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ABSTRACT 

A GRAPH BASED COLLABORATIVE AND CONTEXT AWARE 

RECOMMENDATION SYSTEM FOR TV PROGRAMS 

 

ŞAMDAN, Emrah 

M.S., Department of Computer Engineering 

Supervisor: Prof. Dr. Nihan Kesim Çiçekli 

 

September 2014, 74 pages 

With the increasing amount of TV programs and the integration of broadcasting and 

the Internet with smart TV’s, users suffer the difficulty of selecting the most 

appealing TV programs among various different programs available. User decisions 

are mostly affected by the contextual properties of programs such as the time of day, 

genre, actors and directors of program. This thesis proposes the design, development 

and evaluation of a graph based context-aware collaborative recommender system 

for TV programs. The proposed graph based algorithm is based on random walks 

performed on a tri-partite graph. The graph is constructed by using context aware 

pre-filtering in order to filter out programs which are irrelevant in the given context. 

The recommendation list generated by the graph based collaborative algorithm is 

updated by re-ranking the recommended items according to additional contextual 

variables. Thus, the proposed recommender system exploits both contextual pre-

filtering and post-filtering to produce more effective recommendations. In order to 

measure the effectiveness of the context variables, we have implemented evaluation 

metrics on both context-free and contextual graph based methods. We have also 

tested the effects of parameters used in the graph based collaborative algorithm to the 
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success of the recommender. The results indicate that context can provide better 

recommendations for TV programs.   

Keywords: Recommender systems, collaborative filtering, context-aware 

recommendation, graph based recommendation, TV program recommendation. 
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ÖZ 

TELEVİZYON PROGRAMLARI İÇİN ÇİZGE TABANLI İŞBİRLİKÇİ VE 

BAĞLAM DUYARLI ÖNERİ SİSTEMİ  

 

Şamdan, Emrah 

Yüksek Lisans, Bilgisayar Mühendisliği 

Tez Yöneticisi: Prof. Dr. Nihan Kesim Çiçekli 

 

Eylül 2014, 74 sayfa 

Artan televizyon programı sayısı ve televizyon yayını ve internetin akıllı 

televizyonlar ile entegre edilmesiyle birlikte, televizyon izleyicileri mevcut 

programlar içinde en çekici televizyon programlarını seçmekte zorlanmaktadır. 

Televizyon izleyicilerinin kararları genelde programların yayın zamanı, türü, 

aktörleri ve yönetmeni gibi bağlamsal ögeler tarafından etkilenir. Bu tez, televizyon 

programları için çizge tabanlı işbirlikçi ve bağlam duyarlı bir öneri sistemini sunar. 

Önerilen çizge tabanlı algoritma, üç kısımlı bir çizge üzerinde yapılan rastlantısal 

yürüyüşler yapılması temeli üzerine kurulmuştur. Çizge, verilen bağlam ile alakalı 

olmayan programların bağlama duyarlı olarak önceden filtrelenmesi ile inşa edilir. 

Çizge tabanlı işbirlikçi algoritma tarafından üretilen öneri listesi ek bağlamsal 

değerler kullanılarak yeniden düzenlenir. Bu sayede, önerilen öneri sistemi hem 

bağlamsal ön filtreleme hem de bağlamsal geri filtrelemeyi daha etkili öneriler 

üretmek için kullanır. Bağlam değişkenlerinin etkinliğini ölçmek amacıyla, 

değerlendirme ölçütleri hem bağlama duyarlı hem de bağlama duyarsız yöntemler 

üzerinde uygulandı. Ayrıca, çizge tabanlı işbirlikçi algoritmada kullanılan 
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parametrelerin öneri sisteminin başarısına etkisi test edildi. Sonuçlar bağlamın 

televizyon programları için daha iyi öneriler üretilmesini sağladığını göstermektedir. 

Anahtar Kelimeler: Öneri sistemleri, işbirlikçi filtreleme, bağlam duyarlı öneri, çizge 

tabanlı öneri, televizyon programları önerisi 
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CHAPTERS 

CHAPTER 1 

1. INTRODUCTION 

Due to the vast improvements in broadcasting area, there are huge numbers of 

channels broadcasting TV programs at the same time. In Turkey, there are 311 

channels broadcasting on satellite registered to The Radio and Television Supreme 

Council of Turkey [1]. Because of the density of the programs, TV users suffer from 

finding suitable programs for them and missing the programs that are available on 

channels they have never watched. For this reason, TV users need the systems that 

recommend programs which can be interesting for them. 

The advent of Connected TV has provided the ability of recording the TV usage 

preferences for the manufacturers of consumer electronics and for the users. With the 

recorded past preferences, the profile of the user while watching TV can be 

constructed and the user preferences on TV programs can be calculated by using 

these user profiles. 

TV usage is mostly affected by the context of the user who intends to watch TV and 

the content of the program which is broadcast at that time [2]. The age of the 

watcher, time of the day, genre of the program might be decisive for the preference 

of TV consumption. Therefore, utilization of contextual information brings 

significant advantages to the recommender systems. Contextual information is 

utilized for pre-filtering the target programs, for modeling the user with the context 

variables and for re-ranking or filtering the recommendation list [3]. 
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Graph based recommender systems are generally used for connected data such as 

social media data or professional network for recommender systems [4]. By taking 

random walks from an initial node, algorithms can converge to the most relevant 

nodes in the graph. By restricting the type of the initial node to a user node and the 

type of the final node to an item node, random walks can yield the recommendation 

in the graph data [5]. 

This thesis proposes a graph based collaborative recommender algorithm which 

utilizes contextual attributes of TV programs in order to generate top-N 

recommendations. In this thesis, the proposed graph based collaborative 

recommender system uses the recorded past preferences gathered from Arçelik
1
, 

Beko
2
 and Grundig

3
 users for a specific period of time in order to solve the 

information overload due to a large number of programs at the same time. This thesis 

uses a graph based collaborative approach which is a modification of the approach 

proposed by Bogers [6]. By exploiting context aware pre-filtering and post-filtering, 

it is intended to get more effective results compared to pure collaborative algorithm. 

In this thesis, we have exploited the Turkish program guide information of TV 

programs in order to determine the contextual variables and features of a TV 

program. The developed recommender system is aimed to be utilized in Arçelik 

connected TV’s. 

1.1. Contribution of Thesis 

This thesis contributes to the literature of TV recommender systems in the following 

ways[7] :  

 We have improved Phuong et al.’s graph based model[8] with edge weights 

between node types such as continuous ratings between users and programs, 

TF-IDF values between programs and terms instead of binary values. 

                                                 
1
http://www.arcelik.com.tr/ 

2
http://www.beko.com/ 

3
http://www.grundig.com.tr/ 
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 We have adopted Bogers’ approach[6] by using the contextual pre-filtering 

and post-filtering according to the context attributes special to our data. 

 We have used the real world TV usage data which is very sparse. As a result 

of this situation, we have figured out the need for pre-filtering of real world 

TV usage data.  

 We have designed structural representation for program guide information in 

Turkish which can be utilized in future searches on Turkish program guide 

data.  

1.2. Organization of Thesis 

The rest of the thesis is organized as follows: 

Chapter 2 presents organized information about the literature on recommendation 

systems. A detailed description is given about the notion of recommender systems, 

and the taxonomy of recommender systems. Formal description of the classified 

recommender systems is given and the existing work is explained according to the 

methods they exploit. Previous work on TV recommender systems is also presented. 

The evaluation methods of recommender systems are described and classified 

according to the approaches that they utilize. 

Chapter 3 introduces our context aware collaborative graph based algorithm and 

gives the detailed description of our recommender system.  First, it provides the 

general overview and the structure of the system. Design issues are elaborated and 

the main recommendation algorithm is presented in detail.  

Chapter 4 presents the evaluation of the system. It compares the performance of the 

context aware collaborative algorithm with non-contextual collaborative algorithm. 

This chapter also summarizes the internal evaluation of our algorithm with respect to 

the parameters that are used in our algorithm. 
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Chapter 5 draws conclusions about this thesis work and discusses the advantages 

and disadvantages of our recommender. Possible improvements and future work to 

improve the performance of our recommendation algorithm are also discussed. 
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CHAPTER 2 

2. RELATED WORK 

In this chapter general information and terminology about recommender systems are 

presented. Different recommendation techniques are compared and explained. 

Previous works on TV and movie recommender systems are discussed considering 

the techniques they have used. Evaluation techniques and metrics are explained. 

2.1. Recommender Systems 

A recommender system is described as software tools and techniques providing 

suggestions for items to be of use to a user [9]. The term “item” is denoted for what 

the system recommends to its users. Recommender systems focus on the specific 

type of item such as a book for a digital library, a video for a video-on-demand 

system and a product for a shopping website according to the area that they are used 

in.  

Recommender systems are primarily designed for generating finite set of items 

which are aimed to be preferred by the users of the system. With that point of view, 

recommender systems can be regarded as a mapping between users and items [10]. 

In their most basic form, recommender systems try to guess the most suitable items 

based on the user’s preferences and constraints of the system by generating ranked 

list of items [11]. In order to achieve this task, recommender systems might collect 

both past preferences on the current system and preferences that are not directly 

attached with the system such as social media usage information. The preferences are 
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either explicitly expressed, e.g., as rating for a product, or are inferred by analyzing 

user actions, e.g., as watching time for a TV program.  

2.2. Recommendation Methods 

Recommender systems are divided into three main categories based on their methods 

in order to make the recommendations [12]:  

 Content-based recommendations: Items that are similar to the items that user 

preferred in the past are recommended; 

 Collaborative recommendations: Items that are liked by the users who have 

similar preferences are recommended. 

 Hybrid approaches: These methods combine collaborative and content-based 

methods. 

