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ABSTRACT

TRAINING INVERSE BRDF WITH INCOMPLETE DATA FOR 3D
RECONSTRUCTION THROUGH PHOTOMETRIC STEREO

Kileci, Samet
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Uğur Halıcı

September 2014, 47 pages

In this thesis, missing data phenomena seen in a photometric stereo model is dealt
with machine learning approaches. Photometric stereo model takes input images ac-
quired with different illuminating conditions and predicts surface properties of an ob-
ject. Specular regions appear on the images due to reflection for certain angle of light
and camera and shadow regions appear because of surface structure of the object and
light angle. Since specular and shadow regions degrade the performance of the pho-
tometric stereo, in this thesis these regions are handled as regions with missing data
by using machine learning approaches. Neural network ensembles are implemented
to handle the specular and shadow regions. Networks are trained with full range of
BRDF data by omitting the values which have irrelevant intensity information. Once
they are trained, test data is assigned to their adequate network by considering the lo-
cation of missing data. This feature selection and ensemble structure of the networks
significantly decrease the effect of missing data. Finally, outputs of each networks are
used in the 3D reconstruction, surface structure of the object is successfully obtained
with proposed photometric stereo model even in the presence of incomplete data.

Keywords: photometric stereo, missing data, inverse BRDF machine learning
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ÖZ

FOTOMETRİK STEREO İLE 3B GERİÇATIM İÇİN EKSİK VERİ İLE TERS
BRDF ÖĞRETİLMESİ

Kileci, Samet
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Uğur Halıcı

Eylül 2014 , 47 sayfa

Eksik veri örüntü sınıflandırma ve tanıma sistemlerinde zayıflatıcı bir etkiye sahip-
tir. Bu tezde, fotometrik stereo (FS) modelinde karşılaşılan eksik veri sorunu makine
öğrenme yaklaşımları ile çalışılmıştır. FS algoritması farklı aydınlatma koşullarında
çekilmiş resimleri kullanıp, nesnenin yüzey yapısı özelliklerini tahmin eder. Görüntü-
lerde belirli kamera ve ışık açılarında malzemenin ayna yansıması özelliği sebebiyle
ortaya çıkan parlak bölgeler ve yüzeyin yapısından kaynaklanan gölgeli bölgeler bu-
lunmaktadır. Parlak ve gölgeli bölgeler FS modelinin performansını düşürdüğünden
bu bölgeler eksik veri olarak sınıflandırılmış ve bir makine öğrenmesi yöntemi olan
yapay sinir ağları kullanılarak aşılmış ve performans artırılmıştır. Ağlar yansıma mo-
delinden elde edilen parlaklık değerleri ile çok parlak ve çok karanlık değerler dışa-
rıda bırakılarak eğitilmiştir. Test fazında, parlaklık vektöründeki anlamlı veriler kom-
bine edilerek en uygun ağa yönlendirilmiş ve her bir ağın çıktısı ile objenin yüzey
dikmeleri kestirilmiştir. Yapay sinir ağı gurubu oluşturulması ve parlaklık verilerinin
işlenmesi yöntemleri harmanlanarak eksik veri probleminin zayıflatıcı etkisi bertaraf
edilmiştir. Son olarak kestirilmiş yüzey dikmeleri kullanılarak nesnenin yüzeyi 3B
geri çatımı eksik veriye rağmen başarıyla çalışılmıştır.

Anahtar Kelimeler: fotometrik stereo, eksik veri, ters BRDF, makine öğrenimi
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CHAPTER 1

INTRODUCTION

Photometric stereo is the reconstruction method of surface structure with given im-

ages. Shape of an object can be derived from set of images taken in different illumi-

nation conditions with special techniques. Thus, quality of images used in such an

algorithm directly affects the overall performance. In this thesis, a novel method for

photometric stereo is proposed by considering the effect of specular regions placed in

the mirror reflection positions. The specular regions in the input images are treated as

incomplete data and methods for incomplete (or missing) data applied in photometric

stereo.

In general context, missing data is a problem which can be faced in various types of

data-driven processes in many areas from medicine to industry. Missing data is the

incompleteness of important information and may occur because of the nature of the

data itself or appear in acquisition stage of the data. Data – driven mechanisms re-

quire complete data in order to work properly. If the data is incomplete or corrupted,

it may cause the system to give mistaken results. When the input data into the system

is missing, the performance may degrade and lead to inappropriate or inaccurate re-

sults. By considering the importance of this case, the following techniques have been

developed to cope with the problem to prevent the decrease of the efficiency of the

proposed photometric stereo:

1. Deletion of missing features in the data

2. Imputation of missing data by using statistical and machine learning approaches.

3. Estimation of the missing data by using model-based approaches

1



4. Design of machine learning models which can work with missing data (Neural

Network Ensembles)

These approaches have different perspectives. The first one is based on deleting sam-

ples with missing features from the data and it may lead to losing useful information

as well, this is why it is an inadequate method to use. The second is based on substi-

tuting missing variables rather than deletion. In second class approaches, the system

replaces the missing features with values obtained from some statistical tools by us-

ing the whole data set such as mean or median. In the third approach, a model such as

expectation maximization (EM) is designed and most likely values are estimated. In

the last approach, the system does not delete or replace the missing data, instead they

are neural network ensembles which are designed to handle missing features with-

out manipulating them. It is complicated to utilize in every system but it is the most

useful one compared the previous approaches.

The focus of this study is implementation of a novel approach to photometric stereo

algorithm in the presence of incomplete data. The inputs of the photometric stereo

algorithm are images captured in different light angles provided that camera view is

fixed. In this type of configuration, captured images may contain shadows and extra

shiny regions because of surface properties of the material and light and view angles.

Generally, in most calibrated image acquisition setup, three possible optical cases are

encountered; self-shadowing, cast shadowing and specular reflection[1]. The regions

where these effects are seen may actually provide important information about the

structure of the surface. Hence, pixels to corresponding to these regions should be

processed carefully to save the information or photometric stereo model should han-

dle these corrupted areas while giving accurate estimations about the surface struc-

ture.

In this thesis, an inverse BRDF model is proposed for photometric stereo algorithm

and missing data due to specular reflection is examined. Some machine learning

techniques are applied to the problem to deal with the incomplete data.

Bidirectional reflectance distribution functions (BRDF) are used in several shape from

reflectance algorithms in the literature. BRDF exhibits the close correlation between

the surface orientation and the intensity values of the image. Thus with given lighting

2



and imaging conditions an inverse BRDF can be trained in order to obtain surface

orientation from intensities. Proposed method is inverse BRDF which is structured as

a set of neural networks that is trained for a specific material . An ensemble of these

networks are trained with group of pixels in training phase considering the incomplete

features in the input vectors.

