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ABSTRACT

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF SWITCH FABRIC
SCHEDULERS WITH A NEW ACCURATE SIMULATOR SOFTWARE

ADA, Ahmet
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Schmidt

September 2014, 64 pages

The switches and routers in computer networks forward the incoming packets that
arrive at input ports to their output ports where the connections between input lines
and output lines are made by a switch fabric. If the fabric speed can match the ag-
gregate capacity of all input ports, the queuing of the packets is at the output ports.
Such output queued arrangements yield the best throughput and delay for the packets
together with different levels of Quality of Service Support (QoS) to different flows.
However, the speed limits for these fabrics result in queuing at the input ports in
practical switch/router implementations. Such devices require the scheduling of the
switch fabric which is the decision of the matched input output port pairs. To this end,
the design of these fabric schedulers for achieving high throughput, low delay as well
as QoS support is an important research problem. The first contribution of this the-
sis is a software simulator that is called SwitchSim that accurately simulates switch
fabric schedulers. The design of the simulator is modular with well defined interfaces
following an Object Oriented Approach to enable integrating different scheduler al-
gorithms and traffic generation patterns. It is important to note that SwitchSim is
verified by comparing its results to a hardware scheduler together with to the results
of the legacy ISLIP scheduler. The second contribution of the thesis is extending
ISLIP to support different priority flow to support QoS. Experiments are carried out
using SwitchSim to evaluate the proposed fabric schedulers with QoS support and
their results are presented with discussions. The results show that upto loads of 70%
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the proposed algorithms can provide less delay to the high priority flows without
starving the low priority flows.

Keywords: switch fabric schedulers, QoS support, flow prioritization, software simu-
lator
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ÖZ

ANAHTAR ÖRGÜSÜ ÇİZELGELEYİCİLERİNİN YENİ, DOĞRULANMIŞ BİR
BENZETİM YAZILIMI İLE GERÇEKLENMESİ VE BAŞARIM İNCELEMESİ

ADA, Ahmet
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Şenan Ece Schmidt

Eylül 2014 , 64 sayfa

Bilgisayar ağlarında anahtarlama cihazları ve yönlendiriciler, giriş kapılarından ge-
len paketleri çıkış kapılarına iletirler. Bu cihazlarda giriş ve çıkış kapıları arasındaki
bağlantı bir anahtarlama örgüsü tarafından sağlanır. Eğer anahtarlama örgüsü hızı bü-
tün giriş kapıların kapasitesinin toplamını eşleştirmeye yeterli ise, kuyruklama çıkış
kapılarında yapılır. Bunun gibi çıkışta kuyruklamalı yapılar, paketler için farklı akış-
lar için farklı seviyelerde hizmet kalitesi sağlamanın yanında en iyi çıkan iş oranı
ve gecikme değerlerini verir. Ama bu anahtarlama örgüleri için hız limitinin olması,
tatbiki yönlendiricilerde giriş kapısında kuyruklamalı yapının kullanılması ile sonuç-
lanmıştır. Bu cihazlarda giriş ve çıkış kapılarının eşleştirilmesini sağlamak amacıyla
anahtarlama örgülerinin çizelgeleyicilere ihtiyacı vardır. Bu bağlamda, bu anahtar-
lama örgüsü çizelgeleyecilerinin hizmet kalitesi desteğiyle birlikte yüksek çıkan iş
oranı ve düşük gecikme ile tasarlanaması önemli bir araştırma problemidir. Bu te-
zin ilk katkısı anahtarlama örgüsü çizelgeleleyicilerinin doğru bir şekilde benzetimini
yapan SwitchSim adındaki bir benzetim yazılımıdır. Benzetim yazılımı tasarımının
Nesne Tabanlı bir yaklaşımla iyi tanımlanmış arayüzleriyle birimsel olarak yapılması
farklı çizelgeleleyici algoritmalarının ve trafik desenlerinin entegre edilmesine olanak
tanır. SwitchSim yazılımının, donanınmsal bir çizelgeleleyici ile ISLIP çizelgeleleyi-
cisi algoritması sonuçlarıyla doğrulanmış olması önemli bir noktadır. Bu tezin ikinci
katkısı ise ISLIP algoritmasının farklı seviyelerde hizmet kalitesi sunacak şekilde ge-
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nişletilmesidir. Hizmet kalitesi desteği veren bu anahtarlama örgüsü çizelgeleleyici-
lerini değerlendirmek üzere deneyler yapılmış ve deneylerin sonuçları tartışmalarıyla
birlikte verilmiştir. Sonuçlar %70 yüküne kadar, önerilen algoritmaların düşük ön-
celikli akışlara servis açlığı çektirmeden yüksek öncelikli akışlara daha az gecikme
sağladığını göstermiştir.

Anahtar Kelimeler: Anahtarlama örgüsü çizelgeleyicileri, hizmet kalitesi desteği, akış
önceliklendirmesi,benzetim yazılımı
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CHAPTER 1

INTRODUCTION

With recent developments on the network infrastructure and the end devices ; IP traf-

fic in the world is increasing rapidly. Annual traffic in the world will exceed zettabyte

level by 2015. Furthermore, the fore cast is more than 70% of the IP traffic will be

video [1]. Delivery of video traffic requires end-to-end Quality of Service (QoS) sup-

port such as bounded delay and guaranteed bandwidth. While QoS facilities exist at

the end systems at transport and application layers, the effects of such solutions are di-

minished if they are not supported by the network layer. To this end, network switches

and routers implement flow-based queuing and the scheduling of these queues at their

output ports to provide differential service to flows.

It is important to note that, the switch fabric has to operate at the aggregate speed of

the input ports to get the full benefit from these output queue schedulers. However,

it is very expensive and often not possible to reach such fabric speeds at hundreds

of Gbps of line speeds at the network core. Hence, the switches and routers are

built with queues at the input ports. Such architectures are called Input Queued (IQ)

where the queues at the input are organized as Virtual Output Queues (VOQ) and

a fabric scheduler algorithm decides the matching of the inputs and outputs. The

previous work in the literature focuses on fabric scheduling algorithms that maximize

the throughput. To this end, a very prominent algorithm is ISLIP [13] which aims

to achieve a maximal matching of inputs and outputs by employing a request-grant-

accept arbitration between inputs and outputs with round robin prioritization of the

ports to avoid starvation.

The current IP traffic requirements and the line speeds motivate this thesis to inves-

1



tigate fabric schedulers and QoS support in fabric schedulers. To this end, the first

contribution of the thesis is a software simulator for fabric schedulers SwitchSim. The

well-known and widely used network simulators such as NS2 and OPNET do not pro-

vide detailed implementation and evaluation support of fabric schedulers. SwitchSim

is a modular cell-level simulator that implements the IQ switches in detail together

with traffic generator, fabric scheduler, packet to cell segmentation and reassembly

modules. It has well defined module interfaces enabling the integration of any fabric

scheduler algorithm. SwitchSim is verified by comparing its results with the results

of [13] together with to the results of a hardware fabric scheduler implementation.

The second contribution of the thesis is to propose two extensions to the ISLIP al-

gorithm which support per flow QoS support to prioritize traffic without starving the

lower priority flows. The thesis presents extensive simulation results and their discus-

sions to evaluate these algorithms under different traffic scenarios.

The rest of the thesis is outlined as follows.

In Chapter 2, overview of previous related works are given with their features and

drawbacks.

In Chapter 3, as background information, general concepts of IQ switching and ISLIP

algorithm basics are given. Operation cycle of ISLIP algorithm which consists of

request, grant and accept phases is explained. In ISLIP, fairness between input/output

ports are obtained by using pointers. Working principles of these grant and accept

pointers are investigated. Maximal matching which is used by ISLIP is explained.

In Chapter 4, features of the SwitchSim simulation tool which is developed in an

object oriented manner with C++ language, are listed. Assumptions made during

development are given. The main modules, the submodules and the interaction among

them are explained in detail.