In addition, there are other types of recommender systems that are aimed to extend 

the two dimensional user-item space to multi-dimensional space with additional 

information related with either items or users. These are:  

 Graph-based recommendations: The data is represented in the form of a graph 

where nodes can be items, users and additional node types like features of 

items. After building the graph model, items are used not only as output of 

the system but intermediate nodes to propagate the information in the graph 

[13]. 

 Context-aware recommendations: Contextual variables such as the mood of 

the user, type of the item are used to improve the success of recommender 

systems by either filtering or re-ranking the recommendation candidates or 

embedding the contextual information to the recommendation model [3]. 
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2.2.1. Content Based Methods 

Content based recommendation systems are designed for suggesting items to users 

according to the relationship between the content of the item and user’s preferences. 

In order to recommend new items to users, content based recommenders use the past 

preferences of the users on the system [14].  

Past preferences of a user about the items are generally specified by the feedback that 

users give either implicitly or explicitly.  Explicit feedback has the advantage of 

simplicity since users provide their feedback willingly. In many cases, explicit 

feedbacks are gathered after a sign up process which enables researchers to learn 

demographic information about users such as age gender, education, occupation, and 

location and user interests. On the other hand, implicit feedback methods are based 

on assigning scores to the user actions on the system such as watch time for a video-

on demand website, or hold time for digital library. Implicit feedback methods bring 

the advantage of not disturbing users for giving ratings to the items that are used 

[15]. In this thesis, implicit feedback mechanism is used for getting ratings from 

users. In order to get the ratings for TV programs, we have used the watch time of 

user for the program for calculating the rating for the program and weighted it by 

comparing it with the duration of the watched program.   

For content based recommender systems, items are generally represented by a set of 

features. When each item is described by the same set of attributes, and there is a 

known set of values the attributes may take, the item is represented by means of 

structured data [16]. In most content-based filtering systems, item descriptions are 

textual features extracted from Web pages, product descriptions and so on, program 

or movie descriptions.  While representing documents with the terms in them, the 

main problem is to weight the terms by using some methodology. In order to specify 

the term weights, the most commonly used method is the term frequency /inverse 

document frequency (TF-IDF) measure which is based on the idea that rare terms are 

more significant than frequent items for representing an item (IDF), and multiple 



8 

occurrences of a term in a document is more important than single occurrences of a 

term in a document (TF) [17].   

TF-IDF is calculated as a combination of two notions, which are term frequency (TF) 

and inverse document frequency (IDF). Term frequency is the number of 

occurrences of a term in a document. The notion inverse document frequency is a 

measure of how much information the word provides and calculated as follows: 

   (   )     
 

             
 

In the formula of IDF, the number of all documents is divided by the number of 

documents containing the term t. Then, IDF value is calculated as the logarithm of 

the quotient. TF-IDF is calculated as the product of TF and IDF.   

     (     )    (   )      (   ) 

In their recommender system PRES, Meteren and Someren used vector space model 

of articles by assigning TF-IDF weights for the words in the articles which were then 

used as a features in their feature vectors [14].  In this thesis, we have also used the 

TF-IDF measure to represent the weight of the terms in the program descriptions.  

2.2.2. Collaborative Methods 

Collaborative recommendation systems are based on the idea that if two users have 

similar preferences in the past, they might have similar preferences in the future. In 

other words, the preferences of similar users are observed in order to make correct 

suggestions for the target user [18]. This approach falls under the category of user 

based collaborative filtering techniques. In user based collaborative filtering, in order 

to predict the preference of a user on an item that he/she has not rated yet, other users 

whose past rating behavior is close to the current user are searched among the users 

of the system, and the ratings of those users are used on the item to predict the 
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preference of the current user. User based collaborative filtering technique was first 

introduced by Resnick et al. in the GroupLens Usenet article recommender [19]. 

Other applications on different domains have also exploited the user based 

collaborative techniques; such as Ringo[20] on music domain and Video 

Recommender[21] on movie domain. 

However, when the number of users increases, user-based collaborative filtering 

techniques become inadequate because of performance issues [22].  Instead, item-

based collaborative filtering has been used in order to accord collaborative filtering 

algorithms to large user bases and facilitate deployment on large scale systems.  Item 

based collaborative filtering focuses on the similarities between the rating patterns of 

items rather than the similarities between the rating patterns of users. In item-based 

collaborative filtering algorithms, if two items are preferred by similar ratings then 

those items are considered as similar. Although item based collaborative filtering 

techniques are similar to earlier content based approach, they exploit user preference 

patterns rather than extracted information from items [23].  Most well-known usage 

of item based collaborative filtering is Amazon.com which provides users with 

similar product recommendations [24]. Their algorithm produces recommendations 

in real-time, scales to massive data sets, and generates high quality 

recommendations. 

In order to find the similar items or users in collaborative filtering techniques, several 

similarity metrics have been proposed and used in the literature.  Pearson Correlation 

makes use of the commonly rated items in order to calculate the similarity between 

users[21] : 

    
∑ (       )(       )     

√∑ (       )
 

     
√∑ (       )

 
     

 

In the equation ruc denotes the preference of user u for item c and ru represents the 

mean of the preferences over items rated by user u. Cuv represents the set of items 

that users u and v rated together 
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Spearman Rank Correlation uses the same formula with Pearson correlation 

coefficient but instead of using the ratings of users directly, this method ranks the 

ratings by giving the rank of 1 to the highest ranked item and assigning higher ranks 

to lower rated items [25].  

Unlike Pearson and Spearman Correlations, Cosine Similarity metric[26]uses all the 

ratings that are given to items by the users in order to get the rating vector. When the 

rating about an item is unknown, 0 is assigned as rating. After composing the feature 

vector, cosine distance is calculated between vectors of user pairs for calculating the 

similarity between them. Feature vectors of ratings from all users for an item are 

used in order to compose the rating vector for items in item based collaborative 

filtering [27].  

Determining the number of similar users is also a challenging task for the success of 

the recommender. Hill et al., have randomly sampled the candidate users for 

neighborhood for decreasing the time required to find similar users by taking into 

consideration the expense of accuracy lose [21]. In their research, Herlocker et al. 

stated that the number of similar users, or items for item based collaborative 

recommender system, should be constrained to a limited neighborhood of k users 

[25].  In their research, they have found the k = 20 as the best performing value. 

However, in the research conducted by Lathia et al., it is stated that this number 

mainly depends on the domain that the recommender is used for. In the scope of their 

work, they have proposed dynamically adapting the neighborhood size used for each 

user [28].  

Similar to their research, we have also restricted the neighborhood size for efficiency 

reasons. The details are explained in Chapter 3. 

2.2.3. Hybrid Approaches 

In some cases, single recommender system may not be appropriate for particular 

domains. For example, item based collaborative recommender algorithm is not 
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suitable for the systems which do not include adequate ratings. In this case, a content 

based recommender system can be used instead of it. Furthermore, it is proved that 

hybrids of various recommender algorithms outperform individual algorithms in 

some applications[29]. 

In his survey, Burke[30] has analyzed hybrid recommender systems, and divided 

them into seven categories: 

 Weighted recommenders combine the recommendation scores that are taken 

from several different recommendation algorithms to produce the final 

recommendation list for each user.  

 Switching recommenders use different recommender approaches 

interchangeably to get best result according to specific conditions. 

 Mixed recommenders present the results of several recommenders together 

similar to weighted recommenders. However, this type of hybrid 

recommenders does not necessarily combine the recommendation lists.  

 Feature-combining recommenders make use of features from different 

recommendation data sources in order to build a single recommendation 

algorithm. 

 Cascading recommenders are based on the idea of refining the results of one 

recommender in another recommender algorithm.  

 Feature-augmenting recommenders use the output of one algorithm as one of 

the input features for another. 

 Meta-level recommenders are similar to feature-augmenting algorithm but it 

gives the learned model by one algorithm to another algorithm instead of 

recommendation results.  

Liu et al. have developed a recommender system for Google News that combines the 

content based recommendation algorithm that uses learned user profiles with existing 

collaborative filtering mechanism for composing news recommendation list for 
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Google users. As a result, it is concluded that hybrid approach improves the 

performance of the news recommendation [31].  

In the scope of our work, we have used feature combining hybridization technique. 

We have used content based approaches by using TF-IDF similarity between TV 

programs and terms, while we have used the graph based collaborative recommender 

in order to find the similar users to the target users.     

2.2.4. Context-aware Recommenders 

Traditional recommender systems are designed by considering only the past 

preferences of a user on the items in the recommendation domain. Therefore, the 

input data for a traditional recommendation algorithm is in the form of 

<user,item,rating>. In contrast, context-aware recommender systems are based on 

the knowledge of partial contextual attributes that are somehow known by system in 

addition to the past preferences. That is, context-aware recommender system 

considers not only whether a given user liked a specific item, but also the contextual 

situation in which the item was preferred by the user [3]. Thus the input data is in the 

form of <user, item, context, rating>.    

Context-aware recommender systems are divided into three main categories with 

respect to the usage of contextual information. These are contextual pre-filtering, 

contextual post-filtering and contextual modeling [3].  

In contextual pre-filtering, the contextual information is used for selecting only 

relevant data as a candidate items for recommendations. After filtering the items 

which are not attached with the given context, any recommendation method can be 

used in order to predict the ratings of the user. Instead of using whole rating set for 

building an estimation model, contextual pre-filtering uses only ratings that are 

pertained by the given contextual variable.  In their research, Adomavicius et al. have 

used various contextual attributes to filter out data and compared the results with 

non-filtered data. They have figured out that although filtering generates better 
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results in general, sometimes it is unnecessary to use the filters [32]. In some 

researches, the idea of splitting the user profile instead of candidate data is used. In 

their work, Baltrunas and Amatriain present the idea of micro-profiling, which 

breaks the user profile into some possibly overlapping sub-profiles where each of 

those profiles represents the user in a given context. With the help of this approach, 

the recommendations are made by using the sub-profiles instead of one single user 

model [33].  

