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ABSTRACT 

 

 

FLEXIBLE MULTIBODY ANALYSIS USING ABSOLUTE NODAL 

COORDINATE FORMULATION 

 

 

 

Çiftçi, Muhammed Ali 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Haluk Darendeliler 

Co-supervisor: Prof. Dr. S. Kemal İder 

 

September 2014, 95 Pages 

 

 

The motion of the planar flexible multibody system with large deformation is 

analyzed by using the absolute nodal coordinate formulation (ANCF). For this 

purpose, flexible multibody systems consisting of beams are considered. In the 

conventional planar ANCF beam elements, there are two nodes located at the ends. 

Each element has eight degrees of freedom which consist of four global coordinates 

and four global slopes. 

In this study, a planar beam element is developed with quadratic shape functions and 

new nodal configuration by using ANCF. In the developed element, an additional 

node is introduced to define the orientation and the shape of the beam so that neither 

angles nor slopes are used. At each element, six degrees of freedom exist. Since 

reduced degrees of freedom and quadratic shape functions are used, the element 

formulation is simplified considerably. Comparisons have been made between the 

developed beam element and the conventional ANCF beam element to see the 
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performances. Also, four-bar mechanism analyses have been made for small and 

large deformation cases by using ANCF beam element types and the floating frame 

of reference formulation. 

 

Keywords: Flexible multi-body dynamics, the absolute nodal coordinate 

formulation, beam element, large deformation 
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ÖZ 

 

 

MUTLAK NODAL KOORDİNAT FORMÜLASYONU KULLANILARAK 

ESNEK UZUVLU ÇOKLU CİSİM SİSTEMLERİN ANALİZİ 

 

 

 

Çiftçi, Muhammed Ali 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Haluk Darendeliler 

Ortak Tez Yöneticisi: Prof. Dr. S. Kemal İder 

 

Eylül 2014, 95 Sayfa 

 

 

Yüksek esnekliğe sahip çoklu cisimlerin hareket ve deformasyon analizlerinde 

mutlak nodal koordinat formülasyonu (MNKF) kullanılmaktadır. Bu amaçla 

düzlemsel kiriş elemanlarından oluşan çoklu cisim sistemler dikkate alınmıştır. 

Konvansiyonel MNKF kullanılan düzlemsel kiriş elemanlarının sonlarında iki adet 

düğüm noktası bulunmaktadır. Her bir eleman dört adet genel koordinat ve dört adet 

de eğim olmak üzere toplam sekiz adet serbestlik derecesine sahiptir. 

Bu çalışmada ikinci dereceden şekil fonksiyonları ve yeni düğüm nokta düzeni 

kullanılarak düzlemsel bir MNKF kiriş elemanı tipi geliştirilmiştir. Yeni elemanda  

kiriş pozisyonunu ve şeklini tanımlamak için açı veya eğim kullanılmamış, ancak 

elemana yeni bir düğüm noktası eklenmiştir. Geliştirilen elemanda toplam altı adet 

serbestlik derecesi bulunmaktadır. Daha az sayıda serbestlik derecesi ve ikinci 

dereceden şekil fonksiyonlarının kullanılması sebebiyle eleman formülasyonu 

basitleşmiştir. Yeni eleman tipi ve konvansiyonel MNKF eleman tipinin 
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performanslarını karşılaştırmak için analizler yapılmıştır. Bunun yanında az esnek ve 

çok esnek dört çubuk mekanizmaları için çeşitli durumlarda analizler 

gerçekleştirilmiştir. Analizlerde MNKF eleman tipleri ve yüzen referans takımı 

formülasyonu kullanılmıştır. 

Anahtar Kelimeler: Esnek çoklu cisim dinamiği, mutlak nodal koordinat 

formülasyonu, kiriş elemanı, yüksek deformasyon 
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CHAPTERS 

 

 

CHAPTER 1 

 

 

1.INTRODUCTION 

 

 

 

1.1. Background and Motivation 

Multibody systems are defined as the systems that have interconnected components. 

These components can be structural or force elements such as actuators, springs, 

dampers, etc. Mechanical systems like vehicles, machines, robotics, space structures 

and aircrafts are examples of multibody systems. These systems are very complex in 

most cases and consist of many sub-components that are kinematically constrained 

by joints. Large translations and rotational displacements may occur during the 

motion of such systems.  

Multibody dynamics concerns with the dynamic models and calculations of the 

multibody systems. In the design phase of a system; effects of forces, interactions of 

bodies and dynamical behaviors of the components must be considered. Especially in 

today’s world, design of complex systems should be cost effective, rapid and 

competitive so that analyses rather than costly tests and trials are preferable. 

Consequently, requirements of accurate and fast multibody system analyses lead 

researchers to this field, and weight of the analyses in the design phase are increasing 

compared to the past.  

Multibody systems can be analyzed in two groups as rigid and flexible multibody 

systems. Rigid multibody systems consist of rigid bodies whereas flexible multibody 

systems consist of both rigid and deformable bodies. In rigid bodies, deformations 

are very small so that they have no effect to the system dynamical behaviors. The 

motion of rigid bodies is described by six generalized coordinates in the space. On 
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the other hand, deformations are not small to be ignored in the flexible bodies so that 

shapes, inertias and elastic properties change with time. In this case, non-linearities 

and number of coordinates needed in the mathematical model are very large 

compared to the rigid bodies, and computational effort becomes important [1-3]. 

Studies related to flexible multibody dynamics started in the early seventies with the 

need of simulating systems having flexible components [1]. New lightweight and 

elastic materials are frequently used nowadays. Also with high-speed demands, 

behaviors of systems may more likely to be flexible, and deformations should be 

concerned. In precise systems, like satellites and surgical robotic devices, even small 

deformations may affect the system overall behavior, and they must be considered. 

Although many flexible systems have small deformations under the force effects, 

large deformation problems become important in this era. Especially in the aerospace 

and railway applications, large deformation problems are needed to be investigated. 

For example, dynamic stability is very important in high-speed trains so that even 

interaction of a pantograph with flexible cables in a catenary system affects the 

system dynamical behavior [4]. Since deformations of cables in a catenary system 

can be relatively large, dynamic model should be constructed to handle large 

deformations in addition to large displacements. 

Methods that are used in the analyses of flexible multibody systems can be given as 

the floating frame of reference formulation, the incremental finite element methods, 

the finite segment method, the large rotation vectors method and the absolute nodal 

coordinate formulation [1]. 

The finite element floating frame of reference formulation (FFR) is widely used in 

the computer programs that are used for the flexible multibody analyses. Well-

known programs like Adams
®

 and SimPack
®
 can be given as examples that use this 

formulation in their background. The formulation is especially used for small 

deformation and large rotation problems [6]. In the formulation, two sets of 

coordinates are used. The first coordinate set describes the location and the 

orientation of the body in the global coordinate system whereas the other set is used 
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to describe the deformations with respect to the local body coordinate system. Finite 

element method is used to find the deformations of the body with respect to the local 

body coordinate system [1, 5].  

In incremental finite element formulations, infinitesimal rotation angles are used to 

linearize the equations, and large rotations are represented by a sequence of small 

rotations so that linearization errors can be minimized. However, exact arbitrary rigid 

body motion cannot be obtained in this method due to the use of infinitesimal 

rotation angles [3]. This method is widely used in large deformation computational 

mechanics problems, and available in many commercial finite element softwares. 

Finite segment method is used in flexible multibody system simulations especially in 

vehicle crash simulations. In the method, bodies are taken as rigid and segmented so 

that springs and dampers are used between these rigid segments to give the flexible 

features of the system. Using rigid bodies in the system simplifies the solution, but 

selection of the location and the size of these segments can be problematic. Also, 

spring and damper properties must be determined properly [1].  

As mentioned before, linearization of the equations with infinitesimal rotations leads 

to some errors in the incremental methods. Large rotation vector formulation is 

proposed to avoid such errors. In the method, finite rotations of the element cross 

section are used as nodal coordinates instead of using infinitesimal rotations [1, 3]. 

Finite rotations are approximated with the interpolating polynomials. Nodal 

coordinates are used in the global coordinate system [3]. The method has some 

disadvantages. One of the problems is that rotations of the beam cross section are 

defined by the displacement coordinates in the case of beams so that using finite 

rotations of the cross section introduces redundancy. For this reason, singularity 

problems may arise while using this method. Also, shear values can be erroneous in 

the solutions [1]. Because of these problems, the method is not widely used in the 

flexible multibody simulations.  

The absolute nodal coordinate formulation (ANCF) is introduced recently to solve 

large deformation and large rotation flexible multibody problems. In the method, 
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infinitesimal or finite rotations are not used. Instead, slopes are used to define the 

orientation of the element. Displacements and slopes are defined in the global 

coordinate system as nodal variables [3, 7]. Since global slopes are used in the 

formulation, linearization is not needed.  

1.2. Research Objectives 

Two types of elements are used in the finite element formulations as isoparametric 

and non-isoparametric elements. Body deformations and displacements can be 

described with the same order of approximation in the isoparametric elements 

whereas different orders of approximations are used in the non-isoparametric 

elements. Beam, plate and shell elements can be given as examples for non-

isoparametric elements in the classical finite element formulations. With using 

infinitesimal rotation angles, nonlinear kinematic equations can be linearized in non-

isoparametric elements, however this linearization leads to some errors. In such 

elements, large rotations cannot be handled efficiently [1, 3, 6]. Among the methods 

that are used in the flexible multibody analyses, the floating frame of reference 

formulation is the most popular one, since it can be applied widely and easily to the 

flexible multibody simulations without noticeable problems. In this method, small 

deformation problems can be handled, and exact rigid body motion can be obtained 

in the case of large rotations [1, 6]. But usage of the method is restricted to small 

deformation problems.  

The absolute nodal coordinate formulation is used for both large deformation and 

large rotation problems. In the thesis, it is aimed to analyze planar flexible multibody 

systems to see the effects of small and large deformations on the system behaviors. 