Networks are trained with the supervised learning method such as individual entries

of input vectors carry the intensity information of a pixel and target vectors are corre-

sponding normal angles given that view angle and the type of the material is fixed.

Before training phase, input data is produced with Bidirectional Reflectance Distri-

bution Function (BRDF). The intensity information for a material with fixed lighting

and camera direction is fetched from tabular BRDF data. Therefore, for training, 8

intensity values are obtained with 8 lighting angles and fixed viewing and normal

angles. The networks are then trained with these input data and their corresponding

normal angles as target vectors. During the tests, objects are synthetically illumi-

nated from eight different angles. Eight synthetic images are then decomposed into

the 1 by 8 vectors which each entry of a vector is a pixel illuminated from a certain

angle and then fed into the inverse BRDF in order to obtain surface normal angles.

Finally, surface normal angles are used in the global integration method in order to

construct the surface of the object. The accuracy of the model clearly depends on two

factors. One of them is training performance of the inverse BRDF which is related

with neural networks. And the other one is the distribution of the specular regions

on the images which actually degrades the performance of photometric stereo models

in general. The specular regions in these input images can be handled with missing

data approaches described above. Some of these approaches are implemented within

the inverse BRDF in this work. Inverse BRDF then handlse the shiny regions as well

with the described approaches. Performance of the inverse BRDF with the help of

missing data handling methods are remarkably increased.
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1.1 Organization

The rest of the thesis continues with the following chapters. In the second chapter,

detailed background information about classification with missing data and photo-

metric stereo is provided. In the third chapter, the implementation and the results of

the study are presented. Finally, in the last chapter, conclusion and possible future

works are explained.

4



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Introduction

In this chapter, the definitions and background information about the work presented

in this thesis will be explained. Photometric stereo with inverse BRDF with existence

of incomplete data problem is divided into two basic sections. At first, the methods

that deal with incomplete data in any recognition system will be presented. How

incomplete data affects a neural network and which techniques were used in the lit-

erature will be explained. Then, photometric stereo methods in the literature will be

presented. In that section, reflectance model BRDF will be presented and its close

connection with proposed inverse BRDF model will be explained in detail. Defini-

tions and the background information about the incomplete data and the literature

review of approaches used throughout this thesis are given in the next section

2.2 Incomplete Data and Recognition Systems

Pattern recognition and classification systems are the mechanisms that evaluate avail-

able data to the system and then take actions based on the structure of the data and

purpose of where being used[2]. Data structure is the main factor which directs the

structure of the classification system. To illustrate, a speech recognition system pro-

posed by Gaikwad et. al. [3] can be viewed as working in four stages; analysis of

speech, feature extraction, modeling of the recognition system and testing. In model-

ing of the recognition system, there are a few approaches which can be categorized as
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"Knowledge based approaches", "Statistical based approaches" and "Dynamic time

warping" in the literature. The designer should select the appropriate approach to

create a successful recognition system considering the structure of the speech signal

as input. When considering the speed of the speech signal presented to the system,

Dynamic Time Wrapping can be found as must pleasurable approach in order to cope

with different speaking speeds. Hence, the structure strictly directs the design of a

classification or recognition system.

Completeness is another important property of a data and should be considered in

most cases while designing a classification system. Real-world applications suffer a

common drawback, missing or unknown data[4]. Almost every automatic recognition

system can encounter incomplete data. In sonar applications weather conditions affect

the sea properties such as temperature and temperature deviation may cause degra-

dation of receiving signal from an object. A video tracking system can encounter

clusters such as clouds in front of tracked objects. Clustered video frame is an in-

complete data for such a system. This type of missing data comes from the nature of

application and can be considered in early design stages of recognition systems. In

another case, a single or more sensors of a multiple sensor system can fail during an

operation. For example, humidity sensor of a combined sensor group of a weather

prediction tool can break down. This failure can be feeding humidity values to the

system only once in a day instead of in every hour. In this case, the continuity of

humidity data is corrupted and one can see the combined data is particularly missing

in some instances of observation. Incomplete weather condition data through sen-

sor set may generate incorrect prediction values upon this failure. In case of getting

incomplete data after designing the classification system overall performance can be

degraded dramatically. This is why the phenomena of missing data has been an impor-

tant research area an there are very large studies in the literature for statistical analysis

of missing data[4, 5, 6]. It is also examined in pattern recognition literature[4] When

two disciplines are compared, statistical analysis requires more effort while pattern

recognition gives direct results by using more complex structures.

The way the missing data problem is handled is closely related to how missing data

occurs. According to Little and Rubin [7] there are three missing data mechanisms:

Missing Completely at Random, Missing at Random and Missing Not At Random.
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Missing Completely at Random is a situation in which the possibility of missing data

is not associated with any features either missing or observed in the data set. In this

condition, it is not probable to differentiate complete data from incomplete. Missing

at Random is the condition where the cause of data missing is irrelevant to missing

values but relevant to other variables. This ignorable situation is seen when it is

possible to predict the pattern of the missing data from other variables which can

be an external effect. Missing Not At Random is a non-ignorable case in which the

missing data depends on the values that are missing. This case is the most difficult to

predict from other variables.

Little and Rubin [7] stated that there are two ways of missing data patterns which are

arbitrary and monotone missing patterns. In arbitrary missing pattern, it is probable

to observe missing in any place and order of the variables does not have importance.

In monotone pattern, the order of variables is important, they have a common order.

In this thesis, some parts of the input data is saturated due to reflectance property of

the object. Thus, some numbers of pixels in the input images are treated as missing

or incomplete data.

2.2.1 Approaches for Incomplete Data in Pattern Recognition

Pattern recognition with missing data can be seen as two parts of a problem, handling

missing values in feature vector and designing an appropriate classification mecha-

nism for this feature vector. In the literature, it has been said that most of the ap-

proaches can be grouped into four different types depending on how both problems

are solved:

1. Deletion of incomplete cases and classifier design using only the complete data

portion.

2. Imputation of missing data and using the edited set learning phase of the clas-

sification problem.

3. Use of machine learning procedures, where missing values are incorporated to

the classifier.
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4. Model-based procedures for treating missingness i.e. data distribution is mod-

eled by expectation-maximization algorithm.

Figure 2.1 illustrates the four groups of approaches.

