when centers are close to each other.

Figure 3.22: Left:Gradient map of spiculated malignant mass region, Right:Spiculated
malignant mass region.

other filters in spite of the fact that threshold levels are chosen equal, different FPpI
performance is obtained for each filter. Therefore, support region of a filter is critical
in terms of FP performance. In this thesis, threshold levels are chosen experimentally
and FP performance is not taken into consideration while determining threshold levels.
A detailed analysis of threshold levels for each Iris filter can be made and optimum
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thresholds can be determined in the future.

Table3.2: Mean FPpI for each Iris filter.

Iris filters Mean FPpI
Iris filter 1 28,41
Iris filter 2 12,67
Iris filter 3 5,46
Iris filter 4 4,65
Iris filter 5 4,82
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CHAPTER 4

SVM CLASSIFICATION USING FEATURES,
EXTRACTED WITH GABOR FILTERS

After implementation of Iris filter, suspicious regions are determined. However, there
are so many FPs as expected. In this chapter, FPs are tried to be reduced with
a classification step. The features that are used in classification are obtained by a
textural analysis, particularly Gabor filter bank application on sub-regions of possible
mass regions.

4.1 Feature Extraction with Gabor Filter Bank

All the stages of feature extraction with Gabor filter bank is given in Figure 4.1.

Figure 4.1: Feature extraction stages with Gabor filter bank.
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4.1.1 Gabor filter bank

Gabor filters are kernels that are widely used in computer vision and image processing
field applications e.g. face recognition ([54]), vehicle detection ([55]), etc. Gabor filters
provide powerful statistics that could be used while extracting local spatial textural
micro-patterns in mass detection problem since they have property to be tuned to
different orientations and scales [56].

A two-dimensional Gabor filter is defined as a Gaussian kernel modulated by an ori-
ented complex sinusoidal wave and can be described as in Equation 4.1:

g (x, y) =
1

2πσxσy
exp
− 1

2

(
x̃2

σ2x
+ ỹ2

σ2y

)
exp2πjWx̃ (4.1a)

x̃ = xcos (θ) + ysin (θ) (4.1b)

ỹ = −xsin (θ) + ycos (θ) (4.1c)

where

g (x, y) is the Gabor filter response of pixel of interest (x, y).

σx, σy are the scaling parameters of the filter and describe the neighborhood of
a pixel where weighted summation takes place.

W is the central frequency of the complex sinusoidal.

θ is the orientation of the normal to the parallel stripes of the Gabor function,
is in the interval [0, π)

A Gabor filter bank contain multiple individual Gabor filters that are adjusted with
different parameters (scaling(S), orientation(O) and central frequency). 40 filters (5 S
x 8 O) with initial maximum frequency equal to 0,2 and initial orientation set to 0 is
used in this thesis. Selected frequencies are (0,2; 0,14; 0,1; 0,07; 0,05) and orientation
angles are (0; 22,5; 45; 67,5; 90; 112,5; 135; 157,5 in degrees). Gabor filter kernels’
dimension is 20 x 20. Space response of real part of the Gabor filter bank is given in
Figure 4.2 for all Gabor filters. Total frequency response of the bank is also given in
Figure 4.3.

The orientations and frequencies for a bank are calculated using Equation 4.2:

orientation (i) =
(i− 1)π

m
; i = 1, 2, ...,m (4.2a)
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frequency (i) =
fmax=2(√

2
)i−1 ; i = 1, 2, ..., n (4.2b)

where

m is the total number of orientations.

n is the total number of frequencies.

Figure 4.2: Gabor filter bank: filters in the same column have the same orientation,
filters in the same raw has the same frequency.

4.1.2 Partition of ROIs

As mentioned before Gabor filter bank is applied on sub-windows but not the whole
region. Suspicious ROIs extracted in the previous step are divided into patches and
sub-windows as given in Figure 4.4.

Firstly, the whole ROI is divided into patches. There will be 16 patches for each ROI
in this thesis. Patch number could be selected to be different ([49]). Size of a patch,
in a region with a dimension 128 x 128, is 32 whereas patch size, in a region with a
dimension 256 x 256, is 64 (Figure 4.4).

Secondly, sub-windows are determined. 4 neighbour patches creates one sub-window.
For instance, patches 1, 2, 5, 6 creates first sub-window; 2, 3, 6, 7 creates the second
one, etc. A total of 9 sub-windows will be created. Information of patch numbers
included in sub-windows is given in Table 4.1.
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Figure 4.3: Left:Combined frequency response of Gabor filters, Right: Combined fre-
quency response of Gabor filters without frequency shift.

