
MEASURING AND ASSESMENT OF WELL KNOWN

BAD PRACTICES IN ANDROID APPLICATION

DEVELOPMENTS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ĠSMAĠL ALPER SAĞLAM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2014

MEASURING AND ASSESMENT OF WELL KNOWN BAD PRACTICES IN

ANDROID APPLICATION DEVELOPMENTS

Submitted by İSMAİL ALPER SAĞLAM in partial fulfillment of the requirements for

the degree of Master of Science in Information Systems, Middle East Technical

University by,

Prof. Dr. Nazife Baykal _____________________

Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin _____________________

Head of Department, Information Systems

Assoc. Prof. Dr. Aysu Betin Can _____________________

Supervisor, Information Systems, METU

Examining Committee Members:

Prof. Dr. KürĢat Çağıltay ______________________

CEIT, METU

Assoc. Prof. Dr. Aysu Betin Can ______________________

IS, METU

Dr. Ali Arifoğlu ______________________

IS, METU

Assoc. Prof. Dr. Erhan Eren ______________________

IS, METU

Assoc. Prof. Dr. Banu Günel ______________________

IS, METU

 Date: 15.09.2014

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last Name: ĠSMAĠL ALPER SAĞLAM

 Signature :

iv

ABSTRACT

MEASURING AND ASSESMENT OF WELL KNOWN BAD PRACTICES IN

ANDROID APPLICATIONS

SAĞLAM, ĠSMAĠL ALPER

M.Sc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. AYSU BETĠN CAN

September 2014, 67 Pages

One of the best ways to make a mobile application usable, reputed and high-scored is

attention to the requirements like responsiveness, low memory consumption and

stability. To meet these requirements developers must improve their codes by

avoiding some bad-practices, which cause "Memory-Leaks", "ANR (Application not

responding)" and "Out-of-Memory" to satisfy the user's need and make the Android

application robust and usable. In this thesis, I developed a tool that detects a set of

bad-practices in Android applications automatically. The tool is applied to source

code of 100 open source Android applications. The findings of the tool are used to

analyze whether there is a relationship between the user ratings (i.e. the reputation)

of the applications with the number and type of bad-practices. To represent

reputation, the statistical data of the 100 Android applications that shows their

success such as rating and install count is collected from the applications‟ official

web sites. Another contribution is that, with the aid of the tool developed in this study,

developers will be able to find their mistakes in their codes easily or know what may

go out wrong when they release their Android applications.

Keywords: android, bad-practices, memory-leak, ANR, automation

v

ÖZ

ANDROĠD UYGULAMASI GELĠġTĠRĠLMELERĠNDE YAPILAN

YANLIġ YÖNTEMLERĠN ÖLÇÜMÜ VE DEĞERLENDĠRĠLMESĠ

SAĞLAM, ĠSMAĠL ALPER

Yüksek Lisans, BiliĢim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. AYSU BETĠN CAN

Eylül 2014, 67 sayfa

Bir mobil uygulamayı daha kullanıĢlı, tanınmıĢ ve yüksek skorlu yapmanın en iyi

yollarından biri bu uygulamayı daha cevap verebilir, az hafıza tüketen ve kararlı

olma gereksinimlerini yerine getirmektir. Bu gereksinimleri yerine getirebilmek için

geliĢtiriciler uygulamalarını "Bellek-Sızıntısı", "ANR (Uygulama Yanıt Vermiyor)"

ve "Yetersiz-Bellek" hatalarına sebep olan bazı kötü yöntemlerden ayırıp

kullanıcıların ihtiyaçlarına cevap vermelidirler. Bu çalıĢmada Android

uygulamalarını inceleyen ve bu uygulamalardaki kötü yöntemlerin ortaya

çıkarılmasını otomatik hale getiren bir araç geliĢtirilmiĢtir. Bu araç 100 açık kaynak

kodlu uygulama üzerinde çalıĢtırılmıĢtır. Aracın bulduğu sonuçlar ile uygulamaların

kullanıcı derecelendirmeleri arasındaki iliĢki incelenmiĢtir. Kullanıcı değerlendirme

verisi olarak uygulamaların resmi web sitelerinden kullanıcı derecelendirmeleri,

indirilme sayıları bilgisi toplanmıĢtır Bunların yanı sıra, geliĢtirilen araç sayesinde

geliĢtiriciler kodlarındaki hataları daha kolay bulabilecek ve uygulamayı piyasaya

sürdüklerinde nelerin yanlıĢ olabileceğini anlayacaklardır.

Anahtar Kelimeler: android, kötü-yöntemler, bellek-sızıntısı, ANR, otomasyon

vi

ACKNOWLEDGEMENTS

I express my sincere appreciation to my supervisor, Assoc. Prof. Dr. Aysu Betin Can,

for her guidance, insight, support, encouragement and positive attitudes throughout

the study. I am thankful for having the chance of working with her.

I would like to express my very great appreciation to Hande TaĢlıoğlu, for his

precious support, his endless love and for being the source of my motivation. It

would be impossible to finish this work without his support.

I am very grateful and would like to thank my family for their invaluable patience

and encouragement.

I would like to thank all of my friends for their support.

vii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS .. vii

LIST OF TABLES... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xii

CHAPTERS

1. INTRODUCTION ... 1

2. BACKGROUND INFORMATION ... 5

2.1. What is Android? ... 5

2.2. Android User Interface .. 5

2.3. Android Applications .. 5

2.3.1. Platform .. 6

2.3.2. Application Development... 7

3. RELATED WORK ... 11

3.1. Android Static Analysis Tools ... 11

3.1.1. Android Lint ... 11

3.1.2. PerfChecker and VeriDroid .. 14

3.2. Android Dynamic Analysis Tools ... 15

3.2.1. UI/Application Exerciser Monkey ... 15

3.2.2. Systrace .. 15

3.3. Bad-Practice Detectors .. 16

3.3.1. FindBugs .. 16

3.3.2. AMC: Verifying User Interface Properties for Vehicular Applications 16

3.4. Other Bug Finding Studies on Android ... 17

4. METHODOLOGY ... 19

4.1. Bad-Practices in Android development ... 19

viii

4.1.1. Using Non-Static Inner Classes.. 20

4.1.2. Not Setting Thread Priorities .. 23

4.1.3. Not Using a Cancellation Policy in a Thread 24

4.1.4. Not Reusing Views in List View .. 26

4.2. The Detectors .. 27

4.2.1. InnerClassLeakDetector ... 28

4.2.2. ThreadPriorityNotSetDetector.. 30

4.2.3. ThreadNoCancelationPolicyDetector ... 30

4.2.4. ListViewNoReuseDetector ... 32

4.3. Evaluating the tool Bad-Practice Finder ... 34

4.4. Program Performance .. 35

5. ANALYSIS .. 37

5.1. Gathering Experiment Data ... 37

5.2. Analysis ... 40

5.2.1. Correlation between User Ratings and Bad-Practice Count 40

5.2.2. Relation with Categorization .. 41

5.2.3. Correlation between Average of Successfulness and Average of Bad-

Practice Count .. 45

6. CONCLUSION .. 47

REFERENCES ... 49

APPENDICIES

A. WEBSITES EXPLAINING BAD AND BEST PRACTICES 53

B. BAD PRACTICES LIST ... 57

C. APPLICATIONS WITH RATINGS, INSTALL COUNTS AND LINE OF

CODES ... 59

D. CLASS DIAGRAMS .. 65

ix

LIST OF TABLES

Table 1 Application‟s expected and detected bad-practice values 35

Table 2 Bad-practice Finder tool performance metrics .. 35

Table 3 Statistical information about subject applications ... 40

Table 4 Pearson product-moment correlation coefficient between normalized rate

counts (5 point, 4 point, 3 point, 2 point, 1 point, higher rates, lower rates, install

count) and bad-practice counts („*‟ means significant correlation value which has a

p-value of smaller than 0.05) ... 41

Table 5 Application success categories .. 42

Table 6 Kruskal-Wallis test on bad-practices count and Success category 42

Table 7 Pearson product-moment correlation coefficient values between average

normalized bad-practice count and average weighted average user rating („*‟ means

significant correlation value which has a p-value of smaller than 0,05) 45

Table 8 Websites explaining bad and best practices... 53

Table 9 Bad-Practices List ... 57

Table 10 Applications with ratings install counts and line of codes 59

x

LIST OF FIGURES

Figure 1 Android software layers (Adapted from [11]) ... 6

Figure 2 Stages that turns an Android application to Linux-Kernel managed process

(Adapted from [11]) ... 7

Figure 3 Activity lifecycle methods (Adapted from [12]) .. 8

Figure 4 Structure of Android Lint ... 12

Figure 5 Accept method ... 14

Figure 6 Outer class source code .. 21

Figure 7 Outer class decompiled code ... 21

Figure 8 An acivity source code example containing async task 22

Figure 9 A runnable example that sets its priority .. 23

Figure 10 Java Garbage Collector roots (Adapted from [34]) 24

Figure 11 An activity example leaking thread .. 25

Figure 12 An activity example not leaking thread ... 25

Figure 13 A list adapter example not reusing views ... 26

Figure 14 A list adapter example reusing views ... 27

Figure 15 InnerClassLeakDetector class diagram .. 29

Figure 16 Algorithm for finding leaking inner classes ... 29

Figure 17 ThreadPriorityNotSetDetector class diagram .. 30

Figure 18 Algorithm applied in “visitWhile” and “visitMethods” methods of the

visitor in ThreadNoCancelationPolicyDetector ... 31

file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682647
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682648
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682649
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682650
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682651
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682652
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682653
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682654
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682655
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682656
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682657
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682658
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682660
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682660

xi

Figure 19 Algorithm for deciding whether the cancellation policy exsists or not 32

Figure 20 ThreadNoCancellationPolicyDetector class diagram 32

Figure 21 Algorithm applied in “visitMethod” method of visitor in

ListViewNoReuseDetector ... 33

Figure 22 ListViewNoReuseDetector class diagram ... 34

Figure 23 Algorithm for downloading application source code 38

Figure 24 Algorithm for gathering application data form Google Play 39

Figure 25 Box-Plot of “Using non-static inner classes” count vs Success category . 43

Figure 26 Box-Plot of "Not setting thread priorities" count vs Success category 43

Figure 27 Box-Plot of “Not using cancellation policy in thread” count vs Success

category .. 44

Figure 28 Box-Plot of "Not reusing views in list view" count vs Success category . 44

Figure 29 Detector class diagram ... 65

Figure 30 Lint Driver class diagram .. 66

Figure 31 Scope & issue class diagram.. 67

file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682661
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682662
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682663
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682663
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682664
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682665
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682666
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682671
file:///F:/basılacak%202014%2009%2028/toc%20chaptersız/MEASURING%20AND%20ASSESMENT%20OF%20WELL%20KNOWN%20BAD%20PRACTICES%20IN%20ANDROID%20APPLICATION%20DEVELOPMENTS.docx%23_Toc399682673

xii

LIST OF ABBREVIATIONS

ANR Application Not Responding

ADT Android Development Tools

AST Abstract Syntax Tree

DVM Dalvik Virtual Machine

FOSS Free and Open Source Software

SDK Software Development Kit

UI User Interface

1

 CHAPTER 1

INTRODUCTION

Creating a top-selling, stable and high-rated mobile application is not an easy task to do.

Many mobile application developers and companies especially the ones working on

Android must have an understanding of mobile applications have a huge difference from

traditional ones because the resources are limited and the platform is eager to hang the

developers out the dry. To have a good reputation, mobile application developers must

obey some special rules that are governed by the environment of mobile application such

as users must have ability to personalize everything [1] and they should always be

careful about not having a bad reputation by annoying users.

The desired qualities for a mobile application according to [2] are:

 More Stable:

Application must not crash, force close, freeze or function unnatural on any targeted

device and get rid of possible bugs.

 More Responsive:

Application must not do potentially long operations on user interface (UI) thread and

no Application Not Responding (ANR) dialog will be displayed.

100 ms to 200 ms is the key period for users not to detect any slowness in an

application [3]. Other than that if there are long tasks, instead of freezing, application

must give a hint about the progress of the current process.. In Android Operating

System, there is a guarding system that is against the applications that are sluggish,

hanging or freezing for significant period of time or that cannot take any new inputs

from the user in too long periods. In these situations, system offers the user to exit

from the application. It is the responsibility of developers to design the application

that never shows this offer to user by preventing such situations. [4]. The conditions

that activate the guarding system are as follows:

o In 5 seconds, there is no response from the application to an input event.

o In 10 seconds, an execution that caused from a BroadcastReceiver (which

is discussed in Chapter 2) is not finished.

2

 Quicker:

Application must load rapidly and eliminate unnecessary actions or features because

speed matters. According to experiment by Google researchers [3], if the search time

delay is intentionally increased to 100 ms to 400 ms, users begin to search 0.2% to

0.6% less often. Moreover, even if this intentional delay is withdrawn, the search

rate of users will never be increased to their first level. Since these numbers are for

Google, they may seem small but if the speed matters for even that big software, it is

expected more effective for any standalone application that in Android world.

