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ABSTRACT

SWITCH FABRIC SCHEDULERS WITH INTELLIGENT MULTI-CLASS
SUPPORT: DESIGN, IMPLEMENTATION AND EVALUATION ON FPGA

AKPINAR, Murat
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Schmidt

September 2014, 102 pages

The applications in the contemporary computer networks require end-to-end Qual-
ity of Service (QoS). Moreover, different applications have different QoS require-
ments. Thus, it is important to support QoS in the network layer routers which can be
achieved by scheduling the output queues in output queued routers. However, pure
output queued routers are not easy to build. Hence, it is important to equip the fabric
schedulers of input queued switches with QoS support. Thus, it is an important re-
search problem to support QoS in input queued routers. In this thesis we investigate
the VOQ fabric scheduler algorithms. Better QoS support for different applications is
possible by implementing per flow queues at the input ports rather than coarse virtual
output queues per output port. The first contribution of this thesis is an intelligent
multi-class (IMC) VOQ architecture which is independent from fabric scheduler al-
gorithms. Additionally, 2 different algorithms are proposed for intelligent side of
the IMC VOQ architecture. The second contribution is a modular hardware design
for fabric schedulers that support multi class. The design is carried out on FPGA
by implementing the well-known ISLIP together with the proposed IMC unit. The
correctness of the operation of the designed hardware is verified by comparing to a
software simulator. The thesis further presents discussions of implementing other
scheduler algorithms using the same hardware architecture and its scalability. The
thesis presents the evaluation of FPGA resource usage of proposed IMC VOQ iSLIP.

Keywords: FPGA,iSLIP,QoS,VOQ,IMC VOQ,Switch Fabric,Fabric Scheduler
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ÖZ

AKILLI ÇOKLU SINIF DESTEGİ OLAN ANAHTAR ÖRGÜSÜ
ÇİZELGELEYİCİLERİNİN TASARIMI, FPGA ÜZERİNDE

GERÇEKLEŞTİRİLMESİ VE DEĞERLENDİRİLMESİ

AKPINAR, Murat
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Şenan Ece Schmidt

Eylül 2014 , 102 sayfa

Bilgisayar ağlarında günümüzde kullanılan uygulamalar ağ iletişimi kalite servisine
ihtiyaç duymaktadır. Farklı uygulamaların farklı kalite servisi ihtiyaçları bulunmak-
tadır. Bu sebeblerle ağ katmanındaki cihazlarda kalite servisi sağlamak önemlidir.
Çizelgeleyiciler yönlendiricilerin kalite servisini doğrudan etkilerler. Çıkış tamponlu
çizelgeleyici algoritmaları kalite servisini desteklemelerine rağmen yükselen trafik
hızları sebebiyle donanım üzerinde gerçeklenmesi zor hale gelmişlerdir. Bu yüzden
giriş tamponlu çizelgeleyici algoritmalarında kalite servisi sağlamak önemli bir araş-
tırma konusu haline gelmiştir. Bu tez kapsamında sanal çıkış tamponlu (SÇT) çizel-
geleyiciler incelenmiştir. Giriş portlarında her bir akış için farklı tampon uygulamak
genel sanal çıkış tamponlu yapılara göre daha iyi kalite servisi sağlayacaktır. Bu tezin
ilk katkısı çizelgeleyici algoritmalarından bağımsız çalışan akıllı çoklu sınıflı (AÇS)
sanal çıkış tamponlu yapıdır. Ayrıca bu yapı için iki farklı algoritma önerilmiştir. Bu
tezin ikinci katkısı çoklu sınıf desteği olan çizelgeleyiciler için sunulan modüler dona-
nım tasarımıdır. Önerilen AÇS birim sıkça kullanılan iSLIP çizelgeleyicisi ile birlikte
FPGA üzerinde gerçeklenmiştir. Bu tasarımın doğruluğu bir yazılım simülatörü ile
karşılaştırma yapılarak kanıtlanmıştır. Bu tez ayrıca farklı çizelgeleyicilerin, gerçek-
lenmiş olan donanım mimarisi kullanılarak nasıl gerçeklenebileceğini ve bu mimari-
nin ölçeklenebilirliğini tartışmaktadır. Önerilen AÇS SÇT iSLIP tasarımının FPGA
kaynak kullanımı da değerlendirilmiştir.

Anahtar Kelimeler: FPGA,iSLIP,Kalite Servisi,Sanal Çıkış Tamponu (SÇT),Akıllı
Çoklu Sınıflı (AÇS),Anahtar Örgüsü,Çizelgeleyici
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CHAPTER 1

INTRODUCTION

The applications in the contemporary computer networks require end-to-end-Quality

of Service (QoS). The widest support for E2E QoS at the network layer routers and

switches is provided by QoS scheduling at the output ports. Full QoS control can

be achieved by output schedulers in switches where all queuing takes place at the

outputs. However, for such switches, the hardware must operate much faster than

the line speed which increases the implementation cost and prohibits implementing

all switches and routers as output queued. Products such as [1] which uses input

queueing system architecture achieve throughput that are close to 1 Tbps that employs

a slower switch fabric. In such switches a fabric scheduler component computes the

mapping of inputs and outputs to maximize the switch throughput. Furthermore, the

delay at the input queues contributes to the end to end QoS of the packets for input

queued switches. Hence, it is an important research problem to support QoS in the

fabric schedulers.

There are a number of fabric schedulers in the literature [2][3][4] which employ Vir-

tual Output Queues (VOQs) where each input port has dedicated queues for each

output port. The mapping of inputs to outputs is generally carried out with signaling

between input and output ports. These fabric schedulers are evaluated according to

the metrics of packet delay, throughput and scalability [5]. That is, emphasize has to

be given in the hardware because the fabric scheduler gets involved in the data path

and it handles each packet. Furthermore, high speed switch and routers are imple-

mented to forward the packets in fixed-size units as in [6]. However, the IP packets

are variable in size, and this requires segmentation into fixed-size units and then re-
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assembly after processing.

Well-known fabric schedulers such as iSLIP [2] are designed in such a way that each

input sends a single request to the output ports for which it has queued packets. How-

ever, QoS support for different traffic classes requires installing multiple queues for

each output at each input which leads to multiple requests from a given input port to

a given output port.

Motivated by the QoS support requirements of fabric schedulers together with their

performance requirements, the contributions of this thesis are as follows: An Intelli-

gent Multi-Class (IMC) unit which resolves these multiple requests without changing

the original fabric scheduling algorithm is proposed. An algorithm of request selec-

tion for the proposed IMC which achieves better packet delay for high priority class

is developed. An FPGA component level design, implementation and evaluation for

the iSLIP fabric scheduler as an example fabric scheduler with the proposed IMC

is carried out. The FPGA design further includes the segmentation and reassembly

functions together with a switch fabric. Moreover, generalization of the design is

discussed to demonstrate its scalability and its support for different fabric schedulers.

The rest of the thesis is organized as follows:

In Chapter 2, the multimedia services over the internet is explained. The traffic

characteristics and the QoS requirements of multimedia services are mentioned after-

wards. Additionally, the existent QoS support for multimedia services are discussed.

Moreover, the literature overview on fabric scheduling algorithms are mentioned.

Here, the iSLIP[7] is discussed in detail. Lastly, our implemented architecture, iS-

LIP with IMC unit is compared with the existing fabric scheduling algorithms.

In Chapter 3, the proposed IMC VOQ structure, which is independent from the fabric

scheduler, is explained in detail. Furthermore, the 2 algorithms that are invented in

this thesis for intelligent part of the IMC unit are explained.

The hardware implementation of the iSLIP with IMC unit is analyzed in Chapter 4.

Also, the simulation results for the hardware blocks are presented in order to clarify

the functionality of the hardware implementation.

2



In Chapter 5, the generalization of the hardware implementation is discussed. The

procedures which must be followed in order to change the priority levels and the

number of ports are questioned. Moreover, the modifications that have to be made in

order to use a different fabric scheduler with IMC unit except the iSLIP are explained.

In Chapter 6, the composed simulation environment is explained. The verification

methods of the hardware implementation is mentioned. The simulation results are

presented in terms of the performance metrics such as packet delay and throughput.

The hardware implementation resource usage is also told. Furthermore, the simula-

tion results are discussed to clarify whether they are anticipated or not.

The thesis concludes with Chapter 7, where summary and future direction of our

research are presented and discussed.
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CHAPTER 2

RELATED WORK

2.1 Multimedia Services over The Internet

Sharp increase in the number of the Internet users results also in an increase in the in-

ternet traffic. Moreover, today networks support different communication modes such

as video, voice and data that provide new applications for various activities including

entertainment, shopping, etc. [8]. According to Cisco Systems Inc., consumer en-

tertainment and communications must offer personalized media and interactive ipTV

services which combine entertainment, communications, and the Internet [9]. Con-

sidering that the existing network structures reach their limits in order to support these

new IPTV services. That is, networks must be scalable to high number of customers,

increase bandwidth utilization, and provide quality of service (QoS) so that they can

meet the requirements of such services. Thus, the design of routers/switches has be-

come an interesting topic.

2.1.1 The Traffic Characteristics and QoS Requirements of Multimedia Ser-

vices

Multimedia services increase the bandwidth requirement. A consumer who has multi-

media services such as ipTV needs higher bandwidth than a consumer only receiving

high speed Internet services. The video is delivered to the subscriber’s set-top-box by

the service provider. The quality of the service is controlled by that service provider

which determines the encoding rate. For instance, MPEG2 compression standard con-

sumes almost 3.75 Mbps [9]. On the contrary, newer compression standard MPEG4

5



consumes 2 Mbps in order to supply the same service quality [9]. While servicing TV-

broadcast, bandwidth consumption depends on both the encoding rate and the number

of channels offered. For example, providing a service of 200 channels of MPEG2 re-

quires almost 750 Mbps of bandwidth. On the other hand, while there is the video on

demand service, total amount of bandwidth depends on both the encoding rate and

the number of the viewers.

In order to satisfy user’s experience, network-related QoS requirements of multimedia

services such as packet loss rates, jitter, delay, and network congestion must be taken

into consideration [10]. The video over IP streams are degraded by the packet loss.

Set top boxes are able to handle with a packet loss which does not last more than

a second [9]. In this manner, the packet loss must not exceed the value which can

be handled by the set top boxes to improve the user’s quality of experience. The

jitter, furthermore, is another important parameter which can affect the user. The

jitter value must be kept lower than almost 150 ms which can be compensated by

the set top boxes [9]. Although absolute delay is not important for video delivery,

the rest of the services care about the delay parameter. Consider that, multimedia

services can also be served together with voice over IP (VoIP) and other real-time

traffic. Thus, reliable scheduling mechanisms are required with different queuing

strategies. Moreover, video-related QoS challenges such as minimization of time of

channel change must be dealt with in order to increase quality of experience [10].

The channel change time affects subscriber satisfaction about the service; therefore,

network solution should minimize it[9].

2.1.2 Current QoS Support for Multimedia Services on Transport and Appli-

cation Layers

There are various proposals carried on the transport layer and the application layer

which are above the network layer, in order to meet the requirements of the multime-

dia services.

In the article of Murcia [11], it is stated that better QoS results for ipTV are ob-

tained with an automated RSVP-TE LSP reservation mechanism and by adding some

video-awareness “intelligence” to defined Label Switching Routers in the MPLS core
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network. The proposed approach is also implemented on Juniper routers with the help

of JUNOS SDK in order to test the results.

Furthermore, Luebben [12] suggests a method for fast rerouting of IP multicast traffic

during link failures in managed ipTV networks that is possible by making minor

modification to the current multicast routing protocol (PIM-SM).

Content and overlay-aware scheduling for peer to peer streaming, which is based on

the frame importance feature of the compressed video, is offered in [13]. In that

scheduling, the most important data is initially sent to the entire network. Also, fre-

quently switching peer connections is preserved with the aim to use the network re-

sources better.

In order to maximize the end-users’ quality of experience, in [14] the Quality-Oriented

Adaptation Scheme (QOAS) is proposed for delivering multimedia streams. Depend-

ing on the feedback of the clients about the service quality they received, the server

is forced to make dynamic changes to transmitted streams.

2.1.3 Buffer Management and QoS Scheduling as QoS Support at The Network

Layer

While there is the increasing speed in network applications, QoS requirements should

still be satisfied on the network layer. The solutions which are implemented on higher

layers such as the transport and application do not give satisfactory results when they

are compared with the solutions on the network layer.

Additional to the solutions based on the transport and application layers, further de-

velopments are proposed to be implemented on the network layer. The buffer man-

agement techniques and QoS scheduling algorithms for output queued switches can,

for example, be preferred so that the QoS requirements of the multimedia services

can be fulfilled.

A method, suggested in [15], can provide delay guarantees under a traffic contract. In

this case, the approach is based on the mixture of buffer management and output QoS

scheduling mechanisms. In the output network interface card (NIC), the incoming
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packets are separated according to the type of service(ToS) and are stored in different

queues. The real-time packets which have QoS guarantee with traffic contracts are

stored in conformant queue, whereas the rest of the real-time packets are stored in

excess queue. In this excess queue, the buffer management protocol is applied which

removes the expired excess packets. The rest of the traffic, however, is stored in the

best-effort queue. As an addition to buffer management, while scheduling, the queues

which consist of real-time traffic packets are prioritized.

About the issue, Bai [16] proposes an application aware buffer management scheme.

In the compressed video, like MPEG video, the frames can be differentiated in ac-

cordance with their importance as the I, P and B frames in descending order [16].

Although the loss of I frames affect the image quality of entire Group of Picture

(GoP), the loss of less important B frames partially influence the quality of a single

frame [13]. Depending on this characteristic of compressed video, it is aimed to in-

crease the loss tolerance for a video service in [16]. By assessing the importance of

the video frames, higher level video quality can be acquired with the same packet loss

ratio.

The current support on the network layer is mostly QoS scheduling for output queued

switches. For those output queued switches, many algorithms have been proposed to

supply satisfactory QoS guarantees [17]. Parekh and Gallager succeeded in reaching

hard delay bounds by implementing Output Queued (OQ) [18] packet-switch using a

Weighted Fair Queuing (WFQ) scheduling algorithm in the IP router [19] [20]. On

the other hand, it is inapplicable for large switches since an OQ packet-switch needs

an internal speedup [21]. Moreover, when the speed of a single input port increases

to gigabits per second, an OQ packet-switch is not scalable anymore [22].

Additional to QoS scheduling and buffer management techniques, the QoS support

can be applied on fabric schedulers. These works which are implemented on fabric

schedulers is mentioned in Section 2.2.
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2.1.4 Commercial Solutions for QoS Support

As a leading company in the network systems area, Cisco proposes enhancements

about delivering multimedia services.

The Cisco Enterprise Content Delivery System (ECDS) is developed in order to sup-

port video and media delivery over the existing WAN architecture [23]. Cisco ECDS

can be implemented together with Cisco Wide Area Application Services(WAAS) to

acquire a complete Wide Area Network(WAN) solution which is optimized for both

video and data. Cisco ECDS is a media delivery platform which consists of the Ser-

vice Engine, the Content Delivery System Manager (CDS Manager) and the Service

Router. The service engine is responsible for edge content streaming, caching and

download to endpoint devices such as PCs. Live and video on demand(VoD) are

supported by content streaming in the format of H.264, Adobe Flash, Windows Me-

dia and Apple QuickTime. In contrast, the service router manages the requests from

the endpoint clients. Depending on the load conditions and location of the endpoint

client, the most available service engine is arranged by the service router. Ultimately,

the content delivery system manager supplies a graphical interface in order to control

the elements of a Cisco ECDS network.

Additional to Cisco ECDS, Cisco has developments inside the router in order to pri-

oritize the video services. Cisco I-Flex design is supported by Cisco routers such as

XR12000 and 7600 series. Cisco I-Flex design combines shared port adapters(SPAs)

and SPA interface processors(SIPs). In that way, the service prioritization for data,

voice and video services are offered together with a modular architecture [24]. Those

modular adapters and interface processors can be changed across the Cisco carrier

routing platforms such as Cisco 7304 Router, Cisco 7600 Series Routers, Cisco 12000

Series Routers and Cisco XR 12000 Series Routers. Additional to Cisco ECDS,

Cisco has developments inside the router in order to prioritize the video services.

Cisco I-Flex design is supported by Cisco routers such as XR12000 and 7600 series.

Cisco I-Flex design combines shared port adapters(SPAs) and SPA interface proces-

sors(SIPs). In that way, the service prioritization for data, voice and video services

are offered together with a modular architecture [24]. Those modular adapters and

interface processors can be changed across the Cisco carrier routing platforms such
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as Cisco 7304 Router, Cisco 7600 Series Routers, Cisco 12000 Series Routers and

Cisco XR 12000 Series Routers.