Hence, the absolute nodal coordinate formulation is considered in this study to 

analyze the flexible multibody systems. The other objective is to develop a new 

computationally effective planar ANCF beam element type, and make comparisons.  
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1.3. Scope of the Thesis 

In the thesis, a new computationally effective ANCF beam element is developed, and 

presented. Also, codes that can solve planar problems by ANCF beam elements are 

generated. Comparisons of the element types are made to see accuracies and 

performances. To see the effects of small and large deformations on the system 

behavior, and to compare the absolute nodal coordinate formulation and the floating 

frame of reference formulation, flexible four-bar mechanism analyses are used.  

1.4. Thesis Outline 

This thesis consists of eight chapters. Previous works and the theory are given in 

Chapter 2. In the theory, the Lagrangian equation, which is used in the dynamic 

equations of the multibody systems, is derived first. Then, the equations of motion 

are obtained by using the kinetic energy equation, the Lagrangian equation and the 

constraint equations. Also, generalized elastic and external force definitions are 

given in this chapter for the planar ANCF beam elements. Continuum mechanics 

approach with some simplifications is reviewed for the generalized elastic forces. 

Mass matrices, stiffness matrices, generalized external force vectors and connectivity 

of the elements are described for the conventional and the new planar ANCF beam 

elements in Chapter 3 and Chapter 4 respectively.  

In Chapter 5, numerical solution procedure used in the developed codes is explained. 

In the chapter, differential equations are stated first. Then, integration methods are 

mentioned with the details of Newmark’s method. At the end, computational 

algorithm is given briefly.  

In Chapter 6, performances of the new planar ANCF beam element and the 

conventional planar ANCF beam element are compared. In the analyses, the free 

falling pendulum and the four bar mechanism are used with large deformations. 

In Chapter 7, four-bar mechanism analyses are made with the small-medium and 

large deformation cases. In these cases, the developed planar ANCF beam element 
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and the conventional planar ANCF beam element are compared. Also, the floating 

frame of reference formulation is compared with the absolute nodal coordinate 

formulation in the small-medium deformation cases.  

At the end, summary, discussions and conclusion are given in Chapter 8. 

Recommendations for further research are also provided in this chapter. 
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CHAPTER 2 

 

 

2. THE ABSOLUTE NODAL COORDINATE FORMULATION 

 

 

 

2.1. Previous Works 

In the absolute nodal coordinate formulation (ANCF), elements are iso-parametric so 

that both the body geometry and the deformations are approximated with the same 

shape function matrix. This feature differs from the classical finite element 

formulations that consider beam, plate and shell elements as non-isoparametric 

elements [7]. By using iso-parametric elements, exact rigid body motion can be 

obtained in the method [1].  

In ANCF, centrifugal and Coriolis forces are zero unlike the floating frame of 

reference formulation. Also, the mass matrix is constant and symmetrical. However, 

elastic forces are highly-nonlinear and depend on the nodal coordinates [5]. To 

describe elastic forces, two main approaches are used in the literature. The first 

method is the local frame method whereas the other method is named as continuum 

mechanics approach. 

If the planar beam element is considered, linear elastic model can be used in the local 

frame method. In this case, the Euler-Bernoulli beam theory can be used. Strain 

energy is found from the longitudinal and transverse deformations in the Euler-

Bernoulli beam theory. Then, elastic forces can be found by taking the derivative of 

strain energy with respect to the vector of nodal coordinates. Longitudinal and 

transverse deformations are found from the geometry of the element in the local 

frame method. Since it is not easy to find deformations, two auxiliary local 

coordinate systems are proposed named as the pinned frame and the tangent frame 

[7, 9]. However, these local coordinate systems should not be confused with the local 
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coordinate systems that are used in the floating frame of reference formulation. 

Auxiliary local coordinate systems in ANCF are only used to find the expressions of 

the deformations, and does not affect the remaining solution. In the pinned frame, 

longitudinal and transverse deformations are found by using the coordinate system 

that is attached to the initial and last nodes of the element as shown in Figure 2.1.  

 

 

 

 

 

Figure 2.1 Coordinate system in the pinned frame. 

 

 

 

In the tangent frame on the other hand, longitudinal and transverse deformations are 

found by the coordinate system that is attached to the first node, and tangent to the 

element as shown in Figure 2.2.  

 

 

 

 

 

Figure 2.2 Coordinate system in the tangent frame. 
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In both frames, unit vectors that define  1 and  2 axes are found depends on the 

nodal variables, and used to find the deformations with the shape functions.  

Berzeri et all. compare the pinned frame and the tangent frame approaches with the 

analyses results of the four bar mechanism [5]. In the analyses, same simulation is 

solved with different element numbers by the pinned frame and the tangent frame 

approaches. In the pinned frame approach, the results converge faster than the 

tangent frame approach as the element number is increased. 

In the continuum mechanics approach, the strain energy is found by the strain-

displacement relationships and the material properties. Then the elastic forces are 

obtained similarly by taking the partial derivative of the elastic energy with respect to 

the nodal coordinates. Unlike the other method, there is no need to use auxiliary 

coordinate system in the continuum mechanics approach [7].  

Berzeri and Shabana developed simple models by using the continuum mechanics 

approach. These models are coupled by bending and axial deformations so that 

elastic forces are divided into longitudinal and transverse forces. They suggested 

three longitudinal and two transverse force models with different complexities. Since 

simpler force equations are used, analysis time can be decreased significantly. Also, 

more accurate results can be obtained since elastic non-linearity is considered in the 

strain-displacement relationship [7]. With some modifications of these simple 

models, analyses were made, and compared with the physical experiments by Wan-

Suk Yoo et all [10]. In their experiments, a clamped thin cantilever beam with a point 

mass oscillates making small and large deformations. Results were recorded by a 

high-speed camera and a data acquisition system. Results of their experiments are in 

good agreement with the simulation results which shows the accuracy of the absolute 

nodal coordinate formulation.  

In the planar ANCF beam element, shear deformations are neglected when the Euler-

Bernoulli beam theory is used. In the Euler-Bernoulli beam theory, the cross section 

is assumed as rigid and perpendicular to the beam neutral axis. On the other hand, 

shear deformation is considered when Timoshenko beam theory is used. In the 
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Timoshenko beam theory, the cross section is not necessarily perpendicular to the 

beam neutral axis. But, the cross section is still rigid [11]. Shear deformable planar 

beam element that relaxes the assumptions in the Euler-Bernoulli and Timoshenko 

beam theories were developed in ANCF by Omar et al. [11] 

In addition to the studies that have been made so far for the planar beam elements, 

researchers also focused on other element types like plate and shell elements in the 

absolute nodal coordinate formulation.  

2.2. Theoretical Background 

In the finite element formulations, geometry and dependent variables can be 

approximated with different orders.  Depending on these different orders of 

approximations; elements are divided into three sub-categories as superparametric, 

isoparametric and subparametric elements [12]. In superparametric elements, the 

approximation of the body geometry has higher order than the approximation of the 

dependent variables. Contrast to superparametric elements, in subparametric 

elements the approximation of the body geometry has lower order than the dependent 

variables. In isoparametric elements, same approximation degree is used for both 

geometry and dependent variables. 

In the classical finite element formulations, beams are not considered as 

isoparametric elements [5]. For example, in the Euler-Bernoulli beams, linear 

interpolation is used in the approximation of the geometry whereas cubic 

interpolation is used in the approximation of the transverse deflection [12]. Since the 

approximation of the geometry has lower order than the deflection, classical finite 

element formulation of the Euler-Bernoulli beams can be said as subparametric.  

In such beam formulations, displacements and infinitesimal rotations are used as 

nodal coordinates that linearize the kinematic equations so that these elements cannot 

be used to model exact rigid body motion [1, 7, 13]. 
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In the absolute nodal coordinate formulation (ANCF), displacements and 

deformations of the elements are defined in the global coordinate system by using the 

nodal coordinates and the shape functions [1]. Instead of using infinitesimal or finite 

rotations, slopes are used to define the orientation of the elements. With using the 

slopes, assumptions on the magnitude of element rotations are not necessary [7]. 

Since fixed coordinate system is used, coordinate transformation procedures are also 

not necessary [5, 7, 8].  

2.2.1. Equations of Motion 

From the Newton’s second law, dynamic equilibrium of a particle   requires 

 

       ̇    (2.1) 

 

where      is the force acting on the particle  , and      is the momentum of the 

particle  . For the whole system which consists of   numbers of particles, the above 

equation can be written as 

 

∑(      ̇   )       

 

  1

 (2.2) 

 

where       is the virtual displacement of the particle  . Displacement of the particle 

  which is given below depends on a set of system generalized coordinates as  

 

         ( 1
   

  2
   

   
   

     
   

  ) (2.3) 

 

Then the virtual displacement of the particle   can be given as follows 

 

      ∑
     

   
   

   
   

 

  1

 (2.4) 
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If Equation (2.2) is written by using  ̇         ̈    and Equation (2.4), it follows 

that 

 

∑∑(          ̈   )
     

   
   

   
   

  

 

  1

 

  1

 (2.5) 

 

where      is the mass of the particle  . The generalized forces associated with the 

coordinates    are given as  

 

   ∑    
     

   
   

   

 

  1

                 (2.6) 

 

Also, it can be shown that [3]: 

 

∑(     ̈   
     

   
   

)  ∑[
 

  
(     ̇   

     

   
   

)       ̇   
  ̇   

   
   

]

 

  1

 

  1

 (2.7) 

 

Differentiation of Equation (2.3) with respect to the time results 
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 (2.8) 

 

Then the partial derivative of Equation (2.8) with respect to  ̇ 
    gives the following 

 

  ̇   

  ̇ 
   

 
     

   
   

 (2.9) 

 

 

 



 

13 

 

Equation (2.7) can be arranged using Equation (2.9) as 

 

∑(     ̈   
     

   
   

)

 

  1

 ∑{
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  ̇ 
   

(
 

 
     ̇     ̇   )]

 

  1
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     ̇     ̇   )} 

(2.10) 

 

The kinetic energy of a particle   and the total kinetic energy of the system are 

defined as follows 

 

     
 

 
     ̇     ̇    (2.11) 

 

  ∑     ∑
 

 
     ̇     ̇   

 

  1

 

  1

 (2.12) 

 

Then, Equation (2.10) can be arranged using Equations (2.11) and (2.12) as 
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 ∑{
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  1

 

 

  1

  
 

  
(
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(2.13) 

 

Substitution of Equations (2.6) and (2.13) into Equation (2.5) yields 

 

∑[ 
 

  
(
  

  ̇ 
)  

  

   
   ]

 

  1

      (2.14) 
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Also, Equation (2.14) can be described by matrix form as 

 

[ 
 

  
(
  

  ̇
)  

  

  
   ]      (2.15) 

 

Finally, Lagrange equation is achieved if the generalized coordinates of Equation 

(2.14) are independent, as below 

 

 

  
(
  

  ̇
)  

  

  ̇
      (2.16) 

 

In multibody systems, kinematic constraints exist, and virtual changes in the 

Equation (2.16) are not independent. In the dynamic equations, two methods are used 

to consider constraints. These are embedding technique and augmented formulation 

[3]. Augmented formulation is used in this study. 