In mobile application world, there is always a market that operates like clockwork such

as Google Play
1
 . These markets make developers easier to earn a reputation for their

product and even sell them. Applications with good reviews and high ratings tend to get

better revenue, so good reputation is an important factor. There are several books [5] [6]

and off-line [7], on-line [8] courses that teach Android application development

frameworks and how to build applications with good quality. Beside, some blogs,

tutorials and articles focus on the common pitfalls in the Android application framework

and they discuss choosing the right way of doing a task among many ways that end up

same result.

In this thesis, we collected common mistakes that decrease these qualities in an Android

application. After that, we converted those mistakes into patterns that can be recognized

in Android application source code. This conversion was followed by developing a tool

that detects those patterns in an Android project automatically. This tool is the first

contribution of this thesis.

In parallel, we downloaded source codes of open source applications and collected their

review statistics, i.e. rate counts for each point 1 to 5, average rate and install count data

of those open source applications from Google Play. This statistic was used as a raw

material for calculating success of applications. The tool developed to detect the bad-

practices was run with all of the projects that are downloaded. The output of the tool was

used to produce a dataset, which includes how many of those applications contain bad-

practices, how many bad-practice each application project contains and bad-practice

distribution in successful, unsuccessful projects.

This thesis also aims to answer to the question “Does having a set of chosen bad-

practices in its source code cause lower ratings for an application?”. The extracted

statistical data is summed up to answer to this question.

The rest of the thesis is organized as follows: Chapter 1 introduces our work and gives

the idea behind it, Chapter 2 gives the background information that is needed for

understand the rest of the thesis, Chapter 3 shows the other works in this field and their

difference from our work, Chapter 4 explains the methodology for how our work is put

1
 https://play.google.com/store

3

into practice, Chapter 5 presents analysis of this work and Chapter 6 is the conclusion of

this thesis that clarifies the findings, limitations and future work.

5

 CHAPTER 2

BACKGROUND INFORMATION

2.1. What is Android?

Android is an operating system designed for mobile devices like smartphones or tablets

with touchscreens. This operating system is based on Linux Kernel handling low-level

hardware interactions providing set of APIs to access underlying services and features

[9].
2

2.2. Android User Interface

As default, Android Operating System has a direct manipulation user interface [9],

which is a human computer interaction style involving “continuous representation of

objects, rapid, reversible and incremental actions and feedbacks [9]. Response to the

input using touch inputs and virtual keyboards provides direct and smooth interfaces.

Moreover, sensors like accelerometers are used for additional user actions such as

changing device screen from landscape to portrait depending on the orientation of the

device.

Android devices are opened on home screen that is the primary navigation and

information point of the device. Home screens are generally made up of application

icons and widgets. When the user touches an application icon, the interested application

will open. On the other hand, widgets have the task of displaying live and updated

content like weathercast or social media updates.

In Android Operating System, the status bar at top of the screen shows information about

connection strength. Notification updates can be revealed by pulling down this status bar.

2.3. Android Applications

In Android Operating System, users can get application from Google Play, Amazon

Appstore
3
 or they can install the application‟s “APK” file from a third-party site. On

devices following Google‟s compatibility requirements and having the license of Google

Mobile Services software, Google Play application is pre-installed. In Play Store, more

2
 List of other recent Android Operating System features can be gathered from the link

“http://en.wikipedia.org/wiki/List_of_features_in_Android”.

3
 http://www.amazon.com/mobile-apps/b/ref=topnav_storetab_mas?ie=UTF8&node=2350149011

6

than one million applications available as of July 2013 and these applications have been

installed 48 billion times as of May 2013 [10].

2.3.1. Platform

An Android application is a program that extends functionality of device. To create an

Android application, Android Software Development Kit (SDK) and Java programming

language is used. This SDK comes with debugger, emulators and documentations that

composes development environment.

As it is mentioned in Section 2.1, Android builds on a Linux kernel and it has a layered

environment as shown in Figure 1.

Figure 1 Android software layers (Adapted from [11])

Android applications that are coded in Java are run on a virtual machine called Dalvik

Virtual Machine (DVM). This virtual machine is an open source technology and it

differentiates from the Java Virtual Machines that are stack machines because of using a

register-based architecture [9]. This architecture allows DVM to run on low memory and

use its own byte code. As it shown in Figure 2, an Android application must run on

DVM to turn into a Linux-kernel managed process.

7

Figure 2 Stages that turns an Android application to Linux-Kernel managed process (Adapted from [11])

2.3.2. Application Development

When an Android application starts, the run time environment creates a “user interface

thread”. In Android system, this thread is the “main thread”. This thread delivers the

events to the proper user interfaces widgets and creates other threads.

An Android application consists of the following components:

 Activity: An activity is a class where the user interfaces of the applications are

implemented. Activities can also be considered as tasks that a user can do in a

screen. For example, sending a mail can be done in an activity and composing a

mail can be done in another activity. Every application has a special activity

named “main activity” which is the launcher of the application. [12]. An

application contains multiple activities that are bound to each other usually by

starting each other. When a new activity starts it is pushed to the stack which is

called “back stack”. When user presses the back button, current activity popped

from the “back stack” and previous activity is shown to the user. Normally,

popped activities from the stack are destroyed and garbage collected. One of the

situations the garbage collector cannot collect an activity instance, which is not a

normal situation, is explained in Section 4.1.1. Managing an activity lifecycle is

an important task for a developer. An activity instance in an application switches

between different states, those states are “activity is foreground of the screen

(active)”, “activity has lost focus but it is visible (paused)”, “activity is

completely obscured by another activity (stopped)”, “when paused or stopped

system drops the activity (destroyed)”. For each state, Android system calls a

series of lifecycle methods [13]. As it is shown in Figure 3, “OnCreate” method

is called when the activity is first started, “OnStart” method is called when the

activity becomes visible to the user, “OnRestart” method is called when the

stopped activity is not destroyed and being started again, “OnResume” method is

8

called when the activity will start interacting with the user, “OnPause” method is

called when the system starts the previous activity, “OnStop” method is called

when the activity is no longer visible, “OnDestroy” method is the final call

before your activity is destroyed by the Android system [12].

Figure 3 Activity lifecycle methods (Adapted from [12])

 Context: Context is responsible for holding information about the environment.

These components hold the current state of the activity or application and the

global information about the application. They allow access to the application

specific resources, classes and application-level operations such as launching

9

activities [14]. Every activity object is a context and they are named as “context-

activity”. Another kind of context is “context-application” which is independent

from other activities lifecycles and lives as long as the application runs.

 Service: A service is an application component that persists for a long-time and

stays in the background that means it does not have a user interface. One of the

most powerful properties of the services is that they can run in the background

even if the user switches another application [15].

 Intents Intent is the object that is used for communicating between components

of an application. There are three important usages of intents; to start an activity,

to start a service, to deliver a broadcast [16].

 Content Providers: Content providers can be considered as the data servers

managing access to a structured set of data. They are the standardization between

processes that communicates each other for data [17].

 Broadcast receivers: A broadcast receiver is used for launching an application to

respond to events that are sent to whole device range such as receipt of a text

message or battery low notification.

11

 CHAPTER 3

RELATED WORK

In this section, available tools and studies related with our work are listed and explained.

Tools and studies in this section can be divided into three categories: Android static

analysis tools, Android dynamic analysis tool and bad practice detectors. The first one

discusses the tools that analyze source code of the Android applications to find common

mistakes without executing the application. The second one discusses the tools that test

Android applications against the run-time problems like sudden crashes, slowness. The

third one finds the bad practice patterns in Java source codes. Lastly, we give other bug

finding studies that are not fit those three categories.

3.1. Android Static Analysis Tools

3.1.1. Android Lint

Android Lint is an Android project source code scanner tool for possible bugs and

available as command line tool or Eclipse
4
 and IntelliJ

5
 plugin. Android Lint released in

version 16 Android Development Tools (ADT) [18].

Type of errors checked by Android Lint

Android Lint checks the types of errors [18]:

 Missing and unused translations in localization files

 Performance problems in layouts

 Unused resources

 Problems related with internalization and accessibility like hardcoded strings

 Problems related to bitmaps like densities, wrong sizes

 Problems related to manifest

In addition, there is a list that explains all checks performed by Android Lint in ADT

official site
6
.

4
 http://developer.android.com/tools/debugging/improving-w-lint.html#eclipse

5
 http://blog.jetbrains.com/idea/2012/02/integration-with-android-lint-tool-in-intellij-idea-111/

6
 http://tools.android.com/tips/lint-checks

12

Architecture

In the structure of Android Lint, there are basically four components: issue registry,

which is a container for issues, detectors, driver that drives other components and

reporting system. This structure is shown in Figure 4 Structure of Android Lint

Figure 4 Structure of Android Lint

Android Lint allows its capabilities by extending its checks by using its API. Detector,

Scope, Issue and Visitor are the important classes used for developing extensions. In

addition, there is a reporting system to announce problems in the Android source code.

Detectors

A detector is a class that implements Detector interface to find a problem. When a

detector finds a problem, it classifies this problem as an issue and reports this issue with

information containing: explanation, how to solve the problem, priority and category. In

addition to built-in detectors, one can implement custom detectors. A detector can

implement one or more of these three interfaces: detector.XmlScanner to scan .xml

13

files, Detector.JavaScanner to scan .java files, Detector.ClassScanner to

scan .class files
7
. These interfaces indicate which file types the detector will examine.

Android Lint program processes detectors in a predefined order according to type of

files the detector scans. The predefined processing order of detectors is:

1. Detectors scanning Manifest File

2. Detectors scanning Resource files,

3. Detectors scanning Java sources,

4. Detectors scanning Java classes,

5. Detectors scanning Proguard files.

The main class of the framework is called LintDriver class. This driver initiates each

registered detectors to check the project against problems.

Issues & Scopes

An issue is a data class holding information about the problem found by a detector.

Issues can be considered as the problems found by the detectors. An issue in Android

Lint API is associated with a description, explanation, category and priority. The

properties of the issues, such as priority of an issue, can be customized by the users by

using preference files.

The relationship between detectors and issues is that a detector is responsible for

scanning through the Android code, finding problems, creating issue instances for each

of the problem and reporting them. The important point here is there can be more than

one issue instance to report in a detector.

Each issue has a scope that specifies in which file type the problem may arise. A scope is

an enumeration representation that lists parts of an Android project that are Resource

Files, Java Source Files, Class Files, Proguard Configuration Files and Manifest File.

For example, according to this API, if a detector finds a bug in pure java code file it

must have an issue that is scoped with Scope.JAVA_FILE_SCOPE and must implement

the Detector.JavaScanner to scan java files. [19]

Visitors

Detectors need to examine the source files and the framework provides visitors to parse

and gather information on these files. The top-level visitor is an interface called

AstVisitor defines the visit methods to traverse each node of the abstract syntax tree

(AST). One concrete visitor provided by the framework is called
ForwardingAstVisitor.

7
 Class diagram of those classes are shown in APPENDIX D Figure 29, Figure 30, Figure 31

14

A good way to implement a detector is extending the ForwardingAstVisitor and

overriding the visit methods for the nodes of interest to find problems. The custom

Detector will instantiate this extended visitor class when invoked by the LintDriver.

The nodes of the AST are the visitables implementing the accept method shown in

Figure 5.

In the Figure 5, in VISIT_A_TYPE method, TYPE represents an AST node such as if,

VariableDeclaration, MethodDeclaration or Comment. Here, the accept method

implements the traversal algorithm: the visitor is ordered to traverse the children of the

current node only if the condition in line 3 returns false. In ForwardingAstVisitor

class, all of the visitor‟s VISIT_A_TYPE methods‟ calls return false and makes an

automatic traversal in Android source code.

Reporting

When a detector finds a problem, it must call the report method on the context object.

Context object is a subclass instance of a Context class in Android Lint API that can be

JavaContext, ClassContext and XmlContext as shown in Figure 4 Structure of

Android Lint. The report method is called with the parameters: issue instance that is

found, location of the issue where the problem occurred, message to show the user and

associated data.

3.1.2. PerfChecker and VeriDroid

In two of their studies, Liu at al works on bug patterns in Android developments. First,

Liu at al created a tool that is named VeriDroid which detects null pointer de-references

and resource leak defects. VeriDroid applied on 5 Android applications and it detected 7

bad-practice patterns” [20]. Second, they collected 70 performance bugs and create a

tool that finds patterns that may cause of those performance bugs and named as

PerfChecker. PerfChecker can find two patterns: “Potentially long running and not

threaded operations like network, db etc. in main thread” and “Not reusing views in list

views” [21]. After developing their tool, they applied the tool on 29 popular Android

applications. As a result PerfChecker found 126 bad-practices and 68 of them admitted

by the developers of the applications. Furthermore, 20 of those bad-patterns were easily

resolved by means of the recommendations of the PerfChecker.