2.2 Fabric Scheduling

Quality-of-service (QoS) is an important focus of designing routers and switches

since many applications such as voice over IP and IPTv need quality-of-service (QoS)

guarantees including throughput, packet delay and jitter [17]. For output queued

switches, many algorithms have been proposed which supply satisfactory QoS guar-

antees. However, they are not suitable for commercial use since output queued

switches are not preferable due to their high cost. Thus, fabric scheduling algorithms

which gives QoS guarantees become more significant for the input queued switches.

2.2.1 Overview of High-speed Router Operation

The router’s functions can be categorized into two: datapath functions and control

plane functions [25].

The functions which are performed on every packet passing through the router are

called as datapath functions. The forwarding decision, forwarding through the switch

fabric and scheduling decision are datapath functions that are processed for each

packet. A packet is firstly welcomed by the forwarding engine. The destination

IP address is masked by subnet mask by implementing logical AND operation. The

resulting masked address is searched in the forwarding table. By looking up the for-

warding table,the destination output port is decided. Additional to the forwarding

decision, classification is also implemented. Depending on this classification, the

packet may be discarded or it’s priority level may be changed. Afterwards, time-to-

live (TTL) value is decreased and a new header checksum is computed. Moreover,

fabric scheduler decides which input ports and output ports are connected, and then

according to that decision, packets are forwarded through switch fabric on the line

speed[25]. Additionally, the datapath functions must be implemented in hardware

since they are performed in a very short time corresponding the packet transmission

time. For example, a 64-byte packet’s transmission lasts 51ns at 10Gbps. Thus, it can
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be said that only hardware implementations can meet such though time constraints

[26].

The control plane functions are not performed as frequent as the datapath functions.

Those control plane functions are the system configuration, management and ex-

change of routing table information. In the system, the router controller is the one

that manages the routing table by exchanging the topology information with other

routers. However, there is no strict time limitation for the control path functions.

Thus, the control path functions are mostly implemented in the software.

2.2.2 Switch Fabric Scheduling Problem Definition

A packet switch is a multiple input-multiple output device that transfers the packets

at the input ports towards the output ports according to their destination information.

To this end, the switch fabric provides one to one interconnection between input and

output port pairs. It is possible to see that multiple inputs receive packets that are des-

tined to the same output resulting in contention which are resolved by implementing

buffers at the input ports. Such switch architectures are called input queued (IQ). Sim-

ilarly, switching multiple packets that contend for the same output by increasing the

interconnection bandwidth (fabric speed-up) is another approach. When the switch

fabric is operating faster than the input line speed, the excess amount of packets that

are switched must be buffered at the output ports, and this brings about an output

queued (OQ) switch. A switch with N input and output ports (NxN) with a speed-

up of N is a pure OQ switch without any buffers at the inputs which can guarantee

100% throughput [25] and enable precise Quality of Service control on the traffic

flows. However, the implementation of such switch fabrics does not scale to high

line speeds and large number of ports [22]. An NxN switch with a fabric speed-up of

1 < S < N require buffers at both inputs and outputs constituting a combined input

output queued (CIOQ) switch [27].

The buffers at the input ports for IQ and CIOQ switches are organized in virtual output

queues (VOQ). In the VOQ buffering, each input i, i = 1 . . .N has N logical queues

VOQi, j, j = 1 . . .N. VOQi, j stores the packets that arrive at input i and are destined

to output j. Hence, the packets that arrive at a given input port that are destined to
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different output ports are stored in separate logical queues and they do not block each

other.

Furthermore, the switch fabric has to be dynamically configured for each packet trans-

fer cycle by a fabric scheduler. Here, a fabric scheduling problem can be thought as a

bipartite graph matching problem [25].

 

 

Figure 2.1: Bipartite graph matching example.

In the Fig.2.1 , the nodes on the left side represent input ports, and the nodes on the

right side represent output ports. The edges between the input and output ports imply

that there are requests from the input port to the output port since there is a packet

in the input port which is detonated to related output port. At most, there can be N2

edges. A scheduler is required to select a set of matches by considering that each

input can be connected to at most one output and each output can be connected to at

most one input. Such matching of input-output can be represented as a permutation

matrix M = (Mi, j ), i, j ≤ N where Mi, j = 1 if input i is matched to output j in the

matching process.

A packet switching from input ports to output ports is a high-speed data plane op-

eration. In this case, the common practice is implementing the switch in fixed size

units as in Cisco Cells [28]. However, the router receives variable size IP packets on

its input ports, and forwards them on its outputs. Hence, the fragmentation of the IP

packets into fixed size units before switching, and the reassembly of the fixed size

units back into variable size IP packets are required.
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2.2.3 Performance Metrics

While designing a fabric scheduler; several factors, called as performance metrics,

must be considered:

• Throughput and Delay. The algorithm should supply high throughput with low

delay. In other words, the input and output ports should be matched as many as

possible in each time slot [25].

• Fairness. The algorithm should serve fairly among the input ports.

• Starvation avoidance. For high performance, the algorithms basically should be

starvation-free, which means that a nonempty VOQ should never be remained

without service indefinitely.

• Implementation complexity. High implementing complexity results in long

scheduling time that limits the line speed. Thus, the algorithm must be easy

to be implemented on the hardware [25].

• Scalability. The algorithm should be scalable to high line speeds and large

number of ports. That is, the algorithm can be implementable when the line

rates or the number of ports increase.

• Existence of per-class QoS support. The algorithm can supply different QoS

support for different classes of flows. In that way, the different QoS require-

ments of each flow can be satisfied.

• Variable packet size support. The fabric scheduler can perform better for the

metrics that are described above if it is aware of the fragmentation and reassem-

bly of the IP packets into fixed size cells.

2.2.4 Selected Previous Work on Fabric Schedulers

There are mainly two different approaches to fabric scheduling: the slot-based and

the frame-based scheduling [29]. The frame-based scheduling algorithms compute

a sequence of F matching decisions in a frame length which equals to F time slots.
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The computed matching decisions are used in F consecutive time slots. Moreover, the

matching decisions can be re-used repeatedly until long-term traffic demands change

[10]. On the other hand, the slot-based scheduling algorithms compute the matching

decision in each time slot continuously.

For IQ switches, it is hard to provide QoS guarantees without any information about

oncoming packets while dealing with the matching problem in each time slot [30].

In the frame based algorithms, incoming packets are stored in a buffer for a frame

( F consecutive time slots); and therefore, provision of QoS guarantees are easier

and gives more reliable results. Furthermore, for this matter, a flow based Iterative

Packet Scheduling(FIPS), which is a frame based scheduling algorithm, is proposed

in [30]. Additionally, a frame based scheduling algorithm that can limit the delay

jitter and achieve 100% throughput while maintaining the unity switch speedup is

proposed by Szymanski in [21]. Another frame based fabric scheduling algorithm the

Iterative Scheduling with No Priority (ISNOP) is proposed in [29] to supply better

QoS for differentiated classes. In contrast, the frame based scheduling algorithms

are too complex to implement on hardware when they are compared with the slot

based scheduling algorithms, Table 2.2.7. To the best of our knowledge, they are not

preferred in commercial use up to date because of high implementation complexity.

Unlike frame based scheduling algorithms, slot based scheduling algorithms compute

matching for each time slot independently. By doing so, they can adapt to dynami-

cally variable traffic patterns. Yet, the time slot will be shorter because of the increase

in line speed and this decrease in the time slot limits the computation time for slot

based scheduling algorithms.

Hopcroft and Karp [31] proposed the fastest algorithm for Maximum Size Matching

which is a slot-based scheduling algorithm. This algorithm guarantees the maximum

matching possible and throughput. However, it cannot supply fairness due to starva-

tion of flows. Also, even for suitable traffic patterns, the algorithm may be unstable

[32]. The maximum weight matching (MWM), in contrast, works stably with admis-

sible traffic patterns. The weight function can be related to either queue length or

queuing delay of the head-of-line packet. The former one is called as Longest Queue

First (LQF) and the latter one is called Oldest Cell First (OCF) [2]. On the other
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hand, MWM is difficult to parallelize and it works in sequential manner. Thus, it has

a time complexity of O(N3). In spite of the fact that these algorithms are both stable

and capable of high throughput and low delay, they are not suitable for high-speed

switches due to their implementation and time complexity. Indeed, there is not any

commercial chipsets on which MWM is implemented [26].

In order to decrease such implementation and time complexity, maximal matching

algorithms are suggested. On the other hand, the Parallel Iterative Matching (PIM) is

one of the well known scheduling algorithms which uses distributed maximal match-

ing algorithm [33]. In PIM, the input and output ports are matched randomly in an

iterative way, and therefore, it is not a fair scheduling algorithm. The fairness prob-

lem is eliminated by iSLIP [7] algorithm. Here, the randomness is changed with a

round-robin fashion by input and output ports. The most of dynamic schedulers use

sub-optimal heuristic schedulers which can achieve high throughput, delay and jitter

performance. Moreover, Cisco 1200 series routers developed the heuristic iSLIP al-

gorithm which supply about 100% throughput for uniform traffics [10]. Moreover,

Dual Round-Robin (DRR) is proposed in [34]. In the DRR, each input arbiter per-

forms request selection;therefore, the accept state in iSLIP is not required. Thus,

DRR requires less time to perform arbitration.

There are also studies on heuristic algorithms in order to better approximate to MWM.

The iterative Longest Queue First (iLQF)[35] algorithm which supplies better approx-

imation to MWM than iSLIP. iSLIP does not care about queue lengths but iLQF does.

iLQF can be designed with same architecture with iSLIP but iLQF requires to change

larger amount of information between arbiters [26]. Moreover, WP-iLQF algorithm

which concentrates on exchange messages rather than queue length is proposed in

[26]. WP-iLQF has time complexity of O(N). Depending on the simulation results

[26], it is claimed that WP-iLQF supplies lower packet delay then iLQF. Additional

to these algorithms, a heuristic scheduling policy, named as deadline-aware maxi-

mum weight matching (MWM), for multimedia streaming applications is proposed

in [36] in order to minimize the packet loss ratio in the input queues. On the other

hand, these algorithms have more difficult to implement in hardware when they are

compared with maximal matching algorithms such as PIM, DRR and iSLIP.
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2.2.5 ISLIP

iSLIP is a widely used fabric scheduling algorithm that achieves high throughput and

that can easily be implemented in the hardware. The 50-Gb/s IP router Cisco 12000

GSR and Tiny Tera(a 0.5-Tb/s MPLS switch) are developed on iSLIP algorithm [7].

The iSLIP uses round robin arbiters at each input and output ports. Thus, the fairness

problem in PIM is overcome by iSLIP. The iSLIP algorithm consists of three steps for

each iteration. All unmatched input and output pairs are involved in the next iteration.

Moreover, the round robin arbiter pointers are updated only in the first iteration. In

this way, starvation is also avoided.

Step1: Request. Each input sends a request to outputs for which it has a packet [7].

Step2: Grant. If an output receives any requests, the one which is next in the round

robin grant arbiter is chosen, starting from the highest priority one. Input port is

informed, if its request is granted. In the first iteration only, the round robin grant

arbiter pointer is incremented by modulo N to one location beyond the granted input,

if and only if, the grant is accepted in step 3 of the first iteration [7].

Step3: Accept. If an input is granted by multiple output ports, it accepts the one in

the same manner in step 2. In the first iteration only, the round robin accept arbiter

pointer is incremented (modulo N) to one location beyond the accepted output [7].

With the help of round robin schedulers, iSLIP serves fairly and no connection is

starved. In the iSLIP, a new matching graph should be found within a time-slot [10].

It is claimed that, for high link rates, the duration of the time slot will decrease and

that causes very limited execution time for iSLIP. When the link rates increase, the

clock frequencies in the hardware design also increase. The higher clock frequency

means faster decisions. Thus, that will not be a problem for iSLIP implementation.

An example of the iSLIP steps for the first iteration can be found in Fig.2.2, Fig.2.3

and Fig.2.4.

The input port 1 has one packet destined to the output port 1 and 4 packets which are

destined to the output port 2. There is not any packets in the input port 2, whereas

there are 2 packets in the input port 3 which are destined to the output port 2 and
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output port 4. Lastly, the input port 4 has 3 packets whose destination is the output

port 4. The input ports, which have queued packets, send requests to output ports as

seen in Fig. 2.2.

Figure 2.2: Request step (step1) of an iSLIP iteration

If an output port receives only one request, that request is granted. In the case that

an output port receives multiple requests, the grant is decided by checking its grant

arbiter in a round-robin manner. In our example, the complete grant signals can be

seen in Fig.2.3. The output port 1 has only one request from the input port 1. Thus,

the output port 1 sends grant to the input port 1. The output port 2 has multiple

requests from both the input port 1 and the input port 3. The grant arbiter pointer of

the output port 2 points to the input port 1. In this way, the output port 2 chooses the

input port 1 and sends grant signal to it. There are multiple requests for the output

port 4 from the input port 3 and input port 4. The grant arbiter pointer of the output

port 4 points to the input port 1, neither to the output port 3 and nor to the output port

4. In a round-robin manner, the closest one which is the input port 3 is selected in

that condition.

If an input port receives only one grant, that grant is accepted. However, if an input

port receives multiple grants, the closest one in round-robin manner is accepted. In

our case, the accept signals can be seen in Fig.2.4. The input port 1 receives multiple
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Figure 2.3: Grant step (step2) of an iSLIP iteration

grants from output 1 and output 2. The output port 1 is accepted since the accept

arbiter pointer of the input port 1 points to the output port 1. The input port 3 receives

single grant from the output port 4. Thus, the input port 3 accepts the grant of the

output port 4.

In the first iteration, after the 3 steps, the accept arbiter pointers and grant arbiter

pointers which belong the matched input ports and output ports must be updated. If

the grant of an output port is accepted, the grant arbiter pointers of that output port

must also be updated. Moreover, the accept arbiter pointer of the input port which

sends accept to any output port must be also updated. In our example, the grant of the

output port 1 is accepted by the input port 1. Hence, the grant arbiter pointer of the

output port 1 is shifted to position 2. The accept arbiter pointer of input port 1 is also

shifted to position 2 since the input port 1 accepts the output port 1. Furthermore, the

grant arbiter of the output port 4 is shifted to position 4 since the input port 3 accepts

the grant of the output port 4. In the same manner, the accept arbiter of the input

port 3 is shifted to position 1 because the grant of the output port 4 is accepted by the

input port 3. The pointers’ update is only processed in the first iteration as mentioned

above. In the next iterations, the pointers are not updated.
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Figure 2.4: Accept step (step3) of an iSLIP iteration

To sum up, the features of iSLIP are:

• VOQ organization at the input ports

• Three step messaging as request grant and accept to decide the input output

matching

• Round robin arbitration in selecting the sent requests and grants at the inputs

and outputs respectively.

There are 3 variations of iSLIP such as prioritized iSLIP, threshold iSLIP and weighted

iSLIP [7].

The prioritized iSLIP and the weighted iSLIP give different static priorities to the

flows to achieve QoS. The threshold iSLIP, on the other hand, employs dynamic pri-

orities in the prioritized iSLIP. These dynamic priorities for the queues are computed

according to the amount of cells in the queue to maximize throughput.
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2.2.5.1 Prioritized ISLIP

In the prioritized iSLIP, there are separate FIFO for each output and priority level.

For an NXN router with P priority levels, there are PxN FIFO’s in each input. The

queue between an input i and an output j at priority level l is labeled as Ql(i, j), where

1 ≤ i, j ≤ N, 1 ≤ l ≤ P.

The iSLIP algorithm is changed as follows.

Step1: Request. In the input i, the highest priority nonempty queue for output j is

chosen. Then, the priority level li j of this queue is sent to output j.

Step2: Grant. If output j receives multiple requests, firstly it selects the highest level

requests, L( j) = maxl(li j). Then, the output chooses one input among those requests

by using output grant arbiter. The output grant arbiter works with separate pointer

g jl for each priority level. The grant arbiter pointer g jL( j) is used during the selection

among the requests at level L( j). The same round-robin scheme is used with basic

iSLIP. The inputs are informed whether their requests are granted or not. The pointer

g jL( j) is incremented in the same way as basic iSLIP, if and only if, the input i accepts

the output j in the step 3 of the first iteration.

Step3: Accept. If an input receives any grants, the highest level grant is searched,

L′(i) = maxl(li j). Then, an output among those grants at level li j = L′(i) is chosen

by using input accept arbiters. A separate pointer ail is kept for each priority level.

