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ABSTRACT

CONTEXT-AWARE MARKOV DECISION PROCESSES

EKMEKCİ, Ömer
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

September 2014, 53 pages

In the 1990s, when artificial intelligence (AI) research become an important area
again, researchers quitted trying to solve the ultimate problem, generating autonomous
agents with "human-level intelligence". Currently, significantly important part of the
research is highly focused on developing autonomous agents particularly dedicated
to solve problems only in a chosen domain. Even though models and algorithms pro-
vided in reinforcement learning (RL), such as Markov Decision Processes (MDP), are
successful at efficiently determining optimal or near optimal policies for these prob-
lems, however, these tools, originated from operations research and not customized
particularly for AI, ignore using the available information in a given problem which
indeed makes them far away from being a suitable model for AI. This leads unstruc-
tured representation of that problem which makes these tools significantly less effi-
cient at determining a useful policy as the state space of a task grows, which is the
case for more realistic problems.A milestone will be achieved in AI if new state ma-
chines are invented that use the information in a given task enabling generate optimal
or near-optimal policies up to more realistic tasks having large number of states.If
this is successfully achieved, the research will be one step closer to fulfill the ultimate
aim of AI. Based on this motivation, this thesis presents a new state machine, based
on MDP, for representing and solving more realistic AI problems which is entitled
"Context-Aware Markov Decision Process (CA-MDP)". For that matter, CA-MDP,
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in comparison to MDP, introduces information based on causal relationship of actions
and states therefore enabling compact represention of the tasks and computation of
an optimal policy much more efficiently, even for problems having very large num-
ber of states that MDP fails to solve efficiently which will make it an important step
in integrating the information available to both representation and solution of an AI
problem. After a theoretical introduction of the new state machine, an analysis is
carried out. Finally, the effectiveness of the model is demonstrated experimentally,
concluding with a comparison to existing models.

Keywords: Artificial Intelligence, Artificial General Intelligence, Reinforcement Learn-
ing, Markov Decision Process, Planning Domain Definition Language, Probabilistic
Planning Domain Definition Language, Planning
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ÖZ

İÇERİKTEN-HABER MARKOV KARAR SÜREÇLERİ

EKMEKCİ, Ömer
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Eylül 2014 , 53 sayfa

1990’lı yıllarda yapay zeka (YZ) tekrar önemli bir araştırma alanı olunca, araştır-
macılar "nihai problemi", insan seviyesinde zekaya sahip olan otonom vekiller ge-
liştirme problemini, çözmeye çalışmaktan vazgeçmişlerdir. Günümüzde, araştırma-
nın çok önemli bir kısmı, seçilen belli bir alandaki problemleri çözmeye özelleşmiş
otonom vekiller geliştirmeye odaklanmıştır. Her ne kadar ödüllü öğrenmende (ÖÖ)
mevcut olan model ve algoritmaları, Markov Karar Süreçleri (MKS) gibi, bu tip özel-
leşmiş problemler için optimal veya yakın-optimal poliçeler üretmekte başarılı olsa-
lar da, ne yazık ki, yöneylem araştırması alanından çıkmış olan ve YZ ye özelleşmiş
olmayan bu araçlar, verilen bir problemin içinde kullanılmaya elverişli olan bilgiyi
kullanmayı ihmal ederler, bu da onları YZ’ye uygun bir model olmaktan aslında çok
uzaklaştırır. Bunlar problemin yapısal olmayan şekilde tarifine neden olup, bu da bu
araçların durum uzayı genişledikçe, daha gerçekçi problemlerde olduğu gibi, kullanı-
labilir bir poliçe üretmelerinde daha az efektif olmalarına yol açar. Eğer daha büyük
sayıda durumu olan daha gerçek hayata yakın problemlerin içindeki bilgiyi kullanıp
onları çözmeyi ve optimal veya yakın-optimal poliçeler bulmayı imkanlı kılmasını
sağlayacak yeni durum makinaları bulunursa YZ konusunda bir kilometre taşı geçil-
miş olacak. Eğer bu başarıyla yapılabilirse, araştırmalar YZ’nin nihai amacının yerine
getirilmesinde bir adım daha yaklaşmış olacak. Bu güdüden hareketle bu tez, daha
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gerçekçi YZ problemlerini sunmak ve onlara çözümler üretmek için MKS temelli
"İçerikten-Haber Markov Karar Süreci (İH-MKS)" isimli yeni bir durum makinası
sunmaktadır. Bu sebeple, İH-MKS, MKS’ye kıyasla, MKS’nin verimli çözmekte ba-
şarısız olduğu çok büyük sayıda durumları olan problemler için bile, görevlerin kom-
pakt sunumu ve optimal poliçeyi daha verimli hesaplamak için, bilgi olarak durum ve
hareketlerin nedensel ilişkilerini ileri sürer, bu da onun bir YZ probleminde kullanışlı
olan bilgiyi onun tarifi ve çözümüne ilave edilmesi için önemli bir adım olmasını sağ-
layacaktır.Yeni durum makinamızın kuramsal bir tanıtımından sonra, analizleri yapı-
lacaktır. En sonunda, modelimizin etkililiği, diğer modellerle karşılaştırıp deneysel
olarak sonuca varılarak, sunulacaktır.

Anahtar Kelimeler: Yapay Zeka, Yapay Genel Zeka, Ödüllü Öğrenme, Markov Karar
Süreci, Planlama Alan Tanımı Dili, Olasılıksal Planlama Alan Tanımı Dili, Planlama
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Volkan Şirin who is as much passionate about science as me and shares the similar
crazy science ideas with me, helped me to enhance my perspective and knowledge in
every topic of science. Also, I would like to thank Elvan Gülen countless times for
her every kind of support and help. I am greatly indebted for Dr. Utku Erdoğdu’s
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CHAPTER 1

INTRODUCTION

In the first half of the 20th century, many hypotheses proposed for measurement of

machine intelligence which leaded artificial intelligence (AI) research field become a

very important research area. At the very beginning it started as a very promising re-

search area sparkling with serious developments. For example, in the 1950, a detailed

analysis of autonomous chess playing were published [20], first AI computer pro-

grams were developed; Samuel’s checkers playing program [23] and Allen Newell,

J.C. Shaw and Herbert A. Simon’s General Problem Solver [17], LISP programming

language was invented by John McCarthy, in the 1960s Ray Solomonoff proposed the

fundamentals of mathematical theory of AI, the first symbolic integration program

SAINT is written by James Slagle [21], an interactive autonomous English dialogue

program ELIZA is built by Joseph Weizenbaum, in the 1970s Patrick Winston gener-

ated the program called ARCH for demonstrating learning of concepts from examples

in the world of children’s blocks, an automated planner called STRIPS is developed

by Richard Fikes and Nils Nilsson [8], in the 1980s Marvin Minsky proposed his

cognitive theory stating that humanf mind is a collection of "mindless" agents for

the purpose of presenting a whole new perspective to AI in the book entitled "So-

ciety of Mind" [16], an automated planning and scheduling system called ADL is

proposed by Pednault [19], in the 1990s web crawlers and other data and information

extraction agents were become popular, two world champions in the fields of chess

and checkers, Garry Kasparov and Tinsley are defeated by autonomous agents and

Gerry Tesauro’s backgammon program proved itself to be powerful enough to com-

pete world class players [24]. Nevertheless, despite all of the progress from 1950

to 2000 AI field faced disappointment and criticism leading to cancellation of fund-
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ings for the research. Beginning from the 1990s due to the increasing popularity of

statistical learning methods for information processing like Neural Networks [2] and

Support Vector Machines [4] and the emergence of Reinforcement Learning [23] and

PDDL [9, 10] in the planning domain, AI reconstituted from its very roots, again

become a hot topic. Since then, however, researcher community of AI has never

followed the original "achieving human-level intelligence" goal. As Marvin Minsky

puts it in 1996 : "No one has tried to make thinking machine. The bottom line is

that we really haven’t progressed too far toward a truly intelligent machine. We have

collections of dumb specialists in small domains. The true majesty of general intel-

ligence still awaits our attack. We’ve got to get back to the deepest questions of AI

and general intelligence and quit wasting time on little projects that don’t contribute

to the main goal. ".

The direction is, indeed, steered to develop autonomous "intelligent" softwares ded-

icated to solve particular, generally highly constrained, problems in various fields

rather than trying to achieve the ultimate goal of AI. These dedicated autonomous

agents never benefit from the both of the vital concepts, statistical information pro-

cessing and reinforcement learning. Based on this key observation, this thesis aims

to build a model which is based on a model in reinforcement learning benefitting

from information processing approaches in a fundamental way which will take an

important step towards more general intelligences, i.e. autonomous agents capable

of solving problems in any kind of domain, which will eventually lead to Artificial

General Intelligence (AGI), i.e. agents capable of performing any intellectual task

that a human can, namely "human level intelligence".

