

A GRAPH BASED COLLABORATIVE AND CONTEXT AWARE

RECOMMENDATION SYSTEM FOR TV PROGRAMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRAH ŞAMDAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

SEPTEMBER 2014

Approval of the thesis:

A GRAPH BASED COLLABORATIVE AND CONTEXT AWARE

RECOMMENDATION SYSTEM FOR TV PROGRAMS

submitted by EMRAH ŞAMDAN in partial fulfillment of the requirements for the

degree of Master of Science in Computer Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen _____________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _____________

Head of Department, Computer Engineering

Prof. Dr. Nihan Kesim Çiçekli _____________

Supervisor, Computer Engineering Dept, METU

Examining Committee Members:

Prof. Dr. Ferda Nur Alpaslan _____________

Computer Engineering Dept., METU

Prof. Dr. Nihan Kesim Çiçekli _____________

Computer Engineering Dept., METU

Prof. Dr. Ali Doğru _____________

Computer Engineering Dept., METU

Prof. Dr. Ahmet Coşar _____________

Computer Engineering Dept., METU

M.Sc. Deniz Kaya _____________

Arçelik A.Ş.

 Date: 05.09.2014

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: EMRAH ŞAMDAN

 Signature:

v

ABSTRACT

A GRAPH BASED COLLABORATIVE AND CONTEXT AWARE

RECOMMENDATION SYSTEM FOR TV PROGRAMS

ŞAMDAN, Emrah

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Nihan Kesim Çiçekli

September 2014, 74 pages

With the increasing amount of TV programs and the integration of broadcasting and

the Internet with smart TV’s, users suffer the difficulty of selecting the most

appealing TV programs among various different programs available. User decisions

are mostly affected by the contextual properties of programs such as the time of day,

genre, actors and directors of program. This thesis proposes the design, development

and evaluation of a graph based context-aware collaborative recommender system

for TV programs. The proposed graph based algorithm is based on random walks

performed on a tri-partite graph. The graph is constructed by using context aware

pre-filtering in order to filter out programs which are irrelevant in the given context.

The recommendation list generated by the graph based collaborative algorithm is

updated by re-ranking the recommended items according to additional contextual

variables. Thus, the proposed recommender system exploits both contextual pre-

filtering and post-filtering to produce more effective recommendations. In order to

measure the effectiveness of the context variables, we have implemented evaluation

metrics on both context-free and contextual graph based methods. We have also

tested the effects of parameters used in the graph based collaborative algorithm to the

vi

success of the recommender. The results indicate that context can provide better

recommendations for TV programs.

Keywords: Recommender systems, collaborative filtering, context-aware

recommendation, graph based recommendation, TV program recommendation.

vii

ÖZ

TELEVİZYON PROGRAMLARI İÇİN ÇİZGE TABANLI İŞBİRLİKÇİ VE

BAĞLAM DUYARLI ÖNERİ SİSTEMİ

Şamdan, Emrah

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi: Prof. Dr. Nihan Kesim Çiçekli

Eylül 2014, 74 sayfa

Artan televizyon programı sayısı ve televizyon yayını ve internetin akıllı

televizyonlar ile entegre edilmesiyle birlikte, televizyon izleyicileri mevcut

programlar içinde en çekici televizyon programlarını seçmekte zorlanmaktadır.

Televizyon izleyicilerinin kararları genelde programların yayın zamanı, türü,

aktörleri ve yönetmeni gibi bağlamsal ögeler tarafından etkilenir. Bu tez, televizyon

programları için çizge tabanlı işbirlikçi ve bağlam duyarlı bir öneri sistemini sunar.

Önerilen çizge tabanlı algoritma, üç kısımlı bir çizge üzerinde yapılan rastlantısal

yürüyüşler yapılması temeli üzerine kurulmuştur. Çizge, verilen bağlam ile alakalı

olmayan programların bağlama duyarlı olarak önceden filtrelenmesi ile inşa edilir.

Çizge tabanlı işbirlikçi algoritma tarafından üretilen öneri listesi ek bağlamsal

değerler kullanılarak yeniden düzenlenir. Bu sayede, önerilen öneri sistemi hem

bağlamsal ön filtreleme hem de bağlamsal geri filtrelemeyi daha etkili öneriler

üretmek için kullanır. Bağlam değişkenlerinin etkinliğini ölçmek amacıyla,

değerlendirme ölçütleri hem bağlama duyarlı hem de bağlama duyarsız yöntemler

üzerinde uygulandı. Ayrıca, çizge tabanlı işbirlikçi algoritmada kullanılan

viii

parametrelerin öneri sisteminin başarısına etkisi test edildi. Sonuçlar bağlamın

televizyon programları için daha iyi öneriler üretilmesini sağladığını göstermektedir.

Anahtar Kelimeler: Öneri sistemleri, işbirlikçi filtreleme, bağlam duyarlı öneri, çizge

tabanlı öneri, televizyon programları önerisi

ix

To my family

x

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Dr. Nihan

Kesim Çiçekli for the continuous support of this study, for her patience, motivation,

enthusiasm, and immense knowledge. Her guidance helped me in all the time of

research and writing of this thesis. It was a big chance and privilege to work with

such a friendly, intellectual and motivating supervisor.

I am deeply thankful to my family for their incentive belief and motivating words

throughout this thesis. I especially thank to my mother Kadriye Şamdan who shares

all emotions with me in this thesis.

I would like to thank the Scientific and Technological Research Council of Turkey

(TÜBİTAK) for providing the financial means throughout this study with the project

number of 112E11. Furthermore, I would like to thank the Ministry of Science,

Industry and Technology of Turkey for the support with the project number of

1651.STZ.2012‐2. My sincere thanks also go to Arçelik A.Ş. for their support with

this research. My true-hearted thanks go to Burak Demirtaş, head of the METU-

TECHNOPOLIS R&D Office of Arçelik, for his guidance, supports and friendship.

I am deeply indebted to my friends, Arda Taşcı, Yunus Emre Işıklar, İrem Gökçe

Aydın, Mustafa İlhan, Ayşenur Durgut, Anıl Sevim, Ali Karakaya, Deniz Karatay,

Başak Meral, Ruşen Aktaş for their encouragement and sharing experiences not only

about their thesis studies but also with real life.

Finally, my special thanks go to my fiancé Duygu Çelik for her patience, love and

endless support. Her love and friendship made everything including this research

easier in my life. I hope to walk with her with this harmony all through my life.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES ... xv

LIST OF FIGURES ... xvii

LIST OF ABBREVATIONS .. xix

CHAPTERS ... 1

1. INTRODUCTION .. 1

1.1. Contribution of Thesis ... 2

1.2. Organization of Thesis .. 3

2. RELATED WORK ... 5

2.1. Recommender Systems ... 5

2.2. Recommendation Methods .. 6

xii

2.2.1. Content Based Methods ... 7

2.2.2. Collaborative Methods ... 8

2.2.3. Hybrid Approaches .. 10

2.2.4. Context-aware Recommenders .. 12

2.2.5. Graph-based Recommendations ... 14

2.3. Recommender Systems in TV Domain ... 17

2.4. Evaluating Recommender Systems ... 23

2.4.1. Offline Experiments ... 23

2.4.2. User Studies .. 24

2.4.3. Online Experiments .. 24

3. A GRAPH BASED COLLABORATIVE AND CONTEXT AWARE

RECOMMENDATION SYSTEM FOR TV PROGRAMS....................................... 25

3.1. General System Overview ... 25

3.2. System Architecture .. 26

3.2.1. Arçelik TV Reporter Module ... 27

3.2.2. Arçelik Database Module ... 27

3.2.3. Radikal TV Guide Crawler Module ... 27

3.2.4. Information Aggregator Module .. 28

3.2.5. Context Aware Graph Builder Module .. 28

xiii

3.2.6. Collaborative Recommender Module .. 28

3.2.7. Context-Aware Post-filtering Module.. 29

3.3. Design Issues ... 30

3.3.1. Database ... 30

3.3.2. Arçelik TV Usage Dataset ... 30

3.3.3. Radikal TV Guide Dataset ... 32

3.3.4. Matching Channel Usages with TV Guide Information 38

3.4. Context-Aware Pre-Filtering ... 41

3.5. Graph Construction ... 41

3.5.1. Similarity Functions ... 42

3.5.1.1. User-User Relation ... 42

3.5.1.2. User-Program Relation ... 42

3.5.1.3. Program-Program Relation ... 43

3.5.1.4. Program-Term Relation .. 43

3.5.1.5. Term-Term Relation ... 43

3.5.1.6. User-Term Relation .. 44

3.5.2. Graph Structure .. 44

3.6. Recommender Algorithm via Random Walk .. 45

3.7. Context Aware Post-Filtering .. 46

xiv

4. EXPERIMENTS AND RESULTS ... 49

4.1. Data Preprocessing .. 49

4.2. Evaluation Metrics ... 50

4.3. Parameters ... 51

4.3.1. Parameter .. 51

4.3.2. Parameter ... 52

4.3.3. Parameter .. 52

4.4. Experiments ... 52

4.4.1. Pure Collaborative Algorithm .. 53

4.4.2. Collaborative Algorithm with Context Aware Pre-filtering 55

4.4.3. Collaborative Algorithm with Context Aware Post-Filtering 60

4.4.4. Collaborative Algorithm with Context Aware Pre-filtering and Post-

filtering… .. 62

4.5. Evaluation of Experiment Results ... 65

5. CONCLUSION AND FUTURE WORK ... 67

REFERENCES ... 69

xv

LIST OF TABLES

TABLES

Table 3-1: Table Structure of Channel Usage Object .. 31

Table 3-2: Day partitions ... 35

Table 3-3: Storage tables to keep the record of our models. 36

Table 3-4: Junction tables for representing relationships between models................ 37

Table 3-5: Channel Name Matching between Program and Channel Usage Data 39

Table 3-6: Structures of Tables Related with User .. 40

Table 4-1: Evaluation Metrics for Pure Collaborative Algorithm 54

Table 4-2: Performance of Algorithm with Time Aware Filtering 56

Table 4-3: Performance of Algorithm with Genre Aware Filtering 58

Table 4-4: Performance of Algorithm with Genre and Time of Day Aware Filtering

 .. 59

Table 4-5: Performance of Algorithm with Context Aware Post-filtering 61

Table 4-6: Effect of Post-filtering to Pure Collaborative Algorithm 61

xvi

Table 4-7: Effect of Post-filtering to Algorithm with Context Aware Pre-filtering

according to Time of Day ... 63

Table 4-8: Effect of Post-filtering to Algorithm with Context Aware Pre-filtering

according to Genre ... 64

Table 4-9 : Effect of Post-filtering to Algorithm with Context Aware Pre-filtering

according Genre and Time of Day ... 64

Table 4-10: Performance Comparison w.r.t. All Possible Contextual Variables 66

xvii

LIST OF FIGURES

FIGURES

Figure 2-1: Bipartite Graph in Huang’s Research.. 15

Figure 2-2: Contextual Graph in Bogers’ Research ... 17

Figure 2-3: Hybrid Recommender System of Martinez et al. 20

Figure 3-1: General Structure of Proposed System.. 26

Figure 3-2: Input Output Flow of the Recommender Module 29

Figure 3-3: Broadcast stream of CNN TURK on 11/08/2014 33

Figure 3-4: Details of a Program Description on Radikal TV Guide 34

Figure 3-5: An Example Tri-partite Graph .. 45

Figure 4-1: Precision and Recall .. 51

Figure 4-2: Performance of Collaborative Algorithm w.r.t. 53

Figure 4-3: Performance of Collaborative Algorithm w.r.t. 54

Figure 4-4: Performance of Collaborative Algorithm w.r.t. 55

xviii

Figure 4-5: Performance of Algorithm with Pre-filtering according to Time Slots ... 56

Figure 4-6: Performance of Collaborative Algorithm with Time Aware Pre-filtering

w.r.t. .. 57

Figure 4-7: Performance of Algorithm with Pre-filtering according to Genres 58

Figure 4-8: Performance of Collaborative Algorithm with Genre Aware Pre-filtering

w.r.t. .. 59

Figure 4-9: Comparison of the Pre-filtering Results w.r.t. Selected Context 60

Figure 4-10: Performance of Algorithm with Post-filtering and Pre-filtering

according to Time Slots .. 62

Figure 4-11: Performance of Algorithm with Post-filtering and Pre-filtering

according to Genres .. 63

xix

LIST OF ABBREVATIONS

API (Application Programming Interface)

PC (Personal Computer)

TV (Television)

BOW (Bag of Words)

ORM (Object Relational Mapping)

TF (Term Frequency)

IDF (Inverse Document Frequency)

xx

1

CHAPTERS

CHAPTER 1

1. INTRODUCTION

Due to the vast improvements in broadcasting area, there are huge numbers of

channels broadcasting TV programs at the same time. In Turkey, there are 311

channels broadcasting on satellite registered to The Radio and Television Supreme

Council of Turkey [1]. Because of the density of the programs, TV users suffer from

finding suitable programs for them and missing the programs that are available on

channels they have never watched. For this reason, TV users need the systems that

recommend programs which can be interesting for them.