In Chapter 5, two proposed extensions to the ISLIP algorithm are given and a new

VOQ structure with "Intelligent Multi-Class(IMC)" controller, is presented. Names of

the proposed algorithms are “Strictly Prioritized ISLIP” and “Limited Prioritized IS-

LIP”. Both of these algorithms deploy IMC Controller with new proposed Multi–Class

Virtual Output Queuing structure.

2



In Chapter 6, conducted experiments and results are given. Some of the experiments

in [13] are repeated and compared for the sake of the reliability of the simulation

tool.Moreover, performance analysis of the new proposed algorithms is made and

compared with conventional ISLIP and PIM algorithms. In conventional ISLIP, ef-

fects of the maximum iteration number and effects of the number of input/output

ports (switch size) on average cell delay performance are observed. An experiment

showing the behavior of standard ISLIP with bursty traffic is conducted and results

are given. PIM algorithm and ISLIP algorithm are compared in terms of average cell

delay performances.

In Chapter 7, the conclusion of the thesis work is presented with possible future work.
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CHAPTER 2

RELATED WORK

2.1 Switch Fabric Scheduler Simulators

The main contribution of this thesis work, is to develop a software simulator for

input queued switch fabric schedulers with its traffic generator, segmentation and

reassembly modules. To this end, in this section, we present an overview of the

existing network simulators.

NS-2[3] and OPNET[4] are well-known, widely used network simulation and mod-

eler tools. Hence, their correctness is verified by a very large number of studies that

use these tools with consistent results. Their capabilities are so rich that they support

simulation of almost all well-known protocols of all layers of the computer networks.

Moreover they allow users to make customizations of these protocols. However, their

features are very poor in switching technologies. Users have no chance to analyze

switch fabric structures and the scheduler performances related to them. Making

modification of the simulated switch/router models on switch fabric level is not pos-

sible.

In [17], a general purpose switch fabric scheduler and simulator called SPES is de-

veloped with support of variety of fabric architecture and fabric scheduler algorithm.

SPES supports Output Queued, Input Queued, Combined Input-Output Queued, MSM

Clos Network, CB Clos Network and Benes switch fabric architectures. It supports all

of the well-known switch fabric algorithms such as DRR, WRR, RRR, SFQ, WFQ,

WF 2Q, WF 2Q+, ISLIP, PIM, etc. Moreover SPES supports variety of traffic model

and it allows users to add new traffic models as well. SPES tool is developed in
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object-oriented manner with VC++. Despite these advertised features, the authors

do not provide a verification of the tool that gives confidence to the user about its

correctness. No citations are found to [17] in our literature survey.

In [5], a C++ based simulator developed in order to examine the Clos Network switch

fabrics. Clos Network is a multi-stage switching network that deploys multiple cross-

bar switches in parallel or pipelined. The authors verify their research on Clos Net-

work switches with the simulation tool developed during their work. However, the

authors do not provide a verification of the simulator that gives confidence about its

correctness.

2.2 Flow Prioritization and QoS Support on Different Layers

Another contribution of this thesis work is the prioritization of specific flows on

switch fabric level. As an example, multimedia packets which have more stringent

QoS metrics should be prioritized at first place.

Various studies have been done on transport, network and application layers for QoS

support. One approach is SCTP( Stream Control Transmission Protocol). In SCTP

datagram oriented feature of UDP and reliability and sequencing properties of TCP

are combined for QoS purposes [16]. Another transport layer protocol published

by IETF at 2006 is DCCP (Datagram Congestion Control Protocol)[10]. DCCP has

improved congestion control mechanism of TCP with using explicit congestion no-

tification. Moreover, at application layer great effort has been given to meet QoS

requirements of multimedia applications; data buffering at the clients is only one of

them.

In[14] VAIPA, a video aware Internet protocol architecture is proposed. VAIPA of-

fers better bandwidth utilization for multimedia traffic, by adding video aware intelli-

gence to label switching routers which are part of the service provider’s core network.

In[11], a fast rerouting for strategy for IPTV networks is proposed in order to elimi-

nate link failures on the network infrastructure.

For the current networks, quality of service requirements at network layer are satis-
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fied at the output by using Output-Queued (OQ) switches. OQ switches guarantee

100 % throughput; because in OQ switches, packets are directly put into queues at

the output according to their destination port. This creates an advantage of separat-

ing switching works and QoS works. A lot of efforts have been spent and various

algorithms have been developed in order to guarantee QoS requirements at output.

For example: Weighted Fair Queuing (WFQ) [9], Deficit Round Robin (DRR)[15],

Worst-Case Weighted fair Queuing (WF 2Q)[8]. The OQ switches, it is required that

the switch fabric is N (port number) times faster than line rate. That makes either

impossible or impractical to use OQ switching in core networks, while switches have

large number of ports operating at very high speed.
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CHAPTER 3

SWITCHING ALGORITHMS AND ISLIP

3.1 IP Routers/Switches and Their Functionality

Routers and switches are both computer networking devices. They both provide con-

nection between computers or between networks. Actually, switches operate at layer-

2 of the OSI model with using MAC-addresses. Routers operate at layer-3 of OSI

model with using IP addresses.

IP routers/switches’ functions can be considered in two categories: Data functions

and control plane functions. The control plane functions include system management

and drawing the network map by exchanging routing table information. Routers ex-

change their network topology information by some routing protocol such as: OSPF,

RIP, and BGP. By doing so, they have the ability to create forwarding tables. These

functions are carried on by control plane and give service to the data plane. Data

plane functions consist of switching IP packets from input port to the output ports.

By looking at the forwarding table and the destination address of the IP packets,

source/destination ports of the packet inside the router are decided. Here we need to

note that difference between switches and routers is at the control plane where their

data planes employ identical hardware designs. In terms of switching functionalities,a

switch and a router operate in same manner. Therefore "switch" and "router" terms

are used interchangeably in this thesis.

9



3.2 Definition of Basic Concepts

Output Contention:

For an N × N IP switch, there is always a possibility to have concurrent multiple

IP packets that are destined to the same output port. This situation is called output

contention, in other words, multiple input ports are contending for the same output

port at the same time.

Arbitration:

Deciding the winner(s) of the output contention is called arbitration. Arbitration has

critical importance in terms of fairness and complexity of a switching algorithm.

Head-of-Line (HOL) Blocking:

A FIFO IP packet buffer would contain packets that are destined to different output

ports. Since this buffer is FIFO, only the first packet can be served blocking the

other packets that can be possibly switched. This phenomenon is called Head-of-

Line blocking.

Virtual Output Queuing:

In order to eliminate HOL blocking problem, Virtual Output Queuing (VOQ) strategy

is used. If a switch uses VOQs, each input port has separate queues for each output

port. That also means that there are N ×N queues at the switch inputs.

Speed-Up:

Speed-Up (S) is defined as the ratio between line rate and the switching rate of a

switch. In other words, switching capability (as number of packets) of a switch during

a packet time is defined as Speed-Up.

Cell:

In the past years, a lot of academic research has been done in order to develop efficient

ATM switches[7]. These research efforts lead switching technology to use ATM-like

cells. Consequently, many commercial Internet routers/switches segment IP packets
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into ATM-like cells at the input interfaces and transfer them to the output interfaces

to be reassembled. For example,Cisco Inc, whose market share is over 60 % [2] , uses

ATM-like cells for their commercial switches as well.

Packet/Cell-Time:

Time required in order to switch one fixed size packet/cell from an input port to an

output port.

3.3 Switches by Their Queuing Types/Strategies

For a switch that have N input ports, there is always output contention. Therefore,

packets that lose contention must be buffered. Switch/Router architectures can be

categorized by their buffering strategies. Each one has their own advantages and

disadvantages.