Reinforcement learning aims to present models and algorithms to solve both stochas-

tic and deterministic decision making problems, generally modeled as Markov Deci-

sion Processes (MDP) [1] if environment is fully observable in contrast to Partially

Observable Markov Decision Processes (POMDP) [13] for partially observable en-

vironments. MDP uses state, action, transition and reward information to represent

a given problem and uses dynamic programming (DP) oriented algorithms to gen-

erate an optimal policy for the agent by propagating immediate and future rewards

along given state transitions. Several of these algorithms can guarantee generating

an optimal or near-optimal policy for an MDP problem given enough time and space.
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However, an important downside is they ignore using the available information which

leads to an unstructured representation of the problem and inefficiently generation of

optimal policies when the state number grows large, as the case in real world tasks.

Many methods like function approximation, state abstraction and hierarchical decom-

position are proposed to overcome this problem, yet neither of them tried to use the

extra information available that are not included by the MDP or other RL algorithms,

since MDP is originally developed from general dynamical systems not specifically

for AI. As a conclusion, AI problems model real world and contain lots of useful

information, without processing of information, the true nature of task will not be

revealed hence definitely inefficiency occurs in both representation and solution.

Based on these motivations mentioned, the aim for this thesis is to build a model that

will also use the extra information, if any, in the environment, which will definitely

help developing an autonomous agent to deal with problems from different domains,

i.e. with general intelligence and also alleviate the curse of dimensonality occuring

from the number of states to solve real worl tasks efficiently. In this particular study,

we will only focus on the dependencies between the states and actions as the available

information in the environment. Inspired from PDDL and its probabilistic extension

PPDDL [26], conditions and effects of actions will be introduced to MDP, hence get-

ting a new model called Context-Aware Markov Decision Process (CA-MDP) which

will be a more suitable model than MDP for AI and easier to solve than PPDDL since

DP oriented algorithms will be proposed for solving. We hope, a task with CA-MDP

formulation will have states and actions as localized structures therefore making the

problem suitable for decomposition. For a DP oriented solution algorithm rather than

considering the whole structure, consideration of only the admissible actions and their

effect area will definitely lead to faster updates hence faster convergence and deter-

mination of an optimal policy.

1.1 Organization of this Thesis

• Chapter 2: In this chapter, background knowledge, needed to be known to un-

derstand this thesis, is given combined with literature survey detailing the pre-

vious approaches to the problem if any.
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• Chapter 3: The core theory of this work is presented. Context-Aware Markov

Decision Process (CA-MDP) is introduced in a detailed manner. After, two-

way conversion between MDP and CA-MDP is presented, demonstrating the

expressiveness power of CA-MDP over regular MDP.

• Chapter 4: A modified version of the DP-oriented algorithm, Value Iteration, is

introduced for CA-MDP, namely Context-Aware Value Iteration (CA-VI). The

weaknesses of the VI algorithm are stated and modifications to remove those

inefficiencies are expressed in a detaled manner. Then, a sample implemen-

tation is provided for the CA-VI algorithm. Finally, an analysis is carried out

for showing that CA-VI handles computations faster than VI and generates an

optimal policy.

• Chapter 5: In this particular chapter, conclusions are drawn and some of the

future work is pointed out.
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CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

2.1 Reinforcement Learning

Unlike supervised and semi-supervised learning, reinforcement learning provides tools

for autonomous agents to learn optimal action selection strategies without the explicit

training data necessity. The agent is not provided with training data to learn the best

actions to choose rather provided rewards according to their actions in a given state.

It has to discover which actions give the most expected reward. In order to deter-

mine which of these actions yield the most expected reward, noting that no explicit

training data is provided, the agent has to try new actions which have not been tried

before. Since these are stochastic tasks, diverse set of actions should be tried over and

over again for reliable estimation of expected reward for individual actions. Then the

action(s) with the highest expected reward is(are) favored in the corresponding states.

A typical reinforcement learning has a number of key elements; reward function,

value function and a policy. Before explaining these concepts, the model of a rein-

forcement learning problem should be presented. The model of the interaction be-

tween the agent and the environment is depicted in Figure 2.1;

This interaction summarizes the flow of events in a typical reinforcement learning

problem. The agent starts in a state, let’s denote it as s0, then it needs to take an

action, a0, which in turn gets a reward according to the defined reward function,

be that value r0, and current state s0 is changed to next state, let’s denote it as s1.

The same action-reward-state transition sequence continues for the upcoming steps.

The goal is to maximize the expected reward by first exploring the environment i.e.

5



Figure 2.1 Agent-Environment model

learning by reward and exploiting it to maximize the reward accordingly.

These rewards are drawn from a reward function which maps the states to numeri-

cal values, i.e. rewards, where higher values indicating high desirability of the state.

The total amount of expected reward, accumulated from the different explorations,

i.e. succeeding transitions, starting from a state, is indicated by a function called

value function. After some number of different iterations such that the value function

is converged, the policy is generated. A policy defines an agent’s action selection

strategies in a given state, more formally a policy maps states to actions. In addition,

policies may be stochastic which selects an action a ∈ A in state s ∈ S with proba-

bilty π(s, a) such that ∀s ∈ S,
∑

a∈A π(s, a) = 1. There can be many policies leading

different actions in different states, the aim is to find the policy that maximizes the

accumulated reward.

Having summarized the very fundamentals of reinforcement learning and important

concept will be introduced next.

2.2 Markov Decision Processes

A finite Markov decision process [1], or MDP is a tuple ;

M =< S;A;P ;R >, (2.1)

6



where S is a finite set of states, A is a finite set of actions, P is a transition probability

function, and R is an expected reward function.

An agent being in state s ∈ S and executing an action a ∈A will cause state transition

from s to state s′ ∈ S with probability P (s′|s, a) and provide the agent with a reward

R(s,a). P is a proper probability distribution over state-action pairs such that (s, a) ∈
S × A,

∑
s′∈S P (s′|s, a) = 1. The goal is to find a policy π : S → A that maximizes

the reward.

To find the policy maximizing the accumulated reward over states, we need to define

a value function V π(s) to be the value of policy starting at state s. To calculate the

expected reward we can write;

V π(s) = Eπ[rt+1 + γrt+2 + γ2rt+3...|st = s], (2.2)

where γ ∈ [0, 1) is the discount factor over the values of the future states. If γ = 0,

values of the future states are not considered in computation whereas if γ = 1, values

of all future states are taken into consideration equally. Formally, the goal is to find a

policy π that maximizes V π(s),∀s.

2.3 Evaluating and Finding an Optimal Policy

For the purpose of finding an optimal policy, firstly, we need to evaluate the value

function given at equation 2.2.

V π(s) = Eπ[rt+1 + γrt+2 + γ2rt+3...|st = s],

= Eπ[rt+1|st = s] + γEπ[rt+2 + γrt+3...|st = s],

= Eπ[rt+1 + γV π(st+1)|st],

(2.3)

In the last derivation of the equation 2.3, if we put the transition probability function

7



P (s′|s, a) and the reward function R(s, a) we get;

V π(s) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′). (2.4)

Equation 2.4 is called the Bellman equation. If π was a stochastic policy, the equation

becomes;

V π(s) =
∑
a∈A

π(s, a)

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)

]
. (2.5)

The optimal value function V ∗ is the solution to the following Bellman optimality

equation [1],

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

]
. (2.6)

Hence, optimal policy π∗ is the policy having V ∗ as its value function.

To compute the optimal policy, DP-oriented algorithms can be used. Value iteration is

a DP-oriented algorithm that maintains a value table consisting of target value for each

state, which is indeed an estimate of V ∗ [1]. At every step, the algorithm successively

iterates by updating the values according to the following equation ;

Vk+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)Vk(s
′)

]
. (2.7)

The algorithm continues to iterate until a stopping criteria is met. The algorithm is

given in algorithm 1 ;

After the algorithm is converged, a deterministic policy π needs to be generated ac-

cording to the equation 2.8 ;

π(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

]
. (2.8)
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Algorithm 1 Value Iteration

1: Initialize V(s) randomly,

2: repeat

3: δ ← 0

4: for all s ∈ S do

5: v ← V (s)

6: V (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)

]
7: δ ← max(δ, |V (s)− v|)
8: end for

9: until |δ| < ε

2.4 Scaling of Markov Decision Processes

In this section, several important studies regarding scaling problem of solution of

MDP problems are given.

2.4.1 Dynamic Bayesian Network Model for compactly representing MDPs

In MDP, space complexity becomes very high to handle as the size of state space

grows relevant to a problem which makes it impossible to provide a |S|x|S| probabil-

ity matrix for each action to express the state transitions, and a |S| vector of expected

rewards. For that matter, a model for factored repesentation of MDPs and an algo-

rithm for optimal policy construction which exploits the given model are proposed [3],

based on Dynamic Bayesian Networks [DBN] which is used for modeling changes in

state variables in a stochastic temporal process [6].