In contextual post-filtering, the contextual information is used after the 

recommendation made by another algorithm to re-rank the recommendation results 

to provide better interaction or to filter out redundant recommendations like in 

contextual pre-filtering. This approach is particularly useful when the final 

recommended items are limited because of the domain specific reasons.   Panniello et 

al. present an experimental comparison of pre-filtering algorithms with two different 

post-filtering algorithms where one of them is aimed to post-filter the resulting 

recommendation list and one of them is designed for reordering recommended items. 

As a result, reordering approach performs better than pre-filtering, while pre-filtering 

performs better than post-filtering. This result indicates that the best approach to use 

for a context aware recommender system can change according to the application 

domain [34].   

The contextual modeling approach makes use of contextual information directly in 

the recommendation function as an explicit predictor of a user’s rating for an item. 

From the dimensionality point of view, it increases the dimensionality of the 

recommendation function by one by adding the contextual information to 

recommendation model. In their travel guide system named UbiquiTO, Cena et al. 

have used the contextual modeling by adapting their content based recommender 

with contextual features like device type that uses their system, location, time and so 

on [35].  

In the scope of this thesis, we have developed a context-aware recommender system 

that uses context-aware pre-filtering by using the time of the day of a program and 
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genre of a program to filter out the redundant candidates for recommendations, and 

context-aware post-filtering by using actors and directors in the program for possible 

genres to re-rank the recommendation list.  

2.2.5. Graph-based Recommendations 

While traditional recommender approaches focus only on properties of the dataset to 

make recommendations,  graph-based recommender systems make use of not only 

the regular properties but also the connectivity properties of the dataset by 

 representing the recommendation problem as graph projection [36]. Graph-based 

approaches are not invented to build a novel approach for recommender algorithms. 

Instead, it is aimed to take advantage of connectedness of the dataset in 

recommender systems. 

In the scope of graph based approaches, users and items are represented as the nodes 

in the graph and the similarity metrics between users and items are represented with 

edge weights. If the connection does not imply a weight, an unweighted edge is used. 

An example graph representation used in the research of Huang et al. can be seen in 

Figure 2-1 [37]. They have used similarity metrics between users and books 

according to purchase history, among users according to demographic connections 

and among books vector based similarities in their recommender system designed for 

a digital library.  
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Figure 2-1: Bipartite Graph in Huang’s Research 

Graph-based approaches are generally used for collaborative filtering by using the 

connectivity between users and items of the system. In the research conducted by 

Baluja et al., a graph-based algorithm named Adsorption is developed for 

collaborative filtering which aims to be successful in the graphs where both labeled 

and unlabelled nodes reside by propagating information in the graph for finding 

labels for unlabelled nodes via random walks [38]. In their research, Öztürk and 

Çiçekli have extended the Adsorption algorithm by enriching it with content based 

results. They have improved the success of Adsorption with their hybridization [39]. 

Moreover, Phuong et al. use the graph based approach for combining the content 

based and collaborative recommendation approach. They have proved that their 

graph based approach outperforms a pure collaborative filtering, a pure content-

based filtering, and a hybrid method [8]. In our research, we have improved Phuong 

et al.’s graph based model with edge weights between node types such as continuous 

ratings between users and programs, TF-IDF values between programs and terms 

instead of binary values.  

Graph-based approaches are used for context-aware recommendations by embedding 

the contextual features to the graph projection of dataset. Bogers have built a 
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contextual graph (see in Figure 2-2) by embedding context attributes as node types to 

the graph. In this research, algorithm named ContextWalk, which is a modification of 

random walk algorithm, is proposed for calculating the similarity between each node 

in the graph[6]. Since, ContextWalk can be used for calculating the similarity 

between any pair of node types, his algorithm is capable of achieving other 

recommendation tasks such as actor-to-movie recommendation, without the need for 

retraining or changing the recommendation model. 

This thesis is based on the idea of random walks on the contextual graph which is 

proposed in Bogers’ research. In the scope of our research, we have constructed our 

own graph and used Bogers’ approach to calculate similarities between user nodes 

for collaborative filtering. However, because of the performance issues, we did not 

embed the context variables. Instead, we have used our context variables for pre-

filtering purposes by eliminating the redundant nodes from the graph. 
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Figure 2-2: Contextual Graph in Bogers’ Research 

2.3. Recommender Systems in TV Domain 

Digital TV’s have been evolved in such an expeditious way that they can provide not 

only telecasts the existing air, satellite or cable TV, but also contents such as video-

on-demand, smart applications and so on. Users can select the contents they prefer, 

but they can face the problem to find the contents they are interested in. Therefore, 

demand for the recommendation systems for TV users is increasing in recent times 

[40].  
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As a specialized domain of recommender systems, TV recommender systems are 

mainly divided in three categories with respect to the method they have used; content 

based recommender systems, collaborative recommender systems and hybrid 

systems.    

In content based recommendation, the items are represented by the features inferred 

from their content. For television environment, it is hard to get the features from the 

video and audio streams because it requires semantic interpretation of the video and 

audio streams [41]. That’s why the mostly used source for feature extraction is the 

textual sources like EPG (Electronic Program Guide) which is supposed to include 

brief but explanatory information about TV programs. The most usual way to 

represent a TV program with EPG data is BOW (bag-of-words) approach, where 

frequencies of words are retained, discarding any grammar/semantic connection. 

Usually the words are pre-processed by means of tokenization, stop-words removal 

and stemming. In the research and implementation conducted by Bambini et al., 

Latent Semantic Analysis (LSA) is used together with the bag of words approach for 

automatic indexing and searching of the EPG document [42]. In our research, we 

utilize the BOW approach to represent the content. However, we have placed the 

words as terms in the graph connected to program nodes, while Bambini et al. used 

them as attributes in the feature vector.  

Collaborative recommender systems have been also applied to the TV domain 

widely. In the research conducted by Kim et al., user profiles are built by using a 

scoring technique called CF-IUF (category frequency-inverse user frequency, which 

is a modification of a well-known information retrieval concept TF-ID[43]. The 

method aims to handle the bias towards best-selling content, and series contents 

containing many episodes [44]. They have defined a term called category with the 

combination of the content genre, provider, etc. and calculated the frequency of each 

category for a user by using the CF-IUF formula they have invented. All category 

frequencies for a user constitute the feature vector for a user. Since the number of 

clusters is not well defined in the recommender systems for televisions, it is better to 

use algorithms other than k-means. That’s why, they have used the ISOData 
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algorithm, which minimizes the sum of squared errors between data points and their 

closest cluster centers and automatically determines optimum number of clusters. For 

collaborative filtering in the clusters of users, they have used Spearman correlation 

coefficient. In another research by Kwon and Hong, a collaborative recommender 

system which aims to relieve the cold start problem of collaborative recommender 

systems are designed for TV programs [45]. In the scope of their work, in order to 

cope with the cold start problem, they have used raw moment-based similarity which 

is based on the idea of detecting expected difference between two linear variables.  

There are also hybrid recommendation systems that use the content based and 

collaborative filtering algorithms together in the TV domain. Martinez et al. 

introduce queveo.tv: a recommendation system for personalized television program. 

It proposes a hybrid approach (combining content filtering based techniques with 

collaborative filtering) and also offers to exploit the social network usage of users 

such as comments, tags, notes, etc.[46]. They use the post hybridization method that 

uses mixed recommenders approach for combining recommendation results. Their 

proposed recommendation algorithm is described in the Figure 2-3. 
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Figure 2-3: Hybrid Recommender System of Martinez et al. 

Most of the current recommender systems designed for TV programs does not take 

the notion of context into consideration. They only run on two dimensional 

UserxItem space. In the research conducted by da Silva et al., a contextual user 

profile which is the result of the aggregation of the user contextual information like 

user personal data profile, and the genre of TV program is used for filtering. They 

have implemented a contextual filtering method similar to the content based filtering 

but using the contextual information such as date, time and place of the origin of the 

TV program and the user. Their work shows that the context notion improves the 

performance of the recommender system. Furthermore, they propose to extend 

contextual features by adding contexts such as the room of television in the house, 

domain of TV usage [2]. Similar to their work, we have used the genre and the time 

of day of the program for pre-filtering.     

TV is usually viewed by multiple members of the groups sitting together. So a TV 

recommendation system should not only provide personalized programs for 
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individuals, but also be able to recommend programs to multiple viewers taking care 

of the preferences of the majority of viewers, in the case where the viewers are 

watching TV at the same time, and in the same spot. In order to overcome this 

problem, Yu et al. propose a group recommender system for multiple viewers using 

profile merging [47].  There are also other methods to provide group 

recommendations which are merging recommendations and group agent approach. 

Merging recommendations method first creates the recommendation list for each 

individual in the group then, merges the program recommendation lists of those users 

in the group, while group agent method forces users to register a common account 

for them and input their original preferences to that account. Group agent method is 

not so applicable because the common agent fails with the absence of one of the 

group members or additional members to the group. At this point, it is good to 

mention that there are also some research to understand who is watching the TV at a 

specific time called hidden eye technology[48]. Yu et al. take the feature vector of 

each user as input and make use of the total distance minimization to make a 

common profile from the profiles of the users in the group. To be specific, they do 

not include every feature in the feature vector of all users but they use only the 

positive or negative valued features for making computation less complicated and 

easier. 

In a more recent research conducted by Shin and Woo, not only the independent 

individual user profiles but also the group characteristics are taken into 

consideration. They call their system socially-aware because they allow users to 

harmoniously decide which of the programs of interest to watch [49]. According to 

the social situation in the group, they have developed three ways to recommend an 

item.  