The accept arbiter pointer aiL′(i) is used during the selection among the grants at level

L′(i). The selection is made in a round-robin manner. The input informs each output

about whether its grant is accepted or not. Then, the accept arbiter pointer aiL′(i) is

incremented (modulo N) to one location beyond the accepted output.

The hardware implementation of the prioritized iSLIP is more complex than the basic

iSLIP since separate pointers are maintained for different priority levels.

20



2.2.5.2 Threshold ISLIP

In the threshold iSLIP, the maximum-sized match and maximum-weight match are

compromised. The fullness of the queues are quantized according to a set of threshold

values. Afterwards, the priority levels in the priority iSLIP algorithm are calculated

by using those threshold values. There is an ordered set of threshold values for each

input queue, T = {t1, t2, . . . , tT }, where t1 < t2 < . . . < tT . Input arranges the priority

level of li = a when ta ≤ Q(i, j) < ta+1.

2.2.5.3 Weighted ISLIP

The strict priority scheme of prioritized iSLIP may not be suitable for many condi-

tions since prioritized iSLIP results in starvation of low prioritized queues. In such

cases, throughput to an output can be divided among the inputs according to weights

of inputs.

In the basic iSLIP, an ordered circular list S = {1, . . . ,N} is used by arbiters. In the

weighted iSLIP algorithm, the ordered list at the output j is used as s j = 1, . . . ,W j,

where W j = lowestcommonmultiple(di, j) and the input i appears (ni j/di j)xW j times in

S j.

2.2.6 Variable-size Packet Switching

The switch architectures are able to deal with variable-size packets by working on

fixed-size cells internally. Those variable-size packets are segmented into the fixed-

size cells while entering the switch architecture. Then, scheduling and switching

operations are realized on the fixed-size cells. While leaving the switch architecture,

the fixed-size cells belonging to the same packet are reassembled at output ports.

The scheduling algorithms can be divided into two groups as packet-mode scheduling

and cell-mode scheduling. In the packet-mode scheduling algorithms, all fixed-size

cells belonging to the same packet are transferred to output ports contiguously by

the scheduling algorithm. In that way, it is easy to reassemble at output ports since

the fixed-size cells belonging to the same packet are transferred to output ports with-
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out being interrupted by the other fixed-size cells. That condition saves memory

and reduces complexity in the reassembling circuit at output ports. The rest of the

scheduling algorithms, which do not care about contiguous transfer of the fixed-size

cells belonging to the same packet, are called as cell-mode scheduling algorithms.

The switch architectures are categorized into two: cell switches and packet switches

[28]. On the one hand, the cell switches work on fixed-size cells. On the other hand,

the packet switches are designed to be based on the cell switches in order to handle

with variable-size packets.

In the architecture, there is the Input Segmentation Module(ISM) at each input port.

The variable-size packets are segmented into the fixed-size cells by the ISM. The

packets enter into the ISM on the packet line speed (PLS). The ISMs work in the

store-and-forward mode. The segmentation process starts after the reception of the

whole packet. The fixed-size cells which are created after segmentation are trans-

ferred to cell-switch at the internal line speed (ILS). The PLS is incremented to the

ILS in order to account for segmentation overheads. Then, all cell-switch operations

are proceed at the ILS. The switching fabric transfers the fixed-size cells to output

reassemble module (ORM) at the ILS. If packet-mode scheduling algorithms are not

used as fabric scheduler, the fixed-sized cells belonging to different packets can be

successively transferred to the ORM. In this way, there are different queues for each

input port in ORM. On the other hand, at most one packet can be completed in each

time slot since at most one fixed-size cell can reach ORM in each time slot. When

a packet is completed in the ORM, it is transferred to the packet FIFO. Next, the

variable-size packets leave the switch at line speed since segmentation overheads are

discarded by the ORM.

If packet-mode scheduling algorithms are used, the ORM is not necessary anymore.

In that way, the packet switch architecture can be simplified. However, here it can be

seen that the long packets unfairly block the short packets.
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2.2.7 Fabric Schedulers Supporting per Class QoS

iSLIP [7] is a slot-based scheduling algorithm which makes matching decision per

slot basis. The iSLIP works under unity speedup condition. Furthermore, it has a

time complexity of O(1) and implementation complexity of O(N2). The hardware

implementation is explained in [7]. In the iSLIP implementation, none of input ports

suffer from starvation, and yet it does not supply different QoS per class.

In order to supply differentiated QoS per class, the prioritized iSLIP is proposed in

[7]. It is also a slot-based scheduling algorithm and it does not require speedup more

than 1. In the prioritized iSLIP, different VOQs are implemented for different classes.

Its complexity is more than basic iSLIP; however, the input ports which have lower

priority suffer from starvation since higher priority levels always have right to send

packets if they have any packets.

Table 2.1: Comparision of the existing algorithms.

class throughput time complex-
ity

QoS sup-
port per
class

implementation

iSLIP[7] slot-based no starva-
tion

O(1) no per class hardware

prioritized
iSLIP[7]

slot-based starvation
for low
priorities

not defined per class hardware

threshold
iSLIP[7]

slot-based no starva-
tion

not defined per class hardware

weighted
iSLIP[7]

slot-based no starva-
tion

O(1) no per class hardware

SRA+[37] slot-based no starva-
tion

O(1) per class simulation

RFSMD[21] frame-based no starva-
tion

O(NFlogNF) per class simulation

ISNOP[29] frame-based no starva-
tion

O(kn4.5 + k2n3) per class simulation

FIPS[30] frame-based no starva-
tion

O(kn4.5) per class simulation

2-LLP
IMC VOQ
iSLIP
Chapter4

slot-based no starva-
tion

O(1) per class FPGA imple-
mentation

In the threshold iSLIP [7], the priority levels for input ports are dynamically arranged
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according to the occupancy of queues. In that way, starvation problem in the prior-

itized iSLIP is tried to be solved. On the other hand, the threshold iSLIP cannot be

fair in terms of classes. If a class sends more packets, the occupancy of the queues for

that flow are always high. Thus, the threshold iSLIP gives priority for the flow which

sends more packets than others.

In some cases, the strict priority is undesirable. When it is the case, the weighted

iSLIP is claimed to be preferable in [7]. In the weighted iSLIP, there are no different

VOQs for different classes. In the arbiters, some input ports have more chance. To

this end, the weighted iSLIP does not supply differentiated QoS per class, but rather

it serves input ports in a weighted manner.

Single round robin(SRA) scheduling is proposed in [37]. The SRA supplies differ-

ent bandwidth guarantees for different classes. Moreover, it has time complexity of

O(1). Therefore, it is easy to implement on the hardware. Additionally, it does not

concern about delay guarantees for classes. That is, the delay of the flows are uncon-

trolled. Considering all, the SRA supplies differentiated QoS for classes in terms of

bandwidth only.

Similarly, a SRA+ is proposed in [37] in order to limit the delay of the classes while

supplying bandwidth guarantees for classes. The time complexity of SRA+ is also

O(1). However, SRA+ does not differentiate QoS in terms of packet delay. In the

SRA+, all classes have the same delay while they are serviced according to their

bandwidth requirements. Hence, it can be said that the difference in delays of different

classes is eliminated in both SRA and SRA+.

According to Szymanski [21], the frame-based Recursive Fair Stochastic Matrix De-

composition (RFSMD) is suitable, since it works under unity speedup. It stores the

packets for a frame which equals to F time-slot period. Then, it gives a decision for F

time-slot. The differentiated delay guarantees can be acquired in that scheduling algo-

rithm. On the other hand, one frame delay is naturally added for output packets since

packets are stored for a frame length in order to start decision process. Moreover,

its time complexity is O(NFlogNF). In order to handle with this time complexity,

the frame length can be increased but it is limited by hardware sources. The memory

space for storing packets for frame length must be raised to also increase the frame
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length. The hardware implementation is not explained in [21] to clarify whether it can

be possible to implement on hardware or not. Only simulation results are discussed.

In the article written by Lee [30], Flow based Iterative Packet Scheduling (FIPS) is

proposed in order to supply differentiated QoS for different classes in terms of delay

guarantees. The FIPS, as a frame-based scheduling algorithm, has a high success rate

and a low packet dropping ratio. It works under unity speedup condition but also it

has a time complexity of O(kn4.5). In the article [30], only the simulation results are

presented, but there is nothing about its hardware implementation. Moreover, it is

claimed that the FIPS’s performance is not enough to be used in practice even though

it has higher throughput than the Earliest Deadline First (EDF) based algorithms [29].

The Iterative Scheduling with No Priority (ISNOP) is proposed in order to solve multi

class deadline guaranteed packet scheduling problem [29]. The ISNOP is a frame-

based scheduling algorithm which does not require speedup more than unity. In [29],

it is claimed that the ISNOP has more success rate then the FIPS for high loads. For

high switch sizes, the ISNOP always gives more success rate than the FIPS. In [29], it

is also claimed that, the ISNOP supplies lower packet dropping ratio than all previous

frame-based algorithms. Still, it is debatable that it can be implemented on hardware

or not since it has a time complexity of O(kn4.5 + k2n3).

In this thesis, a 2-level limited prioritized(LLP) IMC VOQ iSLIP is proposed which

is a slot-based scheduling algorithm. Its time complexity equals to O(1) and it works

under unity speedup condition. Thus, its hardware implementation, as it is explained

in chapter 4, is quite easy. Not only it behaves fair for all classes, but it also does not

suffer from starvation. It supplies differentiated QoS for 2 different classes in terms

of packet delay.
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CHAPTER 3

IMC VOQS: INTELLIGENT MULTI CLASS VOQS

3.1 IMC VOQ Overview

Differentiating traffic classes at the network layer in the switches and routers is a

desired feature to support end to end QoS.

Figure 3.1: The proposed intelligent multi-class VOQ architecture at input port i

Consider an NxN fabric that supports P different priority levels with PxN VOQs that

work as FIFO in each input port as shown in Fig. 3.1. The queues at input i for output

j are labeled as Ql(i, j); where l labels the priority level, 1 ≤ i, j ≤ N, 1 ≤ l ≤ P and

the highest priority is l = P. Hence, there are up to P packets that are ready at input

i for output j. However, the well-known and tested fabric scheduler algorithms such
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as iSLIP[7, 38] are designed for VOQs arrangements where each input i sends only

a single request to output j. The Intelligent Multi-class (IMC) unit that is proposed

in this thesis is a preprocessing unit as shown in Fig. 3.1 that generates this single

request out of P queues at input i for a given output j. Hence, this makes it possible

for a given fabric scheduler to support different classes without changing its operation

to be different than the prioritized iSLIP and Weighted iSLIP in [2] that add multiple

arbiters or change the standard round robin iSLIP arbiters.

Figure 3.2: an example of IMC VOQ at input port i

In Fig.3.2, VOQs blocks for each priority level are represented in input port i. That

example belongs to a 4x4 switch supporting 3 different priority levels. In the example,

priority level 1, priority level 2 and priority level 3 have cells for the output port 1.

Moreover, there are 2 cells for the output port 2. One of these two is from priority

level 1 and the other one is from priority level 3. There is not any cells for the output

port 3. Lastly, there is one cell for the output port 4. Considering all, there are 3

candidate requests for the output port 1, 2 candidate requests for the output port 2 and

1 candidate request for the output port 4. The intelligent controller block must decide

atmost one request to each output port for the given input port i. Although there is a

packet which is destined to an output port, the request may not be sent to that output

port depending on the decision algorithm.
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On the other hand, when matching decision is given by fabric scheduler, the intelligent

controller block is responsible for reading the VOQs. For instance, in Fig.3.2 the

output port 1 and the input port i are matched by fabric scheduler. After the scheduling

is completed, the input port i is informed about that the output port 1 waits for the

packet. In that time, there are 3 available packets for the output port 1 belonging to

level 1, level 2 and level 3. Thus, the intelligent controller block should memorize

that the requests which are lastly sent to output ports belong to which priority level.

3.2 IMC VOQ Decision Algorithms

In an input port, the selection among candidate requests for an output port can be

done in many ways by IMC VOQ unit. 2 different approaches can be followed here.

The first one is the separated selection for each output port. In this case, all requests

to output ports can be decided independently from each other. On the other hand,

the second approach is the combined selection, in which all requests to output ports

must be from the same priority level. In this second approach, it is enough to mem-

orize only 1 priority level which wins the competition in order to read right queues.

Whereas, in the first approach, priority levels for each request sent to output ports can

be different; and therefore, N priority levels must be memorized which causes an im-

plementation complexity of O(N). Although the throughput for some traffic scenarios

can be low for the combined selection algorithms, their implementation complexity

is lower .

It is possible to implement various decision algorithms for request selection. Further-

more, 2 different algorithms are proposed as an example in this thesis. The first one is

a 2-level strictly prioritized(2-LSP) IMC VOQ algorithm. The second one is a 2-level

limited prioritized(2-LLP) IMC VOQ algorithm. Both of the 2 algorithms support

2 priority levels. Moreover, both algorithms are based on the combined selection

approach in order to keep the implementation complexity low.
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3.2.1 The 2-Level Strictly Prioritized IMC VOQ Algorithm

There are 2 priority levels in the 2-level strictly prioritized (2-LSP) IMC VOQ al-

gorithm. The algorithm is based on the combined selection approach; therefore, the

candidate requests belonging to decided priority level are sent to output ports.

In 2-LSP IMC VOQ algorithm, if there is a packet in any of the queues belonging

to a higher priority level, the queues in the higher priority level always have right

to send request. If all queues in the higher priority level are empty, the queues in

lower priority level have right to send requests. That algorithm results in starvation

for queues in lower priority level.

The pseudo code of 2-LSP IMC VOQ algorithm can be found in Algorithm 1. The

algorithm runs for each input port in parallel way and independently. The pseudo

code represents the code running in input port i.

Algorithm 1 The 2-Level Strictly Prioritized IMC VOQ Algorithm for input i
1: int LastChosenPriorityLevel = 0

2: bool FinalRequest[N] . FinalRequest(j) represents the decided request from

given input i to output j

3: bool CandidateRequestVOQ1[N] . RequestVOQ1(j) represents the candidate

requests for priority level l=1

4: bool CandidateRequestVOQ2[N] . RequestVOQ2(j) represents the candidate

requests for priority level l=2

5: while 1 do

6: for j ≤ N do . checks Q2 whether it has any packet or not

7: if Q2(i, j) is non − empty then

8: f lag2 = 1

9: break

10: end if

11: end for
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12: if f lag2 then

13: FinalRequest(:) = CandidateRequestVOQ2(:)

14: LastChosenPriorityLevel = 2

15: else

16: FinalRequest(:) = CandidateRequestVOQ1(:)

17: LastChosenPriorityLevel = 1

18: end if . Request selection is done. Wait for the fabric scheduler decision.

19: if LastChosenPriorityLevel == 1 then

20: READ(VOQ1)

21: else

22: READ(VOQ2)

23: end if

24: end while

3.2.2 The 2-Level Limited Prioritized IMC VOQ Algorithm

In order to avoid the starvation problem, a 2-level limited prioritized (2-LLP) IMC

VOQ algorithm is proposed. If the queues in a higher priority level have strict priority

like 2-LSP IMC VOQ algorithm, the queues in the low priority level suffer from the

starvation problem. Thus, a limit value is defined in 2-level limited prioritized (2-

LLP) IMC VOQ algorithm. That value restricts the number of requests which can

be sent by the queues in the high priority level while queues in the low priority level

are non-empty. When the limit value is reached, the queues in the high priority level

must wait for the low priority queues’ sending the request. The algorithm does not

care about whether the requests are granted by the fabric scheduler or not. Depending

on that limit value, queues in the lower priority level may be served even if the queues

in the higher priority level are not empty. In this way, the starvation is avoided.

The pseudo code which is written for 2-LLP IMC VOQ algorithm can be found in

Algorithm2. It runs in a parallel way for each input port independently.

Algorithm 2 The 2-Level Limited Prioritized IMC VOQ Algorithm in input port i
1: int LimitCounter = 0

2: int LimitValue = MaxS uccesiveAllowedRequests
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3: int LastChosenPriorityLevel = 0

4: bool FinalRequest[N] . FinalRequest(j) represents the decided request from

given input i to output j

5: bool CandidateRequestVOQ1[N] . RequestVOQ1(j) represents the candidate

requests for priority level l=1

6: bool CandidateRequestVOQ2[N] . RequestVOQ2(j) represents the candidate

requests for priority level l=2

7: while 1 do

8: for j ≤ N do . checks Q1 whether it has any packet or not

9: if Q1(i, j) is non − empty then

10: f lag1 = 1

11: break

12: end if

13: end for

14: for j ≤ N do . checks Q2 whether it has any packet or not

15: if Q2(i, j) is non − empty then

16: f lag2 = 1

17: break

18: end if

19: end for

20: if f lag1& f lag2 then

21: if LimitCounter == LimitValue then

22: FinalRequest(:) = CandidateRequestVOQ1(:)

23: LastChosenPriorityLevel = 1

24: LimitCounter = 0

25: else

26: FinalRequest(:) = CandidateRequestVOQ2(:)

27: LastChosenPriorityLevel = 2

28: LimitCounter = 0

29: end if

30: else
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31: if flag1 then

32: FinalRequest(:) = CandidateRequestVOQ1(:)

33: LastChosenPriorityLevel = 1

34: else

35: FinalRequest(:) = CandidateRequestVOQ2(:)

36: LastChosenPriorityLevel = 2

37: end if

38: end if

. Request selection part is done. .Waiting for the fabric scheduler decision.