Their methodology for representing state transitions in MDP defines DBNs for each

action. These DBNs represent the effects of actions on state variables and have two-

slice structure due to the Markov assumption. The set of state variables in the first

slice represents the current state of the envrionment whereas the set in the second slice

represents the world after the action is applied and the edges in between represents

the causality.
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Figure 2.2 DBN for action "deliver coffee"

As an example, the notion of using DBN structure in a given problem can be repre-

sented in the coffee task, for full specification refer to [3]. Figure 2.2 illustrates the

DBN for the "deliver coffee" action for the coffee task. Edges represent the causal-

ities, i.e. which state variables affect which others after taking a particular action,

dashed lines specify the state variable not affected after executing the action. The

state variables in this task are listed below:

• W is for whether the robot is wet or not,

• U is for whether robot has umbrella or not,

• R is for whether it is raining or not,

• L is for location of robot; office or coffee shop,

• HU is for whether user has coffee or not,

• RU is for whether robot has coffee or not.

Each of these states has a conditional probability distribution table for determining the
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resulting value of the state variable associated with the given action which expresses

the state transitions in a more compact way. According to the network for the action

being demonstrated, the value of the state variableHU is only affected by L, HU and

RU for the action "deliver coffee", the rest has no effect.

2.4.2 State Abstraction and Hierarchical Decomposition

Several important studies have been done for the scalability problem of MDPs with

large number of states. Some of these studies define sub-task routines that will lead

to decomposition of a task and/or the policies generated for these sub-tasks will be

re-used wherever the execution of the same subtask needs to be executed. In addition,

with this higher level abstraction autonomous agents can solve the whole task more

efficiently. There are three different major approaches defining these sub-task routines

:

• Hierarchical Abstract Machines, HAMs [18]

• Options [22]

• MAXQ [7] .

The notion of hierarchical decomposition builds on the ideas of the identification and

execution of sub-task routines and state abstraction, which Although, re-execution

of those subroutines are pretty straightforward whereas the identification is another

issue. There are several algorithms proposed to identify useful sub-task routines (

[14, 15, 25]). On the other hand, state abstraction is the abstraction of state space of a

task by clustering them into certain groups being different on irrelevant information

which these these clusters can be regarded as a single state. As a result, the number of

computations for generation of a policy are alleviated, whereas the optimality point

for a policy can be still reached under certain conditions [5].

One of the most important studies up to date is the Variable Influence Structure Anal-

ysis, (VISA), algorithm [12]. The VISA algorithm is a hierarchical decomposition

algorithm for factored MDPs with DBNs [3]. It uses the causal dependency informa-

tion between states gathered from the DBN model such that when an action is taken
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then the value of the state in the next time step depends on the values of states having

edges linking to that state in the DBN model for that executed action. Then VISA,

checks for strongly connected components in the state structure of a given problem

to get rid of these cycles for constructing a graph with higher level abstraction. Then,

it uses the idea of exits [11], discovering the inter-state relationships that change in

values of some states causes to change another particular state, for the purpose of

introducing the subroutines which will solve the subtask defined by the exit state(s).

The generated causal graph is then used to define the necessary states and subroutines

to solve the subtask defined. Hence, as a result the algorithm generates a hierarchy

of subroutines representing a solution to the whole task allevating the computational

complexity.

2.5 Planning Domain Definition Language (PDDL)

PDDL is a language for defining non-stochastic planning domains and problems [9,

10]. A typical PDDL planning domain consists of ;

• a set T of types,

• a subtyping relation ST ⊂ TxT ,

• a set C of global objects,

• a set P of predicates,

• a set F of functions,

• a set AS of action schemata.

An example domain is presented in Figure 2.3, named antivirus-domain. The ele-

ments regarding PDDL is explained in the following subsections. For detailed spec-

ifications of PDDL, including possibles values for requirements tag which is also

being presented in the example, refer to [9, 10].
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Figure 2.3 Definition of a typical domain in PDDL : antivirus-domain
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2.5.1 Types

In PDDL, types are for representing the objects and variables which all have some

type t ∈ T . The domain definition in Figure 2.3 has tool, robot, bench as types which

are called simple types. All of the types declared in a given domain are subtype of the

built-in type object in PDDL. The subtyping relation is reflexive and transitive. Also,

PDDL allows to define a type, t, such that t =
⋃n
i=1 τi where n ∈ Z+ ∧ n > 1 and

each of the τi is a simple type, which is called a union type.

2.5.2 Predicates and Functions

In PDDL, predicates are a mapping from PDDL objects to boolean state variables,

whereas functions have numeric state variables as range. It is possible to restrict

the domain of a function or predicate. Provided example in the Figure 2.3, has the

following predicate onBench which restricts the domain to the type robot.

2.5.3 Actions

Actions in PDDL are for determining state transitions, i.e. altering the assignments

to a subset of state variables. An action is comprised of preconditions which dic-

tates an assignment to a subset of state variables for making the action applicable

and an effect which updates the state variables. The action schemas refuel and

getTool, from the antivirus-domain domain, in the Figure 2.4, has preconditions

precondition (and (holding ?y) (< (fuel-level ?x) 10)) and precondition (not (

holding ?X)) respectively. The refuel action has the effect that fuel − level is set-

tled to 1, whereas getTool action has the effect that all of the tools except the one

given as argument are not being hold anymore.

2.5.4 Problems

A typical problem in PDDL consists of ;

• a set V of state variables,
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Figure 2.4 refuel and getTool actions from the antivirus-domain domain

• a set A of actions,

• an initial state, sinitial,

• a goal state, φ,

• an optimization metric, f .

Every problem is associated with a domain definition in PDDL. The problem def-

inition presents the specific objects, O, to be used in the domain. The set of state

variables V are gathered fromO, C, P and F . Figure 2.5 illustrates a typical problem

in PDDL associated with the domain presented in the Figure 2.3. And the set V of

variables is presented in the Figure 2.6.

2.5.5 Probabilistic Extension of PDDL : PPDDL

In 2004, an important extension to PDDL is proposed, namely Probabilistic Planning

Domain Decision Language : PPDDL, which allowed to specify MDPs [26]. In this

extension, probabilistic effects are introduced, in addition rewards are implemented

by the existing PDDL feature : fluents [9].
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Figure 2.5 Definition of a problem, named test-antivirus, associated with the
antivirus-domain domain

Figure 2.6 State variables for the problem test-antivirus

2.5.6 Probabilistic Effects

The syntax for the probabilistic effects is given below:

(probabilistic p1 e1 p2 e2 ... pk ek), (2.9)

where ei denotes the effects whereas pi denotes the proabilities of the effects where

∀i, pi ≥ 0 and
∑k

i=1 pi = 1. Any probabilistic effect should state a set of an ex-

haustive set of probability-weighted outcomes. However, the probabilistic effects can

be also expressed in the following form (probabilistic p1 e1 p2 e2 ... pl el), where
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∀i, pi ≥ 0 and
∑l

i=1 pi < 1 which happens to mean that effect ei may happen

with probability pi and no effect occurs (state remains unchanged) with probability

q = 1 −
∑l

i=1 pi. Figure 2.7 and 2.8 illustrate the action modified with probabilis-

tic effects for the antivirus-domain domain given in the Figure 2.3 and the problem

associated with this domain being extended with the newly generated probabilistic

action, respectively. Note that, the requirements flag :probabilistic− effects states

that probabilistic effects are used in the domain definition. For full specifications,

refer to [26].

Figure 2.7 PPDDL encoding of the program action extended with probabilistic effect

Figure 2.8 PPDDL encoding of the initial conditions test-antivirus problem extended
with probabilistic initial state

In the Figure 2.7, the probabilistic effect (probabilistic 0.9 (not (hasV irus ?x)))

states that the virus will be cleaned with 90% probability and the state will remain

unchanged with 10% probability.

Figure 2.8 shows that the initial conditions, in addition to effects, can be probabilistic,

which in this particular case two possible initial states with equal probability (0.5) of

being true is defined for any given execution. The state variables and their values

in the possible initial states for the PPDDL encoding of the test-antivirus problem is

listed in 2.9.
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Figure 2.9 State variables and their possible initial values for the definition in figure
2.8

2.5.7 Rewards and Optimization Metrics

In PPDDL, rewards, being associated with state transitions and updated according

to rules in action effects, are encoded using fluents. The fluent reward, presented as

reward or (reward) in PPDDL description, is reserved to represent the accumulated

reward from the beginning of the execution. The syntax for the reward fluent is as

follows :

(〈additive-op〉 〈reward-− fluent〉 〈f -exp〉), (2.10)

where 〈additive − op〉 is increase or decrease and 〈f − exp〉 is numeric value

stating the amount of reward. It is important to remark that accumulated reward isn’t

considered as part of the state space, hence preconditions and effect-conditions cannot

refer to reward fluent.