Those two works of Liu at al resemble our work in a way that they aim to find bad-

practices; however, with Bad-Practice Finder we find different patterns that may cause

performance bugs or other fallacies.

1 public void accept(lombok.ast.AstVisitor visitor) {

2 if (visitor.VISIT_A_TYPE(this)) return;

3 for (lombok.ast.Node child : this.typeArguments.asIterable()) {

4 child.accept(visitor);

5 }

6 visitor.endVisit(this);

7}

Figure 5 Accept method

15

3.2. Android Dynamic Analysis Tools

3.2.1. UI/Application Exerciser Monkey

The Monkey (UI/Application Exerciser Monkey) is a program that executes on an

emulator or a device and generates random user events such as clicks, touches, gestures

or system-level events. This program can be used as a random, repeatable stress-tester

for the Android applications while developing. [22]

When the Monkey executes, generated events are sent to system. The system under test

is watched by The Monkey against three conditions. Three conditions and behavior of

the Monkey are:

 Attempt to navigating other packages (if the Monkey is constrained running

on one or more specific packages)

o Behavior: the Monkey stops the attempt.

 Crashes and unhandled exceptions from application

o Behavior: the Monkey stops and reports the error.

 ANR error from application

o Behavior: The Monkey stops and reports the error.

Moreover, the Monkey has an option, which effects reporting verbosity on progress of

the Monkey and generated events.

The Monkey tool only recognizes that there is problem in an Android application such as

an Out of Memory exception. However, one cannot understand this exception caused by,

for example, using non-static inner classes whose life is longer than its outer class,

which is the situation explained in Section 4.1.1. As a result, the Monkey only gives the

result not the reason behind the crush or slowness. On the contrary, our tool aims to find

the reasons of Out of Memory exception, ANRs or slowness in the applications.

3.2.2. Systrace

Systrace analyzes performance of an Android application by capturing and displaying

execution time of the application processes and other Android system processes. The

data from Android kernel, such as CPU scheduler or disk activity are combined with the

application threads by Systrace to create an HTML report. This report shows the overall

picture of system processes of the Android device for a period of time. Systrace tool is

useful in diagnosing problems related to display problems, which are slow drawings,

stuttering in motion or animation.

Systrace tool makes a dynamic trace in the source code and gives a performance picture

to the developer. Developers can see which threads of application uses CPU time more.

However, this tool, like the Monkey, gives no information what may cause this overuse

of CPU. Moreover, developer must do intuitive guesses like this thread must not use that

much of CPU. As a result, Systrace can be used for demonstrating bug is existed and

finding approximate location of bug in code. Of course, Systrace will prove that the

16

threads that contain the bad-practices in 4.1 are problematic but will not provide any

information about which one of them causes that problem.

3.3. Bad-Practice Detectors

3.3.1. FindBugs

FindBugs [23] is a bug pattern (bad-practice) detector for Java programs. Hovemeyer et

al. gathered several bug patterns, both simple and complicated bugs, from real life

programs. Surprisingly, those bugs appeared even in professional applications and

libraries. They realized that there are a lot misused features of language or APIs of Java.

In an experience with Google [24], using FindBugs, they filed more than 1700 bug

reports and 640 of them fixed. This work made 1000 of the 4000 issues to resolve.

Therefore, Hovemeyer et al. showed that even developers who specialized on Java might

have significant gaps in their knowledge, which causes bugs. Finally, they concluded

that tools for finding bugs help developers to find feature bugs by raising their

awareness about subtle correctness issues. We think the same way and share this

conclusion, therefore we developed a similar tool specialized for Android applications.

Both FindBugs and the tool developed in our study detect bug patterns and bad-practices.

The context is, however, different. FindBugs is targeted toward general Java applications.

On the other hand, our tool focuses on the bugs specific to Android applications.

FindBugs uses Java byte code to find bugs so program does not need source code of

subjected Java program. List of bugs that this program can be detect are at [25]. These

bugs can be classified in four categories [26]:

 Single-threaded correctness issue

 Thread/synchronization correctness issue

 Performance issue

 Security and vulnerability to malicious untrusted code

3.3.2. AMC: Verifying User Interface Properties for Vehicular Applications

This study [27] is another example that formalizes bad-practices, bug patterns and

provides a tool that detects them automatically. The context of this bug detector is

vehicular applications. The mobile applications (e.g. GPS route planner) in the vehicular

environments are critical applications. The reason, that they are critical, is they must not

distract driver from their primary task of operating the vehicle. There are studies

providing best-practices that mobile application developers can follow. However, Lee et

al. revealed that no application in Android marketplace followed those guidelines.

In the light of these facts, they developed a tool called AMC that explores the graphical

user interface (GUI) of Android applications. AMC tool detects violations of vehicular

design guidelines and gives developers early feedback. They applied their tool to 12

17

application and saw that the tool detect the existing or absent of 85% of guideline items

with false positive and false negative rate of under 2%. For the remaining 15% cases, it

helps reducing the number of application screens to check by an expert 95%.

3.4. Other Bug Finding Studies on Android

There are several bug finding studies in Android Applications and most of them uses

static analysis. For example, [28] finds possible weaknesses containing security and

privacy intrusions in communication between applications. In this work, Chin et al.

realized that inter-application communication might have vulnerabilities and violates

application security policies. To find these vulnerabilities, they provided a tool called

ComDroid. ComDroid applied on 20 applications and it found 34 vulnerability that can

be occurred while two applications are communicated. In addition, 12 of the applied 20

applications have at least one security vulnerability. ComDroid is specialized for one

type of security bugs that includes intents. However, the fact that most of the applied 20

applications have at least one bug shows the importance of bug finders.

Another example, [29] detects a set of bugs and shows what is draining battery of

mobile device. Pathak et al, creates a study that focus on smartphone energy bugs and

they thought that this gives a way to new studies on that area. To do that, they

categorized the energy bugs into three categories. Using dataflow analysis, they created

detection solutions to energy bugs and implement these solutions in order to find energy

bugs in run-time or compile-time. Similar methods such as categorizing the bugs and

finding bugs using automated procedures is used in our study but we found bad-practices

that causes that causes memory leaks or ANR dialogs which are out of scope for Pathak

et al.

 Last example, [30] reveals the unnecessary permissions included in manifest file of the

applications. To achieve this goal, Felt et al created the tool named Stowaway that

composes a set containing maximum permissions required for an application to run.

After that, they used Stowaway for finding required permissions of 940 Android

applications and matched this set against actually requested by manifest of each

application. This experiment showed that over 300 of those applications have

unnecessary privileges. Moreover, results indicates that developer confusion induced by

API documentation errors and deficiency of knowledge causes those over-privileges.

This work specializes to permission errors that may misleads the application users while

installing an application. Even though they detect different bad-practices than our study,

like the focus in this work, we also think that mistakes of developers may affect the user

experiences.

All these studies are essential, useful but they have different focus then our study

because they do not aim to find reasons for Memory Leaks or ANR errors

19

 CHAPTER 4

METHODOLOGY

In this thesis, we collected bad-practices and their proposed solutions. For this step, we

have gathered the experiences of Android developers and the common pitfalls they have

faced over time that are published on the Internet and tutorials such as Android

Developers
8
.

After gathering this information, we have developed a bug-hunting tool that detects

these bad-practices in a given Android application. The tool reports the problematic parts

of the code and the effects of these problems such as ANR or memory leak. Next, we

have collected a set of open source Android applications and run the bug-hunting tool on

them. Finally, we have analyzed the result of the runs and examined the relationship

between the user ratings (i.e. the reputation) of the applications with the number and

type of bad-practices. In this chapter, we explain the first three steps in detail and the

next chapter presents the analysis step.

4.1. Bad-Practices in Android development

To form a set of bad-practices that is recognized by the Android development

community, we have examined tutorials, blog posts of experts and discussion forums

such as StackOverflow
9
, Coderanch

10
 and Android Developers

11
. Furthermore, Google

search is performed using the keywords "Android programming best practices",

"Android programming bad-practices". Making this search reveals studies and

presentations that are concerning "User Interface Best and Bad-practices", "Security

Best and Bad-Practices" and "Performance Best and Bad-Practices". Practices that are

intuitive and objective are eliminated and a list of bad practices whose detection can be

automated with minimum user interaction are extracted. In total, we have examined over

31 web sites to extract the set of bad-practices. The list of the web sites is given in the

APPENDIX A.

Since Android Mobile Development is quite popular in recent years, Internet is full of

tutorials and blogs that teach about what to do and what not to do. Although there are

8
 http://developer.android.com/google/index.html

9
 http://stackoverflow.com/

10
 http://www.coderanch.com/forums

11
 http://developer.android.com/google/index.html

20

several code analyzers, for example FindBugs [23] and Android Lint [18], for bug

detection and testing frameworks, there are still some bad-practices that are still need to

be discovered manually by developers. The following list gives bad-practices that have

maximum occurrence rate and can be found by using static analysis algorithms and they

can cause serious problems and have solutions in these blogs and sites:

 Using non-static inner classes

 Not setting thread priorities

 Not using a cancellation policy in a thread

 Not reusing views in list view

The items in this list cause Memory Leaks, Thread Leak (a special kind of memory leak),

ANR error (application not responding) and slowing the application.

The bad-practices we have gathered contain several more items and those extra items are

given in APPENDIX B; however, for this study, it is important that they are easily

detected and well defined. In addition, the items in this list cover most of the common

causes that freezes or crashes the application and makes the Android system offer the

user to terminate the application.

Next, we explain each of these four bad practices.

4.1.1. Using Non-Static Inner Classes

In Java language, an inner class is a class nested within another class. When an inner

class object is created, that instance holds an implicit and hidden reference to the outer

class` instance. This hidden reference is eligible for garbage collection purposes.

Compilation makes these inner classes seem to be just like the ordinary classes; the

hidden reference becomes real and the only connection between inner and outer class

will be name of the inner class. [31]

Garbage collection is a mechanism to claim memory that not accessible by the running

program (main thread or any other live threads). A Garbage collector periodically

disposes of objects that are eligible for garbage collection using mark-and-sweep

algorithm. Eligible, in here, means, “There are no references to the object”. In Java

language, whenever an inner class instance is created, because of the nature of their

definition, that inner class makes a reference to outer instance. This means that there is

no inner class instance without an outer class. This situation effects the garbage collector

when it needs to reclaim the memory for an instance of the outer class. The collector

cannot reclaim the memory of the outer instance even if it is not referenced by any

object other than its inner instance. This case occurs in Android development when inner

classes of Activity is created, which is a common practice. When the lifetime of an inner

class instance is longer than lifetime of the activity instance, due to the implicit reference,

the activity will not get garbage collected causing a memory leak. This is an important

issue because Android make use of a lot of anonymous inner classes like Runnable,

AsyncTask and Handler.

21

To understand how the memory leak occurs, consider the following example in Figure 6.

When the code sample in Figure 6 is compiled, compiler results two class files:

Outer.class and Outer$1.class and the $1 in here means the implementation of

anonymous inner class. If a disassembler used, the extended source code in Figure 7 will

show the actual code that is created by the compiler.

Important thing here is inner class Outer$1 here holds a reference to Outer instance (see

line 7) by using a static access$0 method. In this case, because of access$0 method and

Outer.this variable, the garbage collector cannot claim the memory for an Outer instance

even if it is not referenced by any other objects.

Figure 8 shows a more clear and related example from an Android case. In this example,

activity instance is implicitly referenced two times from its inner classes. One of them is

anOnClickListener, which is an OnClickListener implementation, and the second one

is ATaskLongRunning, which is an AsyncTask implementation. This means there might

be two critical sections that an event like “orientation change” can possibly leak activity

instance.

public class Outer {

 private String someInstanceVariable = "";

 private InnerClass anonymous = new InnerClass() {

 public void someMethod() {

 someInstanceVariable = "Variable";

 }

 };

}

Figure 6 Outer class source code

1 class Outer$1 implements InnerClass

2 {

3

4 final Outer this$0;

5
6 Outer$1(Outer paramOuter) {

7 this$0 = Outer.this;

8 }

9

10 public void someMethod()

11 {

12 Outer.access$0(Outer.this, "Variable");

13 }

14 }

15

16 public class Outer

17 {

18 private String someInstanceVariable = "";

19 private InnerClass anonymous = new Outer.1(this);

20

21 static /* synthetic */ void access$0(Outer outer, String string) {

22 outer.someInstanceVariable = string;

23 }

24 }

Figure 7 Outer class decompiled code

22

Consider an orientation change by rotating the device. In such case,

anOnClickListener instance will be destroyed with the activity object as long as it

does not contain a long running code. However, the case of the ATaskLongRunning

instance is different. As long as this task continues to run in background, it keeps a

reference to old activity object even if the run time environment created a new Activity

instance. Here, the old activity instance cause memory leak. As a result, using codes

resembling the one in Figure 8 is one of the main causes of Out of Memory Exception.