39: if LastChosenPriorityLevel == 1 then

40: READ(VOQ1)

41: else

42: READ(VOQ2)

43: end if

44: end while

In Fig.3.3, how the 2-LLP IMC VOQ algorithm works is explained by using an exam-

ple. In the example, content of VOQs belonging to an input port are presented for 4

successive time slots. In that example the limit value is 3, in other words, 3 successive

requests are allowed for queues in the high priority level when any of the queues in

the low priority level has at least one packet. Moreover, it is assumed that all requests

are accepted by output ports in each time-slot. Thus, the cells which sent request are

transferred to the switch fabric.

At the time slot 1, the limit counter equals to 0. In this way, the candidate requests

belonging to the high priority level are sent. Then, the limit counter is incremented to

1 since there is at least one packet in the low priority queues. In the second time slot,

the limit counter equals to 1. Here, the high priority level queues still have priority.

After, the limit counter is incremented to 2. At the time slot 3, the higher priority level

queues send request again since the limit counter equals to 2. Then, the limit counter

is incremented to 3 which equals to the limit value in the example. At the time slot

4, finally, the limit counter reaches to the limit value. Thus, the requests belonging to

the low priority queue are sent. Afterwards, the limit counter is reset to 0 at the end

of the time slot 4.
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Figure 3.3: An example of 2-level limited prioritized IMC VOQ algorithm
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CHAPTER 4

FPGA IMPLEMENTATION OF 4X4 2-LLP IMC VOQ ISLIP

ROUTER

The proposed IMC unit is combined with a fabric scheduler in order to provide low

packet delay for high priority level packets.

iSLIP is widely used fabric scheduling algorithm since it is easy to scale and easy

to implement. Moreover, with the help of round robin arbitration output lines are

fairly served and the starvation of any non-empty queue is avoided. Thus, iSLIP is

preferred in order to implement on FPGA as a fabric scheduler. The proposed IMC

VOQ structure which is independent from fabric scheduling algorithm is combined

with iSLIP. IMC VOQ structure can be combined with any other algorithms such as

DRR and PIM.

There are 2 proposed algorithms for IMC VOQ in chapter 3. The 2-LSP IMC VOQ

results in starvation;therefore, 2-level limited prioritized(2-LLP) IMC VOQ algorithm

is developed. To this end, 2-LLP IMC VOQ algorithm is chosen to implement instead

of 2-LSP IMC VOQ algorithm. In this way, 2 priority levels are supported in the

implemented 4x4 router. Furthermore, supporting at least 2 priority levels is enough

in order to implement the QoS differentiation in practice.

Furthermore, the overall architecture supports variable-size packets. In order to sup-

port variable-size packets, the received packets are segmented into fixed-size cells

similar to Cisco Cells [6] before they are stored in VOQs. The fabric scheduling

algorithm works on fixed-size cells. After scheduling is completed, fixed-size cells

are transferred to output line blocks. At the output line blocks, when all segments of
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the packets are completed, the fixed-size cells are reassembled back into variable-size

packets and delivered to output line.

The design of the overall architecture is implemented on FPGA by using VHDL hard-

ware design language. FPGAs are suitable for the implementation of high-speed de-

sign architectures because of their parallel operating feature with reconfigurable and

adaptive processing capability. With the help of parallel operating ability, all incom-

ing packets from different input ports can be processed at the same time in FPGA.

Moreover, high-speed designs can be implemented on FPGAs. While considering

10Gbps or even higher network speeds, FPGAs are most suitable development plat-

forms for switches/routers.

4.1 General View of FPGA Implentation

The general view of FPGA implementation of 4x4 switch fabric can be seen in Fig.

4.1. There are 4 identical input line blocks and 4 identical output blocks. There

are a switch fabric module and a fabric scheduler which work cooperatively in order

to transfer packets from input line blocks to output line blocks. There is a time slot

trigger block which is responsible for synchronizing all the blocks by measuring time-

slot period.

The fabric scheduler block works on fixed-size cell. Similar to cisco cells, the fixed-

size cell length is chosen as 64-byte, 4-byte is header and the rest is payload. Switch

fabric and other blocks are designed in order to work on 32-bits data in one clock.

Thus, transferring full packet (64x8 bits) through switch fabric takes 16 clocks. That

is, time-slot period equals to the fixed-size cell time which equals to 16 clocks.

While designing iSLIP, the hardware structure in [7] is taken as a reference. Thus,

all input ports are directly connected to fabric scheduler block in order to submit

requests. Moreover, the decision of the fabric scheduler is directly submitted to input

ports and switch fabric as shown in Fig.4.1. Moreover, 2 iterations are done by iSLIP

fabric scheduler block in order to increase throughput.

In order to transfer cells from input ports to output ports a 4x4 crossbar switch fabric
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is designed. While designing switch fabric muxed-based crossbar architecture which

is discussed in [39] is adopted.

Figure 4.1: General view of FPGA implementation

As it is explained in [28], after segmentation size of the packet is larger than the

original one because of the new produced cell headers. Note that, in order to deal

with segmentation overheads, the fabric should have speedup to forward the fixed-

size packets at line speed. In this thesis we propose that cell headers are stored inside

the FPGA and cell payloads are assumed to be written to RAMs outside the FPGA

and hence the fabric and the scheduler work at line speed. When the payloads are

separated from headers, there is no need to increase speed of hardware. On the other

hand, another switch fabric is required to transfer the payload.

In the Fig.4.2, the example about transferring the fixed-size cells after segmentation

through 2 paths and 1 path can be found. In the first one, the cell payloads and

cell headers are transferred through 2 different paths, one for cell payloads and the

other for cell headers. In that one, there is no need to increase the hardware speed

as shown in Fig.4.2. On the other hand, when the cell payloads and cell headers are

transferred through one single line, the hardware must work faster in order to handle

with segmentation overheads..
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Figure 4.2: Transferring the fixed-size cells after segmentation

4.1.1 Variable Size Packet Header Format

The variable size packet header format which is used in FPGA implementation can

be seen in Table. 4.1.

Table 4.1: Variable size packet header format

Bit No Fields
1 bit 31 Reserved
1 bit 30 Packet’s class
2 bits 29-28 Packet’s destination address
1 bit 27 Reserved
3 bits 26-24 Packet’s size
2 bits 23-22 Reserved
2 bits 21-20 Packet’s input address
20 bits 19-0 Packet’s entering time

• Packet’s class: it shows the type of class. In our implementation, there are two

types of classes which are high priority class and low priority class. If packet

belongs to high priority class, this bit will be 1. Otherwise, it will be 0.

• Packet’s destination address: it defines the destination port of the packet. It is

a 2-bits word. 4 different output ports can be defined. "00" represents output

port 1, "01" represents output port 2, "10" represents output port 3 and "11"

represents output port 4. When number of output ports are higher than 4, the
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reserved bits can be used.

• Packet’s size: it defines the packet size in terms of length of fixed-size cell. If

it is "000", that means it’s packet size is 1. If it is "111", it’s packet size is 8. In

that way, from 1 to 8 packet sizes can be defined.

• Packet’s input address: it defines where the packet comes from. It is a 2-bits

word like packet’s destination address.

• Packet’s entering time: it shows the time slot value when the packet enters into

the router. At the entrance of the packet, time slot value of router is written

to this area. Then, this area is used to measure the time between the packet’s

entering into the router and exiting from the router while packet is leaving from

the router. In this way, the packet delay can be calculated in terms of time slot.

4.1.2 Fixed-size Cell Header Format

After segmentation of the variable size packets, new fixed-size cell headers are gen-

erated. The fixed-size packet header format which is used in FPGA implementation

can be seen in Table. 4.2.

Table 4.2: Fixed-size cell header format

Bit No Fields
1 Bit 31 Reserved
1 Bit 30 Cell’s Class
2 Bits 29-28 Cell’s Destination Address
1 Bit 27 End Of Packet (EoP)
3 Bits 26-24 Packet’s Size
2 Bits 23-22 Reserved
2 Bits 21-20 Cell’s Input Address
20 Bits 19-0 Packet’s Entering Time

• Cell’s class: it contains same information with the packet’s class field in vari-

able size packet header. While producing new fixed-size cell header, that field

is copied from the variable size packet header.
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• Cell’s destination address: it contains same information with the packet’s desti-

nation address field in variable size packet header. While producing new fixed-

size cell header, that field is copied from the variable size packet header.

• EoP: it defines whether the related fixed-size cell is the last fixed-size cell after

segmentation or not for a variable size packet. If that bit is 1, the related cell is

EoP. Otherwise, it is not EoP.

• Packet’s size: if EoP bit in the fixed-size cell header is set, in that fixed-size

cell header packet’s size field represents the length of the variable size packet

to which that cell belongs. It is defined in terms of fixed-size packet length. If

EoP bit is not set in the fixed-sized cell header, the packet size field is irrelevant.

It can be anything.

• Cell’s input address: it contains same information with the packet’s input ad-

dress field in variable size packet header. While producing new fixed-size cell

header, that field is copied from the variable size packet header.

• Cell’s entering time: While producing new fixed-size cell header, that field is

copied from the variable size packet header. Thus, it contains the entering time

of the variable size packet header to which fixed-size cell belongs.

4.1.3 Brief Explanation of One Time-slot

At the beginning of the time slot, the new variable size packets are welcomed by the

input line blocks. Depending on the variable size packet header, the packet size of

the packets are determined. According to packet size, new fixed-size cell headers

are produced inside the input line block. Then, produced fixed-size cell headers are

written to VOQs depending on their class types and destination addresses. Input line

blocks send request to fabric scheduler. The fabric scheduler examines the requests

and decides the input/output matching decision for the current time slot. Depending

on the decision of the fabric scheduler, the switch fabric is set and VOQs in input line

blocks are read. After setting the switch fabric, fixed-size cell headers are transferred

from input line blocks to corresponding output line blocks. In the output line blocks,

fixed size cell headers are investigated whether they are end of packet (EoP) or not.
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If a fixed-size cell header does not belong to an EoP cell, it is not required to store. If

a fixed-size cell header belongs to an EoP cell, it is stored in a FIFO queue. The EoP

cell header which is stored in FIFO can also be treated as variable size packet header

since fixed-size cell header which belongs to EoP cell is same with the variable size

packet header except 27th bit(EoP) which is unimportant in the variable size packet

header(Table 4.1). Then, when the output line is physically available, the variable

size packet header in the FIFO queue is read and transferred to the output line. At

that time, payload part of the packet is assumed to be read from queue in which it

is stored. The amount of the payload data is decided by examining the header since

header includes the information of packet’s size. That process is repeated for each

time slot.

4.2 The Time Slot Trigger Block

Time slot trigger block informs the other blocks of the beginning of the time slot

period. The time slot trigger block is the master of the all processes. There are two

input signals of the time slot trigger block which are clock and reset. The time slot

trigger block produces a signal which is high for one clock duration in each time slot

as it can be seen in Fig. 4.3.

Figure 4.3: Time slot trigger block simulation screen

There is a counter inside that block and counter’s value is compared with a pre-

defined value. The pre-defined value is calculated depending on the clock frequency

and time-slot period. When the value of the counter is reached to pre-defined value,

output signal is produced as a one-clock pulse. The output signal is connected to

request_generate_command pin of input line blocks and control_queue_cmd pin of

the output line blocks. It triggers all input line blocks and output line blocks at the

same time. To this end, time slot trigger block synchronizes all input line blocks and

output line blocks for each time-slot.
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4.3 The Input Line Block

Figure 4.4: General view of an input line block

In the input line block, the variable size packets are welcomed by the fixed-size cell

header creator block as shown in Fig. 4.4. The fixed-size cell header creator block

checks the packet’s size field in the variable size packet header. Depending on the

packet’s size value, new fixed-size cell headers are produced. For example, if the

packet’s size equals 2 in the variable size packet header, two fixed-size cell headers

will be created. That is, the variable size packet headers are segmented into fixed-size

cell headers by that block.

Then, flow id block classifies the incoming fixed-size cell headers depending on their

class types. After that block, there are 2 virtual output queue receiver modules as

shown in Fig. 4.4. The virtual output queue receiver modules are responsible for

writing the fixed-size cells to related VOQs depending on their destination addresses.

There are 2 VOQ blocks in each input line block as it can be seen in Fig. 4.4. The

number of the virtual output queue receiver modules and VOQs blocks are decided

by the number of class types. VOQs are grouped according to the priority level.

Each VOQs blocks has its own requests for the output ports. The IMC controller block

decides the final request of the input line block depending on the 2-LLP IMC VOQ

algorithm which is explained in chapter 3. The different IMC VOQ algorithms can

be implemented in order to provide different QoS requirements. After IMC controller

block transmits final request to the fabric scheduler, the fabric scheduler decides the

42



input-output matching decision. The matching decision is immediately sent to input

line blocks. The fabric scheduler is connected to input line blocks as shown in Fig.

4.1. The matching decision informs the input line block about output line block with

which it is matched. Moreover, there are multiple queues for each output port. The

information about whether flow2 VOQs or flow1 VOQs is going to be read is given

to VOQ output analyzer block from IMC controller block. Depending on these two

instructions, VOQ output analyzer reads related queue. After it’s completing the

reading, the fixed size cell header which is read from the queue is transmitted to

switch fabric model.

4.3.1 The Fixed-size Cell Header Creator Block

The fixed-size cell header creator block inputs the variable size packet headers. Ac-

cording variable size packet headers, it produces fixed-size cell headers. The fixed-

size cell header creator block has 4 input signals 2 of which are clock and reset as

shown in Fig. 4.5. packet_header_en signal indicates whether packet_header signal

contains valid data or not, at that time. It is a 1-bit signal. packet_header is a 32-

bits signal which represents the content of the incoming packet header. There are 2

output signals. At the output, 1-bit cell_header_en signal shows validity of 32-bits

cell_header signal which represents the content of the new produced fixed-size cell

headers after segmentation.

Figure 4.5: Fixed size cell header creator block

When the variable size packet header of the packet is received by fixed-size cell

header creator block , the process starts. The whole packet’s finishing is not required

unlike the store and forward mode as it is done in[28].

In the fixed-size cell header, 27th bit indicates the end of packet. In the last cell of

the variable size packet after segmentation, 27th bit is set to 1 in order to indicate
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segmentation process is complete and that is the last fixed-size cell of that variable

size packet.

According to packet’s size field which is defined in variable size packet header, the

number of new fixed-size cell headers are determined. When packet_header_en sig-

nal is active, packet’s size field in packet_header signal is examined and depending

on packet’s size field new fixed-size cell headers are produced after 3-clocks delay.

That delay is constant for all variable-size packet headers. It does not matter whether

the length of the variable size packet equals to one fixed-size cell or to eight fixed-size

cells. It is required to analyze packet’s size field.

In [28], it is explained that in order to overcome the segmentation overheads, new

produced headers must be processed faster than the packet line speed (PLS : packet

line speed, ILS: internal line speed).On the other hand, in our implementation, PLS

equals to ILS since payload part of the packets are stored in the different RAMs as

mentioned in 4.1.

Figure 4.6: Fixed-size cell header creator block simulation screen

In the Fig. 4.6, when packet_header_en is active, packet_header is 0x44000000.

According to variable size packet header format, that header belongs to high prior-

ity class since 30th bit is 1. The destination address field in packet_header is "00"

which states output port 1. The packet’s size is 5 which is defined by 26,25 and

24th bits as "100". Thus, at the output of the fixed-size cell header creator block,

cell_header_en signal is produced as logic high for 5 clocks. That means 5 new fixed-

size cell headers are produced. The contents of the new produced fixed-size cell head-

ers are represented by cell_header signals as 0x44000000, 0x43000000, 0x42000000,

0x41000000 and 0x4C000000. All of them are identically same with the incoming

variable size packet header except the EoP(27th) and packet’s size(26th-24th) fields.

