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GİZEM SEZEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

SEPTEMBER 2014



ii



Approval of the thesis:

A TWO STAGE STOCHASTIC AND RISK AVERSE APPROACH TO
INVENTORY POSITIONING IN FLORICULTURAL AUCTION NETWORK
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ABSTRACT

A TWO STAGE STOCHASTIC AND RISK AVERSE APPROACH TO
INVENTORY POSITIONING IN FLORICULTURAL AUCTION NETWORK

SEZEN, GİZEM
M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Cem İyigün

September 2014, 76 pages

This study is motivated by a real life problem of an auction company serving in flori-

cultural sector. Company has 6 auction centers. A supplier chooses the auction center

that his or her products will be auctioned and the products are delivered to that auction

center before the clock. After the auction, sold products are delivered to the buyer’s

boxes hired at the auction centers. Some inefficient logistic flows are observed in the

network of the company due to the positioning of products before the clock. This

study aims to find the initial optimal product positioning decisions prior to the auc-

tion that minimizes the transportation cost in the network under the uncertainties of

buyers and their purchase quantities. Two-stage stochastic integer programming is

proposed to model the problem. A scenario based approach is used in the model. In

order to solve large sized problems, L-shaped and multicut L-shaped decomposition

algorithms are adapted to the problem. In addition, problem is also modeled with

risk-averse approach. First-order mean-semideviation is used as the risk measure.

Risk-averse model aims to minimize the expected cost of transportation and expected

upper deviation from the expected cost. The objective function of the risk-averse
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model is nonlinear and nondifferentiable. Linearization method and a variation of

multicut L-shaped decomposition algorithm for the linearized formulation are pro-

posed for the solution of risk-averse model.

Keywords: Two-Stage Stochastic Integer Programming, Risk Aversion, L-shaped De-

composition, Multicut L-shaped decomposition, Mean-semideviation, Floriculture,

Auction
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ÖZ

ÇİÇEKÇİLİK SEKTÖRÜ MÜZAYEDE AĞINDA ENVANTER YERLEŞTİRME
İÇİN İKİ AŞAMALI RASSAL VE RİSKTEN KAÇINAN YAKLAŞIM

SEZEN, GİZEM
Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Cem İyigün

Eylül 2014 , 76 sayfa

Bu çalışma çiçekçilik sektörü müzayede ağında çalışan bir sirketin gerçek bir prob-

leminden motive olmuştur. Sirketin 6 adet müzayede merkezi vardır. Bir tedarikçi

ürününün müzayede görmesini istediği müzayede merkezini kendisi seçer ve mü-

zayede öncesi ürünler o müzayede merkezine teslim edilir. Müzayede sonrasında,

satılan ürünler alıcıların müzayede merkezlerinde kiraladıkları alanlara teslim edilir.

Ürünlerin, müzayede öncesi müzayede mekezlerine yerleştirim sekli kaynaklı sirket

ağında verimsiz lojistik akışlar gözlenmiştir. Bu çalışmanın amacı alıcıların kim ol-

duğu ve satın aldıkları miktardaki belirsizliği dikkate alarak, müzayede a ğında bek-

lenen ulasım maliyetini en azlayan müzayede öncesi optimum ürün yerleştirme karar-

larını bulmaktır. Problemi modellemek için iki aşamalı rassal tamsayılı programlama

önerilmektedir. Modelde senaryo bazlı bir yaklaşım izlenmiştir. Büyük ölçekli prob-

lemleri çözmek için L-biçimli ayrıştırma, çok kesimli L-biçimli ayrıştırma algoritma-

ları probleme uyarlanmaktadır. Bunların yanısıra, problem riskten kaçınan bir yak-

laşımla da modellenmektedir. Risk ölçütü olarak birinci derece ortalama-yarısapma
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kullanılmıştır. Riskten kaçınan model, beklenen ulaşım maliyetini ve beklenen mali-

yetten beklenen üst sapmayı en azlamaktadır. Riskten kaçınan modelin amaç fonksi-

yonu doğrusal olmayan ve türevlenemeyen bir fonksiyondur. Bu fonksiyonu doğrusal

hale getirmek için bir metod ve çok kesimli L-biçimli ayrı stırma algoritmasına ben-

zer bir algoritma önerilmektedir.

Anahtar Kelimeler: İki Aşamalı Stokastik Tamsayılı Programlama, Riskten kaçınma,

L-biçimli ayrıştırma, Çok kesimli L-biçimli ayrıştırma, Ortalama-yarı sapma, Çiçek-

çilik ,Müzayede
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CHAPTER 1

INTRODUCTION

An auction is a method of selling goods, property or services to the highest bidder.

The origin of the word auction is the Latin word augeø. It means "I increase" or "I

augment" [26]. When you think of auction, mostly art auctions or antique auctions

come to mind. However, although it is not known widely, buying and selling cut flow-

ers and plants by auction are also common. Different than the classical auctions, these

auctions are descending price auctions. First the auctioneer sets a high price. Then

the price is decreased progressively until a bidder agrees on the price. The bidder tells

the auctioneer the amount of product he/she wants to buy. If there are left products

after a bid, the price continues to be decreased for the next bid. Auction finishes ei-

ther when all products are sold or when lowest acceptable price of the auctioneer is

reached. This type of auction is called Dutch auction or Clock auction [43].

This study is motivated by a real life problem of an auction company serving in flori-

cultural industry in the Netherlands. The company matches growers and buyers in the

floricultural industry. Half of the company’s sales is made by auctions. There are six

auction centers in the company network. Grower chooses the auction center where

products will be auctioned. Products need to be physically positioned at that auction

center. Buyers can physically present at the auction center or they can remotely buy

products from the internet. They have buyer’s boxes hired or owned at the auction

centers for consolidation, distribution and logistic purposes. Products are sold by a

Dutch auction. After the auction, sold products are delivered to the corresponding

buyers’ boxes located at auction centers.

Dat [45] states that 70% of the products positioned to an auction center from the hin-
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terland of that auction center while 30% comes from the hinterland of some other

auction center. About 7% out of that 30% are transported back to the auction center

closest to the area where the products grew and came from before the auction. More-

over, some products are transported between more than one auction center which re-

sults in more transportation and handling costs and loss of time. These observations

are the foundation of our case problem.

In this study, we relax the need of products’ presence at the auction center for the

auction. However, products still need to present in the company’s auction center

network before the auction because they need to be checked for type, quantity, length,

volume and quality.

Our aim is to optimally position the products at auction centers prior to the clock

minimizing the cost and considering the uncertainties about who the buyers of the

product will be and what their purchase quantities will be.

Stochastic programming is used to model optimization problems that incorporates

uncertainty, which are represented as random variables. It is widely used in many

application areas such as finance, production planning, energy planning, healthcare

management, water resource management due to uncertainties involved in real life

problems [1]. Two-stage stochastic programming is a class of stochastic program-

ming, in which a set of decisions are taken at each stage. First-stage decisions are

subject to uncertainty while second-stage recourse actions are decided when the un-

certainty is resolved. Two-stage stochastic problem formulation is a suitable choice to

model our case problem because uncertainties involved in the problem are resolved

at the auction. Before the auction, we are not fully informed about the buyers of

the product and their purchase quantities. Buyer and the purchase quantities of each

buyer are revealed during the auction; thus, we are informed about the number of

products that will be repositioned in the auction center network. Then, products are

relocated in the auction center network accordingly. In our problem environment, ini-

tial product positioning before the clock is the first-stage decision, and repositioning

process after the clock is the second-stage decision.

Moreover, in stochastic programming, objective function is generally to minimize

(maximize) expected cost (profit). Therefore, the expected value models implicitly
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assume that the decision maker is risk-neutral. However, using expected value may

not be the best way to model some optimization problems because of the risk in-

volved in the processes. Lately risk-averse preferences in stochastic programming

has drawn more attention. Utility functions, stochastic dominance constraints, value-

at-risk, mean-risk measures and coherent risk measures are several options to involve

risk-aversion into the problem context.

This study is composed of two main parts. In the first part, we use two-stage stochastic

integer programming to formulate the case problem in a risk-neutral environment.

In the second part we introduce risk-aversion into the problem. We use first-order

mean-semideviation risk measure, which is a coherent risk measure, in the objective

function and again model the case problem as two-stage stochastic integer program.

L-shaped method and its variations are the most frequently used methods to solve

two-stage stochastic programs [1]. For larger problems we propose L-shaped method

and Multicut L-shaped method for the risk-neutral case and a variation of Multicut

L-shaped method for risk-averse case. Furthermore, we compare and comment on the

computational efficiencies of the methods.

The organization of our study is as follows. In Chapter 2, literature review about two-

stage stochastic programming and risk-averse optimization is presented. As indicated

before, this study is motivated by a real life problem of a company, namely FloraHol-

land. In Chapter 3, FloraHolland and the case problem are introduced. In Chapter 4

risk-neutral environment is assumed to model and solve the case problem. Chapter 5

is devoted to the risk-averse approach for the case problem. Chapter 6 provides the

numerical study about the models and the solution approaches. Thesis is concluded

in Chapter 7.

3



4



CHAPTER 2

LITERATURE REVIEW

Literature review is introduced in two main parts. First, two-stage stochastic pro-

gramming is described in Section 2.1. Second, risk-averse optimization is explained

in Section 2.2. First part starts with introducing general information and the formu-

lation of two-stage stochastic programming. Then we focus on two-stage stochas-

tic integer programming formulation and the solution methods used in the literature.

In the second part, risk-averse optimization is introduced. Mean-semideviation risk

measure and its applications in two-stage stochastic programming are described.

2.1 Two-stage Stochastic Linear Programming with Recourse

In this section, general formulation of two-stage stochastic programming with re-

course are given. Formulations and discussions are based on Birge and Louveaux

[1].

Two-stage stochastic programs with recourse are originated by Dantzig [2] and Beale

[3]. They have two components; one is free of uncertainty and the other one is subject

to uncertainty. Uncertainty means that some of the problem data can be represented as

random variables. There are two sets of decisions. A set of decisions is taken without

full information on the future outcome of the uncertainty. Although full information

is not available, it is assumed that a probabilistic description of the random variables

is available such as probability distribution, density. This set of decisions are called

first-stage decisions. They are usually represented by a vector x. Later, when the un-

certainty is eliminated (i.e. full information is received on the realization of an event),
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second-stage decisions (i.e. recourse actions) are taken. These decisions are usually

represented by a vector y, y(ω) or y(ω, x) if second-stage decision function differs

depending on both the outcome of the random experiment and first-stage decision.

The classical two-stage stochastic programming formulation is as follows:

Minimize z = cT x + Eξ[min q(ω)T y(ω)] (2.1)

subject to Ax = b, (2.2)

T (ω)x + Wy(ω) = h(ω), (2.3)

x ≥ 0, y ≥ 0 (2.4)

where x ∈ Rn1 is first-stage decision vector, c ∈ Rn1 , b ∈ Rm1 and A ∈ Rm1×n1

are the first-stage vectors and matrices corresponding to x, ω ∈ Ω is the realized

second-stage random event, q(ω) ∈ Rn2 , h(ω) ∈ Rm2 and T (ω) ∈ Rm2×n1 are the

second-stage problem data for the realization ω. ω influences all components of ξ

where ξT (ω) = (q(ω)T , h(ω)T ,T1(ω), ...,Tm2(ω)). E ⊂ RN is defined as the support

of ξ, the smallest subset in RN such that P(E) = 1. The first part of the objective

function (cT x) is deterministic, and the second part Eξ[(q(ω)T y(y))] is an expectation

taken over all realizations of the random event ω. For each ω, y(ω) is the solution of

a linear program; thus deterministic equivalent program notation is as follows :

Minimize z = cT x +Q(x)

subject to Ax = b,

x ≥ 0

(2.5)

where Q(x) = Eξ[Q(x, ξ(ω))] is the expected second-stage function,

Q(x, ξ(ω)) = miny{q(ω)T y|W(ω)y = h(ω) − T (ω)x, y ≥ 0} is the second-stage value

function.

Stochastic components vector ξ could be continuously distributed or could be a dis-

crete random variable. Our focus in this study is on the case where ξ is a discrete

random variable; which is widely preferred in applications. With a finite discrete

random variable ξ, Q(x) and Q(x, ξ(ω)) can be formulated as follows:

Q(x) = Eξ[Q(x, ξ(ω))] =

S∑
s=1

psQ(x, ξs)

Q(x, ξs) = min
ys
{qT

s ys|Wsys = hs − Tsx, ys ≥ 0}
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where s = 1, ..., S represents the S realizations of ξ and ps represents the probability

of realization s. Moreover, combining two stages together we can reformulate the

deterministic equivalent which is referred as extensive form in [1] as follows:

Minimize z = cT x +

S∑
s=1

psqT
s ys

subject to Ax = b,

Wsys = hs − Tsx ∀s ∈ S ,

x ≥ 0, ys ≥ 0 ∀s ∈ S .

(2.6)

2.1.1 Two-stage Stochastic (Mixed) Integer Programming with Recourse

Formulation (2.1)-(2.4) is the simplest form of the two-stage stochastic programming.

Extensions can be modeled easily. One of the extensions is two-stage stochastic

(mixed) integer programming. Formulation (2.1)-(2.4) can be easily modified by

changing constraint (2.4) with a general form:

x ∈ Rn1−r1
+ × Zr1

+ , y(ω) ∈ Rn2−r2
+ × Zr2

+ ,

where 0 ≤ p1 ≤ n1 and 0 ≤ p2 ≤ n2.

Several variations are possible for two-stage stochastic (mixed) integer programming.

For example, both of the stage variables can be purely integer (i.e. r1 = n1 and r2 = n2)

or mixed integer (i.e. 0 < r1 < n1 and 0 < r2 < n2). Variables of one of the stages

can be continuous (i.e. r1 = 0 or r2 = 0) and the other stage variables can be (mixed)

integer. Furthermore, the integer variables can be restricted to be binary variables .

It is known that solving integer problems and solving stochastic problems are difficult.

Two-stage stochastic (mixed) integer programming combines the difficulties of both

problems. Three levels of difficulties are mentioned by Ahmed [7] for solving two-

stage stochastic (mixed) integer problems which do not have continuous variables at

any stages.

1. Evaluating the second-stage cost for a fixed first-stage decision and a partic-

ular realization of the uncertain parameters. This step requires to solve many
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second-stage problems which can be NP hard integer problems; thus it is com-

putationally difficult.