The advent of Connected TV has provided the ability of recording the TV usage

preferences for the manufacturers of consumer electronics and for the users. With the

recorded past preferences, the profile of the user while watching TV can be

constructed and the user preferences on TV programs can be calculated by using

these user profiles.

TV usage is mostly affected by the context of the user who intends to watch TV and

the content of the program which is broadcast at that time [2]. The age of the

watcher, time of the day, genre of the program might be decisive for the preference

of TV consumption. Therefore, utilization of contextual information brings

significant advantages to the recommender systems. Contextual information is

utilized for pre-filtering the target programs, for modeling the user with the context

variables and for re-ranking or filtering the recommendation list [3].

2

Graph based recommender systems are generally used for connected data such as

social media data or professional network for recommender systems [4]. By taking

random walks from an initial node, algorithms can converge to the most relevant

nodes in the graph. By restricting the type of the initial node to a user node and the

type of the final node to an item node, random walks can yield the recommendation

in the graph data [5].

This thesis proposes a graph based collaborative recommender algorithm which

utilizes contextual attributes of TV programs in order to generate top-N

recommendations. In this thesis, the proposed graph based collaborative

recommender system uses the recorded past preferences gathered from Arçelik
1
,

Beko
2
 and Grundig

3
 users for a specific period of time in order to solve the

information overload due to a large number of programs at the same time. This thesis

uses a graph based collaborative approach which is a modification of the approach

proposed by Bogers [6]. By exploiting context aware pre-filtering and post-filtering,

it is intended to get more effective results compared to pure collaborative algorithm.

In this thesis, we have exploited the Turkish program guide information of TV

programs in order to determine the contextual variables and features of a TV

program. The developed recommender system is aimed to be utilized in Arçelik

connected TV’s.

1.1. Contribution of Thesis

This thesis contributes to the literature of TV recommender systems in the following

ways[7] :

 We have improved Phuong et al.’s graph based model[8] with edge weights

between node types such as continuous ratings between users and programs,

TF-IDF values between programs and terms instead of binary values.

1
http://www.arcelik.com.tr/

2
http://www.beko.com/

3
http://www.grundig.com.tr/

3

 We have adopted Bogers’ approach[6] by using the contextual pre-filtering

and post-filtering according to the context attributes special to our data.

 We have used the real world TV usage data which is very sparse. As a result

of this situation, we have figured out the need for pre-filtering of real world

TV usage data.

 We have designed structural representation for program guide information in

Turkish which can be utilized in future searches on Turkish program guide

data.

1.2. Organization of Thesis

The rest of the thesis is organized as follows:

Chapter 2 presents organized information about the literature on recommendation

systems. A detailed description is given about the notion of recommender systems,

and the taxonomy of recommender systems. Formal description of the classified

recommender systems is given and the existing work is explained according to the

methods they exploit. Previous work on TV recommender systems is also presented.

The evaluation methods of recommender systems are described and classified

according to the approaches that they utilize.

Chapter 3 introduces our context aware collaborative graph based algorithm and

gives the detailed description of our recommender system. First, it provides the

general overview and the structure of the system. Design issues are elaborated and

the main recommendation algorithm is presented in detail.

Chapter 4 presents the evaluation of the system. It compares the performance of the

context aware collaborative algorithm with non-contextual collaborative algorithm.

This chapter also summarizes the internal evaluation of our algorithm with respect to

the parameters that are used in our algorithm.

4

Chapter 5 draws conclusions about this thesis work and discusses the advantages

and disadvantages of our recommender. Possible improvements and future work to

improve the performance of our recommendation algorithm are also discussed.

5

CHAPTER 2

2. RELATED WORK

In this chapter general information and terminology about recommender systems are

presented. Different recommendation techniques are compared and explained.

Previous works on TV and movie recommender systems are discussed considering

the techniques they have used. Evaluation techniques and metrics are explained.

2.1. Recommender Systems

A recommender system is described as software tools and techniques providing

suggestions for items to be of use to a user [9]. The term “item” is denoted for what

the system recommends to its users. Recommender systems focus on the specific

type of item such as a book for a digital library, a video for a video-on-demand

system and a product for a shopping website according to the area that they are used

in.

Recommender systems are primarily designed for generating finite set of items

which are aimed to be preferred by the users of the system. With that point of view,

recommender systems can be regarded as a mapping between users and items [10].

In their most basic form, recommender systems try to guess the most suitable items

based on the user’s preferences and constraints of the system by generating ranked

list of items [11]. In order to achieve this task, recommender systems might collect

both past preferences on the current system and preferences that are not directly

attached with the system such as social media usage information. The preferences are

6

either explicitly expressed, e.g., as rating for a product, or are inferred by analyzing

user actions, e.g., as watching time for a TV program.

2.2. Recommendation Methods

Recommender systems are divided into three main categories based on their methods

in order to make the recommendations [12]:

 Content-based recommendations: Items that are similar to the items that user

preferred in the past are recommended;

 Collaborative recommendations: Items that are liked by the users who have

similar preferences are recommended.

 Hybrid approaches: These methods combine collaborative and content-based

methods.

In addition, there are other types of recommender systems that are aimed to extend

the two dimensional user-item space to multi-dimensional space with additional

information related with either items or users. These are:

 Graph-based recommendations: The data is represented in the form of a graph

where nodes can be items, users and additional node types like features of

items. After building the graph model, items are used not only as output of

the system but intermediate nodes to propagate the information in the graph

[13].

 Context-aware recommendations: Contextual variables such as the mood of

the user, type of the item are used to improve the success of recommender

systems by either filtering or re-ranking the recommendation candidates or

embedding the contextual information to the recommendation model [3].

7

2.2.1. Content Based Methods

Content based recommendation systems are designed for suggesting items to users

according to the relationship between the content of the item and user’s preferences.

In order to recommend new items to users, content based recommenders use the past

preferences of the users on the system [14].

Past preferences of a user about the items are generally specified by the feedback that

users give either implicitly or explicitly. Explicit feedback has the advantage of

simplicity since users provide their feedback willingly. In many cases, explicit

feedbacks are gathered after a sign up process which enables researchers to learn

demographic information about users such as age gender, education, occupation, and

location and user interests. On the other hand, implicit feedback methods are based

on assigning scores to the user actions on the system such as watch time for a video-

on demand website, or hold time for digital library. Implicit feedback methods bring

the advantage of not disturbing users for giving ratings to the items that are used

[15]. In this thesis, implicit feedback mechanism is used for getting ratings from

users. In order to get the ratings for TV programs, we have used the watch time of

user for the program for calculating the rating for the program and weighted it by

comparing it with the duration of the watched program.

For content based recommender systems, items are generally represented by a set of

features. When each item is described by the same set of attributes, and there is a

known set of values the attributes may take, the item is represented by means of

structured data [16]. In most content-based filtering systems, item descriptions are

textual features extracted from Web pages, product descriptions and so on, program

or movie descriptions. While representing documents with the terms in them, the

main problem is to weight the terms by using some methodology. In order to specify

the term weights, the most commonly used method is the term frequency /inverse

document frequency (TF-IDF) measure which is based on the idea that rare terms are

more significant than frequent items for representing an item (IDF), and multiple

8

occurrences of a term in a document is more important than single occurrences of a

term in a document (TF) [17].

TF-IDF is calculated as a combination of two notions, which are term frequency (TF)

and inverse document frequency (IDF). Term frequency is the number of

occurrences of a term in a document. The notion inverse document frequency is a

measure of how much information the word provides and calculated as follows:

 ()

In the formula of IDF, the number of all documents is divided by the number of

documents containing the term t. Then, IDF value is calculated as the logarithm of

the quotient. TF-IDF is calculated as the product of TF and IDF.

 () () ()

In their recommender system PRES, Meteren and Someren used vector space model

of articles by assigning TF-IDF weights for the words in the articles which were then

used as a features in their feature vectors [14]. In this thesis, we have also used the

TF-IDF measure to represent the weight of the terms in the program descriptions.

2.2.2. Collaborative Methods

Collaborative recommendation systems are based on the idea that if two users have

similar preferences in the past, they might have similar preferences in the future. In

other words, the preferences of similar users are observed in order to make correct

suggestions for the target user [18]. This approach falls under the category of user

based collaborative filtering techniques. In user based collaborative filtering, in order

to predict the preference of a user on an item that he/she has not rated yet, other users

whose past rating behavior is close to the current user are searched among the users

of the system, and the ratings of those users are used on the item to predict the

9

preference of the current user. User based collaborative filtering technique was first

introduced by Resnick et al. in the GroupLens Usenet article recommender [19].

Other applications on different domains have also exploited the user based

collaborative techniques; such as Ringo[20] on music domain and Video

Recommender[21] on movie domain.

However, when the number of users increases, user-based collaborative filtering

techniques become inadequate because of performance issues [22]. Instead, item-

based collaborative filtering has been used in order to accord collaborative filtering

algorithms to large user bases and facilitate deployment on large scale systems. Item

based collaborative filtering focuses on the similarities between the rating patterns of

items rather than the similarities between the rating patterns of users. In item-based

collaborative filtering algorithms, if two items are preferred by similar ratings then

those items are considered as similar. Although item based collaborative filtering

techniques are similar to earlier content based approach, they exploit user preference

patterns rather than extracted information from items [23]. Most well-known usage

of item based collaborative filtering is Amazon.com which provides users with

similar product recommendations [24]. Their algorithm produces recommendations

in real-time, scales to massive data sets, and generates high quality

recommendations.

In order to find the similar items or users in collaborative filtering techniques, several

similarity metrics have been proposed and used in the literature. Pearson Correlation

makes use of the commonly rated items in order to calculate the similarity between

users[21] :

∑ ()()

√∑ ()

√∑ ()

In the equation ruc denotes the preference of user u for item c and ru represents the

mean of the preferences over items rated by user u. Cuv represents the set of items

that users u and v rated together

10

Spearman Rank Correlation uses the same formula with Pearson correlation

coefficient but instead of using the ratings of users directly, this method ranks the

ratings by giving the rank of 1 to the highest ranked item and assigning higher ranks

to lower rated items [25].

Unlike Pearson and Spearman Correlations, Cosine Similarity metric[26]uses all the

ratings that are given to items by the users in order to get the rating vector. When the

rating about an item is unknown, 0 is assigned as rating. After composing the feature

vector, cosine distance is calculated between vectors of user pairs for calculating the

similarity between them. Feature vectors of ratings from all users for an item are

used in order to compose the rating vector for items in item based collaborative

filtering [27].

