
EFFICIENT RATING ESTIMATION BY USING SIMILARITY IN
MULTI-DIMENSIONAL CHECK-IN DATA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BEHLÜL UÇAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2014

Approval of the thesis:

EFFICIENT RATING ESTIMATION BY USING SIMILARITY IN
MULTI-DIMENSIONAL CHECK-IN DATA

submitted by BEHLÜL UÇAR in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Pınar Karagöz
Supervisor, Computer Engineering Dept., METU

Prof. Dr. İ. Hakkı Toroslu
Co-supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Dept., METU

Assoc. Prof. Dr. Pınar Karagöz
Computer Engineering Dept., METU

Prof. Dr. İ. Hakkı Toroslu
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Assist. Prof. Dr. Alev Mutlu
Computer Engineering Dept., Kocaeli University

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: BEHLÜL UÇAR

Signature :

iv

ABSTRACT

EFFICIENT RATING ESTIMATION BY USING SIMILARITY IN
MULTI-DIMENSIONAL CHECK-IN DATA

Uçar, Behlül

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pınar Karagöz

Co-Supervisor : Prof. Dr. İ. Hakkı Toroslu

September 2014, 64 pages

The usage coverage of location based social networks have boomed in the last

years as well as the amount of data produced in them. This data is suitable for

processing in order to make prediction. One of the requirements of this process

is that the method used should be suitable for very big data sets.

We propose a graph-based similarity calculation method in location-based social

networks which improves the rating prediction performance of Singular Value

Decomposition based collaborative filtering systems. We also propose a new

rating prediction algorithm which increases the efficiency of rating prediction

significantly. The methods are tested on check-in data of several users and the

results are presented.

Keywords: Recommender Systems, Collaborative Filtering, Singular Value De-

v

composition, Feature Combination, Semantic Similarity, Graph Based Similar-

ity, Similarity Recommendation

vi

ÖZ

ÇOK-BOYUTLU YER BİLDİRİMİ VERİSİNDE BENZERLİK
KULLANARAK VERİMLİ BİÇİMDE DEĞERLENDİRME TAHMİNİ

Uçar, Behlül

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pınar Karagöz

Ortak Tez Yöneticisi : Prof. Dr. İ. Hakkı Toroslu

Eylül 2014, 64 sayfa

Son yıllarda konum tabanlı sosyal ağların kullanımı onlar üzerinde oluşan veri

ile birlikte patlama yapmıştır. Bu veri tahminler yapmak üzere işlenmek için

uygundur. Bu işleme için gerekli olan şeylerden birisi kullanılacak yöntemin çok

büyük veri setlerine uygun olmasıdır.

Bu çalışmada Tekil Değer Ayrışımı bazlı Eşgüdümlü Filtreleme sistemlerinin

performansını arttıran ve konum tabanlı sosyal ağlar üzerinde çalışan çizge ta-

banlı bir benzerlik hesaplama yöntemi öneriyoruz. Ayrıca değerlendirme tahmini

işleminin verimliliğini belirgin biçimde arttıran yeni bir tahmin algoritması öner-

iyoruz. Metotlar birçok kullanıcının yer bildirim verisi üzerinde test edilmiş ve

sonuçlar çalışmada sunulmuştur.

Anahtar Kelimeler: Önerici Sistemler, Ortaklaşa Filtreleme, Tekil Değer Ayrışımı,

vii

Özellik Harmanlama, Anlamsal Benzerlik, Graph Tabanlı Benzerlik, Benzerlik

Önerileri

viii

To my parents

Who always supported me in my thesis work

ix

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to his supervisor Assoc.

Prof. Dr Pınar Karagöz and cosupervisor Prof. Dr. İ. Hakkı Toroslu for their

guidance, advice, criticism, encouragements and insight throughout the research.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ALGORITHMS . xix

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Contribution of the Thesis 3

1.2 Organization of the Thesis 3

2 BACKGROUND AND RELATED WORK 5

2.1 Collaborative Filtering 5

2.2 Content Based . 7

2.3 Knowledge-Based . 7

xi

2.4 Hybrid Recommenders 7

2.5 Problems in Recommender Systems 9

2.6 Multi-Dimensional Recommendation 10

2.7 Graph-Based Methods 10

3 IMPROVED SVD-BASED RECOMMENDATION 13

3.1 Data Set Characteristics 13

3.2 Rating Estimation . 14

3.3 Singular Value Decomposition Overview 14

3.4 SVD Prediction . 15

3.4.1 Graph-Based Similarity Calculation 18

3.4.2 Weighted Average Based Rating Estimation . . 21

3.5 Running Example . 21

3.5.1 Similarity Calculation 22

3.5.2 Collaborative Filtering Method 26

3.5.3 Content Based Method 28

3.5.4 Hybrid Method 31

4 SIMILARITY ESTIMATION BASED RECOMMENDATION . 35

4.1 Running Example . 37

5 EVALUATION . 39

5.1 Data Sets . 39

5.2 Evaluation Metrics . 40

xii

5.3 Analysis for Parameter Optimization 40

5.4 Experimental Evaluation of the Improved SVD-Based Rec-
ommendation Method 42

5.4.1 Graph-Based Similarity Calculation 43

5.4.2 Weighted Average Calculation 46

5.4.3 Overall Comparison 50

5.5 Experimental Evaluation of the Similarity-Based Recom-
mendation Method . 53

6 CONCLUSION AND FINAL REMARKS 59

REFERENCES . 61

xiii

LIST OF TABLES

TABLES

Table 2.1 Hybridization techniques . 8

Table 3.1 Set of check-ins used in the example 22

Table 5.1 Rate of SimPred Results Against Hybrid SVD-Based Method 57

xiv

LIST OF FIGURES

FIGURES

Figure 3.1 Sample tensor shown as folds for each user 22

Figure 3.2 Calculated graph based similarities 25

Figure 3.3 Constructed matrix of CF method 26

Figure 3.4 Reduced-rank U and V matrices of CF method 27

Figure 3.5 Sorted similarity matrices of CF 27

Figure 3.6 Sorted similarity indices matrices of CF 27

Figure 3.7 Constructed matrix of CB method 29

Figure 3.8 Reduced-rank U and V matrices of CB method 29

Figure 3.9 Sorted similarity matrices of CB 30

Figure 3.10 Sorted similarity indices matrices of CB method 30

Figure 3.11 Constructed matrix of Hybrid method 31

Figure 3.12 Reduced-rank U and V matrices of Hybrid method 32

Figure 3.13 Sorted similarity matrices of Hybrid 33

Figure 3.14 Sorted similarity indices matrices of Hybrid 33

Figure 5.1 Impact of Neighborhood Size on MAE in Small Gowalla Data

Set . 41

xv

Figure 5.2 Impact of Neighborhood Size on MAE in Medium Gowalla

Data Set . 41

Figure 5.3 Impact of Neighborhood Size on RMSE in Small Gowalla Data

Set . 42

Figure 5.4 Impact of Neighborhood Size on RMSE in Medium Gowalla

Data Set . 42

Figure 5.5 MAE of Similarity Calculation Methods in Gowalla Data Set 43

Figure 5.6 RMSE of Similarity Calculation Methods in Gowalla Data Set 44

Figure 5.7 MAE of Similarity Calculation Methods in Brightkite Data Set 44

Figure 5.8 RMSE of Similarity Calculation Methods in Brightkite Data Set 45

Figure 5.9 Preparation Times of SVD-based methods using different Sim-

ilarity Matrices in Gowalla Data Set 45

Figure 5.10 Preparation Times of SVD-based methods using different Sim-

ilarity Matrices in Brightkite Data Set 46

Figure 5.11 MAE of Average Calculation Methods in Small Gowalla Data

Set . 47

Figure 5.12 MAE of Average Calculation Methods in Small Brightkite Data

Set . 47

Figure 5.13 MAE of Average Calculation Methods in Medium Gowalla

Data Set . 48

Figure 5.14 MAE of Average Calculation Methods in Medium Brightkite

Data Set . 48

Figure 5.15 RMSE of Average Calculation Methods in Small Gowalla Data

Set . 49

Figure 5.16 RMSE of Average Calculation Methods in Small Brightkite

Data Set . 49

xvi

Figure 5.17 RMSE of Average Calculation Methods in Medium Gowalla

Data Set . 50

Figure 5.18 RMSE of Average Calculation Methods in Medium Brightkite

Data Set . 50

Figure 5.19 Overall Comparison of MAE Results in Small Gowalla Data Set 51

Figure 5.20 Overall Comparison of MAE Results in Small Brightkite Data

Set . 51

Figure 5.21 Overall Comparison of RMSE Results in Small Gowalla Data

Set . 52

Figure 5.22 Overall Comparison of RMSE Results in Small Brightkite Data

Set . 52

Figure 5.23 Overall Comparison of MAE Results in Medium Gowalla Data

Set . 53

Figure 5.24 Overall Comparison of RMSE Results in Medium Gowalla

Data Set . 53

Figure 5.25 MAE Comparison of SimPred method in Medium Gowalla

Data Set . 54

Figure 5.26 MAE Comparison of SimPred method in Medium Brightkite

Data Set . 54

Figure 5.27 RMSE comparison of SimPred method in Medium Gowalla

Data Set . 55

Figure 5.28 RMSE comparison of SimPred method in Medium Brightkite

Data Set . 55

Figure 5.29 Preparation Time Comparison of Proposed Methods in Medium

Gowalla Data Set . 56

xvii

Figure 5.30 Preparation Time Comparison of Proposed Methods in Medium

Brightkite Data Set . 56

xviii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Graph-Based Similarity Calculation 20

Algorithm 2 SimPred Algorithm . 36

xix

LIST OF ABBREVIATIONS

CB Content Based

CF Collaborative Filtering

IR Information Retrieval

MAE Mean Absolute Error

PCA Principal Component Analysis

RMSE Root Mean Square Error

SimPred Similarity Prediction

SVD Singular Value Decomposition

xx

CHAPTER 1

INTRODUCTION

In the early days of the internet, the amount of data present was limited. We

have seen some stages of it which changed not only the amount of data contained,

but also the methods of accessing them. First, we have seen the emerge of search

engines such as Altavista or Google. They served as handy tools for exploring

the data based on a text of interest which is entered as input to the system.