3.3.1 Output-Queued Switches

In this kind of switches, all packets that are present at the time must be switched

before a new packet arrives; regardless of how many packets are destined to the same

output port. Since switching rate is much faster than line rate, buffering at the output

port is a must. Queuing at the output port causes limitation of the switch size. In an IP

switch there is always a chance that all input ports have packets destined to the same

output. Since there are N input ports, N concurrent packets that are all destined to the

same output port might be present in a packet time. Therefore switching capability

of the switch must be at least N times faster than the line rate. Especially at core

networks which operate at very high speeds, this limitation makes it either impractical

or very costly to implement this kind of switches. Queuing at the output ports brings

the advantage of ordering of IP packets before they are sent to the lines. Therefore

QoS requirements are easy to meet when Output-Queued(OQ) switches are used.
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3.3.2 Input-Queued Switches

For the Input-Queued (IQ) switches, the output port contention at the input ports of

the switch is very critical. Because unlike OQ switches, at the IQ switches packets

that lose contention must be buffered at the input ports. According to the ratio be-

tween line rate and switching rate (Speed-Up), multiple packets might be switched

at a packet time. This kind of switches are designed in order to prevent size limi-

tation problem of the OQ switches. Therefore their Speed-Up(S) never reaches to

N (input port number). Since N>S and there is always a chance that all input ports

have packets destined for the same output port; (N - S ) packets lose contention at

maximum. These packets are queued at the input ports. IQ switches might have

FIFO queues for each input port or they might have VOQ for each input port. Mostly

VOQs are used for commercial IQ switches. Because FIFO queues suffers from HOL

Blocking problem. Since output port contention is very critical at IQ switches, fab-

ric scheduling algorithms that manage this contention have gained great importance

and have become a hot research topic. According to the design requirements these

algorithms might get extremely complex. For commercial uses, the switch vendors

generally choose simple and fair algorithms like ISLIP (Iterative round-robin match-

ing with SLIP.)[13] The interest areas of this thesis are includes IQ switches and IQ

switch fabric scheduler algorithms, especially ISLIP, therefore ISLIP algorithm will

be explained in details.

3.4 Fabric Scheduling Switching Algorithms

At core networks, switches/routers operate at “very high speed”.However the percep-

tion of fastness, is highly related to the current technology of the time. In other words;

1 Gbit/s was very high speed fifteen years ago, considering the technology available

at those years. For example, high speed switches were first designed to operate at

couple of hundreds of Mbit/s. Since the network data speed was at that level, the OQ

switches were able to handle that amount of data. Because of their throughput and

delay performance; the OQ switches were the focus at that time. Most of the commer-

cial switches are designed as OQ switch by vendors. However as the data rates are
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getting higher and higher with the evolving technology and widening networks, the

OQ switches have become impractical or very costly to implement. The IQ switches

have become alternative to the OQ switches, because IQ switches don’t suffer size

limitation. However there were two major issues with the IQ switches as well. The

first one was HOL Blocking problem. This problem was limiting the throughput to

%58.6 and is prevented by using VOQ at the input ports. The second problem is the

output port contention and this problem brings the necessity to use complex scheduler

algorithms for arbitration. Following metrics have great importance when choosing

or designing a fabric scheduler algorithm for an IQ switch.

•Efficiency: A fabric scheduler algorithm should provide high throughput and low

delay.

•Fairness: VOQs at each input should not starve. Every input port should get as fair

as possible service.

•Stability: Queues at each input port should not grow without bound under any traffic

pattern.

•Complexity of Hardware Implementation: Algorithm should not be too com-

plex to implement on the hardware. Complex hardware implementation brings high

scheduling times which means limitation of the switch line speeds.

As the above metrics are being considered, the ISLIP algorithm which is proposed by

Nick McKeown[13] is the most preferred algorithm in today’s switches. Many lead-

ing vendors deploy ISLIP or ISLIP based scheduler algorithms for their commercial

switches. The developed simulation software supports algorithms based on ISLIP al-

gorithm. ISLIP algorithm is a fabric scheduler algorithm making matching between

input ports and output ports. ISLIP is developed for IQ switches which uses fixed-size

packets (cells) as switching unit. This algorithm configures the crossbar switch, by

determining the serving order of the arriving packets.[13]
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3.5 ISLIP Algorithm

ISLIP uses maximal matching. Maximal matching is a type of matching which in-

crementally adds connections without breaking the previous connections. Maximal

matching actually makes less or equivalent connections than the maximum matching

(maximum number of connections among all possible connection sets) and tries to

converge to it. However it is very simple to implement and to compare to the maxi-

mum match. ISLIP reaches maximal matching iteratively. In each iteration new con-

nections can be made. These iterations are composed of three main phases. Phases of

iterations:

1. Request: In this phase, all of the input ports send request to the output ports for

those they have at least one cell.

2. Grant: In this phase, each output port chooses an input port among the ones that

made request for itself at the first phase of the iteration. There might be no request

for an output port; in that case no grants will be made.

3. Accept: In this phase, each input port chooses an output port among the ones that

made grant for itself at the second phase of the iteration. There might be no grant for

an input port; in that case no accepts will be made.

In phase two and phase three there must be a selection algorithm for choosing among

multiple request/grants. ISLIP deploys round-robin scheme to schedule input and

output ports in turn. The actual switching of the cells take place after the iterations

are completed.

Round-Robin Scheme:

Round Robin scheduling scheme is a circular order scheme and provides equal share

scheduling. The fairness or starvation-free properties of ISLIP comes from Round-

Robin scheduling scheme.

In order to apply round-robin scheme; there are grant pointers for each output port

and accept pointers for each input port. Grant and accept pointers are updated only

if accept phase is completed successfully in the first iteration. In the subsequent
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iterations pointers are not updated.

Operation cycle:

One operation cycle should contain matching(s) and switching(s). Operation cycle is

the time that elapsed during a fixed sized cell is switched if the speed up of the switch

is one. If the speed-up(S) of the switch is more than one; in one operation cycle S

times matching and S times switching are made. In one matching process, at least one

iteration occurs; if the maximal matching has not been reached extra iterations might

be tried. This is a parametric variable, according to the switch’s traffic conditions and

size, maximum iteration number can be optimized.
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CHAPTER 4

DEVOLOPED SOFTWARE SIMULATION TOOL:

SWITCHSIM

SwitchSim is the simulation tool that is developed within the framework of this the-

sis. The purpose of SwitchSim is to analyze the performance of commercial switch

fabric algorithms and new proposed algorithms. In this chapter; firstly, features of

SwitchSim and assumptions made during development will be listed. Then function-

ality and working principles of the simulation will be explained module by module.

Finally, software development details will be given.

Features of SwitchSim:

•Written in C++ language in object-oriented manner.

• Simulates real behavior of a switch fabric of CICQ and IQ switches.

• Purpose is to measure switch fabric algorithms’ performance.

• Supports different number of input or output port numbers and port numbers are

adjustable.

• Supports variable size packets: Packet sizes are measured in multiple of a size-unit:

namely cell.

• Packets are segmented into cells at inputs and reassembled at outputs.

• Time is not real: a time unit is defined as cycle. Cycle is defined as time elapsed

during a single size-unit (one cell) packet is switched from input port to output.
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•Multiple speed-up is supported and is adjustable.

•Multiple iterations are supported and the number of iterations is configurable.

• Different fabric scheduling algorithms can be adapted to the software.

Assumptions:

• Line rate of the input and output are normalized to 1 cell/cycle.

• The processing time required to match input ports and output ports, is ignored.

• Time required to segment packets to cells, is ignored.

• Time required to reassemble cell into packets, is ignored.

Modules of the Software

SwitchSim consists of different software modules and these modules consist of their

submodules. These submodules and modules interact and exchange information with

each other. In this Section functionality of these modules and the interaction between

them will be explained. The list of software modules is given below.

• Builder Module

• Traffic Generator Module

• Packet Segmentation Module

• Input Port Module

• Switch Fabric Module

• Output Port Module

• Packet Reassembly Module

• Statistics Module
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4.1 Traffic Generator Module

The properties of the traffic generator module are listed as follows:

• Generates traffic in order to assist switch fabric simulation.

• Packets are not real IP packets, just objects of packet class defined in the software.

• Packets contain input and output port number, birth time and size

• Supports variable size packet generation.

• Each input port is treated equally, input port number can be configured.

• Supports different types of traffic shapes: Poisson traffic, bursty traffic.