In the augmented formulation, Lagrange multipliers are used with the system 

generalized coordinates. The constraint equations can be given as 

 

       [ 1       2                      ]
     (2.17) 

 

For a virtual displacement   , Equation (2.17) leads to 

 

       (2.18) 

 

where    is the Jacobian matrix of the constraint equations. If Equation (2.18) is 

multiplied by a vector of Lagrange multipliers,   , it yields 

 

       [ 1    2         ][ 1       2              ]
      (2.19) 
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Equations (2.16) and (2.19) can be combined to give the following equation 

 

[ 
 

  
(
  

  ̇
)  

  

  
        ]      (2.20) 

 

or it can be given as 

 

 

  
(
  

  ̇
)  

  

  
           (2.21) 

 

The undeformed and deformed configurations of the ANCF beam element is given in 

Figure 2.3. In the absolute nodal coordinate formulation, global position vector       

of an arbitrary point   on the     beam element in the body   is defined by the global 

shape function matrix,      , and the vector of nodal coordinates of the element, 

     , as 

 

      [
    

    

   

    
]             (2.22) 

 

 

 

 

Figure 2.3 Undeformed (a) and deformed (b) configurations of the ANCF beam 

element. 
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The kinetic energy of the element are given in the undeformed state as [3, 5, 7-9] 

 

      
 

 
∫   ̇

      ̇       

 

  

 
 

 
∫  

 

  

(       ̇     ) (      ̇    )   

 
 

 
 ̇     (∫   

          

 

  

   )  ̇    

 
 

 
  ̇            ̇     

(2.23) 

 

where    is the density,    is the volume in the undeformed state, and       is the 

mass matrix of the element. Knowing the fact that ∫       
 

  
∫      

 

 
, and using the 

Equation (2.23), the constant mass matrix of the element at any time can be obtained 

as follows 

 

      ∫            

 

 

   (2.24) 

Equation (2.24) can also be expressed as 

 

      ∫            

 

 

     ∫           

1

 

   (2.25) 

 

Here    is defined as the total mass of the beam element,      ,   is the 

coordinate of an arbitrary point on the element and   is the length of the beam in the 

undeformed configuration. 

For ANCF beam elements, Equation (2.16) can be arranged by using Equation (2.23) 

as follows 

 

  
[

 

  ̇    
(
 

 
  ̇            ̇    )]
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  ̇            ̇    )]

 

       

(2.26) 
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Equation (2.26) can be rearranged as 

 

      ̈      ̇     ̇     [
 

      
(
 

 
  ̇            ̇    )]

 

       (2.27) 

 

where centrifugal and Coriolis inertia forces, named as   
    

, are represented as 

 

  
      ̇     ̇     [

 

      
(
 

 
  ̇            ̇    )]

 

   (2.28) 

 

Since the mass matrix is constant in the absolute nodal coordinate formulation, 

centrifugal and Coriolis inertia force matrix given in Equation (2.28) is zero. Then 

Lagrange equation of the     ANCF beam element in the body   is simplified as 

follows 

 

      ̈           (2.29) 

 

If the elements of bodies in the system are formulated by the absolute nodal 

coordinate formulation, then Equation (2.21) is simplified as  

 

  ̈    
     (2.30) 

 

Taking second time derivative of the constraint equations yields 

 

   ̈    (2.31) 

 

where   in Equation (2.31) is the vector resulting from the second time derivative of 

the constraint equations. Since constraints are time independent in most cases, it 

becomes zero vector. Equations of motion for the system composed of Equation 

(2.30) and (2.31) can be combined as follows 
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[
   

 

   
] [

 ̈
 
]  [

 
 
] (2.32) 

 

2.2.2. Generalized Elastic Forces for the planar ANCF Beam Element 

Deformations can be defined in the absolute nodal coordinate formulation by two 

approaches. In the first approach, a local element coordinate system is used to define 

deformations and elastic forces. Pinned frame and tangent frame can be used as local 

element coordinate systems. In the pinned frame, one axis passes through the first 

and last nodes whereas other axis is perpendicular to the first axis. In the tangent 

frame, one axis is selected to be tangent to the beam at the first node, and other is 

perpendicular to the first one. The first approach with the local coordinates gives a 

more complex procedure and equations for the elastic forces [5, 11]. The second 

approach, named as continuum mechanics approach, does not require a local 

coordinate system. In this approach elastic non-linearity is also considered in the 

strain-displacement relationship so that more accurate results can be obtained [7]. In 

this study, the continuum mechanics approach with the classical Euler-Bernoulli 

beam theory is used for the generalized elastic force equations. 

The total strain energy of the beam element can be written as follows 

 

  
    

    
    

    
    

 (2.33) 

 

where the strain energy due to the stretch for the points on the mid-surface,    
    

, 

and the strain energy due to the transverse deformation,    
    

, are [7, 14] 

 

   
    

 
 

 
∫     

2  
 

 

 (2.34) 

 

   
    

 
 

 
∫    2  

 

 

 (2.35) 
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Here   is the Young’s modulus for isotropic materials,   is the cross sectional area 

of the beam element     is the strain due to the stretch for the points on the mid-

surface,   is the second moment of area, and   is the curvature of the beam. 

Then the generalized elastic force vector due to the longitudinal deformations,    
    

, 

and the transverse deformations,    
    

, can be determined by using the partial 

derivatives of the corresponding strain energies with respect to the vector of nodal 

coordinates as 

 

  
    

    
    

    
    

 (2.36) 

 

where 

 

   
    

  (
    

    

      
)

 

     
    

      (2.37) 

 

   
    

  (
    

    

      
)

 

     
    

      (2.38) 

 

In the above equations    
    

 and    
    

 are defined as the longitudinal and transverse 

stiffness matrices. 

Infinitesimal arc length of the deformed beam element can be found by [7] 

 

   √                (2.39) 

 

where   is the arc length, and        is given below  

 

       
      

  
 (2.40) 
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The Lagrangian strain for a planar beam is defined as follows 

 

  2    2          (2.41) 

 

From Equations (2.39) and (2.41), the strain due to stretch can be determined by 

 

   
 

 
(               )  

 

 
(                          ) (2.42) 

 

where     is the derivative of the shape function with respect to x. If    represents the 

nodal coordinate vector corresponding to an arbitrary rigid body position, it can be 

shown that  

 

  
                   (2.43) 

 

Also, it can be said that                          is very close to one, and Equation 

(2.42) is difficult to determine accurately [7]. Then Equation (2.42) can be 

rearranged using Equation (2.43) as 

 

         
 

 
(                          )

 
 

 
(                           
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(        )

 
             (        ) 

(2.44) 

 

From Equation (2.42) it can be found that 

 

(
   

      
)
 

                    (2.45) 
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Using Equations (2.34), (2.37) and (2.45), the vector of generalized elastic forces due 

to the stretching is determined as follows 

 

   
    

 ∫     

 

 

                     (2.46) 

 

Also, the longitudinal stiffness matrix is found by Equations (2.37) and (2.46) as 

 

   
    

 ∫      
              

 

 

 (2.47) 

Serret-Frenet formulas [15, 16] can be used to take bending effect into consideration. 

The curvature of the beam is described by 

 

  |
 2     

  2
| (2.48) 

 

In the case of small longitudinal deformations, the curvature given in Equation (2.48) 

can be simplified as follows [7] 

 

  |
 2     

  2
|   |

 2     

  2
|  |       | (2.49) 

 

Then the equation given below is found by using Equation (2.49) as 

 

 2               
 
             (2.50) 

 

where          2        2. Using Equations (2.35), (2.38) and (2.50), the vector 

of generalized elastic forces due to the transverse deformations is determined as 

follows 
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 ∫   
 

 

       
 
               (2.51) 

 

Also, the transverse stiffness matrix is found by using Equations (2.38) and (2.51) as 

 

   
    

 ∫          
 
         

 

 

 (2.52) 

In the case of large longitudinal deformation, Equation (2.49) is no longer valid. In 

this case, the following equation can be used for the curvature as [7] 

 

  
        

    
     

  
 (2.53) 

 

where 

 

  
    

 
 

 
[(      

 
 ̃      )  (      

 
 ̃       )

 

] (2.54) 

 

and   is the deformation gradient that is given below 

 

  
  

  
 (2.55) 

 

In the Equation (2.54),  ̃ is defined as  

 

 ̃  [
   
  

] (2.56) 

 

In the case of large longitudinal deformation, Equation (2.54) can be used to find the 

strain energy and stiffness matrix. Since Equation (2.54) leads to a complex 

expression for the elastic forces, it can be simplified further by assuming the 

deformation gradient is constant [7]. 
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2.2.3. Generalized External Forces for the planar ANCF Beam Element 

Virtual work due to externally applied force acting on an arbitrary point on the 

element is given as follows 

 

                         
        (2.57) 

 

From the above equation, generalized external force vector is defined as 

 

           (2.58) 
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CHAPTER 3 

 

 

3.THE CONVENTIONAL PLANAR ANCF BEAM ELEMENT 

 

 

 

3.1. The Nodal Coordinates and the Shape Function Matrix for the 

Conventional Planar ANCF Beam Element 

The conventional beam element   of the body   in undeformed and deformed 

configurations is given in Figure 3.1. The global position vector,      , of an arbitrary 

point   on the element is found by using the global shape function,      , and the 

vector of nodal coordinates,      , as given in the Equation (2.22). 