The packet’s size information in the first 4 of the fixed-size cell headers will not be

used since the cells which are not EoP are discarded at the output line block. Thus, in

those cell headers packet’s size information is irrelevant as it is explained in 4.2. In
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the last cell header which is 0x4C000000, packet’s size and EoP bit information will

be used at the output line blocks. For the last cell header, EoP bit is 1 which states

that the related cell is end of packet. Moreover, in the last cell header packet’s size

bits are "100" which states a packet size of 5 same with the packet’s size field in the

original variable size packet header.

4.3.2 The Flow Identification Block

The flow identification block separates the fixed-size cell headers according to their

class types. The flow identification block has 4 input signals 2 of which are clock and

reset,in Fig. 4.7. 1-bit cell_header_en signal and 32-bits cell_header signal come

from the fixed-size cell header creator block. At the output of flow identification

block, there are 4 signals, 2 of them go to one VOQs block storing the cell headers of

the high priority class (flow 2), the other 2 of them go to the other VOQs block storing

the cell headers of the low priority class (flow 1). f low2_header and f low1_header

32-bits signals represent the content of the cell headers after flow identification block.

f low2_header_en and f low1_header_en signals show the validity of the related cell

header signals.

Figure 4.7: Flow identification block

In the fixed-size cell header 30th bit defines the class of the cell. According to classes,

cells are identified and transferred to related VOQs blocks.

When cell_header_en signal is 1, the cell’s class field is examined. Depending on the

cell’s class field in the fixed-size cell header, f low2_header_en or f low1_header_en

signal is asserted to 1 and incoming cell_header signal is transmitted to f low2_header

or f low1_header signal.
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4.3.3 The Virtual Output Queue Receiver

The virtual output queue receiver block separates the fixed-size cell headers according

to their destination addresses in order to transfer them to the related queues in the

VOQs blocks. As it can be seen in Fig. 4.4, there are 2 virtual output queue receiver

blocks in an input port since the implementation supports 2 class types.

The L sign in the signal names represent the class type and L can be 1 or 2 in our

implementation. Moreover, the J sign in the signal names represent the output port

number and J can be 1,2,3 or 4 in our implementation. These rules are generally

followed while naming the signals.

The virtual output queue receiver block has 1-bit f lowL_header_en signal and 32-

bits f lowL_header signals which come from flow identification block. Additional

to these signals, clock and reset signals are connected to this block as shown in

Fig. 4.8. In our implementation, a VOQs block consists of 4 queues since there

are 4 output ports. Thus, there are 4 pairs of 32-bit f lowL_queueJ_header sig-

nal and 1-bit f lowL_queueJ_header_en signal at the output of the VOQ receiver

block. Each pair is connected to the related queue in VOQs block. For example,

f lowL_queue1_header and f lowL_queue1_header_en are connected to the queue 1

in the VOQs block storing the cells of f lowL as shown in Fig. 4.4.

Figure 4.8: VOQ receiver block

In the fixed-size cell header 29th and 28th bits define the destination of the cell. When

f lowL_header_en signal is active, depending on the cell’s destination address field,

related output signal pair is activated. In this way, cell headers are transferred to the

related queue in the VOQs block by the virtual output queue receiver block.
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Figure 4.9: VOQ receiver block simulation screen

After segmentation, fixed size cell headers must be submitted to related VOQs. In the

Fig. 4.9, new cell headers which are produced by fixed-size cell header creator block

such as 0x44000000, 0x43000000, 0x42000000, 0x41000000 and 0x4C000000 can

be seen. Here, 30th bits which are all 1 define that these cells belong to the high

priority class(flow 2). 29th and 28th bits define the destination port which is output

port 1. Thus, all of the produced cell headers are written to queue 1 which is located

in the flow 2 VOQs block. In order to write that queue, f low2_queue1_header_en

signal is asserted and the cell headers are transmitted through f low2_queue1_header

signal as shown in Fig. 4.9.

4.3.4 The VOQs Block

The VOQs block stores the fixed-size cell headers in different queues depending on

their destination address. In an input line block there are 2 identical VOQs blocks as

shown in Fig.4.4. Furthermore, in an input line block, the candidate requests belong-

ing to a priority level is created by the VOQs block.

There are 4 queues in an VOQs block, each one of the queues stores the cell headers

which are destined to different output ports. One queue inputs 1 pair of 1-bit write en-

able signal and 32-bits data signal for write operation. 32-bits f lowL_queueJ_header

signals are connected to write data signals of the queues and 1-bit flowL_queueJ_

header_en signals trigger the write enable signal of the related queues as seen in Fig.

4.10. On the other hand, f lowL_queueJ_rd_en signals are connected to read enable

pin of the queues. f lowL_queueJ_rd_data signals indicate the content of the data
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that is read from the queues. request_ f lowL is a 4-bits signal which represents the

candidate request from the VOQs block. The width of that signal equals the num-

ber of the queues in VOQs block since each bit of request_ f lowL signal indicates

whether there is a request from related queue or not. For example, if there are re-

quests form queue 1 and queue 3, 0th and 2nd bits of the request_ f lowL signal is set

to 1, "0101". That is, there are candidate requests for output port 1 and port 3 from

that priority level.

Figure 4.10: VOQs block

The queues are implemented as 1Kx32bits FIFO on FPGA by using LogicCore IP

FIFO Generator[40]. The LogicCore IP FIFO Generator can create FIFO blocks by

using block RAMs or distributed RAMs inside the FPGA. FIFO blocks have an output

signal as empty flag which is asserted high when the FIFO contains at least one data.

Thus empty flag can be used to understand whether a queue has a request or not. Thus,

4-bits request_ f lowL signal is concatenation of the empty flags of the FIFOs. On the

other hand, the empty flag’s being updated by FIFO lasts 2-clocks after the data is

written to related FIFO if FIFO is previously empty. Thus, related request_ f lowL

signal is updated 2-clocks after the data is written to FIFO.

In Fig. 4.11, request_ f low2 signal changes its state from "0000" to "0001" which

shows that there is a packet in the queue 1 of VOQs block storing the cells of flow2.

There is no cell in the VOQs block of flow1 so request_ f low1 signal remains "0000".

The change in request_ f low2 signal happens 2-clock after the first data is written to
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related queue as seen in Fig. 4.11.

Figure 4.11: VOQs block simulation screen

4.3.5 The IMC Controller Block

There are two candidate requests for each output port in an input line block. The IMC

controller block is the intelligent block which decides the request signal which is sent

to fabric scheduler from an input line block among those candidate requests. In that

implementation, IMC controller block determines the final request depending on the

2-level limited prioritized IMC VOQ algorithm which is explained in chapter 3.

Figure 4.12: IMC controller block

In Fig. 4.12, 4-bits request_ f low1 and request_ f low2 signals which come from

the VOQ blocks are input signals of IMC controller block. request_ f lowL signals

transfer the candidate requests of the VOQs blocks to the IMC controller block.

request_generate_command which is a one-clock pulse signal is the trigger pin of

IMC controller block which starts the process of that block. request_generate_com-

mand signal comes from the time-slot trigger block and starts the process once for

each time-slot period. At the output side, f inal_request_en is the validity signal for

4-bits f inal_request signal which represents the final decided request signal of that

input line block. request_ f low_id signal indicates final request comes from which

VOQs blocks, flow 1 or flow 2. In the algorithm 2, that signal is equivalent to the
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variable LastChosenPriorityLevel.

f inal_request_en signal is produced as one-clock pulse signal one-clock after re-

quest_generate_command is active.

Figure 4.13: IMC controller block simulation screen

In the Fig. 4.13,when request_generate_command is active, the request signal from

flow1 is "0000" which means that there is not any request for any output ports. On

the other hand, the request signal from flow2 is "0001" which means that there is a

request for output port 1 from that input port. 2-level limited prioritized algorithm

chooses priority level 2 in the Fig.4.13. Then VOQs block of flow 2 is given right to

send requests. Thus, final request is asserted as "0001" from VOQs block of flow2.

Moreover, when f inal_request_en signal is active, f inal_request signal is "0001"

and request_ f low_id signal is ’1’. The request_ f low_id signal’s being 1 shows that

final request comes from VOQs block storing the high priority cells(flow 2). That is,

0th bit of the f inal_request signal is set that represents a request to output port 1 from

that input port.

4.3.6 The VOQ Output Analyzer Block

The VOQ output analyzer block reads the one of the queues in 2 VOQs blocks de-

pending on the fabric scheduler decision for each time slot. Then, transfers the read

data to the switch fabric.

The VOQ output analyzer block contains two read interfaces for two VOQs blocks as

shown in Fig. 4.14. 1-bit decision_en signal is the validity signal for 4-bits decision

signal which represents the input-output matching decision of the fabric scheduler for

the related input port. Those signals come from fabric scheduler block. Each bit of
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the decision signal represents the decision of an output port. The number of bit which

is 1 in decision signal, represents the number of output port which is matched with

that input. For example, if decision signal is "0100", the output port 3 is matched

with the input which is informed with that decision signal. request_ f low_id signal

comes from the IMC controller block. f lowL_queueJ_rd_en signals are connected

to the read enable pin of the queues in VOQs blocks. f lowL_queueJ_rd_data signals

represent the data which is read from the queues. cell_header_en_out is validity

signal for 32-bits cell_header_out signal which represents the cell headers which is

read from VOQs. cell_header_en_out and cell_header_out signals are connected to

switch fabric module.

Figure 4.14: VOQ Output Analyzer block

VOQ output analyzer checks the request_ f low_id signal coming from request ana-

lyzer block. request_ f low_id indicates that queue which is going to be read belongs

to flow 1 VOQs block or flow 2 VOQs block. Additional to that signal, 4-bits decision

signal coming from fabric scheduler is examined by the VOQ output analyzer block.

decision signal points to the right queue among the queues in the selected VOQs

block, flow 1 or flow 2.

After which queue is going to be read is decided, cell header is read and transferred

to the switch fabric. The cell_header_out signal and cell_header_en_out signal are

valid 2 clock cycles after decision_en is active.
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Figure 4.15: VOQ Output Analyzer simulation screen

In the Fig. 4.15 , after f inal_request signal is generated by the input line block, the

fabric scheduler decides the matching decision 6 clocks later. The 6-clocks delay of

the fabric scheduler block is explained in section 4.4. When decision_en signal is 1,

the decision signal is "0001" which means that output port 1 accepts the request of

the input line block receiving that decision signal. In the Fig. 4.15, all represented

signals belong to the input line block 1 (input port 1). In other words, the decision

signal’s being "0001" means that the fabric scheduler matches input port 1 and out-

put port 1. request_ f low_id signal represents the class type, 1 means high priority

class VOQs(flow 2). Thus, VOQ analyzer block selects flow 2 VOQs by examining

request_ f low_id signal. Then among the queues in VOQs block of flow 2, queue

1 is chosen to read since output port 1 is matched with that input port. After read-

ing the queue, VOQ output analyzer block transfers the cell header to switch fabric

block. cell_header_en_out and cell_header_out signals represent the cell header go-

ing to switch fabric module. The cell header which was written to output queue 1 in

high priority class VOQs block (0x44000000) can be seen as the cell header going to

switch fabric module, in the Fig. 4.15. The field of timer in the cell header is "00000"

which states that the packet enters into the router in the time-slot of 0.

4.4 The Fabric Scheduler

The fabric scheduler block which is represented in Fig.4.16 finds a matching between

4 input and 4 output pairs in each time slot by implementing iSLIP algorithm. 1-

iteration’s result can be obtained after 2 clock cycles in our implementation. Accept

and Grant arbiter priority pointers are updated 2 clock cycles after the first iteration

is completed. Moreover, our implementation has ability to make second iteration. In

order to start the second iteration, request mask signals must be waited. The request
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mask signals for further iterations are updated at the same time with priority pointers.

If the fabric scheduler is implemented with 2 iterations, it takes 6 clock cycles; 2

clocks for 1st iteration, 2 clocks for request mask signals’ update and 2 clocks for

2nd iteration. The iSLIP algorithm does not update arbiter priority pointers after the

second iteration. Moreover, the second iteration process use same resources with the

first iteration. Thus, it does not increase resource usage dramatically.

The fabric scheduler consists of request creator, request masking, grant arbiters, grant

arbiters to accept arbiters, accept arbiters, arbiter pointer updater and combining iter-

ations sub-blocks.

Figure 4.16: iSLIP Fabric Scheduler

The 1-bit request_valid signal is asserted high for one clock in each time slot. That

signal initiates the fabric scheduler decision process. After completing decision, 1-

bit f inal_iteration_decision_enable signal is driven to high for one clock and the

decision of the fabric scheduler is transmitted to input line blocks through 4-bits

f inal_decision_ f or_inputI signals. Note that, the I sign in the signal names rep-

resent the input port number.

4.4.1 The Request Masking Block

The request masking block prevents that matched input and output ports are involved

in second iteration. With the help of that block, input-output pairs which are already

matched in the first iteration are not included in the second iteration.

The request masking block which can be seen in Fig. 4.17, has inputs as 4-bits
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request_ f rom_inputI signals which come from input line blocks outside the fab-

ric scheduler block and 4-bits request_mask_inputI internal request mask signals

which are produced inside the fabric scheduler block. Moreover, as an output 4-bits

request_ f or_GrantArbiterJ signals are distributed to related grant arbiters.

request_ f rom_inputI signals and request_mask_inputI signals are logically ANDed

by request masking block. request_mask_inputI signals are produced for next itera-

tions after the first iteration.

If only one iteration is required, that block can be discarded from the design. Request

masking block does not include reset and clock signals thus it can be said that the

request masking block is designed as a combinational circuit.

Figure 4.17: iSLIP Fabric Scheduler detailed-1

4.4.2 The Request Creator Block

The request creator block produces the second trigger signal for second iteration. The

request creator block has an input as 1-bit request_valid signal which comes from

input line blocks. Moreover, it has an output 1-bit request_enable_int signal which

is connected to grant arbiter blocks, in Fig. 4.17.

request_valid signal which comes from input line blocks begins the fabric scheduler

process. After the first iteration is completed, in order to start the second iteration,

internal trigger signal must be produced. request_enable_int signal triggers the grant
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arbiters and fabric scheduling process. 2 clocks for first iteration and 2 clocks for

mask signals’ being ready should be waited for the second iteration. To this end,

when external request_valid signal is high, request_enable_int signal is asserted to

high in order to start the first iteration. Then, 4 clocks later request_enable_int signal

is asserted to high for second time in order to induce the second iteration.

Figure 4.18: The request creator block simulation screen

In the Fig. 4.18, request_enable_int signal is asserted high at the same time with the

request_valid signal for the first time. Then, it is asserted high again after 4-clocks

delay. To this end, the grant arbiters and fabric scheduling process are triggered for 2

times (for 2 iterations) in each time slot.

4.4.3 The Grant Arbiter Block

The grant arbiter block chooses the request which is closer to the highest priority

pointer. The grant arbiter blocks have inputs as 1-bit request_enable_int coming from

request creator block, 4-bits request_ f or_GrantArbiterJ coming from the request

masking block and 2-bits highest_priority_ f or_GrantArbiterJ signal which shows

the priority pointer for related arbiter, in Fig. 4.17. Depending on the input signals, 4-

bits decision_ f rom_GrantArbiterJ signal which is connected to accept arbiters will

be produced.

The grant arbiter block consists of 3 sub-blocks such as sampling unit, programmable

priority encoder and decoder blocks. These sub-blocks are connected to each other as

seen in Fig. 4.19.

When request_enable_int signal is active, the block starts and the overall process of

the grant arbiter block takes 1 clock period for buffering by the sampling unit plus

the propagation delay because of the combinational logic of the programmable prior-

ity encoder and the decoder blocks. The input signals are buffered by the sampling
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Figure 4.19: The sub-blocks of the grant arbiter block

unit since the rest of the blocks work asynchronous. The buffering input signals re-

sults in 1 clock delay. Then, the programmable priority encoder and the decoder

blocks which are designed as combinational circuit result in low propagation delay

when it is compared with the clock period. request_enable_int_bu f x1 signal is 1-

clock buffered form of the request_enable_int signal which is valid signal of the

decision_ f rom_GrantArbiterJ signal, the decision signal of the grant arbiter block.

Figure 4.20: The grant arbiter simulation screen

In Fig. 4.20 , request_for_GrantArbiter1 signal is "1101" which means that there are

requests from input 1, input 3 and input 4. highest_priority_for_GrantArbiter1 signal

is "01" which means input 2 has highest priority at that time. To this end, input 3

has the highest priority among the inputs which sent requests. Thus, decision_from_

GrantArbiter1 signal is "0100" which states that input port 3 is granted, at that time.