These systems are called information retrieval (IR) systems in general. These

work by matching the content of the documents to the query input and ranking

the results according to some other criteria.

A possible improvement to the plain IR systems is personalizing the search

results according to user. This is in a sense recommending new search results

to the user. This recommendation is not limited to the plain search engines.

The idea can be extended to electronic commerce sites, social networks, check-

in sites, etc. In fact it can be extended to any site with a choice from the user

side. Since every user’s preference is different, from the overwhelming amount

of information, the results can be personalized in order to fit better for their

needs. This process is called recommendation and the systems doing it are

called Recommender Systems (RS). RS’es are differentiated from IR systems by

the criteria of “personalized” and “interesting and useful” [7].

More formally, recommender systems can be described as systems which try to

make item suggestions to the users with the data of both that user and the

other users. There may be explicit ratings given to the items or not, there

may be friendships among users or not, these details depend on the nature

1

of the application on which the recommender system is working. E-commerce

applications as well as social media sites take advantage of recommender systems

for different purposes. While an e-commerce site may use them for enabling the

user to discover and buy more products; a social network application may employ

them for just the discovery purpose and hence improving the engagement of the

users to the application.

Since recommender systems can be employed by different applications, the def-

inition of “item“ also changes according to the application. It can be a movie,

a location, a product, say a book for example, music, a social activity or even

people to add as friends.

With the advent of the smart phones and social networks installed in them

as applications, we have seen an enormous increase in the amount of check-in

data supplied by the users. This data contain not only the user and location

dimensions, but also other dimensions such as the activity related to check-ins,

time etc. We can utilize these dimensions by including them directly in our data

structures as well as some relations within the dimensions such as similarity of

items within those dimensions.

Recommending activities can be useful for not only the tourists or visitors who

are new in a new city and do not know which activity and places are good for

them, but also to the usual citizens of the city who want to discover new places

from among many places in the city.

In [40], Zheng et al developed a collaborative algorithm using combined matrix

factorization of matrices of different dimensions. Sattari et al showed in [31]

that by merging matrices of different dimensions and applying Singular Value

Decomposition on the merged matrix, they can outperform the method in [40].

In [30], the idea in [31] is developed further by using both intra-dimensional and

inter-dimensional information.

2

1.1 Contribution of the Thesis

In this paper we aim to improve the idea in [30] by using a more robust similarity

calculation method as well as a new rating estimation calculation formula. We

also propose a new estimation method which does not use SVD and has a lower

time complexity. Our contributions can be summarized as follows:

• We propose a graph-based similarity calculation method which is more

robust and does not produce redundant entries in similarity matrices.

• We propose a weighted average calculation method instead of deviation

based average method which improves the prediction performance.

• We propose a similarity based recommendation method which greatly re-

duces the run-time cost with an acceptable accuracy trade-off. In addi-

tion, since this method does not need any dimensionality reduction, it also

avoids loss of information.

1.2 Organization of the Thesis

Chapter 2 gives some background information with related works. We compare

different recommendation techniques that are proposed in the literature. We

will present their advantages, disadvantages and the difference of our work.

In Chapter 3, Singular Value Decomposition (SVD) based recommendation sys-

tem is described and our new similarity calculation technique is presented. A

small example will be given as well.

In Chapter 4, our similarity based recommendation system will be presented

and a small running example will be given again.

In Chapter 5 we present the evaluation results gathered and comment on them.

Finally in the last section we give a conclusion.

3

4

CHAPTER 2

BACKGROUND AND RELATED WORK

As the usage of social networks dramatically increased, there has emerged a huge

data from these social networks which can be used for learning user preferences

and making some recommendations to users [15]. These recommendations can

also be used in e-commerce as discussed in [21].

There are different approaches and methods for making recommendations. Usu-

ally the common intuition in most of them is finding similar users and exploiting

this similarity for prediction. We will analyze these methods according to their

basic approach, data used, and method. We will compare their advantages and

disadvantages, as well as the shortcomings and bottlenecks in them.

2.1 Collaborative Filtering

The systems which generate recommendations by using only the rating infor-

mation are defined as collaborative systems. These systems find peers with

similar history to the current user and generate recommendation from them.

This selection of similar users is regarded as filtering and interaction of users as

collaboration. Hence this method is called as Collaborative Filtering (CF) [19].

The method of collecting user preferences, i.e. rating information, depends on

the nature of the applications. They can be collected explicitly or implicitly. In

explicit data collection, users may be asked to rate the items on a scale, their

favorite items may be used, or explicit likes of users such as in Facebook may be

used. In implicit data collection, [25] shows that number of views for items can

5

be used as rating. Similarly, in a location-based network, number of check-ins

may be used as a liking indicator.

Collaborative filtering methods usually suffer from cold start, scalability and

sparsity problems [20].

In a traditional CF system, there is no offline computation step. This brings the

burden that its computation time scales with the number of users or items in

the system [21]. A scalable RS should do the expensive calculation step offline

and the online phase should not be dependent on the number of total items or

users.

In order to overcome this scalability problem, different algorithms are tried in the

literature. Matrix factorization methods are used to reduce the dimensionality

of the matrices offline. For example, Singular Value Decomposition is used for

this purpose. But these methods first still have a high complexity even for the

offline phase, and secondly they cause losing some information in data. There are

also some methods such as [40] which try to do this factorization with gradient

descent algorithms. Since, gradient descent works by finding the local minima

[37], they are not guaranteed to find the global minima.

There are also probabilistic models which utilizes probability theory to create

relationships between users and items to make recommendations. Since they

calculate the probabilities offline, they can be scalable in the online phase.

For example, [23] uses Bayesian classification for binary rating estimation. They

make the assumption that every user’s votes are independent from each other.

Then they try to calculate the probabilities of a user’s negative or positive vote.

Note that their method is for 2 dimensional data and discrete preferences.

As a summary, it is essential to use some data-reduction technique to overcome

the scalability problem in CF and in general in all recommender systems.

6

2.2 Content Based

As described in the previous section, CF systems use only the rating information

gathered from users. But in Content Based (CB) systems, we also employ the

profile information for users and other dimensions. The system tries to recom-

mend items that match the user profile [19]. For example, [12] shows building

user profiles in different ways using the keywords from websites that the users

have visited in the past. [26] argues some other techniques which work by clas-

sifying users such as decision trees and machine learning to create user profiles.

2.3 Knowledge-Based

[8] defines knowledge-based recommenders as recommenders which suggest prod-

ucts based on a user’s needs and preferences. They respond to the user’s imme-

diate needs and they do not need retraining when preferences change. Training

is done on the knowledge-base instead. The drawback of them is that knowledge

base should be constructed very precisely such that users should be able to select

their preferences from them.

2.4 Hybrid Recommenders

In a broad sense, hybrid recommenders are defined as the combination of two

different recommender systems to get more accurate results. In this way, in an

area where one RS has shortcomings, the other RS can come to help. It is also

possible that this combination can give worse results if the two algorithms are

not filling each other’s empty blocks.

Note that the hybridized systems do not necessarily have to employ different

techniques but they may also. For example, two CB recommender systems

could work together as well as one CF and CB recommender systems. [12] lists

seven different hybridization techniques, they are shown in Table 2.1.

7

Table2.1: Hybridization techniques

Mixture method Description
Weighted The score of different recommendation compo-

nents are combined numerically.
Switching The system chooses among recommendation com-

ponents and applies the selected one.
Mixed Recommendations from different recommenders

are presented together.
Feature Combination Features derived from different knowledge sources

are combined together and given to a single rec-
ommendation algorithm.

Feature Augmentation One recommendation technique is used to compute
a feature or set of features, which is then part of
the input to the next technique.

Cascade Recommenders are given strict priority, with the
lower priority ones breaking ties in the scoring of
the higher ones.

Meta-level One recommendation technique is applied and pro-
duces some sort of model, which is then the input
used by the next technique.

8

2.5 Problems in Recommender Systems

In this section we will look into some of the general problems of recommender

systems.

Cold start is defined as the need for having a large amount of data on a user to

make accurate recommendations. This is normal since CF systems do not take

user profile into account. This problem is also valid for other methods such as

Content Based and Hybrid but since we take other information into account as

well, it is lighter. Still, for many recommender systems it is not very accurate

to to make recommendation before knowing the user’s behaviours [3].

Scalability problem is defined as the memory and run-time requirement for run-

ning the recommendation algorithms. This is a critical problem in systems with

millions, sometimes even billions, of users [32, 29]. Scalability is important in

both the online and offline phases of the recommender systems. That is pre-

processing of the data set should be computationally reasonable to complete

in industrially acceptable time and efficiency of the online phase which will be

active on user query time should be quick enough not to keep users waiting for

the recommendation results. Some methods in the literature uses dimensionality

reduction methods such as PCA or SVD. For example [13] proposes a recom-

mender for jokes using PCA and a clustering. Graph-theoretic approaches to

recommender systems are also common such as in [4].

Sparsity problem can be put as having a very low feedback from users. Also,

for the user whose tastes are unusual compared to the rest of the population

there will not be any other users who are particularly similar, leading to poor

recommendations [6]. This problem is usually encountered in systems that use

explicit data collection and can be alleviated with implicit collection. User

profile information may also be used to make demographic filtering such as in

[27]. Some works [16] uses similarity between users in the recommendation phase

to alleviate sparsity problem.

There is also a flexibility problem in recommender systems. Most recommender

systems recommend general items, that is they do not support filtered recom-

9

mendations. [2] identifies this problem and proposes a Recommendation Query

Language (RQL) for querying recommendations. However the underlying rec-

ommendation engine should be able to support aggregated recommendations to

make RQL work. OLAP-based approach [9] is proposed to support aggregated

recommendation in multi-dimensional domains [1]. This is an ongoing research

area in recommender systems.

There are other problems and extensions such as using multi-criteria ratings

and non-intrusiveness for the user. These extensions all constitute a different

research area in recommender systems, we will not go into detail of them.