 

 

 

 

 

Figure 3.1 Undeformed (a) and deformed (b) configurations of the conventional 

planar ANCF beam element. 
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Here the vector of nodal coordinates for the conventional planar beam element is 

given as [5, 7-9, 13] 
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 2
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 (3.1) 

 

where global displacements and slopes are  
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(3.2) 

 

Left superscripts in the above equations represent the node numbers in the element. 

To approximate the geometry and deformation, cubic polynomials are used in the 

global shape function matrix. It can be given as below [5, 7-9, 13] 

 

      [
 1   2
  1  

   
    
 2    

  
   
   

] (3.3) 

 

where, 

 

 1      2       2        2      

      2               2  
(3.4) 

 

Global shape function matrix that is used in the ANCF contains all rigid body modes 

so that arbitrary rigid body translations and rotations are fully described.  
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3.2. Mass Matrix of the Conventional Planar ANCF Beam Element 

The mass matrix can be found explicitly by arranging the Equation (2.25) with the 

vector of nodal coordinates and the shape function matrix for the conventional planar 

ANCF beam element as [13] 
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 (3.5) 

 

3.3. Stifness Matrices of the Conventional Planar ANCF Beam Element 

If   and   are constant, Equation (2.47) can be arranged as follows 

 

   
    

   ∫    
                  ∫    

              
1

 

 

 

 (3.6) 

 

If Equation (2.44) is used with an arbitrary rigid body displacement vector, which 

can be given as    [                      ] , the longitudinal stiffness matrix can be 

written explicitly as [7] 
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Assuming   and   are constant, Equation (2.52) can be arranged as below 

 

   
    

   ∫        
 
          

 

 

 

 
   ∫          

1

 

 (3.17) 

 

Then the transverse stiffness matrix is given in matrix form explicitly as 
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 (3.18) 

 

3.4. Generalized External Forces for the Conventional Planar ANCF Beam 

Element 

Equation (2.58) is used to get generalized external force vector for the conventional 

ANCF beam element.  
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For the gravitational force        ,where   is the unit vector along the 

gravitational direction with respect to the global coordinate system, and   is the 

gravitational acceleration, the generalized external force due to the gravitation is 

found explicitly by using Equation (2.58) as follows 
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  (3.19) 

 

Assuming a moment   acts on a cross-section of the beam, virtual work due to the 

moment can be given as 

 

    (3.20) 

 

Here    is a virtual angle change as a result of bending moment. Transformation 

matrix,  , is defined for the orientation of a coordinate system attached to the cross-

section of the beam as 
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 (3.21) 
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Equation (3.21) yields 
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From Equation (3.23), it can be shown that 
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From Equations (3.22), (3.23) and (3.24); virtual change in the orientation angle is 

found as 
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(3.25) 

 

If a moment is applied at first node of the element, Equation (3.25) can be 

determined as follows 
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(3.26) 

 

The generalized external force due to the applied moment can be found by the 

following formula 

 

  
    

           (3.27) 

 

Then it can be given as 
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 (3.28) 

 

3.5. Connectivity of the Conventional Planar ANCF Beam Element 

Let the body   be composed of two conventional planar ANCF beam elements as 

given in Figure 3.2.  

 

 

 

 

 

Figure 3.2 (a) Element-1, (b) Element-2 and (c) Body   

 

 

 

Nodal coordinates of Element 1, Element 2 and generalized coordinates of Body   

are given as follows 
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 (3.29) 
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   2  [ 1
  2     2

  2      
  2      

  2      
  2      

  2      
  2      
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Total number of nodal coordinates composed of   number of elements can be found 

as 

 

                  (3.32) 

 

The Boolean matrices have the dimension of 8 x  , and composed of zeros and ones 

to relate the elemental variables to the body variables. For example, the Boolean 

matrices for the Body   composed of two elements are given as follows 
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 (3.34) 

 

Then the vector of generalized coordinates can be found by using the vector of nodal 

coordinates and the Boolean matrices as 

     ∑           

 

 (3.35) 
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In the same manner, the mass matrix and the generalized force matrix for a body   

can be determined as follows 

 

     ∑                

 

 (3.36) 

 

     ∑           

 

 (3.37) 

 

Then the mass matrix, the vector of generalized coordinates and the vector of 

generalized forces are given for a multibody system composed of   number of 

bodies as 
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 (3.38) 
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CHAPTER 4 

 

 

4.THE NEW PLANAR ANCF BEAM ELEMENT 

 

 

 

A new planar beam element in ANCF is developed with different shape functions 

and element nodal systematics. Shape function matrix of the proposed element is 

derived from the quadratic Bernstein polynomials. With three nodes on the element, 

deformations and displacements can be described by six degrees of freedom. Two of 

these nodes are located at the initial and last material points on the element. The third 

node is a free node, and it does not have to be located on the material. At each node, 

there are two degrees of freedom that make totally six degrees of freedom in the 

element. The nodal degrees of freedom are the global coordinates so that neither 

angles, nor slopes are used as nodal variables. To define the orientation and 

deformed shape of the beam, the middle node is used.  

The new element is iso-parametric, and it uses global coordinates similar to the 

conventional one. Also, the mass matrix is constant, and there are no centrifugal and 

Coriolis forces. Since the shape function polynomials are quadratic instead of cubic, 

and degrees of freedom are less than the conventional beam element type, the 

generalized elastic force vector is simplified considerably.  

4.1. Bernstein Polynomials and Bézier Curves 

Bernstein polynomials are first introduced by Sergei Natanovich Bernstein, and used 

in the mathematical field. Bernstein basis polynomials of degree n are given as 

follows [25] 

        (
 
 

)                         (4.1) 
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where (
 
 

) is a binomial coefficient. A linear combination of the Bernstein basis 

polynomials gives a Bernstein polynomial of degree n as 

 

      ∑   

 

   

        (4.2) 

 

Here    are the Bernstein coefficients. Bernstein basis polynomials of second degree 

are found from Equation (4.1) as 

 

   2         2  1 2             2 2     2 (4.3) 

 

and they can be plotted for       as in Figure 4.1. 

 

 

 

 

 

Figure 4.1 Bernstein basis polynomials. 

 

 

 

A Bézier curve is a parametric curve which uses Bernstein basis polynomials. Also, 

Bézier surfaces can be obtained by the generalizations of Bézier curves to higher 

dimensions. Bézier curves are first used in the design of automobile bodies at 

Renault by the French engineer Pierre Bézier, who published his works in 1962. 

0 1 

𝑥 

𝑏  2 𝑥  

𝑏1 2 𝑥  

𝑏2 2 𝑥  
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Today Bézier curves and surfaces are widely used in computer graphics, games and 

also in computer-aided design (CAD) programs to describe complex geometries.  

A set of control points is used to define a Bézier curve. First and last control points 

are located at the ends of a curve, and intermediate control points are used to 

describe the path of a smooth curve. Intermediate control points don’t have to lie on 

the curve. 

In this study, only quadratic Bézier curves are used and transformed into the finite 

element systematics. In quadratic Bézier curves, three control points exist, and a 

curve that is tangent to the lines between control points can be described 

parametrically by      function where   [   ] so that          and       2. 

A quadratic Bézier curve and control points are given in Figure 4.2. 

 

 

 

 

 

Figure 4.2 A quadratic Bézier curve and control points 

 

 

 

The function of a quadratic Bézier curve can be given as follows  

          2           1   2 2    [   ] (4.4) 
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Note that the function is a special case of Bernstein polynomials of second degree 

where Bernstein coefficients are the positions of the control points. 

4.2. Nodal Coordinates and Shape Function Matrix of the New Planar ANCF 

Beam Element 

The new planar beam element in undeformed and deformed configurations is given 

in Figure 4.3. The global position vector of the beam element at an arbitrary point K 

is found by Equation (2.22). As can be seen in Figure 4.3, there are three nodes on 

the element, and the middle node is used to describe the orientation and the slope. 

 

 

 

 

 

Figure 4.3 Undeformed (a) and deformed (b) configurations of the new planar ANCF 

beam element. 

 

 

 

Shape functions of the element are composed of quadratic Bernstein basis 

polynomials. The shape function matrix are given as  
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where      ,   is the coordinate of an arbitrary point on the element in 

undeformed configuration, and   is the length of the beam element. 

There are totally six nodal coordinates in the element, and all of them are the global 

positions of the nodes. The vector of nodal coordinates of the element is given as 

below 
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 (4.6) 
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(4.7) 

 

4.3. Mass Matrix of the New Planar ANCF Beam Element 

Using the vector of nodal coordinates and the shape function matrix for the new 

planar ANCF beam element, the mass matrix can be found explicitly by using 

Equation (2.25) as 
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4.4. Stiffness Matrices of the New Planar ANCF Beam Element 

If  ,   and   are assumed to be constant, stiffness matrices can be found by using  

Equations (3.6) and (3.17) using the shape function matrix and the vector of nodal 

coordinates of the new planar ANCF beam element. 

If Equation (2.44) is used with    [        ] , the longitudinal 

stiffness matrix can be written explicitly as 
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 (4.9) 

 

where elements in the     matrix are given as follows 
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By using Equation (3.17), the transverse stiffness matrix can be given explicitly as 
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 (4.16) 

4.5. Generalized External Forces for the New Planar ANCF Beam Element 

For the gravitational force        where   is the unit vector along the 

gravitational direction with respect to the global coordinate system, and   is the 

gravitational acceleration; the generalized external force due to the gravitation can be 
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found explicitly by using Equation (2.58) for the new planar ANCF beam element as 

follows 
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  (4.17) 

 

The moment,  , is assumed to act on a cross-section of the beam at the initial node 

as can be seen in Figure 4.4. Virtual angle change,   , is assumed as a result of the 

bending moment,  , and it can be given as follows 
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Figure 4.4 The new planar beam element under the effect of bending forces. 