When request_enable_int_bufx1 signal is asserted to high, decision_from_GrantAr-

biter1 signal is ready.

4.4.3.1 The Sampling Unit

When req_en signal is active, input_vector and 2-bits the_highest_priority signals

are sampled and transferred to output signals. The other sub-blocks are designed as

combinational circuit thus the input signals of the grant arbiter block must be sampled
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when req_en signal which shows the validity of input signals is 1. In this way, input

signals’ changing state when validity signal is not active, does not affect the rest of

the process.

4.4.3.2 The Programmable Priority Encoder Block

The programmable priority encoder block searches bits of the 4-bits input_vector_

int signal if it is 1 or 0, starting from the bit which is defined by 2-bits the_highest_

priority_int signal in ascending order. When it hits the first 1, the number of that bit

is displayed as 2-bits priority_encoder_output_vector signal in the output together

with the output_valid signal. If there is not any 1 in the input_vector_int signal, the

output_valid signal will not be asserted to high.

When input_vector_int signal does not contain any 1, the value of the priority_en-

coder_output_vector signal is defined as highZ. Thus, output_valid signal is nec-

essary in order to understand when the input_vector_int signal is all 0 since highZ

signal can trigger the decoder block in unpredictable way.

4.4.3.3 The Decoder Block

The decoder block checks output_valid signal. If that signal is 0 which means pri-

ority_encoder_output_vector signal is not valid, output_vector will be "0000". If

output_valid signal is 1 which means related signal is valid, priority_encoder_out-

put_vector signal will be decoded as output_vector.

Figure 4.21: The decoder block simulation screen

In Fig. 4.21 , when req_en signal is active for the first time, input_vector is "0111"

and the_highest_priority signal points to "3". Depending on these signals, pro-
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grammable priority encoder block outputs "00" since 3rd bit is ’0’ and the closest

’1’ in ascending order exists in the 0th bit. Moreover, decoder block decodes "00"

signal as "0001".

When req_en signal is active for the second time, input_vector is "0000". Thus en-

coder block does not make output_valid signal is active. If the output_valid does

not exist in the design, when input_vector is "0000", programmable priority encoder

block gives output as "XX" (don’t care). Therefore, the decoder block will give un-

defined output depending on its input signal "XX" if output_valid signal is not used.

4.4.4 The Grant Arbiters to Accept Arbiters Switch Block

This block transfers the decisions from grant arbiters to related accept arbiters.

The grant arbiters to accept arbiters switch block which has inputs as 4-bits decision_

from_GrantArbiterJ and outputs as 4-bits grant_ f or_AcceptArbiterI can be seen in

Fig. 4.17.

Each bit of the decision_from_GrantArbiterJ signal represents an input line block.

When grant arbiter J grants an input line block, the related bit in the decision_from_

GrantArbiterJ signal will be high. On the other hand, each bit of grant_for_Accep-

tArbiterI signal represents an output line block. When there is a grant from an output

line block for input line block I, related bit in the grant_ f or_AcceptArbiterI signal

will be high.

While connecting the outputs of the grant arbiters to the inputs of the accept arbiters, it

is required that the decision_from_GrantArbiterJ signals must be arranged as grant_

for_AcceptArbiterI signals.

The grant arbiters to accept arbiters switch block is designed as a combinational cir-

cuit. Thus, the output signals are produced in a period which is shorter than a clock

cycle. Thus, request_enable_int_bufx1 signal which is synchronous with decision_

from_GrantArbiterJ signals is still synchronous with grant_for_AcceptArbiterI sig-

nals which are output signals of that block.

Consider that, the outputs of the grant arbiter blocks are connected to inputs of accept
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Figure 4.22: iSLIP Fabric Scheduler detailed-2

arbiter blocks through a combinational grant arbiters to accept arbiters switch block.

Thus, the buffering structure at the input of the arbiter blocks are also useful for

decreasing the combinational path length.

4.4.5 The Accept Arbiter Block

The accept arbiter blocks in Fig.4.22 have the same structure with the grant arbiter

blocks in section 4.4.3. The decision takes 1 clock cycle like the grant arbiter blocks.

First_iteration_decision_enable signal is 1 clock buffered form of request_enable_

int_bufx1 signal which can be used as validity signal with decision_from_AcceptAr-

bitersI which are the decision signals of the accept arbiter blocks. decision_from_

AcceptArbitersI signals also show the final decision of the iSLIP fabric scheduler for

related time-slot.

Each bit of the decision_from_AcceptArbitersI signal represents an output line block.

When accept arbiter I accepts an output line block, related bit in the grant_for_Ac-

ceptArbiterI signal will be high.
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4.4.6 The Arbiter Pointer Updater Block

According to the decision of the first iteration, arbiter priority pointers are updated

and request mask signals are generated. Request mask signal is used in the second

iteration in order to define the matched pairs in the first iteration. To this end, the

arbiter pointer updater block is responsible for producing mask signals and updating

the arbiter pointers.

Figure 4.23: The arbiter pointer updater block

The arbiter pointer updater block in Fig.4.23 analyzes 4-bits decision_from_Accep-

tArbiterI when 1-bit first_iteration_decision_enable signal is high. These signals rep-

resent the matching decision of the iSLIP fabric scheduler after 1st iteration. Depend-

ing on the matching decision of the fabric scheduler, four 2-bits highest_priority_

for_AcceptArbiterI, four 2-bits highest_priority_for_GrantArbiterJ and four 4-bits

requset_mask_inputI signals are produced.

Each requset_mask_inputI signal represents an input line block. Each bit of the

requset_mask_inputI signal represents an output line block. When an output line

block is free for the second iteration, the related bit in requset_mask_inputI signal is
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asserted to high.

first_iteration_decision_enable signal triggers the arbiter pointer updater block. That

block gives output 2 clocks after it is triggered. When outputs of that block is ready,

the grant arbiter blocks are triggered for the second iteration by request creator block.

After the second iteration, arbiter priority pointers are not updated. Thus, only first_

iteration_decision_enable triggers that block.

Figure 4.24: The arbiter pointer updater simulation screen

In the Fig.4.24, when f irst_iteration_decision_enable signal is active, the decisions

of the accept arbiters are "0010", "0100", "0000" and "1000" which shows that input

port 1 accepts output port 2, input port 2 accepts output port 3, input port 3 does

not accept any of output ports and input port 4 accepts output port 4. After the first

iteration is decided, with a 2-clocks delay, priority signals and request mask signals

are updated as seen in Fig.4.24. After the first iteration, among input ports only input

port 3 is free. Thus, request mask for input 1,2 and 4 are all 0. Moreover, among

output ports only output port 1 is free. Thus, in the request_mask3 signal only 0th bit

representing the output port 1 is set to 1. With those request_maskI signals, in the

second iteration, only request from input port 3 to output port 1 is allowed if there is

a request.
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4.4.7 The Combining Iterations Block

The combining iterations block is required to combine the matching decisions of the

first iteration and other iterations if there are any. If only one iteration is supported,

that block will be discarded from the design.

After the first iteration is completed, the request creator block produces another trig-

ger signal for the second iteration. The matched pairs are not included in the second

iteration. Thus, results of the each iteration must be stored independently and then

they must be combined at the end.

The combining iterations block has inputs as first_iteration_decision_enable signal,

second_iteration_decision_enable signal and 4-bits decision_from_AcceptArbiterI as

seen in Fig.4.22. There is an output as 1-bit final_iteration_decision_enable signal

which shows validity for the other output 4-bits final_decision_for_inputI signals.

These output signals go outside the fabric scheduler block and they are connected to

related input line blocks.

The combining iterations block stores the result of the first iteration when first_itera-

tion_decision_enable signal is active. When the second iteration is complete, whole

results are combined by that block. final_iteration_decision_enable signal defines

that final input-output matching decision of the scheduler is ready.

Figure 4.25: The combining iterations block simulation screen

In Fig. 4.25, after the first iteration input 1 and output 4, input 2 and output 3, input

4 and output 2 are matched according to the decision_from_AcceptArbiterI signals

and the first_iteration_dec_en signal. After the second iteration, it is seen that input
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3 and output 1 is also matched according to decision_from_AcceptArbiterI signals

and second_iteration_dec_en signal. The combining iterations block combines the

results of these 2 iterations as final decision. Then, final_iteration_decision_enable

signal shows that final_decision_for_inputI signals are valid when it is asserted to

high(logic ’1’).

4.5 The Switch Fabric Block

The switch fabric block models the switch fabric. In the FPGA design, according to

the matching decision of the fabric scheduler, the connections between matched input

and output ports will be realized by switch fabric module in each time slot. Then,

cell headers which are read from VOQs in input line blocks are transferred to related

output line blocks through the switch fabric block.

Figure 4.26: The switch fabric block

4x4 crossbar switch fabric is designed depending on the mux-based crossbar switch

architecture in [39]. In this structure, all input ports are connected to each output port

through a multiplexer. In our design, a pipeline register is inserted at the output of
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each multiplexer in order to minimize critical path delay as it is advised in [39].

The interfaces of the switch fabric block are represented in Fig.4.26. 1-bit final_iter-

ation_decision_enable signal and 4-bits final_decision_for_inputI signals come from

the fabric scheduler block. Depending on those signals, the connections inside the

switch fabric block is made for each time-slot. 32-bits cell_header_out_ f rom_inputI

signals and 1-bit cell_header_en_out_from_inputI signals come from input line blocks.

Moreover, 32-bits cell_header_to_outputJ signals and 1-bit cell_header_en_to_out-

putJ signals go to output line blocks.

After the switch fabric configuration is done, transferring from input line blocks to

output line blocks takes 1 clock cycle due to the pipeline registers at the end of the

switch fabric block.

Figure 4.27: The switch fabric block simulation screen

In the Fig.4.27, when final_iteration_decision_enable signal is active, according to

the final_decision_for_inputI signals, input 1 and output 1, input 2 and output 4, input

3 and output 2, input 4 and output 3 are matched. According to the final decision,

VOQs in the input line blocks are read. The switch fabric block transfers the cell

headers from the input line blocks to the output line blocks with one clock delay as

seen from the Fig.4.27.

The cell header which is read form the input line block 1 is 0x0800000B. Depending

on the cell header format in Table4.2, that is a flow 1 cell whose destination is output

port 1. Thus, related cell header is written to output 1, one clock after that it is read
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from input line block.

The cell header which is read form the input 2 is 0x3810000D. Depending on the cell

header format, that is a flow1 cell whose destination is output port 4. The related cell

header is written to output port 4, one clock after that it is read from input line block.

The cell header which is read form the input 3 is 0x5820000D. Depending on the cell

header format, that is a flow2 cell whose destination is output port 2. The related cell

header is written to output port 2, one clock after that it is read from input line block.

Moreover, the cell header which is read form the input 4 is 0x28300005. Depending

on the cell header format, that is a flow1 cell whose destination is output port 3. The

related cell header is written to output port 3, one clock after that it is read from input

line block.

4.6 The Output Line Block

The output line block is designed to handle with the variable-size packets. It is re-

sponsible for reassembling of fixed-size cell headers into the original variable size

packet headers. Thus, if the implementation does not support variable-size packets,

there is no need to output line block and it can be discarded from the design.

The output line block welcomes the fixed-size cell headers which are represented

by signal pairs of 1-bit cell_header_en validity signal and 32-bits cell_header signal

coming from the switch fabric block. The output line block has control_queue_com-

mand signal which comes from time-slot trigger block in Fig.4.28. The output signals

of that block 32-bits packet_header_out signal and 1-bit packet_header_en_out sig-

nal which represent the variable packet headers which are sent out from the router.

Figure 4.28: The output line block
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At the beginning, the incoming cell headers are welcomed by EoP checker block

which checks whether cell headers are EoP or not. Then, EoP cell headers are stored

in a queue. When output line is physically available, the packet headers are read

from the queue and they are placed on the output line. The output line block is

mainly designed in order to reassemble variable-size packets which are segmented

into fixed-size packets at the input line block.

4.6.1 The EoP Checker Block

The End of Packet checker block decides that cell headers are End of Packet or not.

If the cell headers does not belong to EoP cells, they are not transmitted to output of

the EoP checker block;in other words, they are eliminated.

EoP checker block has inputs 32-bits cell_header signal and cell_header_en signal.

1-bit EoP_header_en and 32-bits EoP_header signals are the outputs of the EoP

checker block as seen from Fig.4.28.

The EoP checker block checks the EoP field in the cell headers, when validity signal

cell_header_en is high. The EoP_header_en signal is not asserted to high for cell

headers which are not EoP. In that way, the cell headers which are not EoP are not

submitted to the output queue block. The process of EoP checker block takes 1 clock

cycle.

The EoP cell headers include all necessary information such as packet’s size about

variable-size packets. Thus, the other cell headers belong to same variable-size pack-

ets are not required to be stored in the queue. Hence, only EoP cell headers are written

to output queue block.

Figure 4.29: EoP block simulation screen-1
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In Fig. 4.29, at the input side, the cell_header signal is 0x4C000000 when the cell_

header_en is high. The EoP field of the cell header states that the cell header is EoP.

Thus, it is submitted to the output of the EoP checker block with a 1-clock delay. One

clock after cell_header_en is high, EoP_header_en signal is asserted high and the

content of the cell_header signal is copied to the content of the EoP_header signal.

Figure 4.30: EoP simulation screen-2

In Fig. 4.30, at the input side, the cell header is 0x44000000 when the cell header is

valid. At the output side, EoP_header_en signal is not asserted to high after 1 clock

cycle since the cell header is not EoP. In other words, the cell header is discarded

since the EoP field in the cell header is not set to 1.

4.6.2 The Output Queue Block

The output queue block stores the cell headers which are EoP cell. The output queue

is implemented as 1kx32 bits FIFO on FPGA with same procedure with the queues

in VOQs blocks(Section 4.3.4).

The EoP cell headers are written to the output queue block. The header of a packet

and EoP cell header which is the last cell of that packet are same except the EoP field

in the fixed-size cell header. On the other hand, the EoP field is not used in variable

packet header format. Thus, the written cell headers can be used as variable packet

headers without any modifications.

4.6.3 The Output Line Controller Block

The output line controller block reads packet headers from the output queue block

and reserves the output line for defined packet size length which is stated in the packet
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header. When output line is physically available for new packet sending, the output

line controller block reads new packet header from the output queue block.

The output line controller block is directly triggered by 1-bit control_queue_command

signal which comes from time-slot trigger block outside the output line block. The

output line controller block has 32-bits queue_rd_data signal represents the content

of the packet header which is read from output queue block. 1-bit queue_rd_en signal

is produced by that block and it is connected to the output queue block in Fig.4.28.

Moreover, 32-bits packet_header_out signal and 1-bit packet_header_en_out signal

which represent the packet headers sent out to the output line.

Figure 4.31: output line controller simulation screen

In Fig. 4.31, when the data which is read from the queue is 0x4C000000, the output

line controller block holds the output line for 5 time slots and does not read any data

from the queue since packet’s size field in that header equals to 5. After completing

the transfer of the packet whose packet size is 5, output line controller block continues

reading next packet header from the queue. While output line controller block holding

output line for packet header 0x4C000000, the payload of that variable packet is

assumed to be read through payload switch fabric which is shown in Fig4.32.

The payload switch fabric architecture which is shown in Fig.4.32 is assumed to be

used to read payload parts of the packets. An output port can decide which RAM

is going to be read according to the field of the packet’s input address. The field of

packet’s size gives that how many bytes is going to be read from the queue.

When variable-size packet header is put on the output line, the packet’s size and input

address information can be acquired from the header. The payload switch fabric

is configured depending on the input address. Moreover, packet’s size information

defines the duration of that configuration. In that way, output port reads and outputs

the payload data by reading payload RAMs through payload switch fabric.
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Figure 4.32: General View of payload transfer

The payload RAMs are assumed to be designed in the same structure with VOQs in

the FPGA as it can be seen in Fig.4.32. Thus, different output ports are able to read

from the same input port at the same time. While working only with fixed size cells,

different output ports do not read same input port at the same time. On the other hand,

different output ports can read same input port at the same time while supporting

variable size packets. With that structure, the packet headers are transferred through

the switch fabric inside the FPGA and it is assumed that the packet payloads are

assumed to be transferred through second switch fabric outside the FPGA. Instead of

increasing hardware speed, the second alternative path is defined for payload transfer.
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CHAPTER 5

A GENERAL HARDWARE FRAMEWORK FOR FABRIC

SCHEDULER IMPLEMENTATION

The hardware blocks on the data plane are similar and can be reused for designing and

implementing different types of switch/router. Thus, previously designed blocks can

be used with minor changes in order to implement different routers. In an application-

specific integrated circuit(ASIC) design , it is not possible to change the design for

different requirements. However, FPGA devices provide programmable hardware de-

sign. With minor changes on the VHDL source codes, the port sizes can be increased

or decreased. Moreover, the number of priority levels which are supported can be

changed. Furthermore, the IMC request selection policy can be altered. Moreover,

different fabric scheduling algorithms can be realized. Thus, new routers for different

requirements can be easily designed and implemented on the FPGAs by doing minor

changes on the VHDL source codes.

