
DEEP CONVOLUTIONAL NEURAL NETWORKS WITH AN
APPLICATION TOWARDS GEOSPATIAL OBJECT RECOGNITION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRECAN BATI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2014

Approval of the thesis:

DEEP CONVOLUTIONAL NEURAL NETWORKS WITH AN
APPLICATION TOWARDS GEOSPATIAL OBJECT RECOGNITION

submitted by EMRECAN BATI in partial fulfillment of the requirements for
the degree of Master of Science in Electrical and Electronics Engineer-
ing Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Eng.

Prof. Dr. A. Aydın Alatan
Supervisor, Elec. and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Uğur Halıcı
Electrical and Electronics Engineering Department, METU

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering Department, METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Department, METU

Prof. Dr. Fatoş Yarman Vural
Computer Engineering Department, METU

Dr. Emre Başeski
HAVELSAN A.Ş.

Date: September 05, 2014

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: EMRECAN BATI

Signature :

iv

ABSTRACT

DEEP CONVOLUTIONAL NEURAL NETWORKS WITH AN
APPLICATION TOWARDS GEOSPATIAL OBJECT RECOGNITION

Batı, Emrecan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

September 2014, 70 pages

The passion of human-being to invent intelligent systems becomes more and

more meaningful day by day, as the data captured every second by artificial

sensors needs to be examined and classified for many applications. The process-

ing of ever-increasing amount of data by defining information explicitly seems

nearly impossible, regarding the variability and the amount of the information,

which reveals the need for intelligent systems that are capable of learning. Deep

learning is a set of algorithms that attempts to find a hierarchical representa-

tion of the input data by trying to mimic the way human brain captures the

critical aspects of excessive sensory data, to which it is exposed to every second.

Convolutional neural networks, which are trainable learning structures, are also

biologically inspired from the receptive fields in visual cortex. In this thesis, the

performance of convolutional neural networks are investigated for an applica-

tion towards geospatial target detection and classification from satellite images.

Based on the experiments, it is observed that the utilization of preprocessing,

v

dropout, i.e. dropping neurons randomly in the training phase, and rectified lin-

ear unit as the activation function improves the classification rate, significantly.

However, the application of this deep classifier on satellite images still yields

high false alarm rate, possibly due to insufficient number of training data.

Keywords: Deep learning, convolutional neural networks, backpropagation,

satellite images, geospatial target detection

vi

ÖZ

JEO-UZAMSAL NESNE TANIMAYA YÖNELİK BİR UYGULAMA İLE
DERİN EVRİŞİMLİ SİNİR AĞLARI

Batı, Emrecan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Eylül 2014 , 70 sayfa

Her saniye yapay sensörler aracılığıyla elde edilen verilerin pek çok uygulama

için incelenmesi ve sınıflandırılması gerektiği göz önünde bulundurulduğunda,

insanoğlunun akıllı sistemler yaratma tutkusu günbegün daha da anlamlı hale

gelmektedir. Çeşitlilik ve miktarı düşünüldüğünde, bu verilerin, bilginin haricen

açıklanması yoluyla değerlendirimesi imkansız görünmektedir ve bu durum, öğ-

renme yetisine sahip akıllı sistemlerin gerekliliğini ortaya çıkarmaktadır. Derin

öğrenme, girdi verisinin kademeli gösterimini bulmaya çalışan yöntemler bütü-

nüdür ve her saniye oldukça fazla duyu verisine maruz kalan insan beyninin bu

veriden önemli bilgileri çıkarma yolunu taklit etmeye çalışmaktadır. Ayrıca, ev-

rişimli sinir ağları da biyolojiden esinlenmiş eğitilebilen öğrenme yapılarıdır ve

görsel korteksteki alıcı alanlarının suretini yaratmaya çalışmaktadır. Bu tezde de-

rin öğrenme yöntemleri ile eğitilmiş evrişimli sinir ağlarının uydu görüntülerinde

jeo-uzamsal hedef bulma ve sınıflandırma konusundaki başarımı araştırılacak-

vii

tır. Önişleme, eğitim esnasında rastgele nöron eksiltme ve düzeltilmiş doğrusal

birim kullanımının sınıflandırma oranını belirgin şekilde arttırdığı deneylerde

gözlemlenmiştir. Buna rağmen, kullanılan derin sınıflandırıcı, muhtemelen ye-

tersiz eğitim verisi sebebiyle uydu görüntülerinde yüksek miktarda yanlış alarm

vermektedir.

Anahtar Kelimeler: Derin öğrenme, evrişimli sinir ağları, geriyayılım, uydu gö-

rüntüleri, jeo-uzamsal hedef bulma

viii

to my mother ...

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere thanks to my supervisor,

Prof. Dr. A. Aydın Alatan for his constant support, understanding and trust

in me. His wisdom guide me to new research areas that otherwise I would be

unaware. In addition, I would like to thank for his help and contributions to this

thesis. I have always felt privileged to be a graduate student of such a brilliant

person.

I would like to thank Prof. Dr. Gözde Bozdağı Akar for her understanding and

guidence throughout my graduate studies and HASAT project.

I would also like to mention that being a member of Multimedia Research Group

was a marvelous experience thanks to the people I met. I am thankful to Beril

Besbınar, Emin Zerman and Yeti Ziya Gürbüz for their invaluable helps while

writing this theses. I am also grateful to Yağız Aksoy and Ozan Şener for all

the time we spent. I also acknowledge Akın Çalışkan, Ilker Buzcu, Ömürcan

Kumtepe, Selin Böncü, Ahmet Saraçoğlu, O. Serdar Gedik, Alper Koz.

I am deeply thankful to Scientific and Technological Research Council of Turkey

(TÜBİTAK) and Havelsan for their financial support.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Scope and Outline of the Thesis 9

2 RELATED WORK . 11

2.1 Early Attempts . 11

2.1.1 Perceptron . 11

2.1.2 Neocognitron 14

2.2 Feedforward Networks 16

xi

2.2.1 Learning Procedure 19

2.2.2 Backpropagation 23

2.2.3 Convolutional Neural Network 24

2.3 Reborn of the Deep Learning 26

2.3.1 Autoencoder Types 30

Autoencoder 30

Sparse Autoencoder 31

Denoising Autoencoder 31

Contractive Autoencoder 32

3 CONVOLUTIONAL NEURAL NETWORK FORDEEP LEARN-
ING . 33

3.1 A Layer of CNN . 35

3.1.1 Convolution Sublayer 36

3.1.2 Non-linearity Sublayer 37

3.1.2.1 Sigmoid Unit 38

3.1.2.2 Rectified Linear Unit (ReLU) . . . 38

3.1.3 Local Response Normalization Sublayer 39

3.1.4 Pooling Sublayer 40

3.2 Improving Backpropagation: Rule of Thumbs 41

3.2.1 Preprocessing 41

3.2.2 Weight (Filter) Initialization 43

3.3 Experiment Setup . 43

xii

3.3.1 CIFAR-10 Dataset [50] 44

3.4 Analysis of The Results 45

4 APPLICATIONS IN REMOTE SENSING 51

4.1 Airplane Detection . 52

4.2 Classification of Airport Region Targets 55

5 CONCLUSION AND FUTURE WORK 61

5.1 Summary . 61

5.2 Conclusion . 62

5.3 Future Work . 62

REFERENCES . 63

APPENDICES

xiii

LIST OF TABLES

TABLES

Table 3.1 Acronyms corresponding to fully connected architectures . . . 46

Table 3.2 Misclassification rates for experiments with fully connected ar-

chitectures . 47

Table 3.3 Acronyms corresponding to convolutional architectures 48

Table 3.4 Misclassification rates for experiments with fully connected ar-

chitectures . 49

Table 4.1 Confusion table for airplane detection problem 54

Table 4.2 Confusion table for classification of airport region targets of

resized images . 55

Table 4.3 Confusion table for classification of airport region targets . . . 55

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Example illustrating the need for a new representation of the

data . 2

Figure 1.2 General Learning Machine 3

Figure 1.3 Comparison of the (a) distributed and (b) local representation 6

Figure 1.4 Illustration of hierarchical representation [60] 6

Figure 1.5 Example computation path 7

Figure 1.6 Hierarchical structure of the mammalian brain [94] 9

Figure 2.1 McCulloch-Pitts model of a neuron 12

Figure 2.2 Revised model of a neuron 13

Figure 2.3 A typical architecture of a neocognitron [26] 15

Figure 2.4 An example that shows the reponse of a neocognitron which

is trained for hand-written digits [27] 16

Figure 2.5 Artificial Neuron . 17

Figure 2.6 Illustration of (a) feedforward and (b)recurrent networks . . 17

Figure 2.7 Capacity increase with increase in depth and breadth [52] . . 18

Figure 2.8 Illustration of (a) low bias - high variance, (b) high bias - low

variance and (c) low bias - low variance 21

xv

Figure 2.9 The energy calculation flow of the unsupervised training . . . 28

Figure 2.10 Stacking layers. (a) demonstrate a single layer while (b) shows

the stacking of layers . 29

Figure 3.1 Illustration of (a) Fully Connected Neuron, (b) Locally Con-

nected Neuron and (c) Locally Connected & Weight Sharing Neuron 34

Figure 3.2 An overview of Convolutional Neural Network 35

Figure 3.3 Overview of a single layer . 36

Figure 3.4 Non-linearty functions: (a) Logistic Sigmoid Function (b) Hy-

perbolic Tangent Sigmoid Function (c) Rectified Linear Function . . 39

Figure 3.5 Overview of a single layer . 42

Figure 3.6 Sample images from all classes for CIFAR-10 [50] 44

Figure 3.7 Performance change with respect to the training epoch (a) for

the Y|3F|R|Y and (b) 3C|2F|32|F|555 architectures 50

Figure 4.1 An example set of images from the dataset, (a) Airplane La-

beled Images and (b) Non-Airplane Labeled Images 53

Figure 4.2 Learning curve for airplane detection 54

Figure 4.3 The target detection algorithm run on (a) the 1024x1024 image

that contains an airport. (b) the detection result of the correspond-

ing image where red represents false detection, green represents true

detection and orange represents missed targets. 57

Figure 4.4 An example set of images from the classification dataset with

and without resizing during cropping 58

Figure 4.5 Learning curve for classification of airport region targets of

resized images . 59

Figure 4.6 Learning curve for classification of airport region targets . . . 59

xvi

LIST OF ABBREVIATIONS

AE Autoencoder

ANN Artificial Neural Network

BP Backpropagation

SAE Sparse Autoencoder

CAE Contractive Autoencoder

CNN Convolutional Neural Network

FCNN Fully Connected Neural Network

FNN Feedforward Neural Network

PCA Principle Component Analysis

PSD Predictive Sparse Decomposition

ReLU Rectified Linear Unit

ZCA Zero Phase Component Analysis

xvii

xviii

CHAPTER 1

INTRODUCTION

Huge amount of data are captured every second by artificial sensors, such as

cameras and microphones with the rapid advancement in technology. Making

the computers or machines to be able to have a knowledge and understanding of

this excessive sensory data with the minimum amount of human interaction is a

must in Artificial Intelligence, whereas the analysis of the sensor data itself has

always been a hot topic in Computer Vision. The intervention of human can

be decreased by the means of implicit learning of knowledge from data, where

learning is considered as making generalizations of the experience, i.e., available

data, to predict the outputs of new, unseen data. A more formal definition of

machine learning is made by Tom M. Mitchell as "A computer program is said to

learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with

experience E" [70].

1.1 Motivation

There are many different approaches to the learning problem, such as decision

tree learning [76], association rule learning [1], artificial neural networks [67,

82], inductive logic programming [77], support vector machines [18], Bayesian

networks [73], sparse dictionary learning [2], representation learning [7] etc. The

readers are referred to [71] for the current state and foreseen future paths of

machine learning.

1

The aforementioned well-known learning algorithms generally are not well per-

forming on raw data, since data are not well separated in the input domain

where the raw data is actually collected. For a good classification, one seeks

for a new representation which enables separating the different classes, Figure

1.1 demonstrates such a hypothetical representation of the data and separating

hyperplane. In Figure 1.1.a random two pixels intensities (raw data) are drawn

on the axis for different classes, face and non-face. Figure 1.1.b, shows a new

representation which encodes the probability of having eye and mouth is given.

A separating hyperplane can easily be drawn in the new representation which

explains the importance of the representation.