Table4.1: Patch numbers creating sub-windows.

Sub-window number Patch numbers
1 1, 2, 5, 6
2 2, 3, 6, 7
3 3, 4, 7, 8
4 5, 6, 9, 10
5 6, 10, 7, 11
6 7, 8, 11, 12
7 9, 10, 13, 14
8 10, 11, 14, 15
9 11, 12, 15, 16

4.1.3 Feature extraction

Each sub-window is convolved with Gabor filter bank to extract the features. Magni-
tude response of each Gabor filter in the bank is collected from each sub-window and
each one is represented by three moments: the mean (µl,m), the standard deviation
(σl,m) and the skewness (kl,m) (where l corresponds to the l th filter in the bank and
m to the m th sub-window).

In this thesis, a Gabor filter bank of 40 filters (5 S x 8 O) is used. If this bank is
applied on 9 sub-windows (Figure 4.4) of a single ROI, a feature vector of length 1080
will be obtained. One feature vector raw obtained in this way and is given below:

µ1,1, σ1,1, k1,1, ..., µ40,1, σ40,1, k40,1, µ1,2, σ1,2, k1,2, ..., µ40,9, σ40,9k40,9.
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Figure 4.4: Left:Patches and sub-windows for ROIs with size 128 x 128, Right:Patches
and sub-windows for ROIs with size 256 x 256.

4.2 Classification

A classification problem includes the assignment of an unseen pattern to a predefined
class, with the characteristics of the pattern, presented in the form of a feature vector.
However, a classifier is needed to be trained in order to perform this task firstly.
Selected patterns of the same concept class are used to train the classifier. This set is
called training set. Unseen patterns for which assignment process is done, form test
set.

Numerous classification techniques exist. SVM (Support Vector Machine) is offered
to solve binary classification problem ([56]). An optimal hyper-plane, separating the
data belonging to different classes with large margin, is found by SVM [57]. This
decision boundary is based on the most "informative" points of the training set. These
informative points are called support vectors (Figure 4.5).

SVM is different from other other classifiers in terms of the way of handling risk
concept. Although other classifiers deal with empirical risk that minimize error on
training data, SVM deals with structural risk to maximize the the margin between
samples for different classes.

Let Train = {(xi, yi)}Ni=1 be a training set. xi is the ith training instance containing J
features. yi is the class label of xi. y has two values+1,−1. A constrained optimization
problem is solved using quadratic programming to find an optimal hyper-plane based
on large margin framework (Equation 4.3):
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f(x) =

N∑
i=1

aiyik (xi, x) + b (4.3)

where

ai is the Lagrange multiplier.

k (xi, x) is the kernel function.

fx ’s sign gives the membership class of x.

SVM kernel is simply dot product of the two given points in the input space if the
problem is linearly separable. Otherwise, original input space is mapped to the higher
dimensional space through a non-linear mapping function with suitable kernel. Mis-
classification penalty is controlled with regularization parameter (C).

There are kernels such as linear, polynomial, sigmoid, radial-basis. Radial-basis func-
tion (rbf) kernel, which is widely used in the literature, is used in this work:

k (xi, x) = exp (−γ ||xi − x| |) (4.4)

where

γ is the width of the kernel function and γ > 0.

Classification with SVM is illustrated in Figure 4.5 for a chosen C and γ couple. Test
elements are represented as points and hyper-plane separates true (mass) and false
(non-mass) points. Vector from test points to hyper-plane is the margin vector for this
point. All points on separator line have 0 magnitude margin vector. Margin vectors
with unit magnitude are called support vectors. Margin vectors with positive values
are expected to be returned for all negative test element and negative values for all
positive test elements in case of an ideal classification. However, this condition is not
satisfied mostly, so that ROC curves are calculated to determine SVM performance.
ROC curves are found with changing hyper-plane position, in other words adding
margin offset to hyper-plane.