2.6 Multi-Dimensional Recommendation

If we come to the multi-dimensional domain, some of these methods use 2-D

matrices whereas some see the data as a multi-dimensional tensor. [40] is one

example which uses different 2-D matrices for different dimensional information

and tries to predict the unknown values by Collective Matrix Factorization. It

was mentioned earlier that it uses gradient descent. In [39], they follow a tensor

based approach in which they construct a tensor and define an objective function

from that tensor. Then they use gradient descent to solve the problem as in [40]

In [31] and [30], they first construct a merged matrix with different dimensions

and employ Singular Value Decomposition on the merged matrix. At the end

they get two reduced rank matrices. By using these reduced-rank matrices, they

find the most similar items for the item of interest and estimate the rating from

similar items.

2.7 Graph-Based Methods

Structures of social networks are suitable for considering them as graph, G =

(V,E) where V is the set of vertices and E is the set of edges. Items can

be considered as nodes and relations between them as edges. By using this

structure, algorithms like Random Walk with Restart (RWR) can be applied

10

on these graphs. For example, [35] uses RWR algorithm with some additional

tagging information on a social network graph. They work by creating a bipartite

graph and travelling on it. [17] creates a user-book graph and assigns similarities

between edges to recommend books to users. Note that these methods work only

in 2-D domains.

One of the most important things in graph-based methods is calculating the

similarities between items. There are different approaches in the literature for

finding similarity. For example, [38] uses a clustering algorithm named DBSCAN

to cluster items and find similarity between them using cosine similarity. [41]

creates sequences from the data and checks the number of common elements in

them. These approaches suffer from the time complexity in very large data sets.

In this work, we will follow a graph-based approach which is also suitable for

large data sets.

In this thesis in the first part we present a generic graph-based similarity calcu-

lation scheme which can be thought as probabilities in a probabilistic system.

The proposed method is robust and suitable for very big data sets. In addition

a new formula for the method in [30] is tried. In the second part we present a

new similarity based algorithm which does not use SVD at all.

11

12

CHAPTER 3

IMPROVED SVD-BASED RECOMMENDATION

In this chapter we describe the base method which is also the subject of [30]. We

developed a new similarity extraction method which can be used in this method

as well as the Similarity Recommendation method which will be presented in

the next chapter.

We will first describe the data set and the characteristics of it. Since we worked

with data with no explicit user ratings, our method for rating estimation for

visited places will be presented next. Then we will give information about

Singular Value Decomposition and use of it in recommendation. After that we

will describe our graph based similarity calculation technique and in the last

section a small running example will be given.

3.1 Data Set Characteristics

In this section we will describe the general characteristics of the data sets used by

proposed methods. We believe describing them before explaining the algorithm

will be helpful for easier understanding.

In location based social networks, primary means of information is the check-ins

of users. Check-ins usually have basic information such as date and time and lo-

cation and may have additional information such as the activity performed. Our

methods use these information as dimensions. Although the proposed methods

are generic in terms of dimensions, specifically we use user, location and activity

information.

13

3.2 Rating Estimation

Since we did not have explicitly given ratings from users, we had to estimate

them from the past activities of the users. For that purpose, we used the check-

in frequencies of the users for each item of each dimensions in the data set. For

our case, that became ratings of users for doing an activity at a location.

Since we gave rating according to past activity, only the items which user ex-

perienced had ratings. The others are unknown and the subject of the rating

prediction algorithm.

For each point in the multi-dimensional space, we checked the number of check-

ins and got a rating according to Equation 3.1.

R(i) = 1 + ln fc (3.1)

In this equation i is an item in the tensor and fc is the check-in frequency for

that item.

3.3 Singular Value Decomposition Overview

Using Singular Value Decomposition, we can factorize an mxn matrix into three

matrices in the following way:

Rmxn = UmxrSrxrV
T
rxn (3.2)

Here, U is the left singular vector and V is the right singular vector. They

are orthogonal to each other. In this equation, r is the rank of the matrix R.

Columns of U and V come from the eigenvectors of RRT and RTR, respectively

[28].

S is a rectangular diagonal matrix with non-negative real numbers being on

the diagonal. Its diagonal entries are called singular values of R. All diagonal

14

entries are positive and stored in decreasing order of magnitude. According to

Eckart-Young theorem, we can get a low-rank approximation of R using its SVD

[11].

We can utilize SVD in recommender systems in two different aspects. First,

it helps us capture the latent relationships between the data. Second, it’s a

method to reduce the dimensionality of data, which is essential for scalability

[28].

Capturing the latent relationships is done by comparing the rows U or V and

extracting a similarity between each other of them. Note that in order to this

efficiently a dimensionality reduction is needed again.

The dimensionality reduction is done by selecting the k largest values of S and

k columns of U and V . By multiplying these trimmed matrices we can get a

low-rank approximation of R in the following way:

Rk = UmxkSkxkV
T
kxn (3.3)

Here, Rk is the low-rank approximation of R with rank k. Note that in this

approach we lose some data. We determine the loss percentage of data by the

sum of singular values in S. Since singular values are sorted in descending order,

we divide the sum of values in trimmed matrix by sum of values of whole matrix.

This is shown in the following equation:

p =

∑k
i=1 Sk∑
all Sk

(3.4)

3.4 SVD Prediction

As shown in [30], we can reduce the multi-dimensional tensor into a 2-D matrix

in 3 different ways; Collaborative Filtering, Content Based and Hybrid. This is

shown in Equations 3.5, 3.6 and 3.7.

15

MCF (a+l+u)x(a+l+u) =

0axa 0axl 0axu

LA 0lxl 0lxu

UA UL 0uxu

 (3.5)

MCB(a+l+u)x(a+l+u) =

AA 0axl 0axu

0lxa LL 0lxu

0uxa 0ul UU

 (3.6)

MHyb(a+l+u)x(a+l+u) =

AA 0axl 0axu

LA LL 0lxu

UA UL UU

 (3.7)

Here, AA, UU and LL are activity-activity, user-user and location-location sim-

ilarity matrices, respectively. In the next section we will present how they are

calculated. LA, UA and UL matrices are location-activity, user-activity and

user-location matrices. They are the average values gathered from the original

tensor. For example LA[0, 0] is the average rating for location l0 and activity a0

gathered over all the users. Note that MCF has only the information obtained

from the tensor whereas MCB has only similarity matrices, and MHyb has all of

them, being the hybrid method.

We then apply SVD to reduce the rank of M and reveal the latent semantic

indexing of the data. Since SVD is a lossy method, we have to select a percentage

of the data to keep in the matrix. After applying SVD, we decompose M into U ,

S, and V matrices satisfying Mk = UrxkSkxkV
T
kxs where Mk is the k-rank reduced

representation of M [11].

After applying SVD, we can divide U row-wise and V column-wise to get dif-

ferent matrices for Activity, Location and User. So we can treat U and V as

follows:

Ukxr =

UrAct

UrLoc

UrUser

 (3.8)

16

Vrxk =
[
VrAct VrLoc VrUser

]
(3.9)

Then using these matrices we got from dividing, we can calculate similarity

matrices for the dimensions. For that purpose, cosine similarity between rows

for UrAct, UrLoc, UrUser or columns for VrAct, VrLoc, VrUser is used. We get 6

similarity matrices in total at the end.

After we obtain similarity matrices, we can use them to predict missing entries

in the original tensor. For each dimension of the tensor, we freeze the indices of

other dimensions and find similar objects using the similarity matrices we got.

In our case, for an entry (ui, lj, ak) we have 6 possible values as follows:

PU
User = rui

+

∑m
p=1(T (up, lj, ak)− rup) ∗ simUrUser

(ui, up)∑m
p=1 simUrUser

(ui, up)
(3.10)

P V
User = rui

+

∑m
p=1(T (up, lj, ak)− rup) ∗ simVrUser

(ui, up)∑m
p=1 simVrUser

(ui, up)
(3.11)

PU
Loc = rlj +

∑m
p=1(T (ui, lp, ak)− rlp) ∗ simUrLoc

(li, lp)∑m
p=1 simUrLoc

(li, lp)
(3.12)

P V
Loc = rlj +

∑m
p=1(T (ui, lp, ak)− rlp) ∗ simUrAct

(li, lp)∑m
p=1 simVrLoc

(li, lp)
(3.13)

PU
Act = rak +

∑m
p=1(T (ui, lj, ap)− rap) ∗ simUrAct

(ai, ap)∑m
p=1 simUrAct

(ai, ap)
(3.14)

P V
Act = rak +

∑m
p=1(T (ui, lj, ap)− rap) ∗ simVrAct

(ai, ap)∑m
p=1 simVrAct

(ai, ap)
(3.15)

m is the set of neighbors in these equations. For each value, we select the most

similar items from the similarity matrices and put them in m. Also,we exclude

from m the items that have 0 value in the tensor. For example, for calculating

PU
User, we select the most similar rows from UrUser such that T [up, lj, ak] 6= 0.

As stated earlier, we can construct the merged matrix in three different ways.

The structure of the merged matrix also affects the values we can use in pre-

diction. This is because since some parts of the merged matrix become zero

in different methods, the corresponding parts in the Ur and Vr matrices also

17

become zero matrices. For Collaborative filtering, Content Based and Hybrid

methods, we use the following prediction formulae:

T̂CF (ui, lj, ak) =
PU
User + PU

Loc + P V
Loc + P V

Act

4
(3.16)

T̂CB(ui, lj, ak) =
PU
User + PU

Loc + PU
Act

3
(3.17)

T̂Hyb(ui, lj, ak) =
PU
User + PU

Loc + PU
Act + P V

User + P V
Loc + P V

Act

6
(3.18)

3.4.1 Graph-Based Similarity Calculation

So far we have described the method in [30] and we have skipped the similarity

calculation phase. In this section we will present the new similarity calculation

methods and a new formula for rating predictions in the next section. These are

our contributions to the original algorithm.

In [30], the similarity calculation methods used are simple. For location similar-

ity, they simply use the distance between locations. This may be misleading in

reality because there may be two very different locations even next to each other.

For activity similarity, they treat the hour of the day as activity and difference

between hours as the similarity between two items. Although this may make

sense with respect to the fact that the hour that activities are performed will

be near, this is not a real similarity measure either. For user similarity, they

use number of common friends. This may be again misleading for example in

the case of two students from the same university and hence having the same

friends. We propose a new similarity calculation method which is general and

constructed from check-in history.

In order to calculate the similarities inside a dimension d1, we represent d1 as a

graph and use another dimension d2 to calculate edge weights between nodes in

this graph. We define a session array which is empty at the beginning. Session

array keeps the previous check-ins which are not older than a predefined interval.