2. Evaluating the expected second-stage cost for a fixed first-stage decision. If the

variables have continuous distribution, this step requires integrating the value

function of an integer program; which is generally impossible. In the case of

discrete distribution huge number of similar integer programs are required to

be solved; which makes the problem computationally difficult.

3. Optimizing the expected second-stage cost. The value function of an integer

program is non-convex and often discontinuous, indeed it is lower semicontin-

uous. Hence, the expected second-stage cost function is non-convex in x. This

complex objective function causes many difficulties in optimization.

However, if the second-stage variables are continuous (i.e. r2 = 0), much of the

theory and algorithms for two-stage stochastic linear programs, which do not rely on

convexity of first-stage constraints, can be applied because the problem has a convex

objective subject to mixed integer constraints.

Solution algorithms for two-stage stochastic integer programs are based on decompo-

sition methods. Decomposition algorithms can be classified into two; stage-wise (pri-

mal) decomposition algorithms and scenario-wise (dual) decomposition algorithms.

Most of the solution algorithms use stage-wise decomposition. These algorithms are

fundamentally variations of Benders’ decomposition, L-shaped method. They mainly

differ in how second-stage value function is approximated and updated. In scenario

wise decomposition, the idea is to introduce a copy of first-stage variable x for each

scenario s ∈ {1, ..., S }. Then, nonanticipativity constraint (x1 = x2 = ... = xS ) is

added to the model to provide that the first-stage decision should not depend on the

scenario which will prevail in the second-stage. Afterwards Lagrangian relaxation of

the problem is taken with respect to nonanticipativity condition. In Lagrangian dual,

the problem is separated into subproblems for each scenario. Lagrangian dual is a

convex non-smooth program which can be solved by subgradient methods [8].

Besides the decomposition method used, studies on the solution methods of two-stage

stochastic integer programs can also differ in the integrality restrictions on the vari-
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ables in the stages. Wollmer [9] and Laporte and Louveaux [10] study two-stage

mixed integer programming with binary first-stage variables and continuous second-

stage variables. In [9], Wollmer applies a variation of Benders’ decomposition by

incorporating an implicit enumeration scheme which is fundamentally a backtrack-

ing procedure for methodically searching through the possible solutions. Laporte and

Louveaux [10] introduce integer L-shaped method. They study a minimization prob-

lem. The method is a combination of Branch and Bound algorithm and the classical

L-shaped method. Nodes are created by Branch and Bound method and for each node

L-shaped algorithm is applied to solve the current two-stage problem. If integrality

restriction is violated at a node two new branches are created. At a node if the current

problem does not have any feasible solution or the optimal value of the node is higher

than the current best objective function value, the node is fathomed. Different than

the classical Branch and Bound algorithm, nodes are not necessarily fathomed when

integrality conditions are satisfied, a new optimality cut is obtained from that solution

and the problem is solved again.

Carøe and Schultz [8] work with mixed integer variables at both stages in a maxi-

mization problem. They use a scenario wise decomposition technique combined with

a Branch and Bound method. In Branch and Bound, a node is selected and started

to be solved by Lagrangian dual, optimal value of which provides an upper bound

for the problem. If the upper bound is higher than the current best solution, node is

fathomed. If the first-stage xs values are not identical, the average is taken and by

some rounding heuristics, it is rounded to obtain feasibility. A new objective value is

obtained using the integer x values and objective value is updated. At the branching

part, the component xi is used to generate two new branches by adding some con-

straint for xi. Zheng et al. [11] study stochastic mixed integer program in both stages

to solve a unit commitment problem, which is an important optimization problem in

power system operations and control. Their solution method is based on Bender’s

decomposition and integer L-shaped method .

Escudero et al. [12] study two-stage stochastic mixed 0-1 problem. There are two

types of variables in both first and second stages. One type of the variables are con-

tinuous and the others are binary. They introduce a variation of Lagrangian decompo-

sition, namely Cluster Based Lagrangian Decomposition for obtaining strong lower
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bounds to solve the problem. They propose to decompose the model into a set of

scenario clusters where nonanticipativity constraints are implicitly considered.

Ntaimo [13] studies with binary first-stage and mixed integer second-stage variables.

The author introduce a new cutting plane method; Fenchel decomposition (FD). FD

cuts, which are used in the decomposition algorithm, are based on the Fenchel cuts

from integer programming. Fenchel decomposition is also a modified L-shaped al-

gorithm. Second-stage variables are relaxed and solved by L-shaped method, then

FD cuts are generated and added to the subproblem and subproblem is solved again.

When the solution of the subproblem is integer, the optimality cuts which are obtained

from dual multipliers are added to the master problem. Gade et al. [14] study with

binary first-stage and integer second-stage variables. They propose a method based

on Bender’s decomposition which utilizes Gomory cuts.

Carøe and Tind [15] and Ahmed et al. [16] study models with mixed integer first-stage

and integer second-stage variables. In [15] , integer recourse is studied. Second-stage

cost vector is assumed to be fixed. The proposed method is based on L-shaped method

and duality theory. Dual price functions are used to generate feasibility and optimality

cuts. It is shown that finite convergence is achieved if second-stage problem is solved

by Branch and Bound algorithm or Gomory’s fractional cutting plane algorithm. In

[16], a finite Branch and Bound algorithm, which avoids explicit enumeration of all

discontinuous pieces of the value function, is proposed. They assume that technol-

ogy matrix is fixed. The idea behind their work is to reformulate the problem by

variable transformation which triggers a special structure to the discontinuities of the

value function. At branching, the discontinuities are eliminated. In the absence of

discontinuities, exact representation of the value function is provided at bounding.

Hemmecke and Schultz [17] propose a different decomposition method which is nei-

ther stage-wise decomposition nor scenario-wise decomposition. Instead of decom-

posing the problem itself, they decompose test sets. Test sets are finite collections

of vectors enabling the solution of integer linear programs by simple augmentation

procedures. They use Graver test sets to solve the problem. Variables in both stages

are integers and only right hand side vector is uncertain, the rest are assumed to be

fixed. They propose to decompose the test sets and use the decomposed test sets to
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solve the problem by a simple augmentation process. Kong et al. [18] also study with

integer variables in both stages. In the study, only randomness is in the right hand

side as in [17]. Coefficient matrix is assumed to be integral. They reformulate the

two-stage stochastic integer problem by an equivalent superadditive dual formulation

that uses the value functions in both stages. In order to find the value functions, they

propose two different algorithms; an integer programming based algorithm and a dy-

namic programming based algorithm. Then, they develop a global Branch and Bound

and level-set approach to solve the new formulation.

Sherali and Fraticelli [19], Sen and Higle [20], Sen and Sherali [21] study two-stage

stochastic integer problems with binary first-stage variables and 0-1 mixed integer

second-stage variables. In [19], a modified Benders’ decomposition is proposed. Sub-

problems are solved by Reformulation Linearization Technique and lift and project

cutting plane scheme and cuts are generated as functions of first-stage variables. Thus,

cutting planes of a scenario can be reused in the same scenario in the next Bender’s

iteration by only updating the values of first-stage variables. In [20], a stage-wise de-

composition algorithm is used. Recourse matrix and second-stage cost vector are as-

sumed to be fixed. They characterize the convexifications (relaxations) of the second-

stage problem by disjunctive programming theory. One of the important observations

of the authors is that second-stage convexifications associated with different scenar-

ios have common cut coefficients for y when the recourse matrix is fixed. This means

that a valid inequality for a scenario is easily used to derive the valid inequality for

the other scenario; which is referred as Common Cut Coefficients Theorem. The

proposed algorithm, namely Disjunctive Decomposition algorithm, benefits from this

theorem. They work with master and subproblems that are convexifications of two

coupled disjunctive programs. In [21], Sen and Sherali continue dealing with con-

vexification of stochastic mixed integer programming in the line of work initiated by

[19] and [20]. They incorporate Branch and Cut methods for the second-stage prob-

lem in a disjunctive decomposition algorithm. Second-stage problems are solved by

Branch and Cut method and cuts added to the master problem are generated by dis-

junctive approach. In the algorithm, they benefit from the fact that a large stochastic

mixed integer program can be solved by dividing it into small mixed integer pro-

grams which can be solved in parallel. Disjunctive programming is used also in [39]
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and [40]. However, different than the previously introduced papers, first-stage vari-

ables are continuous. Second-stage variables are again 0-1 mixed integers. In both

studies lift and project cuts are used in disjunctive decomposition algorithm .

2.2 Risk-averse Optimization

Stochastic optimization models optimize the expected random outcome in risk-neutral

models. However, if someone is interested in the fluctuations of the realizations of

the outcomes and the risk involved due to the fluctuations, risk-averse optimization is

a better way to model stochastic optimization problems [22]. In the literature, there

are different approaches to model the risk-aversion in optimization problems since the

risk perception may change depending on the decision maker [6]. A classical method-

ology is using expected utility theory to model risk-aversion. Objective function is

formulated as follows:

Minx∈XE[u(F(x, ω))]

where F : Rn × Ω 7→ R is the cost function, X ⊂ Rn is the feasible set and u is the

disutility function, which is nondecreasing and convex for minimization problems.

The problematic part of using expected utility theory is to define utility functions.

Moreover, if some arbitrary functions are included, the solutions may not result in

meaningful interpretations [22].

Mean-risk models are another way of incorporating risk-averse preferences into the

optimization models. They combine the mean, which is the expected outcome, and

risk, which is a scalar measure of variability of the outcomes. Mean-risk objective

function is defined as

Minx∈XE[Zx] + κD[Zx],

where Zx is the random outcome, a non-negative scalar κ is the trade-off coefficient

and D is the dispersion function to measure the risk associated with Zx.
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There are different risk measures used in mean-risk models such as variance, semi-

variance, value-at-risk (VaR), conditional value-at-risk (CVaR), central deviation and

semideviation. Mean-variance model is introduced by Markowitz [23] for the con-

text of portfolio management. Variance and semivariance models have been used in

many studies since then. VaR, CVaR, central deviation and semi-deviation models

are preferred by many researches in the recent studies.

As their names suggest, VaR and CVar models are related to each other. Let Z be a

random variable representing losses, then VaR and CVar is defined as follows [22]:

VaRα[Z] = inf{t : P(Z ≤ t) ≥ 1 − α} = inf{t : P(Z > t) ≤ α}

CVaRα[Z] := inf
t∈R
{t + α−1E[Z − t]+}

Researchers prefer CVaR to VaR. This is because VaR is not a coherent risk measure

(see Artzner et al. [24]). On the other hand, CVaR is a coherent risk measure, which

is advantageous in optimization problems. CVaR is studied in the context of portfolio

management in [27] and [28], in the context of waste management in [29], in the

context of hydrocarbon biorefinery supply chain in [30], in the context of disaster

management in [31], in the context of reverse logistics network design in [32], in the

context of water resources allocation in [33], in the context of natural gas transmission

network expansion and LNG terminal location planning in [34].

In this study, we use mean-semideviation as the risk measure. The next section fo-

cuses on mean-semideviation model and its application in two-stage stochastic pro-

gramming.

2.2.1 Mean-Semideviation in Two-stage Stochastic Programming

Upper (lower) semideviation measures are appropriate for minimization (maximiza-

tion) problems. In this study, we work with a cost minimization objective function.
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Thus, upper semideviation is used in this thesis. Upper semideviation of order p is

defined as:

δp[Z] = (E[(Z − E[Z])p
+])

1
p

where Z : Ω 7→ R is a random variable which represents cost and belongs to the

space Xp = Lp(Ω, F, P) for p ≥ 1. Then, the corresponding mean-semideviation

model takes the general form in [22];

Minx∈X E[Zx] + κδp[Zx] (2.7)

In the context of stochastic programming problem of the form

Min {E[ f (x, ω)] : x ∈ X},

where f (x, ω) = cT x + Q(x, ξ(ω)); Q(x, ξ(ω)) is the second-stage value function

for a given realization ω; x ∈ Rn is a vector of decision variables; X ⊂ Rn is a non-

empty set of feasible decisions; (Ω, F, P) is a probability space with elements ω; and

f : Rn×Ω 7→ R is a cost function such that f (., ω) is convex for all ω ∈ Ω, and f (x, .)

is F−measurable and P−integrable for all x ∈ Rn, the mean-semideviation model is

formulated as follows [35]:

Minx∈X E[ f (x, ω)] + (E[( f (x, ω) − E[ f (x, ω)])p
+])

1
p .

The aim of the model is to penalize the excess of f (x, ω) over its mean [22].

Semideviation is a coherent risk measure; which provides advantages in optimization.

Coherent risk measure term is introduced in [24]. Risk measure is a function ρ(Z)

which maps Z into R where Z is a real valued random function defined on space Z.

Moreover, a risk measure is called coherent if it satisfies the following axioms [22] :

• Translation equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a.

• Convexity: ρ(tZ + (1 − t)Z′) ≤ tρ(Z) + (1 − t)ρ(Z′) for all Z, Z′ ∈ Z and all

t ∈ [0, 1].

• Positive homogeneity: If t > 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).

• Monotonicity: If Z, Z′ ∈ Z and Z ≥ Z′, then ρ(Z) ≥ ρ(Z′).
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Besides being a coherent measure, semideviation is proved to be consistent with

second degree stochastic dominance (SSD) relation for absolute semideviation (i.e.

p = 1) and standard semideviation (i.e. p = 2) provided that κ is bounded by 1 [36].

It is important that a risk measure is consistent with SSD because if X dominates Y

under SSD rules, it means that X is preferred to Y within all risk-averse models [36].

In addition, Ahmed [35] shows that mean-semideviation objective (2.7) is convex-

ity preserving for all p ≥ 1 and κ ∈ [0, 1]; thus, it is appropriate for optimization.

Consequently, semideviation is a preferable risk measure for optimization problems.

In the following paragraphs, we focus on the applications of mean-semideviation

models in two-stage stochastic programs.

With a finite set Ω of scenarios , Ahmed [35] presents a specific formulation for

the deterministic equivalent of mean absolute semideviation model. Deterministic

equivalent of mean absolute semideviation model does not have a dual-block angu-

lar structure. Hence, classical decomposition methods such as L-shaped method are

useless. A cutting plane decomposition algorithm, which is a slight variation of the

classical methods, is proposed in [35] in order to solve the model with convexity pre-

serving mean absolute semideviation objective function. Kristoffersen [37] also stud-

ies semideviation risk measure in two-stage stochastic linear programming problems.