P1

P2

(a)

Eye

Mouth

Seperating Hyperplane

(b)

Figure 1.1: Example illustrating the need for a new representation of the data

The general framework for a learning machine can be represented as in Figure

1.2. The machine computes Ôp = f(Xp,W) for input X using parameters W .

The aim of the learning algorithm is to minimize a loss function representing

the discrepancy between the system output, Ô, and the desired output, O for

2

the input pattern X.

Cost Function

E0, E1, . . . , Ep

Output
Ô0, Ô1, . . . , Ôp

Parameters W
Learning
Machine
f(X,W)

Input
X0, X1, . . . , Xp

Desired Output
O0, O1, . . . Op

Figure 1.2: General Learning Machine

Pattern recognition, where the computer algorithms are used to reveal the reg-

ularities in data automatically in order to classify them, which is a popular

research topic [11] and due to the requirement of a new representation, general

framework for pattern recognition problem usually contains a stage of feature

extraction followed by a trainable classifier. The state of the art techniques also

employ a mid-level feature extraction, such as Bag of Words (BoW), which is a

composition of simpler features, that inherently creates a hierarchy of represen-

tation. The aim of extracting features is both to reduce the dimensionality of the

raw input, by removing unrelated information, and obtain a new representation

more separable. The dimensionality of the raw data can be reduced without loss

of much information, just by decorrelating the data, since the underlying pro-

cess of the data is believed to generate correlated samples of the same physical

world, which is captured by some generic sensors. In other words, the obser-

vations of a physical process are densely sampled, therefore highly redundant,

since this physical process, the underlying cause of these observations, have a

lower dimensionality than the data itself.

3

Dimensionality reduction is much more important for learning algorithms that

solely depend on the smoothness prior which utilizes the general information that

if example data, d′, is close to another data d then the information of d is more

correlated and informative than other data far away from d. Kernel learning

methods, e.g. Gaussian Kernel, and SVM [19], are backed by this principle so

are affected by the curse of dimensionality more. The curse of dimensionality

is used to express the fact that the number of examples needed for efective

training increases exponentially, while the dimensionality of the data increases

linearly [72]. Although the generalization is not affected by the dimension but

the variation of the function with the data [7].

One very usual way of dimensionality reduction is to create hand-crafted fea-

tures, such as Scale Invariant Feature Transform(SIFT) [65], Speeded Up Roboust

Features [6] for image data, Mel-Frequency Cepstral Coefficients(MFCC), Linear

Predictive Cepstral Coefficients(LPCC) [89] for speech data etc., which may be

highly application-dependent and require time and expert knowledge. This kind

of dimensionality reduction, that uses hand-crafted features, imposes the human

knowledge of the necessary and critical information by explicitly programming it

which may not be possible for some problems. Even if it is possible, it requires

designing new features for different types of data, such as image and speech

data, and application, such as speaker identification and speech-to-text.

The combination of the desire for a better representation and the complication

of feature engineering for each task leads to algorithms that can learn the repre-

sentations. The algorithms can be grouped into two, namely deep learning which

is composed of multiple nonlinear transformation of the data [9], and shallow

learning, where the input-output relation is found directly or with less number

of layers. Matching local templates like kernel machine can be seen as two layer

shallow architecture, where the first layer calculates distance and second layer

combines the values. The depth of the learning algorithm refers to the number of

nonlinear layers. There are different motivations behind the deep architectures.

Firstly, the use of a hierarchical computational model yields compact represen-

tation of the learned function, f(X,W) where X is the input and W is the

4

tunable model parameters. The compactness of the deep architecture is pre-

sented in [43] for logical circuits, in which logical circuits with k+ 1 layers needs

exponentially more computational elements to be represented in k layers, which

means exponential increase in the number of parameters. The models with many

computational blocks, which also use many parameters, fails to generalize. The

learned function is said to generalize well if it is able to estimate the desired value

of the output for unseen data with low error. A function with many computa-

tional blocks or parameters can memorize the given training set input-output

pairs but that memorization can result in the loss of the generality.

The expressive power of the learning method can be measured by the required

number of parameter for a number of input regions. One-hot representations,

in which only one region is active (non-zero) at a time, like nearest-neighbor,

Gaussian SVM O(N), the parameters can generate O(N) regions in the input

space; for example, nearest-neighbor creates the Veronoi tesellation of the input

space. On the other hand, autoencoders or multilayer neural networks can

generate at most O(2N) input regions using O(N) parameters. The ability to

generate exponentially more regions is the virtue of the fact that multilayer

neural networks are utilizing the distributed representation. Dividing the space

into overlapping regions with each division representing an underlying a factor is

called distributed representation. An illustration of the comparison of a neural

network(distributed representation), Figure 1.3a, and a nearest-neighbor(local

representation), Figure 1.3b, given in the Figure 1.3. P1, P2 and P3 are the

parameters. The parameters are the labeled data available in the training set

for nearest-neighbor while the parameters for neural network is corresponding

to the parameters of the line equation. The input domain is partitioned with 3

parameters into 3 regions with nearest-neighbor and with 3 parameters into 7

regions with neural network. In the distributed models, underlying factors are

used to represent the data so that the information from each example is utilized

for every new data, not the information from the examples that are in the basin

of the new data. Regions that do not have an example in the training set can be

created by the utilization of distributed representation, since the factors can be

combined in such a way that is meaningful but do not appear in the training set.

5

This property is the core factor that prevents the curse of dimensionality [9].

P1

P2P3

r0 r1
r2

r3r4

r5

r6

(a)

P1
P2

P3

r0

r2

r1

(b)

Figure 1.3: Comparison of the (a) distributed and (b) local representation

In addition to the above fact, increase in the depth have statistical and compu-

tational advantages. The hierarchical representation will construct an abstrac-

tion where first layers corresponds to low level simple features and upper levels

evolved from the lower level feature and have more abstract meanings. The

abstraction also leads to invariance. For example, for convolutional neural net-

works that are examined in Chapter 3, pooling mechanism is a way of generating

more invariant features. Figure 1.4 depicts the learned features of deep neural

network trained with face images [60].

The reuse of computational blocks will generate an exponential gain with linear

increase in depth. This can be observed easily that m layers with k computation

block in each layer, that is total of k ·m computational element can compute km

different functions or paths an example of the computation path for the given

structure is illustrated in Figure 1.5.

Figure 1.4: Illustration of hierarchical representation [60]

Finally, in deep learning paradigm, there is a strong inspiration from mammalian

brain. The human brain is actually a gigantic computing machine. A neuron is

the structural element of nervous system and it processes and carries the infor-

mation as electrical signals in general. The information is transmitted through

6

Figure 1.5: Example computation path

the different neurons by the help of chemical reactions at synapses where the

neurons interacts each other. The most recent estimated number of neurons in

the human brain is 86 billion according to [4], although 100 billion had been

a common number [34, 46]. [4] reports that there are approximately 16 billion

neurons in human cerebral cortex, which is responsible for memory, concious,

perception, thoughts, etc. More interestingly, another research [88] which actu-

ally assumes 10 billion neurons in human cortex, claims that there are 60 trillion

synapses or connections in human cortex.

In addition, the neurons are much slower than silicon logical gates by 5 to 6

orders in magnitude [34]. In other words, neural events occur in milliseconds,

whereas operations are possible in silicon gates in nanoseconds. However, it still

takes longer to solve simpler problems in high technology computing machines

than how fast human process and reacts sensory data.

It is also known that the human brain has the ability of adaptation [15, 22] by

forming new synapses between neurons or modifying the existing ones. In ad-

dition, brain is composed of organizations in different scales and each of these

organizations has different functions at different levels [88]. For example, local

circuits are groups of neurons that gathered for some localized functional op-

erations and interregional circuits are assemblies of local circuits and entail in

different parts of the brain.

7

It is not only the physiology of the brain that shows a hierarchical structure, but

also the way it perceives the outside world. In 1990s, some experiments were

conducted to examine the ventral stream in adult monkeys [48, 49, 92]. Ventral

stream, together with dorsal stream, constitutes the visual system, where ventral

stream is related to the object identification and recognition and dorsal stream

is involved in the spatial localization of objects [33]. In these experiments, adult

monkeys were the subjects and they are examined in anaesthetized contiditions

in order to better understand the way of discriminative learning from very few

samples. For example, in [48], monkeys are examined while being exposed to

images with reduced complexity. Starting with the images of complex three di-

mensional objects, images are simplified by eliminating a feature at each step

and the response of different neurons are observed throughout this series of im-

ages stimuli. In [49], monkeys are trained to discriminate 28 moderately complex

shapes and the responses from trained and untrained monkey are investigated to

understand how the discriminative power, visual system is attained. It is found

that the responsive cells recorded from trained are significantly larger than the

ones obtained from the control set. In addition, different cells had different

subsets of stimuli that they responded and there were partial overlaps between

those subsets of cells. The experiments also showed that receptive field size, the

complexity of the preferred stimulus and tolerance to position and scale changes

gradually increases in different parts of the visual system.

Supported later works [80], the visual system is concluded to demonstrate a

hierarchy of increasingly sophisticated representations, which is illustrated in

Figure 1.6.

All these results indicate that the power of human brain comes from its structure

with such a massive interconnections and its ability to adapt its surrounding

environment by hierarchical representations, which are the key properties neural

network research takes into account and tries to design systems by mimicking

them.

Multilayered feed forward neural networks are promising deep learning architec-

tures, in which each layer is composed of the weighted sum operation followed

8

Figure 1.6: Hierarchical structure of the mammalian brain [94]

by a nonlinear activation imitating a neuron. Parameters, namely weight and

bias, are trained using backpropagation algorithm which is first introduced in

1981 [85]. A multilayer neural network with weight sharing and local connec-

tivity has a special name, Convolutional Neural Network (CNN) [55]. CNN

architecture utilizes the general prior that each sample’s (a pixel for image)

correlation with other is inversely proportional with the spatial distance of the

samples,that is applicable for image, video and many other signals. The con-

cepts of the multilayer feed forward neural networks will be examined in Chapter

2 in more details.

1.2 Scope and Outline of the Thesis

An architecture of feed forward neural network is examined, namely, Convolu-

tional Neural Network(CNN). CNN is applied to the target detection problem

from satellite images, in the scope of this thesis, whereas pretraining the models

9

using unsupervised techniques, such as Restricted Boltzmann Machines (RBM),

second degree optimization techniques for training neural networks and recurrent

neural networks are not in the scope of this thesis.

In Chapter 2, the attempts of creating biologically inspired models of deep archi-

tectures presented in the basics of deep neural networks. Convolutional Neural

Networks are analyzed by using a well-known dataset in Chapter 3. The appli-

cation to the satellite images are presented in Chapter 4. The thesis concludes

with the last chapter.

10

CHAPTER 2

RELATED WORK

2.1 Early Attempts

The early attempts for machine learning using biologically inspired techniques

can be summarized in two fundamental approaches, namely Perceptron and

Neocognitron.

2.1.1 Perceptron

The mathematical model of an artificial neuron is first proposed by McCulloch

and Pitts in 1943 [68]. This model, illustrated in figure 2.1, first obtains the linear

combination of m-dimensional inputs z1, z2, . . . zm with corresponding weights

w1, w2, . . . , zm and then compares this weighted sum to a constant threshold

leading to a binary result. Therefore, the McCulloch-Pitts model is also known

as linear threshold gate. In this highly simplified model, the inputs are allowed

to have only binary values, such as 1 for true and 0 for false and combined

with binary weights, which makes the model useful for only logical operations.

This first mathematical model, that is not able to learn, lacks the flexibility for

complex tasks; however, it was a substantial and inspiring beginning.

Moreover, in 1949, the neural bases of learning is explained by psychologist Don-

ald O. Hebb in his well-cited book "The Organization of Behavior". Although

there was no explicit mathematical statement, the concept known as Hebb’s

synapse, which explains how learning process modify the cellular structure in

11

Summing Thresholding

Output

Inputs

x1

x2

x3

xm

...

Figure 2.1: McCulloch-Pitts model of a neuron

brain, inspired the neural modellers. The exact statement was "When an axon

of cell A is near enough to excite a cell B and repeatedly or persistently takes

part in firing it, some growth process or metabolic change takes place in one

or both cells such that A’s efficiency, as one of the cells firing B, is increased",

which implies the increase in strength between nearby cells which are active

simultaneously [35].