Then we sort the check-ins with respect to d2 primarily and date secondarily.

Then for each check-in, we compare each check-in in the session array with that

18

check-in. If the check-in in the session array is older than the check-in in hand

over a threshold, we remove it from the session. Otherwise we increase the edge

weight between d1 values of these check-ins. After we compared all the check-ins,

we add the check-in in the hand to the session array and proceed to the next

check-in. If we encounter a different d2 item, we reset the session array. After we

finish processing all the check-ins, we normalize the weights of edges such that

sum of a node’s edges makes 1. In this way we calculate the similarity inside d1.

The algorithm is shown as pseudo code in Algorithm 1.

In our case, we calculated user-user similarity using location dimension as d2,

location-location and activity-activity similarities using user dimension as d2.

For user-user similarity, we iterated over the check-ins done in locations, for the

users of check-ins done in a neighborhood of 30 days, we increased the edge

weight of them by 1. In this way we tried to find "users with same tastes".

Time complexity of this approach is O(nlog(n)) for sorting and O(nm) for find-

ing similarities, where n is the number of check-ins and m is the number items

in the session. Number of items in a session is much less than number of total

check-ins, in other words m� n. Hence, the general complexity of graph-based

similarity calculation is O(nlog(n)).

One other point worth noting about the new calculation method is that it does

not produce a dense similarity matrix. The location-location and user-user sim-

ilarities calculated in [30] produces dense matrices in the sense that they assign

similarity between all items. This not only increases the run-time complexity

of similarity calculation to O(n2), but also increases the run-time cost of SVD-

based methods, since working with denser matrices requires more work.

As described in the previous section, these similarity matrices are used in Con-

tent Based and Hybrid calculation methods. For Collaborative Filtering, we

only use matrices obtained from the tensor.

19

Data: checkins : set of checkins

Result: itemGraph : a sparse similarity matrix

session = []

init itemGraph as a sparse matrix

itemDates = {} prevD2Item = None prevDate = None

sort checkins according to d2 and date

for each ci in checkins do
itemDates[ci.d1] = ci.time

if prevD2Item != ci.d2Item then
sesUsers = []

end

start = 0

while session is not empty and ci is not older than session[0] do
erase first element in session

end

if ci.item in session then
start = session.index(ci.item)

session.remove(ci.item)
end

for i in range(start, len(session)) do

item = session[i] if ci.item not in itemGraph then
itemGraph[ci.item] = {}

end

if item not in itemGraph then
itemGraph[item] = {}

end

val = 1

itemGraph[ci.item][item] = itemGraph[ci.item][item]+val

if item in itemGraph[ci.item] else val

itemGraph[u][ci.item] = itemGraph[item][ci.item]+val

if ci.item in itemGraph[item] else val
end

session.append(ci.item)

prevDate = ci.t

prevD2Item = ci.d2Item
end

normalize edge weights of itemGraph
Algorithm 1: Graph-Based Similarity Calculation

20

3.4.2 Weighted Average Based Rating Estimation

Our second modification to the original method is a new rating estimation for-

mula. Original method takes the average standard deviations of item ratings into

account. In other words, it adds the weighted average of deviations gathered

from the neighbors to the average ratings for that item. Although [14] states

that average of standard deviations perform better, in our case taking weighted

averages of the ratings of the neighbors performed better. This is maybe because

of the fact that in deviation average, average deviation of the neighbor items

are added to the average of the item of prediction. These may not be correlated

at all. For example, the item of prediction may have ratings close to 5 whereas

the neighbors close to 3. Adding the deviation to the average may not make

sense in that case. One may argue that direct weighted average method does not

solve this problem either. However, it smooths this effect and empirical results

support this argument as well. The new formulae for the values are as follows:

PU
User =

∑m
p=1 T (up, lj, ak) ∗ simUrUser

(ui, up)∑m
p=1 simUrUser

(ui, up)
(3.19)

P V
User =

∑m
p=1 T (up, lj, ak) ∗ simVrUser

(ui, up)∑m
p=1 simVrUser

(ui, up)
(3.20)

PU
Loc =

∑m
p=1 T (ui, lp, ak) ∗ simUrLoc

(li, lp)∑m
p=1 simUrLoc

(li, lp)
(3.21)

P V
Loc =

∑m
p=1 T (ui, lp, ak) ∗ simUrAct

(li, lp)∑m
p=1 simVrLoc

(li, lp)
(3.22)

PU
Act =

∑m
p=1 T (ui, lj, ap) ∗ simUrAct

(ai, ap)∑m
p=1 simUrAct

(ai, ap)
(3.23)

P V
Act =

∑m
p=1 T (ui, lj, ap) ∗ simVrAct

(ai, ap)∑m
p=1 simVrAct

(ai, ap)
(3.24)

3.5 Running Example

In this section, we present a running example for the proposed SVD-based meth-

ods. In order to show the steps of the algorithms, we will use a tensor with 5

21

users, 3 locations and 3 activities. This tensor can be seen in Figure 3.1. We

show the tensor as a matrix for each user, since it is a 3 dimensional structure.

1 0 0 0

2.38629 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

2.79176 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

2.38629 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 3.07944 0 0

0 0 2.79176 0

0 0 0 2.94591

2.60944 0 0 0

1.69315 0 0 0

0 3.07944 0 0

0 0 1 0

0 0 0 1

Figure 3.1: Sample tensor shown as folds for each user

3.5.1 Similarity Calculation

Similarity values are used in CB and Hybrid methods. To illustrate how we

calculate the similarity values, we first present the check-ins we use as input in

Table 3.1. This list is taken from the actual data set as a very small sample of

it.

Table3.1: Set of check-ins used in the example

User Loc Time Activity

1 640452 2010-10-02T18:58:55 Doctor’s Office

1 102499 2010-08-29T01:40:49 Seafood Restaurant

1 260236 2010-05-06T19:52:33 Cocktail Bar

1 260236 2010-05-16T19:52:33 Cocktail Bar

1 260236 2010-06-26T19:52:33 Cocktail Bar

1 260236 2010-08-16T20:21:53 Cocktail Bar

1 192704 2010-10-20T06:22:17 Cocktail Bar

1 33509 2010-10-18T20:38:01 Coffee Shop

2 640452 2010-10-03T18:58:55 Doctor’s Office

2 102499 2010-08-30T01:40:49 Seafood Restaurant

22

Table 3.1 – Continued from previous page

User Loc Time Activity

2 260236 2010-05-06T19:52:33 Cocktail Bar

2 260236 2010-05-16T19:52:33 Cocktail Bar

2 260236 2010-06-27T19:52:33 Cocktail Bar

2 260236 2010-08-16T20:21:53 Cocktail Bar

2 192704 2010-11-20T06:22:17 Cocktail Bar

2 33509 2010-12-18T20:38:01 Coffee Shop

3 260236 2010-05-06T19:52:33 Cocktail Bar

3 260236 2010-05-16T19:52:33 Cocktail Bar

3 260236 2010-06-29T19:52:33 Cocktail Bar

3 260236 2010-06-30T19:52:33 Cocktail Bar

3 260236 2010-07-30T19:52:33 Cocktail Bar

3 260236 2010-09-10T19:52:33 Cocktail Bar

4 640452 2010-10-02T18:58:55 Doctor’s Office

4 102499 2010-08-29T01:40:49 Seafood Restaurant

4 260236 2010-08-16T20:21:53 Cocktail Bar

4 260236 2010-06-26T19:52:33 Cocktail Bar

4 192704 2010-10-20T06:22:17 Cocktail Bar

4 192704 2010-11-20T06:22:17 Cocktail Bar

4 192704 2010-11-21T06:22:17 Cocktail Bar

4 192704 2010-11-23T06:22:17 Cocktail Bar

4 192704 2010-11-25T06:22:17 Cocktail Bar

4 33509 2010-01-18T20:38:01 Coffee Shop

4 33509 2010-02-18T20:38:01 Coffee Shop

4 33509 2010-03-15T20:38:01 Coffee Shop

4 33509 2010-04-18T20:38:01 Coffee Shop

4 33509 2010-05-18T20:38:01 Coffee Shop

4 33509 2010-06-18T20:38:01 Coffee Shop

4 33509 2010-07-18T20:38:01 Coffee Shop

4 33509 2010-08-18T20:38:01 Coffee Shop

5 640452 2010-10-02T18:58:55 Doctor’s Office

23

Table 3.1 – Continued from previous page

User Loc Time Activity

5 640452 2010-10-03T18:58:55 Doctor’s Office

5 640452 2010-10-04T18:58:55 Doctor’s Office

5 640452 2010-10-05T18:58:55 Doctor’s Office

5 640452 2010-10-06T18:58:55 Doctor’s Office

5 640452 2010-10-07T18:58:55 Doctor’s Office

5 102499 2010-08-20T01:40:49 Seafood Restaurant

5 102499 2010-08-21T01:40:49 Seafood Restaurant

5 102499 2010-08-22T01:40:49 Seafood Restaurant

5 102499 2010-08-23T01:40:49 Seafood Restaurant

5 102499 2010-08-29T01:40:49 Seafood Restaurant

5 102499 2010-08-30T01:40:49 Seafood Restaurant

5 102499 2010-09-10T01:40:49 Seafood Restaurant

5 33509 2010-10-01T20:38:01 Coffee Shop

5 33509 2010-10-02T20:38:01 Coffee Shop

5 33509 2010-10-03T20:38:01 Coffee Shop

5 33509 2010-10-04T20:38:01 Coffee Shop

5 33509 2010-10-05T20:38:01 Coffee Shop

5 33509 2010-10-06T20:38:01 Coffee Shop

5 33509 2010-10-18T20:38:01 Coffee Shop

5 33509 2010-10-19T20:38:01 Coffee Shop

As an example calculation, we will try to find the similarity between users 1 and

2. Note that we will not follow the steps of the algorithm exactly but get the

unnormalized similarity between user 1 and 2 only. This is for brevity of the

example.