4.2.1 Determination of SVM parameters

γ and C are two parameters effecting the performance of SVM classifier in a clas-
sification process. These two parameters are chosen by user before classification of
suspicious ROIs determined. User may specify these parameters according to his / her
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Figure 4.5: Left:SVM illustration, Right:ROC curve obtained by adding offsets to
hyper-plane.

needs (high sensitivity, high truth rate, low FP, etc). Therefore, sensitivity, specificity
truth rate analysis with changing γ and C parameters must be made with region sets.
These region sets are selected from mini-MIAS. MIAS database includes information
of whether there is a mass or not in a mammogram. Furthermore, if there is a mass,
center pixel, radius and information of mass type is provided in database as mentioned
before. Detailed information about quantity of mammograms, in terms of lesion exist
ence and lesion type, is given in Table 4.2 for mini-MIAS database.

Table4.2: MIAS statistical data in terms of mass existence.

without mass with mass benign mass malignant mass
179 50 37 13

Regions are selected with two different dimensions from database. If the radius of a
mass is smaller than 55 pixels a region of dimension 128 x 128 is selected. If it is
greater than 55 pixels a region of dimension 256 x 256 is selected. If there is no mass
for a mammogram then a normal region is selected. Mass center is intersected with
ROI center. Some of the selected 128 x 128 regions with mass and without mass are
given in Figures 4.6, 4.7 respectively. In addition, selected 256 x 256 regions with mass
and without mass are given in Figures 4.8, 4.9 respectively.

Statistic of selected ROIs is given in Table 4.3. Feature vectors are calculated for all
selected ROIs to perform classification step.

Number of training and test sets affects the performance of SVM. For instance, when
non-mass region number is higher in training set, classifier tends to produce negative
(non-mass). However, if mass region number is higher, classifier is to produce posi-
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Figure 4.6: Selected regions of dimension 128 x 128 with mass.

Figure 4.7: Selected regions of dimension 128 x 128 without mass.

Figure 4.8: Selected regions of dimension 256 x 256 with mass.

Figure 4.9: Selected regions of dimension 256 x 256 without mass.

tive (mass) results. For this reason equal number of mass and non-mass regions are
expected in training stage, to obtain balanced results. In addition, equal number of
mass and non mass regions should be in test set to comment on performance metrics
correctly.

Ideally, very large number mass and non-mass regions are expected to train SVM
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Table4.3: ROI selection statistic.

Region size with mass without mass
128 x 128 34 178
256 x 256 16 178

in order to obtain exact and reliable results. However, as it is given in Table 4.3
number of regions with mass is very small (Only 34 for 128 x 128, 16 for 256 x 256)
for this database. This is a limiting factor for the number of non-mass regions in the
training set, too. Thus, classification is implemented with small number of regions.
ROI numbers in training and test sets are given in Table 4.4. These sets are chosen
randomly meaning that for each classification different training and test sets may be
obtained and different performance could be acquired.

Table4.4: Statistic of training and test sets.

Region size training sets
with mass

training sets
without mass

test sets
with mass

test sets
without mass

128 x 128 17 17 17 17
256 x 256 8 8 8 8

Classification is implemented for different C and γ values with randomly selected one
training and one test set. These sets include as many regions as given in Table 4.4.
Two separate classifications are made: one for 128 x 128 regions and the other for 256
x 256 ones. This is called one run. Classification performance, for C and γ values in a
wide search range (−5 < log2 (C) < 15 and −2 < log2 (γ) < 12), is determined in one
run. Performance metrics such as Az, truth rate, sensitivity, (1 - specificity), obtained
with respect to changing γ and C values for small and large selected regions, are given
in Figures 4.10, 4.11, 4.12, 4.13, respectively.

Figure 4.10: Left:Az values obtained with respect to SVM parameters for classification
of selected regions of dimension 128 x 128 after 1 run, Right: Az values obtained with
respect to SVM parameters for classification of selected regions of dimension 256 x 256
after 1 run.
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Figure 4.11: Left:Truth rate values obtained with respect to SVM parameters for
classification of selected regions of dimension 128 x 128 after 1 run, Right:Truth rate
values obtained with respect to SVM parameters for classification of selected regions
of dimension 256 x 256 after 1 run.

Figure 4.12: Left:Sensitivity values obtained with respect to SVM parameters for
classification of selected regions of dimension 128 x 128 after 1 run, Right:Sensitivity
values obtained with respect to SVM parameters for classification of selected regions
of dimension 256 x 256 after 1 run.

Truth rate is the rate of true decision for both mass and non-mass regions. Sensi-
tivity and specificity concepts are explained previously. Specificity versus sensitivity
performance may be seen on ROC curves as explained before. Here it is aimed to
obtain performance points on such a plot to see (1 - specificity) versus sensitivity char-
acteristic. This characteristic is illustrated in Figure 4.14. We name this illustration
performance point plot and points on the plot, performance points.