In the case in which all users are interested in the same program, the assistant 

automatically selects it as the best program and recommends it, though alternative 

programs would also be indicated. 
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In the case where users have similar preferences, age, and/or interests, the assistant 

determines the program to view by sifting through the feedback obtained regarding 

the list of preferences for a set of possible programs. 

If the situation does not fit in any case, the recommender selects a program by asking 

for both category and programs of interest. 

They have used a graphical user interface to let the user give his/her preferences 

regarding the metadata of the programs; i.e., preferred genres, actors and keywords 

explicitly in order to later use in profile merging and combination. They have found 

that they made further improvement to the previously proposed group 

recommendation systems by understanding the group characteristics. The interesting 

point they have showed is that the participants of their evaluations had different 

preferences when they have watched TV with other people. Although their preferred 

programs spread in every category when they were alone, their choices changed to 

other categories when in a group. In the case of the family group, participants 

preferred programs in the entertainment category that might be acceptable for all 

members of the family; consequently, their interests in educational programs 

decreased. 

In the early recommender systems for televisions developed in the 90’s, the only data 

source used was the agenda of the TV channels and the recommendations were 

mostly channel based. In more recent times, with the including of the EPG as a data 

source, recommender systems made use of richer information such as actor names, 

genres, program descriptions suitable for bag of words approach and so on. However, 

with the emergence of the social networks, there are vast amount of personal data on 

web that can solve the cold start problem. Cold start problem means that in order to 

make recommendations to a specific user, we need to know more about him/here and 

this requires some training time for any recommender system to operate. 

In the Notube project founded by European Union, Aroyo et al., have built a 

recommender system that uses existing web services and shared background 

knowledge to collect, enrich and recommend TV data. This work can be regarded an 
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aspect of TV-Web convergence that can open a door to new types of TV application 

in the future[50]. 

In Notube, they analyze the information that user generates on some social network 

sites with the permission of the users. Their system currently supports Facebook, 

Twitter and LastFm. As they have said, usage of the cross platform data for an 

individual may yield better results with further research.   

2.4. Evaluating Recommender Systems 

In order to measure the success of a recommender system, there are various methods 

which are classified according to the evaluation strategy that they use. Those are 

offline experiments, user studies and online experiments.  

2.4.1. Offline Experiments 

Offline experiments are conducted to measure the success of the recommender 

system with an existing data and without further interaction with the users of the 

system. The aim in this approach is to simulate the users’ behavior while using the 

system [51]. Offline evaluations are easier to conduct and more economical 

comparing to other evaluation methods with multiple algorithms, since it does not 

include any interaction with users.   

For offline experiments, the data set is divided into two parts: A test and a training 

set. The ratings in the training set are used by the recommendation algorithm to 

predict the ratings in the test set, which can then be compared to the actual ratings in 

the test set. Most commonly used offline experiment method is k-fold cross 

validation, in which the data set is partitioned into K subsets. From these subsets, one 

is separated for using as the test set; the other subsets are used as training set. This 

process is repeated K times, each time with a different test set [52]. 
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In this thesis, we have used 3-fold cross validation method in order to measure the 

success of our recommender system.  Because of the time issues, offline experiments 

are well fitted to our needs to evaluate our algorithm.  

2.4.2. User Studies 

Experiments with user studies are generally conducted by asking users to interact 

with system. Users are usually requested to ask to fill forms or questionnaires before 

starting the experiments. Such experiments are not preferable economically since it 

may require some payments to participants of these studies [51].  

2.4.3. Online Experiments 

In this kind of experiments, the experiments are done with real users while system is 

running commercially. However, this brings the risk of system crash because of the 

experimental setups [51]. Online experiments are regarded as more accurate since 

they show the behavior of the recommender system in reality.  
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CHAPTER 3 

3. A GRAPH BASED COLLABORATIVE AND CONTEXT 

AWARE RECOMMENDATION SYSTEM FOR TV 

PROGRAMS 

 

 

This chapter presents the conceptual description of a graph-based collaborative 

context-aware recommendation system that is designed to operate on real usage data 

provided by Arçelik. First, the system architecture is described from modular 

perspective and brief information about the modules of system is given. Before 

elaborating the proposed system from algorithmic point of view, we give background 

knowledge about the design issues and decisions we take in the scope of this work. 

3.1. General System Overview 

The graph-based collaborative recommender system that is developed in this thesis is 

an application which aims to select the preference of the user according to given 

contextual variables.  

The developed recommendation system is aimed to be embedded in the Arçelik 

Connected TVs. The TV usage data used in this thesis is provided by Arçelik.  

Recommendations are done through the collaborative filtering approach according to 

the random walks that are performed on a contextually tailored tri-partite <User, 

Program, Term> graph. Results are re-ordered according to context variables in 

order to get the final recommendation list.     
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3.2. System Architecture 

The proposed system compromises two different data sources which are Arçelik TV 

usage data that are gathered from Arçelik TVs and Radikal TV Guide data. The 

system aggregates these data in order to create a dataset to be used by the 

recommendation algorithm. Three separate modules deal with graph construction 

according to the contextual attributes, recommendation and post evaluation of 

recommendations according to context, respectively. General structure of this system 

is shown in Figure 3-1. 

 

Figure 3-1: General Structure of Proposed System 

Our proposed system consists of seven components that are responsible from 

different tasks. These are:  Arçelik TV reporter module, Arçelik database module, 

Radikal TV guide crawler module, information aggregator module, context aware 
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graph builder module, collaborative recommender module, context aware post-

filtering module. 

3.2.1. Arçelik TV Reporter Module 

Arçelik TV reporter module is an embedded module that resides on every connected 

TV that Arçelik manufactures. This module is responsible of recording channel 

usage behavior of TVs and sending them to the Arçelik database module when it has 

an internet connection. Arçelik TVs are programmed to send the TV usage data in 

every 5 minutes. If there is no internet connection, this module collects the TV usage 

information on their memory and sends the collected TV usage data as the internet 

connection is provided.   

3.2.2. Arçelik Database Module 

This module is responsible of keeping the TV usage information and other essential 

information in an organized manner. This module is also responsible of taking the 

backup of Arçelik data monthly. This module returns adequate information when a 

query is posed to it.  

3.2.3. Radikal TV Guide Crawler Module 

In our implementation, we need the structured information of TV programs which is 

not provided by Arçelik data. In order to gather this data, we have examined several 

TV guide websites such as Digiturk TV Guide[53], Teledünya TV Guide[54]and 

Radikal TV Guide[55], and we preferred to use Radikal TV Guide since it provides 

more structured and more accurate information compared to other sources. This 

module is programmed to crawl the website of Radikal TV guide in a daily manner at 

midnight. In the scope of this thesis, this module have collected the TV guide 
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information for 3 months (between October 2013 and January 2014) in order to 

create the dataset for our research.    

3.2.4. Information Aggregator Module 

In our research, Arçelik data does not include the program information but contains 

only the channel name and start time and end time of the TV usage. In order to find 

out which program is watched at that time we have used EPG information from 

Radikal TV Guide. This module is responsible of combining these two data sources 

and transforming the channel usage data taken from Arçelik to the program usage 

data matched with users according to the channel name, start time and end time of 

the usage.  

3.2.5. Context Aware Graph Builder Module 

In our implementation we have developed a context-aware graph based 

recommendation algorithm which uses the graph tailored according to the given 

context as input. This module is responsible of constructing the graph by using the 

data that is aggregated by the information aggregator module. While achieving this 

task, this module takes the contextual variable as input and filters the irrelevant data 

and constructs the graph only with the data that is in the context. For example; if the 

given context is in the form of Time of Day = PRIME_TIME and Genre = TV Series, 

this module takes the TV series that are broadcast on prime time and their usage 

information while constructing the graph.  

3.2.6. Collaborative Recommender Module 

This module is the core module that carries out the recommendation task by taking 

random walks on the contextually adjusted graph. It gets the contextual graph, length 

of the path for the random walk, number of users to be determined as similar, number 
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of recommendations to be produced as input and produces the output as a ranked list 

of recommendations which are subject to change by context aware post-filtering (see 

in Figure 3-2). For making recommendations, this module does finite length 

traversals on the graph in order to find similar users. Then, it produces 

recommendation results again by taking random walks that use those similar users as 

a start point. In order to find the best path length, the number of users, and the length 

of the recommendation list, this module has been re-run many times by setting the 

contextual variables for every possible value.  

 

Figure 3-2: Input Output Flow of the Recommender Module 

3.2.7. Context-Aware Post-filtering Module 

In our implementation, the recommendation list that is produced by the recommender 

module is re-evaluated according to the context variables. This module is responsible 

of re-evaluating the recommended item list according to the preference of the context 

variables. This module uses different context variables for post-filtering from the 

context variables used in the pre-filtering module. To be specific, this module makes 

use of the preference of target user on actors and directors, while pre-filtering uses 

more general contextual variables such as genre of the program and time of day of 

the program. This module puts the items in the input recommendation list in an order 
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according to the contextual preferences of the user and produces a new re-ranked 

recommendation list.   

3.3. Design Issues 

Throughout this thesis, some design decisions have been taken by discussing several 

technologies and approaches. In order to achieve the task of this thesis, several tools 

and programming languages and already developed libraries are exploited. External 

data sources are selected with respect to some attributes. In this section, we will 

elaborate the design decisions that are taken in the scope of this project.   

3.3.1. Database 

In the scope of this thesis, we have kept our dataset in a structured way in a database. 

For this need, we have used MySQL[56]which is the second widely used relational 

database management system. In order to map our database tables to the 

programmatically meaningful classes we have used the Active Record[57] modeling 

technology that is developed in the scope of a well-known web development 

framework Ruby on Rails[58].   