For domains requiring rewards, :rewards flag should be added in the requirements

list. If a domain requires both probabilistic effects and rewards, :mdp requirements

flag can be added which implies both :probabilistic-effects and :rewards flags.

A goal statement :goal φ in PPDDL encodes the objective that should be maximized
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Figure 2.10 Reward structure in PPDDL

for the solution of the problem, unless an optimization metric is specified explicitly.

For problems associated with domains having the :rewards property declared, plan

objective is to maximize the expected reward by default.

Figure 2.10 demonstrates the reward structure in PPDDL for the antivirus-domain

domain extended with actions contaning probabilistic effects. A reward of 2 is gained

if the virus is cleaned after the program action is taken.
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CHAPTER 3

CONTEXT-AWARE MARKOV DECISION PROCESS

(CA-MDP)

The most important downside of MDP is disregarding of the available information

in the environment of a given task. This information, as mentioned in the previ-

ous chapter which will make scaling and decomposition avaliable, is never inherited

by some elements of previous models like MDPs. However, reinforcement learning

models without information processing will fail to generate cross-domain solvers,

solve problems with very high dimensionalities and even simple problems which turn

into tasks with very large number of states when not mining the information. More

importantly these models will fail converge in shorter times for real-world problems.

Hence, information processing has vital importance, and for this purpose in this thesis

a new model is proposed for representing and solving tasks in AI.

In this chapter, we present the model, Context-Aware Markov Decision Processes

(CA-MDP), which is not solely based on actions, states and rewards, unlike MDP.

CA-MDP will inherit the state-action relationships for a given task for more real-

istically modeling an environment in a given AI problem, thereby making it more

suitable model for AI. Besides, the internal structure of the state-action tuple has the

core information for scaling and decomposition. If there exists localized or indepen-

dent structures, they will be revealed and the computational complexity of solving

the problem will be alleviated significantly by enabling decomposition of the prob-

lem into smaller problems. Next, the description of the proposed state machine will

be presented.
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A CA-MDP is a tuple ;

M =< Γ, S, A, C,E, I > (3.1)

where ;

• Γ is a finite set of finite sets which define the domains for each of the state

variables, Γ = {Γ0,Γ1, ...,Γ|S|−1} and ∀Γi ∈ Γ, |Γi| ≥ 2,

• S is a finite set of independent state variables, each from a domain Γi with

discrete values ,

• A is a finite set of actions ,

• C is a finite set of boolean formulas stating which state variables should be in

which set of possible values to apply the corresponding action ,

• E is the set of the effects of actions ,

• I is the initial assignments to state variables .

To elaborate the details further, starting with the first element, Γ is a set being com-

prised of sets, Γ = {Γ0,Γ1, ...,Γ|S|−1} which each Γi is a finite set of discrete values

specifying the domain for each state variables individually. Continuing with the set S,

the description of MDP contains the set of actual states whereas CA-MDP contains

set of state variables which the actual states are the conjunction of these variables.

Each of the state variable si ∈ S has a finite domain Γi and the assignment (si = vij),

where vij ∈ Γi, expresses that the variable si has the value vij . To sum up, an actual

state is :
∧|S|−1
i=0 (si = vij) where vij ∈ Γi. Finally, I is the initial assignments to these

state variables, i.e. the tuple ((s0 = v0) ∧ (s1 = v1)... ∧ (s|S|−1 = v|S|−1)) where

vi ∈ Γi, si ∈ S. For problems having more than one possible initial states, I can be

in disjunctive normal form, see definitions after the example.

The set A consists of actions and C is a set of boolean formulas, having cardinality

|A|, specifying the sufficient conditions to execute actions in disjunctive normal form.
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Literals in the boolean formulas are assignments to states such that; (s = v) where

s ∈ S, v ∈ Γi and Γi ∈ Γ is the domain of s.

The domain of the set of effects of actions E has the following grammar for parsing

and inferring transition probabilities and rewards:

Eaction = (∧ E0) | ε

E0 = (∨ E1 R) E0 | (∨ E1) E0 | (if (< conditional >) E0) E0 | ε

E1 = (T ) E1 | ε

T = ((∧ V ) < probability >) T | ε

V = (< state_variable >=< value >) V | > | ε

R = reward < numeric >

The < conditional > part of the if structure should contain a boolean formula in

disjunctive normal form stating which state variables should have which value to

carry out the sub-effects stated in the body of the conditional. Some very important

constraints for the effects are ;

• for an effect body T , (∧ (s0 = v0) (s1 = v1) ... (sn = vn) p), where

si ∈ S, vi ∈ Γi, Γi ∈ Γ, n ≥ 0 then ∀ij, i 6= j, si 6= sj ,

• for the probabilistic effects in the form (∨ (∧ (s00 = v00) (s01 = v01) ... (s0n0 =

v0n0) p0)...(∧ (sk0 = vk0) (sk1 = vk1) ... (sknk
= vknk

) pk) reward R),

where sij ∈ S, vij is a value from the domain of sij , 0 ≤ ni < |S| and

k ≥ 0, ∀pi ≥ 0,
∑k

i=0 pi = 1,

• for an effect in the form (∧ E0 E0 ... E0) ` (∧ < effect1 > ... <

effectn >); the changes to values of state variables should be consistent. For

example, if < effecti > makes changes in the value of state variable s, let it

change s’s value to v1, and the < effectj >, i 6= j changes the value to v2
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hence leading to an ambiguity. By defining the subsets of state variables in the

body of the effects disjoint, ambiguity is prevented.

If the effect of a particular action in a specific situation does not make any changes to

any of the state variables, i.e. the actual state does not change, with some probability

q = 1 −
∑k−1

i=0 pi, this is expressed with the > symbol in the body of V node in the

grammar.

Note that the set of effects E of actions also allows nested if structures which should

also be consistent such that the third constraint is not violated hence resulting no

ambiguity.

The < numeric > part in the R node of the grammar, contains a positive or negative

numerical value which defines the appropriate reward for the effect. If no reward,

i.e. 0, is gained from the execution of an action, then reward needs not necessar-

ily be declared. The E0 node without the reward node R in the body of the node

E1 represents the 0-reward effect. If a body of a effect declares more than one re-

wards, then they should be summed up, since the reward terminal declares either an

increase(positive values) or decrease(negative values) in the accumlated reward. For

example, the effect in the form (∧ (∨ E1 R) (∨ E1 R)), the rewards declared in

the body should be summed up.

Finally, ε defines the empty string. If (∧ < effect >i) or (∨ < effect >j) are

generated from the grammar, the operators can be disregarded hence getting only

< effect >i and < effect >j respectively.

To illustrate the notion of CA-MDP, here is an example.

Example 3.1. Suppose we have an agent locked in a room with a computer on the

table. The agent has to escape from the room, however, the exit door has an electronic

protection, if it is not unlocked properly the software calls security. To properly unlock

it, the agent needs to find the right string. To get this string, agent needs to solve a

puzzle on the computer. Without any solution the agent cannot go to the door and

unlock it. There are 4 outcomes of the puzzle namely 0, 1, 2, 3. If the agent solves the

puzzle and if ;

24



• gets 1 (with probability 50%) then the provided string will make the software

call the security with 70% probability,

• gets 2 (with probability 30%) then the provided string will make the software

call the security with 30% probability,

• gets 3 (with probability 10%) then the provided string will make the software

call the security with 0% probability.

There is also a 10% probability that the agent cannot solve the puzzle getting 0, then

it needs to retry to solve the puzzle get a string. Also, there is a hidden cypher in the

room which makes it easier to solve the puzzle with the best outcome. If the agent

gets the cypher, and tries to solve the puzzle then the probabilities of getting 1,2 and

3 becomes 10%, 30%, 50% respectively. The goal for agent is to unlock the door

which it gets extra credit if the software doesn’t call the security, otherwise it will get

negative credit, penalty.