To prevent from this issue there are four rules [32]:

 Remove the long-lived referenced to a context-activity.

 Garbage collector must not be considered as an insurance against memory

leaks.

 Context-application must be preferred over context-activity.

 Non-static inner classes must be avoided in an activity if the programmer do

not know when their life end. Static inner classes with weak references must

be used in the activities.

public class ActivityWithTask extends Activity {

 private Button aButton;

 private View.OnClickListener anOnClickListener = new View.OnClickListener() {

 public void onClick(View view) {

 new ATaskLongRunning().execute();

 }

 };

 private class ATaskLongRunning extends AsyncTask<Void, Void, Boolean> {

 @Override

 protected Boolean doInBackground(Void... voids) {

 try {

 // Just sleep.

 Thread.sleep(30000);

 } catch (InterruptedException e) {

 }

 // finish your work.

 return true;

 }

 @Override

 protected void onPostExecute(Boolean aBoolean) {

 aButton.setText(aBoolean ? "Great" : "Not Good");

 }

 }

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 aButton = (Button) findViewById(R.id.btnSave);

 aButton.setOnClickListener(anOnClickListener);

 }

}

Figure 8 An acivity source code example containing async task

23

4.1.2. Not Setting Thread Priorities

When an application starts on a device or emulator that contains an Android Operating

System, a thread called UI thread
12

 (also known as the main thread in this context) is

created [33]. This thread is very significant because it is responsible for sending the

events to the proper widgets. Mostly, those widgets consist of drawing events that are

visible to users. For example, when a user touches a button on the screen, this thread

sends the touch event to the widget that makes the buttons state to pressed and sends an

invalidate request to event queue. After all the process is done, this thread dequeues the

events containing request and sends a signal to the widget to draw itself.

Making the Android application multithreaded is essential for the developers to improve

performance. Performing long tasks like database and network tasks blocks the main

thread and this cause display to freeze and no event can be dispatched while this long

task is underway. This situation is reflected to the user as the application stalls.

Moreover, if the application hangs more than 5 seconds user faces with a screen that

says your application is not responding (ANR). [33]

Aside from those multithreading lessons, there is another point that a developer should

know about the multithreaded applications; when there is another thread in an

application it competes with the main thread for the resources. To avoid this developers

should lower the thread priority (as working in the background:

android.os.Process.THREAD_PRIORITY_BACKGROUND) for the threads other than the

main thread by using the method android.os.Process.setThreadPriority. This

assignment must be at the beginning of the run method like shown in Figure 9.

If the thread priority is not set to a lower priority like shown in Figure 9, the probability

of creating a slow application is increased. The reason behind this is that, the task in

runnable operates at the same priority as the main thread by default. This equality in

priorities makes main thread stop dispatching the user interface events, which tends to

lags in screens. Even, not setting thread priorities may cause ANR (application not

12
 http://android-developers.blogspot.com/2009/05/painless-threading.html

class ARunnable implements Runnable {

 /*

 * Define the logic for the thread

 */

 @Override

 public void run() {

 // Put current thread in to background by reducing its priority.

android.os.Process.setThreadPriority(android.os.Process.THREAD_PRIORITY_BACKGROUND);

 // TODO : do the rest of the work

 }

}

Figure 9 A runnable example that sets its priority

24

responding) error. For example, consider the case where the main thread is given many

tasks that must use a certain resource of the device. At the same time, a thread that does

network operation begins and never yields that certain resource for a long time. Because

priorities of two threads are equal, when they need the same resource, network thread

may keep this resource and the main thread may not continue its execution until the

network thread finishes its job. This situation delays all of the tasks including

dispatching of user interface events and user may not get answer from the application for

a while.

4.1.3. Not Using a Cancellation Policy in a Thread

Garbage collection mechanism in Java has a concept named GC Roots which are the

objects that are referenced by the Java Virtual Machine (corresponds to Dalvik Virtual

Machine in Android) itself. In a simple Java application there four kinds of GC Roots:

Local Variables, Static variables, JNI References and Active Java Threads. [34]

Because threads are GC Roots, Dalvik Virtual Machine keeps hard references to all

active threads in Android system. If a thread left running in a long time by setting up a

while(true) or a similar mechanism, they may never be eligible for garbage collection.

A developer must not assume that garbage collector collects the threads. For example, in

the case shown in Figure 11 it is easy to think that after closing the application or the

activity, that activity instance and any running thread associated with that activity are

finalized and eligible for the garbage collection. However, generally this is not the

situation. Java threads are living objects until all its process is done. Furthermore, this is

the case until those threads are externally closed or the entire process is killed by the

Android system.

As a result, it is important to implement a closing or cancellation policy for a thread and

make use of this mechanism by regulating it with the activity life cycle. For example, in

Figure 12 using a mechanism by calling close method in onDestroy method prevents

accidental thread leaks from an application. [35]

Figure 10 Java Garbage Collector roots (Adapted from [34])

25

public class ThreadLeakedActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 new AThread().start();

 }

 private static class AThread extends Thread {

 @Override

 public void run() {

 while (true) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

 }

}

Figure 11 An activity example leaking thread

public class ThreadNotLeakedActivity extends Activity {

 private AThread aThread;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 aThread = new AThread();

 aThread.start();

 }

 private static class AThread extends Thread {

 private boolean running = true;

 @Override

 public void run() {

 while (running) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

 public void close() {

 running = false;

 }

 }

 @Override

 protected void onDestroy() {

 super.onDestroy();

 aThread.close();

 }

}

Figure 12 An activity example not leaking thread

26

4.1.4. Not Reusing Views in List View

Showing lists is very important issue in Android development because it is a critical

performance area for a resource constrained mobile device. The underlying reason for

the problem is that there may be many items in a list. However, this must not prevent

scrolling being smooth and fast and the process should not drain battery and not overuse

the resources like CPU or RAM. [36]

In Android Development API, there is a component called ListView that is designed for

scalability and performance. It inflates its children, which can be named as list item and

paints or prepares children that are or will become visible. While doing this operation

developers must be careful about inflating the ListView with new views because

creating new layout is very expensive operations.

Every time a ListView needs to show a list item on a screen, it calls getView method of

its registered adapter. If the developers implement the adapter as in Figure 13 it creates a

view for each invocation of getView method. This mechanism will fail because it drains

the resources of the system.

public class WrongListAdapter extends BaseAdapter {

 private LayoutInflater mInflater;

 @Override

 public int getCount() {

 // code to get total number of items in this list.

 }

 @Override

 public Object getItem(int position) {

 //code to get an item from a list.

 }

 @Override

 public long getItemId(int position) {

 // code to get id of an item.

 }

 @Override

 public View getView(int position, View convertView, ViewGroup parent) {

 View item = mInflater.inflate(R.layout.activity_main, null);

 ((TextView) item.findViewById(R.id.txtLastSavedRecord)).setText(15);

 Bitmap mIcon1 = null;

 Bitmap mIcon2 = null;

 ((ImageView)

item.findViewById(R.id.action_settings)).setImageBitmap((position & 1) == 1 ?

mIcon1 : mIcon2);

 return item;

 }

}

Figure 13 A list adapter example not reusing views

27

Instead of creating view each time, developer must reuse the views that are already

created. Fortunately, Android has the ability to do that. As the example in Figure 13

shows, the getView method has three arguments position of item in list, a view

convertView and a ViewGroup parent. The convertView is a recycled -if possible-

view which was made invisible as the user pans the ListView. If a coder can use and

update this view as it shows the new information instead of creating a new view,

ListView only keeps views just enough to fill its space on screen and some additional

recyclable views, even the adapter class instance has hundreds or thousands of items. A

good example for doing that task can be seen in Figure 14.

In Figure 14 getView method contains a logic that checks convertView parameter

against to be null and use it as a new view instead creating a new one.

4.2. The Detectors

In this thesis, to achieve the goal of hunting bad-practices in open source Android

applications, a java program is developed called Bad-Practice Finder. This program

takes an Android application source code as its input and searches for the pitfalls and

bad-practices discussed in Section 4.2. The tool is created by using another open source

program, Android Lint that is introduced in Section 3.1.1. Our tool can be considered as

an extension of Android Lint, which aims to find the bad-practices, explained in Section

4.1 instead of its original bugs.

public class CorrectListAdapter extends BaseAdapter {

 private LayoutInflater mInflater;

 @Override

 public int getCount() {

 // code to get total number of items in this list.

 }

 @Override

 public Object getItem(int position) {

 // code to get an item from a list.

 }

 @Override

 public long getItemId(int position) {

 // code to get id of an item.

 }

 @Override

 public View getView(int position, View convertView, ViewGroup parent) {

 if (convertView == null) {

 convertView = mInflater.inflate(R.layout.activity_main, parent, false);

 }

 ((TextView) convertView.findViewById(R.id.action_settings)).setText(15);

 Bitmap mIcon1 = null;

 Bitmap mIcon2 = null;

 ((ImageView) convertView.findViewById(R.id.btnSave)).setImageBitmap((position

& 1) == 1 ? mIcon1 : mIcon2);

 return convertView;

 }

Figure 14 A list adapter example reusing views

28

Android Lint is developed as a part of Android Development Tools and current version is

22.1.3. To develop our tool Android Lint source code is downloaded in a form of three

packages from the repository of Android Development Tools. These downloaded three

packages are lint-22.1.3-sources
13

, lint-api-22.1.3-sources
14

, lint-checks-22.1.3-sources
15

.

Downloaded source codes are compiled and architecture of Android Lint source code is

analyzed for purpose of this study. Detailed information about Android Lint architecture

is explained in Section 3.1.1.

 To analyze an Android application, Android Lint API uses classes that implemented

Detector interfaces. We implemented our custom detectors and we are able to scan the

classes, byte-codes and XML files. To implement a detector first we must decide on its

scope. The scope defines the types of files Android Lint will scan. Detailed information

about scopes is given in Section 3.1.1.

For each entry in the Section 4.1, an issue and a detector class is created. These classes

and their details are discussed in the following subsections.

When Android Lint checks an application, it looks for the issues in its registry. Currently

there are 80 built-in issues, which are declared in the issue registry class named

BuiltinIssueRegistry extending IssueRegistry class [37]. In order to focus only on

the issues presented in this thesis, we removed the built-in issues from Android Lint by

removing BuiltinIssueRegistry class. Instead of those registries, a new custom

registry class CustomIssueRegistry, which register the issues that are owned by the

detectors that hunts bad-practices explained in Section 4.1.

After changing the issues with the custom ones related with this project, the tool is

executed on all open source project that we collected as discussed in Chapter 5.

4.2.1. InnerClassLeakDetector

This detector finds the non-static inner classes that are explained in Section 4.1.1. This

detector scopes (i.e. examines) all of the .class files. It extends Detector class and

implements ClassScanner of Android Lint API (see Figure 15). This class overrides the

checkClass method of the ClassScanner by applying the algorithm in Figure 16.

13
 http://search.maven.org/remotecontent?filepath=com/android/tools/lint/lint/22.1.3/lint-22.1.3-sources.jar

14
 http://search.maven.org/remotecontent?filepath=com/android/tools/lint/lint-api/22.1.3/lint-api-22.1.3-

sources.jar

15
 http://search.maven.org/remotecontent?filepath=com/android/tools/lint/lint-checks/22.1.3/lint-checks-

22.1.3-sources.jar

29

.

As it shown in Figure 16 Algorithm for finding leaking inner classes, the program first

checks that if there is a “$” character in the name of the .class file. Second, it checks if

this class is a built-in android classes like “Drawables” or “Filterables”. Third, because

“Handler” class of Android is already checked by lint, it skips “Handler” classes. Lastly,

if the class is not static and has a reference to its outer class program reports the issue

with location.

Figure 15 InnerClassLeakDetector class diagram

function checkclass(classNode)

{

 if name of classNode does not contain "$" {

 return;

 }

 if classNode is an irrelevant android class {

// Irrelevant Android classes are classes that do not cause

// inner class leak and are built-in classes by Android Operating System

// such as Drawables and Filterables

 return;

 }

 if classNode is android handler class {

 // Android handler class is already handled by Android Lint.

 return;

 }

 if classNode is not a static class{

 if classNode has a reference to outer class {

 report issue location in code with className

Figure 16 Algorithm for finding leaking inner classes

30

4.2.2. ThreadPriorityNotSetDetector

This detector finds the threads that do not set priority in its run method. This detector

has the scope of Java files, which is achieved by using scope Scope.JAVA_FILE_SCOPE

and implements the JavaScanner interface. This class creates and passes the java

context to a visitor extending ForwardingASTVisitor which visits and searches for

runnables and their run methods. This visitor invokes another visitor,

ThreadPrioritySetSearcher, to search for the statement containing

setThreadPriority method invocation in the body of run method. The class diagram

of this detector is shown in Figure 17.