3.3.2. Arçelik TV Usage Dataset 

In the scope of this thesis, Arçelik provided access to their channel usage data for 3 

months (October, November and December 2013) in order to be used by our 

research. Their channel usage data contains only the device id as the user 

information, which should be joined with customer_devices table and this table is not 

available to us. From this point of view, the channel usage data is automatically 

anonymized with the cost of regarding each device that is possibly used by a group 

of users as one user in our system.  Channel usage data taken from Arçelik only 

includes channel name, start time of TV usage and end time of TV usage which are 
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useful for our research. Apart from those, it includes some other attributes such as 

signal frequency, source type and channel type. The structure of the channel usage 

model with useful attributes is presented in Table 3-1. 

The channel usage data includes the TV usage records that are longer than ten 

seconds. In the dataset retrieved for 3 months, there are 3,865,821 channel usage 

records which belong to 5,466 users.  

Table 3-1: Table Structure of Channel Usage Object 

Attributes Summary 

id Id attribute is used to ensure 

uniqueness of channel usage 

object. 

device_id Id of the device that this 

channel usage belongs to. 

start_time Start time of the channel 

usage in the form of UNIX 

timestamp. 

end_time End time of the channel 

usage in the form of UNIX 

timestamp. 

name Name of the channel that 

channel usage belongs to. 

frequency Signal frequency of the 

channel on satellite 

source_type Source used when the 

channel usage occurs. For 

example, terrestrial or 

satellite 

channel_type Type of the channel used 

such as HD or FullHD. 
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3.3.3. Radikal TV Guide Dataset 

TV channels periodically update their schedule of broadcasts and provide 

information about their programs on their websites or by using some other sources. 

Some general TV guide applications gather this program information from the 

channels and present them in a structured form named EPG (Electronic Program 

Guide). As we mentioned, we have retrieved the EPG information from the website 

of Radikal which was a former newspaper that has switched to only online 

broadcasting recently.  The TV guide resided in Radikal web site provides EPG of 

thirty nine TV channels broadcasting in Turkey for every three days. It presents the 

broadcast stream of each channel in separate websites. For example in order to get 

the broadcast stream for channel CNN_TURK on 11/08/2014, we should parse the 

website that is presented in 

http://www.radikal.com.tr/tvrehberi/cnn_turk/#!11.08.2014. In order to get the 

broadcast stream of all channels on Radikal TV Guide, we have put all channel 

names into a configuration array, and iterated over this array in order to crawl the 

website for EPG information for all channels. The example broadcast stream can be 

seen in Figure 3-3. 

http://www.radikal.com.tr/tvrehberi/cnn_turk/#!11.08.2014
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Figure 3-3: Broadcast stream of CNN TURK on 11/08/2014 

While parsing the broadcast stream, we take the program id in the broadcast stream 

in order to retrieve the details of the program by combining the program id with the 

program name. For example; the details of the program “Anasının Oğlu” is found at 

the URLhttp://www.radikal.com.tr/tvrehberi/kanald/anasinin_oglu/502301/which is 

constructed by combining the channel name, program name and program id. As it 

can be seen in Figure 3-4, Radikal TV guide provides sufficient attributes for a 

program which are channel name, day and time of program, genre, director, cast 

information, summary and long description of the program.   

http://www.radikal.com.tr/tvrehberi/kanald/anasinin_oglu/502301/
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Figure 3-4: Details of a Program Description on Radikal TV Guide 

In order to parse the program details and extract the necessary information, we use 

the jsoup[59] Java library. This library enables programmers to crawl on the 

retrieved HTML page by using the DOM traversals and CSS selectors.  

Before inserting the program information to the database, we make some pre-

processing on the retrieved program data. In order to make the program data 

compatible with ORM, the following operations are done:  

 Using the human readable date and time of the program, we have calculated 

the UNIX timestamp of the program which is in terms of seconds. This 

operation is done in order to make the start and end time of the program 

compatible with Arçelik channel usage data which is in terms of UNIX 

timestamp.  

 By using the time of the program, we have classified the program into one of 

the classes that are composed with respect to time of day. While deciding for 

intervals of time of day slots, we have used the dayparting article on 

Wikipedia[60] and merged some of the day parts which are too short for our 

purposes. The resulting day partitions can be seen in Table 3-2. We have 
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permitted multiple times of day for programs that are broadcast in more than 

one time of day.  

 By splitting the genre information with the character “(“, we have revealed 

hidden genres in the parenthesis which are actually quite important. In the 

program in Figure 3-4, comedy genre is more decisive compared to series 

genre. With the help of this information, we permit multiple genres for 

programs.  

 By splitting the actors and directors with the character “,”, we represent 

multiple actors and directors that can belong to a program. 

 In order to represent the programs as BOW, we have stemmed all words that 

are in the program description and summary and got the stemmed words 

which are called as terms in our work. After stemming all words in the 

program description and summary, we have excluded the verbs in order to 

avoid the ambiguity problem of verb stems in Turkish. In order to achieve the 

stemming task, we have exploited Zemberek[61] which is an open-source 

natural language processing framework developed for Turkish language 

mostly. Beyond stemming, Zemberek is capable of many tasks such as spell 

checking, morphological parsing and word construction. It is also used in real 

world applications such as OpenOffice.org. 

Table 3-2: Day partitions 

Time Slot Time Of Day 

00:00-04:00 NIGHT 

04:00-07:00 EARLY MORNING 

07:00-09:00 BREAKFEAST 

09:00-13:00 LATE MORNING 

13:00-18:00 DAYTIME 

18:00-20:30 EVENING 

20:30-24:00 PRIME TIME 
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While inserting the program data, we have pursued a structured representation of the 

data by taking the opportunity of relational database management system. Instead of 

creating a programs table which includes all necessary information tucked-in its 

columns, we have created separate tables for every logical model in the program 

data. For example, we have created a separate actors table that keeps all actors that 

are encountered in one table and a programs_actors table in order to keep the 

relation between programs and actors. The structured tables that are used to store our 

models can be seen in Table 3-3, and the structured junction tables that are used to 

store the relations between our models can be seen in Table 3-4. 

 

Table 3-3: Storage tables to keep the record of our models. 

Table Name Fields in Table Summary 

programs 
id, channel_id, start_time, 

end_time, name, dataset 

This table is used to store the 

programs object in our database. id 

field is used to keep the uniqueness of 

object. channel_id points to the 

channel that the program is broadcast 

in. start_time and end_time is used to 

present the broadcast time of a 

program. dataset is a boolean value 

that indicates that the program is in the 

dataset when it is set to 1.    

terms id, name, idf 

This table is used to store all terms 

(stemmed nouns in program 

descriptions and program summary) 

that are in our dataset. idf value is the 

number of documents that this term 

takes place.  

actors id, name 

This table is used to keep the record of 

actors in our dataset. The tables 

directors, genres and time_of_days are 

in the same form.  

channels id, name, icon 
This table is used to keep the records 

of channels in our dataset.  
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Table 3-4: Junction tables for representing relationships between models 

Table Name Fields in Table Summary 

programs_actors program_id, actor_id 

This table is a junction table that 

connects programs and actors. 

There is a many-to-many 

relationship between programs and 

actors. In other words, a program 

may have many actors and an actor 

can take part in several programs. 

Junction tables with directors, 

genres and time_of_days are in the 

same form with this table. 

program_terms 

program_id, term_id, 

term_frequency, tf_idf, 

normalized_tf_idf 

This table is a junction table 

between programs and terms 

(stemmed words in program 

description). Since we have a 

relationship weight between 

program and term there are metrics 

called term_frequency which 

represents the frequency of a term 

in a program, tf_idf which 

represents tf_idf value of term in a 

program and normalized_tf_idf 

which is the normalized form of 

tf_idf value according to the 

maximum tf_idf value in dataset.  

term_connections 
term_a_id, term_b_id, 

co_occurence 

This table is a junction table 

between each term in dataset. This 

table is aimed to keep the number 

of documents that term a and term 

b are in a document together, in 

order to create a weighted relation 

between terms.  

 

In the scope of this thesis, we have retrieved the TV guide data corresponding to the 

data which is supplied by Arçelik. Therefore, we have retrieved the EPG information 

for October, November and December 2013 for 39 channels. In this data, there are 
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 45107 different programs 

 42 different genres 

 4338 actors 

 1092 directors 

 4697 terms. 

3.3.4. Matching Channel Usages with TV Guide Information 

As we stated, we have dealt with the channel usage data that is retrieved from 

Arçelik, Beko and Grundig TVs between October 2013 and January 2014 which 

contains 3,865,821 records. Although, channel usage data shows the information 

about the watched channel for a certain period of time, it does not provide any 

information about which programs are watched in that time period. In order to find 

the programs that are watched during the channel usage, we match the channel 

usages by querying the programs with channel name, start time and end time. 

However, name of the channel might be recorded differently for the same channel by 

different devices. For example, the channel names EUROSPORT 2, EUROSPORT2 

and EUROSPORT 2 HD which are all present in our channel usage data correspond 

to one channel named eurosport2 in the program information on the website. In order 

to match the channel usages with programs correctly, we have examined all different 

channel names in the channel usage data and created a look-up table that keeps the 

corresponding channel names in the channel usage data for the channel names in 

program data. We have found out 63 different channel names in channel usage data, 

for 26 channels in our program data. A small fraction of the look-up table for some 

channels can be seen in Table 3-5. For 13 channels in the program dataset, there is no 

corresponding channel usage. The reason is that those channels are not recorded by 

their name because they are specific to a Turkish satellite provider.  
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Table 3-5: Channel Name Matching between Program and Channel Usage Data 

Name in Program 

Data 

Name in Channel Usage 

Data 

trt1 TRT 1 

TRT 1 HD 

TRT1 HD 

TRT1 

TRT-1 HD 

cnbc_e CNBC-e 

CNBCE 

CNBC e 

kanald 

Kanald 

KANAL D HD 

KANAL D 

 

As a result of matching of channel usages with programs, we have matched 

1,171,533 i.e., one third of all channel usages, channel usage data with 41,357 

programs in programs data which are watched by 5466 users. The average number of 

programs watched by a user is 307.  