In Chapter 4, the FPGA implementation which is designed for 4x4 2-LLP IMC VOQ

iSLIP router which supports 2 priority levels is explained in detail. Next, in this

chapter, firstly, changing the IMC request selection policy is explained. Secondly,

changing the number of the supported priority levels is discussed. Thirdly, chang-

ing the number of ports is discussed. Lastly, it is examined to create a switch with

different fabric scheduler algorithm such as DRR and PIM. What kind of changes

are required on VHDL codes are explained. Moreover, the effects of the changes on

FPGA resource usage are discussed.
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5.1 Changing the IMC request selection policy

The IMC request selection algorithm is implemented inside the input line block. The

IMC controller block which is represented in Fig.4.4 realizes the IMC request se-

lection algorithm. Different request selection algorithms can be realized inside that

block. As it is explained in Chapter 3, the request selection approaches can be catego-

rized into 2 groups as separated selection and combined selection. The implemented

input line block structure supports all prospective algorithms based on combined se-

lection approach. On the other hand, for algorithms based on separated selection

approach, flow id must be remembered for all output ports. Thus, the number of sig-

nals which carry flow id from IMC controller block to VOQ output analyzer block

must be equal to the number of the output ports. Additionally, the VOQ output an-

alyzer block must be modified in order to evaluate the incoming flow id module for

each output port, when separated selection approach is preferred.

5.2 Changing the number of supported priority levels

The multiple priority levels support is implemented inside the input line block (Fig.4.4).

If a change occurs in the number of priority levels, the flow id module, IMC controller

and VOQ output analyzer blocks are required to be updated. The virtual output queue

receiver and VOQ blocks are used without any modification. Only numbers of those

blocks change. The number of those blocks must equal to P which is the number of

priority levels.

While changing the number of the priority levels, the first change must be done on

the flow id module. The flow id module must have capability to separate coming cells

into P different interfaces, one interface for one priority level. In order to do that,

the designed flow id module must be updated. The same design procedure must be

followed for P different interfaces with the flow id block in our FPGA implementa-

tion. The flow id module is designed by using 1 to 2 de-multiplexers since the input

signal pair is de-multiplexed to 2 output signal pairs depending on the class type, in

our FPGA implementation. If there are P priority levels, 1 to P de-multiplexers must

be used.
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The IMC controller block chooses the final request among P candidate requests come

from the P VOQs blocks. The number of candidate request inputs in IMC controller

must be changed to P. On the other hand, the resource usage of IMC controller block

is tightly depend on IMC VOQ algorithm.

The number of read interfaces must be changed in the VOQ output analyzer block. In

that block, there are VOQs read interfaces which are responsible for reading VOQs

depending on the destination address. The number of read interfaces must be equal

to P.

The rest of the design, the fabric scheduler block, the output line blocks and the switch

fabric block can be used without any change.

To sum up, the resource usage of the input line blocks scales with O(P). The other

blocks stay constant while changing the number of supported priority levels.

5.3 Changing the number of the ports

In order to design with N input and output ports, the number of input line blocks and

output line blocks must be N in the Fig.4.1.

In the input line block (Fig.4.4), the virtual output queue receiver block must be

changed in order to write N queues. In order to do that, 1 to N de-multiplexer is

used. Moreover, the number of the queues inside the VOQs block must be changed

to N. These queues are implemented by using block RAM resources of the FPGA,

thus the block RAM usage changes with N in an input line block. The width of the

request signal changes to N since there are N candidate queues in each VOQs blocks.

Thus, IMC controller block candidate request inputs and final request output must be

updated since the width of the request signals changes to N. Moreover, the size of the

read interface inside the VOQs output analyzer must be enough to read N queues. To

this end, the width of the decision signal must be N since it represents the number of

queues in each VOQs block.

In the input line block, the RAMs usage changes with O(N) since N queues are imple-

mented by using block RAMs in the FPGA. The resource usage of a single input line
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block changes with O(N). The number of input line blocks changes with N. Thus,

total cost of the input line blocks scales with O(N2).

The request inputs and decision outputs of the fabric scheduler block (Fig.4.16) must

be updated in order to support new width of N. The changes in the fabric scheduler

block depend on the fabric scheduler algorithm. When iSLIP is implemented, the

number of the grant arbiters and accept arbiters must be changed to N. That is, there

are N2 connections between N accept arbiters and N grant arbiters. Furthermore, each

arbiter’s resource usage scales with O(N) since they give decision from N possible

options. Furthermore, iSLIP consists of 2N arbiters scaling with O(N). To this end,

resource usage of iSLIP fabric scheduler also scales with O(N2).

The switch fabric consists of N times 1-to-N multiplexers. Thus, it can be said that

the switch fabric module resource usage scales with O(N2).

The output line blocks can be used without any modification. Although the resource

usage of a single output line block does not change, total cost of output line blocks

scales with O(N) since the number of output line blocks must be updated to N.

To sum up, while changing the number of input and output ports to N, total cost of

input line blocks, iSLIP fabric scheduler and switch fabric module scale with O(N2).

On the other hand, total cost of output line blocks which are only necessary for vari-

able size packet support scale with O(N).

5.4 Changing the fabric scheduler

The fabric scheduler blocks have almost same interfaces. Thus, the fabric scheduler

blocks can be changed easily. In the Fig. 4.1, it can be seen that the fabric scheduler

block has connections with input blocks as request signals and decision signals. The

fabric scheduler block also sends the decision signals to switch fabric module.

With those interfaces any other fabric scheduler block can be plugged instead of iSLIP

fabric scheduler. For example, DRR[34] and PIM[33] algorithms have same interface

with iSLIP. Both of them evaluate the N-bit requests in order to give decision. Thus,

these types of fabric scheduler blocks can be placed instead of iSLIP without any
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modification on the rest of the design.

On the other hand, fabric scheduler algorithms can decide input-output matching de-

pending on the information from the input lines such as queue length. Our iSLIP

implementation only supports 1-bit request information for each output port from an

input port. That is, an input line block sends N-bits request signal, each bit of that

signal is transmitted to an output port arbiter in the fabric scheduler block. That signal

carries the information whether there is a request or not for each output port. In order

to send X-bits queue length information for each output port instead of 1-bit request,

1-bit request connections must be updated to X-bits. To this end, the N bits request

signals from input line blocks to fabric scheduler must be updated to NxX bits signals.

However, the decision signal is kept same as N bits since the decision signal informs

input line blocks and it is not related with the way how the fabric scheduler decideds.

That is, input-output matching decision can be submitted to input line blocks through

same N bits decision signals.
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CHAPTER 6

PERFORMANCE EVALUATION

The overall design must be functionally verified at the end of the design procedure.

In order to verify that overall design, the VHDL source codes are simulated by us-

ing MODELSIM. The necessary signals such as input packets and output packets are

written to text files cycle by cycle during the simulation which is carried on MODEL-

SIM. Next, these text files are processed by MATLAB in order to make them more

readable since signals are written as binary by MODELSIM. At the end, the results

are verified manually. After passing manual verification, the overall design is verified

by comparing the results with C++ based simulator which is proposed in [41].

The VHDL codes for complete designs 4x4 basic iSLIP, 4x4 2-LSP IMC VOQ iSLIP

and 4x4 2-LCP IMC VOQ iSLIP are produced in the manner which is described in

the chapter 5. Then, they are verified by C++ based simulator [41]. In this way, all

basic architectures are functionally verified.

The verified design results are used in order to calculate the packet delay and through-

put. MATLAB is preferred so that the packet delay and throughput of 4x4 basic iS-

LIP and 4x4 2-LLP IMC VOQ iSLIP are evaluated. The extensive simulations can be

found in [41].

After functional verification, the resource usage of designs are examined. The overall

designs are separately synthesized by Xilinx ISE 12.4 in order to determine the exact

FPGA resource usages for each design.

The VHDL codes for complete designs 4x4 basic iSLIP, 4x4 2-LLP IMC VOQ iSLIP

and 8x8 2-LCP IMC VOQ iSLIP are produced in a way that is described in the chapter
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5. Also, they are synthesized by Xilinx ISE 12.4. Firstly, 4x4 basic iSLIP and 4x4

2-LLP IMC VOQ iSLIP are compared with an aim to see the effects of changing

priority levels as it is discussed in chapter 5. Then, 4x4 2-LLP IMC VOQ iSLIP and

8x8 2-LLP IMC VOQ iSLIP are compared in order to see the effects of changing the

number of ports.

Note that, iSLIP algorithm is implemented with two iterations during the whole ex-

periments mentioned above: verification, simulations and resource usage analysis.

6.1 Behavioral Simulation of VHDL codes

Of the three simulation methods (behavioral, structural, and timing), the behavioral

simulation runs the fastest but provides the least design information [42]. Behav-

ioral simulation allows you to verify syntax and functionality without the information

on timing. During the design development, most of the verification is accomplished

through the behavioral simulation. After the required functionality is achieved, the

structural and timing simulation methods can be implemented to obtain more detailed

verification data. Behavioral simulation is performed by using a pre-synthesis Hard-

ware Description Language (HDL) description of the design [42].

Simulations of FPGA implementation is carried out by using MODELSIM. The sim-

ulations are implemented on RTL (behavioral) code, which does not cover timing

issues to verify its functionality.

In order to do RTL code simulation, input traffic is applied to the design under the test.

There are two ways of applying input traffic. In the first one, a VHDL block generates

a poisson traffic instantaneously during the simulation period. In the second one, the

packets are written as a text file before the simulation is started on MODELSIM

and during the simulation period this text file is read by a VHDL block. Here, the

sequence and content of the input packets are known before the simulation.

During the simulation, internal signals such as requests and priority pointers in each

time-slot are written to a text file by a VHDL block. At the end of the simulation, that

text file can be analyzed in order to verify that the design works correctly.
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Moreover, all packets at the input and output of the design are written as another text

file by a VHDL block in each time-slot. The text file includes the packets’ entering

and leaving time information. During the simulation, the size of text files is getting

bigger since in each time-slot new packets are added to them.

After completing the simulation on MODELSIM, result text files are processed by

using MATLAB. The simulation environment on MODELSIM is not as fast as MAT-

LAB while writing/reading the text files. Thus, the rest of verification work is carried

on MATLAB. With the help of MATLAB, the text files are rearranged in order to

make them more readable. Then, the functional behavior of the design is verified cy-

cle by cycle manually. Lastly, FPGA design is verified by the C++ iSLIP simulator

[41] in more detail by applying the same pre-defined text files which store input traffic

to C++ based simulator [41] and FPGA design.

6.1.1 Input Traffic Generation

In order to evaluate the performance of the designs, input traffics must be applied to

design under test. A VHDL block is written with the purpose to simulate the input

traffics. That block is not synthesized, but rather it is only used for simulation by

MODELSIM. The block generates poisson traffic for each input port. The traffic is

also uniformly distributed among output ports. The load of traffic can be changed.

Moreover, it is also possible to alter the percentage of the high priority class packets

and low priority class packets. That block generates the traffic randomly for each

experiment run-time. To verify the design with another simulation setup, another

VHDL block is written to apply input traffic. That block reads the input traffic from a

text file. In this way, the design under test can be verified with a pre-defined data set.

6.1.1.1 Poisson traffic generator VHDL block

The poisson traffic generator VHDL block uses ieee.math_real library which consists

of a random number generator. On the other hand, that library can not be synthesized

in order to be implemented on FPGA, rather it can be used only for simulations.
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For each input ports, the traffic loads and the percentage of high priority class and low

priority class packets can be defined. Depending on those parameters, the traffic for

each input port is generated as follows:

step 1.(initialization) The time-slot counter is used to wait for time-slot period be-

tween two packets. Moreover, input port number counter is used to switch to the next

input port. Clear the time-slot counter and input port number counter and go to the

step 2. This step is a kind of reset state.

step 2.(time-slot period) The time-slot counter is incremented by one for each clock

cycle and it is checked whether it is equal to time-slot length value or not. If it equals

to the time-slot length value, reset the time-slot counter value to 0 and go to the step

3; otherwise, stay in the step 2 and continue to incrementing time-slot counter.

step 3.(traffic load) A random number between 0 and 1.0 is produced. If that value

is smaller than pre-defined traffic load value, in that time-slot the packet header is

generated for input port which is defined by input port number counter. Write input

port number counter to the input address field in the packet header and go to the step

4. If the produced random number is not smaller, the packet header is not generated

for that input port and go to the step 6 in order to switch to the next input port.

step 4.(packet’s class) In this step, the class of the produced packet is determined and

written to packet header. A random number between 0 and 1.0 is produced. If that

value is smaller than the pre-defined value of the percentage of the low priority class

packets, the produced packet is generated as low priority class packet; otherwise, it is

defined as high priority class packet. The packet’s class field in the packet header is

written. Then go to the step 5 to determine the destination port.

step 5.(packet’s destination address) The produced packets are uniformly distributed

among output ports. Thus, a random number is generated between 0 and 1.0 again.

If the produced random number is between 0 and 0.25, the destination is output port

1. If it is between 0.25 and 0.5, the destination is output port 2. If it is between 0.5

and 0.75, the destination is output port 3. Lastly, if it is between 0.75 and 1.0, the

destination is output port 4. In this way, the input packets are distributed uniformly

among the output ports. The defined output port number is written to packet header.
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After deciding destination, packet header production for an input port is completed in

that step. In order to switch to next input port go to the step 6.

step 6.(next input port) In this step, it is checked if the process is applied for all input

ports or not for that time slot. Increment the port number counter. If it equals to the

number of input ports, it means that all input ports are processed for that time-slot,

clear input port number counter and then go to the step 2 to wait for next time-slot;

otherwise, go to the step 3 to apply the same procedure for the rest of the input ports.

Until the simulation is stopped by the user, that VHDL block produces packet headers

in each time-slot as defined. The produced packet headers are sent to the design under

test simultaneously. The sequence and content of the packet headers are randomly

chosen by that block on each run.

6.1.1.2 The packet reader from a text file VHDL block

The packet reader from a text file VHDL block uses another special library std.textio

which cannot be synthesized. That library is used for reading and writing data on a

text file. Different text files are employed for different input ports.

Firstly, it is required to create an input traffic and write it as a text file. Then, the same

text file can be re-used for many times. The sequence and contents of the packet

headers do not change on each run. In this way, if you have an input traffic and

a corresponding output traffic which is verified by another simulation tool, you can

compare your output traffic with the verified output traffic by applying the same input

traffic.

Each row of the text file represents the packet header in Fig.6.1. Thus, each row

consists of 32-bit 0 or 1 in a defined way in Table 4.1. On the other hand, 32 bits of

X means that there is no packet for the related time-slot. Each text file represents the

traffic for an input port. In each time-slot period, one row of the text file is read.

That block runs as follow:

step 1.(initialization) Clear the time-slot counter and go to the step 2. This step is a

kind of reset state.
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Figure 6.1: Input text file example

step 2.(time-slot period) The time-slot counter is incremented by one for each clock

cycle and it is checked whether it is equal to time-slot length value or not. If it equals

to the time-slot length value, reset the time-slot counter value to 0 and go to the step

3; otherwise, stay in the step 2 and continue to incrementing counter.

step 3.(End of text file check) In this step, whether the text file is completed or not is

controlled. If the last line of text file is reached, go back to the step 2; otherwise, go

to the step 4 in order to read the next line.

step 4.(next line) The next line of the text file is read. If the data which is read equals

to 32-bits X, the packet header is not produced for that time-slot; otherwise, the read

data is submitted to the input port as a packet header. Then go back to the step 2.

That block is written for one input port. Hence, there are different text files for each

input ports and different traffic reader blocks are connected to each input port.

6.1.2 Packet recorder

The packet recorder VHDL block uses the same library std.textio with the traffic

reader from a text file VHDL block. That block records instantaneous time-slot infor-

mation and also the packets in the related time-slot to a text file. The packet recorder

block can be connected to both output ports and input ports. In this way, it can record

the input traffic and the output traffic to different text files. The content and sequence

of the packets are gathered from those text files.