Using the nonliner neuron model by McCulloch-Pitts and Hebb’s postulate,

Frank Rosenblantt changed the description of artificial neurons by perceptron

in 1958 [83]. The model was similar to McCulloch-Pitts model with the differ-

ence of adjustable weights. The perceptron realizes two-class classification by

comparing the linear combination of inputs with adjustable weights, w, with

an addition of external bias b, i.e.,
∑m

i=1 xiwi + b, to the hard threshold. The

weights are generally normalized in the range of (0, 1) and two-class classifier

can be summarized as shown in Equation 2.1 where w is the weight term and b

is the bias term.

f(x) =

1, if
∑m

i=1 xiwi + b ≥ 0

−1, otherwise
(2.1)

(2.2)

Note that the bias term can also be treated as a weight to be learned correspond-

ing to an input that is always have the value one, concatenated to the input vec-

tor. In other words, we can redefine the input and weight as x = [1, x1, . . . , xm]T ,

12

w = [b, w1, . . . , wm)]T and u =
∑m

i=1 xiwi+b = wTx by increasing the dimension

of input space by one. Figure 2.2 illustrates the redefined model.

W1

W2

W3

Wm

Summing Thresholding

Output

WeightsInputs

x1

x2

x3

xm

W0x0

x0 = +1 w0 = b
Bias

Figure 2.2: Revised model of a neuron

The adjustable weights in the perceptron make the model able to learn and

supervised-training is achieved with a numerical algorithm. Suppose that the

training set of S samples is represented with {x(j), d(j)}Sj=1, where x(j) is a

m-dimensional input vector and d(j) is the desired class of x(j). The learning

algorithm initializes the weights and bias for all S samples. Then, for each

iteration, a random sample is chosen from the training set and the corresponding

class of the sample attained by perceptron is calculated with these initial weights

and bias. If the resulting class label is correct for the randomly selected sample,

the algorithm does not make any change in weights; but otherwise, the weights

are updated. The update rule for an arbitrary iteration is given in Algorithm

1 for the randomly chosen training sample (x(j), d(j)) where η represents the

learning rate. The iterations continue until convergence , which is proved to be

present for certain type of data in 1962 [84].

In 1969, Marvin Minsky and Seymour Papert analysed Rosenblatt’s perceptron

in their book and stated that the perceptron is capable of solving only linearly

separable functions [69]. This attack about the limitations of the perceptron

decreased the interest in the artificial neural network (ANN) research.

13

Algorithm 1 Perceptron Weight Update
repeat

Randomly select a sample x(j)

if f(x)(j) (Eq. 2.1) not equals to d(j) then

e = d(j)− f(x)(j)

∆wi = η e xi(j)

wi = wi + ∆wi

end if

until convergence

2.1.2 Neocognitron

David H. Hubel and Torsten Wiesel realized the cat experiment [95] by inserting

microelectrodes to the primary visual cortex of a anesthetized cat to observe

the changes with the different lighting patterns on the screen in front of the cat.

According to the result of this experiment, some neurons, which are defined as

simple cells, are found to respond differently to edges at different orientations.

In addition, these neurons are also observed to react differently to the light and

dark patterns [95]. On the other hand, the term complex cells is used for the

neurons that gave similar responses to line patterns regardless of from where

they are applied. In 1962, they made additional comments on the visual cortex

which they believed to have a complex structure with interconnections between

simple and complex cells [40].

This interconnected model of visual system inspired the neocognitron, which

is a hierarchical multilayered neural network that might be considered as the

first attempt to generate hierarchical representations [87]. The neocognitron is

proposed in 1980 and developed in the following years by Fukushima [25,26,28,

29], who introduced the convolutional layers during these works. The algorithm

tries to imitate the mammalian visual perception by realizing a convolution of

input pattern with a rectangular unit composed of adjustable weights. The

aim is to generate a hierarchical representation of the input pattern, which may

be interpreted as feature extraction. Figure 2.3 shows the typical architecture

employed by a neocognitron.

14

Figure 2.3: A typical architecture of a neocognitron [26]

The first layer of the architecture represents the photoreceptors of the retina

whereas the ordered connections between layers is inspired by receptive field,

which indicates the volume in the physical world inside which the light can

trigger the corresponding photoreceptor. The model itself is composed of S-cells

and C-cells which resemble simple and complex cells, respectively. Each cell in

higher layers are connected to a limited area on the preceding layer which is

called local connection.

Analogous to human visual perception [61], first layers in the architecture are

expected to capture low level features, such as edges and blobs by the help

of S-cells, whose input connections are variable and therefore adjusted during

learning. On the other hand, C-cells have invariable and fixed input connec-

tions and they are expected to compensate the positional errors in the features

captured by S-cells.

The training of neocognitron can be supervised or unsupervised and learning

means modifying the interconnection of S-cells. The training allows the network

to self-organize their architecture according to two principles. According to the

first principle, among cells located in a small area, only the cell with highest

response is allowed to strengthen its connections proportional to the intensity

of the response. The second principle states that the winner cell that has the

15

highest response also controls the growth of neighbor cells, and this principal is

said to be introduced in order to preserve translational symmetry.

Figure 2.4 exemplifies the response of several layers of a neocognitron which

is trained to recognize hand-written digits. Even though the weights are not

learned in a global manner and rather set by local learning rules, the layer

responses clearly indicates that the neocognitron has the ability to learn hi-

erarchical representations. Down-sampling between layers during hierarchy is

realized by spatial averaging.

Figure 2.4: An example that shows the reponse of a neocognitron which is
trained for hand-written digits [27]

2.2 Feedforward Networks

Neural Networks can be seen as a graph which is composed of computational

blocks, each of which computes weighted sum of the inputs and fed it to a

nonlinearity, a computational model, namely artificial neuron model, is given in

Figure 2.5. Artificial neuron models the synaptic transfer by using weighted sum

of the inputs and activation function models the probability of firing a neuron.

The computation graph that can be represented as an acyclic graph is so called

feed forward, whereas the graphs that have cyclic connections are denoted as

recurrent neural network. Feedforward (Figure 2.6a) and recurrent (Figure 2.6b)

networks are shown in the Figure 2.6.

16

W1

W2

W3

Wm

Summing Nonlinearity

Output

WeightsInputs

x1

x2

x3

xm

Figure 2.5: Artificial Neuron

(a) (b)

Figure 2.6: Illustration of (a) feedforward and (b)recurrent networks

The capacity of a network can be adjusted by appending more neurons to a layer

or by adding extra layers that are connected to previous layer. The capacity of a

network is defined as the ability of the network to distinguish varying cases. As

stated in Chapter 1, increasing the depth generates exponential gain in terms

of compactness and computational complexity. This is illustrated in Figure

2.7, a neuron can generate a hyperplane that can separate linearly separable

classes, while increasing the neuron number and depth, more complex separating

hyperplanes can be generated.

Neural networks operate in two different modes; first is the forward propagation,

where the input is propagated towards upper layers to generate an output, the

second is backpropagation, where the error is propagated downwards in the hier-

archy to learn the parameters. Backpropagation algorithm is detailed in Section

17

Figure 2.7: Capacity increase with increase in depth and breadth [52]

2.2.2.

In this formulation, kth input to ith neuron at the jth layer is denoted as hkj−1 and

the preactivation, pkj (i), that is the weighted sum of inputs where weight vector

is wi and bias bi is calculated as in Equation 2.3. The result after activation,

that is after the nonlinear function s(•) ,which is generally logistic sigmoid or

hyperbolic tangent function, is applied is hkj . N and M in the Equation 2.3 are

the width of the layer and the number of inputs, respectively. hk0 is the raw

input data.

pj =

− w1 −
− w2 −

...

− wN −

j

| | |
h1 h2 ... hM

| | |

j−1

+

b1 b1 . . . b1

b2 b2 . . . b2

...
...

bN bN . . . bN

j

(2.3)

hj = s(pj) =

| | |

s(p1) s(p2) . . . s(pN)

| | |

j

(2.4)

At the last layer, for classification, a softmax activation is used in the literature.

The output of the network is treated as the posterior, the class label given

18

input, p(c|X). Since the output is probability, it should obey the axioms of

the probability, converting from energy of being a class to a probability can be

done using softmax activation, as in Equation 2.5, where fi(X) is the network

output at the ith neuron on the top layer and pi the probability associated to

that neurons class as follows:

pi =
efi(X)∑
j

efj(X)
(2.5)

2.2.1 Learning Procedure

A general framework of a learning machine is depicted in Figure 1.2. Multi-

layer feed forward network is not an exception. For this framework, weight,

W , and bias, b, parameters are learned so that average training error, Etrain, is

minimized. The error can be selected as the mean squared error for regression

problems and negative log likelihood for classification and detection problems.

The error is usually computed as the mean squared error (MSE) for regression

problems, since MSE punishes the misclassification according to the wrong la-

bel. For example, in hand-written digit classification problem, classifying the

digit ’3’ as ’4’ or ’8’ corresponds to different amount of errors when MSE used.

On the other hand, negative log likelihood error does not take the difference

of the true label and the wrong label into consideration and regards the same

problem as the probability of the output being ’3’. Therefore, the error in neural

network framework is computed as negative log likelihood for the classification

and detection problems.

The standard second order nonlinear optimization techniques are not well suited

for neural networks, due to the requirement of the computationally expensive

Hessian of the error. The algorithm generally used for optimization is gradient

descent shown below, where (W t
i , b

t
i) is the tunable parameters of the system,

namely, ith weight at time (learning iteration) t and ith bias at time t, η is the

learning rate and ∇(Wi,bi)Etrain is the gradient of the energy with respect to

parameters.

19

Etrain = −
∑
i

log(E(Oi, Ôi)) (2.6)

(W t
i , b

t
i) = (W t−1

i , bt−1i)− η∇(Wi,bi)Etrain (2.7)

The reuse of computational blocks by constructing layers are also bringing com-

putational efficiency while computing gradients. The gradient of error with re-

spect to parameters is not calculated separately but the error propagated from

top layer to bottom step by step. Each step uses the previously calculated

value. The procedure of calculating gradient by propagating error is so called

backpropagation.

The complete pass through of the training set, which is called epoch, is necessary

to calculate the true gradient in Equation 2.7. The complete pass through is

referred as batch learning as the entire batch of the data is used to calculate the

weight update, whereas the stochastic learning is used to describe the gradient

computation using a random sample from the training set for each weight update.

Themini-batch learning is the term used for the gradient calculation from a small

number of examples from the dataset. The use of mini-batches are advantageous

for two main reasons: it is much faster than the batch learning and speed does

not depend on the training set size.

The convergence of the gradient descent is not guaranteed, since the function is

highly nonlinear and nonconvex. There are many local minimas and plateaus

that the iterative algorithm can trap. The use of stochastic learning adds noise

to the gradient computation, since not all of the sample gradients are averaged as

in the Equation 2.6, but only the gradients that are generated by the randomly

selected samples are averaged. The added noise, caused by the randomness, will

help to escape from the trap [58].

The concept of momentum can be used to smooth the gradient and improve the

speed of convergence [8,36,58]. Momentum is the name of temporally smoothing

the gradient as in the Equation 2.8, where β is the free parameter that impose

the amount of smoothness.

20

∇xt ← β∇xt − (1− β)∇xt−1 (2.8)

The parameters are updated in the opposite direction of the gradient with mag-

nitude scaled with the learning rate, η. η is an important hyperparameter,

generally selected in the range of [10−6, 1]. An advised strategy for updating

learning rate is annealing [8]. The learining rate is decreased at each iteration

with the Equation 2.9 where t is the iteration, T is the total iteration or limit

of the early stopping, and η0 is the initial learning rate.

ηt = (1− t

T
)η0 (2.9)

The weight update depends on the training error; however, the main aim of

learning is to generalize well to unseen data which can not be measured during

training. The theoretical analysis decomposes the generalization error into two:

variance and bias. Let f be the function to be learned and g be the function

learned with the available dataset D. The variance is the diversity of the learned

functions with different sets of training data, while the bias is the difference

between the output of the target function f and the average output of different

learned functions g. The illustration of different bias and variance conditions

are given in the Figure 2.8, where the target function is f and the turquoise

colored region is the varieties of learned functions with different training sets.

f

g

(a)

f

g

(b)

f
g

(c)

Figure 2.8: Illustration of (a) low bias - high variance, (b) high bias - low variance
and (c) low bias - low variance

The bias can be lowered by using a network having a larger capacity. There-

fore, increasing depth or width will lower the bias, but possesses the risk of

21

memorization. The network with larger depth or width can memorize the train-

ing data due to the increased expressive power, which will lead to the loss of

generalization, and therefore, increase in the variance.