• Packets can be labeled with different flow numbers.

• Traffic load can be adjusted between 0 and 1.

Submodules of the traffic generator module and the interaction between them are

given in Figure 4.1.

USER 
INTERFACE

Instance Creator

Parameter Decider

Traffic Generator For Input Port-1

Traffic Generator For Input Port-2

Traffic Generator For Input Port-N

Time Stamper

Traffic Generator Instances Per Input Port

clock

İnput 
Port Number

Flow ,Size, Output port 
parameters

Load, Traffic Type

TRAFFIC GENERATOR
MODULE

Packet Packet Packet Packet

Figure 4.1: Traffic Generator Submodules

Configurable parameters like input port number of the switch, traffic type, load, out-

put port distribution, flow number and flow distribution are gathered by user choice.
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According to this information:

A submodule of traffic generator instance creator creates traffic generator instances

for each input port. These traffic generator instances are considered to work indepen-

dently.

Traffic generator instances create packets according to two parameters; namely, traffic

load and traffic type. Traffic load is a value between 0 and 1 and the offered traffic load

for the simulation is determined by looking at this parameter.traffic type determines

the shape of the traffic. The developed SwitchSim supports Poisson and bursty traffic

models. New traffic models can be added to the simulator easily.

After packets are created by traffic generator instances; parameter decision submod-

ule decides what the destination output port of the packet is, what size the packet

is, which flow the packet belongs to. Moreover this submodules give every packet

a unique packet number. Destination ports of the packets are determined randomly

and uniformly. Sizes of the packets are determined by an average value chosen by

the user. Flow number is an extra label that is required for testing prioritization of

flows. The number of flows and ratios to the total offered load are determined by user

choice.

After parameters are set to packets, the time stamper submodule stamps every packet

at the birth. This time stamp is called birth time and used for calculating queuing

delays and end-to-end delays.

4.2 Packet Segmentation Module

The properties of the packet segmentation module are listed as follows:

• Variable-sized packets are segmented to cells.

• Information in the packets transferred to each cell.

• Assumption: packets are exact multiples of a cell-size.

The submodules of the packet segmentation module and the interaction between them
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are given in Figure 4.2.

Traffic Generator

Packet Assesment Packet Destroyer

Time Stamper

Cell Creator

PACKET SEGMENTATION MODULE

Packet

Paramater of the 
Packet

Packet

Cells

Clock

Cells

Figure 4.2: Packet Segmentation Submodules

Generated packets arrive directly to the packet segmentation module after the traffic

generator is done with them.

Firstly, packet assessment submodule reads the information in the packet such as:

source port no, destination port no, packet no, flow no, birth time.

The above parameters read by packet assessment submodule, are forwarded to the cell

creator module. In the meantime; the original packet is destroyed by packet destroyer

submodule.

Cell creator submodule creates cells according to the size of the packet. If a packet

with size “n cells” is being processed; cell creator, creates n cells with same param-

eters (source port no, destination port no, packet no, flow no, birth time).The only

difference of those n cells is the cell no which is given by cell creator module it-

self.cell no is given starting from 0 and incremented for each different cell. This
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parameter is packet based. In other words different cell may have the same cell no if

they are cells of distinct packets.

After the cells are created, the time stamper submodule stamps each cell with the cur-

rent time and these time stamps are kept in the cells as a parameter, namely:segmentation

time.

4.3 Input Ports Module

The properties of the input ports module are listed as follows:

• Variable port number is supported.

• Cells are queued in the input ports.

• VOQs are used in order to discard HOL-Blocking problem.

• Each input port has its own VOQ for cells.

• VOQs are modified in order to give priority to specific flows.

Submodules of the input ports module and the interaction between them are given in

Figure 4.3.

According to the input port number of the router which is set by user; builder module

of software builds input ports with their Virtual Output Queues (VOQ) at the begin-

ning of the simulation. VOQ structure also depends on the algorithm type. The differ-

entiation of the VOQ structure for supporting flow prioritization is given at Chapter

5.

After segmentation, cells arrive to input ports. When a cell comes to an input port,

it should be classified. This is necessary in order to place the cell in the right queue.

Each input port has its own VOQ. In conventional usage of these queues, cells are

queued, according to their destination ports only. A cell with input port i (0 < i ≤ N)

and output port j (0 < j ≤ N) is placed in the queue Q(i,j). Each queue is a FIFO

queue. In addition to that conventional usage, our design classifies the cells according

to their flows too. A cell with input port i (0 < i ≤ N) and output port j (0 < j ≤ N)
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Builder Module

Cells From Packet 
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Input Port-1

Input Port-2
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VOQ-1

INPUT PORTS

Cell 
Classifier

Cell 
Classifier

Cell 
Classifier

VOQ-2

VOQ-N

USER INTERFACE

Input Port Number

Cell

Figure 4.3: Input Ports Submodules

and flow number f (0 < f ≤ F ) is placed in the queue Q(i,j,f). Each Q(i,j,f)is a FIFO

queue. Cell classifier submodule reads the required parameters and puts the incoming

cell to the appropriate queue.F is the maximum flow number and N is the input/output

port number.

After classification cells are ready to be switched and waiting their turn.

4.4 Switch Fabric Module

The properties of the switch fabric module are listed as follows:

• Simulates NxM switch fabric scheduler. Input/output port numbers are variable

• Not a specific algorithm. Adaptive to new algorithms. Supports PIM,ISLIP, SP-

ISLIP, LP-ISLIP.

•Multiple speed-up is possible

Submodules of the switch fabric module and the interaction between them are given
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in Figure 4.4.
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Algorithm Type, Speed -up, 
Iteration Number, Algorithm 
Specific Parameters (if any)

Command: Do Matching
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Matchings

Access to  İnput
 and Output Ports

Figure 4.4: Switch Fabric Submodules

Switch fabric module supports variable input/output port numbers. After user choice

of input/output ports number, NXM type crossbar is built by builder module.

This module is written highly modular in order to adapt new algorithms. Algorithm

and decision sub-block can be easily replaced with a new one.

Algorithm and decision block decides the matchings between input and output ports.

Then it gives these matchings to the crossbar submodule.

Crossbar submodule does the switching process according to the information coming

from algorithm and decision submodule. Crossbar submodule has right to access to

input ports and output ports.

The switching process can be done multiple times during one cycle. This is called

speed-up. The speed-up number is controlled by the controller submodule. And the

number of the speed-ups are determined by the user choice.

The last step of the switching process is time stamping. The switching time of each

cell is stamped as switching time to the cells. This is necessary in order to the statis-

tics.
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4.5 Algorithm Module

This module is a submodule of the switch fabric module. It is the heart of SwitchSim

and has its own submodules. According to the user choice the structure of algorithm

module can be different. Therefore all of the supported algorithms will be explained

separately.

4.5.1 ISLIP

Request 
Collector

Iteration Controller

ISLIP ALGORTIHM

Maximum Iteration 
Number

Accept 
Decision

Accept 
Pointers

Accept Arbiter

Grant 
Decision

Grant 
Pointers

Grant Arbiter

Check Input Queues

Requests

Pointer 
Positions

Pointer 
Positions

Grants

Accepts Command:Continue/
Stop Iterations

UpdatePointer 
Positions

UpdatePointer 
Positions

Figure 4.5: ISLIP Submodules

SwitchSim supports well known algorithm ISLIP (Iterative Round-Robin with SLIP).

Submodules of the ISLIP module and the interaction between them are given in Fig-

ure 4.5.The details of the ISLIP algorithm can be found at Section 3.5.

4.5.2 SP-ISLIP: Strictly Prioritized ISLIP

As it can be seen from figures 4.5 and 4.6 Strictly Prioritized ISLIP algorithm is an

extension of ISLIP algorithm. Actually Strictly Prioritized ISLIP carries all the fea-

tures of the ISLIP algorithm. In addition to that, it has flow check submodule. This

module is used in order to give priority to the specific flows. For example video
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Figure 4.6: SP-ISLIP Submodules

packets can be considered as high priority flows. Flow check submodule and conven-

tional request collector submodule comprise the Intelligent Multi-Class (IMC) VOQ

Controller block which are explained at Chapter 5 in details.