Figure 17 ThreadPriorityNotSetDetector class diagram

4.2.3. ThreadNoCancelationPolicyDetector

This detector finds the bad-practice pattern mentioned in Section 4.1.3 which is not

using a cancellation policy in a thread. It creates a visitor which searches for a

cancellation policy in the runnable classes that have possibility to run forever (especially

while loops) and checks that if this cancellation policy exists.

While creating an algorithm to detect cancellation policy absense in threads, we know

that we could not cover all the cases. Because finding if there is a method which

definitely closes a thread (i.e. developing an algorithm that checks if a thread will

terminate) is an undecidable problem [38]. Therefore, we needed a heuristic approach to

detect at least a subset of bad-practice occurences. Our heuristic approach involves the

obvious ones which uses while with static conditions like “true” or “!false” and there is

no exit statement in its block or there is an exit statement in its block but the condition

which triggers this exit statement is not changed in any other method. This approach

confirms that if there is a sharp “Not using a cancellation policy in a thread” bad-

practice, our algorithm finds it. However, if the algorithm cannot find it, this does not

31

mean that there is no “Not using a cancellation policy in a thread” bad-practice in the

code. The psuedocode for this approach is shown in Figure 18.

In the algorithm shown in Figure 18, first while conditions are checked if they are static

conditions like “true” or “false”. Second, among the statements in the while block,

“break” or “return” statements are searched for whether there is an exit point from the

while block. After finding static conditions and break conditions, the methods of the

current class are visited to find the method that triggers the break statement via

visitMethods function. After the while statements and runnable methods are visited, the

algorithm shown in Figure 19 runs to check whether there is a cancellation policy or

not.

global staticCondition = false;

global isThereBreak = false;

global closeMethod = false;

global breakCondition;

function visitWhile(whileNode)

{

 whileCondition = get condition from whileNode

 if whileCondition is "true" or whileCondition is "!false"

 staticCondition = true; // this means while(true) or while(!false)

 // which can execute forever

 foreach children of whileNode

 if children is "break" or "return"

 {

 isThereBreak = true; // means while can be exited

 breakCondition = get condition from parent of "break" or "return";

 }

}

function visitMethods(methodNode)

{

 if(staticCondition and isThereBreak and (breakCondition is boolean))

 {

 foreach children in methodNode

 if children assignes breakCondition to false

 {

 closeMethod = true;

 return;

 }

 }

}

Figure 18 Algorithm applied in “visitWhile” and “visitMethods” methods of the visitor in

ThreadNoCancelationPolicyDetector

32

This detector also has Java file scope and implements JavaScanner interface and has

two visitors “ThreadCancellationSearcher” and “CancellationSearcher” which

implements the algorithm presented in Figure 18 and Figure 19.

4.2.4. ListViewNoReuseDetector

Similar to the ThreadPriorityNotSetDetector and ThreadNoCancelationPolicyDetector

this detector has a scope of Java files. This detector initiates a visitor that visits getView

methods of list adapters and search for view-reusing in them. This detector applies the

algorithm in Figure 21. The algorithm, first, looks for list view adapter classes and looks

for the getView methods in these classes. In these methods, if the parameter, which

function doesCancellationExist()

{

 if (closeMethod) {

 // only true when !staticCondition and isThereBreak is true

 return true;

 } else if (isThereBreak && (breakCondition is not boolean)) {

 // means while depends on a variable which is not a boolean,

 // no need to check if it runs forever.

 return true;

 } else if (staticCondition && !closeMethod) {

 // means there is a probability to run forever, because there is a break

 //condition which is Boolean, and this condition is not changed in any

//other method

 return false;

 } else if (staticCondition && !isThereBreak) {

 // there is no probability to escape from the while loop.

 return false;

 } else {

 return true;

 }

}

Figure 19 Algorithm for deciding whether the cancellation policy exsists or not

Figure 20 ThreadNoCancellationPolicyDetector class diagram

33

may be reused, is checked against null value and a layout inflation occurs in this

condition, the algorithm says that there is a conditional inflation. In the meantime, if the

same parameter is checked for non-null and this parameter is modified in that condition

the algorithm says that there is a reusing view. If at least one of these two conditions

(conditional inflation and reusing view) is false in a getView method, then there is no

recycling in that list view.

In Figure 22, the class diagram of this detector is shown. The detector has two different

visitors that are extended from “ForwardingAstVisitor”. First visitor,

“CheckListItemReuseVisitor” class traverses the classes looking for getView

declarations. Second visitor, traverses body of the getView methods by applying

algorithm explained in Figure 21.

global isRecyclingExist = false;

function visitMethod(methodNode)

{

 conditionalInflation = false;

 classOfMethod = get class of methodNode

 if(classOfMethod is a listView Adapter)

 {

 methodName = get methodName from methodNode

 if methodName is "getView"

 convertView = get convertView parameter from methodNode

 foreach child in childiren in methodNode

 {

 if(convertView is check for null)

 if inflation occurs

 conditionalInflation = true;

 if(convertView is checked for non-null)

 if convertView is modified

 if convertView returned from getViewMethod

 reusingConvertView = true;

 }

 isRecyclingExists = conditionalInflation && reusingConvertView

 }

}

Figure 21 Algorithm applied in “visitMethod” method of visitor in ListViewNoReuseDetector

34

4.3. Evaluating the tool Bad-Practice Finder

After developing all detectors, Bad-Practice Finder tested to confirm that if it satisfies all

the expected requirements. To achieve that goal, a unit test consists of five applications

that is planned to use in the experiments is applied to Bad-Practice Finder. Table 1 shows

these five applications (CycleSteets, Gmote, Jamendo,Sasabus, Osciprimeics), their sizes

in line of code, the number of bad practice for existed in each application, and the

number of bad practices detected by our tool.

Figure 22 ListViewNoReuseDetector class diagram

35

Table 1 Application‟s expected and detected bad-practice values

Application name CycleStreets Gmote Jamendo Sasabus Osciprimeics

Line Of Code 13686 27257 8709 8908 7036

Ex
p

ec
te

d

D
et

ec
te

d

Ex
p

ec
te

d

D
et

ec
te

d

Ex
p

ec
te

d

D
et

ec
te

d

Ex
p

ec
te

d

D
et

ec
te

d

Ex
p

ec
te

d

D
et

ec
te

d

“Not reusing views in list view”
Count

6 6 1 1 1 1 0 3 0 0

“Using non-static inner classes”
count

12 12 15 15 32 32 2 2 16 16

“Not using a cancellation policy in
a thread” count

0 0 6 6 0 0 0 0 3 3

“Not setting thread priorities”
count

0 0 7 7 4 4 0 0 18 18

Table 1 shows that there are no false positive or false negative result except from

Sasabus application. In Sasabus application three false positive “Not reusing views in

list view” bad-practice found. The reason is that, in some of their adapters, they used a

different algorithm for reusing items in list view and this algorithm may not reuse the

items (views) in some conditions that they previously define.

4.4. Program Performance

To show the performance of our Bad-Practice Finder tool, we applied it to the

applications tested in Section 4.3. During this process, we measured total time and used

maximum heap size using VisualVM
16

 to execute Bad-Practice Finder on an application.

The results of this experiment are presented in Table 2. In this table, the first column in

shows the application name, the second column shows the size of the application, third

column shows the maximum heap size used by our tool to examine the application, and

the last column shows the time spent for the examination of the application.

Table 2 Bad-practice Finder tool performance metrics

Application
Name

Line of Code
(LOC)

Used Max Heap
Size(bytes)

Execution
Time(second)

CycleStreets 13686 223.465.072 8,695

Gmote 27257 56.028.520 5,075

Jamendo 8709 137.256.880 6,829

Sasabus 8908 154.105.288 6,671

Osciprimeics 7036 88.828.600 6,948

16
 https://visualvm.java.net/?Java_VisualVM

36

Among the applications in Table 2, the size of “Gmote” is bigger than the others in terms

of LOC, but the memory (Used Max Heap Size) and time spent for this application is

smaller than that of the other applications. This shows that there is no relation between

the application size in terms of LOC and required memory and time to examine the

application

37

 CHAPTER 5

ANALYSIS

In the analysis part, we gathered statistical data of 100 open source Android applications.

After collecting that data our “Bad-Practice Finder” tool is run on these applications to

gather number of bad practices identified in Section 4.1. After getting this data, to show

the relationship between the user ratings and the occurrence of the practices we used

three different statistical approaches. This chapter presents our analysis and results.

5.1. Gathering Experiment Data

To gather open source applications, an application called F-Droid
17

 that is a catalogue of

Free and Open Source Software (FOSS) applications for Android platform is used. From

F-Droid‟s list of open source applications, which is listed in [39], we have collected

average user rating for each of the application.

From F-Droid‟s list of open source applications, which is listed in [39], applications are

downloaded with their source code. To do that, all of the application unique package

identifiers are saved to a file. A java program which uses Selenium [40] API is developed

to download source code URLs. Algorithm of this program is shown in Figure 23. The

program‟s task begins with going each application‟s page in F-Droid‟s website that can

be queried with application identifier. After that, the program gets HTML code of the

self-page of application in F-Droid, parses the HTML code and selects the URL address

of compressed source code. Lastly, the program downloads to source code to disk using

URL address.

17
 https://f-droid.org/

38

In the set of F-Droid catalogue, there are approximately 1200 applications. We achieved

to download the source code of 932 of those applications in the catalogue because some

of the applications in the catalogue had some dead links or bad connections to their

source codes. After downloading source codes, Google Play statistics are gathered from

their official Google Play page for each application. These statistics are count of for

each rate option (1 to 5), average rate, total rate count and install count. To achieve that

goal, another program also using Selenium is developed. Algorithm of this program is

shown in Figure 24. This program goes the each application‟s self-page in Google Play

by querying with application identifier, gets HTML of page, parses HTML, extracts

rating information using tags-attributes and xpath and saves them in a tab separated

format. This operation eliminated 206 of those applications since these applications do

not have Google Play self-page and we could not gather their user rating statistics.

baseaddress = "https://f-droid.org/repository/browse/?fdid=";

idList = read application ids from file;

for each id in idList

{

 appAddress= concatenate baseaddress and id;

 page = go to appAdress webpage;

 anchors = get all anchor elements links from page;

 foreach anchor in anchors

 {

 if(anchor text contains "source tarball")

 {

 tarBallLink = get href attribute of anchor;

 download tarBall from tarBallLink;

 break;

 }

 }

}

Figure 23 Algorithm for downloading application source code

39

368 of those applications in this catalogue cannot compiled because of the platform

dependencies, missing jar files, missing manifest files, missing dependent projects, hard

coded or absolute paths to personal computer locations. Rest of the applications in the

catalogue are filtered with the conditions that

 Total rate count must be over 10

 Install count must not be under 500

 Line of code must not be under 500

After filtering them, to have the same distribution with the whole data, 100 of them with

the same average user-rating distribution is chosen. APPENDIX C shows identifications

of downloaded applications and their statistical data

Table 3 shows the average size of the subject applications in terms of line of code,

minimum and maximum size of the applications. Recall that we also collect rate count

for each application. Table 3 also shows the average rate counts. For example, in our

pool, an application is rated 5 points on the average 2046 times.

baseaddress = "https://play.google.com/store/apps/details?id=";

idList = read application ids from file;

for each id in idList

{

 appAddress= concatenate baseaddress and id;

 page = go to appAdress webpage;

 revieverCount = get text of element with class-name "stars-count";

 point5Count = get text of element with class-name "bar-number-5";

 point4Count = get text of element with class-name "bar-number-4";

 point3Count = get text of element with class-name "bar-number-3";

 point2Count = get text of element with class-name "bar-number-2";

 point1Count = get text of element with class-name "bar-number-1";

 score = get text of element with class-name "score";

 numOfInstallElement = get element by x-path of "id('body-

content')/div[4]/div/div[2]/div[3]/div[2]";

 numOfInstall = get "itemprop" attribute of numOfInstallElement;

 save data to as a line reviewerCount + '\t' + point5Count + '\t' +

 point4Count + '\t' + point3Count + '\t' +

 point2Count + '\t' + point1Count + '\t' +

 numOfInstall;

}

Figure 24 Algorithm for gathering application data form Google Play

40

Table 3 Statistical information about subject applications

5.2. Analysis

In this section, the output of the Bad Practice Finder on the open source applications are

analyzed and discussed. To investigate the relationship between the user ratings and bad-

practice occurrences we used three different approaches that are explained in the

following subsections.

5.2.1. Correlation between User Ratings and Bad-Practice Count

In this analysis, we first applied a min-max normalization on all of the user rating types

(5 point, 4 point, 3 point, 2 point, and 1 point) and two composite user rating types:

higher rates (sum of point 5 rate and point 4 rate) and lower rates (sum of point 2 rate

and point 1 rate).

After normalizing the user ratings, we calculated Pearson product-moment correlation

coefficient
18

 between bad-practice counts and these normalized user ratings. The output

extracted from this calculation is shown in Table 4.