Determining the number of similar users is also a challenging task for the success of

the recommender. Hill et al., have randomly sampled the candidate users for

neighborhood for decreasing the time required to find similar users by taking into

consideration the expense of accuracy lose [21]. In their research, Herlocker et al.

stated that the number of similar users, or items for item based collaborative

recommender system, should be constrained to a limited neighborhood of k users

[25]. In their research, they have found the k = 20 as the best performing value.

However, in the research conducted by Lathia et al., it is stated that this number

mainly depends on the domain that the recommender is used for. In the scope of their

work, they have proposed dynamically adapting the neighborhood size used for each

user [28].

Similar to their research, we have also restricted the neighborhood size for efficiency

reasons. The details are explained in Chapter 3.

2.2.3. Hybrid Approaches

In some cases, single recommender system may not be appropriate for particular

domains. For example, item based collaborative recommender algorithm is not

11

suitable for the systems which do not include adequate ratings. In this case, a content

based recommender system can be used instead of it. Furthermore, it is proved that

hybrids of various recommender algorithms outperform individual algorithms in

some applications[29].

In his survey, Burke[30] has analyzed hybrid recommender systems, and divided

them into seven categories:

 Weighted recommenders combine the recommendation scores that are taken

from several different recommendation algorithms to produce the final

recommendation list for each user.

 Switching recommenders use different recommender approaches

interchangeably to get best result according to specific conditions.

 Mixed recommenders present the results of several recommenders together

similar to weighted recommenders. However, this type of hybrid

recommenders does not necessarily combine the recommendation lists.

 Feature-combining recommenders make use of features from different

recommendation data sources in order to build a single recommendation

algorithm.

 Cascading recommenders are based on the idea of refining the results of one

recommender in another recommender algorithm.

 Feature-augmenting recommenders use the output of one algorithm as one of

the input features for another.

 Meta-level recommenders are similar to feature-augmenting algorithm but it

gives the learned model by one algorithm to another algorithm instead of

recommendation results.

Liu et al. have developed a recommender system for Google News that combines the

content based recommendation algorithm that uses learned user profiles with existing

collaborative filtering mechanism for composing news recommendation list for

12

Google users. As a result, it is concluded that hybrid approach improves the

performance of the news recommendation [31].

In the scope of our work, we have used feature combining hybridization technique.

We have used content based approaches by using TF-IDF similarity between TV

programs and terms, while we have used the graph based collaborative recommender

in order to find the similar users to the target users.

2.2.4. Context-aware Recommenders

Traditional recommender systems are designed by considering only the past

preferences of a user on the items in the recommendation domain. Therefore, the

input data for a traditional recommendation algorithm is in the form of

<user,item,rating>. In contrast, context-aware recommender systems are based on

the knowledge of partial contextual attributes that are somehow known by system in

addition to the past preferences. That is, context-aware recommender system

considers not only whether a given user liked a specific item, but also the contextual

situation in which the item was preferred by the user [3]. Thus the input data is in the

form of <user, item, context, rating>.

Context-aware recommender systems are divided into three main categories with

respect to the usage of contextual information. These are contextual pre-filtering,

contextual post-filtering and contextual modeling [3].

In contextual pre-filtering, the contextual information is used for selecting only

relevant data as a candidate items for recommendations. After filtering the items

which are not attached with the given context, any recommendation method can be

used in order to predict the ratings of the user. Instead of using whole rating set for

building an estimation model, contextual pre-filtering uses only ratings that are

pertained by the given contextual variable. In their research, Adomavicius et al. have

used various contextual attributes to filter out data and compared the results with

non-filtered data. They have figured out that although filtering generates better

13

results in general, sometimes it is unnecessary to use the filters [32]. In some

researches, the idea of splitting the user profile instead of candidate data is used. In

their work, Baltrunas and Amatriain present the idea of micro-profiling, which

breaks the user profile into some possibly overlapping sub-profiles where each of

those profiles represents the user in a given context. With the help of this approach,

the recommendations are made by using the sub-profiles instead of one single user

model [33].

In contextual post-filtering, the contextual information is used after the

recommendation made by another algorithm to re-rank the recommendation results

to provide better interaction or to filter out redundant recommendations like in

contextual pre-filtering. This approach is particularly useful when the final

recommended items are limited because of the domain specific reasons. Panniello et

al. present an experimental comparison of pre-filtering algorithms with two different

post-filtering algorithms where one of them is aimed to post-filter the resulting

recommendation list and one of them is designed for reordering recommended items.

As a result, reordering approach performs better than pre-filtering, while pre-filtering

performs better than post-filtering. This result indicates that the best approach to use

for a context aware recommender system can change according to the application

domain [34].

The contextual modeling approach makes use of contextual information directly in

the recommendation function as an explicit predictor of a user’s rating for an item.

From the dimensionality point of view, it increases the dimensionality of the

recommendation function by one by adding the contextual information to

recommendation model. In their travel guide system named UbiquiTO, Cena et al.

have used the contextual modeling by adapting their content based recommender

with contextual features like device type that uses their system, location, time and so

on [35].

In the scope of this thesis, we have developed a context-aware recommender system

that uses context-aware pre-filtering by using the time of the day of a program and

14

genre of a program to filter out the redundant candidates for recommendations, and

context-aware post-filtering by using actors and directors in the program for possible

genres to re-rank the recommendation list.

2.2.5. Graph-based Recommendations

While traditional recommender approaches focus only on properties of the dataset to

make recommendations, graph-based recommender systems make use of not only

the regular properties but also the connectivity properties of the dataset by

 representing the recommendation problem as graph projection [36]. Graph-based

approaches are not invented to build a novel approach for recommender algorithms.

Instead, it is aimed to take advantage of connectedness of the dataset in

recommender systems.

In the scope of graph based approaches, users and items are represented as the nodes

in the graph and the similarity metrics between users and items are represented with

edge weights. If the connection does not imply a weight, an unweighted edge is used.

An example graph representation used in the research of Huang et al. can be seen in

Figure 2-1 [37]. They have used similarity metrics between users and books

according to purchase history, among users according to demographic connections

and among books vector based similarities in their recommender system designed for

a digital library.

15

Figure 2-1: Bipartite Graph in Huang’s Research

Graph-based approaches are generally used for collaborative filtering by using the

connectivity between users and items of the system. In the research conducted by

Baluja et al., a graph-based algorithm named Adsorption is developed for

collaborative filtering which aims to be successful in the graphs where both labeled

and unlabelled nodes reside by propagating information in the graph for finding

labels for unlabelled nodes via random walks [38]. In their research, Öztürk and

Çiçekli have extended the Adsorption algorithm by enriching it with content based

results. They have improved the success of Adsorption with their hybridization [39].

Moreover, Phuong et al. use the graph based approach for combining the content

based and collaborative recommendation approach. They have proved that their

graph based approach outperforms a pure collaborative filtering, a pure content-

based filtering, and a hybrid method [8]. In our research, we have improved Phuong

et al.’s graph based model with edge weights between node types such as continuous

ratings between users and programs, TF-IDF values between programs and terms

instead of binary values.

Graph-based approaches are used for context-aware recommendations by embedding

the contextual features to the graph projection of dataset. Bogers have built a

16

contextual graph (see in Figure 2-2) by embedding context attributes as node types to

the graph. In this research, algorithm named ContextWalk, which is a modification of

random walk algorithm, is proposed for calculating the similarity between each node

in the graph[6]. Since, ContextWalk can be used for calculating the similarity

between any pair of node types, his algorithm is capable of achieving other

recommendation tasks such as actor-to-movie recommendation, without the need for

retraining or changing the recommendation model.

This thesis is based on the idea of random walks on the contextual graph which is

proposed in Bogers’ research. In the scope of our research, we have constructed our

own graph and used Bogers’ approach to calculate similarities between user nodes

for collaborative filtering. However, because of the performance issues, we did not

embed the context variables. Instead, we have used our context variables for pre-

filtering purposes by eliminating the redundant nodes from the graph.

17

Figure 2-2: Contextual Graph in Bogers’ Research

2.3. Recommender Systems in TV Domain

Digital TV’s have been evolved in such an expeditious way that they can provide not

only telecasts the existing air, satellite or cable TV, but also contents such as video-

on-demand, smart applications and so on. Users can select the contents they prefer,

but they can face the problem to find the contents they are interested in. Therefore,

demand for the recommendation systems for TV users is increasing in recent times

[40].

18

As a specialized domain of recommender systems, TV recommender systems are

mainly divided in three categories with respect to the method they have used; content

based recommender systems, collaborative recommender systems and hybrid

systems.

In content based recommendation, the items are represented by the features inferred

from their content. For television environment, it is hard to get the features from the

video and audio streams because it requires semantic interpretation of the video and

audio streams [41]. That’s why the mostly used source for feature extraction is the

textual sources like EPG (Electronic Program Guide) which is supposed to include

brief but explanatory information about TV programs. The most usual way to

represent a TV program with EPG data is BOW (bag-of-words) approach, where

frequencies of words are retained, discarding any grammar/semantic connection.

Usually the words are pre-processed by means of tokenization, stop-words removal

and stemming. In the research and implementation conducted by Bambini et al.,

Latent Semantic Analysis (LSA) is used together with the bag of words approach for

automatic indexing and searching of the EPG document [42]. In our research, we

utilize the BOW approach to represent the content. However, we have placed the

words as terms in the graph connected to program nodes, while Bambini et al. used

them as attributes in the feature vector.

Collaborative recommender systems have been also applied to the TV domain

widely. In the research conducted by Kim et al., user profiles are built by using a

scoring technique called CF-IUF (category frequency-inverse user frequency, which

is a modification of a well-known information retrieval concept TF-ID[43]. The

method aims to handle the bias towards best-selling content, and series contents

containing many episodes [44]. They have defined a term called category with the

combination of the content genre, provider, etc. and calculated the frequency of each

category for a user by using the CF-IUF formula they have invented. All category

frequencies for a user constitute the feature vector for a user. Since the number of

clusters is not well defined in the recommender systems for televisions, it is better to

use algorithms other than k-means. That’s why, they have used the ISOData

19

algorithm, which minimizes the sum of squared errors between data points and their

closest cluster centers and automatically determines optimum number of clusters. For

collaborative filtering in the clusters of users, they have used Spearman correlation

coefficient. In another research by Kwon and Hong, a collaborative recommender

system which aims to relieve the cold start problem of collaborative recommender

systems are designed for TV programs [45]. In the scope of their work, in order to

cope with the cold start problem, they have used raw moment-based similarity which

is based on the idea of detecting expected difference between two linear variables.

There are also hybrid recommendation systems that use the content based and

collaborative filtering algorithms together in the TV domain. Martinez et al.

introduce queveo.tv: a recommendation system for personalized television program.

It proposes a hybrid approach (combining content filtering based techniques with

collaborative filtering) and also offers to exploit the social network usage of users

such as comments, tags, notes, etc.[46]. They use the post hybridization method that

uses mixed recommenders approach for combining recommendation results. Their

proposed recommendation algorithm is described in the Figure 2-3.

20

Figure 2-3: Hybrid Recommender System of Martinez et al.

Most of the current recommender systems designed for TV programs does not take

the notion of context into consideration. They only run on two dimensional

UserxItem space. In the research conducted by da Silva et al., a contextual user

profile which is the result of the aggregation of the user contextual information like

user personal data profile, and the genre of TV program is used for filtering. They

have implemented a contextual filtering method similar to the content based filtering

but using the contextual information such as date, time and place of the origin of the

TV program and the user. Their work shows that the context notion improves the

performance of the recommender system. Furthermore, they propose to extend

contextual features by adding contexts such as the room of television in the house,

domain of TV usage [2]. Similar to their work, we have used the genre and the time

of day of the program for pre-filtering.

TV is usually viewed by multiple members of the groups sitting together. So a TV

recommendation system should not only provide personalized programs for

21

individuals, but also be able to recommend programs to multiple viewers taking care

of the preferences of the majority of viewers, in the case where the viewers are

watching TV at the same time, and in the same spot. In order to overcome this

problem, Yu et al. propose a group recommender system for multiple viewers using

profile merging [47]. There are also other methods to provide group

recommendations which are merging recommendations and group agent approach.