Flow checking mechanism works with request collector submodule. Before requests

are collected, the flow check submodule checks every input port in order to decide

which priority level joins to the contention. According to the existence of a highest-

priority-level-flow cell, flow check notifies the request collector submodule.

Request collector submodule collects requests from input ports that only have the

highest priority cell at that time. Rest of the process is same as classical ISLIP. Details

of this algorithm are presented in Chapter 5.

4.5.3 LP-ISLIP: Limited Prioritized ISLIP

Submodules of the LP-ISLIP and the interaction between them are given in Figure

4.7.

In addition to the Strictly Prioritized ISLIP (SP-ISLIP); Limited Prioritized ISLIP(LP-

ISLIP) has window check submodule. This algorithm is implemented in order to avoid

starvation of the low-priority flows. At SP-ISLIP, if high priority flows have busy
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Figure 4.7: LP-ISLIP Submodules

traffic the low priority flows have no chance to be switched. That causes the overall

delay performance to get worse as load is increasing.

Window check mechanism has a window size and a counter.Window size is variable

and is set at the beginning of the simulation. This window size parameter is actually

determines the level of limitation to the prioritization.

IMC VOQ block is also used in this algorithm. Different than the SP-ISLIP algorithm,

this block includes window check submodule for LP-ISLIP. Details of this algorithm

is given at Chapter 5.

4.6 Output Port Module

• Variable port number is supported.

• Switched cells queued in Output Ports.

• At the output port queues, cells classified according to their source port number.
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Submodules of the output port module and the interaction between them are given in

Figure 4.8.

Builder Module

Cells From 
Switch Fabric

Output Port-1

Output Port-2

Output Port-N

VIQ-1

INPUT PORTS

Cell 
Classifier

Cell 
Classifier

Cell 
Classifier

VIQ-2

VIQ-N

USER INTERFACE

Output Port Number

Cell
Cell

Cells to 
Packet 

Reassembly 
Module

Figure 4.8: Output Ports Submodules

Output ports are very similar to the input ports. According to the output port number

of the router which is set by user; builder module of the software builds output ports

with their 2 tuple queues at the beginning of the simulation. A cell with source port

i (0 < i ≤ N) and output port j (0 < j ≤ N) is placed to the queue OQ(i,j). The

placement is done by cell classifier submodules.

After classification, cells are ready to be switched, reassembled by packet reassembly

module waiting for all cells of a packet accumulates at the output queue.

4.7 Packet Reassembly Module

• Cells are needed to be reassembled to retrieve the original packet.

• Already classified cells are reassembled by reassembler block.
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• A packet is ready to leave the switch after it is reassembled by its cells.

Submodules of the packet reassembly module and the interaction between them are

given in Figure 4.9.
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Last cell of 
packet n

Packet

Figure 4.9: Packet Reassembly Submodules

At every cycle;packet reassembly module checks the output ports’ queues if there

are any cells ready to reassemble. Cells are ready to be reassembled if all the cells

belonging to the same packet are already switched.

Last cell checker checks all the cells that are already in the output ports’ queues. If

it notices a cell that is last cell of a packet. It notifies the cell destroyer and packet

creator submodules.

Cell destroyer submodule destroys all cells belonging to a packet whose all cells are

switched.

Packet creator module recreates the packet according to the information gathered

from the last cell. Since all the cells contain all properties of a packet, packet can be

retrieved without losing any information.
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4.8 Statistics Module
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Figure 4.10: Statistics Submodules

User may not want to collect statistics at all time. For example, at the beginning

of the simulation, collecting delay statistic is not a good decision, because average

delay values need to be saturated after beginning. Controller submodule manages the

start/end time of the collecting statistics according to user choice.

Statistic collector submodule collects the desired statistics and calculates the average

of them. At every cycle, it checks the output queues in order to collect queuing

delay (fabric delay), and read all switched cells’ information (birth time, switching

time).Moreover, in order to collect end-to-end delays statistic collector submodule

reads the reassembled packets.

Since statistics are given in average values, the confidence interval of these averages

should be calculated at the end of the simulation. After the simulation ends, confi-

dence interval calculator submodule calculates the confidence interval of the average

values with confidence level of 95% or 99%.
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Submodules of the statistics module and the interaction between them are given in

Figure 4.10.
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CHAPTER 5

FLOW PRIORITIZATION AND PROPOSED ALGORITHMS

In Chapter 3, the most widely used scheduler algorithm for IQ switches, ISLIP, is

summarized. It has been emphasized that at very high speeds (especially at core net-

works), using IQ switches have several advantages including switch size. Implemen-

tation complexity of an IQ switch fabric scheduler algorithm has vital importance.

That is why; the ISLIP is one of the widely used algorithm for commercial purposes.

However, using an IQ switch instead of an OQ switch causes losing the QoS ability

of the switch. Since ISLIP is an IQ switch scheduler algorithm, this problem is also

valid for ISLIP as well.

In this thesis, an extension is made to the ISLIP algorithm and two different algo-

rithms are proposed. With these algorithms, giving QoS capability to the ISLIP

algorithm to differentiate among different traffic classes with different priorities, is

suggested. While doing this, the complexity of the algorithm at the hardware is also

considered[12]. ISLIP is used as base IQ switch fabric algorithm for extension, be-

cause it is the most preferred and widely used algorithm due to its efficiency, fairness,

stability and complexity features.

As it is explained in Chapter 3, OQ switches are not suitable at very high speeds and

large port numbers. When IQ switches are used, packets of a lost-intolerant traffic

flow might be dropped due to buffer size limitation and temporary bursty traffic load.

A cell of a packet of a delay intolerant flow might lose contention at the arbitration

phase of the scheduling at the input ports.

Giving priority to some flows over the other ones at the arbitration phase might give
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useful results for the problem that’s defined above. Giving priority to some specific

flows should not starve other flows that have lenient QoS requirements.

5.1 Proposed Algorithms

In this Section, two different algorithms that are implemented on SwitchSim and the

results are compared. First algorithm simply gives the priority for the specific flows.

Second algorithm limits this prioritization by keeping a predefined window size. Ex-

cept giving priority to the some specific flows both of these switch fabric algorithms

work like ISLIP. Another important feature of proposed new/extended switch fabric

algorithms, is to keep the implementation complexity on the hardware as easy as pos-

sible. These algorithms are implemented on the FPGA and results are cross-checked

with simulation results for some cases.[12]

5.1.1 SP-ISLIP: Strictly Prioritized ISLIP

Strictly Prioritized ISLIP is implemented for just seeing the step that giving blindly

priority to some specific flows makes the other flows to starve. This starvation not

only causes the loss of the packets of the less important flows’ but also affects the

overall delay/ throughput performance of the switch fabric.

Experiments are conducted to compare algorithms. The results of the delay perfor-

mance of the switch for different priority levels will be shown under different traffic

conditions at Chapter 6.

In order to implement this algorithm; a new VOQ structure, for input ports, is pro-

posed. ISLIP algorithm uses virtual output queuing which keeps different FIFO

queues for different input-output pairs. In other words, for virtual output queuing

there should be N2 FIFO queue available. Giving special priority to specific traffic

flows requires more differentiated queues. There should be a distinct FIFO queue for

any input-output-flow triplet. This is a must to avoid HOL blocking.As a result; for a

switch with size N and P different priority level(can be considered as different flows)

there will be N2 × P distinct FIFO queue. In addition to that a new algorithm block

34



is added to the system to manage the requests. This block is called “Intelligent Multi-

Class VOQ Controller. Figure 5.1 shows an example of this structure with switch size

N for two different flows(priority levels).

IMC block manages the requests of the input ports. Due to the nature of the IQ

switches, an input port i cannot request more than one times for any specific output

j during one cycle of the operation. However since there are P flows, there may

be P requests from input port i to output port j at maximum. IMC manages these

requests and decide which request will be sent from input port i and output port j.