There are ways to decrease the variance. The first technique that one can come

with is the regularization. Regularization is a term added to the energy, that

is minimized, imposing the parameters not to grow in magnitude. A revised

training energy with an additional regularization term is given in Equation 2.10.

Etrain = −
∑
i

log(E(Oi, Ôi)) +
∑
j

(Wj)
2 (2.10)

A simpler way of applying the same constraint is early stopping. The learning

procedure is iterative and the network fits better to the training data at each

iteration. Stopping before reaching a minimum is called early stopping. The

equivalence of early stopping and l2 regularization is shown in [90].

Another method used lately is Dropout [38], which also prevents overfitting by

dropping neurons in the network randomly at each training iteration. The prun-

ing of network decreases the effective size of network. Dropout randomly drops

neurons that will be an input to the next layer. Since the presence of the inputs

together is not guaranteed the factors learned can not depend on many inputs

together , in other words, dropout prevents co-adaptation by randomly drop-

ping neurons. Omitting neurons also forces the network to learn disentangled

factors. Disentangled factors means the factors that are uncorrelated from oth-

ers. Entangling factors might be regarded as the coordinates of the manifold.

For example, image of an object can be retrieved from different distances and

orientations and in addition to the problem of different poses, the appearance

of the object may present differences. However, the set of possible images of the

object constitutes a manifold in a higher dimensional space of all possible images

with the same size and classification is achieved when the underlying variation

factors, which combine to generate the data, and therefore, can be seen as the

coordinates of the manifold, are disentangled.

Another way to limit the overfitting is to find a network architecture that have

22

less parameters but keeps the capacity approximately equal. Such a goal can be

achieved by using general priors applicable to the area of interest. Convolutional

Neural Network is an example of this pattern.

2.2.2 Backpropagation

Backpropagation is a method for calculating gradient in computation graphs

using well-known Chain Rule in calculus. Chain rule is used to calculate deriva-

tive of function f(~x) with respect to y, where ~x is a vector with each element xi
being a function of y, and ∂f(~x)

∂xi
calculated before, is shown in Equation 2.11.

∂f(~x)

∂y
=

∑
i

∂f(~x)

∂xi

∂xi
∂y

(2.11)

For feedforward neural network, first, the gradient of the training error is cal-

culated with respect to topmost layer parameters found. Then, training error

with respect to the input of the topmost layer is calculated, which is analogous

to calculating ∂f(~x)
∂xi

. Afterwards, the chain rule is used to find the training error

gradient with respect to the parameters of the second layer from the top. The

pseudo code for the backpropagation is given in Algorithm 2, where∇θL denotes

the gradient of the negative log energy − log(E(O, Ô)) with respect to θ and m

for the total number of layers.

Algorithm 2 Backpropagation

Forwardpropagate the input X to calculate Ô
Compute the output gradient before activation ∇pL+1

L

for k from m+1 to 1 do

Compute gradients ∇WL
E, and ∇bLL

Compute gradient of layer below ∇hk−1
L

Compute gradient of layer below before activation ∇pk−1
L

end for

The algorithm starts with computing output gradient with respect to the input

of softmax layer, where the gradient is given in Equation 2.12a. y is the true class

23

and Ô is a vector each element of is the probability calculated for input X to be

belonging to class c where the total number of classes is C. ~e(y) which has 1 at

yth element and 0 elsewhere is a vector. For each layer, gradients with respect

to parameters are calculated using the gradient computed at the previous step

as given in Equation 2.12b and 2.12c for a fully connected layer. Finally, the

gradient that will be used for the layer below is calculated in two steps: first,

the gradient with respect to activation of the layer below using Equation 2.12d,

then the gradient with respect to the preactivation is calculated with Equation

2.12e, where the nonlinear activation function is denoted as s(•) and derivative

of the activation function denoted as s′(•).

∇~p(L+1)(x)L = −(~e(y)− Ô) (2.12a)

∇W(k)L = (∇~p(k)L) ~h(k−1) (2.12b)

∇b(k)L = ∇p(k)L (2.12c)

∇h(k−1)L = W(k)T∇p(k)(x)L (2.12d)

∇p(k−1)L = (∇h(k−1)L� [. . . , s′(p(k)(x)j), . . .] (2.12e)

2.2.3 Convolutional Neural Network

The bias can be lowered by increasing the capacity of the network; however,

the important point is to find a way to decrease the bias, while preserving the

variance. The use of general priors, that are not application specific and can be

used without loss of generality, is a feasible and highly-applied way to achieve

this goal. Smoothness is the prior behind many local learners and it means

that a function is learned such that x ≈ y implies f(x) ≈ f(y). On the other

hand, the general prior behind distributed learning ismultiple underlying factors,

which states that the data generating distribution is affected by multiple factors

and these factors can be used to make generalizations in many configurations.

Finally, hierarchical representations assume that the world can be described by

using concepts that generate hierarchy, there is simple information in low levels

24

and abstraction increases while going to higher levels in the hierarchy, which is

the motivation behind the deep learning.

Convolutional Neural Networks(CNN) represents another general prior. Video

or image data have a temporal and spatial coherence, that is, each voxel or pixel

is correlated inversely proportional to the temporal and spatial distance between

voxels or pixels. Locally connected neurons are used to capture that correlation,

since the neighboring pixels are correlated most, only the pixels that are in the

vicinity of the neuron is connected to the input of that neuron. The weight

sharing, that is each locally connected neuron, have the same weights decrease

the number of parameters but also imposes another general prior that same

feature should be searched everywhere on the image. The well-known descriptors

also operate on the same principle and the spatial location is irrelevant while

describing the point.

CNN is similar to Fukushima’s Neocognitron [25] in the sense that both uses con-

volution filters as weight sharing, locally connected neurons and a pooling layer

after the activation. In addition, CNN is heavily inspired from the biologically

plausible models without trying to directly copy it [57].

CNN has an interesting property that by the general priors introduced, 6-7

layered CNN can be trained with randomly initialized weights, while fully con-

nected networks of the same depth are nearly impossible to train. The fun-

damental problem of deep learning, diminishing or exploding gradients, affects

fully connected networks more. The increase in the depth of the network makes

backpropagation harder, since the gradient is calculated by multiplying gradi-

ents at each layer. If one layer is saturated, i.e, gradient is close to 0, then it

can not backpropagate the gradient, so diminishes or if the gradient in a layer

is too large then it backpropagete this large value so will explode the gradient.

The small number of fan-in, the number of inputs to a neuron, is used as an

explanation of CNN not being affected from the fundamental problem as much

as fully connected networks. An overview of the CNN is given in Figure 3.2 and

more details can be found in Chapter 3.

25

2.3 Reborn of the Deep Learning

The deep architectures are hard to train due to many local minima and plateaus.

Increase in the depth also increases the number of local minima, so the difficulty

of training deep architectures is more than the shallow ones [24]. The difficulty

is to find a good local minima that generalizes unseen data well. The backprop-

agation stucks on the path from higher layer to lower layer, if the gradient is

zero on one layer. This leads to initial layer not learned and the overall network

trapped to a local minima. That fact made neural networks with many layers

to perform worse than the networks with few layers although the deeper neural

networks have a larger capacity [53]. The shallow networks also promoted by

the fact that superposition of sigmoidal function, which is 2 layer network with

a sigmoid activation, is a global approximator that can approximate continuous

functions [20]. The statement is generalized in [39] such that the feedforward

neural network architecture makes the neural networks global approximator not

the specific choice of the nonlinearity. These circumstances reduced the popu-

larity of deep architectures until 2006.

In 2006 a breakthrough is initiated [10, 37, 79, 93]. The commonality of these

works is greedy layerwise training that each layer of the network is trained using

an unsupervised criterion and stacked on top of each other to generate a deep

architecture. Layerwise training has two stages, in the first stage the given input

X is encoded as Y , in the second stage, generative stage, the optimal code Y ∗

is decoded to reconstruct the input X, and the reconstructed version is X̂.

Unsupervised learning involves an energy minimization in which energy of the

training samples are minimized. Trying to minimize the energy of the samples

is not enough because that will end up with a totally flat, collapsed, energy

surface which is not informative. The energy of the unobserved data should be

maximized while minimizing the energy of the observed data.

There are two paradigms for layerwise training. First approach uses probabilistic

graph modeling, such as Restricted Boltzmann Machines(RBM) [37], while other

branch works on the computational graph interpretation of the neural network.

26

These models differ from each other by selecting the mechanism to minimize

energy of the observed data, increase the energy of the unobserved data, and

how to parametrize this mechanism.

Most of the layerwise training techniques can be examined in a unified energy

based framework [78]. The energy of the system is the combination of encoder

energy, decoder energy and code energy. The discrepancy between the code Y

and the optimal code Y ∗ is called the encoder energy while the discrepancy

between the input X and reconstructed input X̂ is named as decoder energy.

Some methods imposes constraints on the optimal code Y ∗ which is so called

code energy, an example of which may be sparsity. The energy calculation flow is

given in Figure 2.9. The layers can be stacked by removing decoder and feeding

the code Y to a new encoder as depicted in Figure 2.10. This architecture can

be used to initialize a multilayer neural network and the training can continue

with supervised training which explains the reason for unsupervised learning of

the data distribution being also called unsupervised pretraining.

The probabilistic models define a joint probability of visible units (input) and

hidden units (code), p(x, y). Codes are obtained by using the posterior p(y|x).

Training is finding the model parameters that maximizes the likelihood of the

training data. By the definition of the probability,
∫
p(x)dx = 1 where p(x)

represents probability density function, so maximizing the probability of train-

ing data will pull down the probabilities of unseen data. Posterior distribution,

p(y|x), and the partition function that normalizes the total probability to one,

Equation 2.13a, are intractable. The latent variable probabilities are used to

generate a code by taking expectation or getting the most likely value. Proba-

bilistic models can be formalized as an energy problem by using Gibbs energy as

shown in 2.13b, where X is the input (visible units) and Y is the latent variable

(hidden representation, code).

Z =

∫
x

e−βE(x,Y)dx (2.13a)

P(X, Y) =
e−βE(X,Y)

Z
(2.13b)

27

Input X Code Y ∗

X̂

α

∏ ∑
System Energy

Code Energy
f(Y ∗)

Encoder
ge(X,W, b)

Decoder
Energy

Encoder
Energy

Decoder
gd(Y

∗,W, b)

Code
prediction Y

Figure 2.9: The energy calculation flow of the unsupervised training

The partition function drops the probability of the unseen data. Energy of a

probabilistic model can therefore be written as in Equation 2.14.

E(X, Y) = − log P(X, Y) (2.14)

The probability of the dataset D is
∏
xi∈D

P(xi, Y) which is shown in Equation

2.15 in terms of energy.

E(X, Y) = − log
∑
xi∈D

E(xi, Y) +
1

β
log

∫
x

e−βE(x,Y)dx (2.15)

The energy of the training set is subject to a minimization as a learning process.

From the second term, it can be seen that energy of all data should be maximized,

while the training samples energy is minimized. As a result, the samples from

28

X

Y1

X̂

Encoder Decoder

(a)

Y1

Y2

Ŷ1

X̂ (Dropped)X

(b)

Figure 2.10: Stacking layers. (a) demonstrate a single layer while (b) shows the
stacking of layers

the training set have low energies while other inputs give high energies.

On the other hand, computational graph based methods compute a parametric

function to find a code from the input as a direct mapping. Autoencoder variants

are the examples of this group and described in Section 2.3.1.

The probability distribution of the observed data, p(x), or the energy distribu-

tion of the observed data, E(x), is not directly related to posterior probability

of the class given the input, p(c|x) which is the main aim of the supervised

learning. However the underlying factors discovered in unsupervised learning,

which is the description of x, are also important while discriminating different

classes.

The effect of unsupervised pretraining is examined in the literature as a regular-

ization [23, 24] and as a method of better optimization [10]. The pretraining is

equivalent to infinite penalty for solutions outside of a region of parameter space

as there is a local minima, which parameters will be plunged into, in the vicinity

of the pretrained parameters. Literature shows that for a small labeled dataset,

unsupervised pretraining yields better generalization and locate a distinct op-

tima which ensures a lower the variance, however if the capacity is lowered, the

pretraining hurts the performance, since some of the underlying factors that

describe the distribution are not useful in classification and these neurons are

29

wasted.