For getting the user-user similarity, we first sort the check-ins with respect to

the locations primarily and dates secondarily. For location 640452, User 1 has a

check-in on 2010-10-02. User 2 has a check-in on 2010-10-03 as well. Since the

time between these check-ins are not greater than 30 days, we add 1 to the value

24

of the edge between user 1 and 2. From the contribution of location 102499, we

add 1 more to the edge value. We proceed to location 260236. We first get

user 1’s earliest check-in, then user 2’s check-in on 2010-05-06 contributes 1. We

encounter user 1’s check-in on 2010-05-16, we increment the weight by 1 because

of user 2’s earlier check-in and remove the earlier check-in of user 1. Then we

encounter user 2’s check-in on 2010-05-16. We update for user 2 and increment

by 1. Then we encounter user 1’s check-in on 2010-06-26. Since there is no

previous check-in in 30 days period, no increment is done. Then we encounter

user 2’s check-in on 2010-06-27 and increment the weight by 1. At the time of

user 1’s check-in on 2010-10-18, again there is no previous check-in. And user 2’s

check-in on 2010-08-16 increases the weight by one. The check-ins to location

192704 contributes 1 since check-in of user 2 is in the border of 30 days. But

the check-ins to location 33509 does not contribute. At the end, we get an edge

weight of 8 between user 1 and 2.

After we calculate weights for all edges of user 1, we normalize them and get the

final similarity values. Note that this similarity calculation is not symmetric,

meaning that similarity of user 1 to user 2 may be different from similarity of

user 2 to user 1. The normalized final similarity values are given in Figure 3.2.

0 0.28 0.32 0.2 0.2

0.438 0 0.375 0 0.188

0.348 0.261 0 0.174 0.217

0.417 0 0.333 0 0.25

0.312 0.188 0.312 0.188 0

(a) User-User similarity

0 0 0.5 0.5 0

0 0 0.571 0 0.429

0.0952 0.19 0 0.619 0.0952

0.125 0 0.812 0 0.0625

0 0.5 0.333 0.167 0

(b) Location-Location similarity

0 0.4 0 0.6

0.667 0 0 0.333

0 0 0 0

0.75 0.25 0 0

(c) Activity-Activity similarity

Figure 3.2: Calculated graph based similarities

25

3.5.2 Collaborative Filtering Method

For CF method, we use just the data obtained from the tensor. We construct

a 2-D matrix according to Equation 3.5. Then our constructed 2-D matrix

becomes as in Figure 3.3. These are the average values gathered from tensor

shown in 3.1. From the constructed matrix, we get reduced rank matrices which

are shown in Figure 3.4. Using cosine distance metric, we then gather similarity

matrices. Sorted similarity matrices with their indices are presented in Figures

3.5 and 3.6.

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.536 0 0 0 0 0 0 0 0 0 0 0 0 0

2.314 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2.04 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1.448 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.486 0 0 0 0 0 0 0 0 0 0

1.693 2.792 3.386 0 1 0 1 0 2.609 0 0 0 0 0

4.303 0 0 0 2.386 2.792 2.386 0 1.693 0 0 0 0 0

1.54 3.079 1 0 1 0 1 3.079 3.079 0 0 0 0 0

0 2.792 1 1 1 0 1 2.792 1 0 0 0 0 0

0 1 2.946 1 1 0 1 2.946 1 0 0 0 0 0

Figure 3.3: Constructed matrix of CF method

26

0.788 0.0298 0.488

0.192 0.815 0.391

0.296 0.147 0.546

0.391 0.317 0.382

0.0608 0.315 0.378

(a) U-user

0.0252 0.172 0.0557

0.0379 0.259 0.0839

0.0415 0.11 0.0955

0.296 0.0629 0.0546

0.0772 0.0274 0.0115

(b) U-loc

0.127 0.188 0.273

0.162 0.376 0.109

0.127 0.188 0.273

0.66 0.375 0.386

0.112 0.0356 0.438

(c) V-loc

0.0541 0.677 0.363

0.0672 0.325 0.468

0.675 0.262 0.377

0.172 0.111 0.0777

(d) V-act

Figure 3.4: Reduced-rank U and V matrices of CF method

0.572 0.474 0.149 0.14 0

0.572 0.338 0.173 0.0914 0

0.338 0.149 0.144 0.0803 0

0.173 0.144 0.14 0.0803 0

0.474 0.144 0.144 0.0914 0

(a) U-user-sim

0.621 0.517 0.0863 0 0

0.621 0.517 0.0863 0 0

0.476 0.416 0.0863 0.0863 0

0.621 0.621 0.476 0.00923 0

0.517 0.517 0.416 0.00923 0

(b) U-loc-sim

0.195 0.141 0.127 0 0

0.588 0.196 0.195 0.195 0

0.195 0.141 0.127 0 0

0.337 0.196 0.141 0.141 0

0.588 0.337 0.127 0.127 0

(c) V-loc-sim

0.442 0.33 0.11 0

0.345 0.33 0.11 0

0.442 0.345 0.0243 0

0.33 0.33 0.0243 0

(d) V-act-sim

Figure 3.5: Sorted similarity matrices of CF

1 4 2 3 0

0 2 3 4 1

1 0 4 3 2

1 4 0 2 3

0 3 2 1 4

(a) U-user-sim-ind

3 4 2 0 1

3 4 2 0 1

3 4 0 1 2

1 0 2 4 3

1 0 2 3 4

(b) U-loc-sim-ind

1 3 4 2 0

4 3 2 0 1

1 3 4 2 0

4 1 2 0 3

1 3 2 0 4

(c) V-user-sim-ind

2 3 1 0

2 3 0 1

0 1 3 2

1 0 2 3

(d) V-act-sim-ind

Figure 3.6: Sorted similarity indices matrices of CF

27

For showing the prediction process, we select a random entry from the tensor

and try to predict its rating value. We select the entry with position (1, 1, 0) in

the tensor, whose value is 2.79176 and denote it with e(1,1,0).

We can get 4 different values using the 4 reduced-rank matrices we have. For

each of them, we freeze the indices in the dimensions other than the dimension

of the matrix. So for example when using U-user matrix, we freeze location and

activity dimension indices. We then check for the most similar users using the

corresponding row of the matrix and use the corresponding entry in the tensor

for prediction. Note that for brevity, we will work with a neighborhood size of

1 throughout the examples.

For user 1, the most similar user is user 0. Its similarity is 0.575. It’s tensor

value T0,1,0 is not zero and 2.38629. Then we can use it. The prediction becomes:

P u
User =

2.38629 ∗ 0.575
0.575

= 2.38629

P u
Loc = undefined, P v

Loc = undefined, P v
Act = undefined

T̂ (1, 1, 0) = 2.38629

Note that since there is no other entry of this user in location and activity

dimensions, P u
Loc, P v

Loc and P v
Act were undefined. We use only P u

User for prediction.

At the end, we get the predicted value of 2.38629

3.5.3 Content Based Method

For Content-Based method, our 2-D constructed matrix becomes as in Equation

3.6. This can be seen in Figure 3.7. Corresponding reduced rank matrices,

similarity matrices and sorted similarity matrices are shown in Figures 3.8 to

3.10.

28

0 0.4 0 0.6 0 0 0 0 0 0 0 0 0 0

0.67 0 0 0.33 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.75 0.25 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0.57 0 0.43 0 0 0 0 0

0 0 0 0 0.095 0.19 0 0.62 0.095 0 0 0 0 0

0 0 0 0 0.12 0 0.81 0 0.062 0 0 0 0 0

0 0 0 0 0 0.5 0.33 0.17 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.28 0.32 0.2 0.2

0 0 0 0 0 0 0 0 0 0.44 0 0.38 0 0.19

0 0 0 0 0 0 0 0 0 0.35 0.26 0 0.17 0.22

0 0 0 0 0 0 0 0 0 0.42 0 0.33 0 0.25

0 0 0 0 0 0 0 0 0 0.31 0.19 0.31 0.19 0

Figure 3.7: Constructed matrix of CB method

0.34 3.1e− 13 1.8e− 16

0.53 4.9e− 13 2.4e− 16

0.38 3.5e− 13 2e− 16

0.52 4.8e− 13 1.8e− 16

0.44 4.1e− 13 2.3e− 16

(a) U-user

0 5.6e− 17 0.5

1.7e− 16 5.6e− 17 0.48

2.8e− 17 5.6e− 17 0.22

1.1e− 16 1.1e− 16 0.59

5.6e− 17 0 0.35

(b) U-loc

2.9e− 13 0.31 2e− 16

6.1e− 13 0.66 2.5e− 16

6.2e− 17 3.5e− 17 7.3e− 17

6.3e− 13 0.68 1.5e− 16

(c) U-act

Figure 3.8: Reduced-rank U and V matrices of CB method

29

0.19 0.18 0.099 0.041 0

0.19 0.15 0.092 0.015 0

0.15 0.14 0.058 0.041 0

0.18 0.14 0.077 0.015 0

0.099 0.092 0.077 0.058 0

(a) U-user-sim

0.27 0.14 0.099 0.019 0

0.25 0.12 0.12 0.019 0

0.37 0.27 0.25 0.13 0

0.37 0.24 0.12 0.099 0

0.24 0.14 0.13 0.12 0

(b) U-loc-sim

0.37 0.35 0.31 0

0.66 0.35 0.014 0

0.68 0.66 0.31 0

0.68 0.37 0.014 0

(c) U-act-sim

Figure 3.9: Sorted similarity matrices of CB

1 3 4 2 0

0 2 4 3 1

1 3 4 0 2

0 2 4 1 3

0 1 3 2 4

(a) U-user-sim-ind

2 4 3 1 0

2 4 3 0 1

3 0 1 4 2

2 4 1 0 3

3 0 2 1 4

(b) U-loc-sim-ind

3 1 2 0

2 0 3 1

3 1 0 2

2 0 1 3

(c) U-act-sim-ind

Figure 3.10: Sorted similarity indices matrices of CB method

Note that since in the U−user and U− loc matrices, all values with a significant

value are gathered in one column. Since cosine distance works by comparing "the

angle" between the vectors and does not take into account the magnitude, the

similarities between users and locations will be zero. For the sake of this example,

we used euclidean distance instead of cosine distance and got the similarity

matrices according to that. This problem is not likely to happen in a real-world

data set, where there will be hundreds of columns.

This time we will try to predict the rating value of the entry e(0,1,0) of the tensor.