IMC basically determines the valid request according to the cells’ flow priority. For

one input port only one priority level request can be sent. This means that a cell

priority p can send request only if there is no request with higher priority level from

that input port to any output port. In other words, if a single request from input port i

with priority level p is made, other request from i with priority level lower than p are

discarded by IMC.

The IMC block is independent of the rest of the ISLIP algorithm. Therefore this VOQ

structure with IMC can be used any other IQ switch fabric algorithms.

5.1.2 LP ISLIP:Limited Prioritized ISLIP

After implementing the first algorithm and observing the results of giving blind pri-

ority to some specific flows; the second step is limiting the level of the priority. As it

can be seen from the experiment results discussed at Chapter 6; giving full priority to

some specific flow(s) causes the lower priority flow to starve. Although some flows

are less delay tolerant, packet loss of these flows,of course, is undesirable. Moreover

giving this much priority to some specific flows causes overall delay and throughput

performances of the switch decrease.

Therefore at LP-ISLIP algorithm, which is again based on well-known ISLIP algo-

rithm, the priority level of high importance packets is limited by a number called win-

dow limit. VOQ structure of the input ports are the same as the “Strictly Prioritized

ISLIP”.For switch size N and maximum level of priority P. There are N × P distinct

VOQs at this algorithm too.However, in this algorithm, the IMC block is used in order
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Figure 5.1: New Multi-Class VOQ structure with IMC

to limit successive requests of the high priority flows for each input separately.

Delay performance comparisons are made with basic ISLIP and with SP-ISLIP al-

gorithm under different conditions. Results of these comparisons are discussed at

Chapter 6.

Algorithm works as described below for two level priority levels. These priority levels

are named as low priority and high priority. A new counter is defined to count given

in-a-row priorities to the high priority level packets over low priority packets.

• Request from input ports are checked to determine the maximum priority level.

• If there is any high priority packet, only the high priority level packets have right to

join the contention unless the window counter of the high priority level is at window

limit. Window counter is incremented by one at the end of the process.(If there is no

low priority request at the time, window counter is not incremented.)
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• If the window counter is at limit, only low priority level packets joins the contention

and window counter is set to zero.

• If only high priority level packets are present at the input ports queues, the window

counter is not incremented.

Note that, this algorithm is applied to all input ports separately.
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CHAPTER 6

SIMULATION RESULTS AND PERFORMANCE ANALYSIS

In this Chapter, a number of various experiments are conducted to compare different

algorithms, namely, ISLIP, PIM, SP-ISLIP and LP-ISLIP . Since this thesis work is

mainly based on ISLIP algorithm, some of the experiments which are conducted by

the author of [13] are repeated and same results are gathered. In addition to those

experiments the algorithm comparisons for delay performance are made for the new

proposed algorithms.

Simulation durations of all experiments are 100000 cycles. 100000-cycles duration is

enough for each calculated average to remain within± 5% interval with a confidence

level of 95% except for the cases in which corresponding algorithm is not stable under

load values that are very high. These situations are remarked within the comments

of the related experiment. Since the average values do not saturate, calculating confi-

dence interval or even averages is not meaningful. However, for the sake of drawing

the graphs which gives insight for commenting the experiments; unsaturated averages

are given for those cases.

Before giving the results of the experiment, it should be noted that the repeated ex-

periments from [13] is a strong proof the reliability of SwitchSim. Moreover, the

functionality of the ISLIP, SP-ISLIP and LP-ISLIP algorithms; are cross checked

with hardware implementation of these algorithms in[12]. Tests are made with 4× 4

ISLIP, 4× 4 2-Level SP-ISLIP and 4× 4 2-Level LP-ISLIP. In these tests, all the cre-

ated packets for both software and hardware are the same and the switched packets

are compared one by one using MATLAB.
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6.1 Experiment 1: ISLIP Algorithm – Effect of Maximum Iteration Number

on Delay Performance

In this experiment, standard ISLIP algorithm’s delay performance is analyzed under

different traffic loads. Results are given in Figure 6.1. Horizontal axis of the Figure

6.1 is offered load. Vertical axis of the Figure 6.1 is average cell delay. Switch size is

16x16. Statistics are gathered with a new accurate SwitchSim which is explained in

details at Chapter 4.

The variable parameter other than the offered load is the maximum iteration number.

As it is explained at Chapter 3, iteration is a compilation of request, grant, and ac-

cept phases. Due to output contention maximal match may not be reached in single

iteration. In ISLIP algorithm, multiple iterations may be conducted in order to reach

maximal match. However continuously doing iterations, until the maximal match is

reached, may not be a wise decision. Although SwitchSim ignores the time elapsed

during iterations (matching time); in hardware, running matching algorithm many

times, can cause delays that can be comparable to the fabric delay. Therefore in the

algorithm, maximum iteration number must be limited. Maximum iteration number

does not imply the exact iteration numbers that occurs in every cycle. It is just a lim-

itation. For example; algorithm can reach maximal match with single iteration while

maximum iteration number is 4.

In this experiment; three different cases are examined. Three different lines in Figure

6.1 represent the ISLIP algorithm with maximum iteration number 1, 2, and 4. This

experiment is also conducted by Nick McKeown in [13]. Corresponding experiment

results from [13] is also represented with dashed, black lines in Figure 6.1. Com-

paring those results with the experiment conducted within this thesis work shows the

reliability of SwitchSim that is developed in the scope of this thesis work.

As it is clear from Figure 6.1 that under the light traffic (0 - 0,2): all three lines follow

the same path. This is because under the light traffic; mostly one single iteration is

enough to reach maximal match. In order to justify this assumption an extra statis-

tic is collected called average iteration per cycle. In Table 6.1, results confirm the

assumption that even if the maximum iteration number more than one; the required
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average iteration to reach maximal match is very close to 1.

Table 6.1: Average Realized Iteration Numbers under Light Load

Load 0,1 Load 0,2
Maximum Iteration

Number
Average Realized
Iteration Number

Maximum Iteration
Number

Average Realized
Iteration Number

1 1.0000 1 1.0000
2 1.0005 2 1.0070
4 1.0005 4 1.0077

As it can be seen from Figure 6.1 that under medium traffic load (0.3 -0.7);two lines

for iteration number 2 and 4 follow the same path but the line for iteration number

1 follows different path. This is because under medium traffic, the average required

iteration to reach maximal match is more than 1 and is less or very close to 2. To

verify this comment, the average iteration numbers for the medium load are given at

Table 6.2.

Table 6.2: Average Realized Iteration Numbers under Medium Load

Load 0,3 Load 0,5
Maximum Iteration

Number
Average Realized
Iteration Number

Maximum Iteration
Number

Average Realized
Iteration Number

1 1.0000 1 1.0000
2 1.044 2 1.3266
4 1.045 4 1.3251

Under heavy traffic, average required iteration number increases. Because the higher

offered load means more ports are joining the output contention. As the number of

ports that joins contention increases, finding matches becomes harder. At Figure 6.1,

it can be clearly seen that three different lines follow three different paths. Because of

the limitation of the iteration is lower than required iteration, at first two cases (when

iteration number 1 and 2) more average cell delay occurs when compared to the third

one. In order to verify this comment the average iteration numbers for each case

under heavy traffic is given at Table 6.3. At first two cases (when iteration number

1 and 2), realized iteration numbers are at the limit. This means that the limitation

of the iterations causes extra delay when compared to the third case(when iteration

number is 4).
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Table 6.3: Average Realized Iteration Numbers under Heavy Load

Load 0,8 Load 0,9
Maximum Iteration

Number
Average Realized
Iteration Number

Maximum Iteration
Number

Average Realized
Iteration Number

1 1.0000 1 1.0000
2 1.9688 2 1.9946
4 2.4808 4 2.48381

Looking from another perspective: if this algorithm is stable under offered load “L”

and with switch size "N" (for iteration 1, 2, 4) the average matching number per cycle

should be equal to (offered load) x (switch size). NxL corresponds to the average

number of incoming cells to the switch fabric. If average matching number per cy-

cle would be less than NxL, input queues would have constantly increased and the

algorithm would have been unstable.