In recent researches [16,17,32,51], the error rate of classification is decreased in

well-known datasets when the learning is realized purely supervised with a large

number of labeled data. These works has shown that the proper initialization

and choice of the non-linearity play an important role in supervised training of

deep neural networks, in order not to require any kind of layerwise pretraining.

The reason behind the delay of this discovery is the advancement in the tech-

nology which is as important as the algorithmic improvement. With modern

computers, the training is as fast as 60000 times as it was in 1990s. Moreover,

the utilization of the graphical processor unit (GPU) even increases the speed

50-100 times more. Other factors leading to these achievements are dropout

technique, convolutional architecture and rectified nonlinearities.

2.3.1 Autoencoder Types

An autoencoder encodes input X to Y , then reconstruct X as X̂ from the code,

Y , and minimizes the distance between X and X̂. The cross entropy is the

distance measure used for binary input and the l2 norm is used for real valued

input. If the only constraint was the distance, the encoder will learn the iden-

tity function so there are varieties of additional constraints that makes difference

between autoencoder types. The general framework for an autoencoder archi-

tecture is given in Figure 2.10. ge(•) and gd(•), in the equations of this section,

are encoding and decoding functions which are generally sigmoid functions.

Autoencoder The simplest version of the autoencoder does not include any

constraints but the dimension of the code is less than the dimension of the

input which creates a bottleneck, that prevents learning the identity function.

The encoding and decoding functions are given in Equations 2.16a and 2.16b,

respectively, where s(•) is the nonlinearity used, generally a sigmoid function.

The weight W and W ′ is said to be tied weight if W ′ = W T where W T denotes

30

transpose of W .

Z = ge(X,W, b) = s(W X + b) (2.16a)

X̂ = gd(Z,W
′, b) = s(W ′X + b) (2.16b)

Sparse Autoencoder Sparse autoencoder imposes a sparsity constraint on

the code, that is, the dimension of the code can be greater than the dimension of

the input, which enables learning an overcomplete basis. The energy is defined

as follows:

E(X, Y ∗) =
1

2
||X −W ′ Y ∗||22 + λ||Y ∗||1 (2.17)

The inference of the code is achived by convex nonquadratic energy minimiza-

tion. This slows down the operation, however, a variation, predictive sparse

decomposition (PSD [47]) simultaneously finds the code by inference and also

learn a mapping of the input to the optimal code Y ∗. The energy is defined as

follows:

E(X, Y ∗) = ||X −W ′ Y ∗||22 + α||Y ∗ − ge(X,W,D) + λ||Y ∗||1 (2.18)

In the regular usage after training, the inference is not used and only the learned

mapping is used to find the code. Since inference is nonlinear, decoding can be

linear.

Denoising Autoencoder Denoising Autoencoder is an exception that does

not fit in the framework. Denoising autoencoder first adds noise to the input

and generates X̃ in the training phase, then it reconstructs X̂ from the noisy

input X̃ and uses the original input, while measuring the reconstruction error

that enforces the system to find representations that are independent from the

noise. [93]

31

Contractive Autoencoder A generalization of Denoising Autoencoder is

Contractive Autoencoder in which instead of adding noise to make the code

noise immune, the jacobian of the code is used as a code energy [81]. The Jaco-

bian of the code measures the variation of the code corresponding to infinitesimal

change in the input. To minimize the total energy the Jacobian should be min-

imized as well, that makes the code invariant to changes in the input. However

the variations that are important to reconstruct the input are considered in

the code to make the reconstruction energy low. The energy is defined as in

Equations 2.19 where J is the Jacobian.

E(X, Y ∗) = ||X − ge(Y ∗,W ′, b)||22 +
∑
||J ||22 (2.19)

32

CHAPTER 3

CONVOLUTIONAL NEURAL NETWORK FOR DEEP

LEARNING

The training set should be at least as large as the tunable model parameters for

a good learning. The prior information about the task is used to decrease the

number of model parameters without loss of the ability to generalize, in other

words, without the loss of network capacity.

A very strong assumption for image data is that the correlation of the raw input

data at point ~x and at point ~y will decrease with the distance between point ~x and

point ~y. That suggests the use of locally connected (each neuron is connected to

a set of neurons from a layer below that are in a neighborhood) neurons instead

of using fully connected(each neuron has a connection with every neuron from

a layer below) neurons as in classical neural networks. Another important prior

about the image data is that features searched in every part of the image should

be the same. For example, the well known hand-crafted features, such as Scale

Invariant Feature Transform (SIFT) [66] and many others, describe a point in the

same way for every part of the image. This clue can be used in conjunction with

the local connectivity. The weights can be shared across each locally connected

neurons. Exploitting these priors, CNNs have less parameters to train, amount

of data required for training is less and training is easier while the performance

is slightly worse compared to well trained fully connected alternatives which are

nearly impossible to train with randomly initialized weights [7]. These features

makes CNNs an attractive and good choice for deep learning.

Convolutional Neural Network(CNN) has less parameters to train, so less data is

33

needed to train, and training easier with respect to fully connected counterparts.

(a) (b)

(c)

Figure 3.1: Illustration of (a) Fully Connected Neuron, (b) Locally Connected
Neuron and (c) Locally Connected & Weight Sharing Neuron

The power of the CNN is supported with the fact that it has been used in many

areas from 90’s to today. An early example is the AT&T bank check reading

system in 90’s. Microsoft developed OCR and handwriting recognition systems

using CNN, CNNs also used in object detection. Google developed a system

using CNNs to detect license plate and face to protect privacy in StreetView.

CNN also used for a project for long-range obstacle detection. [59]

Convolutional Neural Network architecture [56, 57] is a model that uses weight

sharing and local connectivity. CNN is an exceptional model which can be

34

Input

Output

C1 feature maps

S1 feature maps

C2 feature maps
S2 feature maps

Full
Connection

Pooling &
ActivationPooling &

Activation
Convolutions Convolutions

Flattening

Figure 3.2: An overview of Convolutional Neural Network

trained from random initialized weights that is impossible for the same depth

fully connected networks [7]. It is explained by an unproven hypothesis [7]

that small number of inputs to a neuron (local connectivity of neurons or small

receptive fields of neurons or small fan-in) will prevent fundamental problem of

deep learning, which is the term used for exploding or diminishing gradients that

is observed in deep learning. Therefore, gradient can propagate back more layers.

Similar to other deep architectures, Convolutional Neural Networks have similar

layers on top of each other, with each layer consists of a series of sublayers,

namely a convolution (filter bank) sublayer, a non-linearity sublayer, a local

response normalization sublayer, and a feature pooling sublayer that is shown in

the Figure 3.2. A general framework consists of some layers of this type followed

by a fully connected neural network, with a softmax layer at the output stage.

The network capacity can be tuned by selection of the depth (number of layers)

or breadth (number of and size of filters used).

3.1 A Layer of CNN

An overview of a layer is shown in Figure 3.3. Convolution sublayer can be

thought as neurons arranged in 2D grid opposed to neurons in ordinary neural

networks. Convolution operation applies the same filter to various locations.

It is rational to apply the same filter everywhere in the images, especially for

satellite images, since the data statistics are stationary across different locations.

Locally connected, weight sharing neurons result in less number of parameters,

35

so overfitting is not a problem, as much as it is for the fully connected networks.

Such an approach makes using dropout unnecessary for this kind of layers [38].

Input

Convolution Nonlinearity

Pooling

Figure 3.3: Overview of a single layer

3.1.1 Convolution Sublayer

This layer does a linear operation on input, convolves input with filters and

adds bias which is different for each filter. The input image (h) of dimensions

niy×nix×nc, in which niy is the number of rows of the image, nix is the number

of columns of the image, and nc is the number of channels of the image, is

convolved with rows and columns flipped filters (W) W̃ with dimensions nfy ×
nfx×nc×nf , in which nfy is the number of rows of the filter, nfx is the number

of columns of the filter, nc is the number of channels of the filter which is the

same as the number of channels of the image, and nf is the number of the

filter. After convolution, bias b of size nf is added. Output of this operation is

matrix a which is in dimensions of nay × nax × nf where nay is the number of

columns in resulting image, which is equal to niy − nfy + 1, nax is the number

of rows in the resulting image which is equals to nix − nfx + 1, and nf is the

number of channels of the resulting image which is equal to number of filters.

Flipped filters are used for convolution, since the convolution operation implicitly

flipping filters by definition so giving flipped filters flipped back to original which

makes understanding of the results easier. The relationship between convolution

and correlation is given in Equation 3.1, where ∗, ? represents convolution and

36

correlation, respectively. W and b parameters are trainable parameters. The

Equations 3.2 and 3.3 show the relationship of the output, input, weight and

bias. Each filter will identify, hopefully different and important, features of the

image.

A ∗ B̃ = A ? B (3.1)

a = h ? W + b (3.2)

a(x, y, z) =
∑
p,r,s

h(x+ p, y + r, s)W (p, r, s, z) + bz (3.3)

The gradient of the loss (L), required for back-propagation is given in Equations

3.4. The gradient equations in 2.12 are replaced by these gradients. ?̃ is full

correlation that creates a result of size (x+ z− 1, n+ t− 1) for input size (x, y)

and (z, t) while valid correlation creates result of size (x− z + 1, n− t+ 1).

∇W(k)L = ∇~p(k)L ? h
k−1 (3.4a)

∇b(k)L =
∑
∇~p(k)L (3.4b)

∇h(k−1)L =
∑
j

∇~p(k)L ?̃ W(k) (3.4c)

The weights should be initialized randomly as in ordinary fully connected net-

works that is described in 3.2.2.

3.1.2 Non-linearity Sublayer

Linear operations (say op) are associative; hence adding more linear layers hav-

ing weights (W1, W2, W3, ..., Wn) will be the same as using one layer that

does the same op with weight W equals to Wnop...opW3opW2opW1. This fact

demonstrates the importance of the non-linearity in the hierarchical network.

A variety of non-linear functions can be used as the nonlinearity and two well-

known examples are sigmoid and rectified linear function. Those widely used

functions are explained in the following parts and the derivatives, which are re-

37

quired for backpropagation, are given. The nonlinearity is applied to the output

of the convolution sublayer.

3.1.2.1 Sigmoid Unit

Logistic sigmoid function, Equation 3.5a, with derivative given in equation 3.5b

and shown in Figure 3.4 and hyperbolic tangent sigmoid function, Equation

3.6a, with derivative given in Equation 3.6b and shown in Figure 3.4 are widely

used non-linearities. Sigmoid functions are monotonically increasing functions

with smooth derivatives and asymptotes at finite value. Networks with logistic

sigmoid function are harder to train, since the outputs are unnormalized values

which will be an input to other layer and the normalization of the input makes

convergence faster [58]. Hyperbolic tangent with parameters α = 1.5179 and

β = 2/3 is used for all experiments that uses hyperbolic tangent non-linearity

as these values are suggested in [54].

sigm(a) =
1

1 + exp(−a)
(3.5a)

sigm′(a) = sigm(a)(1− sigm(a)) (3.5b)

α tanh(β a) = α
exp(β a)− exp(−β a)

exp(β a) + exp(−β a)
(3.6a)

α tanh′(β a) = αβ (1− α tanh2(β a)) (3.6b)

3.1.2.2 Rectified Linear Unit (ReLU)

Rectified linear function, with Equation 3.7a, derivative given in equation 3.7b

and shown in Figure 3.4, is shown to improve the discriminative power of the

38

network [44] and also biologically plausible [75].

relu(a) = max(0, a) (3.7a)

relu′(a) = a > 0 (3.7b)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

Logistic Sigm. Func.
tanh Func.

ReLU

Figure 3.4: Non-linearty functions: (a) Logistic Sigmoid Function (b) Hyperbolic
Tangent Sigmoid Function (c) Rectified Linear Function

3.1.3 Local Response Normalization Sublayer

Local response normalization sublayer is advised after rectified linear activa-

tion function for its ability to increase generalization by generating competition

between neighboring filters. The activation of the neighboring neurons at the

same spatial location, in other words, neurons at the same location belonging to

different convolution kernels, are normalized according to equation 3.8b. That

normalization is analogous to lateral inhibition found on the biological neural

39

network. Gradient is also presented in equation 3.8c. [51]

γ = 1 + α

j=i+N
2∑

j=i−N
2

(p(x, y, j))2 (3.8a)

u(x, y, i) = (γ)β (3.8b)

∇uL =
∇uL

γβ
−

2αβ p(x, y, i)
j=i+N

2∑
j=i−N

2

(p(x, y, j))

γβ+1
(3.8c)

3.1.4 Pooling Sublayer

Pooling, groups spatially close activations together, similar to bag of words.