It is crucial to note that a performance point in this graph, does not belong to only
classification performance made with one C and γ couple. Same performance point
could be obtained for different SVM parameters. In addition, there are performance
points at only certain (1-specificity) and sensitivity values since limited number of mass
and non-mass regions are tested. This quantization of the performance metrics’ values
is clearly seen for one run. Furthermore, there are more than one sensitivity value for
a (1 - specificity) value meaning that sensitivity performance at one (1 - specificty)
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Figure 4.13: (1 - specificity) values obtained with respect to SVM parameters for clas-
sification of selected regions of dimension 128 x 128 after 1 run, Right:(1 - specificity)
values obtained with respect to SVM parameters for classification of selected regions
of dimension 256 x 256 after 1 run.

value may change for different SVM parameters because limited number of regions are
used for test. When more than one run is made in next parts this situation is partially
eliminated. Performance point plots for the classifications of regions with dimension
128 x 128 are given here and in the rest of this thesis since there are more mass regions
of size 128 x 128 than 256 x 256 so that it is more easy to comment on results.

One run is not enough to decide on, which of C and γ values will be used, for classifica-
tion operation since there are not enough regions with mass, as mentioned before. So
that 100 runs are made. Different training and test sets are chosen for each run. Mean
and standard deviation of performance metrics are calculated. Means of Az, truth
rate, sensitivity and (1 - specificity) with respect to C and γ parameters are given in
Figures 4.15, 4.16, 4.17, 4.18 respectively. Maximum standard deviation is around 0,1
level for each metric. This is reasonable so that detailed standard deviation maps are
not given.

Maximum truth rate and Az values for different region sizes are given in Table 4.5.
Performance of classifier for 128 x 128 regions seems to be better since training is made
better. However, truth rate and Az values are worse than expected results given in
[49]. It is thought that this is mainly due to training and selection of Gabor filter
parameters. In [49] training and test are made with 512 regions with mass or without
mass, so that a better training is made since number of training and test regions
affect SVM classifier performance. Moreover, optimum Gabor filter bank parameter
calculation is not made in this thesis. Gabor filter bank parameters, which are used, in
[49] are set to extract features. However, these optimum parameters may change from
database to database and from region size to region size. In future, these deficiencies
may be resolved and a better performance could be obtained in terms of maximum
truth rate and maximum Az performance.

SVM performance points, which are obtained after 100 runs, are given in Figure 4.19.
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Figure 4.14: Top Left:Sensitivity values obtained with respect to SVM parameters
for classification of selected regions of dimension 128 x 128 after 1 run, Top Right:(1
- specificity) values obtained with respect to SVM parameters for classification of
selected regions of dimension 128 x 128 after 1 run, Bottom:Performance points for
different SVM parameters.

Figure 4.15: Left:Mean Az values obtained with respect to SVM parameters for clas-
sification of selected regions of dimension 128 x 128 after 100 runs, Right:Mean Az
values obtained with respect to SVM parameters for classification of selected regions
of dimension 256 x 256 after 100 runs.

It seems to be a ROC curve but is not exactly a ROC curve since for some values of (1 -
specificity) and sensitivity no data exists. It is thought that if there were enough mass
region, SVM parameters’ resolution was better and SVM parameters’ search ranges
were wider this performance points would constitute a curve that is very close to a

58



Figure 4.16: Left:Mean truth rate values obtained with respect to SVM parameters
for classification of selected regions of dimension 128 x 128 after 100 runs, Right:Mean
truth rate values obtained with respect to SVM parameters for classification of selected
regions of dimension 256 x 256 after 100 runs.

Figure 4.17: Left:Mean sensitivity values obtained with respect to SVM parameters
for classification of selected regions of dimension 128 x 128 after 100 runs, Right:Mean
sensitivity values obtained with respect to SVM parameters for classification of selected
regions of dimension 256 x 256 after 100 runs.

ROC curve.

It is observed that there are performance points on "No classification line", meaning
that classification is not performed for some SVM parameter couples. These parameter
couples may be seen on Figures 4.15 and 4.16. SVM parameter couples with Az = 0,5
and truth rate = 0,5 are corresponded with points on "No classification line".