That block runs as follows:
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step 1.(initialization) Clear the port number counter and go to the step 2.

step 2.(time-slot period) Check the time-slot value. If the time-slot changes, the 20-

bit time-slot value is written to text file and then go to the step 3; otherwise, stay in

the step 2 waiting for the next time slot.

step 3.(port control) The port which is pointed by the port number counter is checked

whether there is a packet on it or not. If there is a packet, it is written to the text file;

otherwise, go to the step 4.

step 4.(next port) In this step, it is checked if the process is applied for all ports or

not. Increment the port number counter, if it equals to the number of ports, it means

that all ports are completed for that time-slot, clear port number counter and then go

to the step 2; otherwise, go to the step 3 in order to apply the same procedure for the

rest of the ports.

The written text file includes all packet headers which exit from all output ports for

each time-slot period. In Fig. 6.2, the text file which is written by the recorder block

connected to the output ports can be seen. The 20-bit data represents the end of each

time-slot, which are circled in red. The other 32-bit data represents the packet headers

which exit from the router.

6.1.3 Fabric scheduler logger

The fabric scheduler logger VHDL block uses the same library std.textio. The internal

communication signals of the fabric scheduler are recorded to a text file. For the iSLIP

implementation, the requests from the input signals and arbiter pointers are written to

the text file. With the help of that text file, functional verification of the design can be

done cycle by cycle.

For the 4x4 iSLIP, there are four 4-bit request signals. Moreover, there are four accept

arbiters and four grant arbiters which have 2-bit pointer signals. Thus, in each time-

slot 32-bit data is written to the text file.

In the text file in Fig.6.3, each line corresponds to a time-slot value. The first 4

bits represent the request from the input 4, the second 4 bits represent the request
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Figure 6.2: Output text file example

from the input 3 and continues in descending order. The initial 16 bits represent the

requests, the last 16 bits represent the arbiter pointers. The first 2 bits stand for the

priority pointer for the accept arbiter 4, the second one is for the accept arbiter 3 and

continues in descending order. The same order is implemented for grant arbiters also

in last 8 bits.

84



Figure 6.3: iSLIP logger text file example

6.1.4 MATLAB project

In order to decrease the simulation time on MODELSIM, the VHDL blocks write

text files by using binary numbers. While designer controls the text files, it is hard

to examine text files which are represented as binary numbers. MATLAB is used

to arrange the text files in order to read them easily since MATLAB is faster on

writing/reading text files than MODELSIM.

The text file in Fig. 6.4 is the MATLAB output of the text file in Fig.6.2 which is

written during the MODELSIM simulation. "SP" represents the source port, "DP"

destination port and "BT" birth time which defines the packet’s entering time.
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Figure 6.4: Output text file matlab example

The text file in Fig. 6.5 is the MATLAB output of the text file in Fig. 6.3 which is

written during MODELSIM simulation as binary .

Figure 6.5: Fabric scheduler logger text file matlab example

86



Moreover, MATLAB is used in order to calculate packet delay and thrpughput of the

overall designs. The text files which is written by MODELSIM includes all necessary

information for those calculations.

6.1.5 Design Verification Steps

In the early time of the design, the results of the simulation is controlled manually.

The poisson input traffic generator block is used as traffic generator. The RTL sim-

ulation is done by MODELSIM. The output packets and internal signals of iSLIP is

written as text files. Those text files are processed by MATLAB and then, the func-

tionality of the design is controlled manually. The 4x4 basic iSLIP, 4x4 2-LSP IMC

VOQ iSLIP and 4x4 2-LLP IMC VOQ iSLIP are verified in this way.

It is hard to verify the design manually for high numbers of time-slots. In order to do

that for long period, the C++ based iSLIP simulator is employed [41]. The same input

traffic text file is used with the C++ based iSLIP simulator. The traffic reader block

is used during MODELSIM simulation to apply input traffic from the text file. After

the simulation is completed on MODELSIM, the text files including output packet

traffic are automatically compared by using MATLAB. The processes are applied for

the 4x4 basic iSLIP, 4x4 2-LSP IMC VOQ iSLIP and 4x4 2-LLP IMC VOQ iSLIP. At

the end, the overall designs which are implemented by using VHDL and C++ verify

each other.

6.2 Simulations

Performance metrics are explained in the chapter 2. The router performance is evalu-

ated in terms of average delay and throughput at different traffic loads.

The 4x4 basic iSLIP and the 4x4 2-LLP IMC VOQ iSLIP are compared. Average

packet delays and throughput metrics are examined at different load values under

Poisson traffic. The half of the incoming packets consists of high priority class pack-

ets, the other half of it consists of low priority class packets. Furthermore, the packet

size distribution is fixed, all incoming packets have a length of one fixed-size cell.
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The rate of the incoming packets divided by the line rate is defined as offered load.

Average packet delay values are given in terms of time slot values. In the simulations,

a packet which comes in time slot t can exit from the router at the time-slot t + 1

earliest. Thus, all packets have a fixed one time slot delay because of the processing.

Note that, one time slot processing delay is subtracted in order to calculate queueing

delay per packet. The average delay per packet values are calculated as queueing

delay in [7]. Average packet delay values are calculated for packet delay average of

all the output ports.

In the simulations of 2-LLP IMC VOQ iSLIP, the limit value which is defined as

MaxSuccesiveAllowedRequests in the algorithm 2 equals to 4.

Figure 6.6: Average queueing delay for low priority class packets and high priority
class packets in 4x4 basic iSLIP and 4x4 2-LLP IMC VOQ iSLIP under Poisson
traffic

In the Fig.6.6, average queueing delay for low priority class packets and high priority

class packets in the routers of the 4x4 basic iSLIP and 4x4 2-LLP IMC VOQ iSLIP are

compared. The average queueing delay of high priority class and low priority class
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packets are almost the same in the 4x4 basic iSLIP as it is expected since the basic

iSLIP does not provide QoS differentiation. On the other hand, especially for 80% and

higher offered load values, the high priority class packets have lower average queuing

delay. While supplying lower average delay for the high priority class packets, the

low priority class packets face with higher delay values than delay values in the basic

iSLIP. To this end, it is figured out that the 2-LLP IMC VOQ structure makes average

queueing delay per packet lower for the high priority class packets.

Figure 6.7: Throughput for low priority class packets and high priority class packets
in 4x4 basic iSLIP and 4x4 2-LLP IMC VOQ iSLIP under Poisson traffic

Throughput is calculated as the number of total incoming packets are divided by the

number of total outgoing packets, then multiplied by 100 in order to get the percent-

age.

In [7], it is stated that the iSLIP can achieve 100% throughput under poisson traffic.

In the Fig.6.7, the 4x4 basic iSLIP achieves 100% throughput for both low priority

class packets and high priority class packets for offered load values below 90%. When

the offered load reaches 99%, the 4x4 basic iSLIP achieves almost 100% throughput.
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On the other hand, although 4x4 2-LLP IMC VOQ can achieve 100% throughput for

high priority class packets for all offered load values, throughput for low priority class

packets considerably worse especially on the offered load values below 80%.

Extensive simulations under different scenarios can be found in [41].

6.3 FPGA resource usage evaluation

After completing verification of the VHDL codes, the VHDL codes are synthesized

by Xilinx ISE 12.4. The target FPGA is selected as Virtex-5 XC5VFX130T which is

a product of Xilinx.

The 4x4 basic iSLIP, 4x4 2-LLP IMC VOQ and 8x8 2-LLP IMC VOQ are compared

in terms of resource usage. 2-LCP IMC VOQ iSLIP is not included since the resource

usage of the 2-LCP IMC VOQ iSLIP is almost the same as the 2-LLP IMC VOQ

iSLIP.

In the chapter 5, the changing the number of the priority levels of IMC VOQ iSLIP

is explained. Moreover, the basic iSLIP can be designed by changing the number of

priority levels to 1. To this end, the 4x4 basic iSLIP VHDL codes are generated by

applying the same procedure which is presented in the chapter 5. Moreover, in the

chapter 5 it is stated that the resource usage of a single input line block scales with

O(P) while changing the number of priority levels. The number of priority levels

equals to 1 for the basic iSLIP and 2 for the 4x4 IMC VOQ iSLIP. Thus, the resource

usage of single input line block in the 4x4 2-LLP IMC VOQ iSLIP is almost twice of

the single input line block in 4x4 basic iSLIP as it can be seen from table 6.1.

Table 6.1: Resources used in single input line block

4x4 basic iSLIP 4x4 2-LLP IMC VOQ
iSLIP

Number of Slice Registers 631 1125
Number of Slice LUTs 430 836
Number of Block RAM/FIFO 4 8

In the table 6.2, the resource usage of the complete 4x4 basic iSLIP and the 4x4
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2-LLP IMC VOQ iSLIP as explained in the chapter 4 is compared. The difference

between the two designs are completely resulted from the changes in the input line

blocks as it is stated in the chapter 5. The two designs are completely the same except

the input line blocks. Each design consists of four input line blocks. Thus, the values

in the table 6.1 must be multiplied by 4. Then, the result of multiplication must be

extracted from the values in the table 6.2 in order to acquire the resource usage of

the rest of the designs. The values are almost the same which shows that the rest of

the designs is almost the same for the 4x4 2-LLP IMC VOQ iSLIP and the 4x4 basic

iSLIP.

The maximum clock frequency in the table 6.2 that is calculated by Xilinx ISE 12.4

indicates the design’s maximum operation frequency. The maximum clock frequency

in the 4x4 basic iSLIP and the 4x4 2-LLP IMC VOQ iSLIP are completely the same.

The maximum clock frequency is probably limited by a region which is outside the

input line block. The areas which is outside the input line blocks are the same; there-

fore, the maximum clock frequency is the same for both of the two designs. Further-

more, by looking at the maximum clock frequency, the capacity of the router can be

roughly calculated. The data width equals to 32 and the maximum clock frequency

is accepted as 300 MHz. That is, each input port can transmit at 9.6 Gbps (32x300

Mbps). The router capacity equals to 38.4 Gbps (4x9.6 Gbps) since there are 4 input

ports.

Table 6.2: Resources used in 4x4 basic iSLIP and 4x4 2-LLP IMC VOQ iSLIP

4x4 basic iSLIP 4x4 2-LLP IMC VOQ
iSLIP

Number of Slice Registers 3489 5461
Number of Slice LUTs 2703 4319
Number of Block RAM/FIFO 20 36
Maximum Clock Frequency 327.332MHz 327.332MHz

Moreover, the number of ports in the 4x4 2-LLP IMC VOQ iSLIP is increased to 8x8

as it is explained in the chapter 5. The resources used in the 4x4 2-LLP IMC VOQ

iSLIP and the 8x8 2-LLP IMC VOQ iSLIP are compared in the table 6.3.

The number of block RAMs is consistent with the expectations. In the 4x4 2-LLP

IMC VOQ iSLIP, there are 4 input line blocks. Each input line block uses 8 block
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RAMs. Thus, the total 32 block RAMs are used by the input line blocks in the 4x4

2-LLP IMC VOQ iSLIP. Moreover, there are 4 output line blocks. Each output line

block uses 1 block RAM. So far as this is the situation, the total block RAM usage of

the output line blocks is equal to 4. To this end, 36 block RAMs are used in the 4x4

2-LLP IMC VOQ iSLIP, 32 of them are used by the input line blocks and 4 of them

are used by the output line blocks. On the other hand, there are 8 input line blocks

and 8 output line blocks in the 8x8 2-LLP IMC VOQ iSLIP. Thus, the total 136 block

RAMs are used, 128 of them are used by the input line blocks and 8 of them are used

by the output line blocks.

Moreover, while changing the number of ports, the resources are expected to scale

with O(N2). Hence, the resource usage of the 8x8 2-LLP IMC VOQ iSLIP is almost

4 times of the 4x4 2-LLP IMC VOQ iSLIP.

Additionally, the maximum clock frequency of the 8x8 2-LLP IMC VOQ iSLIP is

lower than the maximum clock frequency of the 4x4 IMC VOQ iSLIP. While in-

creasing the port number, the length between the input ports and the output ports rises

in the hardware design. The increase in length results in a decrease in the maximum

clock frequency. Furthermore, when maximum clock frequency is accepted as 200

MHz for the 8x8 one, the input line capacity at 6.4 Gbps (32x200 Mbps) is supported.

Therefore, the router capacity equals to 51.2 Gbps (8x6.4 Gbps).

Table 6.3: Resources used in 4x4 2-LLP IMC VOQ iSLIP vs 8x8 2-LLP IMC VOQ
iSLIP

4x4 2-LLP IMC VOQ
iSLIP

8x8 2-LLP IMC VOQ
iSLIP

Number of Slice Registers 5461 18517
Number of Slice LUTs 4319 15334
Number of Block RAM/FIFO 36 136
Maximum Clock Frequency 327.332MHz 213.038MHz

6.4 Results and Discussion

By examining the simulation results, it is realized that the 2-LLP IMC VOQ structure

make average queueing delay for higher priority packets lower especially for the high
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load values above 80%. On the other hand, the 2-LLP IMC VOQ structure results in

a higher average queueing delay and a lower throughput values for the lower priority

packets for especially high load values above 80%.

In fact, getting worse in throughput and delay values for lower priority packets are

expected. On the other hand, MaxS uccesiveAllowedRequests in algorithm 2 can be

changed in order to achieve more acceptable results for lower priority packets. More-

over, different algorithms can be developed to acquire more acceptable throughput

and delay values for lower priority packets. Our 2-LLP IMC VOQ algorithm is based

on the combined selection approach which is explained in the Section 3.2. However,

different algorithms based on the separated selection approach may be developed de-

spite that its implementation complexity is higher.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Today networks support wide range of applications which have different QoS require-

ments. Thus, it is important to provide different levels of QoS for different applica-

tions.

The supporting QoS at network layer devices has been an interesting research topic

with the increasing data rate. Although many QoS scheduling algorithms are pro-

posed in the literature for output queued routers, they require internal speedup which

increases their implementation cost. On the other hand, the input queued routers can

achieve acceptable QoS without internal speedup. However, the delay at the input

queues degrades the QoS. In the input queued routers, the fabric scheduler component

which is responsible for input-output matching decision directly affects the queueing

delay. Thus, it is possible to supply better QoS by improving the fabric schedulers.

This thesis presents a per-flow queue structure to replace the standard VOQs in the

input queued routers together with a request preprocessing unit to support QoS at

the network layer. The proposed IMC VOQs can be integrated with a generic fab-

ric scheduler without changing its operation to achieve service differentiation. The

QoS characteristic of the fabric scheduler can be changed by the request selection

algorithm of the IMC VOQs since the requests which are sent to fabric scheduler are

arranged by the IMC unit in each input port.

The IMC VOQs is realized on FPGA together with the well known iSLIP as the

generic fabric scheduler. Furthermore, FPGA implementation supports variable size

packets with the help of segmentation and reassembly modules. Moreover, switch
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fabric design is also implemented in order to transfer packets from input ports to

output ports. The overall architecture is evaluated with respect to both its capability

for QoS support and its hardware resource consumption.

The simulation results show that lower average delay per packet is achieved for high

priority class packets by integrating IMC VOQs which adopts the proposed request

selection algorithm. On the other hand, throughput and average delay is getting worse

for low priority class packets when IMC VOQs is implemented. Furthermore, the

resource usage values are consistent with our expectations. That is, the resource

usage can be roughly calculated for large number of ports and different numbers of

priority levels without completing the overall design.

The modularity of the design is important; therefore, FPGA devices are suitable plat-

forms for the router design. The FPGA implementation which is provided in this

thesis can not be used instead of a router in the network since it handles only packet

headers. The packet payloads must be also supported together with packet headers.

Moreover, in the practice of the commercial routers, the input line blocks, output line

blocks, switch fabric and fabric scheduler components are realized in different FPGAs

which are located on different Printed Circuit Boards(PCB). In this thesis, all those

blocks are implemented in the same FPGA as an example. Thus, each block must be

implemented on different PCBs including FPGA component. Furthermore, different

FPGA components are selected for each block according to the block requirements.

For instance, the FPGA component which is used in input line cards should have

large storage capacity in order to realize the VOQs. On the other hand, the FPGA

component which is used as switch fabric should support large bandwidth capacity in

order to transfer packets from input line cards to output line cards.

The future work includes incorporating a similar intelligent unit at the output to

achieve further control on the fabric scheduler decision to support QoS. Different

IMC request selection algorithms will also be investigated. Moreover, IMC VOQs

can be integrated with the different fabric scheduling algorithms in order to observe

the effects of IMC VOQs on them. Furthermore, the proposed FPGA architecture

will be adapted to develop and implement new fabric schedulers which can exchange

different types of information between inputs and outputs such as queue states. The
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FPGA implementation will be improved in order to handle with packet payloads to-

gether with packet headers. Lastly, real-time experiments can be realized with FPGA

implementation in addition to MODELSIM simulations.
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