Pooling operates a function, maximum (max-pooling) or average (avg-pooling)

are two well known examples [12], on a region which can be overlapping. Over-

lapping pooling windows are empirically shown not to provide significant im-

provements over non-overlapping ones [86]. Function applied on a neighborhood

(N) of size n is shown in Equations 3.9, 3.10 for average and maximum pooling,

respectively:

h(x, y, z) =
1

n

∑
ix,iy∈N

u(ix, iy, z) (3.9)

h(x, y, z) = max(u(ix, iy, z)) : ix, iy ∈ N (3.10)

Pooling sublayer has two important functions. Firstly, pooling makes the sys-

tem invariant to small transformations, since the pooling operates on a region.

Secondly, pooling works as a dimension reduction technique. The aim of pooling

is to store important features while discarding others.

Pooling is biologically inspired from complex cell [40–42]. Simple cells extracts

features like oriented edges and complex cells combine simple cell activations in a

spatial neighborhood [86]. The convolution and nonlinearity sublayers together

imitates simple cells, while the max pooling sublayer mimics the complex cell.

40

Similar techniques are also widely used in hand crafted feature extraction algo-

rithms. For example, Scale Invariant Feature Transform(SIFT [66]), Histogram

of Oriented Gradient(HoG [21]) and derivatives use gradient pooling, in which

gradient orientations are pooled in a neighborhood with max pooling, getting

the maximum intensity direction.

3.2 Improving Backpropagation: Rule of Thumbs

3.2.1 Preprocessing

For some nonlinearities and deep learning architectures, preprocessing is not

necessary; however, it improves the speed of the convergence and converge to a

better optima, better in the sense that it can generalizes to unseen data better.

Inputs to a network should have zero mean and also outputs should also have

zero mean, since the output of a layer will be an input for the next layer. The

bias on the input enforces weights to be updated together as detailed in [58].

Common motion of the weights will make gradient descent to zigzag, so slow

down the convergence. Another factor slowing down the convergence is the

variance of the pixel, that is the change of the intensity of that pixel across the

images, and correlation between the pixels in the same image. Different variances

along the axes generates plateaus that have small derivative. Removing the

linear correlation between pixels are relatively easy using Principle Component

Analysis(PCA [45]).

PCA PCA finds orthogonal bases, that are the eigenvectors of the covariance

matrix of the data. These vectors are in the direction of the scatter of the

data. Transformation applied to the data to project it on to the eigenvectors

are shown with T . Covariance matrix is diagonal after transformation with

diagonal entries equal to the eigenvalues. Transformed data is normalized with

standard deviation(σ) of each basis. The resulting data matrix is denoted as

Dpca in Algorithm 3.

41

Zero Phase Component Analysis (ZCA) ZCA is the same as PCA, how-

ever at the end of finding uncorrelated data, it is transformed back using inverse

transform T −1 which is equals to projecting back to original bases. This trans-

formation results in a new uncorrelated and normalized data representation Dzca
using the original bases or in other words in the original domain as correlated

version. Visualization is more comprehensible and spatial distance will be mean-

ingful with such a representation unlike Dpca. This property is important for

convolutional neural network, which has an assumption that correlation of the

pixel intensity with others are inversely proportional to the spatial distance.

This procedure is depicted in Figure 3.5 and the algorithm is given in Algorithm

3, where D is the original data and xT denotes transpose.

Normalization

T

Decorrelate

Return to Original Axes

T −1

y

x

x

y

u

v

v u v
u

u

v

v
u

v u

Figure 3.5: Overview of a single layer

Algorithm 3 ZCA
Σ = D ∗ DT

Calculate Eigenvectors(u) and Eigenvalues(λ) Of Σ

Duncorrelated = T (D) = uT · D
Dpca = (I · 1√

λ
) · Duncorrelated

Dzca = T −1(Dpca) = u · DTpca

42

3.2.2 Weight (Filter) Initialization

Weights of a neural network should be initialized randomly. If weights are initial-

ized from the same value, each neuron will be updated by the same values. Such

a situation leads to an overall system that learned only one feature. Weights

random initialization is important to break the symmetry, while biases can be

initialized from zero.

If a sigmoid function is used as a non-linearity, selection of weights gets more

crucial, since these types of neurons might saturate. Weights in this circum-

stance initialized so that activation of neuron will be in the linear region. That

will result in first learning the linear properties then non-linear ones [58].

The weights are randomly sampled from uniform distribution, u(−r, r) values of
r depends on fan-in and fan-out of the network as suggested in [31, 58] and the

value of r in equation 3.11a is used for logistic function, r in equation 3.11b is

used for hyperbolic tangent, is taken from [8].

r = 4

√
6

fan-in + fan-in
(3.11a)

r =

√
6

fan-in + fan-in
(3.11b)

For ReLU non-linearity, weights should be initialized with in a larger range so

that the activations should not be in negative side of the function which makes

derivative zero so makes learning impossible. Alternatively, starting bias with

positive value will shift the inputs of ReLU to positive side [38].

3.3 Experiment Setup

The parameter affects are analyzed with experiments on CIFAR10 dataset.

43

3.3.1 CIFAR-10 Dataset [50]

The CIFAR-10 dataset is composed of 60,000 32x32 colour images belonging

to one of ten classes, with 6,000 images per class. The CIFAR-10 is a chal-

lenging dataset with the top performing method [64] can reach at most %89.6

classification rate.

The dataset is divided into five training batches and one test batch, each with

10,000 images. The test batch contains 1,000 randomly-selected images from

each class. The training batches contains the remaining images in random order.

The training set contains 5,000 images from each class. Figure 3.6 visualize

samples from the dataset with labels.

truck

airplane

bird

automobile

cat

deer

dog

frog

horse

ship

Figure 3.6: Sample images from all classes for CIFAR-10 [50]

44

3.4 Analysis of The Results

The training set and test set misclassification rate change is the key factor to

analyze the network performance. The misclassification rate is given in Equation

3.12, where MC is the number of misclassified samples, i.e. the samples whose

class labels assigned by the network are not the same as the associated label in

the dataset, and T is the total number of samples andMR is the misclassification

rate.

MR =
MC

T
(3.12)

Tables 3.2 and 3.4 demonstrate the results for CNN and fully connected ar-

chitectures. Names of the tested architectures are given as acronyms and the

corresponding explanation of this notation is provided on Tables 3.1 and 3.3.

In all of the experiments, the architectures are followed by a final softmax layer

to assign class probabilities. The pooling layer is followed the 2nd and 3nd layers,

if it exists in the architecture. Mini-Batch Stochastic Gradient with momentum

is used as the training algorithm. The gradients are calculated over the training

set and the best parameters, according to validation set performance, is used for

the test performance.

Important and simple observation from the tables is the fact that the validation

set and test set performances are quite close to each other which makes using

validation set to select best parameters meaningful.

The results show that ReLU activation usually performs better than the others,

and finds an optima that can memorize the training set for the same sized

network which suggest that the optimization with ReLU is easier so that it can

optimize till the network finds an optima.

Preprocessing the inputs has great impact on the performance. The preprocess-

ing decreases the misclassification rate by 20% on the average which is consistent

with the previous works in the literature [57].

45

Table3.1: Acronyms corresponding to fully connected architectures

Acronym Preprocessing

Number
Of

Fully
Conn.
Layer

Activation Dropout

N|0F|-|N No 0 softmax No
N|1F|L|N No 1 logistic No
N|1F|T|N No 1 tanh No
N|1F|R|N No 1 ReLU No
Y|1F|L|N Yes 1 logistic No
Y|1F|T|N Yes 1 tanh No
Y|1F|R|N Yes 1 ReLU No
N|2F|L|N No 2 logistic No
N|2F|T|N No 2 tanh No
N|2F|R|N No 2 ReLU No
Y|2F|L|N Yes 2 logistic No
Y|2F|T|N Yes 2 tanh No
Y|2F|R|N Yes 2 ReLU No
N|3F|L|N No 3 logistic No
N|3F|T|N No 3 tanh No
N|3F|R|N No 3 ReLU No
Y|3F|L|N Yes 3 logistic No
Y|3F|T|N Yes 3 tanh No
Y|3F|R|N Yes 3 ReLU No
Y|3F|L|Y Yes 3 logistic Yes
Y|3F|T|Y Yes 3 tanh Yes
Y|3F|R|Y Yes 3 ReLU Yes

The effect of the dropout can be observed by the difference of the test misclassi-

fication rate of Y|3F|R|Y and Y|3F|R|N, even though the training set misclassi-

fication of is higher for Y|3F|R|Y. This shows the improvement brought by the

utilization of dropout.

The convolutional networks outperform the fully connected networks having the

same depth as shown in Table 3.4. The best overall performance is obtained by

using the architecture 3C|2F|32|F|555. Different filter sizes are tested: convolu-

tional layers with increasing filter size, convolutional layers with decreasing filter

size and convolutional layers with the same filter size. The same sized filters are

46

Table3.2: Misclassification rates for experiments with fully connected architec-
tures

Architecture
Test

Misclassification
Rate

Training
Misclassification

Rate

Validation
Misclassification

Rate
N|0F|-|N 0.76 0.76 0.77
N|1F|L|N 0.90 0.90 0.90
N|1F|T|N 0.90 0.90 0.90
N|1F|R|N 0.87 0.85 0.85
Y|1F|L|N 0.57 0.17 0.57
Y|1F|T|N 0.64 0.48 0.64
Y|1F|R|N 0.53 0.00 0.52
N|2F|L|N 0.84 0.84 0.84
N|2F|T|N 0.90 0.90 0.90
N|2F|R|N 0.80 0.81 0.82
Y|2F|L|N 0.61 0.43 0.61
Y|2F|T|N 0.63 0.47 0.63
Y|2F|R|N 0.57 0.00 0.57
N|3F|L|N 0.80 0.80 0.80
N|3F|T|N 0.83 0.83 0.83
N|3F|R|N 0.87 0.87 0.87
Y|3F|L|N 0.61 0.41 0.61
Y|3F|T|N 0.63 0.45 0.63
Y|3F|R|N 0.56 0.00 0.55
Y|3F|L|Y 0.64 0.59 0.63
Y|3F|T|Y 0.61 0.46 0.61
Y|3F|R|Y 0.48 0.01 0.48

shown to perform better then others.

The bias of the network can be measured with the misclassification rate on

the training set, while the variance can be observed with the difference of the

misclassification rate on the training set and test set. The bias is measured with

training set performance, due to its optimization criteria which is to minimize

the average error, in other words, the function that is approximated, is the

function mapping training samples to the labels. The variance measured by the

performance on different datasets, training and test sets can be used for that

purpose. Figure 3.7 shows the evolution of the performance with the training

iteration and the bias-variance analysis is also given on the plot.

47

Table3.3: Acronyms corresponding to convolutional architectures

Acronym

Number
Of

Conv.
Layer
(CL)

Number
Of

Fully
Conn.
Layer
(FCL)

Pooling Dropout
Filter
Shapes

1C|2F|N|N|555 1 2 No No 5x5

2C|1F|N|N|555 2 1 No No
5x5
5x5

3C|1F|N|N|555 3 1 No No
5x5
5x5
5x5

3C|2F|N|N|555 3 2 No No
5x5
5x5
5x5

3C|2F|22|N|555 3 2 2x2 max No
5x5
5x5
5x5

3C|2F|22|A|555 3 2 2x2 max Yes
5x5
5x5
5x5

3C|2F|44|N|555 3 2 4x4 max No
5x5
5x5
5x5

3C|2F|44|A|555 3 2 4x4 max Yes
5x5
5x5
5x5

3C|2F|33|N|555 3 2 3x3 max No
5x5
5x5
5x5

3C|2F|32|A|555 3 2
3x3 max
overlapping

Yes
5x5
5x5
5x5

3C|2F|32|F|555 3 2
3x3 max
overlapping

After FCL
5x5
5x5
5x5

3C|2F|32|F|357 3 2
3x3 max
overlapping

After FCL
3x3
5x5
7x7

3C|2F|32|F|753 3 2
3x3 max
overlapping

After FCL
7x7
5x5
3x3

48

Table3.4: Misclassification rates for experiments with fully connected architec-
tures

Architecture
Test

Misclassification
Rate

Training
Misclassification

Rate

Validation
Misclassification

Rate
1C|2F|N|N|555 0.34 0.11 0.34
2C|1F|N|N|555 0.39 0.00 0.38
3C|1F|N|N|555 0.65 0.61 0.66
3C|2F|N|N|555 0.43 0.30 0.44
3C|2F|22|N|555 0.33 0.11 0.32
3C|2F|22|A|555 0.29 0.27 0.29
3C|2F|44|N|555 0.28 0.10 0.27
3C|2F|44|A|555 0.25 0.21 0.24
3C|2F|33|N|555 0.28 0.10 0.27
3C|2F|32|A|555 0.22 0.16 0.21
3C|2F|32|F|555 0.20 0.11 0.20
3C|2F|32|F|357 0.25 0.18 0.25
3C|2F|32|F|753 0.21 0.10 0.21

49

Test set misclassification rate

Training set misclassification rate

Misclassification Rate vs Epoch Plot of Y|3F|R|Y Architecture

Indicator of high variance

Indicator of low bias

(a)

Test set misclassification rate

Training set misclassification rate

Misclassification Rate vs Epoch Plot of 3C|2F|32|F|555 Architecture

Indicator of low bias

Indicator of low variance

(b)

Figure 3.7: Performance change with respect to the training epoch (a) for the
Y|3F|R|Y and (b) 3C|2F|32|F|555 architectures

50

CHAPTER 4

APPLICATIONS IN REMOTE SENSING

Due to the availability of many commercial satellite systems such as SPOT(Satellite

Pour l’Observation de la Terre), QuickBird, GeoEye, IKONOS etc., access to

satellite images has become much easier and cheaper. The resultant excessive

data needs a deep analysis and interpretation for a range of applications like map

making, urban planning, resource management, climate change observations and

naval warfare.