ROC curve determination with addition of margin to default hyper-plane was ex-
plained in the previous sections for SVM classifier. Therefore, average ROC curve of
classification could be found for one C and γ couple from all runs. For instance, ROC
curves with chosen C and γ parameters, satisfying maximum truth rate condition for
128 x 128 and 256 x 256 regions, are given in Figure 4.20.

It is important to note that user may choose operating point in two ways. Firstly,

59



Figure 4.18: Mean (1 - specificity) values obtained with respect to SVM parameters
for classification of selected regions of dimension 128 x 128 after one run, Right:Mean
(1 - specificity) values obtained with respect to SVM parameters for classification of
selected regions of dimension 256 x 256 after one run.

Table4.5: Maximum truth rate and Az values for regions with dimensions.

Region size Maximum truth rate Maximum Az
128 x 128 0,76 0,86
256 x 256 0,72 0,78

C and γ can be chosen satisfying desired sensitivity and (1 - specificity) condition on
performance plot and next classifications can be made without adding offset to default
hyper-plane obtained with these SVM parameters. Secondly, C γ values can be chosen
satisfying maximum truth rate or Az criteria and margin offset can be added on default
hyper-plane to operate on the desired point of ROC curve.

4.2.2 Classification performance comparison of regions with different di-
mensions including same masses

In this thesis, regions with different sizes were extracted from mammograms compatible
with support region of Iris filter. 128 x 128 regions were extracted for "Iris filter 1"
, "Iris filter 2" and 256 x 256 regions were extracted for "Iris filter 3", "Iris filter 4",
"Iris filter 5". Reason of this choice is explained in this section.

Selection of mass regions are explained in Section 4.2.1. If the radius of mass smaller
than 55 pixels a region of size 128 x 128 is extracted for classification step. Classi-
fication performance comparison of these regions are made with selected regions of
dimension 256 x 256, including the same masses. This time classifications are made
with same number of training and test regions. Number of mass and non-mass regions
are equal for both training and test sets. Mammogram numbers of selected mass and
non-mass regions are also kept equal. In other words, only dimensions of regions are
different. 50 runs are made. Mean Az and mean truth rate performance with respect
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Figure 4.19: Top Left:Mean Sensitivity values obtained with respect to SVM param-
eters for selected regions of dimension 128 x 128 after 100 runs, Top Right:Mean (1
- specificity) values obtained with respect to SVM parameters for selected regions of
dimension 128 x 128 after 100 runs, Bottom:Performance points for different SVM
parameters after 100 runs.

Figure 4.20: Left:ROC curve obtained with SVM parameters satisfying maximum truth
rate condition for selected regions of dimension 128 x 128 after 100 runs, Right:ROC
curve obtained with SVM parameters satisfying maximum truth rate condition for
selected regions of dimension 256 x 256 after 100 runs.

to SVM parameters are determined. ROC curves are obtained with SVM parameters,
satisfying maximum Az and maximum truth rate conditions for classification of regions
of different sizes, are given in Figure 4.21.
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Figure 4.21: Left:ROC curve comparison of different selected region sizes with SVM pa-
rameters satisfying maximum Az condition, Right:ROC curve comparison of different
selected region sizes with SVM parameters satisfying maximum truth rate condition.

Az performance is better for 128 x 128 regions than 256 x 256 ones in terms of both
maximum Az and maximum truth rate conditions. Therefore, it is reasonable to choose
extracted region sizes in parallel to mass sizes. Iris filter algorithm is very useful since
size of detected mass is compatible with the applied Iris filter’s region of support. In
other words, size of regions, which are extracted, can be optimized using Iris filter’s
region of support information. In this thesis, only two dimensions are concerned due
to limited number of mammograms including masses. However, number of dimensions
could be increased if there were enough mammograms with masses and success of
algorithm may be raised with this increment. For example, 5 dimensions of regions,
matched with 5 Iris filters’ output, may be extracted, etc.

4.2.3 Classification of suspicious regions

Classification of suspicious regions is performed with chosen SVM parameters. Overall
block diagram for classification of suspicious regions is given in Figure 4.22. It shoulde
be noted that training set contains selected regions.

Suspicious regions, in one mammogram, are classified. Therefore, all selected regions
of other mammograms may be in the training set since they are independent from
test regions. Hence, number of training set could be increased. Number of regions in
training set is given in Table 4.6. Equal number of non-mass regions to mass regions
are chosen. There are more selected non-mass regions than selected mass region. As
a result of this fact 50 runs are made for test regions. Different non-mass region sets
are chosen for each run. Mean of all classifications determines overall performance of
classifier.
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Figure 4.22: SVM implementation for classification of suspicious ROIs, training set is
obtained from selected ROIs.