The values we get are as follows:

30

P u
User =

2.791 ∗ 0.19
0.19

= 2.791

P u
Loc =

1.0 ∗ 0.0019
0.019

= 1.0, P u
Act = undefined

T̂CB(0, 1, 0) =
2.791 + 1.0

2
= 1.8955

For P u
User, we select user 1 which is the most similar user. For P u

Loc, we have to

select location 0 since there is no other rated location of user 0. P u
Act is undefined.

At the end, we predict the rating as 1.8955.

3.5.4 Hybrid Method

For Hybrid method, we have similar matrices as in other methods up to now.

In our constructed 2-D matrix, we combine similarity values from the values we

obtained from the original tensor. This is the formulation shown in Equation

3.7. The corresponding matrices of the process are shown in Figures 3.11 to

3.14.

0 0.4 0 0.6 0 0 0 0 0 0 0 0 0 0

0.67 0 0 0.33 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.75 0.25 0 0 0 0 0 0 0 0 0 0 0 0

1.5 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0

2.3 0 0 0 0 0 0.57 0 0.43 0 0 0 0 0

0 2 0 0 0.095 0.19 0 0.62 0.095 0 0 0 0 0

0 0 1.4 0 0.12 0 0.81 0 0.062 0 0 0 0 0

0 0 0 1.5 0 0.5 0.33 0.17 0 0 0 0 0 0

1.7 2.8 3.4 0 1 0 1 0 2.6 0 0.28 0.32 0.2 0.2

4.3 0 0 0 2.4 2.8 2.4 0 1.7 0.44 0 0.38 0 0.19

1.5 3.1 1 0 1 0 1 3.1 3.1 0.35 0.26 0 0.17 0.22

0 2.8 1 1 1 0 1 2.8 1 0.42 0 0.33 0 0.25

0 1 2.9 1 1 0 1 2.9 1 0.31 0.19 0.31 0.19 0

Figure 3.11: Constructed matrix of Hybrid method

31

0.76 0.04 0.48

0.16 0.8 0.39

0.31 0.16 0.54

0.38 0.32 0.38

0.045 0.32 0.37

(a) U-user

0.76 0.04 0.48

0.16 0.8 0.39

0.31 0.16 0.54

0.38 0.32 0.38

0.045 0.32 0.37

(b) U-loc

0.036 0.033 0.023

0.018 0.068 0.027

1.2e− 17 1.9e− 17 2e− 17

0.0053 0.068 0.039

(c) V-loc

0.096 0.0098 0.062

0.042 0.018 0.034

0.021 0.013 0.053

0.032 0.016 0.025

0.012 0.0042 0.037

(d) V-user

0.072 0.17 0.27

0.16 0.36 0.11

0.032 0.21 0.28

0.61 0.38 0.39

0.13 0.035 0.43

(e) V-loc

0.0062 0.67 0.37

0.052 0.35 0.46

0.73 0.26 0.37

0.17 0.1 0.081

(f) V-act

Figure 3.12: Reduced-rank U and V matrices of Hybrid method

32

0.58 0.49 0.14 0.13 0

0.58 0.33 0.18 0.084 0

0.33 0.16 0.13 0.071 1.1e− 16

0.18 0.16 0.14 0.071 1.1e− 16

0.49 0.16 0.16 0.084 1.1e− 16

(a) U-user-sim

0.4 0.35 0.12 0.03 2.2e− 16

0.84 0.79 0.25 0.12 0

0.25 0.24 0.21 0.03 0

0.79 0.35 0.21 0.0015 1.1e− 16

0.84 0.4 0.24 0.0015 0

(b) U-loc-sim

0.22 0.14 0.059 1.1e− 16

0.14 0.092 0.024 1.1e− 16

0.097 0.092 0.059 0

0.22 0.097 0.024 0

(c) U-act-sim

0.22 0.19 0.044 0.035 0

0.18 0.13 0.035 0.00066 1.1e− 16

0.19 0.13 0.13 0.0088 0

0.19 0.13 0.044 0.00066 0

0.22 0.19 0.18 0.0088 0

(d) V-user-sim

0.23 0.2 0.11 0.011 0

0.56 0.23 0.23 0.17 1.1e− 16

0.28 0.23 0.16 0.011 0

0.3 0.28 0.2 0.17 0

0.56 0.3 0.16 0.11 1.1e− 16

(e) V-loc-sim

0.52 0.38 0.09 0

0.4 0.33 0.09 0

0.52 0.4 0.02 0

0.38 0.33 0.02 0

(f) V-act-sim

Figure 3.13: Sorted similarity matrices of Hybrid

1 4 3 2 0

0 2 3 4 1

1 4 0 3 2

1 4 0 2 3

0 2 3 1 4

(a) U-user-sim-ind

4 3 1 2 0

4 3 2 0 1

1 4 3 0 2

1 0 2 4 3

1 0 2 3 4

(b) U-loc-sim-ind

3 1 2 0

0 2 3 1

3 1 0 2

0 2 1 3

(c) U-act-sim-ind

4 2 3 1 0

4 2 0 3 1

0 3 1 4 2

4 2 0 1 3

0 3 1 2 4

(d) V-user-sim-ind

1 3 4 2 0

4 0 2 3 1

3 1 4 0 2

4 2 0 1 3

1 3 2 0 4

(e) V-loc-sim-ind

2 3 1 0

2 3 0 1

0 1 3 2

0 1 2 3

(f) V-act-sim-ind

Figure 3.14: Sorted similarity indices matrices of Hybrid

If we want to calculate the prediction of the entry e(0,1,0), we will follow the

33

steps we followed for the other methods again. For brevity, we only give the

calculated values this time. Note that values coming from activity dimension

are zero again, this is because the user do no have any other ratings with the

same location and a different activity.

P u
User = 2.792, P v

User = 1.693, P u
Loc = 1.0

P v
Loc = 1.0, P uAct = undefined, P v

Act = undefined

T̂Hyb(0, 1, 0) =
2.792 + 1.693 + 1.0 + 1.0

4
= 1.621

34

CHAPTER 4

SIMILARITY ESTIMATION BASED

RECOMMENDATION

In this section we present a new prediction method which does not use Sin-

gular Value Decomposition and makes calculation using the similarity matrices

directly. From this point on, we will call this method as SimPred.

Singular Value Decomposition has two uses in general. First, it is used to find

latent indexing among the data. Secondly, it is used to reduce the rank of the

data while losing some information. With a robust similarity calculation tech-

nique, the first use is redundant. Moreover, if the performance of the algorithm

is acceptable for big data, the second use is unneeded as well. Plus, the cost of

applying SVD is avoided.

In addition, we saw that SVD did not produce significant reductions without

losing the information greatly. For example in our middle-size data set, rank of

2-D matrix before reduction was 4000. In order to reduce this dimension 482,

we have to lose 50% of the data. If we want to keep higher percentage of data,

say 80% for example, then dimensionality was reduced to 1019 only. Even in a

middle-size test data set like ours, this dimension is not satisfactory. For real

data sets, the problem is of course more severe. Moreover, we still have to do

the computationally costly SVD calculations.

In order to overcome these problems, we propose an algorithm which uses di-

rectly the similarity matrices calculated from the check-ins. The calculation

technique is described in Section 1.1. We then sort these similarity matrices in

35

order get the most similar items. Then using these sorted matrices, we make

prediction over using the most similar items. Note that we do not get three

different values for 3 different dimensions. The algorithm is shown in Algorithm

2.

Data: T : tensor,

(UU, LL, AA) : sorted similarity matrices,

(UU_ind, LL_ind, AA_ind): sorted indices of sim matrices

Result: t̂ : prediction

predictions = [], weights = [];

t̂ = 0;

curu = 0, curl = 0, cura = 0;

while size of predictions < neighborhood size do
which = max(UU[u][curu], LL[l][curl], AA[a][cura]);

if which == 0 then
i = (UU_ind[u][curu], l, a); curu++

end

if which == 1 then
i = (u, LL_ind[l][curl], a); curl++

end

if which == 2 then
i = (u, l, AA_ind[a][cura]); cura++;

end

if T(i) != 0 then
add T(i) to predictions add similarity to weights

end

end

for i=0 to neighborhood size do
t̂ = t̂+ predictions[i] ∗ weights[i]

end

t̂ = t̂/
∑

weights
Algorithm 2: SimPred Algorithm

In general, time complexity of applying SVD on an nxn matrix is given as O(n3)

[34]. It is the bottleneck of SVD-based prediction methods. In SimPred, since

we do not use SVD, we reduce this complexity to O(n ∗ log(n)).

36

4.1 Running Example

In this section we give a small running example using the tensor shown in Figure

3.1. We will try to predict the value of entry e(0,1,0).

The algorithm first checks the similar items in all dimensions and tries them in

the order of their similarity. The algorithm checks first row of location-location

similarity matrix, and second rows of user-user and activity-activity similarity

matrices. We find out that activity 3 has the most similarity with 0.67. But

since the value of T (0, 1, 3) is zero, we ignore it. We select the next item with

the most similarity, which is location 2. We check the value of T (0, 3, 0) and

find that it is zero as well. In this way we test location 4, activity 1 and user 2.

For user 2, we see that T (2, 1, 0) is non-zero. Since, our neighborhood size is 1,

we stop the algorithm here and calculate the prediction as follows:

T̂Sim(0, 1, 0) =
T (2, 1, 0) ∗ UUser(0, 2)

UUser(0, 2)
=

2.38629 ∗ 0.32
0.32

= 2.38629

37

38

CHAPTER 5

EVALUATION

In this chapter we present the evaluation results of the proposed methods. We

first describe our data sets and present the results gathered in them. Then

we make a parameter optimization analysis. Then we present the evaluation

results of improved SVD-based method and similarity based method in different

sections.

5.1 Data Sets

In order to evaluate our methods, we used two different data sets. First data set

was obtained from Gowalla and the second from Brightkite. Both are location-

based applications which are currently discontinued [10].

The data sets consists of a number of check-ins gathered over a period of time.

Each check-in has user ID, date and time, altitude, longitude and a location

ID fields [10]. In addition, we have found the corresponding locations from

Foursquare and used the category of these locations as the activity information.

For Gowalla data set, we extracted 3 different-size subsets from the data. Small

data set contains 309 users, 132 locations, 82 activities. Medium data set con-

tains 2136 users, 1603 locations, 267 activities. Finally the large data set con-

tains 11216 users, 7688 locations and 407 activities.