Assumptions of the paper are complete recourse, dual feasibility, that random vec-

tor ξ has finite second moment and that ξ is discrete and finite. Working with these

assumptions and p = 1, Kristoffersen [37] also presents a deterministic equivalent

formulation for mean-semideviation model using the straight forward calculations in

[41].

E[ f (x, ω)] + κ(E[max{ f (x, ω) − E[ f (x, ω)], 0}])

=(1 − κ)E[ f (x, ω)] + κE[max{ f (x, ω),E[ f (x, ω)]}] (2.8)

and linearizes it in a way that enables using a variation of Multicut L-shaped method.

Kristoffersen’s algorithm [37] differs from [35] in terms of the number of cuts added

in each iteration and the information within the cuts. We also use the decomposition

algorithm in [37] to solve our problem. More information about the paper is given in

Chapter 5. Märkert and Schultz [41] apply mean-semideviation objective to two-stage
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stochastic (mixed) integer programs. With the assumption of complete recourse, suf-

ficiently expensive recourse, that random vector ξ has finite first moment and that ξ is

discrete and finite, they derive the structural properties of the resulting model. They

also formulate a linearized deterministic equivalent mixed-integer model with the ob-

jective (2.8), which resembles that of Kristoffersen in [37]. Although, the proposed

linearized model can be solved by a general mixed integer linear programming solver,

first algorithmic ideas are proposed in [41] for higher number of scenarios. The logic

behind the proposed algorithm is to take (2.8) as nonconvex global optimization prob-

lem and to handle it with branch and bound methods. For bounding process, applying

Lagrangian relaxation on the linearized version of (2.8) is suggested.

Liu et al. [38] use two-stage stochastic mixed integer problem with a mean semidevi-

ation objective to model network retrofit problem of allocating limited resources over

the highway bridges of a transportation system so that structural and travel delay loss

of the transportation system will be minimized in case of an earthquake. Because

of the high uncertainty involved and their choice of a robust system design, they use

a risk-averse objective for the stochastic optimization problem. First-stage variables

are binary retrofit decisions. Second-stage has a multicommodity min-cost network

flow formulation. They assume finite discrete ξ. Each realization defines a damage

scenario. They present an extension of L-shaped decomposition; which is based on

the basic ideas of decomposition, linearization and successive approximation.

Miller and Ruszczyński [25] extend risk-averse two-stage stochastic linear program-

ming model by considering an unresolved uncertainty after the second-stage. They

use conditional risk measures in the formulations including conditional mean- semide-

viation. Moreover, the problem is reformulated using dual representation, which is a

key property of conditional risk measures. In order to solve the proposed reformu-

lation, a multicut decomposition algorithm which is similar to L-shaped method is

presented.
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CHAPTER 3

CASE PROBLEM AND MOTIVATION

In this section, the problem studied in this thesis will be explained. In section 3.1, the

motivation behind the problem will be described. In section 3.2, problem environment

will be introduced. In section 3.3, the case problem will be defined.

3.1 FloraHolland

Floricultural industry is concerned with production and sales of flowers and plants for

outdoor and indoor use. When we look at floricultural industry, we see that there are

many parties involved in the floricultural supply chain. These are:

• Seed growers/improvers

• Growers

• Intermediary companies

• Traders/exporters

• Whole sale, retail, supermarkets, chain stores

• Transporters/logistics service providers

• End customer [45]

For a successful supply chain, all parties should work together in collaboration. Inter-

mediary companies have a significant role for the success of the floricultural supply
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chain because they match the suppliers and the buyers. This research is motivated by

a real life problem of an intermediary company which serves in floricultural industry

in the Netherlands, the heart of the international floriculture sector. This company is

FloraHolland.

FloraHolland is one of the key players serving in floricultural industry. It dominates

the floriculture sector with a 98% market share in the Netherlands. The cooperative

generated 4.5 billion Euros turnover in 2013 [42].

FloraHolland makes an intermediary service between 7,000 growers and 2,400 buyers

either by the direct sales of the firm FloraHolland Connect or by the auction sales. In

2013, 52% of the sales was by the auctions and 48% of them was by the direct sales. In

the case of direct sales, buyers and growers are connected with predetermined price,

quantity and delivery times by the firm FloraHolland Connect. However, in the case

of auction sales, we cannot mention predetermined price, quantity and delivery times.

The prices of the products are determined by a Dutch auction during the sales. Dutch

auction is also known as clock auction. First, a high price is set by the auctioneer.

Then, this price is gradually decreased till a buyer accepts the price or the seller’s

minimum acceptable price is reached. When the price is accepted, the buyer also

specifies the amount of products he/she wants to buy. Therefore, neither the price

nor the quantity of the purchased products are predetermined in the case of a clock

auction.

FloraHolland is the world’s largest auction organization. Every day 38 auction clocks

are in operation at FloraHolland auction centers meaning 125,000 auction transac-

tions every day, 12 billion cut flowers and over half a million plants a year. FloraHol-

land owns 6 auction centers; 5 of which are in the Netherlands. Aalsmeer, Naaldwijk

and Rijnsburg auction centers mainly serve the international markets. Bleiswijk and

Eelde serve the regional markets. Herongen auction center is in Germany and is a

joint venture with Landgard. It also serves the regional market.

FloraHolland is a cooperative business owned by its 5,000 members who are the

growers supplying to the company. FloraHolland is originally developed from the

idea of collaboration. A century ago, growers came together and started offering

their products to the dealers in one place. This made them stronger in the face of
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dealers, and they got better prices for their flowers and plants. Since then, FloraHol-

land has not focused on generating profit. The firm focuses on offering its members

the best sales opportunities at the lowest possible cost. The vision and the mission

of the company is to maintain and increase its strong position in an upscaling and

internationalizing market. FloraHolland aims to tie international and national com-

merce flows to marketplaces by providing the best and the highest variety. In order

to prevent its competitive advantage and its leading position, it needs to innovate and

continuously improve its processes.

3.2 Problem Environment

In this section, first we briefly introduce all logistic flows in FloraHolland network

and then we focus on the auction process and the auction related logistic flows.

3.2.1 Logistic Flows in FloraHolland Network

Due to its role of matching suppliers and buyers, there are many logistic flows in-

volved in FloraHolland network. Dat [45] adapted floricultural supply chain to Flo-

raHolland and illustrated the logistic flows in FloraHolland network as in Figure 3.1.
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In figure 1.2 the floricultural supply chain with its various transport flows is given. The figure 
is adapted to the case of FloraHolland. 
 

 
Figure 1.2: Overview floricultural supply chain (Adapted from Eindrapportage Besparen in Ketens – 
Sierteeltsector, EVO, 2009) 

 

In figure 1.2 four flows can be distinguished which are defined by the type of buying process. 
These flows are classified by the letters A, B, C and D (Eindrapportage Besparen in Ketens 
– Sierteeltsector EVO, 2009; Jonkman, 2010): 

A) Clock flow: Growers deliver their products at auction location(s) to be sold at the 
auction clocks. The selling price of the product is determined using a Dutch 
auction, i.e. a type of auction that starts with a high ask price which is lowered 
until a buyer is willing to pay the auctioneer’s price for a product.  

B) Product flow through intermediary FloraHolland Connect: Product can be sold 
through FloraHolland Connect. This intermediary facilitates direct sales between 
a grower and a buyer. Price, quantity, packaging, supply times and conditions are 
jointly determined by the grower and the buyer. Products are delivered at the 
auction location and are distributed to the box of the customer. 

C) Products bypassing the internal distribution at an auction location (Buiten de 
Distributie Om (BDO)): Products are sold through FloraHolland Connect and are 
directly delivered at the box of a customer or his logistics service provider at an 
auction location, instead of via the internal distribution system of that auction 
location.  

D) Products bypassing the auction (Buiten de Veiling Om (BVO)): Products are sold 
directly to a buyer, completely bypassing the auction. A grower, when member of 
FloraHolland, can sell only a limited amount of products bypassing the auction.  

 
Furthermore, in figure 1.2 a distinction is made between the import and export flows, 
indicated by the numbers 1, 2 and 3 in the red circles: 

1) Import 
2) Export 
3) Local Dutch sales 

A more detailed illustration and description of the logistics flows and processes can be found 
in figure A1.5 in the appendix. Below in figure 1.3 a schematic view of figure A1.5 is given.  
 

Figure 3.1: Overview of Floricultural Supply Chain adapted to FloraHolland Network
[45]

The letters A, B, C, D in Figure 3.1 refer to different types of flows in FloraHolland

network. These are clock flows, connect flows, BDO (Buiten de Distributie Om)

flows, and BVO (Buiten de Veiling Om) flows.
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A. Clock Flows: These are all flows involved in the auction process. Growers

deliver their products to auction centers for the auction. There are two possi-

bilities here. Growers may deliver their products to the auction center where

products will be auctioned. Or grower may deliver his/her products to the clos-

est auction center and FloraHolland transports these products to the auction

center where they will go through the auction process. Prices of the products

are determined during the clock by a Dutch auction. Then, sold products are

transported to buyer boxes which can be located at any auction center. Box is a

place hired or owned by a buyer in one or several auction locations. It is used

for consolidation, distribution, and logistic operations of the buyer.

B. Connect Flows: These are the flows of the products that are sold through Flo-

raHolland Connect. Suppliers deliver sold products at any auction center with

an Electronic Delivery Form (EAB) containing the name and location of the

buyer. Then, they are transported to the auction center where buyer’s box is

located.

C. BDO (Buiten de Distributie Om) Flows: These flows are also the flows of the

products that are sold through FloraHolland Connect. However, different than

the connect flows they bypass the FloraHolland distribution network. They are

directly delivered to the buyer boxes or their related Logistic Service Providers.

D. BVO (Buiten de Veiling Om) Flows: These flows are direct flows from grow-

ers to buyers bypassing FloraHolland completely. Products are delivered from

the grower’s location to the buyer’s location other than the buyer boxes at the

auction centers. During this transportation, products do not pass through any

auction center. If a grower is a member of FloraHolland, he/she can sell only a

limited amount of product bypassing FloraHolland.

Moreover, there is a distinction between import and export flows in Figure 3.1. Num-

bers 1, 2, 3 refer to import, export and local Dutch sales respectively. Import products

are transported to Netherlands by sea or air freight. They enter FloraHolland Distri-

bution network at Aalsmeer, Naaldwijk or Rijnsburg auction centers. If they will be

sold by an auction, FloraHolland transports them to the related auction center before

the clock.
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In addition, purchased products are delivered to buyers’ boxes, the buyers further

transport them to their clients. However, these flows are out of the scope of the

project because they are outside of the FloraHolland distribution network.

The first two flows; namely Clock Flows and Connect Flows, can be influenced by

FloraHolland due to the fact that these flows enter the FloraHolland distribution net-

work. Our focus in this study is on Clock Flows. Connect Flows, BDO flows and

BVO flows are out of the scope of this study. Hence, in the next section, we will illus-

trate the journey of the products during an auction process starting from the grower’s

location.

3.2.2 Auction Process

There are 6 auction centers in FloraHolland network. In the current situation, growers

choose the auction center where their products will go through the clock process. The

reasoning behind this choice may vary depending on the grower. Growers can choose

the auction center according to its proximity; their belonging to the captive hinterland

of the auction center. Moreover, they can choose the auction centers where many

buyers are located by considering the chance of getting higher prices at these auction

centers. In addition, tradition can also play a role for positioning the products.

After deciding on the auction center where they want their products to be auctioned,

they either transport their products directly to that auction center or deliver them to

the closest auction center and FloraHolland makes sure that products are delivered to

the auction center, where they will be auctioned, before the clock. If a product will

be auctioned at auction center A, it needs to be physically located at auction center A

in the current system. We can rephrase this as "Commercial and the logistic flows are

coupled in the current system".

Standard journey of the products in the auction process is described in the following

paragraph.

At least one night before the clock, growers fill an Electronic Delivery Form (EAB)

which contains information about type, quality, length, volume of the products, whether

they will be sold through FloraHolland Connect or the auction clock and to which
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auction center the products will be delivered. Then, growers transport these spec-

ified products to the prespecified auction center before the clock either using their

own truck or collective transporter. When arrived at the auction center, products are

checked to see whether all supply information on EAB is correct. Moreover, trolleys

are coupled with its content by a scan so as to follow the products by RFID throughout

the auction center. Products that will be sold at the auction clock are transported to

the quality control. After the control, they are sorted based on the product group and

the clock they will be sold. They are stored at cold stores or delivery halls based on

their specifications. Then, at 6:00 o’clock auction starts. During the auction, product

trolleys are driven into the auction room on chain tracks. If the products are in large

lots, only an example trolley is driven into the auction room and the rest is kept in

the cold stores or delivery halls. Furthermore, sometimes only a picture of product

is showed in the auction room instead of actual products, which is called image auc-

tioning. The products are sold by a Dutch auction. Buyers can be physically present

in the auction room or they can also buy the flowers via internet using a service called

remote buying (Kopen Op Afstand, KOA). An Electronic Clock Transaction (EKT)

is generated at the moment of the sale which contains product, quantity and buyer

information. The quantity that a buyer can purchase is limited by the total supply

quantity. Backordering is not allowed in an auction sale. After the auction process,

sold products are transported to distribution rooms. About 95% of the time all sup-

ply is sold; however, 5% of the time some products are not sold. Unsold products

are destroyed. Sold products are transferred from grower’s containers to buyer’s con-

tainers at distribution rooms. Finally, sold products are delivered to buyer’s boxes

located in the auction centers in FloraHolland network. Afterwards, sold products

leave FloraHolland distribution network [43].

3.3 Problem Definition

Flows in FloraHolland network are introduced in Section 3.2.1. Dat [45] analyzed

Clock Flows and Connect Flows for improvement possibilities and he observed some

inefficiencies in Clock Flows. According to Dat [45], 70% of the products positioned

to an auction center come from the hinterland of that auction center while 30% comes
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from the hinterland of some other auction center. About 7% out of that 30% are

transported to the auction center which is closest to the area where the products grew,

after the auction. In other words, after the auction, about 7% of that 30% of products

are transported back to the area where they came from before the auction. Moreover,

some products are transported between more than one auction center which results in

more transportation and handling costs and loss of time. In addition, the loss of time

negatively affects the quality of the products because they are perishable.