While matching channel usages with programs, users are also stored in our database 

in a structured way. In addition, the need for junction tables for keeping relationships 

between users and programs and between users and programs-related tables such as 

terms arises. The structure of users table and conjunction tables can be seen in Table 

3-6.  

. 
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Table 3-6: Structures of Tables Related with User 

Table Name Fields in Table Summary 

users id, user_id, dataset This table is used to store the users 

that are in our dataset. The id 

column grants the uniqueness of 

our user. The user_id is the id of 

the user in Arçelik dataset. The 

dataset is a boolean value that 

indicates that the user is in the 

dataset when it is set to 1. 

program_users program_id, user_id, 

watch_time, rating 

This table is a junction table 

between programs and terms 

(stemmed words in program 

description). Since we have a 

relationship weight between 

program and user there are metrics 

called watch_time which represents 

the watched time of a program by 

user in terms of seconds, rating 

which is a calculated value about 

the preference of the user on the 

program by using watch time of 

user and duration of the program. 

users_terms term_id, user_id, rating This table is a junction table 

between each user and term in 

dataset. Rating value is calculated 

by using the ratings that user gives 

the programs in which term takes 

place. The junction tables with 

other programs related models 

users_actors and users_directors 

are in the same form with this 

table. The ratings in those tables 

are calculated similarly. 
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3.4. Context-Aware Pre-Filtering 

As we stated, every program in our dataset has some contextual features such as 

genre, channel, and time of day. There are even more specific context variables like 

actors and directors which are special to only specific genres like movie and TV 

series. In our implementation, we use context aware pre-filtering in order to shrink 

the set of candidate programs. In order to select the contextual attributes to use for 

context aware pre-filtering, we have analyzed the contextual variables according to 

the size of the filtered dataset. We have concluded that genre and time of day is 

suitable for context aware pre-filtering. In the scope of pre-filtering, we have filtered 

out the programs which do not have the selected context variable as an attribute. For 

example, we have 6500 programs for the time of day “PRIME_TIME”, within the 

dataset of 41357 programs. We have done our experiments by filtering our data with 

42 different genres and 7 different times of day both separately and in conjunction 

with each other. Experimental results are shared in Chapter 4. 

3.5. Graph Construction 

In our implementation, we have modified the approach defined by Bogers[6]by 

pruning the graph according to contextual attributes instead of putting the contextual 

attributes into the graph as different node types. In our work, we have constructed a 

tri-partite graph which includes three node types, namely User, Program and Term. 

 We denote users by U = {User1, User2, User3, User4... User|U|}, programs by P = 

{Program1, Program2, Program3, Program4... Program|P|} and terms by T = {Term1, 

Term2, Term3, Term4... Term|T|}. The set T is used to represent the set of stemmed 

nouns used in the description of a TV program. There is a weighted edge between 

every node type in the graph. The weights are determined by using similarity 

functions between our node types. In order to represent the similarities between node 

types we have used matrices whose cells contain the similarity value between each 

node. For example, the matrix UP= (upij) with size of |U| x |P| is composed in order 



42 

to keep user ratings over programs. The detailed information about similarity 

functions is given in sub-sections of this section.  

3.5.1. Similarity Functions 

In our implementation, we have defined similarity functions between node types in 

our tri-partite graph. As a result, we have composed matrices that keep the 

relationships between our node types. 

3.5.1.1. User-User Relation 

In order to define similarity among users, we need to have former information about 

the relationship between users. In our implementation, we used an identity matrix 

UU= (uuij) to represent user similarities since we do not have former information 

about user similarities.  

3.5.1.2. User-Program Relation 

In our implementation, we define a similarity metric called rating between users and 

programs, which is in the range [0, 1]. The rating metric is calculated by using the 

watch time of the users with following formula: 

       
                          

                       
 

With this calculation, the rating that the user gives a program is subject to not only 

the watch time of the user but also to the duration of the program. This approach is 

aimed to eliminate bias towards shorter watch times which can be indeed important 

for a short program. When we calculate the rating for all <User,Program>tuples, the 

average rating is calculated as 0.62. 
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After calculating the rating between users and programs, we construct a matrix UP= 

(upij) with size of |U| x |P| in order to keep user ratings over programs. 

3.5.1.3. Program-Program Relation 

In the scope of our implementation, we do not define any prior similarity between 

programs in our dataset. Therefore we use an identity matrix PP = (ppij) for 

representing program similarities.  

3.5.1.4. Program-Term Relation 

In this thesis, the edge weight between program and term nodes is defined by a well-

known information retrieval concept named TF-IDF. TF-IDF is calculated as a 

combination of two notions, which are term frequency (TF) and inverse document 

frequency (IDF). TF is the number of occurrences of a term for its basic form in a 

document which is the program description for our implementation. The notion 

inverse document frequency is a measure of how much information the word 

provides about the document in which it takes place. In the formula of IDF, the 

number of all documents is divided by the number of documents containing the term 

t.  Then, IDF value is calculated as the logarithm of the quotient. TF-IDF is 

calculated as the product of TF and IDF. Program-term relation is represented by the 

matrix PT= (ptij) with the size of |P| x |T|, where each cell ptij takes the TF-IDF value 

between program pi and term tj. We have normalized all TF-IDF values to the range 

[0, 1]. 

3.5.1.5. Term-Term Relation 

In our dataset, the average number of terms in a program description is calculated as 

12.7. We exploit this situation for defining co-occurrence similarity between terms. 

Co-occurrence metric is calculated as follows: 
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ttab  
                                     

                        
 

Term-term relation is represented by matrix TT= (ttij) with the size of |T x |T|, where 

each cell ttij takes the co-occurrence value between terms ti and tj. 

3.5.1.6. User-Term Relation 

In our implementation, there is no direct relationship between users and terms. For 

this reason, we have defined a metric between users and terms which is calculated by 

the summation of all multiplications of program rating of user and TF-IDF of the 

term. For example, the user-term relationship between User2 and Term4 in Figure 3-5 

is calculated as:   

                         

User-term relation is represented by the matrix UT= (utij) with the size of |U| x |T|, 

where each cell utij takes the calculated similarity value between user ui and term tj. 

3.5.2. Graph Structure 

In our work, we define a three layered graph whose layers are User, Program and 

Term. An example graph that is constructed with the help of the similarity metrics 

defined between and in the layers can be seen in Figure 3-5. 
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Figure 3-5: An Example Tri-partite Graph 

In our implementation, we have used a transition probability matrix X that is 

composed of sub-matrices which contain similarity values between different node 

types. The transition probability matrix X with size (|U| + |P| +|T|) x (|U| + |P| +|T|) is 

constructed as follows: 

  [
         
         
         

]  

3.6. Recommender Algorithm via Random Walk 

We use k-nearest neighbors algorithm [62]by means of similar users for collaborative 

filtering. In order to find the k-nearest neighbors, we exploit the random walk 

algorithm as in Bogers’ work [6]. In order to begin the random walk over our tri-

partite graph, we need to define the initial state vector s0 in which only the value for 

the initial user node is 1 and all the values are set to zero. We can find the state 
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probabilities at the next step by multiplying the vector s0 with the matrix X.  In 

general, we can calculate the transition probabilities after n steps using the following 

formula: 

         

After making n steps of random walk, the transition probabilities to jump on another 

user are sorted in order to grab the first k users as similar to the target user. In the 

scope of our implementation, we have tested the value of kin the range of 

[√              √              
,√                √              ] by 

using the rule of thumb mentioned in [63].  

Because of performance issues, we had to restrict the length of the random walks on 

our contextual graph. Therefore, we made random walks with finite length whose 

path length varies from 1 to 6 for finding similar users.  

After finding the k nearest neighbors, we have used the same technique for finding 

top-N program recommendations for each neighbor with a path length of four.  After 

getting top-N recommendations for each similar user, we sum up all weights that 

belong to a program from k users in order to find the final weight of it.  As a result, 

we have ended up with top-N recommendation list that is subject to re-rank in the 

context aware post-filtering step. In our experiments, we have tested the effect of the 

length of recommendation list with 10, 20 and 50 recommendations in it. 

3.7. Context Aware Post-Filtering 

Context aware post-filtering is used to re-rank the recommendation list that is 

constructed by the graph based collaborative algorithm. In our work, we have used 

actors and directors for context aware post-filtering, which are valid for only some of 

the program genres. Therefore, we have examined the effect of post-filtering only for 

several genres.  
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We have used the ratings that users give to programs in which actors and directors 

take place in order to infer the ratings of users on actors and directors. For example, 

if Robin Williams takes part in 4 programs that the user has watched, the ratings of 

those 4 programs are summed up for calculating the rating given to Robin Williams 

by the user.  

In order to do the context aware re-rank, the score of the program calculated by the 

recommender algorithm is multiplied by the ratings given by the target user to the 

contextual attributes that take place in the program. After updating the scores by 

using contextual attributes, we sort the scores of programs in the recommended items 

list in order to construct new top-N recommendation list. With the help of context 

aware re-rank, a program which is not placed in the top-10 recommendation by the 

recommender algorithm can be put in the list which can result with a more successful 

recommender algorithm. For this reason, we believe that context aware post-filtering 

is particularly helpful when the recommendation list should be restricted to a small 

number of items. 
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CHAPTER 4 

4. EXPERIMENTS AND RESULTS 

In this chapter, experiments that were carried out for the evaluation of our 

recommender system are presented. First, the pre-processing of dataset is explained. 