Figure 2.1: Classification with missing data approaches

2.2.1.1 Case Deletion Approach

At first, easiest and mostly common approach is deletion. Deletion based approach

handles missing data separately from classification phase. Obtaining a complete

dataset by deleting the features missing among all observations is a poor but easy

approach. Dataset with missing features in some instances can be reorganized until

it contains no missing value in it by just deleting the rows and columns in a simple

heuristic. The percentage of missingness in a row or column can be a decision crite-

ria which is to be deleted. With an algorithm which uses this type of criteria, dataset

can be cleared from incomplete or missing values without making any assumptions.

However, most of the useful data can be lost during deletion operation. Therefore,

this approach seems a very poor method[8][9].

8



2.2.1.2 Imputation Approach

Next approach is named imputation which can be easily applied on the missing data

throughout any recognition system. Imputation approach is widely used in the lit-

erature while treating the missingness problem as a part of classification problem.

This approach can be divided into two subsequent methods considering the tools for

implementation of imputation. First one is statistical imputation method based on

statistical analysis tools for imputing. There are available options from mean impu-

tation, regression imputation and hot and cold deck imputation[7, 5, 6]. Generally,

these methods can be applied to one feature in an observation or multiple missing

values within the feature vector.

Mean imputation is the first method as a statistical tool. Missing values are imputed

with the mean or mode of rest of the samples among the dataset. Mean is used for

continuous values and mode is used for discrete values of feature vectors. The main

disadvantage of this method is that it ignores the variability of the data and the cor-

relation between the various components of the data[5]. Farhangfar et al conducted

a detailed study over imputation methods and finds mean imputation method least

beneficial[10]. Mean imputation improves the classifier performance by at most 1 %

for datasets containing significant amount of missing data[11, 12, 10, 13]. However,

it can be used as pre-imputation method and combining other imputation methods.

Second imputation method approach is imputation based on machine learning algo-

rithms such as K-nearest neighbor and auto associative neural networks. This ap-

proach models imputation mechanism based on available information on dataset [4].

K-nearest neighbor (K-nn) imputation method is actually a common hot deck method.

K nearest neighbors are selected from non-missing samples by using a distance func-

tion [14]. The most similar samples are used to impute the missing value in selected

missing valued feature vector. The existing values of donors are used to calculate the

missing value. The calculation depends on data; the mode can be used for discrete and

the mean can be used for continuous data type[4]. Closest neighbors’ corresponding

features can contribute to missing feature with a weight for each. The weights can be

adjusted so that closer neighbors in the donors can contribute more. This approach
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improves the results[4]. The main effective factor in the K-nn imputation is the dis-

tance measure. Heterogeneous euclidean overlap metric (HEOM) is used[15, 14] and

HEOM is the distance between a pair of vectors named X and Y and dimension of n;

D(X, Y ) =

√√√√ n∑
i=1

di(xi, yi)2 (2.1)

where di(xi, yi) is the distance between X and Y on its i’th attribute and defined as:

di(xi, yi) =


1, one of the i’th attributes of x and y is missing.

dD(xi, yi), if i’th attribute of x and y are discrete.

dC(xi, yi), if i’th attribute of x and y are continuous.

(2.2)

The equation above states that distance between an unknown feature with complete

vectors feature is 1 so that 1 is the maximum distance. For discrete features dD assigns

0 if the attributes are the same or assigns 1 if they are different. Finally, for continuous

attributes dC assigns the distance;

dC =
|xi − yi|

maxxi −minxi
(2.3)

which is normalized distance and maxxi and minxi are maximum and minimum val-

ues of continuous attributes observed in the dataset. Batitsta and Monard [12]reveals

that classification accuracy of K-nn imputation is good enough but only when missing

features of the sample vectors are not highly correlated to each other. But this study is

not performed on large datasets and each dataset has different amount of missing data

hence study is not comprehensive in this aspect. Troyanskaya et al [16] compares the

K-nn to mean imputation and SVD methods and states that the K-nn method is far

better than the other methods.

2.2.1.3 Machine Learning Approaches and Neural Network Ensembles

The approaches described and explained in previous sections deal with missing data

problem being apart from the classification problem. In the other words the meth-

ods; case deletion, imputation, machine learning and model based approaches handles

with only missing data provided that classification task is another problem.

In this section,dealing with incomplete data problem and classification task are ex-

amined as a problem not just an imputation.
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Neural network ensembles are proposed as methods for classification of incomplete

data[17, 18, 19, 20]. Network reduction, a multiple MLP scheme is proposed by

Sharpe and Solly[17]. Multiple MLP classifiers are designed so that each of the MLP

is responsible to classify each incomplete data combination. Constructing several

MLP networks based on combination of missing features deals with classification

with incomplete data. However, constructing such a set requires more space and in-

creases the time of the training phase. Krause and Polikar[18] proposed an ensemble

of neural network structure which is trained with random subsets of features instead

of each combination of missing attrributes. In this structure, each possible combina-

tion of input features is not to be guaranteed to be shown. Jian et al proposed another

ensemble that uses combinations of complete dataset as inputs in training phase[19].

Unlike the method proposed in[18] this approach uses every possible combinations

of complete dataset. Juszczak and Duin[20] developed another ensemble method in

which large number of classifiers are trained on each feature so that when incomplete

data shows up, classifier output corresponds that missing feature and ensemble makes

decision with remaining classifiers.

An ensemble of neural network can deal with the input vectors whose features are

randomly missing or incomplete.

2.2.2 Conclusion and Remarks

Neural network ensembles are suitable solutions for our problem domain. Input vec-

tors with randomly missing or incomplete can be handled in their appropriate neural

network in the ensemble. Outputs of each individual network then can be combined

in order to create surface information of the object. On the other hand, division and

classification of missing data in the input vectors are design problems that should be

handled differently in training and testing phase. Thus, the structure of the ensemble

is arranged in such a way that complete system will not mis-classify the input vec-

tors. Both in the training and the testing phase, input vectors will be classified to their

associated network. In the training phase, all possible input combinations are derived

and used in each network. In the test phase, input vectors from the images is going

to be assigned to its relevant network. Rest of the work is obtaining surface height
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(or depth) information from the surface normal angles. In the next sections, some

detailed background information about photometric stereo will be presented.

2.3 Photometric Stereo

Photometric stereo, first proposed by Woodham[21] is an approach for the reconstruc-

tion of the image surface properties in computer domain. Main purpose of photomet-

ric stereo is to recover shape information from a set of gray level or RGB images

differing only illumination conditions[22]. Draper and Pridmore states that if it is

possible to model the reflectance properties of a surface and the position of the lisght

source and camera are known in relation to the object then photometric stereo may

recover a dense surface orientation map from gray level images[22].