In Table 4, the columns under “Rate Count” header show the value of Pearson product-

moment correlation coefficient value between normalized rate counts of 5, 4, 3, 2 and 1

points. “Higher Rate Count” column and “Lower Rate Count” show the same coefficient

values correspondingly for higher rates and lower rates. The coefficient values followed

by an asterisk are significant because the p-value, shown below of the coefficient value,

is smaller than 0.05.

18
 http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient

Statistic Type Value

Average Line of Code 17720

Minimum – Maximum Line of

Code
~0,5 k - ~31,5 k

5 Point Average 2046

4 Point Average 558

3 Point Average 223

2 Point Average 106

1 Point Average 223

41

Table 4 Pearson product-moment correlation coefficient between normalized rate counts (5 point, 4 point, 3 point, 2

point, 1 point, higher rates, lower rates, install count) and bad-practice counts („*‟ means significant correlation

value which has a p-value of smaller than 0.05)

Rate Count

Higher
Rate

Count

Lower
Rate

Count
Bad Practice Type 5 4 3 2 1

Not using a cancellation
policy in a thread

0.251* 0.309* 0.364* 0.372* 0.444* 0.265* 0.428*

p:0 p:0.012 p:0.002 p:0 p:0 p:0.008 p:0

Using non-static inner classes
0.284* 0.323* 0.285* 0.263* 0.169 0.295* 0.199*

p:0.004 p:0.001 p:0.004 p:0.008 p:0.092 p:0.003 p:0.047

Not reusing views in list view
0.225* 0.250* 0.221* 0.216* 0.140 0.233* 0.164

p:0.024 p:0.012 p:0.027 p:0.031 p:0.165 p:0.02 p:0.102

Not setting thread priorities
0.392* 0.414* 0.427* 0.478* 0.534* 0.404* 0.532*

p:0 p:0 p:0 p:0 p:0 p:0 p:0

Table 4 shows that p-values of the correlations between “Not using a cancellation

policy in a thread” - “Using non-static inner classes” bad-practices and the rate counts

are smaller than 0.05 and the corresponding correlation coefficient values are significant.

In addition, it is seen that those two bad-practices has more positive relationship with

unfavorable points (which are closer to point 1) than the favorable points (which are

closer to point 5). This fact means if “Not using a cancellation policy in a thread” -

“Using non-static inner classes” bad-practices exist; users tend to give unfavorable

points. This inclination also can be seen from the case that their significant “Higher Rate

Counts” are smaller than their “Lower Rate Counts”.

The other two bad-practices have insignificant correlation coefficient values as seen in

the table. Therefore, we cannot comment about their relationship with the user ratings

counts.

5.2.2. Relation with Categorization

For this analysis, we demonstrate the bad-practice counts and user ratings with box-plots.

Box plot is used to demonstrate groups of numerical data and their variability with

quartiles [41]. To create a box-plot representation of the experimental data results, we

categorize the applications based on their weighted average rates, which show success of

the application. Table 5 shows the categorization of the applications. The table also

shows number of applications for each of the category we have in our pool.

42

Table 5 Application success categories

Category Condition Application Count

Very Unsuccessful Applications Average Rate < 3.5 9

Unsuccessful Applications 3.5 <= Average Rate < 3.8 13

Bad Applications 3.8 <= Average Rate < 4.1 20

Not Bad Applications 4.1 <= Average Rate < 4.4 21

Successful Applications 4.4 <= Average Rate < 4.8 28

Very Successful Applications 4.8 <= Average Rate 9

After categorization of the applications, we created box-plot graphics of each bad-

practice count versus categories using SPSS
19

. These graphics are shown in Figure 25,

Figure 26, Figure 27 and Figure 28. To examine the significance of those graphics and

categorization we apply the Kruskal–Wallis
20

 test to the data. Result of this test is shown

in Table 6 Kruskal-Wallis test on bad-practices count and Success category. The results

are discussed below.

Table 6 Kruskal-Wallis test on bad-practices count and Success category

Graphic Name Significance Value

“Using non-static inner classes” count vs Success category 0.018

“Not setting thread priorities” count vs Success category 0.069

“Not using a cancellation policy in a thread” count vs Success category 0.358

“Not reusing views in list view” count vs Success category 0.003

19
 http://www-01.ibm.com/software/analytics/spss/

20
 http://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance

43

Figure 25 Box-Plot of “Using non-static inner classes” count vs Success category

Figure 25 shows that “Using non-static inner classes” fluctuates until the 4
th

 category

(Not Bad Applications) and there are a lot of outlier values in 1
st
, 2

nd
 and 3

rd
 success

categories. However, in the “Not Bad Applications”, “Successful Applications” and “Very

Successful Applications” quartiles of the boxes are declined. This means that there is a

reverse relationship between the successfulness of the application and the “Using non-

static inner classes”. Applying Kruskal-Wallis test with “Using non-static inner classes”

and Success category gives a significance value, which is smaller than 0.05, that can be

seen from Table 6 Kruskal-Wallis test on bad-practices count and Success category. This

means that this box-plot is significant.

Figure 26 Box-Plot of "Not setting thread priorities" count vs Success category

The box-plot in Figure 26 Box-Plot of "Not setting thread priorities" count vs Success

categoryshows the relation between “Not setting thread priorities” and Success category.

44

The boxes and quartiles in this graphic are irregular and Kruskal-Wallis test on

dimensions of this box-plot has a value of 0.069. Because of the significance value is

greater than 0.05, comments on this graphic may be invalid. Therefore, the results in this

analysis are inconclusive.

Figure 27 Box-Plot of “Not using cancellation policy in thread” count vs Success category

The boxplot in Figure 27 has a significance value which is above 0.05. With the

insignificance of this box-plot graphic, this graphic cannot show any relation between

“Not using cancellation policy in a thread” count and “Success category” because of the

outlier values and nonoccurence of boxes.

Figure 28 Box-Plot of "Not reusing views in list view" count vs Success category

Figure 28 Box-Plot of "Not reusing views in list view" count vs Success category shows

the relation between “Not reusing views in list view” count and Success category. This

box-plot graphic is noteworthy because it has a Kruskal-Wallis test value of 0.003,

45

which is below 0.05. Although the count of “Not reusing views in list view” climbs until

the 3
rd

 category which is “Bad Applications”, upper adjacent and upper hinges of 3
rd

, 4
th

,

5
th

 and 6
th

 categories show a falling tendency. Moreover, the applications in 6
th

 category

(very successful applications) has no “Not reusing views in list view” bad-practice.

These facts show that most of the time, having “Not reusing views in list view” bad-

practices in the code have an influence on the user ratings and successfulness of the

applications.

5.2.3. Correlation between Average of Successfulness and Average of Bad-Practice

Count

In this analysis, we looked for a relation between the average bad-practice count and the

average user ratings as a successfulness metric. To achieve this goal we normalized bad-

practice count of each application with the line-of-code of applications. Using the same

categorization method in Table 5, we calculated the average of weighted average user

ratings of applications in a category. After that, we also calculated average of the

normalized bad-practice counts. Lastly, in order to examine the correlation between

these two values, which are cardinal numbers, with the help of the SPSS, we computed

the “Pearson product-moment correlation coefficient” values. The output of this

calculation is shown in Table 7. In this table, we showed the coefficient value right

across the bad-practice type. If the value of the coefficient is followed by an asterisk

character, this means that the value is significant and the p-value shown on the right

sight of this value is smaller than 0.05.

Table 7 Pearson product-moment correlation coefficient values between average normalized bad-practice count and

average weighted average user rating („*‟ means significant correlation value which has a p-value of smaller than

0,05)

Pearson product-moment correlation
coefficient

Bad Practice Type Coefficient p-value

Using non-static inner classes -0.973* 0.001

Not setting thread priorities 0.27 0.96

Not using cancellation policy in a thread -0.839* 0.037

Not reusing views in list view -0.879* 0.021

As it shown in the Table 7 “Using non-static inner classes”, “Not using cancellation

policy in a thread” and “Not reusing views in list view” bad-practices has p-values

smaller than 0.05 and their coefficient values are significant. For the correlation

algorithm applied, they have coefficient values that are closer to -1. This implies that

those three normalized bad-practices count have a strong negative relationship with the

average of weighted average user ratings. In other word, having bad-practices reduces

point that the user gave to the applications.

46

The other bad-practice in Table 7 have p-values above 0.05 for each correlation

coefficient. In the light of this knowledge, the influence of this bad-practice cannot be

determined by this method.

47

 CHAPTER 6

CONCLUSION

Since user ratings gives a good hint about usefulness and success of an application,

before installing application, most of the users took a glance at them. Therefore, the

good reputation of the application grows exponentially by getting good ratings. We think

that a good way to get good ratings from Google Play or any similar platforms is

removing common bad-practices from the source code of the application. The purpose of

this study is developing a tool that finds the amount of special fallacies, namely bad-

practices. The other purpose is showing the relation between the amount of those bad-

practices and user ratings by using the tool that finds bad-practices named Bad-Practice

Finder.

Bad-Practice Finder has four bad-practice detectors: InnerClassLeakDetector finding

inner class leaks, ThreadPriorityNotSetDetector finding thread priority issues,

ThreadNoCancellationPolicyDetector finding the threads which needs cancellation

policy and do not have one and ListViewNoReuseDetector finding list view adapter

classes which do not reuse views. All of those four detectors created by using the

Android Lint API explained in Section 3.1.1 and they are new and different from the

bad-practices standard Android Lint checked. Android Lint API is suitable for creating

new bad-practice detectors. This means that any other interested developers can

contribute this work by downloading Bad-Practice-Finder.jar
21

 and using it in their new

projects.

Earlier experiments, for example explained in Section 3.3.1, FindBugs Google

experiment shows that applying static analysis tools decreases the possibility of bugs in

programs. On the other hand, Bug-Practice Finder is a static analysis tool specialized for

Android development having the same conclusion and this tool is a good chance for the

developers to create stable, responsive and quick applications by revealing bugs in

source code. Moreover, because Bad-Practice Finder makes static analysis, unlike the

explained dynamic analysis tools in Section 3.2 it has the ability to say the exact location

of the problematic part of the source code. The tools in Section 3.2 can only show the

existence of the problem in the application. Previous studies, explained in Section 3.4,

21
 http://www.ceng.metu.edu.tr/~e1449065/Bad-Practice-Finder.jar

48

looks for the security vulnerabilities, unnecessary permissions and energy bugs but they

do not find the bad-practices Bad-Practice Finder detects which are the reasons behind

the memory leaks, ANR dialogs.

The main contributions of this work are listed below:

 A list of bad-practices in Android Development is composed.

 Bad-Practice Finder tool, which detects bad-practices, not detected by other

tools, in Android Applications, is developed.

o Bad-practices detected by only Bad-Practice Finder:

 Using non-static inner classes

 Not setting thread priorities

 Not using a cancellation policy in a thread

o Bad-practice detected also by other tools (Section 3.1.2 PerfChecker)

 Not reusing views in list view

 Bad-Practice Finder applied on 100 applications and this showed

applicability of the tool.

 Results are analyzed with statistical methods and the relation between the

user ratings and bad-practices are shown.

In this thesis we conclude that four bad-practices, which Bad-Practice Finder detects,

effects the user ratings directly or indirectly. In Section 5.2, analysis indicates the

negative relationship between occurrences of bad-practices and user ratings. Because

those bad-practices cause crashes, freezes and slowness in the applications, this work is

a good evidence that shows the users want more stable and robust applications.

First limitation in this thesis is the pool of subject applications in the experiments. We

used F-Droid for open source Android applications. Google Play has over 1 million

applications but we were able to find approximately 1200 applications from the F-Droid.

For example, although an application has very low rates and users are complains about

the application, if it is not one of the 1200 open source applications in F-Droid, which is

our open source application source it is not possible for us to analyze this application

with our Bad-Practice Finder. This limitation may affect correct representation of

applications in our experiments. Other than this, some users may not give objective

ratings to an application on Google Play because of the psychological or sociological

reasons and this may cause some noisy or incorrect data in our experiments. In addition,

our tool, Bad Practice Finder, searches for some bad-practices that can be found only

heuristic approaches as indicated in Section 4.2.3. Last limitation blurring our statistical

findings is the fact that there may be factors that reduce the user ratings other than bad-

practices analyzed in this study. For example, the reason behind the low user ratings may

be the content of an application or user-unfriendly user interfaces.

In the future, we plan to add new bad-practices to our list and detect these practices in

Bad-Practice Finder. In addition, we will do our experiments and analysis on a bigger

application set. Lastly, we plan to examine the applications in the Google Play that users

most complain against the bad-practices.

49

REFERENCES

[1] "Android Design Principles," Android Open Source Project, [Online]. Available:

http://developer.android.com/design/get-started/principles.html. [Accessed

15 07 2014].