Let us represent the above example with CA-MDP, let M =< Γ, S, A, C,E, I > be

CA-MDP where ;

• Γ = {Γ0,Γ1,Γ2,Γ3,Γ4}where Γ0 = {inTheRoom, nearComputer, nearDoor},
Γ1 = {cypher, noCypher}, Γ2 = {0, 1, 2, 3}, Γ3 = {locked, unlocked},
Γ4 = {notCalled, called}

• S = {location, hasCypher, hasCode, doorLock, security}

• A = {findCypher, solvePuzzle, unlockDoor, goNearComputer, goNearDoor}

• I = ((location = inTheRoom) ∧ (hasCypher = noCypher) ∧ (hasCode =

0) ∧ (doorLock = locked) ∧ (security = notCalled))

• C = {(hasCypher = noCypher), (location = nearComputer), (location =

nearDoor),>, (hasCode = 1) ∨ (hasCode = 2) ∨ (hasCode = 3)}

• E = {EfindCypher = (∧ (hasCypher = cypher) (location = inTheRoom) 1),

EsolvePuzzle = (∧ (if (hasCypher = noCypher) (∨ ((hasCode = 1) 0.5)

((hasCode = 2) 0.3) ((hasCode = 3) 0.1))
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(if (hasCypher = cypher) (∨ ((hasCode = 1) 0.1) ((hasCode = 2) 0.3)

((hasCode = 3) 0.5))),

EunlockDoor = (∧ (if (hasCode = 1) (∨ ((∧ (doorLocked = unlocked)

(security = called)) 0.7)

((∧ (doorLocked = unlocked) (security = noCalled)) 0.3)) reward 8)

(if (hasCode = 2) (∨ ((∧ (doorLocked = unlocked) (security = called))

0.3)

((∧ (doorLocked = unlocked) (security = noCalled)) 0.7)) reward 13)

(if (hasCode = 3) (∧ (doorLocked = unlocked) (security = noCalled) 1 reward 15))),

EgoNearComputer = ((location = nearComputer)1),

EgoNearDoor = ((location = nearDoor)1)}

After this illustration, now we are ready to give some definitions related to CA-MDP.

Definition 3.2. Let M =< Γ, S, A, C,E, I > be a CA-MDP with ∀Γ′ ∈ Γ, |Γ′| = 2 ,

then M is called a binary Context-Aware Markov Decision Process.

Definition 3.3. Let M =< Γ, S, A, C,E, I > be a CA-MDP and if ∀i, ci ∈ C con-

tains no disjunctive, i.e. only conjuctive formulas, then M is called a uniconditional

Context-Aware Markov Decision Process. For uniconditional CA-MDPs, the set C

can be converted into a matrix with dimensions |A| × |S| where rows are actions and

columns are states. Each cell cij in C has a value vij stating the necessary values

of state variables in order to execute the action, where vij ∈ Γ′ which Γ′ ∈ Γ is the

domain of the state variable being associated with the column j of matrix C.

Definition 3.4. Let M =< Γ, S, A, C,E, I > be a CA-MDP with C = ∅ , then M

is called unconditional Context-Aware Markov Decision Process. Any CA-MDP can

be converted into an unconditional CA-MDP by carrying the conditions into the body

of effects.

Definition 3.5. Let M =< Γ, S, A, C,E, I > be a CA-MDP where I contains more

than one state, being represented in disjunctive normal form, then M is called com-

pound Context-Aware Markov Decision Process. Note that in this case, the starting
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state of the agent is not probabilistic. The agent starts in one of the possible states

with certainty which has to be determined at the moment of the execution.

Definition 3.6. LetM =< Γ, S, A, C,E, I > be a CA-MDP having one and only one

actual state, i.e. |S| = 1, thereby |Γ| = 1, then M is called singular Context-Aware

Markov Decision Process.

Any CA-MDP which does not fall into one of these categories can be regarded as

regular Context-Aware Markov Decision Process.

3.1 Conversion : MDP←→ CA-MDP

It is stated earlier in this chapter that CA-MDP has more expressive power over MDP.

The possible two-way conversion between MDP and CA-MDP will illustrate the

power of CA-MDP. The details of these conversion processes are in the subsections

below.

3.1.1 MDP −→ CA-MDP

A uniconditional MDP M =< S,A, T,R >, where S is the set of states, A is the

set of actions, T is the transition probabilities, i.e. P (s′|s, a), and R is the expected

reward, i.e. R(s, a), can be easily converted to a binary unconditional CA-MDP

M ′ =< Γ′, S ′, A′, C ′, E ′, I ′ > in linear time.

• |Γ′| = |S| and ∀Γ ∈ Γ′,Γ = {0, 1}, 1

• set of state variables S ′ would be comprised of the actual states in S, i.e. S ′ =

S,

• the set of possible actions would be the same, i.e. A′ = A,

• MDPs do not have conditionals so C ′ = ∅,

• I ′ would be the same with the problem which the MDP is defined for.
1 the sets Γ ∈ Γ′ can be constructed from any two different values, the set {0, 1} is presented here for

convenience
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• E ′ is constructed from the P (s′|s, a) such that the effect of an action is defined

as (if(s = 1)(∨ ((∧ (s′0 = 1) (s = 0)) P (s′0|s, a)) ... ((∧ (s′n = 1) (s =

0)) P (s′n|s, a)) R(s, a))) where s, s′i ∈ S, a ∈ A and the states are gathered

from all of the possible transitions P (s′|s, a) for the action a defined in the

MDP. The whole set E ′ is generated by performing the above conversion for all

of the transitions in T .

Furthermore, goal state is the same with MDP problem and note that the actual state

s in CA-MDP would have one and only one state variable whose value is true, the

rest should be false, i.e. s = ((s1 = v1) ∧ (s2 = v2) ... ∧ (s|S| = v|S|)) where

∀i∃!j, i 6= j, si = 0 and sj = 1 2. Other actual states are unreachable, hence irrelevant

with the problem.

As an alternative to the above procedure, the conversion of MDPM =< S,A, T,R >

into a binary unconditional CA-MDP M ′ =< Γ′, S ′, A′, C ′, E ′, I ′ > can be done

by defining log(d|S|e) number of state variables in S’ where states in MDP are being

mapped to actual states in CA-MDP such that ∀s ∈ S, s 7→
∧log(d|S|e)−1
i=0 (s′i = v′i)

where s′i ∈ S ′, v′i ∈ Γ = {0, 1},Γ ∈ Γ′. This mapping can be represented as f

which f : S → ∧S′ where ∧S′ is the set of all possible actual states of the target

CA-MDP. Note that f must be a 1 − 1 mapping, otherwise more than one state in

MDP can be mapped to the same state in CA-MDP which will result in ambiguity.

The conversion of the rest of the components is the same whereas construction of E ′

can be modified as : (if(f(s) = 1)(∨ ((∧ (f(s′0) = 1) (f(s) = 0)) P (s′0|s, a))

... ((∧ (f(s′n) = 1) (f(s) = 0)) P (s′n|s, a)) R(s, a))) where s, s′i ∈ S, a ∈ A.

A better way is to convert a uniconditional MDP M =< S,A, T,R > into a singular

unconditional CA-MDP M ′ =< Γ′, S ′, A′, C ′, E ′, I ′ > by defining only one state

variable having a domain Γ0 ∈ Γ′,Γ0 = S. In this case, the CA-MDP behaves like

one state variable having multiple states, hence modeling the actual states defined

in the MDP by emitting the property of mutual exclusiveness. The new conversion

formula of the set of effects E ′ is (if(s′ = s)(∨ ((s′ = s′0) P (s′0|s, a)) ... ((s′ =

s′n) P (s′n|s, a)) R(s, a))), where s′ ∈ S ′, s, s′i ∈ S, a ∈ A, which is again needed to

be performed for all of the actions in the action set A of MDP. Conversion of the rest

2 Remark : ∃! is the quantification for uniqueness
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of the elements of the CA-MDP can be done in the similar way as above except state

transitions defined in the effects of actions would be changed as transitions between

different values of one state.

In the light of the conversion we can state the following theorem.

Theorem 3.7. Complexity of Conversion : MDP −→ CA-MDP

The conversion of MDP M =< S,A, T,R > to a binary unconditional or singular

unconditional CA-MDPM ′ =< Γ′, S ′, A′, C ′, E ′, I ′ > has linear time computational

complexity in terms of |S|, |A| and |T |.

Proof of theorem 3.7. For binary unconditional CA-MDP: Every step of conver-

sion, i.e. conversion of individual elements, is done in linear time such that the

construction of Γ′ and S ′ is done in Θ(|S|) time, A′ is done in Θ(|A|) time, C

and I is done in Θ(1) time and E ′ is done in O(|T|) time . Adding up would give;

2 × Θ(|S|) + Θ(|A|) + 2 × Θ(1) + O(|T |) = O(|S|) + Θ(|A|) + O(|T |), thereby

showing the conversion is done in linear time.

(Note that, for the alternative method presented above, the construction of S ′ is done

in logarithmic time, i.e. Θ(log(d|S|e)), however since a mapping needs to be defined,

the complexity is the same: the mapping process takes Θ(|S|) time.)

For singular unconditional CA-MDP: In this case, construction of Γ′ is done in

Θ(|S|) whereas S is done in Θ(1), since we have only one state variable. The rest

would be the same therefore giving a linear time computational complexity; Θ(|S|)+

Θ(|A|) +O(|T |).

For both of the cases, the conversion is done in linear time in terms of |S|, |A| and

|T |, hence the proof is complete.

As having demonstrated in a detailed manner, the conversion MDP −→ CA-MDP is

rather pretty straight forward and computationally inexpensive. The reverse of this
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process is a little bit trickier.