These observations are the foundation of our case problem. To better understand

the case problem, we can look at the example in Figure (3.2) by Gaki in [44]. A

grower located close to Naaldwijk, decides to bring his/her products to Aalsmeer for

the auction. After the auction, most of the products remains at the buyer boxes in

Aalsmeer; however, some products need to be transferred back to Naaldwijk because

their buyers’ boxes are located there. These Naaldwijk → Aalsmeer → Naaldwijk

flows are the inefficient flows observed in Clock flows. FloraHolland wants to avoid

these unnecessary flows.
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Among products transported to an auction  location, 70 percent originates  in the auction’s 

captive hinterland3, while the remaining 30 percent derives from the captive hinterland of 

some other auction. It is shown (Dat, 2010) that, out of this 30 percent, approximately seven 

percent  of  the  products  eventually  return  to  the  captive  hinterland  of  the  auction  they 

originated in. This is a clear example of an inefficient flow related to products. Additionally, 

a  large  amount  of  products  change more  than  one marketplaces;  this  results  in  larger 

handling, labor, and transportation costs. Such costs are translated to loss of time, which is a 

crucial  factor  in  the  floricultural  supply  chain; quality deterioration of  the products;  and, 

finally,  “empty  kilometers”,  which  have  a  detrimental  environmental  effect.  Time  is 

important  in  the  floricultural  supply chain because  is connected with  the product quality. 

Flowers  are  sensitive  products,  which  are  preserved  in  special  conditions  (i.e.,  low 

temperatures) to maintain their freshness and to guarantee their maximum vase life. Buyers 

demand a fast‐responding supply chain, to transport their products to the final customers in 

the fastest way. Therefore, supply chain planning is crucial for these time critical products.      

 

Figure 2 Current scenario: Suppliers' inventory positioning 

In Figure 2, we  illustrate concretely the current  inter‐auction process. A grower  located  in 

De Lier, a village close to Naaldwijk, decides to bring his/her products to Aalsmeer in order 

                                                            
3 The captive hinterland of an auction is the area or land around the auction location. Farms located in this 
area belong to the auction’s captive hinterland.  

Figure 3.2: Current Case: Grower’s Inventory Positioning [44]

Actually, these unnecessary flows are resulting from the coupling of logistic and com-

mercial flows. Since the grower wants to attend the auction clock in Aalsmeer, all of

his/her products need to be present in Aalsmeer in the current situation. Nevertheless,
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boxes of the buyers wishing that product can be located at any of 6 auction centers.

Thus, these products will be repositioned after the clock. Some will return back to

Naaldwijk as in the example. However, if all of the products were not in Aalsmeer

and we placed some of the products in Naaldwijk before the clock, we would avoid

the inefficient Naaldwijk→Aalsmeer→Naaldwijk flow and we would save time and

money. Consequently, it is crucial to decouple the commercial and the physical flows

in order to avoid inefficient flows. What we suggest is that growers still can choose

where their products will go through the clock process. However, the products are not

obligated to be present at that auction center. Remember that products can be sold by

image auctioning if there is not any product present in that auction center. Nonethe-

less, they still need to be present in the auction center network because type, quantity,

length, volume and quality of the products should be checked before the auction. In

other words, products need to be present at any auction center but not necessarily at

the auction center that they will be auctioned prior to the clock. Moreover, products

need to be physically positioned optimally within the auction center network prior to

the clock so that growers and buyers can achieve less transportation costs, better ser-

vice, and better quality for their products. The challenge here is that we do not know

how many products will be purchased by whom and where the boxes of the buyers

wishing that product are located until the auction.

Hence, now the question is What is the optimal way in terms of cost to position the

products initially in the auction center network prior to the clock, given the uncer-

tainties of buyers and their purchase quantities?

The uncertainties involved in the problem environment suggest using stochastic pro-

gramming to formulate the model. Moreover, we know that these uncertainties are

eliminated at the auction. After the auction, we know who bought how many prod-

ucts and where their boxes are located. This makes two-stage stochastic programming

formulation an appropriate model for our case problem to answer the question above.

In our problem, first, inventory is allocated between the auction centers before the

demand realization. Products are transported from the supplier to the auction centers

at this stage. Then, after the demand realization, products are repositioned. At this

stage, product movements are between the auction centers; which are the nodes of the
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same echelon. Inventory movements between the locations of the same echelon are

named as lateral transshipment in the literature. The case problem can also be studied

as an inventory problem with lateral transshipments. As stated before, transportation

between the auction centers occurs when the demand is revealed. In that sense, our

problem resembles to reactive lateral transshipment. In the literature, reactive lateral

transshipment is studied with periodic review and continuous review settings. How-

ever, in our problem, there is not any review. Unsold products are destroyed after the

auctions. No inventory is hold for the next auction. Our problem is a single period

problem. Reader is referred to [47] for more information about inventory problems

with lateral transshipments.

In this study, we formulate the case problem as a two-stage stochastic problem. In the

next chapter, two-stage stochastic programming formulation of the case problem will

be explained in detail.
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CHAPTER 4

THE RISK-NEUTRAL MODEL

In this study, the case problem mentioned in Chapter 3 is modeled with two risk pref-

erences; risk-neutral and risk-averse. In this chapter, the risk-neutral model is pre-

sented. Mathematical model, solution approaches and their application to the model

are explained in the following sections.

4.1 Risk-neutral Model

The case problem is constructed as a two-stage stochastic integer programming with

recourse. Our aim is cost minimization by optimizing the initial product positioning

prior to the clock in the auction center network. Who the buyers will be and their

purchase quantities are the involved uncertainties. The minimum cost flow problem

formulation without any limitation on capacity of arcs is used in the first and the sec-

ond stages. In the first-stage, products are transported from the grower’s location to

the auction centers. They are positioned in the auction center network prior to the

auction without any information of buyers and their purchase quantities. Second-

stage starts with the auction process. After the auction, we know how many bouquets

are bought by whom. We also know where these buyers’ boxes are located. Hence,

after the auction, we know where the bouquets should be delivered to. Our model is

only for one grower. Moreover, it is not at buyer’s level, it is at auction center level.

We consolidate the buyers based on the location of their boxes. In other words, the

individual demands of the buyers are not important for us. Instead, we are interested
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in the demand1 of the auction centers. Thus, after the auction, we know the demand

of each auction center. Then, with this information, repositioning of the products

inside the auction network takes place in the second-stage. In order to provide the

feasibility in minimum cost flow formulation, total demand quantity should be equal

to total supply quantity. In our problem environment, back-ordering is not allowed

because the sale process is an auction. Hence, total demand of the auction centers

cannot exceed the supply quantity. Most of the time, all supply is sold; hence, total

demand equals to the supply. Nevertheless, there are rarely unsold products which

are destroyed after the auction. Consequently, it is possible that supply quantity ex-

ceeds the total demand in the network. Considering this case, we introduce a dummy

demand node to our model to provide feasibility.

A scenario based approach is used while formulating the problem as two-stage stochas-

tic programming model. Main inputs of the model are the total supply quantity, unit

traveling costs between the grower and the auction centers, unit traveling costs be-

tween each auction center and demand scenarios, occurrence probabilities of de-

mand scenarios. Main outputs of the model are the initial product positioning de-

cisions, optimal ship routes and volumes transported between the locations in the

first-stage, optimal ship routes and volumes transported between the locations under

each scenario in the second-stage and the corresponding first-stage transportation and

expected second-stage transportation costs.

Formulation of the risk-neutral two-stage stochastic integer program (P1) is as fol-

lows:

1 Note that due to the fact that sale process is an auction, actual demand and purchase quantities may not refer
to the same quantities. In an auction, demand is a function of price. However, in this study, we assume that price
does not influence the demand and the purchase quantity. When we say demand, we indeed refer to the purchase
quantity which is assumed not to be affected by the price.
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Sets

I, J set of nodes in the network

I, J = {0, ..., 7}

I, J = 0 for the grower node

I, J = 1, ..., 6 for the auction centers

I, J = 7 for the dummy demand node

S set of scenarios

S = {1, ..., S }

Parameters

ci j unit cost per bouquet transported from node i ∈ I to node j ∈ J

ci7 = 0, c7 j = M; node 7 is the dummy demand node

sup number of bouquets supplied to the auction by the grower

dis demand of node i ∈ {1, ..., 7} in terms of number of bouquets under scenario

s ∈ S

ps probability of scenario s ∈ S

Decision Variables

xi j number of bouquets transported from node i ∈ {0, . . . , 6} to node j ∈ {1, . . . , 6}

during initial product positioning (1ststage)

bi Initial inventory (number of bouquets) at node i ∈ {1, ..., 6} after 1st stage prior

to the auction

yi js number of bouquets transported from node i ∈ {1, ..., 7} to node j ∈ {1, ..., 7}

during repositioning (2nd stage) under scenario s ∈ S

P1

Minimize
6∑

i=0

6∑
j=1

ci jxi j +

S∑
s=1

ps

7∑
i=1

7∑
j=1

ci jyi js (4.1)
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subject to

6∑
j=1

x0 j = sup (4.2)

6∑
j=0

x ji −

6∑
j=1

xi j = bi ∀i ∈ {1, ..., 6} (4.3)

7∑
j=1

yi js −

7∑
j=1

y jis = bi − dis ∀i ∈ {1, ..., 6},∀s ∈ S (4.4)

6∑
j=1

y7 js −

6∑
j=1

y j7s = −d7s ∀s ∈ S (4.5)

bi ≥ 0,integer ∀i ∈ I (4.6)

xi j ≥ 0,integer ∀i ∈ {0, ..., 6},∀ j ∈ {0, ..., 6} (4.7)

yi js ≥ 0,integer ∀i ∈ {1, ..., 7},∀ j ∈ {1, ..., 7},∀s ∈ S (4.8)

Objective function (4.1) minimizes the expected cost of transportation. The first term

in the summation is the cost of the initial product positioning and the second term is

the expected repositioning cost over all scenarios. Constraint (4.2) ensures that total

number of bouquets that are transported from the grower to all auction centers is equal

to the supply of the grower. In constraint set (4.3), the first term in left hand-side of

the the equation is the total number of bouquets transported to that auction center (i.e.

inflows). The second term in the left hand-side of the equation is the total number of

bouquets transported from that auction center to the other auction centers (i.e. out-

flows). Note that when a product enters to FloraHolland network, it does not return

back to the grower. The difference between the inflows and outflows at an auction

center equals to the inventory at the auction center at the initial inventory positioning

before the clock. Triangular inequality between the cost parameters cannot always

hold. It might be cheaper to go from location A to location C through location B.

Thus, we introduce constraint set (4.3) to the model. On the other hand, by manip-

ulating the cost parameters (i.e. by setting cAC = cAB + cBC for the example above),

it might be possible that constraint set (4.3) is not required anymore. However, for

the general case, we keep constraint set (4.3) in the formulation. In constraint set

(4.4) the first term in the equation is the total number of bouquets transported from
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that auction center to the other auction centers and to dummy node under scenario

s (i.e. outflows). The second term in the equation is the total number of bouquets

transported to that auction center under scenario s (i.e. inflows). Difference between

the outflows and the inflows can be positive, negative or zero depending on the rela-

tion between the demand of the auction center under scenario s (dis) and the initial

inventory at the auction center (bi).

• If the realized demand at the auction center under scenario s is higher than the

initial inventory (dis > bi ) then the difference between the demand and the ini-

tial inventory should be transported to that auction center during repositioning

to satisfy the demand. Thus, the difference between the demand and the initial

inventory should be equal to the inflows at the second-stage minus outflows at

the second-stage.

• If the realized demand at the auction center under scenario s is lower than the

initial inventory (dis < bi ), it means that demand is not satisfied at some other

auction center(s) or at the dummy demand node. Then the difference between

the initial inventory and the demand should be transported from that auction

center to the nodes that are lack of supply. Thus, the difference between the

initial inventory and the demand should be equal to the outflows at the second-

stage minus inflows at the second-stage.

• If the realized demand at the auction center under scenario s is equal to the

initial inventory (dis = bi ), the auction center can only act as a transshipment

point. Thus, the outflows at the second-stage should be equal to the inflows at

the second-stage.

Constraint (4.5) is fundamentally constraint (4.4) specialized for the dummy demand

node. Because there is no initial inventory at the dummy demand node, the inflows

minus outflows is set equal to the demand at the dummy demand node. Constraint

sets (4.6), (4.7) and (4.8) are non-negativity and integrality constraints. FloraHolland

works with both small and big growers. For a small grower, which sells small number

of products at the auctions, it is important to find the exact integer number of products

to position at the auction centers. This is why we keep integrality constraints in our

formulation.
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Feasibility Requirement

7∑
i=1

dis = sup ∀s ∈ S

In order to provide feasibility, total demand of the nodes (i.e. auction centers and

the dummy demand node) under each scenario should be equal to the total supply

quantity.

There are 64s + 72 integer variables and 7s + 7 constraints in the formulation.

4.2 Solution Approaches for the Risk-neutral Model

In the previous section, we model the case problem as two-stage stochastic integer

problem. Stochastic programs and integer programs are difficult to solve. Our model

is both stochastic and integer. The proposed P1 in Section 4.1 can be solved by

Cplex. However, for larger problems (i.e. more auction centers, higher number of

demand scenarios) it may not be efficient to solve it by Cplex. For larger problems,

it is crucial to use algorithms that benefit from the special structure of the model. P1

is a two-stage stochastic integer program with finite scenarios and the formulation

is in extensive form. L-shaped method is the most frequently used method for large

problems in extensive form [1]. As it can be seen from the literature review, almost

all solution methods of two-stage stochastic integer programming are based on L-

shaped method. Consequently, we propose L-shaped and Multicut L-shaped methods

to solve larger problems. Before we introduce the applications of these methods for

our model, we present the general algorithms for L-shaped method and Multicut L-

shaped method to solve the extensive form of the two-stage stochastic programming

model (2.6) in Chapter 2.

4.2.1 L-shaped Method

L-shaped method by Van Slyke and Wets [4] can be seen as an extension of Bender’s

decomposition [5]. Different than Bender’s decomposition, it also considers the fea-

sibility questions in the stochastic programming. L-shaped method is a cutting plane

32



technique based on building an outer linearization of the recourse function (Q(x)) and

a solution of the first-stage problem plus this linearization. L-shaped method is used

to approximate the nonlinear recourse function. Recourse function involves a solu-

tion of all second-stage linear recourse programs. In the L-shaped method, instead of

evaluating numerous functions, the recourse function is used to form a master prob-

lem in x and it is exactly evaluated only as a subproblem. A solution of the first-stage

problem plus the linearization of recourse function form the master problem. Master

problem finds a proposal x and sends it to the second-stage subproblems. Then, fea-

sibility cuts which determine {x|Q(x) < +∞} and optimality cuts, which are the linear

approximations of Q in its domain of finiteness, are sequentially added [1].