Table4.6: Number of regions in training set.

Region size number of training regions
with mass

number of training regions
without mass

128 x 128 33 33
256 x 256 15 15
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CHAPTER 5

RESULTS

Suspicious region classification results for chosen different SVM parameters are given
in this section. Firstly, two SVM parameter couple are chosen according to mean
performance metrics, suspicious regions’ classifications are done with these parameters
and classification results with chosen parameters are explored. Chosen C, γ parame-
ters and mean sensitivity, (1 - specificity), which are obtained in SVM determination
step for these parameters, are given in Table 5.1. Parameter set 1 is chosen to keep
sensitivity high and parameter set 2 is to keep specificity high.

Table5.1: Chosen SVM parameters.

Parameter sets log2 (C) log2 (γ) Sensitivity (1 - Specificity)
Parameter set 1

for 128 x 128 regions 0,25 3,00 0,85 0, 57

Parameter set 2
for 128 x 128 regions 11,50 10,25 0,62 0,19

Parameter set 1
for 256 x 256 regions 0,75 4,50 0,87 0,31

Parameter set 2
for 256 x 256 regions 6,75 7,25 0,62 0,24

Mean FPpI obtained after classification, which is implemented with chosen parameters
for each Iris filter output, is given in Table 5.2. It is observed that FPs coming from
Iris filters are reduced with classification step when Table 5.2 is compared with Table
3.2. FPpI reduction is more for parameter set 2 than parameter set 1 as expected.

(1 - specificity) values are greater than expected values since the ratio, number of test
regions without mass over number of regions with mass, in test set is very larger than
the ratio, regions without mass over regions with mass, in the training sets.

Results of mean FPpI can also be shown with respect to dimensions of regions as given
in Table 5.3.

Statistic of true mass regions, which are detected after classification, is given in Table
5.4. Sensitivity is defined as the number of detected masses over the number of mam-
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Table5.2: Mean FPpI after classification with respect to Iris filters.

Iris filters Parameter
set 1

Parameter
set 2

(1 - Specificity)
for set 1

(1 - Specificity)
for set 2

Iris filter 1 11,62 8,16 0,40 0,29
Iris filter 2 8,14 6,32 0,64 0,50
Iris filter 3 4,36 4,28 0,79 0,78
Iris filter 4 4,15 4,06 0,89 0,87
Iris filter 5 4,35 4,13 0,90 0,86

Table5.3: Mean FPpI after classification with respect to region sizes.

Region size (1 - Specificity)
for set 1

(1 - Specificity)
for set 2

128 x 128 regions 0,48 0,35
256 x 256 regions 0,86 0,84

mograms with mass. When compared with Table 5.1, sensitivity results are very close
to, or better than expected values because training, which is applied to test suspicious
regions, is better than training in SVM parameter determination step. In other words,
more regions with mass and without mass are used to train SVM in suspicious regions’
classification step (Table 4.6 and Table 4.4). Nearly 50 percent of the FPs are elimi-
nated with a cost of missing 9 percent of true masses if parameter set 1 is chosen for
128 x 128 regions.

Table5.4: True mass regions detected after classification.

Parameter set Region size Mammograms
with mass

Detected
masses Sensitivity

Parameter set 1 128 x 128 34 31 0,91
Parameter set 1 256 x 256 16 15 0,94
Parameter set 2 128 x 128 34 27 0,80
Parameter set 2 256 x 256 16 13 0,81

Secondly, this procedure is repeated for a wide range of SVM parameters and suspicious
regions’ classification results are explored for all of these SVM parameter couples.
Sensitivity and (1 - specificity) performance of classification results with different SVM
parameter couples are given in Figures 5.1 and 5.2 respectively.

Variation of sensitivity around 0,5 value is observed in SVM parameter region bounded
with 5 < log2 (C) < 15 and −2 < log2 (γ) < 2 . Looking at the mean Az and truth
rate values on Figures 4.15 and 4.16 for this SVM parameter region, it is seen that
Az and truth rate values are very close to 0,5 which means that no classification is
performed. Moreover, limited number of suspicious mass regions, causing quantization
as mentioned earlier, exist for test step . Therefore, variations are expected to occur
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around 0,5 value for this region. Variation for regions of dimension 256 x 256 is greater
than variation for regions of dimension 128 x 128 since there are less suspicious mas
region to test. It is not offered to select SVM parameters in this region in classification
as previously stated. There is variation for other regions also in terms of sensitivity
performance, but it is acceptable since variation is small.