3.1.2 MDP←− CA-MDP

A CA-MDP M =< Γ, S, A, C,E, I >, where Γ is the set of domains of states, S

is the set of state variables, A is the set of actions, C is the set of boolean formulas

representing conditions for actions to be executed, E is the effects of actions and I is

the starting (initial) state, can be converted into an MDP M ′ =< S ′, A′, T ′, R′ > in

variable time complexity linear time to exponential time which will again be proven

after.

• set S ′ can be constructed from the cartesian products of all values of state vari-

ables in their defined domains, i.e. S ′ = ×|S|−1i=0 Γi

• set of possible actions would be the same, i.e. A′ = A,

• T ′ can be constructed from the effects E, for every state s ∈ S, execute all the

possible actions, i.e. satisfying conditionals, and store the probabilities of the

transitions,

• R′, the expected reward can be parsed from the effects, E.

The goal state and the initial state are the same with CA-MDP problem. If the CA-

MDP is a compound CA-MDP, since the initial state needs to be determined before

execution, it should be done in the same way in the constructed MDP.

The construction of set S ′ an T ′ using the cartesian product and exhaustive search is

called the naive method. Since all of the possible actual states are generated, there

can exist many unreachable states which these irrelevant states can be pruned after,

for example with a solver. Rather than generating all of the states in the state space

and then pruning the unreachable ones, only the relevant states can be generated by

starting from a chosen initial state from the possible states and visiting all other states

being reachable from the effects of set of actions, which is called the search method.

The algorithmi based on breadth-first search, is given in algorithm 2.
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Algorithm 2 Search Method

1: SMDP := ∅, TMDP := ∅, RMDP := ∅
2: search queue Q := NULL, visited map visited := NULL

3: Determine the initial state, Icurrent, Q.push(Icurrent)

4: while Q 6= NULL do

5: currentState = Q.pop()

6: if currentState /∈ visited then

7: i := 0

8: while i 6= |A| do

9: action := A[i]

10: precondition := C[i]

11: if (currentState ∧ precondition) = currentState) then

12: Generate all transitions (next states, probabilities and rewards) from the

effects of the action and store it in transitionList and reward

13: for all t ∈ transitionList do

14: SMDP .add(t.state)

15: TMDP .add(currentState, action, t.state, t.probability)

16: Q.push(t.state)

17: end for

18: RMDP .add(currentState, action, reward)

19: end if

20: i := (i+ 1)

21: end while

22: visited.push(currentState)

23: end if

24: end while
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Note that, the line 11 in algorithm 2 is for checking whether conditions of actions

are satisfied in the current state, note that conditionals can be in disjunctive normal

form, any conjunctive part not satisfying the state will result in false and any conjunc-

tive part satisfying the current state will give the current state formula, hence we got

currentState ∨ false = currentState.

Theorem 3.8. Complexity of Conversion : MDP←− CA-MDP

The conversion of CA-MDP M =< Γ, S, A, C,E, I > to an MDP has linear to

exponential time computational complexity in terms of |Γ|, |S|, |A|, the number of

reachable states |Sreachable| and the number of all transitions between actual states

|T | in the CA-MDP M .

Proof of theorem 3.8. Naive Method : Since all of the actual states are generated,

this computation will cost :
∏|S|−1

i=0 |Γi|, hence giving the lower bound Ω(|Γ||S|min),

where Γmin = min
|i|
|Γi|. The computational burden of conversion of actions is just

Θ(|A|), whereas the computational complexity of generating transition probabilities

and rewards are again Ω(|Γ||S|min), since we have to traverse all of the possible states.

Hence, with this method we have exponential complexity bounded below. The given

complexity also applies for all of the special CA-MDPs.

Search Method : The computational burden of conversion of actions is just Θ(|A|).

To compute the complexities for states, transition probabilities and rewards the line

numbers 8 - 21 of the Algorithm 2 should be analyzed. Since only the reachable

states and the edges connecting them, i.e. transitions, are traversed once and for every

possible transition the effects need to be parsed to generate the rest of the components

of the target MDP, we have the following equation 3.2 for determining the running

time of the algorithm:

|Sreachable|∑
i=1

|A|∑
j=1

1Sreachable[i](C[j])× timeparsing−effects(Sreachable[i], A[j]) (3.2)

where timeparsing−effects is the amount of time for parsing the effects for generating
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information resulting from a state transition and 1B(x) is an indicator random variable

defined as;

1B(x) =

1 x ∧B = B

0 x ∧B 6= B
(3.3)

whereB and x are boolean formulas with conjunctives and in disjunctive normal form

respectively.

It is important to remark that the 1Sreachable[.](C[.])×timeparsing−effects(Sreachable[.], A[.])

shows that the computation is dependent on the number of states lead by an action

in a particular state. The more states that an action leads, the greater the body of

the inner summation becomes. Thus, the inner summation gives the total number of

connections from the current state, i.e. Sreachable[i], to all other states made available

by all of the actions possible.

In the light of these, the complexity for the whole summation in the equation 3.2

becomes O(|Sreachable| + |T |), where T is the set of the all connections, i.e. edges,

between actual states.

Note that the upper bound for the body of the inner summation isO(|Sreachable|) since

from a state with a particular action the maximum number of possible transitions is

|Sreachable|, if all of the actions are permitted in all of the states, then the upper bound

for the whole summation becomes O(|Sreachable|+ |Sreachable| × |A| × |Sreachable|) =

O(|Sreachable|2 × |A|).

For the special cases of CA-MDP like binary, uniconditional , unconditional and com-

pound CA-MDP the time complexities are the same.

For singular CA-MDP, the upper bound has the complexity O(|Γ0| + |Γ0| × |A| ×
|Γ0|) = O(|Γ0|2 × |A|), where Γ0 ∈ Γ and since |Γ| = 1, |S| = 1 and the number of

reachable states is |Sreachable| = |Γ0|.

In conclusion, if |Sreachable| grows linearly with |S| time complexity becomes linear

whereas, if the growth is exponential the complexity becomes exponential, hence the
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proof is complete.
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CHAPTER 4

CONTEXT-AWARE VALUE ITERATION (CA-VI)

In the previous section, the notion of CA-MDP is theoretically formalized. It is shown

with conversion process that the expressiveness power of CA-MDP is superior to

MDP. Moreover, with the introduction of conditionals and effects, CA-MDP is more

suitable for expressing the structural state-action relations. With the new information

gathered from the environment, a new algorithm, Context-Aware Value Iteration (CA-

VI) is presented for learning an optimal policy which improves the efficiency of the

regular Value Iteration (VI) algorithm by redefining the following loop and the update

rule in line 4 and 6 of algorithm 1 (given in chapter 2) respectively:

...

for all s ∈ S do

...

. V (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S P (s′|s, a)V (s′)

]
...

In VI algorithm, the inner loop iterates over all of the states not checking whether the

value of state is going to change or not in that iteration step. If executing an action in

a state leads to small number of states (compared to number of all), then the values,

V (s), of many states are not going to change thereby iterating the loop will give the

same computations with the preceding discrete time step. As the number of possible
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transitions decreases, the more redundant computations are performed, which is a

crucial reason behind the time inefficiency of solving an MDP with large number of

states. In the process of generating a policy for a CA-MDP problem, due to effects,

only states, having values which are going to change in the succeeding time step, can

be taken into consideration in the loop.

For the analysis of the update rule, to compute the V (s) for a particular state, all of

the transitions (probabilities) for all of the actions for that state should be fetched.

Since, in an iteration, all of the values of the neighbor states for a state need not

necessarily be updated, the update operation has some redundant computations. This

can be eliminated by keeping track of states updated in an iteration. With the help

of these stored states (values changed), the states and the actions, leading to those

stored states, can be found out in the suceeding iteration. Only computing the state-

action values and comparing them to the value function, V (s), of the corresponding

state should suffice, since unchanged state-action values will not have an impact to

the V (s), thereby improving the efficiency of the desired computation.

In the light of these facts, it can be safely concluded that VI algorithm is not scal-

able with respect to the given problem’s internal state-action structure. Therefore,

we define a new algorithm, CA-VI, based on VI, for solving CA-MDPs to generate

an optimal policy for a given problem. The proposed algorithm eliminates all the

inefficiencies in the computations mentioned above, thereby making it a scalable al-

gorithm. Also, the same core idea behind the CA-VI can be easily adapted regular

MDPs. The basic outline of CA-VI is demonstrated in algorithm 3.