L-shaped method algorithm [1] for problem (2.6) in Chapter 2 is as follows:

Step 0. Set r = k = v = 0 .

Step 1. Set v = v + 1. Solve the master problem

Minimize z = cT x + Q

subject to Ax = b

Dlx ≥ dl l = 1, ..., r (4.9)

Elx + Q ≥ el l = 1, ..., k (4.10)

x ≥ 0

Q, free variable

where constraint set (4.9) represents feasibility cuts and constraint set (4.10) repre-

sents optimality cuts. We set Qv equal to −∞ initially and delete it from the com-

putation if there is not any optimality cut in the master problem. Let (xv,Qv) be an

optimal solution of the master problem.

Step 2. Check whether xv is second-stage feasible. For s = 1, ..., S , solve the follow-

ing linear problem until w′ > 0 for a scenario s.

Minimize w′ = eT v+ + eT v−

subject to Wy + Iv+ − Iv− = hs − Tsxv

y ≥ 0, v+ ≥ 0, v− ≥ 0
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where eT = (1, ..., 1). If w′ > 0 for a scenario, define

Dr+1 = (σv
s)

T Ts,

dr+1 = (σv
s)

T hs,

where σv
s is the associated simplex multiplier vector. Set r = r + 1, add the feasibility

cut and return to Step 1. If for all scenarios, w′ = 0, go to Step 3.

Step 3. For each scenario s ∈ {1, ..., S } , solve the linear problem

Minimize w = qT
s y

subject to Wy = hs − Tsxv

y ≥ 0

(4.11)

Define,

Ek+1 =

S∑
s=1

ps(πv
s)

T Ts,

ek+1 =

S∑
s=1

ps(πv
s)

T hs,

wv = ek+1 − Ek+1xv

where πv
s is the simplex multiplier vector of the optimal solution to the linear problem

above for scenario s.

Stop if Qv ≥ wv. xv is an optimal solution. Otherwise, set k = k+1 , add the optimality

cut, and return to Step 1.

4.2.2 Multicut L-shaped Method

In the L-shaped method, simplex multipliers of optimal solutions of the second-stage

problems for all scenarios are aggregated to obtain one optimality cut in Step 3. Dif-

ferent than the L-shaped method, in Multicut L-shaped method these simplex mul-

tipliers are used to obtain one optimality cut per scenario, as necessary, in Step 3.

Multicut L-shaped algorithm [1], [48] for problem (2.6) in Chapter 2 is as follows:

Step 0. Set r = v = 0, ks = 0 ∀s ∈ {1, ..., S } .
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Step 1. Set v = v + 1. Solve the master problem

Minimize z = cT x +

S∑
s=1

Qs

subject to Ax = b

Dlx ≥ dl l = 1, ..., r

El(s)x + Qs ≥ el(s) l(s) = 1, ..., ks

x ≥ 0

Qs, free variable ∀s

Set Qv
s equal to −∞ initially and delete it from the computation if there is not any

optimality cut in the master problem. Let (xv,Qv
1, ...,Q

v
S ) be an optimal solution of

the master problem.

Step 2. Same with L-shaped method.

Step 3. For each scenario s ∈ {1, ..., S } , solve the linear problem (4.11). If

Qv
s < ps(πv

s)
T (hs − Tsxv) (4.12)

Define,

Eks+1 = ps(πv
s)

T Ts,

eks+1 = ps(πv
s)

T hs,

where πv
s is the simplex multiplier vector of the optimal solution to (4.11) under sce-

nario s. Set ks = ks + 1. If equation (4.12) does not hold for any scenario s, stop. xv

is an optimal solution. Otherwise, return to Step 1.

When L-shaped and multicut L-shaped methods are compared, it can be said that there

is a trade off between them. By adding multicuts, more information is returned to the

master problem. Thus, it is expected to find the optimal solution in less iterations.

However, adding multiple cuts also mean larger master problems. The choice between

one cut and multiple cuts may depend on the problem. It is expected that multicut

method is more effective when the number of realizations is not significantly larger

than the number of first-stage constraints.
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4.3 Application of Solution Approaches to P1

In this section, application of L-shaped and multicut L-shaped methods to P1 is pre-

sented. In sections 4.2.1 and 4.2.2 classical L-shaped and multicut L-shaped method

for two-stage stochastic linear programming is introduced. Both methods utilize the

linearity of second-stage subproblem to generate optimality cuts by using the simplex

multipliers of the optimal solution of the linear second-stage subproblem. In other

words, optimality cuts in the classical L-shaped and multicut L-shaped method are

based on duality theory in linear programming. Although we formulate our problem

as two-stage stochastic integer program, we can still use the optimality cut generation

methods in the classical L-shaped and multicut L-shaped method because second-

stage subproblem of P1 is totally unimodular. Moreover, when the second-stage sub-

problem is totally unimodular, the optimal solution of the LP relaxation is integer

and is the same with the optimal solution of the integer problem. Consequently, no

additional method is required to obtain second-stage integer optimal solutions and to

improve the optimality cuts. We benefit from the total unimodularity of the subprob-

lem.

In both L-shaped and multicut L-shaped methods, the second-stage subproblem of P1

is the same. Its formulation is as follows;

Second-stage Subproblem

Minimize
7∑

i=1

7∑
j=1

ci jyi j

subject to
7∑

j=1

yi j −

6∑
j=1

y ji = bi − di ∀i ∈ {1, ..., 6}

6∑
j=1

y7 j −

6∑
j=1

y j7 = −d7

yi j ≥ 0, integer ∀i ∈ {1, ..., 7},∀ j ∈ {1, ..., 7}

(4.13)

As it can be seen from the formulation above, second-stage subproblem has minimum

cost flow formulation; which is known to be totally unimodular. There is an extra

bi, i ∈ 1, . . . , 6 parameter in the right hand side of the suproblem compared to the
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classical formulation of minimum cost flow formulation. Thus, we need to check

whether it violates the integrality of right hand side vector. In the L-shaped and

multicut L-shaped methods, the master problem finds a proposal x and sends it to the

second-stage subproblems. bi, i ∈ 1, . . . , 6, which are first-stage decision variables,

are that proposals sent to our second-stage subproblem. Because bi, i ∈ 1, . . . , 6 have

integrality restrictions in the first-stage problem, they are just integer parameters for

the subproblem. Consequently, the right hand side vector
( b-d

-d7

)
with b = (b1, .., b6)T ,

d = (d1, ..., d6)T is still integer. Hence, we can conclude that second-stage subproblem

of P1 is totally unimodular.

4.3.1 Application of L-shaped Method to P1

In this section, the L-shaped algorithm adapted to P1 is illustrated. Notations are

based on [1].

Step 0. Set k = v = 0 .

Step 1. Set v = v + 1. Solve the master problem

Master Problem

Minimize
6∑

i=0

6∑
j=1

ci jxi j + Q

subject to
6∑

j=1

x0 j = sup

6∑
j=0

x ji −

6∑
j=1

xi j = bi ∀i ∈ {1, ..., 6}

6∑
i=1

Eiter,ibi + Q ≥ eiter for iter = 1, ..., k

bi ≥ 0, integer ∀i ∈ {1, ..., 6}

xi j ≥ 0, integer ∀i ∈ {0, ..., 6},∀ j ∈ {0, ..., 6}

Q, free variable

Let (bv,Qv, xv) be an optimal solution. If no optimality cut constraint is present, Qv is

set equal to −∞ and is not considered in the computation of bv and xv.

Step 2. This step can be skipped because subproblem is always feasible for the current
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optimal bv under all scenarios. Subproblem is a minimum cost flow problem and it is

guaranteed that

7∑
i=1

dis =

6∑
i=1

bi = sup ∀s ∈ {1, ..., S }

Step 3. For each scenario s ∈ {1, ..., S } , solve the dual of the LP relaxation of sub-

problem .

LP relaxation of Primal Subproblem

Minimize
7∑

i=1

7∑
j=1

ci jyi j

subject to
7∑

j=1

yi j −

6∑
j=1

y ji = bi − di ∀i ∈ {1, ..., 6}

6∑
j=1

y7 j −

6∑
j=1

y j7 = −d7

yi j ≥ 0 ∀i ∈ {1, ..., 7},∀ j ∈ {1, ..., 7}

Dual of LP relaxation of Subproblem

Maximize
6∑

i=1

πi(bi − di) + π7(−d7)

subject to πi − π j ≤ ci j ∀i ∈ {1, ..., 7}, ∀ j ∈ {1, ..., 7}

πi, free variable ∀i ∈ {1, ..., 7}

(4.14)

Technology matrix T of the LP relaxation of the subproblem is fixed for each scenario

and T is equal to −I6

0


where I is the identity matrix.

Furthermore, hs of the LP relaxation of subproblem equals
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−d1s

−d2s

−d3s

−d4s

−d5s

−d6s

−d7s



Then, define

Ek+1,i = −

S∑
s=1

psπ
v
is ∀i ∈ {1, ..., 6}

ek+1 =

S∑
s=1

ps

7∑
i=1

πv
is(−dis)

wv = ek+1 −

6∑
i=1

Ek+1,ibv
i

If Qv ≥ wv, stop; (bv, xv) is an optimal solution. Otherwise, set k = k + 1 , add the

optimality cut to the master problem and return to Step 1.

4.3.2 Application of Multicut L-shaped Method to P1

In this section, the multicut L-shaped algorithm adapted to P1 is illustrated. Notations

are based on [1].

Step 0. Set v = 0 and ks = 0 ∀s ∈ {1, ..., S } .

Step 1. Set v = v + 1. Solve the master problem
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Master Problem

Minimize
6∑

i=0

6∑
j=1

ci jxi j +

S∑
s=1

Qs

subject to
6∑

j=1

x0 j = sup

6∑
j=0

x ji −

6∑
j=1

xi j = bi ∀i ∈ {1, ..., 6}

6∑
i=1

Eiter(s),ibi + Qs ≥ eiter(s) iter(s) = 1, ..., ks

bi ≥ 0, integer ∀i ∈ {1, ..., 6}

xi j ≥ 0, integer ∀i ∈ {0, ..., 6},∀ j ∈ {0, ..., 6}

Qs, free variable ∀s ∈ {1, ..., S }

Let (bv, xv,Qv
1, ...,Q

v
S ) be an optimal solution. If there is not an optimality cut con-

straint in the master problem, Qv
s is set equal to −∞ for all s and is not considered in

the computation of bv and xv.

Step 2. Again this step can be skipped because subproblem is always feasible for the

current optimal bv for all s.

Step 3. For each scenario s ∈ {1, ..., S } , solve (4.14). Let πv
is be the associated simplex

multipliers of optimal solution of (4.14). If

Qv
s < ps

6∑
i=1

πv
is(bi − dis) + π7(−d7s) (4.15)

(4.16)

Define

Eks+1,i = −psπ
v
is ∀i ∈ {1, ..., 6}

eks+1 = ps

7∑
i=1

πv
is(−dis)

Set ks = ks + 1. If equation (4.15) does not hold for any scenario s, stop. (bv, xv) is an

optimal solution. Otherwise, add the optimality cuts and return to Step 1.
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CHAPTER 5

THE RISK-AVERSE MODEL

In the previous chapter, the case problem is modeled with risk-neutral preference.

Now we model the same problem with risk-averse approach. Due to its computational

advantages in optimization problems, we prefer first-order mean-semideviation as the

risk measure. Moreover, because the case problem is a minimization problem, we

use upper semideviation to measure the risk. In Section 5.1, the risk-averse model

is presented. Objective function of the model is nonlinear and nondifferentiable. In

Section 5.2, linearization of the risk-averse formulation and a decomposition based

solution algorithm to solve the linearized formulation are described. Afterwards, in

Section 5.3, linearization and decomposition method are applied to the case problem

given.

5.1 The Risk-averse Model

As it is explained in literature review, mean-semideviation is one of the common

mean-risk measures. The representation of the mean-semideviation measure is as

follows [35]:

gκ,δp = E[Y] + κδp[Y],

where δp[Y] = (E[(Y − E[Y])p
+])

1
p is pth central semideviation and κ is a nonnegative

weight to trade off expected cost with risk.

In the context of stochastic programming problem of the form

min {E[ f (x, ω)] : x ∈ X},
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where f (x, ω) = cT x + Q(x, ξ(ω)) and Q(x, ξ(ω)) is the second-stage value function

for a given realization ω, the mean-semideviation objective function takes the form

[35]:

gκ,δp( f (x, ω)) = E[ f (x, ω)] + κ(E[( f (x, ω) − E[ f (x, ω)])p
+])

1
p .

Moreover, for p = 1, semideviation function can be written as

δ( f (x, ω)) = E
[
( f (x, ω) − E[ f (x, ω)])+

]
= E

[
max{ f (x, ω) − E[ f (x, ω)], 0}

]
and mean-semideviation objective function becomes

gκ,δ = E[ f (x, ω)] + κδ( f (x, ω)) = E[ f (x, ω)] + κE
[
max{ f (x, ω) − E[ f (x, ω)], 0}

]
By straight forward calculations in [41],

gκ,δ = E[ f (x, ω)] + κE
[
max{ f (x, ω) − E[ f (x, ω)], 0}

]
= (1 − κ)E[ f (x, ω)] + κE

[
max{ f (x, ω),E[ f (x, ω)]}

]
. (5.1)

With the assumptions that ξ is discrete and has finite support {ξ1, ..., ξS } with cor-

responding probabilities p1, ..., pS , using (5.1) , two-stage stochastic problem with

mean-semideviation risk measure takes the form [37] :

min

cT x + (1 − κ)
S∑

s=1

psQ(x, ξs) + κ

S∑
s=1

ps max{Q(x, ξs),
S∑

s̄=1

ps̄Q(x, ξs̄)} : x ∈ X


(5.2)

where Q(x, ξs) = min
ys
{qT

s ys|Wsys = hs − Tsx, ys ≥ 0} is the second-stage value function.