Variation of (1 - specificity) in SVM parameter region (bounded with 5 < log2 (C) < 15

and −2 < log2 (γ) < 2) is smaller when compared with sensitivity because there are
more non-mass suspicious regions to test than mass regions. Therefore, quantization
does not effect performance so much in the same SVM parameter region.

Figure 5.1: Left:Sensitivity values obtained with respect to SVM parameters after
classification of suspicious regions with dimension 128 x 128, Right:Sensitivity values
obtained with respect to SVM parameters after classification of suspicious regions with
dimension 256 x 256.

Figure 5.2: Left:(1 - specificity) values obtained with respect to SVM parameters after
classification of suspicious regions with dimension 128 x 128, Right:(1 - specificity) val-
ues obtained with respect to SVM parameters after classification of suspicious regions
with dimension 256 x 256.

Performance points obtained after classification of suspicious regions, with size 128 x
128, are shown in Figure 5.3 with red points. Variation in sensitivity and (1-specificity)
values, mentioned previously, is also seen for the performance points obtained after

67



classification of the suspicious regions. In other words, there are performance points
deviated from SVM performance points which are obtained for selected regions. Rea-
sons of this circumstance explained above.

In addition to variation of sensitivity and (1-specificity) values it is noticed that min-
imum (1-specificity) values are greater than minimum (1-specificity) of SVM perfor-
mance points in SVM parameter determination step. This is due to the fact that the
ratio, suspicious regions’ number with mass over suspicious regions’ number without
mass, is very smaller than the ratio, selected mass regions’ number over selected non-
mass regions’ number in test steps of SVM parameter determination step. Mass over
non-mass ratio is kept 0,5 for all training and test steps in SVM parameter determi-
nation process. However, training and test ratios are not equal for the classification of
suspicious regions process. Classifier tends to produce more FPs since less information
is trained about non-mass regions in spite of the fact that there are more non-mass
suspicious regions to test.

Figure 5.3: Top Left:Sensitivity values obtained with respect to SVM parameters after
classification of suspicious regions with dimension 128 x 128, Top Right:(1 - specificity)
values obtained with respect to SVM parameters for suspicious regions of dimension
128 x 128, Bottom:Performance points for different SVM parameters.
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CHAPTER 6

CONCLUSION

To summarize, we have proposed a method for classification of mass regions in MLO
view mammograms. We have determined the suspicious regions by Iris filters, with
variable support regions, applied on the breast region without pectoral muscle. Suspi-
cious regions are extracted compatible with the applied filters. Classification has been
applied to the textural features are obtained using Gabor filters that are applied on
these suspicious regions. False detection ratio has been reduced nearly 50 percent with
a cost of missing 9 percent of true mass regions. In addition, we have proposed a novel
algorithm, which is based on average derivative calculation and line fitting with least
square solution, for pectoral muscle region determination. Our algorithm outperforms
other algorithms given in the literature in terms of FP (False positive) pixel percentage
and FN (False negative) pixel percentage metrics.

Novel pectoral muscle segmentation algorithm has been proposed based on two steps.
Firstly, average derivative calculation applied for each raw of mammogram on a deter-
mined region of interest, minimum derivative points have been calculated and upper
part of pectoral boundary has been obtained correctly after filtering operations. Sec-
ondly, line pieces, estimated with least square solution technique, have been fitted on
calculated minimum derivative points for the lower part of mammogram. Obtained
pectoral boundaries are evaluated with FP pixel percentage and FN pixel percentage
metrics and compared with the performance of the previous algorithms. Average FP
and FN pixel percentages are calculated as 1,30 and 2,57 respectively. Performance
of proposed algorithm is better than the given algorithms in the literature. However,
proposed algorithm is a man in the loop algorithm and needs someone to choose opti-
mum line piece size to find the best pectoral boundary. In the future, selection of best
pectoral boundary among boundaries that are obtained with different line pieces, can
be implemented automatically.