In Photometric Stereo method, a fixed image is photographed with varying light

sources and fixed camera position. The intensity variation in those images depends on

the surface normals and the reflectance properties of the object. Photometric stereo

uses this dependency in order to obtain surface normals from intensity variations[1].

Depending on the modeling of the reflectance different models can be proposed to

solve the surface angle decoding. The keyword reflectance property was the main

challenging concept in the literature. The surface reflectance of a material is formal-

ized by the notion of the Bidirectional Reflectance Distribution Function (BRDF),

which is a 4 dimensional function describing the response of a surface in a certain ex-

itant direction to illumination from a certain incident direction over a hemisphere of

directions[23]. In the literature, reflectance models are divided into two groups; ana-

lytic and data-driven models. Analytic reflectance models are the approximations of

the reflectance characteristics of a surface. Those models are either just empirical for-

mulations that are obtained without analyzing the materials’ physical properties or the

simplified equations based on physical properties of the material[24]. The weakness

of these models is that they are only approximations of reflectance of real materials.

Furthermore, most analytic reflectance models are usually limited to describing only

particular subclasses of materials – a given reflectance model can represent only the

phenomena for which it is designed[24].
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Data driven models are constructed with acquired isotropic BRDF and machine learn-

ing techniques. Each entry in the BRDF table corresponds to a specific combination

of angle of incoming light, view or camera angle and surface normal angle for a sur-

face point. Acquired BRDF entries processed with both linear and non-linear dimen-

sionality reduction techniques and hence tabulated and stored in an efficient way[25].

In the next subsection, the BRDF function and data structure are explained in more

detail.

2.3.1 Bidirectional Reflectance Distribution Function

Mathematical representation of BRDF is a function of four variables: two variables

specify the incoming light direction, two other variables specify the outgoing light

direction. It is defined as a ratio of incoming irradiance dEi(θi, φi) to the outgoing

radiance dLr(θr, φr);

fr(θi, φi, θr, φr) =
dLr(θr, φr)

dEi(θi, φi)
=

dLr(θr, φr)

Li(θi, φi) cos θidωr

(2.4)

Figure 2.2 represents the coordinate system and the light directions for a unit surface

dA .

Figure 2.2: BRDF is a function of four variables: two variables specify the incoming

light direction, two other variables specify the outgoing light direction. It is defined

as a ratio of incoming irradiance to the outgoing radiance.

Isotropic BRDF is an important subclass of BRDFs. The isotropic model is valid for

materials for which rotations about the surface normal can be ignored[25]. Isotropic
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BRDF function, hence can be written in three variables which θr and θi are replaced

with θdiff . Isotropic BRDF is the function of φr, φi and φdiff as following;

fr(θi, θr, φdiff ) =
dLr(θr, φdiff )

di(θi, φdiff )
=

dLr(θr, φdiff )

Li(θi, φdiff ) cos θidωr

(2.5)

Matusik et al used another coordinate system proposed by Syzimon [26] and given in

Figure 2.3 The change of variables used because Matusik states that specular peaks

Figure 2.3: The standard coordinate frame is shown on the left. Rusinkiewicz’s coor-

dinate system is shown on the right.

were difficult to represent using the natural coordinate system. This new coordinate

frame is based on the angles with respect to the half-angle (half-vector between in-

coming and outgoing directions). With this new coordinate system, sampling density

can be varied and and increased near the specular highlight regions. This dataset in-

cludes 1,458,000 BRDF entries which includes 90 bins for θh and θd and 180 bins for

φd. The angle φd is sampled 180 instead of 360 because of the reciprocity;

f(θd, θh, φd) = f(θd, θh, φd + π) (2.6)

Matusik presents a sample image rendered with this BRDF model. The synthesized

version of the acquired image is given in figure2.4.

A simple structure of such an image rendering model can be illustrated with the figure

2.5.

Returning to the photometric stereo case, the specular regions of the input images and

shadowed parts are the challenging issues of this kind of systems. Buyukatalay et al

proposed[1] an iterative algorithm to albedo and shadowing effects that uses masking

of the input images. The performance measurement, total error in calculated surface
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Figure 2.4: Two images of a sphere. Real image is shown on the left,synthesized

image using tabulated BRDF data is shown on the right by Matusik et al.

Figure 2.5: This figure illustrates the basic structure of image producing model using

the BRDF data, illuminaton and observation information.

normals was reduced to 1.71% from 11.51% when their iterative photometric stereo

algorithm was used.

2.4 Summary

There are plenty of methods for reproducing the image surface information from mul-

tiple images given that illumination and material type is known. Photometric stereo

approaches use multiple images and analytic or data-driven BRDF information of

material in order to obtain surface structure accurately. The specular and shadowed

regions of the input images are kinds of a missing data to photometric stereo sys-

tems. Those areas should be treated specially by using missing data handling meth-

ods described in previous sections. We propose a neural network based method for

obtaining surface normal angles from given images and illumination information. A

set of networks will be trained with BRDF and surface information for a specific
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type of material and given lighting conditions. Then, those networks called inverse

BRDF’s are arranged in a way that those can handle incomplete data described in this

chapter. In the next chapter, proposed neural network based inverse BRDF model for

photometric approach will be explained in detail.
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CHAPTER 3

INVERSE BRDF FOR 3D RECONSTRUCTION THROUGH

PHOTOMETRIC STEREO

3.1 Introduction

In this chapter, the proposed model, inverse BRDF for 3D reconstruction will be

explained. Reconstructing the 3D shapes through photometric stereo requires surface

gradients or normal angles as described in the previous chapter.

Firstly, Inverse BRDF model that predicts normal angles of the surface with given

multiple images of objects will be presented in detail. Inverse BRDF is a neural

network that takes a set of intensity information of a pixel from multiple images and

predicts the surface normal of that surface unit. Then, surface normals of the object

are used in order to create surface height information as 3D reconstruction.

In the following sections, proposed inverse BRDF with incomplete data and 3D re-

construction through photometric stereo methods are explained.

3.2 Inverse BRDF With Incomplete Data

Inverse BRDF model is proposed in order to obtain the surface normal angles of

the surface. In this work, inverse BRDF is designed as a neural network model that

produce normal angle properties of surface units as an output. Eight monochrome

images of an object is obtained by changing the lighting condition while camera angle

is fixed. Those multiple images are fed into the inverse BRDF model as inputs. A
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Figure 3.1: Generic Scheme of Inverse BRDF

generic scheme of the inverse BRDF model is given by the figure 3.1. Neural network

structure in the inverse BRDF model is selected as feed forward neural networks and

radial basis functions.