Formulation (5.2) given above is applied to our case problem in order to include a risk

factor into the objective. We formulate the risk-averse model as a mean-semideviation

model with p = 1, κ = 1 and finite discrete ξ as follows:
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Minimize
6∑

i=0

6∑
j=1

ci jxi j +

S∑
s=1

ps max

Q(b, ξs),
S∑

s̄=1

ps̄Q(b, ξs̄)


subject to

6∑
j=1

x0 j = sup

6∑
j=0

x ji −

6∑
j=1

xi j = bi ∀i ∈ {1, ..., 6}

bi ≥ 0,integer ∀i ∈ {1, ..., 6}

xi j ≥ 0,integer ∀i ∈ {0, ..., 6},∀ j ∈ {0, ..., 6}

where

Q(b, ξs) = Min
7∑

i=1

7∑
j=1

ci jyi js

subject to

7∑
j=1

yi js −

6∑
j=1

y jis = bi − dis ∀i ∈ {1, ..., 6},∀s ∈ S

6∑
j=1

y7 js −

6∑
j=1

y j7s = −d7s ∀s ∈ S

yi js ≥ 0,integer ∀i ∈ {1, ..., 7},∀ j ∈ {1, ..., 7},∀s ∈ S

The extensive form of the formulation above, which is referred as MSD in the follow-

ing paragraphs, is as follows :

Minimize
6∑

i=0

6∑
j=1

ci jxi j +

S∑
s=1

ps max

 7∑
i=1

7∑
j=1

ci jyi js,

S∑
s̄=1

ps̄

7∑
i=1

7∑
j=1

ci jyi js̄

 (5.3)

subject to

Constraint Sets (4.2), (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8).

Feasibility requirement is the same with the risk-neutral model.

7∑
i=1

dis = sup ∀s ∈ S
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Constraint sets of risk-neutral and risk-averse model are the same. Thus, both models

have the same feasible region. Furthermore, note that by constraint (4.6), (4.7) and

(4.8), we keep the integrality restriction also for the risk-averse model. The only

difference between risk-neutral and risk-averse models is in the objective function.

In the risk-neutral model, the objective is to minimize the expected transportation

cost in the network over all possible scenarios. However, in the risk-averse approach,

we introduce a risk measure into the model. In the objective function, besides the

expected transportation cost we also minimize expected excess from the expected

cost. We do not know which demand scenario will occur after the clock; hence, we

want to avoid the case that a scenario’s cost has a really high cost compared to the

expected cost.

5.2 Solution Approaches for Risk-averse Model

Objective function of MSD is both nonlinear and nondifferentiable. In this subsection,

we present the linearization of this type of objective function in general notations. In

other words, we explain how to linearize formulation (5.2). Then, we describe a

variation of multicut L-shaped method to solve a linearized version of formulation

(5.2). Application of the solution methods proposed for the case problem will be

covered in the following section.

When we look at formulation (5.2), max {Q(x, ξs),
S∑̄

s=1
ps̄Q(x, ξs̄)} part of the objec-

tive function causes the nonlinearity. It is handled by additional constraints (5.4),

(5.5), (5.6), (5.7). ts is forced to take the maximum value of {Q(x, ξs),
S∑̄

s=1
ps̄Q(x, ξs̄)}.

Consequently, formulation (5.2) is equivalently written as [37]
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Minimize cT x + (1 − κ)
S∑

s=1

psθs + κ

S∑
s=1

psts

subject to

Ax = b,

Wsys = hs − Tsx ∀s ∈ S ,

qT
s ys ≤ θs, ∀s ∈ S (5.4)
S∑
s̄

ps̄θs̄ ≤ ts, ∀s ∈ S (5.5)

θs ≤ ts, ∀s ∈ S (5.6)

x ≥ 0, ys ≥ 0 ∀s ∈ S

ts, θs, free variables, ∀s ∈ S (5.7)

Linearized version of model (5.2) can be solved by a linear programming solver.

Nonetheless, in the case problem, we work with integer variables. Thus, model (5.2)

with integrality constraints may not be efficiently solvable for large problems. This

exposes the need of decomposition algorithms for large problems. Model 5.2 does

not have a block structure that fits to the existing stochastic programming schemes ei-

ther. The problem comprises explicit coupling between scenario dependent variables.

Consequently, most known algorithms do not work for the problem. Kristoffersen

[37] introduces a decomposition algorithm for model 5.2. Kristoffersen [37] treats

some scenario dependent variables as first-stage variables; which enables a certain

degree of separability and so a scenario wise cutting plane algorithm. The decom-

position algorithm in [37] is akin to multicut L-shaped algorithm. The idea behind

the method is to relax Q(x, ξs) < +∞, which are so-called induced constraints, and

the Q(x, ξs) ≤ θs constraints for ∀s ∈ S and then iteratively strengthen them with

feasibility and optimality cuts. In [37], the method is explained for mean-central de-

viation model; nonetheless the algorithm is stated to work for mean-semideviation as

well. We illustrate decomposition method in [37] for mean-semideviation using the

notation of L-shaped method given in [1].

Kristoffersen’s Decomposition Method for mean-semideviation two-stage stochastic

linear program is as follows:
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Step0.Set r = v = 0, ks = 0 ∀s ∈ {1, ..., S } .

Step1. Set v = v + 1. Solve the current master problem

Minimize cT x + (1 − κ)
S∑

s=1

psθs + κ

S∑
s=1

psts

subject to

S∑
s̄

ps̄θs̄ ≤ ts, ∀s ∈ S

θs ≤ ts, ∀s ∈ S

x ∈ X,

Dlx ≥ dl l = 1, ..., r

El(s)x + θs ≥ el(s) l(s) = 1, ..., ks

ts, θs, free variables, ∀s ∈ S

Let xv, tv
1, ..., t

v
S , θ

v
1, ..., θ

v
S be an optimal solution. (If tv

s = −∞ and θv
s = −∞ for some

s ∈ {1, ..., S }, ignore them in the computation.)

Step2. This step is checking second-stage feasibility of xv. Second-stage subproblems

are the same as the L-shaped method subproblems (4.11). Thus, this step is the same

with Step 2 of the L-shaped method. Check whether xv is second-stage feasible. For

s = 1, ..., S , solve the linear problem until w′ > 0 for a scenario s.

Minimize w′ = eT v+ + eT v−

subject to Wy + Iv+ − Iv− = hs − Tsxv

y ≥ 0, v+ ≥ 0, v− ≥ 0

where eT = (1, ..., 1). If w′ > 0 for a scenario, define

Dr+1 = (σv
s)

T Ts,

dr+1 = (σv
s)

T hs,

where σv
s is the associated simplex multiplier vector. Set r = r + 1, add the feasibility

cut and return to Step 1. If for all scenarios, w′ = 0, go to Step 3.

Step3.For each scenario s ∈ {1, ..., S } , solve the linear problem (4.11) with x = xv. If

(πv
s)

T (hs − Tsxv) > θv
s, (5.8)
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Define,

Eks+1 = (πv
s)

T Ts,

eks+1 = (πv
s)

T hs,

where πv
s is the simplex multiplier vector of the optimal solution of (4.11) for scenario

s. Set ks = ks + 1. If equation (5.8) does not hold for any scenario s, stop. xv is an

optimal solution. Otherwise, return to Step 1.

5.3 Application of the Solution Approaches to MSD

In the previous section, linearized equivalent model for model (5.2) is introduced.

Now we present the linearized equivalent of MSD; which is referred as MSDL. After

introducing MSDL, we explain how Kristoffersen’s decomposition method is applied

to MSDL. Note that, model (5.2) is a two-stage stochastic linear problem, which does

not have any integrality restrictions. However, MSDL is a two-stage stochastic integer

problem. Despite the integrality restriction, we still make use of the linearization

method and the decomposition method suggested in the previous section.

Objective function (5.3) of MSD is nonlinear and nondifferentiable. We linearize the

objective function and model turns into equivalent mixed integer program (MSDL):
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Minimize
6∑

i=0

6∑
j=1

ci jxi j +

S∑
s=1

psts

subject to

6∑
j=1

x0 j = sup,

6∑
j=0

x ji −

6∑
j=1

xi j = bi, ∀i ∈ {1, ..., 6}

7∑
j=1

yi js −

6∑
j=1

y jis = bi − dis ∀i ∈ {1, ..., 6},∀s ∈ S

6∑
j=1

y7 js −

6∑
j=1

y j7s = −d7s ∀s ∈ S∀s ∈ S

7∑
i=1

7∑
j=1

ci jyi js ≤ θs, ∀s ∈ S

S∑
s̄

ps̄θs̄ ≤ ts, ∀s ∈ S

θs ≤ ts, ∀s ∈ S

bi ≥ 0,integer, ∀i ∈ {1, ..., 6}

xi j ≥ 0,integer, ∀i ∈ {0, ..., 6},∀ j ∈ {0, ..., 6}

yi js ≥ 0,integer, ∀i ∈ {1, ..., 7},∀ j ∈ {1, ..., 7},∀s ∈ S

ts, θs, free variables, ∀s ∈ S

(5.9)

Although MSDL can be solved by a commercial mixed integer programming (MIP)

solver, we adopt Kristoffersen’s algorithm to MSDL so as to solve larger problems.

Kristoffersen [37] studies with two-stage stochastic linear programs. Like classical

L-shaped method, Kristoffersen’s decomposition method also benefits from duality

theory to generate the optimality cuts using the simplex multipliers. In MSDL, some

variables are restricted to be integers. Moreover, subproblem used in application of

Kristoffersen’s algorithm to MSDL is the same as the subproblem (4.13), all variables

of which are integer. However, these integrality constraints do not bring about any

problem. We again benefit from the total unimodularity of the subproblem (4.13). In

addition, because the second-stage subproblem is totally unimodular, no additional
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method is required to obtain integer optimal solutions for second-stage variables and

no additional method is required to improve the optimality cuts because they are

obtained by strong duality theory. We use LP relaxation of subproblem 4.13 to obtain

the optimality cuts in Kristoffersen’s decomposition algorithm.

The adaptation of Kristoffersen’s decomposition method to MSDL is as follows:

Step 0. Set v = 0 and ks = 0 ∀s ∈ {1, ..., S } .

Step 1. Set v = v + 1. Solve the master problem

Minimize
6∑

i=0

6∑
j=1

ci jxi j +

S∑
s=1

psts

subject to

6∑
j=1

x0 j = sup

6∑
j=0

x ji −

6∑
j=1

xi j = bi ∀i ∈ {1, ..., 6}

bi ≥ 0,integer ∀i ∈ {1, ..., 6}

xi j ≥ 0,integer ∀i ∈ {0, ..., 6},∀ j ∈ {0, ..., 6}
S̄∑

s̄=1

ps̄θs̄ ≤ ts ∀s ∈ S

θs ≤ ts ∀s ∈ S
6∑

i=1

Eiter(s),ibi + Qs ≥ eiter(s) iter(s) = 1, ..., ks

ts, θs, free variables ∀s ∈ S

Solve the current master problem and let bv, xv, tv
1, ..., t

v
S , θ

v
1, ..., θ

v
S be an optimal solu-

tion. (For v = 1, set tv
s = −∞ and θv

s = −∞ ∀s ∈ {1, ..., S } and ignore them in the

computation of bv, xv.)

Step2. This step can be skipped again as in the L-shaped algorithm since the sub-
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problem is always feasible for the current optimal bv under all scenarios. We use the

LP relaxation of the subproblem (4.13) as the subproblem. It is a minimum cost flow

problem and it is guaranteed that

7∑
i=1

dis =

6∑
i=1

bi = sup ∀s ∈ {1, ..., S }

Step3. For each scenario s ∈ {1, ..., S } , solve the dual of the LP relaxation of the

subproblem (4.13) with b = bv.

Dual of LP relaxation of Subproblem

Maximize
6∑

i=1

πi(bi − di) + π7(−d7)

subject to πi − π j ≤ ci j ∀i ∈ {1, ..., 7}, ∀ j ∈ {1, ..., 7}

πi, free variable ∀i ∈ {1, ..., 7}

(5.10)

π is the dual variable vector.

Technology matrix T of the LP relaxation of subproblem is fixed for each scenario

and T is equal to −I6

0


where I is the identity matrix. Furthermore, hs of the LP relaxation of subproblem

equals



−d1s

−d2s

−d3s

−d4s

−d5s

−d6s

−d7s
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If

6∑
i=1

πv
is(bi − dis) + πv

7s(−d7s) > θv
s (5.11)

for some s, then define

Eks+1,i = −πv
is ∀i ∈ {1, ..., 6}

eks+1 =

7∑
i=1

πv
is(−dis)

Set ks = ks + 1. If equation (5.11) does not hold for any scenario s, stop. (bv, xv) is an

optimal solution. Otherwise, add the optimality cuts and return to Step 1.
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CHAPTER 6

COMPUTATIONAL STUDY

Computational study is divided into three main parts. In section 6.2, computational

study of the risk-neutral model is given. The risk-neutral problem is formulated as

two-stage stochastic integer programming model (P1). However, because this formu-

lation has the complexities of both integer programming and stochastic programming,

for larger problems L-shaped and multicut L-shaped decomposition methods are ap-

plied. In section 6.2 we compare computational efficiencies of the alternative solu-

tion methods for the risk-neutral problem and show the value of stochastic solution.

In section 6.3, computational study of the risk-averse model is given. We compare

computational efficiencies of MSDL and the proposed multicut decomposition based

solution algorithm for it. In section 6.4, we compare the results of risk-neutral and

risk-averse approaches. Before giving the computational results mentioned above, in

section 6.1, we illustrate the computational design parameters which are common in

both risk-neutral and risk-averse problems.

Mathematical models are coded in GAMS 23.7. Demand scenarios are generated in

MATLAB R2013.a. GAMS is called from MATLAB and optimization is done by

using CPLEX 12 solver. A PC with Intel(R) Core(TM) i5-4200M CPU 2.50GHz and

6 GB RAM running Windows 8 is used to run the codes.

6.1 Computational Design

In both risk-neutral and risk-averse approaches, the main inputs of the model are

total supply quantity, unit traveling costs between locations, demand scenarios and
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occurrence probability of demand scenarios. Models are run with two different sup-

ply quantities; 100 and 1,000. Moreover, models are run with different number of

scenarios. More scenarios mean that more information is given to the model. Unit

traveling costs between locations are given by the company. In [44], Gaki also uses

the same unit traveling costs, which are stated to be calculated considering route’s dis-

tance, capacity utilization of trucks, average number of truck rides, fixed and variable

transportation costs. Owing to the lack of demand information of auction centers, we

generate demand scenarios. Each demand scenario is taken equally likely to occur.

We know that 95% percent of the time all the supply is sold and 5% of the time there

are leftovers. Thus, we consider this reality while generating our demand scenarios.