Delays are basically proportional to the average number of cells that are present at the

input queues. Beginning from the start, the average cell number at the input queues

increases until the system reaches NxL matching per cycle. After system reaches its

stable region; the average number of requests per cycle remains constant. In other

words; for different iteration numbers there should be a different average request

number per cycle. Moreover, the more iterations the less average request number per

cycle. For example for offered load 0.8, delay performances are different for each

iteration number. In order to verify the comment that is made above the statistics are

given at Table 6.4.

Table 6.4: Average Requests per Cycle

Maximum
Iteration Number

Average
Request per Cycle

1 183.6
2 55.16
4 54.7
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6.2 Experiment 2: ISLIP Algorithm – Effect of Switch Size on Delay Perfor-

mance

In this experiment, ISLIP algorithm is examined with different switch sizes. Switch

size means number of input and output ports. Horizontal axis of the Figure 6.2 is

offered load and vertical axis is the average cell delay. Time unit of the cell delay is

one cell-time. Iteration number is limited to 1 for all cases.

In this experiment, only switch size is variable other than the offered load. In Figure

6.2 there are four distinct lines. They are representing the same experiments with 4x4,

8x8, 16x16, 32x32 switch sizes. As switch size increases, average number of input

ports contending for an output port and average number of output ports contending

for an input port increases.

This experiment is also conducted by Nick McKeown in[13].Corresponding exper-

iment results from [13] is also represented with dashed, black lines in Figure 6.2.

Comparing those results with the experiment conducted within this thesis work shows

the reliability of SwitchSim that is developed in the scope of this thesis work.

The effect of the switch size differs under heavy load and light load. Under low

load the probability of one cell is transmitted without delay is proportional to the

probability that no other cell is waiting to be transmitted for the same output.

Under the light load we can ignore the fabric delay. In other words, we can formulate

the number of contending cell for each output considering there is no accumulation

in the queues.

If we ignore the small fabric delay under light load, the expected number of the con-

tending cells for each output is approximately: λ(1− ((N − 1)/N)N−1)

Where λ is offered load and N is number of ports. When N goes to infinity the number

of contending cells for each output port converges to a constant. Therefore the fabric

delay converges to a constant with increasing N too.

limN→∞ λ(1 − ((N − 1)/N)N−1) = λ(1 − (1/e)) which is equal to 0.63λ. This

convergence occurs quite fast. For example:
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For N=4 the expected number of contending cells for each output is 0.57λ

For N=8 the expected number of contending cells for each output is 0.607λ

For N=16 the expected number of contending cells for each output is 0.62λ

N=32 expected number of contending cells for each output is 0.626λ)

N=64 expected number of contending cells for each output is 0.629λ

N=∞ expected number of contending cells for each output is 0.63λ

Figure 6.2 shows that under low load, all four lines follow approximately the same

path. There is a little difference between consequent lines. But this difference dimin-

ishes when N increases.

However under the heavy load we cannot ignore the fabric delay. This means that

beside the new coming cells, the accumulated cells should be considered while calcu-

lated number of contending cells for each output. Therefore the above formula does

not apply under the heavy load. From the different perspective; assuming that all in-

put queues have at least one cell for any output queue. It takes N cycles for a FIFO

queue to be served. Therefore under heavy load, the fabric delay is proportional to

switch size N. At Figure 6.2, after a certain point; lines start to follow different paths.

6.3 Experiment 3: ISLIP Performance Analysis under Bursty Traffic

In first two experiments, the created traffic was Poisson traffic. In order to see the

ISLIP’s delay performance under the bursty traffic 4 different cases are studied with

average burst lengths of 16 and 64 and maximum iteration numbers of 2 and 4. In [13]

the author states that bursty traffic analysis shows the performance of the ISLIP algo-

rithm for variable-size incoming packets. Definition of the generated bursty traffic is

given below:

-Traffic generator alternates between active and silent periods

- Generates packets back to back during the active periods and stays idle during silent

periods.
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- Durations of active and silent periods are geometrically distributed.

Given offered load and mean burst length probability of leaving active period "p" and

probability of leaving silent period can be calculated as follows.

p = 1/BurstLength and

q = OfferedLoad/(BurstLength× (1−OfferedLoad))

Results are given in Figure 6.3. Vertical axis of the Figure 6.3 is average cell delay.

Switch size is 16x16. There are four lines in the graph. Each of them represents one

of the combinations of burst lengths of 16 and 64 and maximum iteration numbers

of 2 and 4. This experiment is also conducted by in [13]. Corresponding experiment

results from [13] is also represented with dashed, black lines in Figure 6.3. Compar-

ing the results with the experiment conducted within this thesis work shows a little

difference. This difference might be due to a possible different implementation of the

bursty traffic model.

If every parameter is kept constant except for the burst sizes, it is seen that average

cell delay is proportional to the burst size. Increased burst size causes increasing

delays because of two reasons. Firstly, as already mentioned, the implementation of

the bursty traffic, states that all of the cells within a burst must be put to input queues

at the same time. This brings some delay directly. Even if there is no other cell

accumulation in the queues (under light load), at least burst-size amount of time must

be elapsed in order to last cell of the burst to be transmitted. In other words, due to

the nature of bursty traffic; there are two states named active/and passive. In active

state cells are coming; in passive states the traffic generator remains idle. In passive

period there are no incoming cells. This means that in passive period the resource

of the fabric remains idle. This situation causes inefficiency. The bigger is the burst

size the longer the idle period. The inefficient use of the fabric resources causes an

increase in average delay. Secondly, in bursty traffic model, all cells within a burst

should be destined to the same output. This feature of the bursty traffic model also

causes delay.
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6.4 Experiment 4: Parallel Iterative Matching vs ISLIP

In this thesis work, in addition to the ISLIP algorithm three other algorithms are

implemented. One of them is PIM[6] (Parallel iterative Matching). ISLIP algorithm

is actually based on PIM algorithm. This algorithm is implemented in order to get

better understanding of ISLIP algorithm. Comparing these two algorithms’ can give

us a deeper understanding about ISLIP

In this experiment, delay performance of PIM and ISLIP are compared. Results are

given in Figure 6.4. Horizontal axis of the Figure 6.4 is offered load. Vertical axis of

the Figure 6.4 is average cell delay. Switch size is 16x16. Maximum iteration number

is 1.

Instead of the round robin arbiters in ISLIP, PIM employs a random selection at both

input and output. Comparing the average delays between two algorithms shows how

fairness between ports has great effect on the overall performance of the algorithm.

At Figure 6.4 under light loads, there are no such big differences between two algo-

rithms. Because of lacking fairness, under medium or heavy loads, starting from load

is 0.6, PIM algorithm becomes unstable.

6.5 Experiment 5: Variable Sized Packets

In the previous experiments, fixed sized packets with size equals to "1 cell" are used

and average cell delays due to fabric scheduler algorithm (queuing delay) are given.

Those experiments gave insight about the efficiency of the ISLIP algorithm. How-

ever, in this experiment packet sizes are variable with an average value. This time

measured metric is end-to-end delay. Since packets are multiple-sized, switched cells

of a packet must wait at the output queues until the last cell of the packet is switched.

This waiting time contributes to the end-to-end delay while it does not count in the

calculation of the queuing delay. Moreover, when packets come in multiple sizes, all

the cells belonging to a given packet are placed in the respective queue simultane-

ously. This causes an increase in end-to-end delay. In addition to these two factors,

while computing end-to-end delays, time elapsed during transmission of the packets
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out of the switch are counted. Note that segmentation and reassembling times are

ignored.

In this experiment, end-to-end delays are calculated with three different average packet

sizes: 1,2 and 4. Given average packet size "n", generated packets are sized uniformly

distributed within the interval of [1, 2n-1]. Maximum iteration number is set to be 2.

Switch size is 16× 16. Results are given in Figure 6.5.