The networks are trained with input and target vectors by considering the incomplete-

ness of the data.

Input data fed into the network in the training phase are one by eight intensity vectors.

I = [ i1 i2 · · · i8 ] (3.1)

where ik is a intensity value obtained by a data driven BRDF model for a specific

material. For any ik, camera angle is fixed while light angle is changing in between

eight directions. For example an intensity vector for a fixed material, I, is produced

by fixing the camera angle, θc = 0, φc = 0, and the lighting angle is changing from,

[θl =
pi
6
, φl = 0] to [θl =

pi
6
, φl =

7pi
4
], with incrementing φl by pi

4
. Target data fed

into the network with this input vector is,

n = [ nx ny nz ] (3.2)

where nx , ny and nz are scalar components of the Cartesian representation of normal

vector. Training data is constructed by scanning all possible surface normal angles

and their corresponding intensity vectors.

In the training and test stages, networks are either trained by considering the incom-

pleteness of train data or tested with pre-processed input data. Imputation and neural

network ensemble models are designed and tested with some type of synthetic sur-

faces. Following subsections describes those designs.
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3.2.1 Inverse BRDF with Imputation Methods

Imputation methods detect and remove the incomplete data from the input vectors

in the test phase and replace those entries with relevant values in order to improve

network performance for the pixels that is marked as incomplete.

Figure 3.2: Inverse BRDF Model with imputation approaches integrated

Block diagram in the figure 3.2 represents the Inverse BRDF model with imputation

methods described in previous chapter.

Imputation is applied to the train and test data for the entries in input vectors which

are the specular regions in the images. Those entries are detected so that the intensity

level of a pixel increases a threshold Ts then it is marked as missing. The threshold Ts

is calculated for each image and depending on the standard deviation of the intensity

profile. Figure 3.3 illustrates the intensity variation from a slice of given image. The

Figure 3.3: Intensity variation of a slice from semisphere image

pixels which exceed the threshold are marked as missing. From the figure 3.3 it is

seen that a significant amount of pixels are actually saturated thus will be marked as

missing. After pixels that corresponding intensity levels are upper than a threshold is

found they are imputed with following methods:
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• Mean Imputation

• K-nn Imputation

Following sections explains each imputation method.

3.2.1.1 Mean Imputation

Mean imputation is a very basic statistical tool for imputing the missing features in

the data. Marked pixels are imputed with either their sample average corresponds to

the average of intensity of 8 images or average of instance that corresponding to the

mean of the intensity of that image. For an image sequence Ik(x, y) k = 1, 2, 3, ...8;

test data is constructed as following matrix I;

I =

I1(1, 1) I2(1, 1) · · · I8(1, 1)

I1(2, 1) I2(2, 1) · · · I8(2, 1)
...

... . . . ...

I1(m,n) I2(m,n) · · · I8(m,n)

(3.3)

where m and n are the image dimensions. And one sample S for the Inverse BRDF

model is a row of I, which is actually a pixel’s intensity value, calculated with respect

to the light directions and objects normal. For example if the pixel of the Ij(u, v)

marked as missing; mj(u, v), the missing value is imputed with its sample average;

mj(u, v) =

8∑
k=1&k 6=j

Ik(u, v)

7
(3.4)

or its instance average which corresponds to mean of the image;

mj(u, v) =

x,y=m,n∑
x,y=1,1

Ij(x, y)

(m− 1)× (n− 1)
(3.5)

provided that summation term in both equations 3.5 and 3.4 does not contain missing

value, if it does then can be taken as 0.

3.2.1.2 K-nn Imputation

K-nn imputation is another tool based on machine learning approaches. The miss-

ing value mj(u, v) is imputed with the contribution of its neighbors so that K near-
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est neighbors are found with HEOM distance by using equation 2.1. Particularly, 5

neighbors contributes to the missing feature k of the sample S defined as S(k)

S(k) = S(n1)(k)×w1+S(n2)(k)×w2+S(n3)(k)×w3+S(n4)(k)×w4+S(n1)(k)×w5

(3.6)

where S(n1)(k) is the closest neighbor of the incomplete sample S and it is 1 by 8

vector;

S(n1)(k) = I1(x, y) I2(x, y) · · · I8(x, y) (3.7)

and weight vector w is chosen as sum of all weights are 1 andw1, the closest neighbors

weight is higher than the others.

w = w1 w2 · · · w5 (3.8)

3.2.1.3 Training and Testing Inverse BRDF With Imputation Methods

Inverse BRDF is modeled as neural network scheme which consists of multi layer

perceptrons (MLP). MLP, as feed forward neural network, is designed as 8 input layer

neurons, 40 hidden layer neurons and 3 output layer neurons. Figure 3.4 illustrates

the structure of the network. In the training phase 8 Input layer neurons take input of

one by eight sized intensity vector from the input side train data matrix , TD. In each

step, at the output side, corresponding one by three sized surface normal vectors from

the target data matrix, N is shown to the output layer neurons. Network is trained

until a satisfactory mean square error is obtained. There are approximately from 100

to 200 number of epochs done in the training phase.

In the training dataset the vector entries are actually the BRDF entries of Matusik’s

data set. Each feature in a sample of this set corresponds to an intensity value of a

surface normal when 8 different light angles are considered. Namely,

TD =

TD1(1, 1) TD2(1, 1) · · · TD8(1, 1)

TD1(2, 1) TD2(2, 1) · · · TD8(2, 1)
...

... . . . ...

TD1(m,n) TD2(m,n) · · · TD8(m,n)

(3.9)

where TD is the train data corresponding to the surface normal angle w in spherical

coordinates. m is 1 deg bins from 0 deg to 90 deg as zenith angle and n is 1 deg
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Figure 3.4: MLP consists of 8 input, 40 hidden layer and 3 output neurons.

bins from 0 deg to 360 deg as zenith angle. The target data is the surface normals in

Cartesian coordinates has following structure;

N =

nx(1, 1) ny(1, 1) nz(1, 1)

nx(2, 1) ny(2, 1) nz(2, 1)
...

...
...

nx(m,n) ny(m,n) nz(m,n)

(3.10)

with the same convention for TD .

In the test phase input data is imputed with the methods given at the previous sections.

The output is predicted normal angles Ñ with following convention;

Ñ =

nx(1, 1) ny(1, 1) nz(1, 1)

nx(2, 1) ny(2, 1) nz(2, 1)
...