In a demand scenario set, we make sure that supply equals to demand in 95% of the

scenarios and that supply exceeds demand in 5% of the scenarios.

For supply=demand case, following algorithm is used to generate demand for each

auction center.

• Generate 5 random integers in [0, supply]

• Sort these 5 numbers in ascending order

• Add "0" at the beginning and add "supply" at the end of the array, hence we

have 7 sorted numbers

• Take the differences of successive numbers

• Set demand of dummy demand node equal to 0

Because the last element in the array is the supply quantity, we make sure that total

demand of the auction centers equal to supply.

For supply>demand case, following algorithm is used to generate demand for each

auction center.

• Generate 6 random integers in [0, supply-1]

• Sort these 6 numbers in ascending order

• Add "0" at the beginning, hence we have 7 sorted numbers
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• Take the differences of successive numbers

• Set demand of dummy demand node equal to "supply-total demand of auction

centers"

Because the last element in the array can have a maximum value of "supply quantity-

1", we make sure that total demand of auction centers is less than supply.

6.2 Results of the Risk-neutral Model

In this section, we solve P1 by CPLEX. Then, we also solve the LP relaxation of

P1 by CPLEX. When we compare the results of P1 and the LP relaxation of P1,

we observe that optimal solution values of them are the same. We computationally

show that P1 is totally unimodular. Then, since it is easier to solve linear problems

compared to the integer problems, we solve L-shaped decomposition and multicut L-

shaped decomposition for the LP relaxation of P1 instead of P1. In other words, we

relax the integrality restriction in the master problem of the decomposition methods.

Different number of scenarios and two different supply quantities are used for the

computational study.

Table 6.1 and Table 6.2 show the results of Cplex solution of P1 for different scenario

numbers up to 65,000 scenarios for supply quantities 100 and 1,000 respectively.

The results show that for both supply quantities, test problems generated for P1 can

be solved by CPLEX solver for a number of scenarios up to 60,000. For both supply

quantities, CPLEX elapsed time and number of CPLEX iterations to solve P1 increase

with the increase in the number of scenarios as expected.
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Table6.1: CPLEX results of P1 with a supply quantity of 100

Number
Of Scenarios

Elapsed Time
(in sec.)

Number of
CPLEX Iterations

Objective
Function Value

500 0.764 3177 1944.836
1000 1.688 6430 1927.651
2500 7.848 16128 1954.115
5000 29.548 31538 1958.026

10000 129.866 66139 1948.589
25000 947.161 164850 1944.501
50000 4092.297 326789 1948.505
60000 6026.284 407545 1947.348
65000 No solution No solution No solution

Table6.2: CPLEX results of P1 with a supply quantity of 1,000

Number
Of Scenarios

Elapsed time
(in sec.)

Number of
Cplex Iterations

Objective
Function Value

500 0.731 3229 19346.207
1000 1.693 6596 19033.914
2500 8.034 16587 19333.766
5000 30.592 32873 19448.594

10000 134.902 67268 19435.468
25000 1016.662 171593 19375.946
50000 4416.247 347098 19421.776
60000 6241.690 397373 19390.767
65000 No solution No solution No solution

As explained in Chapter 4, the minimum cost flow formulation is used in the first and

the second stages of P1. It is known that minimum cost flow formulation is totally

unimodular. However, having totally unimodular first and second stages does not

guarantee that overall formulation is totally unimodular [46]. After solving P1 by

CPLEX, we also solve the LP relaxation of P1 by CPLEX to see whether optimal

values of the decision variables are the same. Table 6.3 and Table 6.4 demonstrate

the elapsed times and objective function values for the LP relaxation of P1 for supply

quantities 100 and 1,000 respectively.
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Table6.3: CPLEX results of the LP relaxation of P1 with a supply quantity of 100

Number Of
Scenarios

Elapsed
Time (in sec.)

Objective
Function Value

500 0.672 1944.836
1000 1.478 1927.651
2500 5.424 1954.115
5000 16.845 1958.026

10000 71.375 1948.589
25000 494.370 1944.501
50000 1913.692 1948.505
75000 4273.849 1945.382

100000 8034.315 1943.293
125000 No solution No solution

Table6.4: CPLEX results of the LP relaxation of P1 with a supply quantity of 1,000

Number Of
Scenarios

Elapsed
Time (in sec.)

Objective
Function Value

500 0.626 19346.207
1000 1.352 19033.914
2500 5.539 19333.766
5000 17.162 19448.594

10000 71.578 19435.468
25000 571.626 19375.946
50000 2380.826 19421.776
75000 4564.726 19412.097

100000 8128.364 19382.601
125000 No solution No solution

Observation 6.2.1 Objective function values of the optimal solutions of the LP relax-

ation of P1 for all the test problems are the same as the objective function values of

the optimal solutions of P1. P1 is computationally totally unimodular.

Based on the results above, for both supply quantities, the LP relaxation of P1 can be

solved by CPLEX solver for a number of scenarios up to 100,000. CPLEX elapsed

time to solve the LP relaxation of P1 raises when the number of scenarios increase.

As it is expected, the LP relaxation of P1 is computationally preferable to P1. While

P1 can be solved by CPLEX up to 60,000 scenarios, the LP relaxation of P1 can be

solved up to 100,000 scenarios. Moreover, elapsed times of LP relaxation of P1 are

lower than elapsed times of P1.
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After seeing that LP relaxation of P1 gives the same optimal results as P1, we change

the setup of L-shaped and multicut L-shaped algorithms for the computational study.

In Chapter 4, master problem of L-shaped method and multicut L-shaped method

have the integrality restrictions. Now, we relax the integrality restrictions in the mas-

ter problems and run the test scenarios by using LP relaxation of the master problems

in the L-shaped and multicut L-shaped algorithms. Results are given in Table 6.5 and

Table 6.6 for supply quantities 100 and 1,000.

Table6.5: L-shaped and multicut L-shaped results of the LP relaxation of P1 with a
supply quantity of 100

L-shaped method Multicut L-shaped
method

Number of
Scenarios

Elapsed Time
(in sec.)

Number of
Iterations

Elapsed Time
(in sec.)

Number
of Iterations

Number
of Cuts

Objective
Function Value

500 3553.945 53 483.724 9 3663 1944.836
1000 6756.800 52 1351.358 11 8289 1927.651
2500 16973.344 52 3525.436 10 20545 1954.115
5000 42559.545 55 7633.628 11 41236 1958.026

Table6.6: L-shaped and multicut L-shaped results of the LP relaxation of P1 with a
supply quantity of 1,000

L-shaped method Multicut L-shaped
method

Number of
Scenarios

Elapsed Time
(in sec.)

Number of
Iterations

Elapsed Time
(in sec.)

Number
of Iterations

Number
of Cuts

Objective
Function Value

500 4799.250 73 577.666 11 4142 19346.207
1000 9538.352 78 1387.954 11 8205 19033.914
2500 25260.411 81 3718.809 11 20722 19333.766
5000 59832.890 82 7950.325 12 41043 19448.594

Table 6.5 and Table 6.6 show that elapsed time of L-shaped algorithm increases with

the increasing number of scenarios; which is reasonable.

Observation 6.2.2 Problems with supply quantity of 1,000 have higher elapsed times

than the problems with supply quantity of 100 given that scenario sizes are equal.

This is probably related with the observation that problems with supply quantity of

1,000 have higher number of iterations than problems with supply quantity of 100.

This is because, the number of subproblems solved at each iteration is equal to the

number of scenarios.

Observation 6.2.3 Elapsed times and number of cuts of the multicut L-shaped algo-

rithm raise if the scenario sizes increase. On the other hand, number of iterations does

not have any increasing or decreasing trend.
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Observation 6.2.4 For both supply quantities, the multicut L-shaped algorithm is

more efficient than the L-shaped algorithm in terms of elapsed time for solving the

test problems.
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Figure 6.1: Comparison of elapsed times of L-shaped and multicut L-shaped algo-
rithms

Observation 6.2.5 Elapsed time of L-shaped method with a scenario size 5,000 is

higher than the elapsed time of the CPLEX solution of the LP relaxation of P1 with a

scenario size 100,000. Furthermore, elapsed time of the multicut L-shaped algorithm

with a scenario size 5,000 is almost equal to the elapsed time of the CPLEX solution

of the LP relaxation of P1 with a scenario size 100,000. In addition,we observe that

elapsed times increase with the increase in the number of scenarios. Consequently,

it can be said that L-shaped and multicut L-shaped methods are not preferable for

the problems that CPLEX can solve. They may be useful only when CPLEX cannot

solve a problem.

Stochastic programs are known to be computationally hard to solve. In real life,

people tend to solve simpler models to answer the same questions instead of using

stochastic programs. For example, random variables are replaced with their expected

values to solve the simpler deterministic problem. This problem is called the expected

value problem, and its solution is named as the expected value solution. Difference

between the expected result of the stochastic solution ( E[S S ]) and the expected re-

sult of using the expected value solution as the first stage decision ( E[EVS ]) is called

the value of stochastic solution (VS S ). Reader is referred to [1] for more informa-

tion. Table 6.7 and Table 6.8 demonstrate the value of stochastic solution for supply

quantities 100 an 1,000 respectively.
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Table6.7: Value of stochastic solution for a supply quantity 100

Number of
Scenarios E[EVS] E[SS] VSS Decrease in

Percentages
500 2276.598 1944.836 331.762 14.57%

1000 2254.607 1927.651 326.956 14.50%
2500 2304.788 1954.115 350.673 15.21%
5000 2311.948 1958.026 353.922 15.31%

10000 2306.394 1948.589 357.805 15.51%
25000 2307.736 1944.501 363.235 15.74%
50000 2309.237 1948.505 360.732 15.62%
75000 2308.873 1945.382 363.491 15.74%

100000 2309.513 1943.293 366.220 15.86%

Table6.8: Value of stochastic solution for a supply quantity 1000

Number of
Scenarios E[EVS] E[SS] VSS Decrease in

Percentages
500 22895.998 19346.207 3549.791 15.50%

1000 22464.937 19033.914 3431.023 15.27%
2500 22720.562 19333.766 3386.796 14.91%
5000 22947.060 19448.594 3498.466 15.25%

10000 22878.982 19435.468 3443.514 15.05%
25000 22845.825 19375.946 3469.879 15.19%
50000 22854.376 19421.776 3432.600 15.02%
75000 22883.691 19412.097 3471.594 15.17%

100000 22822.714 19382.601 3440.113 15.07%

Observation 6.2.6 Solving the stochastic problem instead of using the expected value

solution as the first stage decision results in about 15% decrease in the expected total

cost.

6.3 Results of the Risk-averse Model

In this section, we compare the computational efficiencies of MSDL and the proposed

multicut decomposition algorithm. Several problems with different number of scenar-

ios and 2 different supply quantities are used to run the alternative methods. Table 6.9

and Table 6.10 show the elapsed time to solve each problem, number of Cplex itera-

tions, number of multicut algorithm iterations, number of cuts and objective function

results for supply quantities 100 and 1,000 respectively.
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Based on the results given in Table 6.9 and Table 6.10, we first analyze the results of

each solution method within itself, and then compare them with each other.

MSDL cannot be solved by CPLEX solver for number of scenarios higher than 4,000.

For both supply quantities, elapsed times and number of CPLEX iterations in MSDL

increases if number of scenarios increase.

Observation 6.3.1 Figure 6.2 and Figure 6.3 show the elapsed time and number of

CPLEX iteration for MSDL with different scenario numbers and supply quantities.

While the number of CPLEX iterations linearly increase with the number of scenar-

ios, increase in elapsed times is not linear. This trend in elapsed times is due to the

fact that both number of iterations and elapsed time for each iteration increase with an

increase in the number of scenarios. Furthermore, supply quantities are not effective

on elapsed times and number of CPLEX iterations.
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Figure 6.2: CPLEX elapsed time for MSDL
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Figure 6.3: Number of CPLEX iterations for MSDL

Observation 6.3.2 Multicut algorithm for MSDL solves the test problems with a

scenario number up to 4,500. Our test problems with number of scenarios higher than

4,500 can not be solved by the multicut algorithm for MSDL; which is an unexpected

result for us.

Multicut algorithm for MSDL is proposed to solve the problems with high number of

scenarios. In [37], Kristoffersen studies with two-stage stochastic linear programming

model. We study with two-stage stochastic integer programming model. However,

total unimodularity of our second-stage subproblem makes it possible for us to use

the multicut algorithm method in [37]. Computational results of multicut algorithm

for MSDL suggests that multicut algorithm method in [37] can be used for our case

problem; nevertheless it is not effective to solve problems with high number of scenar-

ios. Integrality restrictions in the first-stage problem (i.e. master problem in multicut

algoritm) prevent the algorithm to be effective for the problems where more scenarios

are involved.

Observation 6.3.3 For both supply quantities, the elapsed times of multicut algorithm

for MSDL also raise with increasing number of scenarios as expected. Number of

iterations do not have an increasing or decreasing trend depending on the scenario

size. They are almost the same for each scenario size. However, number of cuts used

in multicut algorithm increases with an increment in scenario size.

Observation 6.3.4 Preference between CPLEX solver and multicut algorithm de-
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pends on the scenario size. While CPLEX is preferable for small sized problems,

multicut algorithm can be more efficient for larger sized problems.