Merging recommendations method first creates the recommendation list for each

individual in the group then, merges the program recommendation lists of those users

in the group, while group agent method forces users to register a common account

for them and input their original preferences to that account. Group agent method is

not so applicable because the common agent fails with the absence of one of the

group members or additional members to the group. At this point, it is good to

mention that there are also some research to understand who is watching the TV at a

specific time called hidden eye technology[48]. Yu et al. take the feature vector of

each user as input and make use of the total distance minimization to make a

common profile from the profiles of the users in the group. To be specific, they do

not include every feature in the feature vector of all users but they use only the

positive or negative valued features for making computation less complicated and

easier.

In a more recent research conducted by Shin and Woo, not only the independent

individual user profiles but also the group characteristics are taken into

consideration. They call their system socially-aware because they allow users to

harmoniously decide which of the programs of interest to watch [49]. According to

the social situation in the group, they have developed three ways to recommend an

item.

In the case in which all users are interested in the same program, the assistant

automatically selects it as the best program and recommends it, though alternative

programs would also be indicated.

22

In the case where users have similar preferences, age, and/or interests, the assistant

determines the program to view by sifting through the feedback obtained regarding

the list of preferences for a set of possible programs.

If the situation does not fit in any case, the recommender selects a program by asking

for both category and programs of interest.

They have used a graphical user interface to let the user give his/her preferences

regarding the metadata of the programs; i.e., preferred genres, actors and keywords

explicitly in order to later use in profile merging and combination. They have found

that they made further improvement to the previously proposed group

recommendation systems by understanding the group characteristics. The interesting

point they have showed is that the participants of their evaluations had different

preferences when they have watched TV with other people. Although their preferred

programs spread in every category when they were alone, their choices changed to

other categories when in a group. In the case of the family group, participants

preferred programs in the entertainment category that might be acceptable for all

members of the family; consequently, their interests in educational programs

decreased.

In the early recommender systems for televisions developed in the 90’s, the only data

source used was the agenda of the TV channels and the recommendations were

mostly channel based. In more recent times, with the including of the EPG as a data

source, recommender systems made use of richer information such as actor names,

genres, program descriptions suitable for bag of words approach and so on. However,

with the emergence of the social networks, there are vast amount of personal data on

web that can solve the cold start problem. Cold start problem means that in order to

make recommendations to a specific user, we need to know more about him/here and

this requires some training time for any recommender system to operate.

In the Notube project founded by European Union, Aroyo et al., have built a

recommender system that uses existing web services and shared background

knowledge to collect, enrich and recommend TV data. This work can be regarded an

23

aspect of TV-Web convergence that can open a door to new types of TV application

in the future[50].

In Notube, they analyze the information that user generates on some social network

sites with the permission of the users. Their system currently supports Facebook,

Twitter and LastFm. As they have said, usage of the cross platform data for an

individual may yield better results with further research.

2.4. Evaluating Recommender Systems

In order to measure the success of a recommender system, there are various methods

which are classified according to the evaluation strategy that they use. Those are

offline experiments, user studies and online experiments.

2.4.1. Offline Experiments

Offline experiments are conducted to measure the success of the recommender

system with an existing data and without further interaction with the users of the

system. The aim in this approach is to simulate the users’ behavior while using the

system [51]. Offline evaluations are easier to conduct and more economical

comparing to other evaluation methods with multiple algorithms, since it does not

include any interaction with users.

For offline experiments, the data set is divided into two parts: A test and a training

set. The ratings in the training set are used by the recommendation algorithm to

predict the ratings in the test set, which can then be compared to the actual ratings in

the test set. Most commonly used offline experiment method is k-fold cross

validation, in which the data set is partitioned into K subsets. From these subsets, one

is separated for using as the test set; the other subsets are used as training set. This

process is repeated K times, each time with a different test set [52].

24

In this thesis, we have used 3-fold cross validation method in order to measure the

success of our recommender system. Because of the time issues, offline experiments

are well fitted to our needs to evaluate our algorithm.

2.4.2. User Studies

Experiments with user studies are generally conducted by asking users to interact

with system. Users are usually requested to ask to fill forms or questionnaires before

starting the experiments. Such experiments are not preferable economically since it

may require some payments to participants of these studies [51].

2.4.3. Online Experiments

In this kind of experiments, the experiments are done with real users while system is

running commercially. However, this brings the risk of system crash because of the

experimental setups [51]. Online experiments are regarded as more accurate since

they show the behavior of the recommender system in reality.

25

CHAPTER 3

3. A GRAPH BASED COLLABORATIVE AND CONTEXT

AWARE RECOMMENDATION SYSTEM FOR TV

PROGRAMS

This chapter presents the conceptual description of a graph-based collaborative

context-aware recommendation system that is designed to operate on real usage data

provided by Arçelik. First, the system architecture is described from modular

perspective and brief information about the modules of system is given. Before

elaborating the proposed system from algorithmic point of view, we give background

knowledge about the design issues and decisions we take in the scope of this work.

3.1. General System Overview

The graph-based collaborative recommender system that is developed in this thesis is

an application which aims to select the preference of the user according to given

contextual variables.

The developed recommendation system is aimed to be embedded in the Arçelik

Connected TVs. The TV usage data used in this thesis is provided by Arçelik.

Recommendations are done through the collaborative filtering approach according to

the random walks that are performed on a contextually tailored tri-partite <User,

Program, Term> graph. Results are re-ordered according to context variables in

order to get the final recommendation list.

26

3.2. System Architecture

The proposed system compromises two different data sources which are Arçelik TV

usage data that are gathered from Arçelik TVs and Radikal TV Guide data. The

system aggregates these data in order to create a dataset to be used by the

recommendation algorithm. Three separate modules deal with graph construction

according to the contextual attributes, recommendation and post evaluation of

recommendations according to context, respectively. General structure of this system

is shown in Figure 3-1.

Figure 3-1: General Structure of Proposed System

Our proposed system consists of seven components that are responsible from

different tasks. These are: Arçelik TV reporter module, Arçelik database module,

Radikal TV guide crawler module, information aggregator module, context aware

27

graph builder module, collaborative recommender module, context aware post-

filtering module.

3.2.1. Arçelik TV Reporter Module

Arçelik TV reporter module is an embedded module that resides on every connected

TV that Arçelik manufactures. This module is responsible of recording channel

usage behavior of TVs and sending them to the Arçelik database module when it has

an internet connection. Arçelik TVs are programmed to send the TV usage data in

every 5 minutes. If there is no internet connection, this module collects the TV usage

information on their memory and sends the collected TV usage data as the internet

connection is provided.

3.2.2. Arçelik Database Module

This module is responsible of keeping the TV usage information and other essential

information in an organized manner. This module is also responsible of taking the

backup of Arçelik data monthly. This module returns adequate information when a

query is posed to it.

3.2.3. Radikal TV Guide Crawler Module

In our implementation, we need the structured information of TV programs which is

not provided by Arçelik data. In order to gather this data, we have examined several

TV guide websites such as Digiturk TV Guide[53], Teledünya TV Guide[54]and

Radikal TV Guide[55], and we preferred to use Radikal TV Guide since it provides

more structured and more accurate information compared to other sources. This

module is programmed to crawl the website of Radikal TV guide in a daily manner at

midnight. In the scope of this thesis, this module have collected the TV guide

28

information for 3 months (between October 2013 and January 2014) in order to

create the dataset for our research.

3.2.4. Information Aggregator Module

In our research, Arçelik data does not include the program information but contains

only the channel name and start time and end time of the TV usage. In order to find

out which program is watched at that time we have used EPG information from

Radikal TV Guide. This module is responsible of combining these two data sources

and transforming the channel usage data taken from Arçelik to the program usage

data matched with users according to the channel name, start time and end time of

the usage.

3.2.5. Context Aware Graph Builder Module

In our implementation we have developed a context-aware graph based

recommendation algorithm which uses the graph tailored according to the given

context as input. This module is responsible of constructing the graph by using the

data that is aggregated by the information aggregator module. While achieving this

task, this module takes the contextual variable as input and filters the irrelevant data

and constructs the graph only with the data that is in the context. For example; if the

given context is in the form of Time of Day = PRIME_TIME and Genre = TV Series,

this module takes the TV series that are broadcast on prime time and their usage

information while constructing the graph.

3.2.6. Collaborative Recommender Module

This module is the core module that carries out the recommendation task by taking

random walks on the contextually adjusted graph. It gets the contextual graph, length

of the path for the random walk, number of users to be determined as similar, number

29

of recommendations to be produced as input and produces the output as a ranked list

of recommendations which are subject to change by context aware post-filtering (see

in Figure 3-2). For making recommendations, this module does finite length

traversals on the graph in order to find similar users. Then, it produces

recommendation results again by taking random walks that use those similar users as

a start point. In order to find the best path length, the number of users, and the length

of the recommendation list, this module has been re-run many times by setting the

contextual variables for every possible value.

Figure 3-2: Input Output Flow of the Recommender Module

3.2.7. Context-Aware Post-filtering Module

In our implementation, the recommendation list that is produced by the recommender

module is re-evaluated according to the context variables. This module is responsible

of re-evaluating the recommended item list according to the preference of the context

variables. This module uses different context variables for post-filtering from the

context variables used in the pre-filtering module. To be specific, this module makes

use of the preference of target user on actors and directors, while pre-filtering uses

more general contextual variables such as genre of the program and time of day of

the program. This module puts the items in the input recommendation list in an order

30

according to the contextual preferences of the user and produces a new re-ranked

recommendation list.

3.3. Design Issues

Throughout this thesis, some design decisions have been taken by discussing several

technologies and approaches. In order to achieve the task of this thesis, several tools

and programming languages and already developed libraries are exploited. External

data sources are selected with respect to some attributes. In this section, we will

elaborate the design decisions that are taken in the scope of this project.

3.3.1. Database

In the scope of this thesis, we have kept our dataset in a structured way in a database.

For this need, we have used MySQL[56]which is the second widely used relational

database management system. In order to map our database tables to the

programmatically meaningful classes we have used the Active Record[57] modeling

technology that is developed in the scope of a well-known web development

framework Ruby on Rails[58].

3.3.2. Arçelik TV Usage Dataset

In the scope of this thesis, Arçelik provided access to their channel usage data for 3

months (October, November and December 2013) in order to be used by our

research. Their channel usage data contains only the device id as the user

information, which should be joined with customer_devices table and this table is not

available to us. From this point of view, the channel usage data is automatically

anonymized with the cost of regarding each device that is possibly used by a group

of users as one user in our system. Channel usage data taken from Arçelik only

includes channel name, start time of TV usage and end time of TV usage which are

31

useful for our research. Apart from those, it includes some other attributes such as

signal frequency, source type and channel type. The structure of the channel usage

model with useful attributes is presented in Table 3-1.

The channel usage data includes the TV usage records that are longer than ten

seconds. In the dataset retrieved for 3 months, there are 3,865,821 channel usage

records which belong to 5,466 users.

Table 3-1: Table Structure of Channel Usage Object

Attributes Summary

id Id attribute is used to ensure

uniqueness of channel usage

object.

device_id Id of the device that this

channel usage belongs to.

start_time Start time of the channel

usage in the form of UNIX

timestamp.

end_time End time of the channel

usage in the form of UNIX

timestamp.

name Name of the channel that

channel usage belongs to.

frequency Signal frequency of the

channel on satellite

source_type Source used when the

channel usage occurs. For

example, terrestrial or

satellite

channel_type Type of the channel used

such as HD or FullHD.

32

3.3.3. Radikal TV Guide Dataset

TV channels periodically update their schedule of broadcasts and provide

information about their programs on their websites or by using some other sources.