The general idea of the CA-VI algorithm is to keep track of values of states being

changed and eliminate computations that leads to same results as preceding iteration,

as mentioned above. If the values of all of the states being in the immediate effects of

a particular state are not being updated in an iteration then the value of that particular

state needs not to be changed at all in the succeeding iteration. Based on this, CA-VI

keeps track of states updated in the current iteration then to find the state-action pairs

to update the corresponding Q(s, a) value in the suceeding iteration, in result elim-

inating lots of redundant computations, alleviating the burden of the computational

complexity vastly. A sample detailed implementation is given in algorithm 4 below.
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Algorithm 3 Outline of Context-Aware Value Iteration algorithm

1: Given a CA-MDP, M =< Γ, S, A, C,E, I >

2: Generate state transitions, compute V 0(.) with rewards, and add updated states to

iterationList

3: δ ← 0

4: repeat

5: Generate list L containing state-actions having states in iterationList in their

effects, and actions leading to them

6: for all (s, a) ∈ L do

7: Q(s, a) := R(s, a) + γ[
∑

s′∈S(P (s′|a, s) V k(s′))]

8: V k+1(s) := max(Q(s, a), V k(s)) and update π(s)

9: if (|V k+1(s)− V k(s)| > 0) then

10: Add s to iterationList

11: end if

12: δ := max(δ, |V k+1(s)− V k(s)|)
13: end for

14: until (|δ| < ε)
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Algorithm 4 A detailed implementation of CA-VI algorithm

1: Given a CA-MDP, M =< Γ, S, A, C,E, I >

2: Initialize a list of value functions Q(.), V (.) with 0s and policy π(.) randomly

3: Initialize a list containing two hash-sets Hchanged := {H1 = ∅, H2 = ∅}
4: Initialize a graph G(.)

5: Determine the initial state; Icurrent

6: Generate state transitions and compute V 0(.) by executing the subroutine 5

7: δ ← 0

8: repeat

9: repeat

10: currentState = Hchanged[0].pop()

11: for all s ∈ G(currentState).ancestors do

12: a := G(currentState, s).action

13: Q(s, a) := G(s, a).reward+ γ[
∑

s′∈S(G(s, a, s′).probability V (s′))]

14: Hchanged[1].add(s)

15: end for

16: until Hchanged[0] is empty

17: repeat

18: currentState = Hchanged[1].pop()

19: for all s ∈ Hchanged[1] do

20: v := V (s)

21: V (s) := max
a∈A

Q(s, a) and update π(s)

22: δ := max(δ, |V (s)− v|)
23: if (|V (s)− v| > 0) then

24: Hchanged[0].add(s)

25: end if

26: end for

27: until Hchanged[1] is empty

28: until (|δ| < ε)
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Algorithm 5 CA-VI Subroutine : Computation of V 0(.)

1: Initialize queue Qstates.push(Icurrent)

2: while Qstates 6= NULL do

3: currentState = Q.pop()

4: if currentState is not visited then

5: i := 0

6: while i 6= |A| do

7: action := A[i]

8: precondition := C[i]

9: if (currentState ∧ precondition) = currentState) then

10: Generate all transitions (next states, probabilities and rewards) from the

effects of the action and store it in transitionList and reward

11: for all t ∈ transitionList do

12: G.add(currentState, t.state, action, t.probability)

13: Qstates.push(t.state)

14: end for

15: G(currentState).add(action, reward)

16: Update V (currentState) and π(currentState) according to t.reward

and action

17: end if

18: i := i+ 1

19: end while

20: Mark currentState as visited

21: if V (currentState) > 0 then

22: Hchanged[0].add(currentState)

23: end if

24: end if

25: end while
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The algorithm 4 starts by generating the transition graph, detailed in 5, and computing

the V 0(s),∀s ∈ S. While computing the V 0(s) with immediate rewards (since value

functions are initialized to 0 in the beginning), the states are stored in a hash-set, the

first element of the hash-set list Hchanged, if their values are changed. By storing them

in a hash-set, the states whose values are going to change in the next iteration can

be found out, hence only the values that are going to change can be computed by

discarding the rest.

After computing zeroth step of the value iteration, by the new altered loop, rather

than iteration of all of the states in the VI algorithm, the states in the current hash-set

are fetched one by one to update the Q(s, a) values of states who have the states in

the set in their immediate effect area. Next, with the help of the second hash-set in

the list Hchanged, the value functions, V (s), are updated according to the computed

Q(s, a) values and again in turn, the states are added which their values are updated

into the first hash-set which are going to help to find the states to be updated in the

next iteration. The values of every state in the hash-set, are updated and the algorithm

ends if the values of the states in the two succeeding iteration results in difference in

a pre-defined confidence interval, ε.

4.1 Example Execution of the Implementation

Consider the following tiny example of a problem modeled by a CA-MDP, M =<

Γ, S, A, C,E, I > :

• Γ = {Γ0} where Γ0 = {0, 1, 2, 3, 4, 5, 6},

• S = {s},

• A = {a0, a1, a2, a3},

• I = ((s = 0)),

• C = {(s = 0), (s = 0), (s = 1) ∨ (s = 2), (s = 4) ∨ (s = 5)},

• E = {Ea0 = (∨ ((s = 1) 0.8) ((s = 2) 0.2) reward 20),

Ea1 = (((s = 3) 1) reward − 100),
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Ea2 = (∧ (if (s = 1) (∨ ((s = 4) 0.9) ((s = 5) 0.1))) (if (s = 2) ((s =

5) 1))),

Ea3 = (∧ (if (s = 5) (∨ ((s = 6) 0.6) ((s = 2) 0.4) reward 100)))

(if (s = 4) (((s = 6) 1) reward 100))),

Note that, the goal state is defined as (s = 6). For visualization of the problem,

observe the state transitions in the following figure 4.1.

Figure 4.1 State transition graph of the problem

After the given illustration, we will demonstrate the running of CA-VI algorithm for

a couple of steps.

Step 1 : A small number to, 0 < ε < 1, and 1 to discount factor, γ, are as-

signed. Execution of the subroutine 5, i.e.generation of state transitions and com-

puting V 0(s),∀s ∈ S. For the visualization of the transition graph generated, refer to

the figure 4.1.

After the subroutine is completed, the hash-set is Hchanged[0] = {(s = 0), (s =

4), (s = 5)}, and the states of the variables are updated as follows :
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Table 4.1: Q(s, a), V (s) and π(s) after step 1

Variable Value Variable Value Policy Value
Q(s = 0, a0) 0 V (s = 0) 20 π(s = 0) a0
Q(s = 0, a1) 0
Q(s = 1, a2) 0 V (s = 1) 0 π(s = 1) a2
Q(s = 2, a2) 0 V (s = 2) 0 π(s = 2) a2

V (s = 3) 0 π(s = 3) ∅
Q(s = 4, a3) 0 V (s = 4) 100 π(s = 4) a3
Q(s = 5, a3) 0 V (s = 5) 100 π(s = 5) a3

Step 2 : For the second part of the algorithm, the loop between the lines 9-16 in the

algorithm 4 is executed in a detailed manner shown as substeps below.

Step 2.1 : Pop an element from the hash-set, Hchanged[0] = {(s = 0), (s = 4), (s =

5)} ; currentState = (s = 0), since it isn’t in the immediate effect states of any

node, the loop is not executed.

Step 2.2 : Pop an element from the hash-set, Hchanged[0] = {(s = 4), (s = 5)};
currentState = (s = 4), it is in the immediate effect list of (only) state (s = 1).

Then by computing the value will give; Q((s = 1), a2) := 0 + 1 ∗ (0.9 ∗ 100 +

0.1 ∗ 100) which is equal to 100. Hchanged[1] = {(s = 1)} .

Step 2.3 : Pop an element from the hash-set,Hchanged[0] = {(s = 5)}; currentState =

(s = 5), it is in the immediate effect list of states (s = 1), (s = 2). Then by comput-

ing the value of (s = 1) will give; Q((s = 1), a2) := 100 and Q((s = 2), a2) :=

100. Hchanged[1] = {(s = 1), (s = 2)} .

Overall values of variables after Step 2 is given in table 4.5.

Step 3 : After the computations of Q(.) values, V (.) values are going be updated.

The loop between the lines 17-27 in the algorithm 4 is executed in a detailed manner

shown as substeps below.

Step 3.1 : Pop an element from the hash-set Hchanged[1] = {(s = 1), (s = 2)} ;

currentState = (s = 1). V (s = 1) = 100 and π(s = 1) = a2. Push (s = 1) to

hash-set, thereby resulting, Hchanged[0] = {(s = 1)}.
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Table 4.2: Q(s, a), V (s) and π(s) after step 2 (changes are bold)

Variable Value Variable Value Policy Value
Q(s = 0, a0) 20 V (s = 0) 20 π(s = 0) a0
Q(s = 0, a1) -100
Q(s = 1, a2) 100 V (s = 1) 0 π(s = 1) a2
Q(s = 2, a2) 100 V (s = 2) 0 π(s = 2) a2

V (s = 3) 0 π(s = 3) ∅
Q(s = 4, a3) 100 V (s = 4) 100 π(s = 4) a3
Q(s = 5, a3) 100 V (s = 5) 100 π(s = 5) a3

Step 3.2 : Pop an element from the hash-setHchanged[1] = {(s = 2)} ; currentState =

(s = 2). Then, V (s = 2) = 100 and π(s = 2) = a2. Push (s = 2) to hash-set,

thereby resulting, Hchanged[0] = {(s = 1), (s = 2)}.