 

 

 

Then the generalized external force due to the bending is determined by using 

Equations (3.20) and (4.18) as 
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       (4.19) 

 

It can be also given in the matrix form as follows 
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where the elements in the above vector are 
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4.6. Connectivity of the New Planar ANCF Beam Element 

End nodes of two consecutive elements can be connected with the similar procedure 

explained for the conventional planar ANCF beam element. Here again, the Boolean 

matrices are used for the connection.  

It should be noted that continuity of the slopes of two consecutive elements should 

be satisfied. For this purpose, an additional constraint equation is introduced for the 

new planar ANCF beam element. In Figure 4.5, two connected elements are 

represented. For the continuity of the slopes at the connected ends of the beam 

elements, the following equation should be satisfied 
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Figure 4.5 Connected two consecutive new planar ANCF beam elements 
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Taking second time derivative of Equation (4.25) yields the additional constraint 

equation as follows 
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CHAPTER 5 

 

 

5.NUMERICAL SOLUTION PROCEDURE 

 

 

 

The equations of motion that are used in the analysis of a multibody system consist 

of a set of ordinary differential and algebraic equations. Solutions of differential 

algebraic equations (DAEs) are not straight forward as ordinary differential 

equations (ODEs). Three different approaches are proposed for the solution of DAEs 

namely as the direct integration method, the generalized coordinates partitioning 

method and the constraint stabilization method [17].  

In the direct integration method, numerical integration methods of ODEs are used to 

integrate DAEs without any modification of equations or algorithms. The approach is 

easy to implement and computationally fast. However, constraint equations in the 

equations of motion are not ordinary differential equations, and solution procedure 

may cause some problems in the error control on the constraints [17]. 

The generalized coordinates partitioning method, also called as Wehage’s 

partitioning technique, is proposed by Wehage and Haug [18]. In this technique, 

generalized coordinates are partitioned to dependent and independent coordinates. 

By using the Newton-Raphson method, constraint equations are solved to obtain 

dependent coordinates. Only independent coordinates are integrated so that error 

control is improved in this technique [17]. 

Last method is the constraint stabilization method proposed by Baumgarte [19]. This 

method is used to stabilize direct integration algorithms by adding the velocity and 

position terms of the constraint equations into the second derivative of the constraint 

equations. The method is fast and accurate but may lead to erroneous results by 

selecting improper coefficients of velocity and position terms [17].  
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In the direct integration, explicit and implicit integration methods are used. Explicit 

integration methods solve the dynamic equations of the system by using the variables 

at the current time step, while implicit methods find the solution by using the 

variables at both current and following time steps. Explicit methods can be said 

conditionally stable when  

 

   
 

    
 (5.1) 

 

where    is a time step size,   is a constant and      is the highest frequency of the 

system. In the multibody systems, in which small numbers of degrees of freedom are 

used, the highest frequency of the system is not large, and time steps that can lead 

stable analysis may be reasonable [20].  

In the multibody systems having highly deformable bodies, deformation modes can 

be associated with high frequencies, and the systems may have large numbers of 

degrees of freedom. As the frequency increases, explicit integrator must select 

smaller step-sizes to capture the oscillations in the solution. In this case, explicit 

integration methods can be very inefficient or even fail [21].  

In fact, high-frequency oscillations are negligible in the solution, and since implicit 

methods do not trace high-frequency oscillations; they give better results with larger 

step times in many multibody system applications when compared to the explicit 

methods. 

The implicit Newmark method, which is a numerical integration method used for the 

solution of structural dynamic problems [22], can be used conveniently in the 

solution of multibody systems that have highly deformable bodies. Some of the 

advantages of the Newmark method can be stated as [23] 

 The resulting second order ODEs do not have to be reduced to the first order 

that leads smaller dimension of problems. 

 The method has good stability properties. 
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 The amount of damping introduced to the system can be adjusted. 

On the other hand, in the case of high numerical damping introduced to the system, 

accuracy of the solution may be affected. Improved methods, like Hilber-Hughes-

Taylor (HHT) method, exist in the literature to diminish unwanted effects of 

damping on the accuracy of the solution [24]. 

Since dynamic equations are the form of DAEs due to the kinematic constraints, the 

Newmark method that is explained below is a modified version from the originally 

proposed one. 

Let   be the generalized vector of coordinates,  ̇ be the generalized vector of 

velocities, and  ̈ be the generalized vector of accelerations. Then, the Newmark 

integration equations depend on two integration parameters,   and  , as  

 

            ̇  
  2

 
[       ̈     ̈    ] (5.2) 

 

 ̇      ̇    [      ̈    ̈    ] (5.3) 

 

where    is the time step size, the subscripts   and      denote variables at the 

current time and the following time steps. 

Equations (5.2) and (5.3) can be used to discretize the equations of motion of the 

multibody system as follows 

 

[
       

 

      
 

] [
 ̈    

     
]  [

     

     
] (5.4) 

Since       and  ̇     in the equations are functions of  ̈    , unknowns in the 

Equation (5.4) become  ̈     and      . 

Integration constants that are used to control the stability and the amount of damping 

introduced into the system should satisfy the following conditions  
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(  
 
 )

2

 
 

(5.5) 

 

If   value equals to 0.5, then there is no damping in the system. For higher   values, 

numerical damping is introduced. If   value equals to 0.5 and   value equals to 0.25, 

method returns to the trapezoidal method.  

After using Equations (5.2) and (5.3); Equation (5.4) becomes a non-linear set of 

equations that depends on  ̈     and      . To evaluate this set of non-linear 

equations, the Newton-Raphson method can be used.  

The Newton-Raphson method is a widely used root finding method. Consider a non-

linear set of equations that has equal numbers of equations and unknowns as 

 

       (5.6) 

 

where   is the vector of unknowns. Using the Taylor series, Equation (5.6) is written 

as 
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Jacobian matrix can be defined for the partial differential equations in Equation (5.7) 

as follows 
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Neglecting higher order terms in the Taylor series, and setting F        , 

Equation (5.7) yields 

 

                (5.9) 

 

that means, each function approaches to zero together with the corrections   . By 

using the corrections, updated value of the unknowns can be found as 

 

   1                           (5.10) 

 

where    is the value of the vector of unknowns in the previous iteration, and    1 is 

the value of the vector of unknowns in the current iteration. This equation can be 

used iteratively until the specified error that is acceptable for the solution is reached. 

Error criterion [11] that is given below can be used for the iterative solutions as 

 

‖   1    ‖

‖   1‖
       (5.11) 

 

where the Euclidean norm is given as follows 

 

‖ ‖  √ 1
2   2

2      
2 (5.12) 

 

Therefore, the Newton-Raphson method can be used to determine unknowns  ̈  1 

and    1 starting with initial guesses. Initial guesses can be set with the initial 

conditions and initial configurations of the system for the first step.  

Once  ̈     is determined,  ̇     and       can be found from Equations (5.2) and 

(5.3). This procedure should be continued until the time reaches to the specified 

value. Computational algorithm based on the above procedure can be given as 

follows: 
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i. Input the beam properties, integration constants, step size, and total time 

of the analysis with other parameters. 

ii. Solve the equations of motion for the initial conditions to get initial 

values of unknowns. 

iii. Increase time step by Δt to find the solution at time t+ Δt by using the 

values at time t Use the Newmark method for expressing the generalized 

coordinates and the velocities in terms of the generalized accelerations.  

iv. Start iteration loop to solve the set of non-linear equations for the 

generalized acceleration and Lagrange multipliers by using the Newton-

Raphson method at each time step. Continue to solve the loops until error 

reaches to the specified value. 

v. Calculate the generalized velocities and coordinates by using the 

Newmark equations for the next time step. Find and record the kinetic 

energies, strain energies and potential energies by using the generalized 

coordinates. 

vi. To continue the analysis until time reaches to the specified value, go to 

step iii. 

To analyze the flexible multibody problems by the absolute nodal coordinate 

formulation, codes are developed based on the above algorithm, and integrated to the 

MATLAB
®
 software. 
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CHAPTER 6 

 

 

6.COMPARISON OF THE NEW BEAM ELEMENT AND THE 

CONVENTIONAL ANCF BEAM ELEMENT 

 

 

 

To compare the performance of the new planar ANCF (6-DOF-ANCF) beam 

element and the conventional planar ANCF (8-DOF-ANCF) beam element types, 

numerical results are given in this chapter. Two case studies are examined: the free-

falling pendulum and the four-bar mechanism with a highly elastic coupler.  

6.1. Free Falling Pendulum 

Flexible pendulum that is examined here is attached by a pin joint at one end to the 

fixed frame, and the other end is set free. Parameters used in the analyses of the 

pendulum are given in Table 6.1. 

 

 

 

Table 6.1 Parameters used in the analyses of the pendulum. 

 

Mass 

 [kg] 

Length 

[mm] 

Cross 

Sectional 

Area [mm
2
] 

Second 

Moment of 

Area [mm
4
] 

Modulus of 

Elasticity 

[GPa] 

11.8 1000 1.96 x10
3 

3.07x10
5 

1x10
-3 

 

 

 

The pendulum is divided into four and ten finite elements, and the Newmark method 

is used in the solutions with a   value of 0.6 and a   value of 0.3025. Maximum 

error and iteration numbers are selected as 0.001 and 50 respectively. Total analysis 

time is selected as 1 second with a time step of 0.01 seconds. The vertical tip position 
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of the pendulum is given in Figure 6.1. Also, simulation results of the free falling 

pendulum can be seen in Figure 6.2. 

 

 

 

 

 

Figure 6.1 The vertical tip position of the free falling pendulum. 