Some general TV guide applications gather this program information from the

channels and present them in a structured form named EPG (Electronic Program

Guide). As we mentioned, we have retrieved the EPG information from the website

of Radikal which was a former newspaper that has switched to only online

broadcasting recently. The TV guide resided in Radikal web site provides EPG of

thirty nine TV channels broadcasting in Turkey for every three days. It presents the

broadcast stream of each channel in separate websites. For example in order to get

the broadcast stream for channel CNN_TURK on 11/08/2014, we should parse the

website that is presented in

http://www.radikal.com.tr/tvrehberi/cnn_turk/#!11.08.2014. In order to get the

broadcast stream of all channels on Radikal TV Guide, we have put all channel

names into a configuration array, and iterated over this array in order to crawl the

website for EPG information for all channels. The example broadcast stream can be

seen in Figure 3-3.

http://www.radikal.com.tr/tvrehberi/cnn_turk/#!11.08.2014

33

Figure 3-3: Broadcast stream of CNN TURK on 11/08/2014

While parsing the broadcast stream, we take the program id in the broadcast stream

in order to retrieve the details of the program by combining the program id with the

program name. For example; the details of the program “Anasının Oğlu” is found at

the URLhttp://www.radikal.com.tr/tvrehberi/kanald/anasinin_oglu/502301/which is

constructed by combining the channel name, program name and program id. As it

can be seen in Figure 3-4, Radikal TV guide provides sufficient attributes for a

program which are channel name, day and time of program, genre, director, cast

information, summary and long description of the program.

http://www.radikal.com.tr/tvrehberi/kanald/anasinin_oglu/502301/

34

Figure 3-4: Details of a Program Description on Radikal TV Guide

In order to parse the program details and extract the necessary information, we use

the jsoup[59] Java library. This library enables programmers to crawl on the

retrieved HTML page by using the DOM traversals and CSS selectors.

Before inserting the program information to the database, we make some pre-

processing on the retrieved program data. In order to make the program data

compatible with ORM, the following operations are done:

 Using the human readable date and time of the program, we have calculated

the UNIX timestamp of the program which is in terms of seconds. This

operation is done in order to make the start and end time of the program

compatible with Arçelik channel usage data which is in terms of UNIX

timestamp.

 By using the time of the program, we have classified the program into one of

the classes that are composed with respect to time of day. While deciding for

intervals of time of day slots, we have used the dayparting article on

Wikipedia[60] and merged some of the day parts which are too short for our

purposes. The resulting day partitions can be seen in Table 3-2. We have

35

permitted multiple times of day for programs that are broadcast in more than

one time of day.

 By splitting the genre information with the character “(“, we have revealed

hidden genres in the parenthesis which are actually quite important. In the

program in Figure 3-4, comedy genre is more decisive compared to series

genre. With the help of this information, we permit multiple genres for

programs.

 By splitting the actors and directors with the character “,”, we represent

multiple actors and directors that can belong to a program.

 In order to represent the programs as BOW, we have stemmed all words that

are in the program description and summary and got the stemmed words

which are called as terms in our work. After stemming all words in the

program description and summary, we have excluded the verbs in order to

avoid the ambiguity problem of verb stems in Turkish. In order to achieve the

stemming task, we have exploited Zemberek[61] which is an open-source

natural language processing framework developed for Turkish language

mostly. Beyond stemming, Zemberek is capable of many tasks such as spell

checking, morphological parsing and word construction. It is also used in real

world applications such as OpenOffice.org.

Table 3-2: Day partitions

Time Slot Time Of Day

00:00-04:00 NIGHT

04:00-07:00 EARLY MORNING

07:00-09:00 BREAKFEAST

09:00-13:00 LATE MORNING

13:00-18:00 DAYTIME

18:00-20:30 EVENING

20:30-24:00 PRIME TIME

36

While inserting the program data, we have pursued a structured representation of the

data by taking the opportunity of relational database management system. Instead of

creating a programs table which includes all necessary information tucked-in its

columns, we have created separate tables for every logical model in the program

data. For example, we have created a separate actors table that keeps all actors that

are encountered in one table and a programs_actors table in order to keep the

relation between programs and actors. The structured tables that are used to store our

models can be seen in Table 3-3, and the structured junction tables that are used to

store the relations between our models can be seen in Table 3-4.

Table 3-3: Storage tables to keep the record of our models.

Table Name Fields in Table Summary

programs
id, channel_id, start_time,

end_time, name, dataset

This table is used to store the

programs object in our database. id

field is used to keep the uniqueness of

object. channel_id points to the

channel that the program is broadcast

in. start_time and end_time is used to

present the broadcast time of a

program. dataset is a boolean value

that indicates that the program is in the

dataset when it is set to 1.

terms id, name, idf

This table is used to store all terms

(stemmed nouns in program

descriptions and program summary)

that are in our dataset. idf value is the

number of documents that this term

takes place.

actors id, name

This table is used to keep the record of

actors in our dataset. The tables

directors, genres and time_of_days are

in the same form.

channels id, name, icon
This table is used to keep the records

of channels in our dataset.

37

Table 3-4: Junction tables for representing relationships between models

Table Name Fields in Table Summary

programs_actors program_id, actor_id

This table is a junction table that

connects programs and actors.

There is a many-to-many

relationship between programs and

actors. In other words, a program

may have many actors and an actor

can take part in several programs.

Junction tables with directors,

genres and time_of_days are in the

same form with this table.

program_terms

program_id, term_id,

term_frequency, tf_idf,

normalized_tf_idf

This table is a junction table

between programs and terms

(stemmed words in program

description). Since we have a

relationship weight between

program and term there are metrics

called term_frequency which

represents the frequency of a term

in a program, tf_idf which

represents tf_idf value of term in a

program and normalized_tf_idf

which is the normalized form of

tf_idf value according to the

maximum tf_idf value in dataset.

term_connections
term_a_id, term_b_id,

co_occurence

This table is a junction table

between each term in dataset. This

table is aimed to keep the number

of documents that term a and term

b are in a document together, in

order to create a weighted relation

between terms.

In the scope of this thesis, we have retrieved the TV guide data corresponding to the

data which is supplied by Arçelik. Therefore, we have retrieved the EPG information

for October, November and December 2013 for 39 channels. In this data, there are

38

 45107 different programs

 42 different genres

 4338 actors

 1092 directors

 4697 terms.

3.3.4. Matching Channel Usages with TV Guide Information

As we stated, we have dealt with the channel usage data that is retrieved from

Arçelik, Beko and Grundig TVs between October 2013 and January 2014 which

contains 3,865,821 records. Although, channel usage data shows the information

about the watched channel for a certain period of time, it does not provide any

information about which programs are watched in that time period. In order to find

the programs that are watched during the channel usage, we match the channel

usages by querying the programs with channel name, start time and end time.

However, name of the channel might be recorded differently for the same channel by

different devices. For example, the channel names EUROSPORT 2, EUROSPORT2

and EUROSPORT 2 HD which are all present in our channel usage data correspond

to one channel named eurosport2 in the program information on the website. In order

to match the channel usages with programs correctly, we have examined all different

channel names in the channel usage data and created a look-up table that keeps the

corresponding channel names in the channel usage data for the channel names in

program data. We have found out 63 different channel names in channel usage data,

for 26 channels in our program data. A small fraction of the look-up table for some

channels can be seen in Table 3-5. For 13 channels in the program dataset, there is no

corresponding channel usage. The reason is that those channels are not recorded by

their name because they are specific to a Turkish satellite provider.

39

Table 3-5: Channel Name Matching between Program and Channel Usage Data

Name in Program

Data

Name in Channel Usage

Data

trt1 TRT 1

TRT 1 HD

TRT1 HD

TRT1

TRT-1 HD

cnbc_e CNBC-e

CNBCE

CNBC e

kanald

Kanald

KANAL D HD

KANAL D

As a result of matching of channel usages with programs, we have matched

1,171,533 i.e., one third of all channel usages, channel usage data with 41,357

programs in programs data which are watched by 5466 users. The average number of

programs watched by a user is 307.

While matching channel usages with programs, users are also stored in our database

in a structured way. In addition, the need for junction tables for keeping relationships

between users and programs and between users and programs-related tables such as

terms arises. The structure of users table and conjunction tables can be seen in Table

3-6.

.

40

Table 3-6: Structures of Tables Related with User

Table Name Fields in Table Summary

users id, user_id, dataset This table is used to store the users

that are in our dataset. The id

column grants the uniqueness of

our user. The user_id is the id of

the user in Arçelik dataset. The

dataset is a boolean value that

indicates that the user is in the

dataset when it is set to 1.

program_users program_id, user_id,

watch_time, rating

This table is a junction table

between programs and terms

(stemmed words in program

description). Since we have a

relationship weight between

program and user there are metrics

called watch_time which represents

the watched time of a program by

user in terms of seconds, rating

which is a calculated value about

the preference of the user on the

program by using watch time of

user and duration of the program.

users_terms term_id, user_id, rating This table is a junction table

between each user and term in

dataset. Rating value is calculated

by using the ratings that user gives

the programs in which term takes

place. The junction tables with

other programs related models

users_actors and users_directors

are in the same form with this

table. The ratings in those tables

are calculated similarly.

41

3.4. Context-Aware Pre-Filtering

As we stated, every program in our dataset has some contextual features such as

genre, channel, and time of day. There are even more specific context variables like

actors and directors which are special to only specific genres like movie and TV

series. In our implementation, we use context aware pre-filtering in order to shrink

the set of candidate programs. In order to select the contextual attributes to use for

context aware pre-filtering, we have analyzed the contextual variables according to

the size of the filtered dataset. We have concluded that genre and time of day is

suitable for context aware pre-filtering. In the scope of pre-filtering, we have filtered

out the programs which do not have the selected context variable as an attribute. For

example, we have 6500 programs for the time of day “PRIME_TIME”, within the

dataset of 41357 programs. We have done our experiments by filtering our data with

42 different genres and 7 different times of day both separately and in conjunction

with each other. Experimental results are shared in Chapter 4.

3.5. Graph Construction

In our implementation, we have modified the approach defined by Bogers[6]by

pruning the graph according to contextual attributes instead of putting the contextual

attributes into the graph as different node types. In our work, we have constructed a

tri-partite graph which includes three node types, namely User, Program and Term.

 We denote users by U = {User1, User2, User3, User4... User|U|}, programs by P =

{Program1, Program2, Program3, Program4... Program|P|} and terms by T = {Term1,

Term2, Term3, Term4... Term|T|}. The set T is used to represent the set of stemmed

nouns used in the description of a TV program. There is a weighted edge between

every node type in the graph. The weights are determined by using similarity

functions between our node types. In order to represent the similarities between node

types we have used matrices whose cells contain the similarity value between each

node. For example, the matrix UP= (upij) with size of |U| x |P| is composed in order

42

to keep user ratings over programs. The detailed information about similarity

functions is given in sub-sections of this section.

3.5.1. Similarity Functions

In our implementation, we have defined similarity functions between node types in

our tri-partite graph. As a result, we have composed matrices that keep the

relationships between our node types.

3.5.1.1. User-User Relation

In order to define similarity among users, we need to have former information about

the relationship between users. In our implementation, we used an identity matrix

UU= (uuij) to represent user similarities since we do not have former information

about user similarities.

3.5.1.2. User-Program Relation

In our implementation, we define a similarity metric called rating between users and

programs, which is in the range [0, 1]. The rating metric is calculated by using the

watch time of the users with following formula:

With this calculation, the rating that the user gives a program is subject to not only

the watch time of the user but also to the duration of the program. This approach is

aimed to eliminate bias towards shorter watch times which can be indeed important

for a short program. When we calculate the rating for all <User,Program>tuples, the

average rating is calculated as 0.62.

43

After calculating the rating between users and programs, we construct a matrix UP=

(upij) with size of |U| x |P| in order to keep user ratings over programs.

3.5.1.3. Program-Program Relation

In the scope of our implementation, we do not define any prior similarity between

programs in our dataset. Therefore we use an identity matrix PP = (ppij) for

representing program similarities.