Suspicious ROI detection has been performed with Iris filter algorithm. Iris filter is
a gradient direction based filter. It produces high values for a pixel of interest when
gradients in the support region of filter directed towards this pixel. Especially, when
mass edge falls in the region of support filter it produces high output for pixel of
interests inside mass region. Masses exist in different dimensions so that Iris filters
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with different support regions should be used in order not to miss any mass. 5 different
Iris filters have been applied covering all possible mass sizes. Simple threshold has been
applied on each Iris filter and possible mass locations have been determined. Regions
of dimension 128 x 128 have been extracted for outputs of "Iris filter 1", "Iris filter
2" and regions of 256 x 256 are extracted for outputs of "Iris filter 3", "Iris filter 4"
and "Iris filter 5". Adaptive region size determination, compatible with the applied
Iris filter, has increased classification performance.

All masses have been detected with Iris filters except one spiculated malignant mass.
Gradients, in the support regions of all Iris filters are not directed towards mass region
of this spiculated mass. Therefore, high values have not been produced for pixels
of interest inside the mass region. After threshold no alarm has been given for this
region. In short, Iris filter performance has not been good for this kind of situations.
Otherwise, detection ratio is satisfactory.

Each Iris filter has produced different average FPpI. "Iris filter 1" has produced highest
FPpI rate although threshold level applied is the highest one. In this thesis, threshold
levels, for each filter, has been determined experimentally and FPpI performance has
not been concerned since the main goal is to test classifier’s success of FP elimination.
Detection performance for different threshold values can be explored and an optimum
threshold level may be found to obtain a better FPpI performance in mass detection
step in the future.

Textural features have been extracted from sub-regions in feature extraction step. Ga-
bor filter bank has been applied on sub-windows of suspicious regions. Mean, standard
deviation and skewness for each filter and sub-region have been calculated so that a
feature vector is obtained for each suspicious region. Gabor filter bank parameter
values have been selected as the same values given in [49]. In this thesis, optimum
Gabor filter bank parameter determination is not performed. In future, classification
performance of features obtained for Gabor filter bank with different parameters may
be searched and optimum parameters can be chosen to obtain a better classification
performance.

Classification is implemented with SVM classifier that is used widely in the literature
for binary classification problems. SVM classifier ,with rbf kernel, has been used. SVM
performance has been controlled with two parameters: regularization parameter (C)
and width of the kernel function (γ). SVM performance, with different parameters,
must be known in order to decide on which parameters will be chosen for classification
of suspicious regions. Hence SVM classification performance has been explored with
the classifications of selected mammogram regions from mini-MIAS database with
respect to different SVM parameters. 100 runs are made due to lack of mass regions
in the database. Different sets have been used for each run. Mass and non-mass
regions’ numbers have been kept equal for training and test sets of each run. Average
of performance metrics such as Az, truth rate, sensitivity and (1 - specificity)) with
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respect to SVM parameters have been determined. Maximum truth rate of 0,7634 has
been obtained for 128 x 128 regions’ classification and 0,7222 for 256 x 256 regions’
classification. Maximum Az of 0,8633 is obtained for classification of 128 x 128 regions
and 0,7854 for classification of 256 x 256 regions. Performance, in terms of Az and
truth rate, is less than the performance given in [49]. It is thought that this is mainly
due to the lack of selected mass regions in the database. Although 256 mass and 256
non-mass selected regions are used in [49], total 50 mass (128 x 128 and 256 x 256
regions) selected regions have been used in this thesis. Performance of classification
for 128 x 128 regions is better than performance of classification for 256 x 256 regions
since more mass and non-mass regions have been used in training steps. Moreover,
performance points, obtained from mean sensitivity and (1 - specificity), have been
shown on a plot on which user may choose SVM parameters to operate.

Suspicious regions, which are determined by Iris filters, have been classified with re-
spect to different SVM parameters and classification performance has been explored
for each case. Training of SVM has been done with selected mass and non-mass re-
gions. FPpI ratio, obtained after mass detection step, has been reduced 50 percent
with a cost of missing 9 percent of the true mass regions.

It is observed that for some SVM parameter regions, very close performance points
to the performance points, which are determined in SVM parameter determination
step, are obtained in terms of sensitivity and (1 - specificity) metrics. However, ( 1 -
specificity) ratio is seemed to increase when compared with (1 - specificity) determined
in SVM parameter determination step for the same SVM parameter couple. This is
because of the fact that SVM has been trained and tested with equal number of selected
mass and non-mass regions in SVM parameter determination step, however test set
of one mammogram contains many suspicious regions without mass than suspicious
regions with mass and training set contains equal number of selected mass and non-
mass regions in suspicious regions’ classification step.
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