Figure 6.4 illustrates that CPLEX is more efficient to solve the test problems with up

to 2,000 scenarios. However, at 4,000 scenarios, elapsed time of CPLEX is higher

than the elapsed time of multicut algorithm. Moreover, CPLEX cannot solve the

test problems with a scenario size more than 4,000. Thus, for a certain number of

scenarios, multicut algorithm is preferable to CPLEX.
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Figure 6.4: Comparison of elapsed times of CPLEX and multicut algorithm for
MSDL

6.4 Comparison of the Risk-neutral and the Risk-averse Model

In this study, two different risk approaches are studied for the same problem. In the

risk-averse approach, different than the risk-neutral problem formulation, expected

excess from the expected cost over all scenarios is also minimized. Hence, in risk-

averse approach, we expect scenario costs to have lower variances and expect the

expected cost over all scenarios to be higher compared to the risk-neutral case. In

order to understand the effect of risk factor in the problem environment, we run the

risk-neutral and risk-averse models with the same design parameters. Models are run

for 5 different problems with different number of scenarios and supply quantity 100

and 1,000. The results can be seen in Table 6.11 and Table 6.12. RN refers to the

risk-neutral model and RA refers to the risk-averse model.
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Table6.11: Comparison of the risk-neutral and the risk-averse models with a supply
quantity 100

Total Expected Cost Standard Deviation of Scenario Costs
Number of
Scenarios RN RA (RA-RN)/RN RN RA (RA-RN)/RN

100 1940.153 1941.565 0.07% 442.808 436.045 -1.53%
250 1943.256 1946.504 0.17% 433.884 422.770 -2.56%
500 1944.836 1945.901 0.05% 405.883 399.700 -1.52%
750 1945.403 1950.173 0.25% 410.724 391.617 -4.65%

1000 1927.651 1929.133 0.08% 410.894 402.388 -2.07%

Table6.12: Comparison of the risk-neutral and the risk-averse models with a supply
quantity 1,000

Total Expected Cost Standard Deviation of Scenario Costs
Number of
Scenarios RN RA (RA-RN)/RN RN RA (RA-RN)/RN

100 19452.623 19504.508 0.27% 4242.404 4042.565 -4.71%
250 19164.911 19190.132 0.13% 4357.700 4257.700 -2.29%
500 19346.207 19371.275 0.13% 4412.421 4300.261 -2.54%
750 19520.593 19539.109 0.09% 4186.300 4097.800 -2.11%

1000 19033.914 19053.208 0.10% 4171.437 4084.570 -2.08%

Table 6.11 and Table 6.12 show that standard deviation of scenario costs in risk-averse

model is lower than the risk-neutral model. Total expected cost of risk-averse model

is higher than the risk-neutral model. Results are compatible with our expectations.

Observation 6.4.1 Percent increase in total expected cost is lower than the percent

decrease in standard deviations.

Observation 6.4.2 There is a relationship between the percent changes in total ex-

pected cost and in standard deviations. The more the increase in the percent change

in total expected cost, the more the decrease in the percent change in standard devia-

tions.

In the problem formulation, the first stage and the second stage unit transportation

costs are assumed to be equal. Comparison of the risk-neutral and the risk-averse

models are given with the same first stage and the second stage unit transportation

costs in Table 6.11 and Table 6.12. In other words, if the first stage unit transportation

costs are c, the second stage unit transportation costs are also c in Table 6.11 and Table

6.12. In order to see the effect of different second stage unit costs in the comparison

of risk-neutral and the risk-averse models, we double and triple the second stage unit
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transportation costs while fixing the first stage costs. In other words, we keep the first

stage unit transportation costs as c and change the second stage unit transportation

costs to 2c and 3c. The results of the 2c and 3c second stage costs for supply quantities

of 100 and 1,000 are given in Table A.1, Table A.2, Table A.3 and Table A.4 in

Appendix A.

Observation 6.4.3 We compare the risk-neutral and the risk-averse models with c, 2c

and 3c second stage unit costs in Table 6.13 and Table 6.14. It is seen that absolute

change in total expected costs and absolute change in standard deviations are higher

in the models with 2c second stage unit costs compared to models with c second

stage unit costs. When the results of the models with 3c second stage unit costs are

analyzed, Table 6.13 and Table 6.14 illustrate that absolute change in total expected

costs and absolute change in standard deviations are higher in 3c compared to c.

However, absolute changes in total expected cost and the standard deviations in the

models with 3c second stage unit costs are not higher than the models with 2c second

stage unit costs. Consequently, higher second stage costs than the first stage costs

raise the absolute change in total expected cost and the standard deviations of the

scenario costs compared to the case when the first and the second stage costs are

equal. However, there is not any linear trend in the absolute changes of the total

expected cost and the standard deviations with the increase in the second stage costs.

Table6.13: Comparison of the risk-neutral and the risk-averse models with different
second stage unit costs for a supply quantity 100

Change in Total Expected Cost Change in Standard Deviation
of Scenario Costs

(RA-RN)/RN (RA-RN)/RN
Number of
Scenarios c 2c 3c c 2c 3c

100 0.07% 0.63% 0.29% -1.53% -9.91% -6.45%
250 0.17% 0.50% 0.38% -2.56% -8.13% -6.72%
500 0.05% 0.67% 0.49% -1.52% -9.48% -5.77%
750 0.25% 0.56% 0.50% -4.65% -8.49% -8.75%
1000 0.08% 0.47% 0.41% -2.07% -7.10% -5.77%
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Table6.14: Comparison of the risk-neutral and the risk-averse models with different
second stage unit costs for a supply quantity 1,000

Change in Total Expected Cost Change in Standard Deviation
of Scenario Costs

(RA-RN)/RN (RA-RN)/RN
Number of
Scenarios c 2c 3c c 2c 3c

100 0.27% 0.35% 0.42% -4.71% -8.89% -6.80%
250 0.13% 0.71% 0.75% -2.29% -10.13% -10.27%
500 0.13% 0.61% 0.57% -2.54% -9.56% -8.98%
750 0.09% 0.42% 0.40% -2.11% -7.21% -7.17%

1000 0.10% 0.48% 0.42% -2.08% -7.55% -6.66%
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CHAPTER 7

CONCLUSION

In this study, initial inventory positioning problem of an auction company serving

in floricultural industry is studied. The aim is to optimally position the products at

auction centers prior to the clock minimizing the cost with the involved uncertainties

about the buyers and their purchase quantities. Two different risk approaches are

followed during the study.

First, case problem is studied in a risk-neutral environment. Two-stage stochastic

integer programming is used to model the problem. The minimum cost flow formu-

lation is used in the first and the second stages. In the literature, most of the methods

used to solve two-stage stochastic integer programming are based on L-shaped de-

composition. To handle a model with high number of scenarios, we also suggest

L-shaped and multicut L-shaped decomposition methods. In L-shaped and multicut

L-shaped methods, simplex multipliers of the optimal solution of the second stage

subproblem are used to derive optimality cuts. In our study, total unimodularity of

the second-stage subproblem of the case problem is utilized to obtain optimality cuts

in the decomposition methods.

Second, risk-averse approach is applied to the problem. Risk-averse preferences in

stochastic programming have drawn more attention lately. Mean risk models are

a way to incorporate risk in optimization problems. We prefer first-order mean-

semideviation as the risk measure. The reason beyond the choice of first-order mean-

semideviation is its advantages in optimization problems. Objective function of the

risk-averse formulation is nonlinear and nondifferentiable. We linearize it and pro-

pose a decomposition based solution algorithm, which resembles multicut L-shaped

69



method, for the linearized formulation.

During the computational study, we observe that optimal solution of the LP relaxation

of RN2SSIP is the same as RN2SSIP. Moreover, it is seen that CPLEX can solve high

number of scenarios to a certain degree. L-shaped and multicut L-shaped decompo-

sition algorithms are not computationally efficient for the test problems that CPLEX

can solve. They may be useful only for the problems with high number of scenarios

that CPLEX cannot. When we compare the two decomposition methods, it can be

said that multicut decomposition algorithm is more efficient than L-shaped method

for the test problems considering the computational times. Furthermore, solving the

stochastic problem instead of using the expected value solution as the first stage de-

cision brings about expected cost decrease.

Looking at the computational results for the risk-averse model, it can be said that

while CPLEX is preferable for small sized problems, the multicut decomposition

algorithm is more efficient than CPLEX for larger sized problems.

In addition, we also compare the risk-averse and the risk-neutral models. In the risk-

averse case, expected cost of the scenarios increase while variation of scenario costs

decrease compared to the risk-neutral model as expected. If the second stage unit

transportation costs are taken higher than the first stage unit transportation costs, the

absolute changes in expected cost and the variations of the scenario costs increase.

In this thesis, in the risk-averse context, semideviation is used as the risk measure.

Nevertheless, CVaR is also a preferable risk measure in optimization problems. As a

future study, CVaR can be used as a risk measure in the problem context. Moreover,

the multicut algorithm suggested for problems with high number of scenarios is not

effective as we expect. The model may require further extensions as Branch and Cut

or alternative methods. The multicut algorithm can be improved as a future study. In

addition, the problem is formulated and solved for one grower, it can be extended to

a multigrower case.

70



REFERENCES

[1] Birge , J. R., & Louveaux, F. (1997). Introduction to stochastic programming.
(pp. 83-262). New York : Springer.

[2] Dantzig, G. B. (1955). Linear programming under uncertainty. Management Sci-
ence, 1(3-4), 197-206.

[3] Beale, E. M. L. (1955). On minimizing a convex function subject to linear in-
equalities. J. Royal Statistical Society. Series B (Methodological), 17(2), 173-
184.

[4] Van Slyke, R. M., & Wets, R. (1969). L-shaped linear programs with applica-
tion to optimal control and stochastic programming. SIAM Journal on Applied
Mathematics, 17(4), 638-663.

[5] Benders, J. F. (1962). Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik, 4(1), 238–252.

[6] Neise, F. (2008). Risk management in stochastic integer programming with ap-
plication to dispersed power generation ( pp. 1-26). Wiesbaden: Vieweg Teub-
ner.

[7] Ahmed, S. (2011). Two-stage stochastic integer programming: A brief introduc-
tion. Wiley Encyclopedia of Operations Research and Management Science

[8] Carøe, C. C, & Schultz, R. (1999). Dual decomposition in stochastic integer
programming. Operations Research Letters, 24, 37-45.

[9] Wollmer, R. D. (1980). Two stage linear programming under uncertainty with
0-1 integer first stage variables. Mathematical Programming, 19, 279-288.

[10] Laporte, G., & Louveaux, F. V. (1993). The integer L-shaped method for
stochastic integer programs with complete recourse. Operations Research Let-
ters, 13, 133-142.

[11] Zheng, Q. P., Wang, J., Pardalos, P. M., & Guan, Y. (2013). A decomposition
approach to the two stage stochastic unit commitment problem. Ann Oper Res,
210, 387-410.

[12] Escudero, L. F., Garín M.A., Pérez, G., & Unzueta, A. (2013). Computers &
Operations Research, 40, 362-377.

[13] Ntaimo, L. (2013). Fenchel decomposition for stochastic mixed-integer pro-
gramming. J Glob Optim, 55, 141-163.

[14] Gade, D., Küçükyavuz, S., & Sen, S. (2014). Decomposition algorithms with
parametric Gomory cuts for two-stage stochastic integer programs. Math. Pro-
gram., A(144), 39-64.

71



[15] Carøe C. C., & Tind, J. (1998). L-shaped decomposition of two-stage stochastic
programs with integer recourse. Mathematical Programming, 83, 451-464.

[16] Ahmed, S., Tawarmalani, M., & Sahinidis, N. V. (2004). A finite branch-and-
bound algorithm for two-stage stochastic integer programs. Math. Program.,
A(100), 355-377.

[17] Hemmecke, R., & Schultz, R. (2003). Decomposition of test sets in stochastic
integer programming. Math. Program., B(94), 323-341.

[18] Kong N., Schaefer, A. J., & Hunsaker, B. (2006). Two-stage integer programs
with stochastic right-hand sides: a superadditive dual approach. Math. Pro-
gram., B(108), 275-296.

[19] Sherali, H. D., & Fraticelli B. M. P. (2002). A modification of Bender’s de-
composition algorithm for discrete subproblems: An approach for stochastic
programs with integer recourse. Journal of Global Optimization, 22, 319-342.

[20] Sen, S., & Higle, J. L. (2005). The C3 Theorem and a D2 algorithm for large
scale stochastic mixed-integer programming: Set convexification. Math. Pro-
gram., A(104), 1-20.

[21] Sen, S., & Sherali, H. D. (2006). Decomposition with branch-and-cut ap-
proaches for two-stage stochastic mixed-integer programming. Math. Program.,
A(106), 203-223.

[22] Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic
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APPENDIX A

COMPARISON OF THE RISK-NEUTRAL AND THE

RISK-AVERSE MODEL WITH 2C AND 3C SECOND STAGE

UNIT TRANSPORTATION COSTS

TableA.1: Comparison of the risk-neutral and the risk-averse models with 2c second
stage unit transportation costs for a supply quantity of 100

Total Expected Cost Standard Deviation of Scenario Costs
Number of
Scenarios RN RA (RA-RN)/RN RN RA (RA-RN)/RN

100 2773.075 2790.535 0.63% 759.598 684.305 -9.91%
250 2759.242 2772.951 0.50% 715.8365 657.668 -8.13%
500 2722.420 2740.547 0.67% 696.594 630.545 -9.48%
750 2738.079 2753.440 0.56% 661.613 605.420 -8.49%

1000 2710.373 2723.140 0.47% 688.590 639.6722 -7.10%

TableA.2: Comparison of the risk-neutral and the risk-averse models with 3c second
stage unit transportation costs for a supply quantity of 100

Total Expected Cost Standard Deviation of Scenario Costs
Number of
Scenarios RN RA (RA-RN)/RN RN RA (RA-RN)/RN

100 3517.418 3527.450 0.29% 1026.500 960.295 -6.45%
250 3476.795 3489.861 0.38% 988.4554 922.033 -6.72%
500 3415.636 3432.238 0.49% 944.725 890.238 -5.77%
750 3438.582 3455.839 0.50% 923.376 842.589 -8.75%

1000 3400.118 3413.915 0.41% 957.250 902.0342 -5.77%

TableA.3: Comparison of the risk-neutral and the risk-averse models with 2c second
stage unit transportation costs for a supply quantity of 1,000

Total Expected Cost Standard Deviation of Scenario Costs
Number of
Scenarios RN RA (RA-RN)/RN RN RA (RA-RN)/RN

100 27499.784 27595.376 0.35% 6826.500 6219.300 -8.89%
250 27148.615 27341.31 0.71% 7264.200 6528.500 -10.13%
500 27273.531 27439.916 0.61% 7328.100 6627.400 -9.56%
750 27450.001 27564.600 0.42% 6929.400 6429.800 -7.21%

1000 26887.571 27015.826 0.48% 6961.800 6436.100 -7.55%
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TableA.4: Comparison of the risk-neutral and the risk-averse models with 3c second
stage unit transportation costs for a supply quantity of 1,000

Total Expected Cost Standard Deviation of Scenario Costs
Number of
Scenarios RN RA (RA-RN)/RN RN RA (RA-RN)/RN

100 34364.128 34506.902 0.42% 9105.100 8486.000 -6.80%
250 34262.14 34519.48 0.75% 9943.500 8922.600 -10.27%
500 34320.760 34515.112 0.57% 10067.000 9162.800 -8.98%
750 34443.96 34582.133 0.40% 9560.400 8875.000 -7.17%

1000 33834.069 33977.127 0.42% 9601.300 8961.800 -6.66%
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