3.5.1.4. Program-Term Relation

In this thesis, the edge weight between program and term nodes is defined by a well-

known information retrieval concept named TF-IDF. TF-IDF is calculated as a

combination of two notions, which are term frequency (TF) and inverse document

frequency (IDF). TF is the number of occurrences of a term for its basic form in a

document which is the program description for our implementation. The notion

inverse document frequency is a measure of how much information the word

provides about the document in which it takes place. In the formula of IDF, the

number of all documents is divided by the number of documents containing the term

t. Then, IDF value is calculated as the logarithm of the quotient. TF-IDF is

calculated as the product of TF and IDF. Program-term relation is represented by the

matrix PT= (ptij) with the size of |P| x |T|, where each cell ptij takes the TF-IDF value

between program pi and term tj. We have normalized all TF-IDF values to the range

[0, 1].

3.5.1.5. Term-Term Relation

In our dataset, the average number of terms in a program description is calculated as

12.7. We exploit this situation for defining co-occurrence similarity between terms.

Co-occurrence metric is calculated as follows:

44

ttab

Term-term relation is represented by matrix TT= (ttij) with the size of |T x |T|, where

each cell ttij takes the co-occurrence value between terms ti and tj.

3.5.1.6. User-Term Relation

In our implementation, there is no direct relationship between users and terms. For

this reason, we have defined a metric between users and terms which is calculated by

the summation of all multiplications of program rating of user and TF-IDF of the

term. For example, the user-term relationship between User2 and Term4 in Figure 3-5

is calculated as:

User-term relation is represented by the matrix UT= (utij) with the size of |U| x |T|,

where each cell utij takes the calculated similarity value between user ui and term tj.

3.5.2. Graph Structure

In our work, we define a three layered graph whose layers are User, Program and

Term. An example graph that is constructed with the help of the similarity metrics

defined between and in the layers can be seen in Figure 3-5.

45

Figure 3-5: An Example Tri-partite Graph

In our implementation, we have used a transition probability matrix X that is

composed of sub-matrices which contain similarity values between different node

types. The transition probability matrix X with size (|U| + |P| +|T|) x (|U| + |P| +|T|) is

constructed as follows:

 [

]

3.6. Recommender Algorithm via Random Walk

We use k-nearest neighbors algorithm [62]by means of similar users for collaborative

filtering. In order to find the k-nearest neighbors, we exploit the random walk

algorithm as in Bogers’ work [6]. In order to begin the random walk over our tri-

partite graph, we need to define the initial state vector s0 in which only the value for

the initial user node is 1 and all the values are set to zero. We can find the state

46

probabilities at the next step by multiplying the vector s0 with the matrix X. In

general, we can calculate the transition probabilities after n steps using the following

formula:

After making n steps of random walk, the transition probabilities to jump on another

user are sorted in order to grab the first k users as similar to the target user. In the

scope of our implementation, we have tested the value of kin the range of

[√ √
,√ √] by

using the rule of thumb mentioned in [63].

Because of performance issues, we had to restrict the length of the random walks on

our contextual graph. Therefore, we made random walks with finite length whose

path length varies from 1 to 6 for finding similar users.

After finding the k nearest neighbors, we have used the same technique for finding

top-N program recommendations for each neighbor with a path length of four. After

getting top-N recommendations for each similar user, we sum up all weights that

belong to a program from k users in order to find the final weight of it. As a result,

we have ended up with top-N recommendation list that is subject to re-rank in the

context aware post-filtering step. In our experiments, we have tested the effect of the

length of recommendation list with 10, 20 and 50 recommendations in it.

3.7. Context Aware Post-Filtering

Context aware post-filtering is used to re-rank the recommendation list that is

constructed by the graph based collaborative algorithm. In our work, we have used

actors and directors for context aware post-filtering, which are valid for only some of

the program genres. Therefore, we have examined the effect of post-filtering only for

several genres.

47

We have used the ratings that users give to programs in which actors and directors

take place in order to infer the ratings of users on actors and directors. For example,

if Robin Williams takes part in 4 programs that the user has watched, the ratings of

those 4 programs are summed up for calculating the rating given to Robin Williams

by the user.

In order to do the context aware re-rank, the score of the program calculated by the

recommender algorithm is multiplied by the ratings given by the target user to the

contextual attributes that take place in the program. After updating the scores by

using contextual attributes, we sort the scores of programs in the recommended items

list in order to construct new top-N recommendation list. With the help of context

aware re-rank, a program which is not placed in the top-10 recommendation by the

recommender algorithm can be put in the list which can result with a more successful

recommender algorithm. For this reason, we believe that context aware post-filtering

is particularly helpful when the recommendation list should be restricted to a small

number of items.

48

49

CHAPTER 4

4. EXPERIMENTS AND RESULTS

In this chapter, experiments that were carried out for the evaluation of our

recommender system are presented. First, the pre-processing of dataset is explained.

Then, evaluation metrics that are used to measure the success of the recommender

system are described. After defining the parameters of our recommender system, we

discuss the effects of them to the success of the recommender. Finally we describe

the experiments that are performed to measure the success of our algorithm, and

discuss their results.

4.1. Data Preprocessing

Because of performance issues, we had to shrink our dataset. For this reason, we

have excluded some of the users from our dataset by taking some statistical values

into consideration.

The average number of programs watched by a user in our dataset is 307. However,

nearly half of our users watch less than 100 programs and one third of the users

watch less than the average. Nearly 350 users watch more than 1500 programs in our

dataset which is considered as outliers. Therefore, we have selected 1081 candidate

users whose number of watched programs is between 300 and 1500.

Average rating for a program is 0.62 in our dataset. Similar to the research conducted

by Bambini et al.[42], we assume that a rating given above average should be

50

considered as positive, and we have picked the users whose average rating is bigger

than the average rating among 1081 users. Finally, we have come up with 198 users

whose ratings are used in our experiments.

4.2. Evaluation Metrics

In the evaluation of recommender systems, different metrics are used according to

the motivation of the recommender systems. Researchers can focus on time and

space efficiency of the recommender system or the efficiency of recommender

system or the satisfaction of user with the help of the recommender system [64]. In

this thesis, we have focused on measuring the effectiveness of our recommender

algorithm.

For the measurement of the effectiveness of a recommender algorithm, precision and

recall are the most common metrics. Since precision and recall are set-based metrics,

they are particularly useful for the evaluation of recommender systems which usually

generate a list of items to be recommended.

Precision is the ratio of the number of relevant items which are recommended by the

recommendation system to the total number of recommended items. Recall is the

ratio of the number of relevant items which are recommended to the total number of

relevant items [65].

Precision can be formulated as follows according to Figure 4-1

Recall can be formulated as follows according to Figure 4-1

51

F-measure is the harmonic mean of precision and recall and used to measure the

success of the recommender algorithm. It is calculated as follows:

()

Figure 4-1: Precision and Recall

4.3. Parameters

In the scope of this research, we have used several parameters that can affect the

performance of the proposed recommendation algorithm. These parameters are

examined in order to find the condition under which our recommendation algorithm

performs best. Parameters that we use in our experiments are and , and their

explanations are given in the following.

4.3.1. Parameter

Parameter denotes the number of jumps in the random walk. It represents the

length of the path for the random walk. Due to the performance issues, the maximum

number of steps in our graph is determined to be6. In our experiments, we have

tested the path length from 1 to 6.

52

4.3.2. Parameter

Parameter is the number of similar users to be selected for collaborative filtering. In

the scope of our research, we have tested in the range of;

√ √
<<√ √

Since we selected 198 users after preprocessing of our data, we tested the number of

users between 11 and 17.

4.3.3. Parameter

Parameter represents the length of the list of items that are recommended by our

algorithm. Since we are making top-N recommendations, precision and recall values

are affected by the length of the recommendation list. During experiments, optimal

value for this parameter is searched. We have tested the values 10, 20 and 50 in our

experiments.

4.4. Experiments

This section presents the results of the experiments that are carried out for this thesis.

We have tested the effectiveness of our graph based collaborative algorithm both

with any possible combination of our contextual attributes and without using any

context. For our experiments, we have used 3-fold cross validation technique that

segments the dataset into 3 slices and uses one of them as test set and others as

training set.

53

4.4.1. Pure Collaborative Algorithm

In order to show the effect of contextual attributes to the performance of the

recommender system, pure collaborative form of our graph based algorithm is

considered as a baseline. In the scope of the experiments, we have used all of our

parameters for testing the performance of our recommendation method.

As a result of the experiments conducted for pure collaborative graph based

algorithm, we have fixed two of our parameters and to the specific values at

which our algorithm performs best. Since it takes about 8 hours for one experiment

to finish by testing all parameters, we had to keep the number of similar users and

path length of random walk fixed. For the experiments that are aimed to fix the and

is set to 10.

In order to find the best , we have checked all values from 11 to 17. It can be seen

in Figure 4-2 that when we use 12 as , we get the best values for our metrics.

Therefore, we have selected the optimal k-value as 12 during our experiments with

context variables.

Figure 4-2: Performance of Collaborative Algorithm w.r.t.

54

In our experiments, we have tested the values from 1 to 6 for the length of path in our

graph in order to find the best value. As it can be seen in Figure 4-3, best results

are reached with condition

Figure 4-3: Performance of Collaborative Algorithm w.r.t.

After fixing and , we have tested the effectiveness of our algorithm with values

that is set to 10, 20 and 50. Results are presented in Table 4-1.

Table 4-1: Evaluation Metrics for Pure Collaborative Algorithm

Pure collaborative algorithm

value 10 20 50

Precision 0.0889 0.0726 0.0638

Recall 0.0701 0.1287 0.1533

F-Measure 0.0783 0.0928 0.0901

55

Figure 4-4shows the precision, recall and f-measure values for pure collaborative

graph based algorithm.

Figure 4-4: Performance of Collaborative Algorithm w.r.t.

While the set of recommended items grows to a bigger size, precision value worsens

because the rate of adding relevant items to the recommendation list is smaller than

the rate of change of , and recall value increases because more relevant items are

added to the recommendation list.

4.4.2. Collaborative Algorithm with Context Aware Pre-filtering

In the scope of our experiments, we aim to get better results by filtering irrelevant

programs out according to the contextual variables. As we stated, we have used time

of day of program and genre of program as context for pre-filtering. We have used

those attributes both separately and together in our experiments.

In Figure 4-5, the performance of our graph based collaborative is presented in

different time slots with . Our algorithm is most successful in daytime and early

morning and least successful in prime time. The reason for this is the sparseness of

56

the data for the time slots. In other words, 198 users, which we have selected after

data pre-processing, watch TV at most in daytime and early morning.

Figure 4-5: Performance of Algorithm with Pre-filtering according to Time

Slots

With changing we have tested the performance of context aware pre-filtering

according to time of day. The average values of evaluation metrics for all time slots

are calculated. Results, which are presented in Table 4-2, show similar behavior to

the pure collaborative algorithm.

Table 4-2: Performance of Algorithm with Time Aware Filtering

Context aware pre-filtering according to time of day

value 10 20 50

Precision 0.1348 0.1097 0.0961

Recall 0.0935 0.0991 0.1747

F-Measure 0.1078 0.1017 0.1225

57

Figure 4-6 visualizes the precision, recall and f-measure values for context-aware

collaborative graph based algorithm when time of day of a program is used as

context. With increasing recall values increases significantly. This is because of

the newly recommended items in the increased length of recommended item list.

Figure 4-6: Performance of Collaborative Algorithm with Time Aware Pre-

filtering w.r.t.

Figure 4-7demonstratesthe success of our recommender system according to the

selected genre when is set to 10. The collaborative algorithm works best for genres

historical, youth, action and detective. The common characteristic of all these genres

is that they are all overly specialized genres that contain fewer programs compared to

genres like news, series and life. From this point of view, it can be concluded that

performance of our algorithm gets better when the candidate set of programs shrinks.