The satellite images can be acquired panchromatic or multispectral, according

to the available radiometers on the satellite. Panchromatic images are composed

of a single band, in which the pixel intensities are directly proportional to the

the radiation captured by the sensors. On the other hand, multispectral images

are composed of many channels each of which corresponds to a band of elec-

tromagnetic spectrum. In addition to red(R), green(G) and blue(B) channels,

near-infrared (NIR), middle-infrared(MIR) and far-infrared(FIR) information

may be acquired from some available satellite systems.

Target detection from multispectral satellite imagery is a challenging yet neces-

sary task. In general, the word target may either be used for geospatial objects

such as vehicles (ships or airplanes) and buildings, or it can resemble some region

of interest, such as sea, shorelines, harbours, airports, forests, roads etc.

Main approaches to the object detection problem can be categorized as appearance-

based methods, methods benefiting local descriptors and shape based methods.

Appearance-based methods, such as template-matching [13] generally mean an

51

exhausting search of the whole image for high responses to a transformed set of

the template of the target [74] or to specially designed filters [14]. Local descrip-

tor based methods benefit the geometric structure of the objects to extract high-

level features to be matched between training examples and test images [62,63].

In addition, templates based on shape properties are also proposed for the object

recognition problem [5, 30]. In the third category, segmentation is a first step

for the extraction of target shape, which is then described by using semantic

relations, texture and/or low level features such as edges and corners [3, 91].

Saliency based region of interest extraction can be utilized before applying any

of these individual or composed methods. However, the difficulty of the object

detection in satellite images problem lies behind the variability of size, pose and

color of the object with additional weather and illumination effects. Moreover,

the infrared channels, which cannot be captured by human eye, carry valuable

information. The lack of knowledge of human on this additional information

makes explicit description of the target even harder.

Therefore, a learning based classification method, which preferably generates the

hierarchical representation of input data, may have many strengths in the object

detection problem in multispectral satellite images either with unsupervised,

semi-supervised or supervised training.

4.1 Airplane Detection

In this thesis, the airplane object is chosen as the target for testing the detection

performance. In spite of the distinctive geometrical structure, airplanes may vary

highly in size, orientation, pose and especially color.

The training and also test data are obtained using the ground truth of centroid

points labeled by an expert. The data has a 2m of spatial resolution and four

spectral bands: R, G, B and NIR. The samples are extracted from bigger satellite

data by cropping windows of 32x32 pixels. An example set of images for target

class (airplane) and non-target class can be seen in Figure 4.4. Total 9900

training data is collected, of which 900 of them contain target and 9000 of them

52

is non-target samples. 21200 training images are generated by rotating and

cropping 900 sample images that contain target. 140 target and 140 non-target

patches are also cropped as the test set. Test set data are not cropped from the

images used to extract training set.

ZCA is applied as the preprocessing step. The covariance and mean is calculated

from the training set and the same transformation is applied to the test set.

(a) (b)

Figure 4.1: An example set of images from the dataset, (a) Airplane Labeled
Images and (b) Non-Airplane Labeled Images

From the tests with different parameters, best performance of 7.03% misclassi-

fication rate is achieved with an architecture which has 3 convolutional layers,

each of which is followed by 2x2 max-pooling and fed to 2 layer fully connected

network with dropout layers which improves test set performance. All layers

have ReLU activation since the best results are obtained by using ReLU, in the

CIFAR10 tests. The confusion table for airplane detection is given in Table 4.1.

The learning curve for the airplane detection algorithm is presented in Figure

4.2.

Learning procedure is an optimization problem which aims to minimize the

training error, Etrain, by selecting the best parameters for the model which

is expected to generalize to unseen data as well, if the test set and training set

characteristics are similar. However, Figure 4.2 shows that the learning behavior

of training and test data used in the tests differs slightly. The reason behind

53

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45
Test MC
Train MC

MCR

Iteration

Figure 4.2: Learning curve for airplane detection

this difference is the limited number of the training samples, which leads to

memorization instead of generalization.

Table4.1: Confusion table for airplane detection problem

GT
Assigned Label

Airplane Non-Airplane

Airplane 0.90 0.10
Non-Airplane 0.11 0.89

The target detection algorithm is also run on the whole patch of 1024x1024 image

that contains an airport. Images obtained by sliding a window of size 32x32

pixels are fed to the learned network and the output labels are concatenated to

form the detection result as an image. Examples of the detection result with

the corresponding input images are depicted in Figure 4.3. Due to the fact that

training images that contain small airplanes resembles small rectangular shapes,

road lines and small buildings are confused with the airplane. Although there

are false alarms, the missed targets are rare.

54

4.2 Classification of Airport Region Targets

Three targets are selected that are found on the airports, namely, airplane, build-

ing and dispersion areas. This 3-class classification problem is attacked using

a CNN architecture. Two datasets are created by cropping the same satellite

images used to form airplane detection dataset. The first set is optained by crop-

ping 32x32 image patches centered at the object centroid.On the other hand,

for the second resized, the object’s bounding box is cropped and then resized

to 32x32. Both training sets are composed of 890 airplanes, 3900 buildings and

100 dispersion areas. Test sets are composed of 144 airplanes, 675 buildings and

5 dispersion areas.

The training dataset augmentation is used to increase the number of training

samples by rotation the input images, at the end of augmenting the training set

the number of airplanes, buildings and dispersion areas became 21384, 31200

and 5256, respectively.

The confusion tables for both datasets, resized and not resized, are given in

Tables 4.2, 4.3 and the learning curves that indicates the evolution of misclassi-

fication rate with training iterations are given in Figures 4.5 and 4.6, respectively.

Table4.2: Confusion table for classification of airport region targets of resized
images

GT

Assigned
Label Airplane Building Dispersion Area

Airplane 0.65 0.35 0.00
Building 0.05 0.94 0.01

Dispersion Area 0.80 0.20 0.00

Table4.3: Confusion table for classification of airport region targets

GT

Assigned
Label Airplane Building Dispersion Area

Airplane 0.66 0.34 0.00
Building 0.02 0.97 0.00

Dispersion Area 0.80 0.20 0.00

55

Dispersion areas can not be learned as observed from the error rates in the

confusion tables. The main reason behind that fact is the low number of training

samples that dispersion area target have. The problem is tried to be overcame

by augmenting the training set with the rotated training samples but it is not

adequate for dispersion area target.

The building target has the largest number of samples so it generalizes better.

56

(a) (b)

Figure 4.3: The target detection algorithm run on (a) the 1024x1024 image
that contains an airport. (b) the detection result of the corresponding image
where red represents false detection, green represents true detection and orange
represents missed targets.

57

(a) Airplane Class (b) Airplane Class Resized

(c) Building Class (d) Building Class Resized

(e) Dispersion Area Class (f) Dispersion Area Class Resized

Figure 4.4: An example set of images from the classification dataset with and
without resizing during cropping

58

0 50 100
0

10

20

30

40

50

60

70

80

90
Test MC
Train MC

MCR

Iteration

Figure 4.5: Learning curve for classification of airport region targets of resized
images

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

45

50
Test MC
Train MC

MCR

Iteration

Figure 4.6: Learning curve for classification of airport region targets

59

60

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary

The convolutional neural network architecture and its internal parameters are

examined to get the understanding of the architecture. Although setting the

parameters of a deep neural network is referred to as an art than a science [57],

inspecting within the context of bias-variance guide the tuning to a valid di-

rection with the knowledge of the the underlying factors about the parameter

effects. The CIFAR-10 dataset is used to test the implementation and to ex-

amine the performance of the architectures with different ingredients. Various

activation functions, pooling sizes, filter sizes and depths are tested with the

same learning method to observe the outcomes. It is observed that the increase

in the depth also increases the performance as long as the overfitting can be

avoided. The relation between overfitting and the convolutional network is also

considered. The convolutional network with the prior of local connectivity con-

tributes to performance in positive direction.

The deep convolutional neural network architecture for an airplane detection is

designed with the know-how gained on the CIFAR-10 dataset. CNN is also uti-

lized for 3-class target classification, namely, airplane, building, and dispersion

area. Test set performance of the CNN for satellite image object detection and

classification on satellite images is not satisfactory due to the dataset used. The

major factor affecting that result is the fact that, the training set is small, which

also means the training set images may not be good representatives of the test

61

set cases.

5.2 Conclusion

Based on the test results, it is shown that the Rectified Linear Unit performs

better with the average 10% less misclassification rate, observed in CIFAR-

10 dataset. The fully connected networks suffer from overfitting that can be

deduced from the fact that the training misclassification rate of the 3 layer

fully connected network with ReLU activation is less than 1 layer convolutional

network followed by 2 layers of fully connected network. However, on the test

set, convolutional one outperforms the fully connected network. On the other

hand, dropout and preprocessing of the data with ZCA always increase the

performance. Relatively similar sized kernels are used to test the effect of the

kernel size ordering in the hierarchy. The effect is not drastic but the same kernel

size in every layer performs, at least, as well as others. Pooling increases the

performance as long as the information loss, which is generated by the pooling, is

overcame the benefit gained from the dimension reduction. This can be observed

by comparing the test results of the architectures that contains no pooling, 2x2

pooling and 4x4 pooling. 2x2 pooling is the best performing one.

5.3 Future Work

As an application, the deep learning algorithms are preferred as it is a generic

algorithm that can be applied to various data. The relationship between the

dataset (CIFAR-10, MNIST, ImageNet), dataset type (image, speech, video)

and the best performing architectures on the specific dataset can be examined

to correlate the task to network architecture.

Unsupervised pretraining of the convolutional networks for various pretraining

algorithms can be investigated for the benefits on small datasets.

62

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. SIGMOD Rec., 22(2):207–216, June 1993.

[2] M. Aharon, M. Elad, and A. Bruckstein. -svd: An algorithm for design-
ing overcomplete dictionaries for sparse representation. Signal Processing,
IEEE Transactions on, 54(11):4311–4322, 2006.

[3] H. Akcay and S. Aksoy. Automatic detection of geospatial objects using
multiple hierarchical segmentations. Geoscience and Remote Sensing, IEEE
Transactions on, 46(7):2097–2111, July 2008.

[4] F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. L.
Ferretti, R. E. P. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel.
Equal numbers of neuronal and nonneuronal cells make the human brain
an isometrically scaled-up primate brain. The Journal of Comparative Neu-
rology, 513(5):532–541, 2009.

[5] X. Bai, Q. Li, L. J. Latecki, W. Liu, and Z. Tu. Shape band: A deformable
object detection approach. In CVPR, pages 1335–1342. IEEE, 2009.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Speeded-up robust features
(surf). Computer Vision and Image Understanding, 110(3):346 – 359, 2008.
Similarity Matching in Computer Vision and Multimedia.

[7] Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends in
Machine Learning, V2(1). Now Publishers, 2009.

[8] Y. Bengio. Practical recommendations for gradient-based training of deep
architectures. CoRR, abs/1206.5533, 2012.