...
...

nx(m,n) ny(m,n) nz(m,n)

(3.11)

Predicted normal angles are then used in the 3D Reconstruction phase in order to

create height information of the object. In addition, these estimated normal angles

are used in error calculations in order to measure the performance of the Inverse

BRDF system.
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3.2.2 Inverse BRDF With Neural Network Ensembles

The neural network ensembles are structures of interconnected multiple neural net-

works. Those ensembles are designed in order to handle special cases in recognition

process such as incomplete data.

Considering the incompleteness of the input data, multiple networks are arranged so

that each of the network should efficiently recognize each incomplete data combi-

nation. Moreover, the network ensemble should handle all possible combinations of

incomplete data in order to manage a good performance without any loss of input

data. Thus, an inverse BRDF with multiple networks should be designed and trained

with such a special method in order to meet performance criteria. Following sub-

sections exhibits the design of the input data handling methods and neural network

structures of the inverse BRDF.

3.2.2.1 Training Inverse BRDF With Neural Network Ensembles

When the input train data is analyzed it is seen that many of the samples I contain

saturated pixels due to specular regions. For instance let I is a vector, randomly

chosen in the train data TD, and let [i1, i2, ..., i8] are the intensities of this pixel. As an

example let i6 have the local maximum or it is saturated, i.e. its gray level is 255. This

intensity level in the input vector does not carry any useful information for network.

Hence it should not be used in training of a network in the structure. This feature

is missing because the surface normal for that pixel is too close to the half vector of

camera angle θc, φc and light angle θl6 and φl6 and light reflected from that pixel is

too much when compared its neighborhoods. Figure 3.5 illustrates that input vector.

Those neighbors actually come from the images illuminated from the angles:

• θl4 and φl4

• θl5 and φl5

• θl7 and φl7

• θl8 and φl8
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Figure 3.5: An example input vector of inverse BRDF. Note that feature i6 is satu-

rated. Then, it is omitted and its left and right 2 neighborhoods are extracted to create

new more useful input data.

A new vector with this extracted features, called I’, which consist of;

I’ = [ i4 i5 i7 i8 ] (3.12)

This vector is then classified as the element of the "Network 2". The vector I’ is then

fed into the "Network 2" with its target vector N’.

Once all train data TD is scanned with this method, all input and target vector pairs

are assigned to their network. The neural network ensemble is designed in a way that

if an intensity is saturated on any vector, then it is not being used and its left two and

right two neighbors are extracted from the vector to create a new input vector. The

intensity information of those entries have certainly more useful information for the

inverse BRDF by considering the incoming light and camera angles.

In the training stage, the networks in the ensemble are trained by using these pre-

processed input-target pairs Following table 3.1 illustrates this idea in more general;

In the test phase, similar classification for individual vectors are applied and their

outputs are combined at the end of the line. Feed forward multi layer perceptrons and

radial basis functions are trained with this input vectors. In the next section, testing

phase of the inverse BRDF is described.
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Table 3.1: Table shows the most frequently selected features among train data vectors
during input vector classification stage.

Img/Net Net. 1 Net. 2 Net. 3 Net. 4 Net. 5 Net. 6 Net. 7 Net. 8
I1(x, y) 3 3 3 3

I2(x, y) 3 3 3 3

I3(x, y) 3 3 3 3

I4(x, y) 3 3 3 3

I5(x, y) 3 3 3 3

I6(x, y) 3 3 3 3

I7(x, y) 3 3 3 3

I8(x, y) 3 3 3 3

3.2.2.2 Testing Inverse BRDF With Neural Network Ensembles

Figure 3.6 illustrates the proposed inverse BRDF model in block diagram.

Figure 3.6: Inverse BRDF Model with Neural Network Ensemble

The proposed model has three internal mechanisms; first block for classifying the in-

put data on line in testing mode after applying masks for objects in the images. Sec-

ond one shows independent neural network models that take their inputs and produce

predicted surface normals with respect to the given set of pixels. Lastly estimated

surface normals obtained from each independent networks are combined together in

order to create single surface normal map of the object.
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First internal mechanism of compact structure arranges the input data into the groups

so that the each group matches with its dedicated network. In the test stage, eight

images of an object are fed into the first block as a matrix of intensity data. This

matrix has eight colons, each one is the successive intensity values of a surface unit.

As described before each feature comes from an image illuminated from specific

angle of light. Thus a row in this matrix carries the intensity information from eight

directions.

Firstly, data matrix is marked with a mask to extract the pixels that belong to the

image. Then, pixels of interest are fed into the input vector classifier. After the

classification every pixel in the object is assigned to its relevant network. Figure 3.7

shows the location of the pixels assigned to the networks.

Figure 3.7: Pixels of an object assigned to the networks.

Lastly, network outputs, estimated surface normals are combined in a single matrix

as an output of Inverse BRDF. The estimated surface normals from inverse BRDF are
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then compared with the original normal map to justify the proposed models perfor-

mance. In the next section, 3D reconstruction with the estimated surface normals will

be explained.

3.3 3D Reconstruction With Estimated Surface Normals

3D shape reconstruction can be defined as determining the depth or height informa-

tion from the gradient field of an object. Proposed photometric stereo model has two

internal steps. First step is estimating the surface normal at each surface units. Es-

timated surface normals are then used in 3D reconstruction phase in order to obtain

height information of the object. In this work, the method of convolution of gradient

field over the surface is used. Convolution is made in the frequency domain. In the

first step, gradient field of the object is calculated from surface normal components.

Then the Fourier transforms are obtained by using Fast Fourier Transform (FFT) al-

gorithm. After that, multiplication in Fourier domain is calculated, that is actually

yields the height information in Fourier domain. Also Lastly, inverse Fourier trans-

form over the image is applied. Resulting data is normalized and hence surface depth

(or height) construction is completed. The results are compared with the ground truth

height data and performance of the overall design is measured.

In the following chapter, experimental results with the synthetic images are given.
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CHAPTER 4

EXPERIMENTAL RESULTS

The proposed inverse BRDF models were tested by using synthetic images. A semi-

sphere, a sombrero and the Mozart’s face were used as shapes for synthetic images.

Multiple images rendered with eight different light conditions were given into the

inverse BRDF and their shape was reconstructed. In each steps outputs were com-

pared with ground truth and performance matrices were obtained. The performance

of inverse BRDF has been measured with the following criterions;

• Normal Error

• Intensity Error

• Height Error

Following sections defines these three criterions.