58

Figure 4-7: Performance of Algorithm with Pre-filtering according to Genres

In Table 4-3, performance of our algorithm on the graph which is filtered according

to genre is presented with respect to by using the average values of metrics in the

tests for all genres

Table 4-3: Performance of Algorithm with Genre Aware Filtering

Context aware pre-filtering according to genre

value 10 20 50

Precision 0.1766 0.1432 0.0964

Recall 0.3704 0.5490 0.7033

F-Measure 0.1993 0.1891 0.1481

As it can be inferred from the Table 4-3, recall value of our algorithm increases

importantly with increasing The reason for this is that the number of relevant

items is small for specific genres and, most of the relevant items are recommended

when we increase the length of the list of recommended items. In Figure 4-8, the

visual representation of this situation is presented.

59

Figure 4-8: Performance of Collaborative Algorithm with Genre Aware Pre-

filtering w.r.t.

We have also tested the effect of contextual pre-filtering by using both contexts

together. By setting the time of day and genre at the same time, the contextual graph

is restricted to even a smaller size. This situation brings opportunity to our algorithm

for generating better recommendations on considerably small transition probability

matrix which is less sparse than the graphs which are filtered by using one contextual

attribute. In Table 4-4, the average performance of our graph based collaborative

algorithm on the graph which is filtered according to both time of day and genre

attributes is represented.

Table 4-4: Performance of Algorithm with Genre and Time of Day Aware

Filtering

Context aware pre-filtering according to genre and time of day

value 10 20 50

Precision 0.2230 0.1628 0.0974

Recall 0.6606 0.7882 0.9570

F-Measure 0.2907 0.2471 0.1688

60

In our implementation, context aware filtering by using genre and time of day

improve the success of our recommender algorithm. Genre is particularly successful

compared to time of day, and our algorithm performs even better when two

contextual attributes are used in conjunction. In Figure 4-9, the performance of our

recommender algorithm with context aware pre-filtering is presented when the

contextual attributes are used both separately and together with

Figure 4-9: Comparison of the Pre-filtering Results w.r.t. Selected Context

4.4.3. Collaborative Algorithm with Context Aware Post-Filtering

In the scope of our experiments, we perform context aware post-filtering on the list

of recommended items that is produced by our collaborative algorithm in order to re-

rank it according to some contextual attributes. For our experiments we have used

the contextual attributes actor and director for post-filtering purposes. We have tested

the effect of these contextual variables together since they usually co-exist in a

program. The results of experiments are presented in Table 4-5 for different values of

.

61

Table 4-5: Performance of Algorithm with Context Aware Post-filtering

Context aware post-filtering

value 10 20 50

Precision 0.0949 0.0759 0.0688

Recall 0.0716 0.1394 0.1578

F-Measure 0.0812 0.0982 0.1034

Table 4-6 presents the improvement on the performance by adding context aware

post-filtering to the pure collaborative algorithm.

Table 4-6: Effect of Post-filtering to Pure Collaborative Algorithm

 Without post-filtering With post-filtering

Precision 0.0889 0.0949

Recall 0.0701 0.0716

F-Measure 0.0783 0.0812

Context aware post-filtering has provided restricted gain of success to the

collaborative algorithm. The reason for this situation is that context aware post-

filtering does not provide a solution to the data sparseness problem. Instead, it tries to

re-rank the list of the recommended item list according to actors and directors that

the user has rated via the programs he/she watched. Furthermore, actors and directors

are present for only some genres. This situation causes a limited performance

improvement when post-filtering is applied.

62

4.4.4. Collaborative Algorithm with Context Aware Pre-filtering and Post-

filtering

In the scope of our experiments, we have applied context aware post-filtering not

only to the recommended items generated by pure collaborative algorithm but also to

the recommended items which are generated as the output of collaborative algorithm

applied on contextually filtered graphs. The aim is to measure the success of the

collaborative algorithm when all contextual information is used for recommendation

in these experiments.

In the experiments, context aware post-filtering is performed on the recommended

items generated by the collaborative algorithm that uses time aware pre-filtering.

Figure 4-10 demonstrates the performance of graph based collaborative algorithm

enriched with both post-filtering and pre-filtering with respect to time of day in all

time slots when is set to 10.

Figure 4-10: Performance of Algorithm with Post-filtering and Pre-filtering

according to Time Slots

Similar to the pure collaborative algorithm, context aware post filtering brings

limited performance improvement to the time aware pre-filtering. Results are

presented in Table 4-7 when is set to 10.

63

Table 4-7: Effect of Post-filtering to Algorithm with Context Aware Pre-

filtering according to Time of Day

 Without post-filtering With post-filtering

Precision 0.1348 0.1397

Recall 0.0935 0.0982

F-Measure 0.1078 0.1124

In our experiments, we have applied context aware post-filtering to the

recommendation list generated by the collaborative algorithm as well. In Figure

4-11, the performance of graph based collaborative algorithm which is enhanced by

both post-filtering and pre-filtering with genre is presented with all genres.

Figure 4-11: Performance of Algorithm with Post-filtering and Pre-filtering

according to Genres

Although context aware post-filtering improved the performance of our algorithm for

some genres such as action and cinema program, its overall affect to genre aware

pre-filtering is limited like in time aware pre-filtering. Results are presented in Table

4-8 when is set to 10.

64

Table 4-8: Effect of Post-filtering to Algorithm with Context Aware Pre-

filtering according to Genre

 Without post-filtering With post-filtering

Precision 0.1762 0.1777

Recall 0.3852 0.3864

F-Measure 0.2421 0.2428

In the scope of our experiments, we have tested our graph based collaborative

algorithm by using all contextual information for both pre-filtering and post-filtering

operations. Similar to the previous tests that uses post-filtering with two pre-filtering

techniques separately; the effect of post-filtering is again limited to the collaborative

algorithm when it is used with both pre-filtering attributes together. Results are

provided in Table 4-9 when is set to 10.

Table 4-9 : Effect of Post-filtering to Algorithm with Context Aware Pre-

filtering according Genre and Time of Day

 Without post-filtering With post-filtering

Precision 0.2230 0.2249

Recall 0.6660 0.6712

F-Measure 0.2907 0.2951

65

4.5. Evaluation of Experiment Results

In the scope of our experiments, we have tested the effect of our parameters (path

length of random walk)(number of similar users in k-NN)and length of

recommendation list)and fixed two of them because of performance issues.

As a result of our experiments, we realized that the success of the recommender

algorithm increases with the path length for random walk on the graph. As we state,

we had to keep the maximum length of path as 6 for our experiments. Therefore, it is

concluded that our algorithm might provide better results if it is performed on more

powerful systems.

In the scope of our experiments, we have also tested the number of similar users to

be picked for k-nearest-neighbor algorithm which highly depends on the dataset

used. In our implementation, our algorithm performed best when the number of

similar users is set to 12. We think that this value does not provide insight about our

data since it can perform better with different values for another data pre-

processing technique.

With increasing sizes of recommended item list it can be seen that precision

values are decreasing while recall values are increasing since the algorithm can find

more relevant items with bigger values of However, the newly discovered relevant

items are not sufficient to keep the precision values at the same values.

In order to measure the effect of contextual attributes, we have tested all contextual

variables that are used both for pre-filtering and post-filtering. Evaluation metrics for

all possible combination of contextual attributes are presented in Table 4-10when

is set to 10.

It is obvious that context aware pre-filtering produces bigger improvement compared

to post-filtering, and genre information performs better compared to time of day for

66

pre-filtering. Finally, the best performance of our algorithm is reached when all of

the contextual variables are used.

Our algorithm performs better with context aware pre-filtering because a small set of

candidate programs causes our random walk to traverse most of the graph with six

steps on it. On the other hand, the effect of post-filtering has remained limited to the

success of our recommender system. Since our attributes that are used for post-

filtering is only valid for specific genres, positive effect of post-filtering does not

change the overall success of our recommender algorithm.

Table 4-10: Performance Comparison w.r.t. All Possible Contextual Variables

 N
o

 C
o

n
te

x
t

P
o

st-filte
rin

g
 o

n
ly

P
re

-filte
rin

g
 w

ith
 T

im
e o

f D
a

y

P
re

-filte
rin

g
 w

ith
 G

en
re

P
re

-filte
rin

g

w
ith

T

im
e

o
f

D
a

y

a
n

d

G
en

re

P
re

-filte
rin

g
 w

ith
 T

im
e
 o

f D
a

y
 +

 P
o

st-

filte
rin

g

P
re

-filte
rin

g

w
ith

G

en
re

+

P
o

st-

filter
in

g

P
re

-filte
rin

g

w
ith

T

im
e

o
f

D
a

y

a
n

d

G
en

re
 +

 P
o

st-F
ilte

rin
g

Precision 0.0889 0.0949 0.1348 0.1766 0.2230 0.1397 0.1777 0.2249

Recall 0.0701 0.0716 0.0935 0.3704 0.6606 0.0982 0.3864 0.6712

F-Measure

0.0783 0.0812 0.1078 0.1993 0.2907 0.1124 0.2428 0.2951

67

CHAPTER 5

5. CONCLUSION AND FUTURE WORK

In this thesis, a graph based collaborative recommender algorithm is presented. The

proposed algorithm is empowered with both context-aware pre-filtering and post-

filtering. The approach presented by Bogers and the graph model presented by

Phuong are used as a baseline and we modified it according to performance issues

and architectural needs. The recommender system uses real channel usage data

provided by Arçelik A.Ş. and merges this data with program guide retrieved from

Radikal TV guide.

The design and implementation of the system are described in detail. First, the graph

based collaborative algorithm is developed which is able to produce top-N

recommendation list. Secondly, this algorithm is enriched with context aware pre-

filtering which utilizes genre and time of day of program. Finally, the resulting

recommended items list is re-ranked by using contextual attributes actors and

directors of a program.

Experiments are performed with our recommender system for two purposes. First we

tested the effects of parameters such as the length of the recommended items list, the

path length of random walk, the number of users to be used for collaborative filtering

on the performance of our graph based algorithm. We then evaluated the additional

success achieved by context aware pre-filtering and post-filtering.

After we fixed the optimal values for the path length for random walk and the

number of similar users, we have performed our tests with only one variable

parameter which is the length of the recommended items list. Results show that the

most effective context to the success of the recommender system is genre.

68

Furthermore, it is concluded that the effect of context aware post-filtering is limited

because contextual attributes used for context aware post-filtering is valid for only

specific programs. The ultimate conclusion to draw from our experiments is that our

algorithm produces better results as long as it is enriched with more contextual

attributes.

In our implementation, we use pre-defined similarity metric called co-occurrence

between terms in our dataset. The next step to improve the performance of our

recommender system might be using pre-defined similarities among other node types

as well. For example, pre-defined program similarity and user similarity by using

demographic information or social media information might bring performance

improvements.

In our experiments, we had to restrict the length of random walk due to the

performance issues. Results show that the performance of our system increases by

increasing the length of path for random walk. Therefore, extending the length of

path with more computational power might yield better results.

The evaluation of our recommender system is performed by using offline

experiments. However, this work is intended to be embedded in Arçelik TV’s.

Before putting our recommender algorithm into use for Arçelik, some online

experiments might be carried out for testing the effectiveness of our system by the

time of user interaction.

69

REFERENCES

[1] “Uydu Yayın Lisansı Olan Kuruluşlar Listesi (RD ve TV olarak).” [Online].

Available: http://yayinci.rtuk.org.tr/web/web_giris.php. [Accessed: 19-Aug-

2014].

[2] F. S. da Silva, L. G. P. Alves, and G. Bressan, “PersonalTVware: An

infrastructure to support the context-aware recommendation for personalized

digital TV,” Int. J. Comput. Theory Eng., vol. 4, no. 2, pp. 131–135, 2012.

[3] G. Adomavicius, B. Mobasher, F. Ricci, and A. Tuzhilin, “Context-Aware

Recommender Systems,” in Recommender Systems Handbook, 2011, pp. 217–

253.