 

 

 

The total energy of the free falling pendulum is composed of the potential energy, the 

kinetic energy and the strain energy. Since there is no energy input or output in the 

system, it is expected that energy is conserved throughout the analyses. Energy 

graphs of the pendulum are given in Figure 6.3. Reference is selected at the initial 

position so that the potential energy is zero. The kinetic and the strain energies are 

also zero initially.  

6-DOF-ANCF (4 el) 

6-DOF-ANCF (10 el) 
8-DOF-ANCF (4 el) 
8-DOF-ANCF (10 el) 
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Figure 6.2 Simulations of the free falling pendulum with: (a) 4 elements, (b) 10 

elements. 

 

 

It can be seen that results are close to each other for both element types. Especially 

when element numbers are increased to ten, results are almost same. 

In Table 6.2, CPU time ratios are given with respect to the 6-DOF-ANCF beam 

element type with four elements. Although accuracies are close to each other, 

computational time is reduced considerably when the 6-DOF-ANCF beam element 

type is used. 

6-DOF-ANCF 
8-DOF-ANCF 

(a) 

(b) 
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Figure 6.3 Energy balance of the pendulum for: (a) 4 elements, (b) 10 elements. 

6-DOF-ANCF 

8-DOF-ANCF 

 6-DOF-ANCF 

8-DOF-ANCF 

(a) 

(b) 
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Table 6.2 CPU time ratios of the pendulum 

 

 4 Elements 10 Elements 

6-DOF-ANCF 1 2.42 

8-DOF-ANCF 3.13 8.26 

 

 

 

6.2. Flexible Four-Bar Mechanism with Highly Elastic Coupler 

Four-bar mechanism shown in Figure 6.4 has three links: a crank, a coupler and a 

follower. The mechanism is under the gravity effect, and is driven by the moment 

applied to the crank. The variation of the applied moment is given in Figure 6.5.  

 

 

 

 

Figure 6.4 Four-bar mechanism with highly elastic coupler. 

 

 

 

Six models are studied with different element numbers and different element types as 

given in Table 6.3. 

The crank is selected to have a higher rigidity as compared to the other links, and the 

coupler is highly flexible so that very large deformations can be observed. 

Crank 

g
 

M 

200 mm 
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Parameters of the links are given in Table 6.4. Here the properties, the cases and the 

other parameters are taken from the study of Berzeri et al. [5].  

 

 

 

 

 

Figure 6.5 Applied moment versus time graph [5]. 

 

 

 

Table 6.3 Model names and element numbers of the links. 

 

 Crank Coupler Follower 

6-DOF-ANCF (6 el) 
1 6 4 

8-DOF-ANCF (6 el) 

6-DOF-ANCF (9 el) 
1 9 4 

8-DOF-ANCF (9 el) 

6-DOF-ANCF (15 el) 
1 15 4 

8-DOF-ANCF (15 el) 
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Table 6.4 Parameters of four-bar mechanism with highly elastic coupler [5]. 

 

 
Mass 

[kg] 

Cross Sectional Area 

[mm
2
] 

Second Moment 

of Area [mm
4
] 

Modulus of 

Elasticity [GPa] 

Crank 0.68 1.3 x10
3 

1.3x10
5
 1.0

 

Coupler 2.47 2.0 x10
3 

3.1x10
5
 5x10

-3
 

Follower 1.47 7.1 x10
2 

4.0x10
4
 0.5 

 

 

 

In the solution, maximum error and iteration numbers are selected as 1x10
-3

 and 75. 

Total analysis time is chosen as 0.8 seconds with a time step of 0.01 seconds. The 

transverse mid-point deflection graph and the strain energy graph of the coupler are 

given in Figure 6.6 and Figure 6.7, respectively.  

 

 

 

 

 

Figure 6.6 Transverse mid-point deflection of the coupler. 

6-DOF-ANCF (9 el) 

6-DOF-ANCF (15 el) 
8-DOF-ANCF (6 el) 
8-DOF-ANCF (9 el) 
8-DOF-ANCF (15 el) 

6-DOF-ANCF (6 el) 
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Figure 6.7 Strain energy of the coupler. 

 

 

The simulation results are shown in Figures 6.8, 6.9 and 6.10 for different number of 

elements. 

 

 

 

 

 

Figure 6.8 Simulation of the four-bar mechanism using 6 elements in the coupler. 

6-DOF-ANCF (9 el) 

6-DOF-ANCF (15 el) 
8-DOF-ANCF (6 el) 
8-DOF-ANCF (9 el) 
8-DOF-ANCF (15 el) 

6-DOF-ANCF (6 el) 

8-DOF-ANCF (6 el) 

6-DOF-ANCF (6 el) 
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Figure 6.9 Simulation of the four-bar mechanism using 9 elements in the coupler. 

 

 

 

 

 

Figure 6.10 Simulation of the four-bar mechanism using 15 elements in the coupler. 

 

 

 

8-DOF-ANCF (9 el) 

6-DOF-ANCF (9 el) 

8-DOF-ANCF (15 el) 

6-DOF-ANCF (15 el) 
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As can be seen in Figures 6.6, 6.7 and the simulations, results are in good agreement 

for all the analyses until 0.65 seconds where deformations are close to the highest 

level. After that time, results differ especially for the 6-DOF-ANCF beam element 

type. But results get closer as the element numbers are increased.  

In Table 6.5, CPU time ratios are given with respect to the analysis carried out by 

using the 6-DOF-ANCF beam element type with six elements in the coupler. As can 

be seen in the table, better computational time can be achieved when 6-DOF-ANCF 

beam element type is used. 

 

 

 

Table 6.5 CPU time ratios of the four-bar mechanism. 

 

 6 Elements 9 Elements 15 Elements 

6-DOF-ANCF 1 1.34 1.93 

8-DOF-ANCF 2.20 2.32 3.81 
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CHAPTER 7 

 

 

7.RESULTS AND DISCUSSIONS 

 

 

 

In this section, the results are presented by using flexible four-bar mechanism 

simulations and divided into two sub-categories as small-medium and large 

deformation analyses. All links of the four-bar mechanism are flexible. The crank 

and the follower are selected with high modulus of elasticity values whereas the 

coupler is selected to have a different range of modulus of elasticity values so that 

different orders of deformations are examined.  

7.1. Small-Medium Deformation Analyses 

In the case of small-medium deformation analyses, the absolute nodal coordinate 

formulation is used with both the conventional planar ANCF (8-DOF-ANCF) beam 

element type and the new planar ANCF (6-DOF-ANCF) beam element type. Also 

the floating frame of reference formulation is used in the analyses to compare the 

results. 

The four-bar mechanism that is used in the analyses is given in Figure 7.1. The crank 

and the follower are attached to the ground, and the coupler is attached to the links 

with revolute joints. The mechanism works with the applied moment to the base 

point of the crank. The gravitational forces also exist in the system. 

The results obtained by the developed codes are also compared with the results 

obtained by ADAMS
®
 software in which the floating frame of reference formulation 

is used. 
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Figure 7.1 Four-bar mechanism for the small-medium deformation analyses. 

 

 

 

The moment,     , applied to the crank is given in the Equation (7.1). The 

gravitational acceleration is taken as 9.81 m/s
2
.  

 

     {
     1               

           
  (7.1) 

 

Depending on the elasticity of the coupler, four different cases are examined which 

are given in Table 7.1. Other parameters are given in Table 7.2. 

 

 

 

Table 7.1 Cases of the small-medium deformation analyses. 

 

 Modulus of Elasticity [GPa] 

 Crank Coupler Follower 

Case-1 100
 

0.25
 

100 

Case-2 100 0.20 100 

Case-3 100 0.16 100 

Case-4 100 0.10 100 

 

 

Crank 

g
 

M 

250 mm 
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Table 7.2 Parameters of the four-bar mechanism for the small-medium deformation 

analyses. 

 

 
Mass 

[kg] 

Cross Sectional 

Area [mm
2
] 

Second Moment 

Of Area [mm
4
] 

Crank 0.94 1.3x10
3 

1.3x10
5
 

Coupler 2.94 2.0x10
3 

3.1x10
5
 

Follower 2.18 1.3x10
3 

1.3x10
5
 

 

 

To generate the flexible links for the analyses made by the floating frame of 

reference formulation, ANSYS
®

 parametric design language is used. Two-noded 

beam element (BEAM188) in the library of ANSYS
®
 is selected with the properties 

and the meshes, and then the links are exported in the form of “MNF file” that is 

used in the ADAMS
®
 software. Mode numbers and natural frequencies of the beams 

for different cases are given in Appendix A. Note that first six modes are not used in 

the analyses since they are rigid body modes Depending on the element numbers in 

the coupler, different models are generated for all the cases. The model names and 

the element numbers of the links are given in Table 7.3. 

 

 

Table 7.3 Model names and used number of finite elements for the small-medium 

deformation analyses. 

 

 Number of Elements 

 Crank Coupler Follower 

6-DOF-ANCF (4el) 1 4 2 

6-DOF-ANCF (8el) 1 8 2 

8-DOF-ANCF (3el) 1 3 2 

8-DOF-ANCF (6el) 1 6 2 

FFR (25 el) 2 25 5 

FFR (50 el) 2 50 5 



 

66 

 

In all the analyses, Newmark method is used with a   value of 0.7 and a   value of 

0.36. Maximum error and iteration numbers are selected as 1x10
-3

 and 75 

respectively. Total analysis time is 1 second with time steps of 0.01 seconds. 

The distance between the center point of the coupler and the origin of the absolute 

coordinate system attached to the initial point of the crank is used to represent the 

results graphically. Figures show the center distance graph and the energy graphs for 

the coupler, and are separated two categories, corresponding to analyses made by 

low element numbers and high element numbers. 

7.1.1. Case-1 

Figures 7.2 and 7.3 show the variation of the center distance of the coupler for low 

element numbers and high element numbers respectively. Furthermore, the variation 

of kinetic and strain energies are given in Figures 7.4 and 7.5, respectively. 