4.1 Normal Error

Normal error between the ground truth normal matrix and the estimated normal ma-

trix were calculated with dot product of two normal vector matrix;

En =< nestimated · ngroundtruth > (4.1)
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where nestimated is the estimated normal matrix, output of the model and ngroundtruth

is the matrix contains original surface normals.

This error function yields 1 for an entry if two of the normal vector are exactly same

and stands for zero error between two vectors. Similarly the output will be -1 if

two of the normal vectors are just opposite to each other that represents maximum

error. So the En between any two vector will be in the range of [−1, 1]. In order

to obtain an abstract result, 1 is substracted from the entries En which changes the

boundaries to [−2, 0] which−2 represents maximum error and 0 represents minimum

error. Additionally if absolute value of the error is taken, error boundaries will be

[0, 2] which will be more meaningful. Then, averaging the result over the number of

pixels was used as error metrics. Finally, percentage of the result was presented for

each result. The error was defined in equations as followings;

E(N) =
∑ |En − 1|

No.OfPixels
(4.2)

recalling En as

En =< nestimated · ngroundtruth > (4.3)

4.2 Intensity Error

Intensity error was calculated by the difference at the intensities between the ground

truth images and the rendered images with the estimated normals. The intensity error

metric was calculated with the following equation:

E(I) =
∑ |Ie − Ig|

No.OfPixels
(4.4)

where Ie is the estimated monochrome image and Ig is the ground truth image.

4.3 Height Error

Height error was calculated by the difference at the depth or height between the

ground truth surface and the reconstructed surface. The equation for the height er-

ror metric is the following:

E(H) =
∑ |He −Hg|
No.OfPixels

(4.5)
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where He is the estimated height data and Hg is the ground truth height data.

Experimental results are given in the next section with supported figures and images.

4.4 Performance Of Inverse BRDF

Inverse BRDF with Neural network ensemble provided very good results. Three

shapes with three different materials BRDF were used in synthetic image genera-

tion for testing the network. Surface normals of each surface were calculated from

ground truth height data. The synthetic images were rendered using the "sphere",

"sombrero" and "Mozart’s" face with using ground truth surface normals. In addi-

tion, at the rendering phase, three different materials BRDF data were used. First one

was called "Red Specular Plastic" which exhibited very specular property. Second

one was the "Black Soft Plastic" whose reflection property was in the middle of very

specular and very diffuse. Last material was the "Red Plastic" that was very diffuse

material in reflection.

The image sets rendered with given BRDFs were then fed into the inverse BRDF

with feed forward neural network and radial basis function network. At the first step,

their surface normals were estimated with inverse BRDFs. Estimated surface normals

were used in the normal error calculation. Then, images for each estimated surface

normals were rendered again and intensity difference between the ground truth and

the rendered images was calculated. After that, height information was obtained with

estimated surface normals by using the presented algorithm as 3D reconstruction. Fi-

nally, height error was calculated for each image set that represented different shapes

and materials.

4.4.1 Error Metrics for Inverse BRDF

Following tables show the numerical performance measurements for three material

types and for each network type.

Recalling from previous sections, there are three error measurements for specific out-

puts of the model. First one is normal error, E(N), defined as error between the ground
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truth surface normals and the estimated surface normals. Second one is average in-

tensity error, E(I), for reproduced images from normal angles and it is the difference

between those and original input images. Last one is height error, E(H) which is the

height difference between the original object and 3D recunstructed shape.

In this thesis three surface types, semi-sphere, sombrero and Mozart’s face were

worked. Two types of neural network structures were implemented and their per-

formance was measured. First one is feed forward neural networks, the second one is

neural networks with radial basis functions.

There are three tables given in this section, first table shows the results for the most

specular reflective material, Red Specular Plastic. The second table represents the

similar results for the moderate reflective material, Black Soft Plastic. At last, the

results were exhibited for very diffusive surface Red Plastic.

For all tables, first row indicates the material type. Second row stands for surface
types. At the third row, abbreviated network types are placed. FF is the feed forward
neural networks, RB stands for neural network with radial basis functions. At the left
colon error metrics are shown for every combination of surface types and network
types. Table 4.1 represents the results for the material red specular plastic, which
represents very specular property.

Table 4.1: Performance Of The Inverse BRDF for a specular material, Red Specular
Plastic

Error Metric Red Specular Plastic

Semi Sphere Sombrero Mozart’s Face

FF RB FF RB FF RB

E(N), % 2.59× 10−1 3.22× 10−1 4.81× 10−3 1.51× 10−3 1.58 1.58
E(I), % 2.53× 10−2 3.36× 10−2 1.02 0.99 0.014 0.147
E(H), % 4.73 4.93 1.46× 10−2 2.51× 10−1 5.79 5.78

Table 4.2 represents the results for the material black soft plastic, which represents

moderate specular property of reflection.
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Table 4.2: Performance Of The Inverse BRDF for, Black Soft Plastic

Error Metric Black Soft Plastic

Semi Sphere Sombrero Mozart’s Face

FF RB FF RB FF RB

E(N), % 0.27 0.33 6.12× 10−3 1.13× 10−2 1.58 1.58
E(I), % 0.22 0.31 0.17 0.29 0.66 0.70
E(H), % 3.2 3.56 1.34 2.61 5.79 5.76

Table 4.3 represents the results for the red plastic, which represents very diffuse prop-
erty of reflection.

Table 4.3: Performance Of The Inverse BRDF for a diffuse material, Red Plastic

Error Metric Red Plastic

Semi Sphere Sombrero Mozart’s Face

FF RB FF RB FF RB

E(N), % 0.26 0.32 0.44 1.19 1.7 1.86
E(I), % 2.53 3.11 4.49 7.72 3.84 4.98
E(H), % 4.55 5.22 2.98 3.84 5.92 6.12

4.4.2 Performance of Imputation Methods

Imputation methods worked in this thesis did not yield a good performance comparing
with the neural network ensemble method. Results were computed by similar metrics
with the previous sections. Semisphere with the green plastic material were worked
for mean and K-nn imputation methods. Table 4.4 represents the results for the sake
of completeness.
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Table 4.4: Performance of the Imputation Methods

Error Metric Mean Imputation K-nn Imputation

E(N), % 24,72 20,23

E(I), % 0.85 0.77

E(H), % 19.97 18.57

4.4.3 Graphical Performance and Visual Results for Inverse BRDF

Following figures shows the input images, output images from estimated surface nor-

mals and output of the 3D surface reconstruction phases.