[4] I. Konstas, V. Stathopoulos, and J. M. Jose, “On social networks and

collaborative recommendation,” in Proceedings of the 32nd international

ACM SIGIR conference on Research and development in information

retrieval, 2009, pp. 195–202.

[5] H. Cheng, P.-N. Tan, J. Sticklen, and W. F. Punch, “Recommendation via

query centered random walk on k-partite graph,” in Data Mining, 2007. ICDM

2007. Seventh IEEE International Conference on, 2007, pp. 457–462.

[6] T. Bogers, “Movie recommendation using random walks over the contextual

graph,” in Proc. of the 2nd Intl. Workshop on Context-Aware Recommender

Systems, 2010.

[7] E. Samdan, A. Tasci, and N. K. Cicekli, “A Graph Based Collaborative and

Context Aware Recommendation System for TV Programs,” in 1st Workshop

on Recommender Systems for Television and Online Video, (in press 2014).

[8] N. D. Phuong and T. M. Phuong, “A graph-based method for combining

collaborative and content-based filtering,” PRICAI 2008 Trends Artif. Intell.,

pp. 859–869, 2008.

[9] P. Resnick and H. R. Varian, “Recommender systems .(Special Section :

Recommender Systems)(Cover Story) Recommender systems .(Special

Section : Recommender Systems)(Cover Story),” vol. 56, no. March, pp. 1–

3, 1997.

[10] B. Mobasher, “Data mining for web personalization,” Adapt. web, pp. 90–135,

2007.

70

[11] F. Ricci, L. Rokach, and B. Shapira, “Introduction to Recommender Systems,”

in Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P.

B. Kantor, Eds. Boston, MA: Springer US, 2011, pp. 1–35.

[12] M. Balabanović and Y. Shoham, “Fab: content-based, collaborative

recommendation,” Commun. ACM, vol. 40, no. 3, 1997.

[13] C. Desrosiers and G. Karypis, “A comprehensive survey of neighborhood-

based recommendation methods,” Recomm. Syst. Handb., 2011.

[14] R. Van Meteren and M. Van Someren, “Using content-based filtering for

recommendation,” … Mach. Learn. …, 2000.

[15] P. Lops, M. De Gemmis, and G. Semeraro, “Content-based recommender

systems: State of the art and trends,” Recomm. Syst. Handb., pp. 1–33, 2011.

[16] M. Pazzani and D. Billsus, “Content-based recommendation systems,” Adapt.

web, pp. 325–341, 2007.

[17] G. Salton, Automatic Text Processing: The Transformation, Analysis, and

Retrieval of. Addison-Wesley, 1989.

[18] R. R. Walia, “Collaborative Filtering: A Comparison of Graph-based

Semisupervised Learning Methods and Memory-based Methods,” 2008.

[19] P. Resnick, N. Iacovou, and M. Suchak, “GroupLens: an open architecture for

collaborative filtering of netnews,” Proc. …, 1994.

[20] U. Shardanand and P. Maes, “Social information filtering: algorithms for

automating ‘word of mouth,’” in Proceedings of the SIGCHI conference on

Human factors in computing systems, 1995, pp. 210–217.

[21] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, “Recommending and

evaluating choices in a virtual community of use,” in Proceedings of the

SIGCHI conference on Human factors in computing systems, 1995, pp. 194–

201.

[22] M. D. Ekstrand, J. T. Riedl, and J. A. Konstan, “Collaborative filtering

recommender systems,” Found. Trends Human-Computer Interact., vol. 4, no.

2, pp. 81–173, 2011.

[23] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative

filtering recommendation algorithms,” in Proceedings of the 10th

international conference on World Wide Web, 2001, pp. 285–295.

71

[24] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-to-

item collaborative filtering,” Internet Comput. IEEE, vol. 7, no. 1, pp. 76–80,

2003.

[25] J. Herlocker, J. A. Konstan, and J. Riedl, “An empirical analysis of design

choices in neighborhood-based collaborative filtering algorithms,” Inf. Retr.

Boston., vol. 5, no. 4, pp. 287–310, 2002.

[26] D. Lin, “An information-theoretic definition of similarity.,” ICML, vol. 98, pp.

296–304, 1998.

[27] R. Bell and Y. Koren, “Scalable collaborative filtering with jointly derived

neighborhood interpolation weights,” Data Mining, 2007. ICDM 2007.

Seventh …, 2007.

[28] N. Lathia, S. Hailes, and L. Capra, “Temporal Collaborative Filtering With

Adaptive Neighbourhoods Categories and Subject Descriptors,” in

Proceedings of the 32nd international ACM SIGIR conference on Research

and development in information retrieval, 2009, pp. 796–797.

[29] R. Torres, S. M. McNee, M. Abel, J. A. Konstan, and J. Riedl, “Enhancing

digital libraries with TechLens+,” in Proceedings of the 4th ACM/IEEE-CS

joint conference on Digital libraries, 2004, pp. 228–236.

[30] R. Burke, “Hybrid recommender systems: Survey and experiments,” User

Model. User-adapt. Interact., vol. 12, no. 4, pp. 331–370, 2002.

[31] J. Liu, P. Dolan, and E. R. Pedersen, “Personalized news recommendation

based on click behavior,” in Proceedings of the 15th international conference

on Intelligent user interfaces, 2010, pp. 31–40.

[32] R. Adomavicius, Gediminas Sankaranarayanan, S. Sen, and A. Tuzhilin,

“Incorporating contextual information in recommender systems using a

multidimensional approach,” ACM Trans. Inf. Syst., vol. 23, no. 1, pp. 103–

145, 2005.

[33] X. Baltrunas, Linas Amatriain, “Towards time-dependant recommendation

based on implicit feedback,” in Workshop on context-aware recommender

systems (CARS’09), 2009.

[34] U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, and A. Pedone,

“Experimental comparison of pre-vs. post-filtering approaches in context-

aware recommender systems,” in Proceedings of the third ACM conference on

Recommender systems, 2009, pp. 265–268.

72

[35] F. Cena, L. Console, C. Gena, A. Goy, G. Levi, S. Modeo, and I. Torre,

“Integrating heterogeneous adaptation techniques to build a flexible and

usable mobile tourist guide,” AI Commun., vol. 19, no. 4, pp. 369–384, 2006.

[36] S. Sawant, “Collaborative Filtering using Weighted BiPartite Graph Projection

A Recommendation System for Yelp,” 2013.

[37] Z. Huang, W. Chung, T.-H. Ong, and H. Chen, “A graph-based recommender

system for digital library,” in Proceedings of the 2nd ACM/IEEE-CS joint

conference on Digital libraries, 2002, pp. 65–73.

[38] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D.

Ravichandran, and M. Aly, “Video suggestion and discovery for youtube:

taking random walks through the view graph,” in Proceedings of the 17th

international conference on World Wide Web, 2008, pp. 895–904.

[39] G. Öztürk and N. K. Cicekli, “A hybrid video recommendation system using a

graph-based algorithm,” Mod. Approaches Appl. Intell., pp. 406–415, 2011.

[40] L. Ardissono, A. Kobsa, and M. T. Maybury, “Personalized digital television,”

Human-computer Interact. Ser., vol. 6, 2004.

[41] S. Marchand-Maillet, “Content-based video retrieval: An overview,” 2000.

[42] R. Bambini, P. Cremonesi, and R. Turrin, “A recommender system for an iptv

service provider: a real large-scale production environment,” in Recommender

systems handbook, 2011, pp. 299–331.

[43] “tf–idf - Wikipedia, the free encyclopedia.” [Online]. Available:

http://en.wikipedia.org/wiki/Tf–idf. [Accessed: 08-Oct-2014].

[44] M.-W. Kim, E.-J. Kim, W.-M. Song, S.-Y. Song, and A. R. Khil, “Efficient

recommendation for smart TV contents,” in Big Data Analytics, 2012, pp.

158–167.

[45] H.-J. Kwon and K.-S. Hong, “Personalized smart TV program recommender

based on collaborative filtering and a novel similarity method,” Consum.

Electron. IEEE Trans., vol. 57, no. 3, pp. 1416–1423, 2011.

[46] B. Martinez, A. Belen, E. Costa-Montenegro, J. C. Burguillo, M. Rey-

L{’o}pez, M.-F. F. A, and A. Peleteiro, “A hybrid content-based and item-

based collaborative filtering approach to recommend TV programs enhanced

with singular value decomposition,” Inf. Sci. (Ny)., vol. 180, no. 22, pp. 4290–

4311, 2010.

73

[47] Z. Yu, X. Zhou, Y. Hao, and J. Gu, “TV program recommendation for

multiple viewers based on user profile merging,” User Model. User-adapt.

Interact., vol. 16, no. 1, pp. 63–82, 2006.

[48] T. Bozios, G. Lekakos, V. Skoularidou, and K. Chorianopoulos, “Advanced

techniques for personalized advertising in a digital TV environment: the

iMEDIA system,” in Proceedings of the eBusiness and eWork Conference,

2001, pp. 1025–1031.

[49] C. Shin and W. Woo, “Socially aware TV program recommender for multiple

viewers,” Consum. Electron. IEEE Trans., vol. 55, no. 2, pp. 927–932, 2009.

[50] L. Aroyo, L. Nixon, and L. Miller, “NoTube: the television experience

enhanced by online social and semantic data,” in Consumer Electronics-Berlin

(ICCE-Berlin), 2011 IEEE International Conference on, 2011, pp. 269–273.

[51] G. Shani and A. Gunawardana, “Evaluating recommendation systems,” in

Recommender systems handbook, 2011, pp. 257–297.

[52] J. Wit, “Evaluating recommender systems: an evaluation framework to predict

user satisfaction for recommender systems in an electronic programme guide

context,” 2008.

[53] “Digiturk - Yayın Akışı.” [Online]. Available:

http://www.digiturk.com.tr/yayin-akisi. [Accessed: 10-Aug-2014].

[54] “Türksat Uydu Haberleşme Kablo TV ve İşletme A.Ş. | TV, İnternet,

Telefon.” [Online]. Available: http://www.turksatkablo.com.tr/TV-Rehberi.

[Accessed: 10-Aug-2014].

[55] “TV Rehberi- Televizyon Programı ve Yayın Akışı Radikal’de.” [Online].

Available: http://www.radikal.com.tr/tvrehberi/. [Accessed: 10-Aug-2014].

[56] “MySQL - Wikipedia, the free encyclopedia.” [Online]. Available:

http://en.wikipedia.org/wiki/MySQL. [Accessed: 10-Aug-2014].

[57] “Active Record Basics — Ruby on Rails Guides.” [Online]. Available:

http://guides.rubyonrails.org/active_record_basics.html. [Accessed: 10-Aug-

2014].

[58] “Ruby on Rails - Wikipedia, the free encyclopedia.” [Online]. Available:

http://en.wikipedia.org/wiki/Ruby_on_Rails. [Accessed: 10-Aug-2014].

[59] “jsoup Java HTML Parser, with best of DOM, CSS, and jquery.” [Online].

Available: http://jsoup.org/. [Accessed: 11-Aug-2014].

74

[60] “Dayparting - Wikipedia, the free encyclopedia.” [Online]. Available:

http://en.wikipedia.org/wiki/Dayparting. [Accessed: 11-Aug-2014].

[61] A. Af, “Zemberek , an open source NLP framework for Turkic Languages.”

[62] “k-nearest neighbors algorithm - Wikipedia, the free encyclopedia.” [Online].

Available: http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.

[Accessed: 12-Aug-2014].

[63] P. Hall, B. U. Park, and R. J. Samworth, “Choice of neighbor order in nearest-

neighbor classification,” Ann. Stat., pp. 2135–2152, 2008.

[64] C. J. Van Rijsbergen, Information Retrieval, 2nd edition. 1979.

[65] M. K. Buckland and F. C. Gey, “The relationship between recall and

precision,” JASIS, vol. 45, no. 1, pp. 12–19, 1994.