[2] Android Open Source Project, "Core App Quality Guidelines," [Online]. Available:

http://developer.android.com/distribute/googleplay/quality/core.html.

[Accessed 1 12 2013].

[3] J. Brutlag, "Speed Matters," 24 06 2009. [Online]. Available:

http://googleresearch.blogspot.com/2009/06/speed-matters.html. [Accessed

25 12 2013].

[4] Android Open Source Project, "Keeping Your App Responsive," [Online].

Available: http://developer.android.com/training/articles/perf-anr.html.

[Accessed 1 12 2013].

[5] M. Burton and D. Felker, Android Application Development for Dummies, Wiley,

2012.

[6] R. Meier, Professional Android 2 Application Development, Wrox, 2010 .

[7] "Creative Bloq," [Online]. Available: http://www.creativebloq.com/app-design/how-

build-app-tutorials-12121473. [Accessed 11 11 2013].

[8] C. Smith, "Free online Android programming course starting next month," Android

Authority Beta, 27 December 2013 . [Online]. Available:

http://www.androidauthority.com/free-online-android-programming-course-

50

327826/. [Accessed 18 01 2013].

[9] R. Meier, "Android operating system," in Professional Android 4 Application

Development, 2012 , pp. 1-19.

[10] "Google Play," Wikimedia Foundation, Inc, 23 06 2014. [Online]. Available:

http://en.wikipedia.org/wiki/Google_Play.

[11] F. Ableson, "Introduction to Android development," IBM, 12 05 2009. [Online].

Available: https://www.ibm.com/developerworks/library/os-android-devel/.

[Accessed 25 06 2014].

[12] "Activity," Android Open Source Project, 20 06 2014. [Online]. Available:

http://developer.android.com/reference/android/app/Activity.html.

[13] "Managing the Activity Lifecycle," Android Open Source Project., [Online].

Available: http://developer.android.com/training/basics/activity-

lifecycle/index.html. [Accessed 25 06 2014].

[14] "Context," Android Open Source Project., [Online]. Available:

http://developer.android.com/reference/android/content/Context.html.

[Accessed 25 06 2014].

[15] "Services," Android Open Source Project, [Online]. Available:

http://developer.android.com/guide/components/services.html. [Accessed 25

06 2014].

[16] "Intents and Intent Filters," Android Open Source Project, [Online]. Available:

http://developer.android.com/guide/components/intents-filters.html.

[Accessed 25 06 2014].

[17] "Content Providers," Android Open Source Project., [Online]. Available:

http://developer.android.com/guide/topics/providers/content-providers.html.

[Accessed 25 06 2014].

[18] "Android Tools Project Site," [Online]. Available: http://tools.android.com/tips/lint.

[Accessed 02 12 2013].

[19] "Android Tools Project Site," [Online]. Available:

http://tools.android.com/tips/lint/writing-a-lint-check. [Accessed 07 11

51

2013].

[20] Y. Liu and C. Xu , "VeriDroid: automating Android application verification," in

MDS '13 Proceedings of the 2013 Middleware Doctoral Symposium, New

York, NY, USA, 2013 .

[21] Y. Liu, C. Xu and S.-C. Cheung, "Characterizing and Detecting Performance Bugs

for Smartphone Applications," in ICSE, the International Conference on

Software Engineering, Hyderabad, India , 2014.

[22] Android Open Source Project, "UI/Application Exerciser Monkey," [Online].

Available: http://developer.android.com/tools/help/monkey.html. [Accessed

25 12 2013].

[23] D. Hovemeyer and W. Pugh, "Finding Bugs is Easy," in OOPSLA 2004, Vancouver,

BC, Canada, 2004.

[24] N. Ayewah and W. Pugh, "The Google FindBugs Fixit," in ISSTA‟10, Trento, 2010.

[25] D. H. Hovemeyer and W. W. Pugh, "FindBugs Bug Descriptions," University of

Maryland, 23 11 2013. [Online]. Available:

http://findbugs.sourceforge.net/bugDescriptions.html.

[26] D. H. Hovemeyer and W. W. Pugh, "FindBugs™ - Find Bugs in Java Programs,"

University of Maryland , 22 10 2013. [Online]. Available:

http://findbugs.sourceforge.net/index.html.

[27] K. Lee, J. Flinn, T. Giuli, B. Noble and C. Peplin, "AMC: verifying user interface

properties for vehicular applications," in MobiSys '13, New York, 2013.

[28] E. Chin, A. P. Felt, K. Greenwood and D. Wagner, "Analyzing inter-application

communication in Android," in MobiSys '11, New York, 2011.

[29] A. Pathak, A. Jindal, Y. C. Hu and S. P. Midkiff, "What is keeping my phone

awake?: characterizing and detecting no-sleep energy bugs in smartphone

apps," in MobiSys '12, New York, 2012.

[30] A. P. Felt, E. Chin, S. Hanna, D. Song and D. Wagner, "Android Permissions

Demystified," in CCS 2011, Chicago, 2011.

52

[31] Cunningham & Cunningham, Inc., "Inner Class," 16 4 2010. [Online]. Available:

http://c2.com/cgi/wiki?InnerClass. [Accessed 05 12 2013].

[32] R. Guy, "Avoiding memory leaks," 19 January 2009. [Online]. Available:

http://android-developers.blogspot.com/2009/01/avoiding-memory-

leaks.html. [Accessed 01 12 2013].

[33] R. Guy, "Android Developers Blog," 06 05 2009. [Online]. Available:

http://android-developers.blogspot.com/2009/05/painless-threading.html.

[34] Compuware, "Java Enterprise Performance Book (dynatrace)," [Online]. Available:

http://javabook.compuware.com/content/memory/how-garbage-collection-

works.aspx. [Accessed 2012].

[35] A. Lockwood, "Android Design Patterns," 15 04 2013. [Online]. Available:

http://www.androiddesignpatterns.com/2013/04/activitys-threads-memory-

leaks.html. [Accessed 12 11 2013].

[36] L. Rocha, "Lucas Rocha Blog," 05 04 2012. [Online]. Available:

http://lucasr.org/2012/04/05/performance-tips-for-androids-listview/.

[37] "Android Tools Project Site," [Online]. Available: http://tools.android.com/tips/lint-

checks. [Accessed 25 12 2013].

[38] M. Sipser, "The Halting Problem," in Introduction to the Theory of Computation

(Second Edition ed.), Boston, Thomson Course Technology, 2006, pp. 179-

181.

[39] F-Droid Limited, "Category:Apps," F-Droid, 06 09 2013. [Online]. Available:

https://f-droid.org/wiki/index.php?title=Category:Apps.

[40] "Selenium," [Online]. Available: http://docs.seleniumhq.org/.

[41] N. J. Cox, "The Stata Journal," Speaking Stata: Creating and varying box plots, no.

Box plots, p. 478–496, 19 07 2014.

53

APPENDIX A

WEBSITES EXPLAINING BAD AND BEST PRACTICES

Table 8 Websites explaining bad and best practices

Title Link

Displaying Bitmaps
Efficiently

http://developer.android.com/training/displaying-
bitmaps/index.html

Activities, Threads, &
Memory Leaks

http://www.androiddesignpatterns.com/2013/04/activitys-
threads-memory-leaks.html#more

How to Leak a Context:
Handlers & Inner Classes

http://www.androiddesignpatterns.com/2013/01/inner-class-
handler-memory-leak.html

Handling Configuration
Changes with Fragments

http://www.androiddesignpatterns.com/2013/04/retaining-
objects-across-config-changes.html#more

Avoiding memory leaks http://android-developers.blogspot.in/2009/01/avoiding-
memory-leaks.html

Is bad-practice to use
Context as static variable?

http://stackoverflow.com/questions/17691656/bad-practice-to-
use-context-as-static-variable

Avoid Creating
Unnecessary Objects

http://developer.android.com/training/articles/perf-
tips.html#ObjectCreation

Avoid Internal
Getters/Setters

http://developer.android.com/training/articles/perf-
tips.html#GettersSetters

Use Enhanced For Loop
Syntax

http://developer.android.com/training/articles/perf-
tips.html#Loops

Implement the run()
method

http://developer.android.com/training/multiple-threads/define-
runnable.html#RunMethod

Hold View Objects in a
View Holder

http://developer.android.com/training/improving-
layouts/smooth-scrolling.html#ViewHolder

Google I/O 2009 - Make
your Android UI Fast and
Efficient

http://www.youtube.com/watch?v=N6YdwzAvwOA&feature=play
er_detailpage#t=1199

54

Title Link

Memory Leak issue while
excuting a piece of Code
in Android

http://stackoverflow.com/questions/18525453/memory-leak-
issue-while-excuting-a-piece-of-code-in-android

Core App Quality
Guidelines

http://developer.android.com/distribute/googleplay/quality/core
.html

Android Best Practices
and Tips

http://clayallsopp.com/posts/android-best-practices-tips/

Android Performance
Case Study

http://www.curious-creature.org/2012/12/01/android-
performance-case-study/

What are some best
practices in Android
memory management?

http://www.quora.com/Android-Development/What-are-some-
best-practices-in-Android-memory-management

What Tips Would You
Give to Someone Who is
Just Starting Out
Developing Apps?

http://www.instantshift.com/2013/08/08/app-development-tips-
for-beginners/

Ruleset Android http://pmd.sourceforge.net/pmd-5.0.5/rules/java/android.html

13 must-have features for
your next mobile app

http://thenextweb.com/entrepreneur/2012/12/16/13-must-
have-features-for-your-business-mobile-app/14/

Google I/O 2010 - Writing
zippy Android apps

http://www.youtube.com/watch?v=c4znvD-7VDA

Keeping Your App
Responsive

http://developer.android.com/training/articles/perf-anr.html

Android Developers Blog http://android-developers.blogspot.com/2009/05/painless-
threading.html

Lucas Rocha Blog http://lucasr.org/2012/04/05/performance-tips-for-androids-
listview/

Lint checks http://tools.android.com/tips/lint-checks

Android Internals and
Bad-Practices

http://s3.amazonaws.com/ppt-
download/codestrong2012breakoutsession-
androidinternalsandbestpractices-121106145722-phpapp01.pptx

Turbo-charge your UI http://dl.google.com/io/2009/pres/Th_0230_TurboChargeYourUI-
HowtomakeyourAndroidUIfastandefficient.pdf

Android Best Practices http://www.slideshare.net/harala/android-best-practices

Best Practices for Mobile
Application Development
on Android

http://www.slideshare.net/tasneemsayeed/best-practices-for-
mobile-app-development-android-march-15-2013-ts

55

Title Link

Common Java problems
when coding for Android
and advice for dealing
with them

http://www.slideshare.net/sgilmore/common-java-problems-
when-developing-with-android

56

57

APPENDIX B

BAD PRACTICES LIST

Table 9 Bad-Practices List

Bad-Practices Occurrence

Rate (%)

Problem

Passing activity

context

38,78 Passing activity context to out of its scope classes

may create memory leaks because activity lifetime

cannot be determined.

Lack of

cancellation

policy in threads

14,98 Explained in Section 4.1.3

Not handling

configuration

changes

7,83 Normally, Android Operating System destroys and

recreates the current activity when the device

orientation changes. However using potentially

large objects, such as WebMaps or Layers, on

activity creation do not supported by mechanism

used by the Android Operating System. Not

handling this type of situations creates problems

with memory and user experiences.

Not checking for

API availability

before using

features

7,41 Devices have many features such as GPS, some of

the devices may not have these features and using

these features without controlling the existence

makes null point de-references.

Using non-static

inner classes

6,81 Explained in Section 4.1.1

58

Using too much

nested layouts

6,29 Using too much nested layouts creates "Out of

Memory Exception"'s. Useless layouts must be

avoided.

Not reusing list

view items.

4,05 Explained in Section 4.1.4

Not setting

priority of

thread in "run"

method

2,27 Explained in Section 4.1.2

Loading too

many big images

3,91 Loading too many big images creates "Out of

Memory Exceptions"

Permission

mistakes

2,15 In general, forgetting to add permissions of a task

make the call of that task impossible and the

application crashes with permission exception.

Keeping static

drawables or

view

2,1 Undestroyed drawables creates references and

these references prevents Garbage Collector to

collect navigated activities. This situation creates

memory leaks

Potentially long

running and not

threaded

operations like

network, db etc.

in main thread

1,76 Potentially long running operations blocks main

thread and may not allow main thread answer in 5

seconds. This causes ANR dialogs displayed

Not allowing the

runtime to kill

your service

1,26 Services starts automatically by default if

Service.START_NOT_STICKY is not used.

Starting service every time it is killed may not be

necessary and it may use a lot unnecessary

resources.