(a) Semisphere input image (b) Output image obtained after 3D recon-

struction for semisphere

Figure 4.1: Semisphere shape, One of the input and output image
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(a) Semisphere Normal Error

(b) Reconstructed 3D shape for semisphere

Figure 4.2: Semisphere shape, Normal Error on the surface and 3D Reconstructed

Shape

Figure 4.3: Side by side view of Reconstructed 3D shape and Ground Truth
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(a) Sombrero input image (b) Output image obtained after 3D reconstruc-

tion for somberro

Figure 4.4: Sombrero shape, One of the input and output image
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(a) Sombrero Normal Error

(b) Reconstructed 3D shape for sombrero

Figure 4.5: Sombrero shape, Normal Error on the surface and 3D Reconstructed

Shape
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Figure 4.6: Side by side view of Reconstructed 3D shape and Ground Truth

(a) Mozart’s Face Input Image (b) Output image obtained after 3D reconstruc-

tion for Mozart’s face

Figure 4.7: Mozart’s Face shape, One of the input and output image
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(a) Mozart Normal Error

(b) Reconstructed 3D shape for Mozart’s Face

Figure 4.8: Mozart’s Face shape, Normal Error on the surface and 3D Reconstructed

Shape
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Figure 4.9: Side by side view of Reconstructed 3D shape and Ground Truth
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

Deductions made from available data for a system depend on the completeness and

quality of the data in the system. Thus, when the data is incomplete, some problems

may arise. Hence methods to deal with missing data have been a great interest for

research. The way used to deal with missing data is related to how data becomes

missing in the system. Thus, designing a photometric stereo model that handles the

incomplete data is very specific problem.

Photometric stereo is an algorithm which uses images taken in different light con-

ditions and BRDF information of material to construct the surface properties of an

object. In this work, inverse BRDFs are trained in order to obtain surface normal an-

gles and then surface normals are used to generate surface structure of object. Input

images contain specular and shadow regions which cause loss of information about

surface normals. Predicted surface normals with the effect of incomplete input data

may cause degradation on surface depth information.

In this thesis, inverse BRDF, a neural network based photometric stereo method with

the presence of incomplete data was proposed and implemented.

As described in early chapters, incomplete data in any prediction system can be han-

dled by several methods including imputation, deletion and some special machine

learning techniques. To eliminate the degrading effect of incomplete data due to

specular regions of the images, imputation and one of the machine learning methods,
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neural network ensembles techniques are applied to the problem.

Imputation is actually replacing the incomplete features from the vectors with new

values by using two techniques. One is the mean imputation and the second one

is imputation with K-nn technique. Both of the two methods actually increase the

general performance of the system a bit but not enough to get meaningful results. Im-

putation by K-nn performs better than naive mean imputation. They both presented

better results for the specular and shadow regions however, the results for these re-

gions decrease visual quality and did not preserve the continuity of the whole surface.

On the other hand, the most effective solution, neural network ensembles performed

better than imputation methods. Neural network ensemble model with inverse BRDFs

has been found a very robust and novel technique to recover the loss of information

in the input data. The inverse BRDF ensemble was found as a case specific well

combined method of deletion and neural network based solution.

A set of networks together were used in the model to eliminate the effect of incom-

plete input data. In the training phase, each network was trained with the whole

BRDF data with the selected features. In feature selection intensity values in the in-

put vectors were used as decision. Whenever a maximum in a vector was found, its

left and right neighbors were cropped and fed into network in the training. Specular

regions brought saturated intensity values to the data and shadowed regions made the

intensity levels very close to the zero in the input vectors. This selection removed

data coming from specular and shadow regions.

Feed forward neural networks and also radial basis functions were used for inverse

BRDFs in order to compare their performance.

Once they were trained, test data was assigned to their adequate network by consid-

ering the location of incomplete portions of data like in the training data assigning

phase. When an input data vector was assigned to its most suitable network, the irrel-

evant features of the input data were then deleted from vector. This deletion removed

the disturbing effect of highly saturated pixels and the black pixels due to shadow.

Then each network performed better and more robust because the values in the in-

put features were always in the range of training data. Also, this classify and delete
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technique assigned every single input data to a specific network without leaving out

any of them. Then, outputs of each networks were combined in a single matrix called

surface normal angles. Finally, these surface normal angles were used in surface

reconstruction phase in order to obtain a surface depth information.

The proposed inverse BRDF model for photometric stereo was tested with synthetic

images and the following results were reached:

• Specular reflectance in the input images decreased the performance of inverse

BRDF without considering incomplete data.

• Handling incomplete data with imputation methods led to better results.

• Implementation of neural network ensembles with inverse BRDFs provided

very good results.

At the end of this study, three major contributions were identified. Firstly, training

an inverse BRDF as a neural network can be used as a powerful photometric stereo

algorithm when combined with the surface gradient integration technique. However,

specular regions due to mirror reflection property of the material can decrease the

performance of inverse BRDFs. Secondly, the results demonstrated that ensembles of

inverse BRDFs can eliminate the effect of this specular regions significantly. Com-

bining the deletion method with neural network ensembles to treat the incomplete

data results in an increase at the performance of the photometric stereo. Lastly, en-

sembles of inverse BRDFs can perform even better in very specular materials. The

results given in the tables 4.1, 4.2 and 4.3 show that height error is smaller in the red

specular plastic which carries the most specular reflectance property.

Considering the network type of the inverse BRDF, results show that feed forward

neural networks and radial basis functions perform almost the same but feed forward

neural network is slightly better. This results recall the fact that feed forward neural

networks are more suitable to the generic regression problems like inverse BRDF.

On the other hand, two limitations of the study were found. First, although using

BRDF and neural network structure may solve the specularity problem, it cannot

present a solution to shadowing problem. The other limitation is that the general
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performance of the system is highly dependent on the performance of the neural net-

work which maps intensity to surface normal. If the performance of the classification

system itself is low, missing data handling methods are not usable.

5.2 Future Works

Lots of additional work can be introduced by using the inverse BRDF proposed in

this study and models similar to it. This can improve the efficiency of photometric

stereo more and expand this tool to another problem domains. The followinsg are the

list of possible works which might be started in the future:

• In this study, only grey level intensity images were worked. In the future, RGB

images may be used in photometric stereo

• The performance for the real objects may be worked if a calibrated imaging

setup build in order to take images.

• For this work, only one illumination combination was used, it might be possible

to use more than one light or environmental illumination models in the future.

• It is possible extend this model in order to generate a surface reconstruction of

multi texture objects.

These future works have a great potential on the improvement of proposed photomet-

ric stereo model.
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