For Brightkite data set, two different sized data sets were obtained. Small set

contains 517 users, 318 locations and 130 activities whereas medium data set

39

contains 2126 users, 1476 locations and 305 activities.

5.2 Evaluation Metrics

In order to evaluate the performance of the proposed methods, we have used

the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) metrics

for assessing the performance of our proposed methods. MAE is used to assess

the average error of the methods and RMSE gives insight about the spread

of the error. A discussion about MAE and RMSE is given in [5], [18] and [36].

Definition of MAE and RMSE is given in Equations 5.1 and 5.2 where O and E

are sets of output and expected values respectively. K-fold validation is applied

on the data with k=10 folds throughout all the experiments. We present the

averages obtained from these 10 folds.

MAE(O,E) =
1

n

n∑
i

|oi − ei| (5.1)

RMSE(O,E) =

√∑n
i (oi − ei)2

n
(5.2)

5.3 Analysis for Parameter Optimization

In Figures 5.1 to 5.4, we present the impact of neighborhood sizes on the per-

formance of methods. We have determined 7 as the testing neighborhood size

although in 1 or 2 cases of small data set 6 seems a better choice in terms of

MAE. For all experiments, we use the neighborhood size of 7.

40

1 2 3 4 5 6 7

0.55

0.6

0.65

Nbrhood Size

M
A
E

re
su
lt
s

Impact of Nbrhood Size

CF
CB
Hyb
Sim

Figure 5.1: Impact of Neighborhood Size on MAE in Small Gowalla Data Set

3 4 5 6 7

0.35

0.4

0.45

Nbrhood Size

M
A
E

re
su
lt
s

Impact of Nbrhood Size

CF
CB
Hyb
Sim

Figure 5.2: Impact of Neighborhood Size on MAE in Medium Gowalla Data
Set

41

1 2 3 4 5 6 7

0.8

0.9

1

1.1

Nbrhood Size

R
M
SE

re
su
lt
s

Impact of Nbrhood Size

CF
CB
Hyb
Sim

Figure 5.3: Impact of Neighborhood Size on RMSE in Small Gowalla Data Set

3 4 5 6 7

0.6

0.65

0.7

Nbrhood Size

R
M
SE

re
su
lt
s

Impact of Nbrhood Size

CF
CB
Hyb
Sim

Figure 5.4: Impact of Neighborhood Size on RMSE in Medium Gowalla Data
Set

5.4 Experimental Evaluation of the Improved SVD-Based Recom-

mendation Method

In this section we present the evaluation results for the proposed SVD-based

methods. We will present the results for graph-based similarity calculation

method, weighted average calculation and overall comparison in different sub-

sections.

42

5.4.1 Graph-Based Similarity Calculation

First we present the impact of our new similarity calculation method on SVD-

based methods. Figures 5.5 to 5.8 show the impact of similarity calculation

methods in Gowalla and Brightkite data sets. Figures 5.9 to 5.10 show the

impact in time required for preparation.

In Figures 5.9 and 5.10, we can see that proposed similarity methods lead to

shorter preparation times, This is because we have denser matrices with the

original methods. As seen in the figures, this effect is most prominent in CB

method. This is because in CB method, the only information used is similarity

information. In Hybrid method, the information coming from original tensor

dominates the constructed 2-D matrix. This effect gets more dramatic for the

big Gowalla and medium Brightkite data sets that after waiting for several hours

for preparation, we stopped the experiment. For the big Gowalla data set we

waited for 8 hours and for the medium Brightkite data set for 40 hours.

CB Hyb

0.4

0.6

0.8

1

1.2

Sim Method

M
A
E

Medium Data Set

Orig
Prop

Figure 5.5: MAE of Similarity Calculation Methods in Gowalla Data Set

43

CB Hyb

0.6

0.8

1

1.2

1.4

Sim Method

R
M
SE

Medium Data Set

Orig
Prop

Figure 5.6: RMSE of Similarity Calculation Methods in Gowalla Data Set

CB Hyb

1.45

1.46

1.47

1.48

Sim Method

M
A
E

Small Data Set

Orig
Prop

Figure 5.7: MAE of Similarity Calculation Methods in Brightkite Data Set

44

CB Hyb

2.04

2.04

2.05

2.05

2.06

2.06

Sim Method

R
M
SE

Small Data Set

Orig
Prop

Figure 5.8: RMSE of Similarity Calculation Methods in Brightkite Data Set

CB Hyb

0

0.5

1

1.5

2

2.5
·104

Sim Method

Se
co
nd

s

Medium Data Set

Orig
Prop

Figure 5.9: Preparation Times of SVD-based methods using different Similarity
Matrices in Gowalla Data Set

45

CB Hyb
0

100

200

300

400

500

Sim Method

Se
co
nd

s

Small Data Set

Orig
Prop

Figure 5.10: Preparation Times of SVD-based methods using different Similar-
ity Matrices in Brightkite Data Set

5.4.2 Weighted Average Calculation

We then present the MAE and RMSE results of using weighted average and

deviation average in SVD prediction methods. Note that the proposed similarity

methods are used in these experiments. As can be seen in Figures 5.11 to 5.14

weighted average produces better MAE results. In Figures 5.15 and 5.18, we see

that new similarity calculation gives increased RMSE only in Figure 5.17. This

means we have a slightly bigger spread in the error with the new calculation

technique in that figure. This is not a problem since this increase is lower than

the reduction in MAE.

46

CF CB Hyb

0.53

0.54

0.55

Matrix

M
A
E

Small Data Set

DevAvg
WghAvg

Figure 5.11: MAE of Average Calculation Methods in Small Gowalla Data Set

CF CB Hyb

1.3

1.35

1.4

1.45

Matrix

M
A
E

Small Data Set

DevAvg WghAvg

Figure 5.12: MAE of Average Calculation Methods in Small Brightkite Data
Set

47

CF CB Hyb

0.34

0.35

0.36

0.37

Matrix

M
A
E

Medium Data Set

DevAvg
WghAvg

Figure 5.13: MAE of Average Calculation Methods in Medium Gowalla Data
Set

CF CB Hyb

1.25

1.3

1.35

Matrix

M
A
E

Medium Data Set

DevAvg
WghAvg

Figure 5.14: MAE of Average Calculation Methods in Medium Brightkite Data
Set

48

CF CB Hyb

0.78

0.8

0.82

0.84

Matrix

R
M
SE

Small Data Set

DevAvg
WghAvg

Figure 5.15: RMSE of Average Calculation Methods in Small Gowalla Data Set

CF CB Hyb
1.9

1.95

2

2.05

Matrix

R
M
SE

Small Data Set

DevAvg WghAvg

Figure 5.16: RMSE of Average Calculation Methods in Small Brightkite Data
Set

49

CF CB Hyb

0.56

0.57

0.58

0.59

Matrix

R
M
SE

Medium Data Set

DevAvg
WghAvg

Figure 5.17: RMSE of Average Calculation Methods in Medium Gowalla Data
Set

CF CB Hyb

1.85

1.9

1.95

Matrix

R
M
SE

Medium Data Set

DevAvg
WghAvg

Figure 5.18: RMSE of Average Calculation Methods in Medium Brightkite Data
Set

5.4.3 Overall Comparison

In Figures 5.19 to 5.24 we compare our results with the results in [30]. Because

of the very long running time of the original method in big Gowalla and medium

50

Brightkite data sets, we could not get values of original methods for comparing

with our values. It is seen that both in small and medium sized data sets,

proposed methods produce better MAE results. In addition, except a small

increase in RMSE result of Hyb_Pr in Figure 5.24, RMSE results are lower as

well.

Small

0.53

0.54

0.55

0.56

Data Set

M
A
E

CF_Or CF_Pr CB_Or CB_Pr
Hyb_Or Hyb_Pr

Figure 5.19: Overall Comparison of MAE Results in Small Gowalla Data Set

Small

1.3

1.35

1.4

1.45

1.5

Data Set

M
A
E

CF_Or CF_Pr CB_Or CB_Pr
Hyb_Or Hyb_Pr

Figure 5.20: Overall Comparison of MAE Results in Small Brightkite Data Set

51

Small

0.78

0.8

0.82

0.84

Data Set

R
M
SE

CF_Or CF_Pr CB_Or CB_Pr
Hyb_Or Hyb_Pr

Figure 5.21: Overall Comparison of RMSE Results in Small Gowalla Data Set

Small
1.9

1.95

2

2.05

Data Set

R
M
SE

CF_Or CF_Pr CB_Or CB_Pr
Hyb_Or Hyb_Pr

Figure 5.22: Overall Comparison of RMSE Results in Small Brightkite Data
Set

52

Medium

0.4

0.6

0.8

1

1.2

Data Set

M
A
E

CF_Or
CF_Pr
CB_Or
CB_Pr
Hyb_Or
Hyb_Pr

Figure 5.23: Overall Comparison of MAE Results in Medium Gowalla Data Set

Medium

0.6

0.8

1

1.2

1.4

Data Set

R
M
SE

CF_Or
CF_Pr
CB_Or
CB_Pr
Hyb_Or
Hyb_Pr

Figure 5.24: Overall Comparison of RMSE Results in Medium Gowalla Data
Set

5.5 Experimental Evaluation of the Similarity-Based Recommenda-

tion Method

In this section we present the results related to the similarity based recommen-

dation method, SimPred.

From Figure 5.25 to 5.28, we give performance comparisons of SimPred method

53

with our SVD-based methods. Then from Figure 5.29 to 5.30, preparation time

comparison of the proposed methods are given. It is seen that in all sizes and

methods, SimPred improves run-time efficiency with an acceptable trade-off in

performance.