[9] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(8):1798–1828, 2013.

[10] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-
wise training of deep networks. In Neural Information Processing Systems
(NIPS), 2007.

[11] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

63

[12] Y.-L. Boureau, J. Ponce, and Y. Lecun. A theoretical analysis of fea-
ture pooling in visual recognition. In 27TH INTERNATIONAL CONFER-
ENCE ON MACHINE LEARNING, HAIFA, ISRAEL, 2010.

[13] R. Brunelli. Template Matching Techniques in Computer Vision: Theory
and Practice. Wiley Publishing, 2009.

[14] H. Cai and Y. Su. Airplane detection in remote sensing image with a circle-
frequency filter. volume 5985, pages 59852T–59852T–6, 2005.

[15] P. S. Churchland and T. J. Sejnowski. The Computational Brain. MIT
Press, Cambridge, MA, USA, 1st edition, 1994.

[16] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep big
simple neural nets for handwritten digit recogntion. Neural Computation,
22(12):3207–3220, 2010.

[17] D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. Multi-column deep
neural network for traffic sign classification. Neural Networks, 32:333–338,
2012.

[18] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[19] N. Cristianini and J. Shawe-Taylor. An introduction to support vector
machines and other kernel-based learning methods. Cambridge university
press, 2000.

[20] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[21] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. In CVPR (1), pages 886–893, 2005.

[22] J. J. Eggermont. The correlative brain : theory and experiment in neural
interaction / Jos J. Eggermont. Springer-Verlag Berlin ; New York, 1990.

[23] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Ben-
gio. Why does unsupervised pre-training help deep learning? J. Mach.
Learn. Res., 11:625–660, Mar. 2010.

[24] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent. The
difficulty of training deep architectures and the effect of unsupervised pre-
training. In Twelfth International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 153–160, 2009.

[25] K. Fukushima. Neocognitron: A self-organizing neural network for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cy-
bernetics, 36(4):193–202, 1980.

64

[26] K. Fukushima. Neocognitron for handwritten digit recognition. Neurocom-
puting, 51:161–180, 2003.

[27] K. Fukushima. Neocognitron. Scholarpedia, 2(1):1717, 2007.

[28] K. Fukushima. Increasing robustness against background noise: visual pat-
tern recognition by a Neocognitron. Neural Networks, 24(7):767–778, 2011.

[29] K. Fukushima. Artificial vision by multi-layered neural networks: Neocog-
nitron and its advances. Neural Networks, 37:103–119, 2013.

[30] D. Gavrila. A bayesian, exemplar-based approach to hierarchical shape
matching. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 29(8):1408–1421, Aug 2007.

[31] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In International Conference on Artificial In-
telligence and Statistics, pages 249–256, 2010.

[32] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier networks. In
AISTATS, volume 15, pages 315–323, 2011.

[33] M. A. Goodale and A. D. Milner. Separate visual pathways for perception
and action. Trends in Neurosciences, 15(1):20–25, 1992.

[34] S. Haykin. Neural Networks: A Comprehensive Foundation (3rd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2007.

[35] D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.

[36] G. Hinton. A practical guide to training restricted boltzmann machines.
Momentum, 9(1):926, 2010.

[37] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18(7):1527–1554, May 2006.

[38] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors, 2012. Technical Report arXiv:1207.0580.

[39] K. Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251 – 257, 1991.

[40] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of physiology,
160(1):106, 1962.

[41] D. H. Hubel and T. N. Wiesel. Binocular interaction in striate cortex of
kittens reared with artificial squint. Journal of neurophysiology, 1965.

65

[42] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture
of monkey striate cortex. The Journal of physiology, 195(1):215–243, 1968.

[43] J. Håstad. Almost optimal lower bounds for small depth circuits. In RAN-
DOMNESS AND COMPUTATION, pages 6–20. JAI Press, 1989.

[44] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the
best multi-stage architecture for object recognition? In Proc. International
Conference on Computer Vision (ICCV’09). IEEE, 2009.

[45] I. Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[46] E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural
Science. McGraw-Hill Medical, 4th edition, July 2000.

[47] K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference in sparse
coding algorithms with applications to object recognition. Technical Re-
port CBLL-TR-2008-12-01, Computational and Biological Learning Lab,
Courant Institute, NYU, 2008.

[48] E. Kobatake and K. Tanaka. Neuronal selectivities to complex object fea-
tures in the ventral visual pathway of the macaque cerebral cortex. J.
Neurophysiol., 71:856–867, 1994.

[49] E. Kobatake, G. Wang, and K. Tanaka. Effects of shape-discrimination
training on the selectivity of inferotemporal cells in adult monkeys. Journal
of Neurophysiology, 80:324, 1998.

[50] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, 2009.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information
Processing Systems (NIPS 2012), page 4, 2012.

[52] H. Larochelle. Capacity of neural network, Septem-
ber 2009. Neural Networks Course Slides, Internet:
http://info.usherbrooke.ca/hlarochelle/cours/ift725_A2013/contenu.html.

[53] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strate-
gies for training deep neural networks. J. Mach. Learn. Res., 10:1–40, June
2009.

[54] Y. LeCun. Generalization and network design strategies. In R. Pfeifer,
Z. Schreter, F. Fogelman, and L. Steels, editors, Connectionism in Perspec-
tive, Zurich, Switzerland, 1989. Elsevier. an extended version was published
as a technical report of the University of Toronto.

66

[55] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Back-propagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541–551, 1989.

[56] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Handwritten digit recognition with a back-
propagation network. In D. S. Touretzky, editor, Advances in Neural In-
formation Processing Systems 2, pages 396–404. Morgan Kaufmann, 1990.

[57] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. In Intelligent Signal Processing, pages
306–351. IEEE Press, 2001.

[58] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr
and M. K., editors, Neural Networks: Tricks of the trade. Springer, 1998.

[59] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and
applications in vision. In Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on, pages 253–256, May 2010.

[60] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations.
In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 609–616, New York, NY, USA, 2009. ACM.

[61] T. S. Lee, D. Mumford, R. Romero, and V. A. Lamme. The role of the pri-
mary visual cortex in higher level vision. Vision Research, 38(15–16):2429
– 2454, 1998.

[62] Y. Li, X. Sun, H. Wang, H. Sun, and X. Li. Automatic target detection in
high-resolution remote sensing images using a contour-based spatial model.
Geoscience and Remote Sensing Letters, IEEE, 9(5):886–890, Sept 2012.

[63] Z. Li and L. Itti. Saliency and gist features for target detection in satellite
images. IEEE Transactions on Image Processing, 20(7):2017–2029, 2011.

[64] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400,
2013.

[65] D. Lowe. Object recognition from local scale-invariant features. In The
Proceedings of the Seventh IEEE International Conference on Computer
Vision (ICCV), volume 2, pages 1150–1157, 1999.

[66] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int.
J. Comput. Vision, 60(2):91–110, Nov. 2004.

[67] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
1943.

67

[68] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 7:115–133, 1943.

[69] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational
Geometry. MIT Press, Cambridge, MA, USA, 1969.

[70] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[71] T. Mitchell. The discipline of machine learning. Technical Report CMU
ML-06 108, 2006.

[72] T. Oommen, D. Misra, N. Twarakavi, A. Prakash, B. Sahoo, and S. Ban-
dopadhyay. An objective analysis of support vector machine based classifi-
cation for remote sensing. Mathematical Geosciences, 40(4):409–424, 2008.

[73] J. Pearl. Bayesian networks: A model of self-activated memory for eviden-
tial reasoning. In Proceedings of the 7th Conference of the Cognitive Science
Society, University of California, Irvine, pages 329–334, Aug. 1985.

[74] X. Perrotton, M. Sturzel, and M. Roux. Automatic object detection on
aerial images using local descriptors and image synthesis. In A. Gaster-
atos, M. Vincze, and J. Tsotsos, editors, Computer Vision Systems, volume
5008 of Lecture Notes in Computer Science, pages 302–311. Springer Berlin
Heidelberg, 2008.

[75] N. Pinto, D. D. Cox, and J. J. DiCarlo. Why is real-world visual object
recognition hard? PLoS Comput Biol, 4(1):e27, January 2008.

[76] J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[77] L. D. Raedt. A perspective on inductive logic programming.

[78] M. Ranzato, Y. Boureau, S. Chopra, and Y. LeCun. A unified energy-
based framework for unsupervised learning. In Proc. Conference on AI and
Statistics (AI-Stats), 2007.

[79] M. Ranzato, C. Poultney, S. Chopra, and Y. Lecun. Efficient learning of
sparse representations with an energy-based model. In Advances in Neural
Information Processing Systems (NIPS 2006), pages 1137–1144, 2006.

[80] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition
in cortex. Nature Neuroscience, 2(11):1019–1025, 1999.

[81] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of
the 28th International Conference on Machine Learning (ICML-11), pages
833–840, 2011.

68

[82] N. Rochester, J. Holland, L. Haibt, and W. Duda. Tests on a cell assembly
theory of the action of the brain, using a large digital computer. Information
Theory, IRE Transactions on, 2(3):80–93, September 1956.

[83] F. Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. Psychological review, 65(6):386, 1958.

[84] F. Rosenblatt. Principles of Neurodynamics. Spartan, New York, 1962.

[85] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. chapter
Learning Internal Representations by Error Propagation, pages 318–362.
MIT Press, Cambridge, MA, USA, 1986.

[86] D. Scherer, A. Müller, and S. Behnke. Evaluation of pooling operations
in convolutional architectures for object recognition. In Artificial Neural
Networks–ICANN 2010, pages 92–101. Springer, 2010.

[87] J. Schmidhuber. Deep learning in neural networks: An overview. Technical
Report IDSIA-03-14 / arXiv:1404.7828v1 [cs.NE], The Swiss AI Lab IDSIA,
2014.

[88] G. M. Shepherd, editor. The Synaptic Organization of the Brain. Oxford
University Press, Oxford, 1990.

[89] U. Shrawankar and V. Thakare. Techniques for Feature Extraction In
Speech Recognition System : A Comparative Study. ArXiv e-prints, May
2013.

[90] J. Sjöberg and L. Ljung. Overtraining, regularization, and searching for
minimum in neural networks. In In Preprint IFAC Symposium on Adaptive
Systems in Control and Signal Processing, pages 669–674, 1992.

[91] X. Sun, H. Wang, and K. Fu. Automatic detection of geospatial objects
using taxonomic semantics. Geoscience and Remote Sensing Letters, IEEE,
7(1):23–27, 2010.

[92] J. W. Tanaka and M. Taylor. Object categories and expertise: Is the basic
level in the eye of the beholder? Cognitive Psychology, 23(3):457–482, July
1991.

[93] P. Vincent, L. Hugo, Y. Bengio, and P.-A. Manzagol. Extracting and com-
posing robust features with denoising autoencoders. In Proceedings of the
25th international conference on Machine learning, ICML ’08, pages 1096–
1103, New York, NY, USA, 2008. ACM.

69

[94] D. B. Walther and C. Koch. Attention in hierarchical models of object
recognition. In P. Cisek, T. Drew, and J. F. Kalaska, editors, Compu-
tational Neuroscience: Theoretical Insights into Brain Function. Elsevier,
Amsterdam, 2007.

[95] D. H. Wiesel and T. N. Hubel. Receptive fields of single neurones in the
cat’s striate cortex. J. Physiol., 148:574–591, 1959.

70

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Scope and Outline of the Thesis

	Related Work
	Early Attempts
	Perceptron
	Neocognitron

	Feedforward Networks
	Learning Procedure
	Backpropagation
	Convolutional Neural Network

	Reborn of the Deep Learning
	Autoencoder Types
	Autoencoder
	Sparse Autoencoder
	Denoising Autoencoder
	Contractive Autoencoder

	Convolutional Neural Network for Deep Learning
	A Layer of CNN
	Convolution Sublayer
	Non-linearity Sublayer
	Sigmoid Unit
	Rectified Linear Unit (ReLU)

	Local Response Normalization Sublayer
	Pooling Sublayer

	Improving Backpropagation: Rule of Thumbs
	Preprocessing
	Weight (Filter) Initialization

	Experiment Setup
	CIFAR-10 Dataset Krizhevsky09learningmultiple

	Analysis of The Results

	Applications in Remote Sensing
	Airplane Detection
	Classification of Airport Region Targets

	Conclusion and Future Work
	Summary
	Conclusion
	Future Work

	REFERENCES
	APPENDICES