 

 

 

 

 

Figure 7.2 Variation of the center distance of the coupler with low element numbers 

(Case-1) 

 

8-DOF-ANCF (3 el) 

FFR (25 el) 

6-DOF-ANCF (4 el) 
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Figure 7.3 Variation of the center distance of the coupler with high element numbers 

(Case-1) 

 

 

 

 

 

Figure 7.4 Variation of kinetic and strain energies of the coupler with low element 

numbers (Case-1) 

 

8-DOF-ANCF (6 el) 

FFR (50 el) 

6-DOF-ANCF (8 el) 

8-DOF-ANCF (3 el) 

FFR (25 el) 

6-DOF-ANCF (4 el) 
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Figure 7.5 Variation of kinetic and strain energies of the coupler with high element 

numbers (Case-1) 

 

7.1.2. Case-2  

The variation of center distance of the coupler is given in Figures 7.6 and 7.7. Also, 

Figures 7.8 and 7.9 show the variation of kinetic and strain energies of the coupler. 

 

 

 

Figure 7.6 Variation of the center distance of the coupler with low element numbers 

(Case-2) 

8-DOF-ANCF (6 el) 

FFR (50 el) 

6-DOF-ANCF (8 el) 

8-DOF-ANCF (3 el) 

FFR (25 el) 

6-DOF-ANCF (4 el) 
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Figure 7.7 Variation of the center distance of the coupler with high element numbers 

(Case-2) 

 

 

 

 

 

Figure 7.8 Variation of kinetic and strain energies of the coupler with low element 

numbers (Case-2) 

8-DOF-ANCF (6 el) 

FFR (50 el) 

6-DOF-ANCF (8 el) 

8-DOF-ANCF (3 el) 

FFR (25 el) 

6-DOF-ANCF (4 el) 
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Figure 7.9 Variation of kinetic and strain energies of the coupler with high element 

numbers (Case-2) 

 

7.1.3. Case-3  

Figures 7.10 and 7.11 show the center distance graphs of the coupler. Also, the 

variation of kinetic and strain energies are given in Figures 7.12 and 7.13. 

 

 

 

Figure 7.10 Variation of the center distance of the coupler with low element numbers 

(Case-3) 

8-DOF-ANCF (6 el) 

FFR (50 el) 

6-DOF-ANCF (8 el) 

8-DOF-ANCF (3 el) 

FFR (25 el) 

6-DOF-ANCF (4 el) 
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Figure 7.11 Variation of the center distance of the coupler with high element 

numbers (Case-3) 

 

 

 

 

 

Figure 7.12 Variation of kinetic and strain energies of the coupler with low element 

numbers (Case-3) 

 

 

 

8-DOF-ANCF (6 el) 

FFR (50 el) 

6-DOF-ANCF (8 el) 

8-DOF-ANCF (3 el) 

FFR (25 el) 

6-DOF-ANCF (4 el) 
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Figure 7.13 Variation of kinetic and strain energies of the coupler with high element 

numbers (Case-3) 

 

7.1.4. Case-4 

Figures 7.14 and 7.15 show the variation of center distance of the coupler. The 

variation of kinetic and strain energies are also given in Figures 7.16 and 7.17. 

 

 

 

Figure 7.14 Variation of the center distance of the coupler with low element numbers 

(Case-4) 

8-DOF-ANCF (6 el) 

FFR (50 el) 

6-DOF-ANCF (8 el) 

8-DOF-ANCF (3 el) 

FFR (25 el) 

6-DOF-ANCF (4 el) 
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Figure 7.15 Variation of the center distance of the coupler with high element 

numbers (Case-4) 

 

 

 

 

 

Figure 7.16 Variation of kinetic and strain energies of the coupler with low element 

numbers (Case-4) 

8-DOF-ANCF (6 el) 

FFR (50 el) 

6-DOF-ANCF (8 el) 

8-DOF-ANCF (3 el) 

FFR (25 el) 

6-DOF-ANCF (4 el) 
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Figure 7.17 Variation of kinetic and strain energies of the coupler with high element 

numbers (Case-4) 

 

 

7.1.5. Discussions about the Small-Medium Deformation Analyses Results 

The modulus of elasticity values are selected to decrease from Case-1 to Case-4 in 

order to see the capability of the methods for handling the small to medium 

deformations. Since the crank and the follower are taken to be rigid enough, only the 

results of the coupler are presented.  

In all the analyses, deformations become larger at the second half of the analysis time 

since the moment is not used anymore to overcome the gravitational forces. In the 

second half of the analysis time, both the bending moment and the gravitational 

forces accelerate the system so that deformations increase in the coupler. When 

deformations get higher in magnitude, it is seen that the kinetic energy decreases 

with increasing the strain energy. The kinetic energy of the coupler oscillates at the 

second half of the analysis time. Oscillations are larger when the coupler is more 

elastic as expected.  

For all the cases, the results of the analyses using both the 6-DOF-ANCF beam 

element type and the 8-DOF-ANCF beam element type are in very good agreement, 

8-DOF-ANCF (6 el) 

FFR (50 el) 

6-DOF-ANCF (8 el) 
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and they don’t change considerably when high element numbers are used. It shows 

that in the case of small-medium deformations, even small number of elements can 

handle the analyses if the absolute nodal coordinate formulation is used with both 

element types.  

Results of first two cases are in good agreement for both the absolute nodal 

coordinate formulation and the floating frame of reference formulation. At the 

second half of the analyses, where deformations get larger, results obtained by the 

floating frame of reference formulation are seen slightly different from the absolute 

nodal coordinate formulation in the third case. Differences in the results increase 

considerably in the Case-4 where deformations are no longer small. It shows that the 

floating frame of reference formulation is not appropriate for large deformation 

problems. 

7.2. Large Deformation Analyses 

Since the floating frame of reference formulation is not capable of solving large 

deformation problems, only results of the absolute nodal coordinate formulation are 

presented here. The four-bar mechanism that is used in the large deformation 

analyses is given in Figure 7.18.  

 

 

 

 

 

Figure 7.18 Four-bar mechanism for the large deformation analyses. 

g
 

𝑀 
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Gravitational forces exist, and the system works with the moment applied to the 

crank. Model names and the number of elements used in the links are given in Table 

7.4. Depending on the elasticity of the coupler, three cases are examined as given in 

Table 7.5 with different element numbers in the coupler.  

 

 

 

Table 7.4 Model names and used number of finite elements for the large deformation 

analyses. 

 

 Number of Elements 

 Crank Coupler Follower 

6-DOF-ANCF (5) 1 5 2 

6-DOF-ANCF (10) 1 10 2 

6-DOF-ANCF (15) 1 15 2 

8-DOF-ANCF (5) 1 5 2 

8-DOF-ANCF (10) 1 10 2 

8-DOF-ANCF (15) 1 15 2 

 

 

 

Table 7.5 Cases of large deformation analyses. 

 

 Modulus of Elasticity [GPa] 

 Crank Coupler Follower 

Case-5 200
 

1.2x10
-2 

200 

Case-6 200 8.0x10
-3

 200 

Case-7 200 5.0x10
-3

 200 

 

 

 

The Newmark method is used with a   value of 0.75 and a   value of 0.39. 

Maximum error and iteration numbers are selected as 1x10
-3

 and 75 respectively. 
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Total analysis time is 0.9 seconds with time steps of 0.01 seconds. The moment, 

    , applied to the crank is given in Equation (7.2). The gravitational acceleration 

is taken as 9.81 m/s
2
.  

 

     {      
  

   
                     

                                       
 (7.2) 

 

Other parameters that are used in the analyses are given in Table 7.6. 

 

 

 

Table 7.6 Parameters of four-bar mechanism for the large deformation analyses. 

 

 
Mass 

[kg] 

Cross 

Sectional 

Area [mm
2
] 

Second 

Moment Of 

Area [mm
4
] 

Crank 0.53 2.1x10
3 

6.0x10
5
 

Coupler 2.95 2.0x10
3 

3.1x10
5
 

Follower 1.57 1.6x10
3 

5.1x10
5
 

 

 

 

The mid-point transverse deflection, the kinetic energy and the strain energy graphs 

of the coupler are presented here as the results. Also, simulation results are given for 

the 0.3 sec, 0.6 sec and 0.9 sec. of the analysis time.  

7.2.1. Case-5 

Figure 7.19 shows the transverse mid-point deflection of the coupler. Kinetic energy 

and strain energy graphs of the coupler are given in Figures 7.20 and 7.21 

respectively. Also, simulation results are given in Figure 7.22. 
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Figure 7.19 Variation of the transverse mid-point deflection of the coupler (Case-5). 

 

 

 

 

 

Figure 7.20 Variation of the kinetic energy of the coupler (Case-5). 

 

 

 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 
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Figure 7.21 Variation of the strain energy of the coupler (Case-5). 

 

 

 

 

 

Figure 7.22 Simulation results (Case-5). 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 

8-DOF-ANCF (5 el) 
6-DOF-ANCF (5 el) 

 
8-DOF-ANCF (10 el) 
6-DOF-ANCF (10 el) 



 

80 

 

7.2.2. Case-6 

The transverse mid-point deflection graph is given in Figure 7.23 for the coupler. 

Also, kinetic and strain energy graphs are given in Figures 7.24 and 7.25 

respectively. At the end, simulation results are shown in Figure 7.26. 

 

 

 

Figure 7.23 Variation of the transverse mid-point deflection of the coupler (Case-6). 

 

 

 

Figure 7.24 Variation of the kinetic energy of the coupler (Case-6). 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 
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Figure 7.25 Variation of the strain energy of the coupler (Case-6). 

 

 

 

 

 

Figure 7.26 Simulation results (Case-6). 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 

8-DOF-ANCF (5 el) 
6-DOF-ANCF (5 el) 

 
8-DOF-ANCF (10 el) 
6-DOF-ANCF (10 el) 
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7.2.3. Case-7 

The transverse mid-point deflection of the coupler is given in Figure 7.27. Kinetic 

energy and strain energy graphs of the coupler are shown in Figures 7.28 and 7.29 

respectively. Also, simulation results are shown in Figure 7.30. 