Medium

0.34

0.36

0.38

0.4

0.42

0.44

Data Set

M
A
E

CF_Pr
CB_Pr
Hyb_Pr

Sim

Figure 5.25: MAE Comparison of SimPred method in Medium Gowalla Data
Set

Medium

1.25

1.3

1.35

1.4

Data Set

M
A
E

CF_Pr
CB_Pr
Hyb_Pr

Sim

Figure 5.26: MAE Comparison of SimPred method in Medium Brightkite Data
Set

54

Medium
0.56

0.58

0.6

0.62

0.64

Data Set

R
M
SE

CF_Pr
CB_Pr
Hyb_Pr

Sim

Figure 5.27: RMSE comparison of SimPred method in Medium Gowalla Data
Set

Medium

1.84

1.86

1.88

1.9

1.92

1.94

Data Set

R
M
SE

CF_Pr
CB_Pr
Hyb_Pr

Sim

Figure 5.28: RMSE comparison of SimPred method in Medium Brightkite Data
Set

55

Medium

0

500

1,000

1,500

2,000

Data Set

P
re
pa

rt
io
n
T
im

es
(s
)

CF_Pr
CB_Pr
Hyb_Pr

Sim

Figure 5.29: Preparation Time Comparison of Proposed Methods in Medium
Gowalla Data Set

Medium

0

100

200

300

400

Data Set

P
re
pa

ra
ti
on

T
im

es
(s
)

CF_Pr
CB_Pr
Hyb_Pr

Sim

Figure 5.30: Preparation Time Comparison of Proposed Methods in Medium
Brightkite Data Set

In Table 5.1 preparation time and performance comparisons of SimPred method

can be seen quantitatively against the proposed hybrid SVD-based method. It

is seen that the enhancement in preparation time is significantly better than the

loss in MAE and RMSE. Since complexity of SimPred method is O(n ∗ log(n))
and it is suitable for use with sparse matrices, it can be used with very big data.

56

Table5.1: Rate of SimPred Results Against Hybrid SVD-Based Method

MAE RMSE Prep Time
Medium Gowalla Data Set 1.27522 1.13873 0.00363
Medium Brightkite Data Set 1.1271 1.057 0.01845

57

58

CHAPTER 6

CONCLUSION AND FINAL REMARKS

In this thesis we have presented an improvement to the algorithm described in

[30] and a new method (SimPred) which has acceptable results and dramatically

better efficiency in large data sets.

As a summary, we improved [30] with a more robust and scalable similarity cal-

culation technique and a better average calculation method. We also discussed

that SVD-based methods are not suitable as real world applications since their

complexity in offline phase is too high. In order to solve this, we proposed a

brand new algorithm which reduces the preparation time dramatically with an

acceptable trade-off in rating performance.

Because of the nature of our data sets, a location could be associated with only

one category in our setup. A setup with locations having more than one activity

associated with them can give different and possibly better results.

One other aspect we noticed in the evaluation phase was the check-in habits of

location based social network users. We noticed that most users tend to make a

check-in in a place only once. Even if they come later again, apparently they do

not make a second check-in. Because of this, their relationships with locations

become a binary relation and rating extraction loses its meaning. We believe

for those people, a binary recommender technique can be explored.

SimPred may also be improved further by incorporating other data such as

trust between users. A similar approach to [22] can be followed. As an exam-

ple, number of likes between users in Facebook can be used for this purpose.

59

Unfortunately our data was not suitable for this.

Some popular techniques on graph data structures such as random walk with

restart algorithm [24] may be applied on the dimensions to get enhanced simi-

larity results. [33] showed that there are fast applications of them.

60

REFERENCES

[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incor-
porating contextual information in recommender systems using a multidi-
mensional approach. ACM Transactions on Information Systems (TOIS),
23(1):103–145, 2005.

[2] G. Adomavicius and A. Tuzhilin. Multidimensional recommender systems:
a data warehousing approach. In Electronic commerce, pages 180–192.
Springer, 2001.

[3] G. Adomavicius and A. Tuzhilin. Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions.
Knowledge and Data Engineering, IEEE Transactions on, 17(6):734–749,
2005.

[4] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu. Horting hatches an egg:
A new graph-theoretic approach to collaborative filtering. In Proceedings of
the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 201–212. ACM, 1999.

[5] J. S. Armstrong. Evaluating forecasting methods. In Principles of forecast-
ing, pages 443–472. Springer, 2001.

[6] M. Balabanović and Y. Shoham. Fab: content-based, collaborative recom-
mendation. Communications of the ACM, 40(3):66–72, 1997.

[7] R. Burke. Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, 12(4):331–370, 2002.

[8] R. Burke. Hybrid web recommender systems. In The adaptive web, pages
377–408. Springer, 2007.

[9] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap
technology. ACM Sigmod record, 26(1):65–74, 1997.

[10] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user move-
ment in location-based social networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 1082–1090. ACM, 2011.

[11] C. Eckart and G. Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

61

[12] S. Gauch, M. Speretta, A. Chandramouli, and A. Micarelli. User profiles
for personalized information access. In The adaptive web, pages 54–89.
Springer, 2007.

[13] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant
time collaborative filtering algorithm. Information Retrieval, 4(2):133–151,
2001.

[14] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic
framework for performing collaborative filtering. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development
in information retrieval, pages 230–237. ACM, 1999.

[15] Q. Huang and Y. Liu. On geo-social network services. In Geoinformatics,
2009 17th International Conference on, pages 1–6. IEEE, 2009.

[16] Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques
to alleviate the sparsity problem in collaborative filtering. ACM Transac-
tions on Information Systems (TOIS), 22(1):116–142, 2004.

[17] Z. Huang, W. Chung, T.-H. Ong, and H. Chen. A graph-based recom-
mender system for digital library. In Proceedings of the 2nd ACM/IEEE-CS
joint conference on Digital libraries, pages 65–73. ACM, 2002.

[18] R. J. Hyndman and A. B. Koehler. Another look at measures of forecast
accuracy. International journal of forecasting, 22(4):679–688, 2006.

[19] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender sys-
tems: an introduction. Cambridge University Press, 2010.

[20] S. Lee, J. Yang, and S.-Y. Park. Discovery of hidden similarity on collab-
orative filtering to overcome sparsity problem. In Discovery Science, pages
396–402. Springer, 2004.

[21] G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-
to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–80,
2003.

[22] P. Massa and P. Avesani. Trust-aware collaborative filtering for recom-
mender systems. In On the Move to Meaningful Internet Systems 2004:
CoopIS, DOA, and ODBASE, pages 492–508. Springer, 2004.

[23] K. Miyahara and M. J. Pazzani. Collaborative filtering with the simple
bayesian classifier. In PRICAI 2000 Topics in Artificial Intelligence, pages
679–689. Springer, 2000.

[24] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Automatic multi-
media cross-modal correlation discovery. In Proceedings of the tenth ACM

62

SIGKDD international conference on Knowledge discovery and data min-
ing, pages 653–658. ACM, 2004.

[25] J. Parsons, P. Ralph, and K. Gallagher. Using viewing time to infer user
preference in recommender systems. 2004.

[26] M. Pazzani and D. Billsus. Learning and revising user profiles: The identi-
fication of interesting web sites. Machine learning, 27(3):313–331, 1997.

[27] M. J. Pazzani. A framework for collaborative, content-based and demo-
graphic filtering. Artificial Intelligence Review, 13(5-6):393–408, 1999.

[28] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimen-
sionality reduction in recommender system-a case study. Technical report,
DTIC Document, 2000.

[29] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th interna-
tional conference on World Wide Web, pages 285–295. ACM, 2001.

[30] M. Sattari. A Hybrid Geo-Activity Recommendation System Using Ad-
vanced Feature Combination and Semantic Activity Similarity. Master’s
thesis, Middle East Technical University, Ankara, Turkey, 2013.

[31] M. Sattari, M. Manguoglu, I. H. Toroslu, P. Symeonidis, P. Senkul, and
Y. Manolopoulos. Geo-activity recommendations by using improved feature
combination. In Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, pages 996–1003. ACM, 2012.

[32] J. B. Schafer, J. A. Konstan, and J. Riedl. E-commerce recommenda-
tion applications. In Applications of Data Mining to Electronic Commerce,
pages 115–153. Springer, 2001.

[33] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart and
its applications. 2006.

[34] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam,
1997.

[35] Z. Wang, Y. Tan, and M. Zhang. Graph-based recommendation on social
networks. In Web Conference (APWEB), 2010 12th International Asia-
Pacific, pages 116–122. IEEE, 2010.

[36] C. J. Willmott and K. Matsuura. Advantages of the mean absolute error
(mae) over the root mean square error (rmse) in assessing average model
performance. Climate Research, 30(1):79, 2005.

[37] S. Wright and J. Nocedal. Numerical optimization, volume 2. Springer New
York, 1999.

63

[38] Z. Yuan, Y. Jiang, and G. Gidófalvi. Geographical and temporal similar-
ity measurement in location-based social networks. In Proceedings of the
Second ACM SIGSPATIAL International Workshop on Mobile Geographic
Information Systems, pages 30–34. ACM, 2013.

[39] V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collaborative fil-
tering meets mobile recommendation: A user-centered approach. In AAAI,
volume 10, pages 236–241, 2010.

[40] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang. Collaborative location and
activity recommendations with gps history data. In Proceedings of the 19th
international conference on World wide web, pages 1029–1038. ACM, 2010.

[41] Y. Zheng, Y. Chen, X. Xie, and W.-Y. Ma. Geolife2. 0: a location-based
social networking service. In Mobile Data Management: Systems, Services
and Middleware, 2009. MDM’09. Tenth International Conference on, pages
357–358. IEEE, 2009.

64

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Contribution of the Thesis
	Organization of the Thesis

	Background and Related Work
	Collaborative Filtering
	Content Based
	Knowledge-Based
	Hybrid Recommenders
	Problems in Recommender Systems
	Multi-Dimensional Recommendation
	Graph-Based Methods

	Improved SVD-Based Recommendation
	Data Set Characteristics
	Rating Estimation
	Singular Value Decomposition Overview
	SVD Prediction
	Graph-Based Similarity Calculation
	Weighted Average Based Rating Estimation

	Running Example
	Similarity Calculation
	Collaborative Filtering Method
	Content Based Method
	Hybrid Method

	Similarity Estimation Based Recommendation
	Running Example

	Evaluation
	Data Sets
	Evaluation Metrics
	Analysis for Parameter Optimization
	Experimental Evaluation of the Improved SVD-Based Recommendation Method
	Graph-Based Similarity Calculation
	Weighted Average Calculation
	Overall Comparison

	Experimental Evaluation of the Similarity-Based Recommendation Method

	Conclusion and Final Remarks
	REFERENCES