Hardcoding file

locations

0,4 Using hard coded file references may lead to null

point dereferences

59

APPENDIX C

APPLICATIONS WITH RATINGS, INSTALL COUNTS AND LINE OF CODES

Table 10 Applications with ratings install counts and line of codes

A
p

p
lic

at
io

n
 Id

U
si

n
g

n
o

n
-s

ta
ti

c
in

n
er

 c
la

ss
es

N
o

t
se

tt
in

g
th

re
ad

 p
ri

o
ri

ti
es

N
o

t
u

si
n

g
a

ca
n

ce
lla

ti
o

n
 p

o
lic

y
in

a
th

re
ad

N
o

t
re

u
si

n
g

vi
ew

s
in

 li
st

 v
ie

w

5
 p

o
in

t
co

u
n

t

4
 p

o
in

t
co

u
n

t

3
 p

o
in

t
co

u
n

t

2
 p

o
in

t
co

u
n

t

1
 p

o
in

t
co

u
n

t

W
ei

gh
te

d
 a

ve
ra

ge

In
st

al
l c

o
u

n
t

Li
n

e
o

f
co

d
e

am.ed.impor
tcontacts

12 0 0 0 9 0 3 0 9 3 1000 3717

at.bitfire.dav
droid

0 0 0 1 67 15 6 3 18 4 5000 4639

at.univie.sen
sorium

16 9 0 0 10 0 0 0 0 5 500 3942

ch.nexuscom
puting.andro
id.osciprimei
cs

16 18 3 0 20 4 0 2 1 4,5 5000 7036

com.aripuca.
tracker

3 9 0 0 18 6 4 2 3 4 5000 8559

com.axelby.
podax

17 10 1 3 32 27 15 10 11 3,6 5000 10115

com.btmura.
android.redd
it

15 12 0 1 50 29 5 4 8 4,1 1000
0

16500

com.codebut
ler.farebot

0 1 0 2 258 104 77 71 116 3,5 1000
00

27665

com.coinbas
e.android

26 12 0 5 1638 546 159 79 132 4,4 5000
00

9259

com.commo
nsware.andr

2 18 0 0 290 76 31 2 19 4,5 5000
0

3571

60

oid.arXiv

com.dozuki.i
fixit

11 7 0 3 2167 717 314 126 214 4,3 1000
000

17731

com.duckduc
kgo.mobile.a
ndroid

17 5 0 6 5137 1294 424 195 238 4,5 5000
00

10660

com.episode
6.android.ap
palarm.pro

8 16 1 1 392 107 45 45 128 3,8 1000
00

4414

com.euedge.
openaviation
map.android

4 5 0 0 18 3 4 3 6 3,7 1000
0

3186

com.frostwir
e.android

15 46 5 3 2007
8

5017 3009 1592 5059 4 5000
000

31416
9

com.gcstar.vi
ewer

14 1 1 0 28 12 10 7 18 3,3 5000 3631

com.gmail.c
harleszq

17 4 0 1 38 25 11 2 5 4,1 5000
0

8652

com.googam
aphone.type
andspeak

8 1 0 1 3104 1047 657 330 782 3,9 1000
000

2366

com.googlec
ode.gtalksms

35 12 0 0 301 68 24 14 34 4,3 1000
00

37370

com.gpl.rpg.
AndorsTrail

70 2 0 0 5829 2028 929 427 574 4,2 1000
000

16865

com.hectoro
ne.multismss
ender

4 0 0 3 107 50 21 11 43 3,7 5000
0

1588

com.hobbyo
ne.HashDroi
d

0 2 0 0 448 67 10 5 9 4,7 5000
0

4317

com.liato.ba
nkdroid

21 7 0 2 2829 993 280 129 256 4,3 5000
00

19470

com.lightbox
.android.cam
era

15 7 0 3 448 170 90 25 57 4,2 5000
00

9236

com.maxfier
ke.sandwichr
oulette

2 1 0 0 10 0 0 0 0 5 1000 1443

com.morpho
ss.acal

54 10 0 7 21 19 12 10 31 2,9 5000 31436

com.mykola.
lexinproject

10 9 0 0 121 25 13 8 25 4,1 5000
0

2845

com.nanoco
nverter.zlab

8 0 0 0 112 9 4 1 4 4,7 5000 1649

com.newsbl
ur

11 5 0 1 412 248 114 61 174 3,7 1000
00

30927

com.nilhcem
.frcndict

6 1 0 1 51 31 13 6 16 3,8 5000
0

3668

com.nolanla
wson.keepsc
ore

5 24 0 7 425 98 24 11 18 4,6 5000
0

10813

com.nolanla
wson.logcat

24 14 0 5 2000 491 166 58 86 4,5 5000
00

5642

com.ownclo
ud.android

13 2 0 6 862 728 471 256 328 3,6 1000
00

40274

61

com.pirateb
ayfree

2 2 0 4 2547 806 346 204 376 4,2 5000
00

3252

com.qubling.
sidekick

20 10 0 0 2 8 0 0 2 3,7 500 4211

com.rhianno
nweb.androi
d.migrainetr
acker

0 0 0 1 3 0 2 1 6 2,4 5000 505

com.ruesga.
android.wall
papers.phot
ophase

19 10 0 2 55 16 5 4 9 4,2 1000
0

15391

com.sam.hex 7 45 0 1 402 206 112 54 96 3,9 5000
0

6948

com.teamdc.
stephendiniz
.autoaway

4 2 0 2 9 3 0 2 2 3,9 5000 2950

com.teleca.j
amendo

32 4 0 1 810 361 146 106 247 3,8 5000
00

8709

com.tkjelectr
onics.baland
uino

6 14 0 0 9 1 0 0 0 4,9 500 11290

com.valleytg
.oasvn.andro
id

4 17 0 2 20 12 5 4 4 3,9 5000 4832

com.zachratt
ner.pocketta
lk

0 0 0 0 11 0 0 0 0 5 1000 836

com.zapta.a
pps.maniana

39 14 0 0 229 47 16 5 7 4,6 5000
0

14448

de.blau.andr
oid

31 3 0 8 162 100 57 23 35 3,9 5000
0

11741

de.jdsoft.law 9 0 0 1 15 0 0 0 5 4 1000 41041

de.jurihock.v
oicesmith

22 5 0 3 38 14 16 6 21 3,4 5000
0

10183

de.koelle.chr
istian.trickyt
ripper

3 6 0 4 48 10 2 1 2 4,6 5000 38747

de.mbutsche
r.wikiandpad
.alphabeta

24 12 0 3 16 8 0 1 1 4,4 5000 10509

de.onyxbits.t
extfiction

0 0 1 0 272 134 65 23 36 4,1 5000
0

6451

de.skubware
.opentrainin
g

9 2 0 4 25 11 12 8 9 3,5 1000
0

8127

dk.andsen.as
qlitemanage
r

2 2 0 0 813 262 83 29 37 4,5 5000
00

8078

dk.nindroid.r
ss

15 10 2 3 6935 2769 1069 326 547 4,3 5000
000

19768

es.cesar.quit
esleep

44 15 1 3 44 9 7 3 24 3,5 5000
0

26001

eu.hydrologi
s.geopaparaz
zi

29 10 0 6 80 10 4 2 7 4,5 1000
0

17782

62

info.guardia
nproject.gpg

22 8 0 1 50 13 16 10 15 3,7 5000
0

31297

it.sasabz.and
roid.sasabus

2 0 0 3 51 29 21 13 29 3,4 5000
0

8908

kr.hybdms.si
depanel

51 16 1 4 47 12 18 9 19 3,6 1000
0

22056

li.klass.fhem 26 11 0 6 213 32 6 2 4 4,7 5000
0

19895

mobi.cyann.
nstools

4 0 0 0 1251 105 23 11 21 4,8 5000
00

3257

nerd.tuxmob
il.fahrplan.co
ngress

2 3 0 0 187 28 6 0 1 4,8 1000
0

4231

net.cyclestre
ets

12 0 0 6 148 79 22 19 29 4 1000
00

13686

net.dahanne
.android.reg
alandroid

4 1 0 1 39 37 35 21 35 3,1 1000
0

9137

net.debian.d
ebiandroid

9 0 0 0 41 5 3 0 0 4,8 5000 30047

net.gaast.gig
gity

28 3 0 5 30 10 4 2 4 4,2 5000 4736

net.sf.times 6 4 0 3 194 41 17 12 15 4,4 5000
0

8260

net.sourcefo
rge.subsonic.
androidapp

25 26 0 3 3910 939 269 163 417 4,4 5000
00

10789

org.ale.open
watch

2 8 0 1 75 21 13 10 55 3,3 5000
0

1608

org.dmfs.tas
ks

2 2 0 1 300 154 72 28 24 4,2 1000
00

7893

org.dolphine
mu.dolphine
mu

5 0 0 0 4939 1154 1193 872 2826 3,4 1000
000

1812

org.droidupn
p

14 9 1 1 18 11 8 4 5 3,7 1000
0

5594

org.eehouse.
android.xw4

46 35 0 4 118 62 41 34 52 3,5 1000
00

19514

org.fedoraho
sted.freeotp

6 3 0 0 190 28 4 2 2 4,8 5000 6107

org.geomete
rplus.zlibrary
.ui.android

51 98 0 7 7186
0

1134
7

3129 1388 3098 4,6 1000
0000

53793

org.gmote.cli
ent.android

15 7 6 1 1748
1

4332 1205 437 898 4,5 5000
000

27257

org.gnucash.
android

1 3 0 2 326 177 100 50 59 3,9 5000
0

6135

org.ironrabbi
t.bhoboard

13 119 0 9 268 63 50 29 48 4 5000
0

77105

org.jtb.http
mon

0 3 0 2 83 36 15 11 12 4,1 5000
0

3936

org.liberty.a
ndroid.fanta
stischmemo

52 32 0 2 1132 284 79 40 60 4,5 5000
00

24095

org.mult.daa
p

20 6 0 5 298 175 69 26 68 4 5000
00

10313

63

org.musicbra
inz.picard.ba
rcodescanne
r

0 0 0 0 7 2 1 0 0 4,6 5000 812

org.nick.ww
wjdic

36 60 0 9 635 221 85 45 50 4,3 5000
00

18982

org.npr.andr
oid.news

39 23 1 7 9286 4427 1867 1140 1450 4 5000
000

13075

org.pyload.a
ndroid.client

35 28 0 2 296 92 29 7 19 4,4 5000
0

64609

org.qii.weici
yuan

65 5 0 3 2583 551 107 28 26 4,7 5000
0

24653

org.scid.andr
oid

24 15 0 2 260 70 22 8 13 4,5 5000
0

12803

org.servalpr
oject

42 15 1 3 667 120 76 52 89 4,2 1000
00

42949

org.sickstach
e

13 0 0 2 146 67 7 4 7 4,5 5000
0

11784

org.thialfihar
.android.apg

19 4 0 4 1450 511 146 56 89 4,4 5000
00

97950

org.totschnig
.myexpenses

8 0 0 9 960 446 138 53 83 4,3 5000
00

14737

org.wheelma
p.android.on
line

9 2 0 5 98 40 17 6 8 4,3 5000
0

8888

org.wordpre
ss.android

47 41 0 5 2340
4

1065
1

4228 1601 2599 4,2 5000
000

33611

org.yaaic 56 18 1 6 818 336 139 57 87 4,2 5000
00

30120

org.zakky.m
emopad

0 0 0 0 9 3 3 0 0 4,4 1000 641

org.zeitgeist.
movement

22 4 0 0 340 19 8 2 7 4,8 5000
0

6241

org.zirco 13 13 0 5 132 89 37 15 44 3,8 1000
00

9695

pl.nkg.geokr
ety

6 0 0 0 36 10 2 0 3 4,5 1000 4545

ru.valle.btc 8 5 0 0 22 5 0 0 2 4,6 5000 3791

uk.org.cardb
oardbox.wo
nderdroid

4 1 0 2 327 87 78 37 92 3,8 1000
00

1766

uk.org.ngo.s
queezer

38 19 1 3 112 64 24 13 17 4 5000
0

9824

64

65

APPENDIX D

CLASS DIAGRAMS

Figure 29 Detector class diagram

66

Figure 30 Lint Driver class diagram

67

Figure 31 Scope & issue class diagram

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü 

 Sosyal Bilimler Enstitüsü 

 Uygulamalı Matematik Enstitüsü 

 Enformatik Enstitüsü 

 Deniz Bilimleri Enstitüsü 

 YAZARIN

 Soyadı : Sağlam

 Adı : Ġsmail Alper

 Bölümü : BiliĢim Sistemleri (Information Systems)

TEZİN ADI (Ġngilizce) : Measuring and Assesment of Well Known Bad Practices in

Android Applications

 TEZİN TÜRÜ : Yüksek Lisans  Doktora 

1. Tezimin tamamından kaynak gösterilmek Ģartıyla fotokopi alınabilir. 

2. Tezimin içindekiler sayfası, özet, indeks sayfalarından ve/veya bir bölümünden 

kaynak gösterilmek Ģartıyla fotokopi alınabilir.

3. Tezimden bir (1) yıl süreyle fotokopi alınamaz. 

TEZİN KÜTÜPHANEYE TESLİM TARİHİ : …………………….