 

 

 

Figure 7.27 Variation of the transverse mid-point deflection of the coupler (Case-7). 

 

 

 

Figure 7.28 Variation of the kinetic energy of the coupler (Case-7). 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (15 el) 
6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 

8-DOF-ANCF (15 el) 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (15 el) 
6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 

8-DOF-ANCF (15 el) 
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Figure 7.29 Variation of the strain energy of the coupler (Case-7). 

 

 

 

 

 

Figure 7.30 Simulation results (Case-7). 

8-DOF-ANCF (5 el) 

8-DOF-ANCF (10 el) 

6-DOF-ANCF (15 el) 
6-DOF-ANCF (10 el) 
6-DOF-ANCF (5 el) 

8-DOF-ANCF (15 el) 

8-DOF-ANCF (5 el) 
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8-DOF-ANCF (10 el) 
6-DOF-ANCF (10 el) 

  
8-DOF-ANCF (15 el) 
6-DOF-ANCF (15 el) 
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7.2.4. Discussions about the Large Deformation Analyses Results 

Rigidity of the coupler is reduced from Case-5 to Case-7 in order to see the 

deformation changes and the capability of the element types for handling the 

analyses. In all cases, results of the analyses made by the 8-DOF-ANCF beam 

element type are similar to each other when low and high element numbers are used. 

It shows that accuracy of that element type is good even when low element numbers 

are used in the links. In the fifth case, the 6-DOF-ANCF beam element type gives 

relevant results as compared to the 8-DOF-ANCF beam element type. In the sixth 

case, results are not same for the couplers with low element numbers toward the end 

of the analyses where deformations are large, but results become similar when 

element numbers are increased. In the seventh case, deformations become larger 

especially toward the end of the analyses. To handle the deformations in the Case-7, 

more elements are needed in the coupler for the 6-DOF-ANCF beam element type as 

compared to other cases.  

In the small deformation analyses, the strain energies are lower as compared to the 

kinetic energies. Also, there is a correlation between them so that when kinetic 

energy is decreased, strain energy is increased. As shown in the figures, strain 

energies are very high in the large deformation analyses, and there are no obvious 

correlations in the energies.  
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CHAPTER 8 

 

 

8.CONCLUSIONS AND FUTURE WORK 

 

 

 

8.1. Conclusions 

In this thesis, the absolute nodal coordinate formulation is used for the analyses of 

planar flexible multibody systems. For this purpose, two different planar beam types 

are considered. First type is the conventional ANCF planar (8-DOF-ANCF) beam 

element, and the other is the developed ANCF planar (6-DOF-ANCF) beam element. 

In the 6-DOF-ANCF beam element, neither slopes nor angles are used to define the 

orientation of the beam whereas global slopes are used in the conventional type in 

addition to positions. In the absolute nodal coordinate formulation, elastic forces are 

derived from the shape functions, and composed of the element nodal coordinates. 

First of all, the 6-DOF-ANCF beam element type has quadratic shape function 

polynomials instead of cubic ones. Also, the element has six degrees of freedom, 

which is lower than that of the 8-DOF-ANCF beam element. Therefore, the 

following conclusions are acquired in the study: 

1. The proposed element requires a constraint equation for the connection of 

two consecutive elements to satisfy the continuity of the slopes. In the 

developed algorithm, an additional constraint equation is added automatically 

which causes increase in the number of algebraic equations in the equations 

of motion.  

2. Differential algebraic equations (DAEs) are solved with the direct integration 

method in this study. This procedure is fast and easy to apply, but stability 

can be affected as the algebraic equation number is increased when a large 

number of elements are used. 
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3. In the small to medium deformation cases, accuracies of the 6-DOF-ANCF 

beam element type are similar to the 8-DOF-ANCF beam element type. 

4. In the small deformation cases, accuracies of the floating frame of reference 

formulation (FFR) are seen to be relevant to the ANCF beam element types. 

Since FFR is not suitable for large deformation analyses, it is not compared 

with ANCF in the large deformation cases. 

5. In the large deformation cases, the 8-DOF-ANCF beam element type is more 

accurate than the 6-DOF-ANCF beam element type. Although results 

converge as the element numbers are increased, high element numbers can be 

required for the 6-DOF-ANCF beam element type to get accurate results 

when deformations are very large.  

6. The elastic force equations are simpler in the proposed element type. 

Moreover, the mass matrix and the external force equations become simpler.  

7. The analyses in the study show that the structure of the 6-DOF-ANCF beam 

element type decreases the computational time considerably. Hence the 6-

DOF-ANCF beam element may be a good alternative for both the small and 

large deformation cases.  

7.2. Future Work 

In the study, numerical damping that is introduced by the Newmark method leads to 

some numerical errors in the analyses. As a future work, Hilber-Hughes-Taylor or 

other methods that do not introduce numerical damping may be used to diminish 

such numerical errors. Also, Wehage’s partitioning technique can be used to see the 

stability when high numbers of 6-DOF-ANCF beam elements are used in the case of 

large deformations. Since only the independent variables are integrated, this method 

is believed to give better results. 

In the future, shear deformations can be considered, since shear deformations are 

neglected in the developed beam element. Also, the logic of the Bezier surfaces can 

be applied to solve flexible multibody systems involving plate elements in ANCF. 

However, connections of the elements might be more difficult than the planar beam 

elements.  
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APPENDICES 

 

APPENDIX A 

 

 

A. The Mode Numbers and the Natural Frequencies 

 

 

 

Table A.1 The mode numbers and the natural frequencies of the coupler for Case-1. 

 

Mode 

Numbers 

Natural Frequencies [Hz] 

Case-1 

25 Elements 

Case-1 

50 Elements 

7 17.91 17.96 

8 17.91 17.96 

9 48.58 48.78 

10 48.59 48.79 

11 93.36 93.80 

12 93.36 93.80 

13 144.86 144.95 

14 150.67 151.38 

15 150.79 151.54 

16 204.86 204.99 

17 219.17 220.21 

18 219.17 220.21 

19 290.33 291.03 

20 297.02 298.36 

21 297.16 298.81 

22 382.95 384.98 

23 382.95 384.98 

24 466.07 468.26 

25 475.42 477.86 

26 499.12 504.33 

27 664.35 676.53 

28 705.86 713.23 

29 832.16 923.76 

30 990.70 1108.86 

31 990.70 1108.86 

32 1150.06 1295.01 
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Table A.2 The mode numbers and the natural frequencies of the coupler for Case-2. 

 

Mode 

Numbers 

Natural Frequencies [Hz] 

Case-2 

25 Elements 

Case-2 

50 Elements 

7 16.02 16.07 

8 16.02 16.07 

9 43.45 43.63 

10 43.46 43.64 

11 83.50 83.90 

12 83.50 83.90 

13 129.57 129.65 

14 134.77 135.40 

15 134.87 135.54 

16 183.24 183.35 

17 196.03 196.96 

18 196.03 196.96 

19 259.68 260.30 

20 265.67 266.86 

21 265.79 267.26 

22 342.52 344.34 

23 342.52 344.34 

24 416.87 418.82 

25 425.22 427.41 

26 446.43 451.08 

27 594.21 605.11 

28 631.34 637.93 

29 744.30 826.24 

30 886.11 991.79 

31 886.11 991.79 

32 1028.65 1158.29 

 

 

 

 

 

 

 

 

 



 

93 

 

Table A.3 The mode numbers and the natural frequencies of the coupler for Case-3. 

 

Mode 

Numbers 

Natural Frequencies [Hz] 

Case-3 

25 Elements 

Case-3 

50 Elements 

7 14.33 14.37 

8 14.33 14.37 

9 38.86 39.03 

10 38.87 39.04 

11 74.69 75.04 

12 74.69 75.04 

13 115.89 115.96 

14 120.54 121.10 

15 120.63 121.23 

16 163.89 163.99 

17 175.33 176.17 

18 175.33 176.17 

19 232.26 232.82 

20 237.62 238.68 

21 237.73 239.05 

22 306.36 307.98 

23 306.36 307.98 

24 372.86 374.61 

25 380.33 382.28 

26 399.30 403.46 

27 531.48 541.23 

28 564.69 570.58 

29 665.72 739.01 

30 792.56 887.09 

31 792.56 887.09 

32 920.05 1036.01 
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Table A.4 The mode numbers and the natural frequencies of the coupler for Case-4. 

 

Mode 

Numbers 

Natural Frequencies [Hz] 

Case-4 

25 Elements 

Case-4 

50 Elements 

7 11.33 11.36 

8 11.33 11.36 

9 30.72 30.85 

10 30.73 30.86 

11 59.05 59.32 

12 59.05 59.32 

13 91.62 91.68 

14 95.29 95.74 

15 95.37 95.84 

16 129.57 129.65 

17 138.61 139.28 

18 138.61 139.28 

19 183.62 184.06 

20 187.85 188.70 

21 187.94 188.98 

22 242.20 243.48 

23 242.20 243.48 

24 294.77 296.15 

25 300.68 302.22 

26 315.67 318.96 

27 420.17 427.88 

28 446.43 451.08 

29 526.30 584.24 

30 626.57 701.30 

31 626.57 701.30 

32 727.36 819.04 
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Table A.5 The mode numbers and the natural frequencies of the crank and the 

follower. 

 

Mode 

Numbers 

Natural Frequencies [Hz] 

Crank Follower 

7 2144.79 550.10 

8 2144.79 550.10 

9 7351.05 1460.52 

10 10395.96 1460.52 

11 10395.96 2920.37 

12 10395.96 2920.37 

13 10395.96 3481.14 

14 14702.10 5270.44 

15 24483.66 5270.44 

16 24483.66 5305.16 

17 31991.86 6614.91 

18 31991.86 9367.87 

19 - 9992.85 

20 - 10703.15 

21 - 13531.96 

22 - 13531.96 

23 - 17807.08 

24 - 17807.08 
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