Then, evaluation metrics that are used to measure the success of the recommender 

system are described. After defining the parameters of our recommender system, we 

discuss the effects of them to the success of the recommender. Finally we describe 

the experiments that are performed to measure the success of our algorithm, and 

discuss their results. 

4.1. Data Preprocessing 

Because of performance issues, we had to shrink our dataset. For this reason, we 

have excluded some of the users from our dataset by taking some statistical values 

into consideration.  

The average number of programs watched by a user in our dataset is 307. However, 

nearly half of our users watch less than 100 programs and one third of the users 

watch less than the average. Nearly 350 users watch more than 1500 programs in our 

dataset which is considered as outliers.  Therefore, we have selected 1081 candidate 

users whose number of watched programs is between 300 and 1500.   

Average rating for a program is 0.62 in our dataset. Similar to the research conducted 

by Bambini et al.[42], we assume that a rating given above average should be 
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considered as positive, and we have picked the users whose average rating is bigger 

than the average rating among 1081 users. Finally, we have come up with 198 users 

whose ratings are used in our experiments. 

4.2. Evaluation Metrics 

In the evaluation of recommender systems, different metrics are used according to 

the motivation of the recommender systems. Researchers can focus on time and 

space efficiency of the recommender system or the efficiency of recommender 

system or the satisfaction of user with the help of the recommender system [64]. In 

this thesis, we have focused on measuring the effectiveness of our recommender 

algorithm.  

For the measurement of the effectiveness of a recommender algorithm, precision and 

recall are the most common metrics. Since precision and recall are set-based metrics, 

they are particularly useful for the evaluation of recommender systems which usually 

generate a list of items to be recommended. 

Precision is the ratio of the number of relevant items which are recommended by the 

recommendation system to the total number of recommended items. Recall is the 

ratio of the number of relevant items which are recommended to the total number of 

relevant items [65]. 

Precision can be formulated as follows according to Figure 4-1 

           
                      

                                
 

Recall can be formulated as follows according to Figure 4-1 
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F-measure is the harmonic mean of precision and recall and used to measure the 

success of the recommender algorithm. It is calculated as follows:  

              
(                )

                
 

 

 

Figure 4-1: Precision and Recall 

4.3. Parameters 

In the scope of this research, we have used several parameters that can affect the 

performance of the proposed recommendation algorithm. These parameters are 

examined in order to find the condition under which our recommendation algorithm 

performs best. Parameters that we use in our experiments are and , and their 

explanations are given in the following.  

4.3.1. Parameter 

Parameter denotes the number of jumps in the random walk. It represents the 

length of the path for the random walk. Due to the performance issues, the maximum 

number of steps in our graph is determined to be6. In our experiments, we have 

tested the path length from 1 to 6. 



52 

4.3.2. Parameter 

Parameter is the number of similar users to be selected for collaborative filtering. In 

the scope of our research, we have tested  in the range of;  

√              √              
<<√                √              

 

Since we selected 198 users after preprocessing of our data, we tested the number of 

users between 11 and 17. 

4.3.3. Parameter 

Parameter represents the length of the list of items that are recommended by our 

algorithm. Since we are making top-N recommendations, precision and recall values 

are affected by the length of the recommendation list. During experiments, optimal 

value for this parameter is searched. We have tested the values 10, 20 and 50 in our 

experiments. 

4.4. Experiments 

This section presents the results of the experiments that are carried out for this thesis. 

We have tested the effectiveness of our graph based collaborative algorithm both 

with any possible combination of our contextual attributes and without using any 

context. For our experiments, we have used 3-fold cross validation technique that 

segments the dataset into 3 slices and uses one of them as test set and others as 

training set. 
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4.4.1. Pure Collaborative Algorithm 

In order to show the effect of contextual attributes to the performance of the 

recommender system, pure collaborative form of our graph based algorithm is 

considered as a baseline. In the scope of the experiments, we have used all of our 

parameters for testing the performance of our recommendation method.  

As a result of the experiments conducted for pure collaborative graph based 

algorithm, we have fixed two of our parameters and to the specific values at 

which our algorithm performs best. Since it takes about 8 hours for one experiment 

to finish by testing all parameters, we had to keep the number of similar users and 

path length of random walk fixed. For the experiments that are aimed to fix the and 

is set to 10.  

In order to find the best , we have checked all  values from 11 to 17.  It can be seen 

in Figure 4-2 that when we use 12 as , we get the best values for our metrics. 

Therefore, we have selected the optimal k-value as 12 during our experiments with 

context variables. 

 

Figure 4-2: Performance of Collaborative Algorithm w.r.t. 
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In our experiments, we have tested the values from 1 to 6 for the length of path in our 

graph in order to find the best value. As it can be seen in Figure 4-3, best results 

are reached with condition 

 

Figure 4-3: Performance of Collaborative Algorithm w.r.t. 

After fixing and , we have tested the effectiveness of our algorithm with values 

that is set to 10, 20 and 50. Results are presented in Table 4-1. 

Table 4-1: Evaluation Metrics for Pure Collaborative Algorithm 

Pure collaborative algorithm 

value 10 20 50 

Precision 0.0889 0.0726  0.0638 

Recall 0.0701 0.1287 0.1533 

F-Measure 0.0783 0.0928 0.0901 
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Figure 4-4shows the precision, recall and f-measure values for pure collaborative 

graph based algorithm. 

 

Figure 4-4: Performance of Collaborative Algorithm w.r.t.  

 

While the set of recommended items grows to a bigger size, precision value worsens 

because the rate of adding relevant items to the recommendation list is smaller than 

the rate of change of , and recall value increases because more relevant items are 

added to the recommendation list.  

4.4.2. Collaborative Algorithm with Context Aware Pre-filtering 

In the scope of our experiments, we aim to get better results by filtering irrelevant 

programs out according to the contextual variables. As we stated, we have used time 

of day of program and genre of program as context for pre-filtering. We have used 

those attributes both separately and together in our experiments. 

In Figure 4-5, the performance of our graph based collaborative is presented in 

different time slots with . Our algorithm is most successful in daytime and early 

morning and least successful in prime time. The reason for this is the sparseness of 
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the data for the time slots. In other words, 198 users, which we have selected after 

data pre-processing, watch TV at most in daytime and early morning. 

 

Figure 4-5: Performance of Algorithm with Pre-filtering according to Time 

Slots 

With changing we have tested the performance of context aware pre-filtering 

according to time of day. The average values of evaluation metrics for all time slots 

are calculated. Results, which are presented in Table 4-2, show similar behavior to 

the pure collaborative algorithm. 

 

Table 4-2: Performance of Algorithm with Time Aware Filtering 

Context aware pre-filtering according to time of day 

value 10 20 50 

Precision 0.1348 0.1097 0.0961 

Recall 0.0935 0.0991 0.1747 

F-Measure 0.1078 0.1017 0.1225 
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Figure 4-6 visualizes the precision, recall and f-measure values for context-aware 

collaborative graph based algorithm when time of day of a program is used as 

context. With increasing recall values increases significantly. This is because of 

the newly recommended items in the increased length of recommended item list. 

 

Figure 4-6: Performance of Collaborative Algorithm with Time Aware Pre-

filtering w.r.t.  

Figure 4-7demonstratesthe success of our recommender system according to the 

selected genre when is set to 10. The collaborative algorithm works best for genres 

historical, youth, action and detective. The common characteristic of all these genres 

is that they are all overly specialized genres that contain fewer programs compared to 

genres like news, series and life. From this point of view, it can be concluded that 

performance of our algorithm gets better when the candidate set of programs shrinks. 
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Figure 4-7: Performance of Algorithm with Pre-filtering according to Genres 

In Table 4-3, performance of our algorithm on the graph which is filtered according 

to genre is presented with respect to by using the average values of metrics in the 

tests for all genres

Table 4-3: Performance of Algorithm with Genre Aware Filtering 

Context aware pre-filtering according to genre 

value 10 20 50 

Precision 0.1766 0.1432 0.0964 

Recall 0.3704 0.5490 0.7033 

F-Measure 0.1993 0.1891 0.1481 

 

As it can be inferred from the Table 4-3, recall value of our algorithm increases 

importantly with increasing The reason for this is that the number of relevant 

items is small for specific genres and, most of the relevant items are recommended 

when we increase the length of the list of recommended items. In Figure 4-8, the 

visual representation of this situation is presented. 



59 

 

Figure 4-8: Performance of Collaborative Algorithm with Genre Aware Pre-

filtering w.r.t. 

We have also tested the effect of contextual pre-filtering by using both contexts 

together. By setting the time of day and genre at the same time, the contextual graph 

is restricted to even a smaller size. This situation brings opportunity to our algorithm 

for generating better recommendations on considerably small transition probability 

matrix which is less sparse than the graphs which are filtered by using one contextual 

attribute. In Table 4-4, the average performance of our graph based collaborative 

algorithm on the graph which is filtered according to both time of day and genre 

attributes is represented. 