Table 4.3: Q(s, a), V (s) and π(s) after step 3 (changes are bold)

Variable Value Variable Value Policy Value
Q(s = 0, a0) 20 V (s = 0) 20 π(s = 0) a0
Q(s = 0, a1) -100
Q(s = 1, a2) 100 V (s = 1) 100 π(s = 1) a2
Q(s = 2, a2) 100 V (s = 2) 100 π(s = 2) a2

V (s = 3) 0 π(s = 3) ∅
Q(s = 4, a3) 100 V (s = 4) 100 π(s = 4) a3
Q(s = 5, a3) 100 V (s = 5) 100 π(s = 5) a3

Step 4 : The loop between the lines 9-16 should be executed again, since hash-set is

not empty.

Step 4.1 : Pop a next element from the hash-set, Hchanged[0] = {(s = 1), (s = 2)}
; currentState = (s = 1), it is in the immediate effect list of (only) state (s = 0).

Then by computing the value will give; Q((s = 0), a0) := 20 + 1 ∗ (0.8 ∗ 100 +

0.2 ∗ 100) which is equal to 120. Hchanged[1] = {(s = 0)} .

Step 4.2 : Pop a next element from the hash-set,Hchanged[0] = {(s = 2)}; currentState =

(s = 2), it is in the immediate effect list of (only) state (s = 0). Then by computing

the value will give; Q((s = 0), a0) := 20 + 1 ∗ (0.8 ∗ 100 + 0.2 ∗ 100) which
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is equal to 120. Hchanged[1] = {(s = 0)} .

Table 4.4: Q(s, a), V (s) and π(s) after step 4 (changes are bold)

Variable Value Variable Value Policy Value
Q(s = 0, a0) 120 V (s = 0) 20 π(s = 0) a0
Q(s = 0, a1) -100
Q(s = 1, a2) 100 V (s = 1) 100 π(s = 1) a2
Q(s = 2, a2) 100 V (s = 2) 100 π(s = 2) a2

V (s = 3) 0 π(s = 3) ∅
Q(s = 4, a3) 100 V (s = 4) 100 π(s = 4) a3
Q(s = 5, a3) 100 V (s = 5) 100 π(s = 5) a3

Step 5.1 : After the computations of Q(.) values, V (.) values are going be updated

again (lines 17- 27). Pop an element from the hash-set Hchanged[1] = {(s = 0)} ;

currentState = (s = 0), V (s = 0) = 120 and π(s = 0) = a0. Push (s = 0) to

hash-set, thereby resulting, Hchanged[0] = {(s = 0)}.

Table 4.5: Q(s, a), V (s) and π(s) after step 5 (changes are bold)

Variable Value Variable Value Policy Value
Q(s = 0, a0) 120 V (s = 0) 120 π(s = 0) a0
Q(s = 0, a1) -100
Q(s = 1, a2) 100 V (s = 1) 100 π(s = 1) a2
Q(s = 2, a2) 100 V (s = 2) 100 π(s = 2) a2

V (s = 3) 0 π(s = 3) ∅
Q(s = 4, a3) 100 V (s = 4) 100 π(s = 4) a3
Q(s = 5, a3) 100 V (s = 5) 100 π(s = 5) a3

The loops will be executed once but since the state (s = 0) isn’t in the immediate

effect list of any state, no changes will be made, and the algorithm is going to halt.

4.2 Analysis of CA-VI

As explained earlier, CA-VI algorithm eliminates the inefficiencies in the loop and

update rule of the regular VI algorithm. The loop of the VI algorithm iterates for
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every state not checking whether a value of a state is going to update or not, on the

other hand CA-VI iterates only on the states whose value states are going to change.

The connectivity of the state graph of a task determines the complexity of CA-VI,

whereas since VI iterates for all of the states, the number of nodes (state) is a crucial

factor in the state-action transition graph. However, in reality to discard redundant

updates, it is vital to take the connectivity into consideration. If a graph is sparsely

connected, then a change in a state may change small number of states compared to

all, in contrast in densely connected graphs a change in value of a state may affect

many states. VI does not consider the structure of the connectivity graph of a task

executing updates for all of the states, however CA-VI considers the structure of the

graph which its running time highly depends on the sparsity of the graph therefore

making it a scalable solver algorithm.

Combined with the inefficiency in the update rule, VI algorithm runs as regarding

the state connectivity graph of a task is always fully connected. However, since CA-

VI considers that structure, CA-VI has the same complexity with the VI algorithm,

provided that the states of a given task is fully connected thereby forcing CA-VI

algorithm to add all of the states to the lists (hash-sets provided in the implementation)

to update them in the iterations.
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CHAPTER 5

CONCLUSION

Although reinforcement learning provides important models and algorithms for au-

tonomous agents to model a problem and generate an optimal policy, as detailed in

previous chapters, the computational complexity of MDP model and VI algorithm,

by means of space and time respectively, becomes disastrous as the state space of

the given task grows large. Even though there are many proposed solutions for the

scability problem of MDP (and VI), this work can be considered as an important and

preliminary study aims to alleviate the burden of the complexities by integrating the

information available in a given problem.

In this thesis, we present a new model, CA-MDP, based on regular MDP, having

more expressive power than MDP which alleviates the space complexity vastly and

a new algorithm, CA-VI, which is based on the Bellman update and computation-

ally superior to the VI algorithm. CA-MDP changes the state definition from actual

states of the problem to state variables, therefore actual states are defined as the con-

junction of these state variables provided in the definition. In addition, CA-MDP

introduces conditionals to define the admissibility of actions in particular situations.

Moreover, inspired from PPDDL, rather than providing full description of transition

probabilities, i.e. P (s′|s, a), it defines effects of actions which is a more compact

and programmer-friendly form of defining effects of actions in particular states. This

structured definition, indeed, shows that CA-MDP is more suitable for integrating

the structural information in a modeled problem, thereby making it more AI-oriented

than the MDP model.

On the other hand, the proposed algorithm for solving CA-MDPs, CA-VI, takes ad-
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vantage of the effects of actions in states and use this information for updating the

value function, V (s), in a significantly more efficient way. As shown in the previ-

ous chapter, CA-VI eliminates the redundant computations by discarding the updates

which have no effect on value function in an iteration step, rather than updating the

value function for all of the states without taking into account whether the value is

going to change in an iteration or not. Even though CA-VI performs less compuations

than VI, same overall changes to the value functions are made, leading to same result

as VI, hence guaranteeing an optimal policy, as VI does. Besides the basic idea and

outline of the algorithm, an implementation and a trace of the algorithm with a given

basic and theoretical problem, is provided to perfectly give an intuitive understanding

of the algorithm. It is important to remark that, the given implementation is not the

fastest one among the many, some many other implementations can be derived also,

by taking into account the time and space constraints which will lead to more efficient

computations according to the constraints of the computing environment of the agent.

5.1 Future Improvements and Directions

As for future studies, the most important improvement will be defining factored rep-

resentations for CA-MDPs. The very definition of the CA-MDP makes itself very

suitable for factoring and decomposing the original CA-MDP defined for a problem

into smaller CA-MDPs representing the localized sub-tasks. After, each of the CA-

MDP can solved individually, and if not being causally connected they can be solved

in a parallel fashion.

As for futher engineering to lessen the effect of computational complexity, the ideas

like exits [11] or options [22] or hierarhical models for CA-MDPs can be proposed.

These approaches can prove themselves useful with the powerful expresiveness struc-

ture of CA-MDP sheltering the state-state and state-action relationships from the very

definition.

The partial observable extension for MDPs, POMDP, also suffers from the burden of

the computational complexity, even more than MDPs. With the same motivation of

CA-MDPs, using the information available in an environment given, extension to CA-
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MDPs can be theorized, namely Partially Observable CA-MDPs, enabling the model

for partially observable environments. Again, by the help of effects and condition-

als, the representation and computations for solving problems in partially observable

environments can be greatly enhanced. The new model also should be suitable for

defining factored and/or decentralized form of the problem.

Finally, in this study we only consider the causal relationships between states and

actions. By taking into consideration of the ultimate problem of AI, and for sake of

taking a huge step towards it, the CA-MDP model can be enhanced such that it should

enable using data processing approaches, i.e. pattern recognition algorithms, to mine

the information presented in the problem, therefore restructuring the model for more

efficient representation and improving the efficiency of the solver algorithms for the

purpose of generating an optimal policy.
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