Table 4-4: Performance of Algorithm with Genre and Time of Day Aware 

Filtering 

Context aware pre-filtering according to genre and time of day 

value 10 20 50 

Precision 0.2230 0.1628 0.0974 

Recall 0.6606 0.7882 0.9570 

F-Measure 0.2907 0.2471 0.1688 
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In our implementation, context aware filtering by using genre and time of day 

improve the success of our recommender algorithm. Genre is particularly successful 

compared to time of day, and our algorithm performs even better when two 

contextual attributes are used in conjunction. In Figure 4-9, the performance of our 

recommender algorithm with context aware pre-filtering is presented when the 

contextual attributes are used both separately and together with 

 

Figure 4-9: Comparison of the Pre-filtering Results w.r.t. Selected Context 

4.4.3. Collaborative Algorithm with Context Aware Post-Filtering 

In the scope of our experiments, we perform context aware post-filtering on the list 

of recommended items that is produced by our collaborative algorithm in order to re-

rank it according to some contextual attributes. For our experiments we have used 

the contextual attributes actor and director for post-filtering purposes. We have tested 

the effect of these contextual variables together since they usually co-exist in a 

program. The results of experiments are presented in Table 4-5 for different values of 

. 
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Table 4-5: Performance of Algorithm with Context Aware Post-filtering 

Context aware post-filtering 

value 10 20 50 

Precision 0.0949 0.0759 0.0688 

Recall 0.0716 0.1394 0.1578 

F-Measure 0.0812 0.0982 0.1034 

 

Table 4-6 presents the improvement on the performance by adding context aware 

post-filtering to the pure collaborative algorithm. 

Table 4-6: Effect of Post-filtering to Pure Collaborative Algorithm 

 Without post-filtering With post-filtering 

Precision 0.0889 0.0949 

Recall 0.0701 0.0716 

F-Measure 0.0783 0.0812 

 

Context aware post-filtering has provided restricted gain of success to the 

collaborative algorithm. The reason for this situation is that context aware post-

filtering does not provide a solution to the data sparseness problem. Instead, it tries to 

re-rank the list of the recommended item list according to actors and directors that 

the user has rated via the programs he/she watched. Furthermore, actors and directors 

are present for only some genres. This situation causes a limited performance 

improvement when post-filtering is applied. 
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4.4.4. Collaborative Algorithm with Context Aware Pre-filtering and Post-

filtering 

In the scope of our experiments, we have applied context aware post-filtering not 

only to the recommended items generated by pure collaborative algorithm but also to 

the recommended items which are generated as the output of collaborative algorithm 

applied on contextually filtered graphs. The aim is to measure the success of the 

collaborative algorithm when all contextual information is used for recommendation 

in these experiments.  

In the experiments, context aware post-filtering is performed on the recommended 

items generated by the collaborative algorithm that uses time aware pre-filtering. 

Figure 4-10 demonstrates the performance of graph based collaborative algorithm 

enriched with both post-filtering and pre-filtering with respect to time of day in all 

time slots when is set to 10. 

 

Figure 4-10: Performance of Algorithm with Post-filtering and Pre-filtering 

according to Time Slots 

Similar to the pure collaborative algorithm, context aware post filtering brings 

limited performance improvement to the time aware pre-filtering. Results are 

presented in Table 4-7 when is set to 10. 
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Table 4-7: Effect of Post-filtering to Algorithm with Context Aware Pre-

filtering according to Time of Day 

 Without post-filtering With post-filtering 

Precision 0.1348 0.1397 

Recall 0.0935 0.0982 

F-Measure 0.1078 0.1124 

 

In our experiments, we have applied context aware post-filtering to the 

recommendation list generated by the collaborative algorithm as well.  In Figure 

4-11, the performance of graph based collaborative algorithm which is enhanced by 

both post-filtering and pre-filtering with genre is presented with all genres. 

 

Figure 4-11: Performance of Algorithm with Post-filtering and Pre-filtering 

according to Genres 

Although context aware post-filtering improved the performance of our algorithm for 

some genres such as action and cinema program, its overall affect to genre aware 

pre-filtering is limited like in time aware pre-filtering. Results are presented in Table 

4-8 when is set to 10. 
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Table 4-8: Effect of Post-filtering to Algorithm with Context Aware Pre-

filtering according to Genre 

 Without post-filtering With post-filtering 

Precision 0.1762 0.1777 

Recall 0.3852 0.3864 

F-Measure 0.2421 0.2428 

 

In the scope of our experiments, we have tested our graph based collaborative 

algorithm by using all contextual information for both pre-filtering and post-filtering 

operations. Similar to the previous tests that uses post-filtering with two pre-filtering 

techniques separately; the effect of post-filtering is again limited to the collaborative 

algorithm when it is used with both pre-filtering attributes together. Results are 

provided in Table 4-9 when is set to 10. 

Table 4-9 : Effect of Post-filtering to Algorithm with Context Aware Pre-

filtering according Genre and Time of Day 

 Without post-filtering With post-filtering 

Precision 0.2230 0.2249 

Recall 0.6660 0.6712 

F-Measure 0.2907 0.2951 
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4.5. Evaluation of Experiment Results 

In the scope of our experiments, we have tested the effect of our parameters  (path 

length of random walk)(number of similar users in k-NN)and length of 

recommendation list)and fixed two of them because of performance issues.  

As a result of our experiments, we realized that the success of the recommender 

algorithm increases with the path length for random walk on the graph. As we state, 

we had to keep the maximum length of path as 6 for our experiments. Therefore, it is 

concluded that our algorithm might provide better results if it is performed on more 

powerful systems. 

In the scope of our experiments, we have also tested the number of similar users to 

be picked for k-nearest-neighbor algorithm which highly depends on the dataset 

used. In our implementation, our algorithm performed best when the number of 

similar users is set to 12. We think that this value does not provide insight about our 

data since it can perform better with different values for another data pre-

processing technique. 

With increasing sizes of recommended item list it can be seen that precision 

values are decreasing while recall values are increasing since the algorithm can find 

more relevant items with bigger values of However, the newly discovered relevant 

items are not sufficient to keep the precision values at the same values. 

In order to measure the effect of contextual attributes, we have tested all contextual 

variables that are used both for pre-filtering and post-filtering. Evaluation metrics for 

all possible combination of contextual attributes are presented in Table 4-10when 

is set to 10. 

It is obvious that context aware pre-filtering produces bigger improvement compared 

to post-filtering, and genre information performs better compared to time of day for 
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pre-filtering. Finally, the best performance of our algorithm is reached when all of 

the contextual variables are used.  

Our algorithm performs better with context aware pre-filtering because a small set of 

candidate programs causes our random walk to traverse most of the graph with six 

steps on it. On the other hand, the effect of post-filtering has remained limited to the 

success of our recommender system. Since our attributes that are used for post-

filtering is only valid for specific genres, positive effect of post-filtering does not 

change the overall success of our recommender algorithm. 

Table 4-10: Performance Comparison w.r.t. All Possible Contextual Variables 

 N
o

 C
o

n
te

x
t 

P
o

st-filte
rin

g
 o

n
ly

 

P
re

-filte
rin

g
 w

ith
 T

im
e o

f D
a

y
 

P
re

-filte
rin

g
 w

ith
 G

en
re

 

P
re

-filte
rin

g
 

w
ith

 
T

im
e
 

o
f 

D
a

y
 

a
n

d
 

G
en

re
 

P
re

-filte
rin

g
 w

ith
 T

im
e
 o

f D
a

y
 +

 P
o

st-

filte
rin

g
 

P
re

-filte
rin

g
 

w
ith

 
G

en
re 

+
 

P
o

st-

filter
in

g
 

P
re

-filte
rin

g
 

w
ith

 
T

im
e
 

o
f 

D
a

y
 

a
n

d
 

G
en

re
 +

 P
o

st-F
ilte

rin
g

 

Precision 0.0889 0.0949 0.1348 0.1766 0.2230 0.1397 0.1777 0.2249 

Recall 0.0701 0.0716 0.0935 0.3704 0.6606 0.0982 0.3864 0.6712 

F-Measure 

0.0783 0.0812 0.1078 0.1993 0.2907 0.1124 0.2428 0.2951 
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CHAPTER 5 

5. CONCLUSION AND FUTURE WORK 

In this thesis, a graph based collaborative recommender algorithm is presented. The 

proposed algorithm is empowered with both context-aware pre-filtering and post-

filtering. The approach presented by Bogers and the graph model presented by 

Phuong are used as a baseline and we modified it according to performance issues 

and architectural needs. The recommender system uses real channel usage data 

provided by Arçelik A.Ş. and merges this data with program guide retrieved from 

Radikal TV guide.   

The design and implementation of the system are described in detail. First, the graph 

based collaborative algorithm is developed which is able to produce top-N 

recommendation list. Secondly, this algorithm is enriched with context aware pre-

filtering which utilizes genre and time of day of program. Finally, the resulting 

recommended items list is re-ranked by using contextual attributes actors and 

directors of a program. 

Experiments are performed with our recommender system for two purposes. First we 

tested the effects of parameters such as the length of the recommended items list, the 

path length of random walk, the number of users to be used for collaborative filtering 

on the performance of our graph based algorithm. We then evaluated the additional 

success achieved by context aware pre-filtering and post-filtering.  

After we fixed the optimal values for the path length for random walk and the 

number of similar users, we have performed our tests with only one variable 

parameter which is the length of the recommended items list. Results show that the 

most effective context to the success of the recommender system is genre. 
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Furthermore, it is concluded that the effect of context aware post-filtering is limited 

because contextual attributes used for context aware post-filtering is valid for only 

specific programs. The ultimate conclusion to draw from our experiments is that our 

algorithm produces better results as long as it is enriched with more contextual 

attributes. 

In our implementation, we use pre-defined similarity metric called co-occurrence 

between terms in our dataset. The next step to improve the performance of our 

recommender system might be using pre-defined similarities among other node types 

as well. For example, pre-defined program similarity and user similarity by using 

demographic information or social media information might bring performance 

improvements. 

In our experiments, we had to restrict the length of random walk due to the 

performance issues. Results show that the performance of our system increases by 

increasing the length of path for random walk. Therefore, extending the length of 

path with more computational power might yield better results. 

The evaluation of our recommender system is performed by using offline 

experiments. However, this work is intended to be embedded in Arçelik TV’s. 

Before putting our recommender algorithm into use for Arçelik, some online 

experiments might be carried out for testing the effectiveness of our system by the 

time of user interaction.  
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