6.6 Experiment 6: Prioritizing ISLIP Algorithm

In this thesis work two different prioritized ISLIP algorithms are implemented which

are called “Strictly Prioritized ISLIP” and “Limited Prioritized ISLIP”. These algo-

rithms are explained in Chapter 4 and Chapter 5 in details.

In [13], the author also defines a “Prioritized algorithm”. This algorithm and the

algorithms that are implemented in this thesis work, have differences.

In the “Prioritized ISLIP” in[13] cells that are belongs to prioritized flow has priority

while requesting, granting and accepting.

Request Priority: In ISLIP algorithm, every input port that has at least one cell des-

tined to a specific output port requests for that output port. In this algorithm, an input

port sends request to an output port only if the present cell that is destined to that

output port has the biggest priority. For example; in 16x16 switch, an input port has

10 cells that are destined to different output ports; but 5 of them are belong to low

priority flow and 5 of them are belong to high priority flow. Only 5 requests occur
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corresponding to “high priority flow cells”. Requests are made corresponding to “low

priority flow cells” only if there is no “high priority low cells” which are present in

that input port.

Grant Priority: In ISLIP algorithm each output port makes one single grant even if it

receives multiple requests from different input ports. The choice is made according

to grant pointer which works in round-robin distribution scheme. However, in this

algorithm, the choice is made according to flow priority. This feature makes ISLIP

less fair between ports.

Accept Priority: In ISLIP algorithm each input port makes one single accept even if

it receives multiple grants from different output ports. The choice is made according

to accept pointer which works in round-robin distribution scheme. However, in this

algorithm, the choice is made according to flow priority. This feature makes ISLIP

less fair between ports too.

“Strictly Prioritized ISLIP” algorithm only deploys request priority. This algorithm

is implemented because the “Prioritized ISLIP” that is defined in [13] makes ISLIP

algorithm less fair between ports. In experiment 4; the effects of fairness between

ports, on delay performance are shown via comparing ISLIP with a less fair algorithm,

PIM. Moreover the request selector which is the algorithm block that is implemented

for this algorithm can be used with other fabric scheduler algorithms too. Grant and

accept mechanism of the ISLIP algorithm is the same as proposed.

“Limited Prioritized ISLIP” is implemented because the observations from the “Strictly

Prioritized ISLIP” show that giving priority to a specific flow might cause the other

flows to starve. The level of limitation can be adjusted considering the required QoS

metrics and traffic characteristics.

In this experiment, two-level prioritization is simulated. Cells are labeled with differ-

ent two flow numbers and the delay performance for each flows are observed. Flows

are named as video and data. Cells that are belonging to video flow are called video

cells. Cells that are belonging to data flow are called data cells.

The ratio of the cells belonging to different flows may vary. Therefore two different

cases are simulated with different ratios. These are 30% video-70% data and 70%
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video-30% data. Experiments 6.1 and 6.2 show the average delays of the video and

data cells separately. Experiment 6.3 and 6.4 show the average delays of the all cells

and compare the results with non-prioritized (standard) ISLIP algorithm.

6.6.1 Experiment 6.1 30% video-70% data - Flow Delays

In this experiment the ratio of video cells is 30%; 16x16 switch configuration with 4

iterations, is used. Figure 6.6 shows the average cell delays of data cells and video

cells which are calculated separately. Overall delays will be shown at experiment

6.3. In this experiment the following algorithms are compared: “Strictly Prioritized

ISLIP” and “Limited Prioritized ISLIP”. Moreover, “Limited Prioritized ISLIP” is

tested twice with “priority window” size 2 and 4. The “priority window” is the num-

ber of giving priority to the high priority flows in a row.

The difference between average data cell delays and average video cell delays for each

algorithm can be seen from Figure 6.6. Under low load all three different algorithms

follow the same path for video cells and for data cells. With increasing load, lines

start to differ. The most important point at this graph is that after some point, the

switch becomes unstable for data cells. The reason of this situation is request selector.

It selects the video cells during the request collecting phase. Under low loads, the

request selector has chance to select data cells. Because at low loads; ignoring very

low video cell delays, there is no video cell accumulation at the input port. As offered

load increases, video cell delay increases too. Delay means accumulation of the video

cells at the input ports. As this accumulation increases, the chance for data cells

to request decreases proportionally. After a certain point, although some data cells

are transmitted to the output ports, the incoming data cells are always more than

the transmitted ones. Therefore after that point data cells starts to starve and switch

becomes useless for data cells.

Another interesting point is that when data cells are starving, video delays become

constant with increasing load (when load is bigger than 0.7). Because, due to the

request selector mechanism, after that point data cells requesting less and less even

if the amount of incoming data cells is increasing. Fewer requests number means

fewer matches for data cells. On the hand, with increasing load incoming video cell
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number increases too. Since video cells have priority; they request more. In order to

have deeper understanding of this situation request numbers that are made for video

and data delays are observed under different offered load values. Results are given at

Table 6.5 and Table 6.6

Table 6.5: Average Requests For “Strictly Prioritized ISLIP”

Load
Average Requets
For Data Cells

Average Requests
For Video Cells

0.7 27.71 6.74
0.8 119.75 10.63
0.9 110.33 11.92
1.0 101.80 13.24

Table 6.6: Average Requests For “Limited Prioritized ISLIP” with Window Size=4

Load
Average Requets
For Data Cells

Average Requests
For Video Cells

0.7 25.63 6.68
0.8 129.28 11.02
0.9 121.47 12.26
1.0 113.53 13.72

Table 6.5 and Table 6.6 show the average request numbers for data and video cells

separately. As mentioned above, for both algorithms, even when offered load is in-

creasing the requests that are made for data cell is decreasing.

Moreover, requests numbers of video cells verify the average delays in the graph.

In order to compare the numbers under different loads, they should be normalized

according to the load.

For “Strictly Prioritized ISLIP”

Load 0.7 -> 6.74/0.7= 9.63

Load 0.8 -> 10.63/0.8=13.29

Load 0.9-> 11.92/0.9=13.24

Load 1-> 3.24/1=13.24
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For “Strictly Prioritized ISLIP” Comparing normalized video request numbers for 0.7

and 0.8 load implies increase in average cell delay. However comparing normalized

video request numbers for 0.8, 0.9 and 1 load implies no increase in average cell

delay. Similar results are observed for the “Limited Prioritized ISLIP” too.

Comparing the average cell delay results which is given in Figure 6.6 shows; and

comparing the average request numbers given at Table 6.5 and Table 6.6, implies that

limiting priority by a window size, causes increase in average video cell delays and

decrease in average data cell delays.

6.6.2 Experiment 6.2 70% video-30% data -Flow Delays

In this experiment the ratio of video cells is 70%, 16x16 switch configuration with

4 iterations is used. Figure 6.7 shows the average cell delays of data cells and video

cells which are calculated separately. Overall delays will be shown at experiment 6.4.

In this experiment following algorithms are compared: “Strictly Prioritized ISLIP”

and “Limited Prioritized ISLIP”. Moreover, “Limited Prioritized ISLIP” is tested

twice with “priority window” size 2 and 4. The “priority window” is the number of

giving priority to the high priority flows in a row.

The only difference of this experiment from experiment 6.1 is the ratio of incoming

video cells. When two graphs are compared (Figure 6.6 and Figure 6.7 ); it is seen

that in Figure 6.7, video delays are not constant even under heavy load. The reason

of this behavior is the ratio of the video cells.

Moreover, the point that data cells start to starve is has become a little later at the hori-

zontal axis. Because, the number of incoming data cells are far fewer when compared

to experiment 6.1.

6.6.3 Experiment 6.3 30% video-70%- Overall Delays

In this experiment algorithms’ overall performances are compared. The statistics are

collected from the same simulation run of the experiment 6.1. However, in Figure

6.8 overall performances of the all incoming cells are given. When thinking of giving
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Figure 6.7: 70% video-30% data -Flow Delays
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priority of the video cells in order to meet the QoS metrics of the video flows, the

overall delay performance of the switch can be jeopardized. While constructing a

switch configuration; video, data and overall performance should be considered.
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Figure 6.8: 30% video-70%- Overall Delays

As it can be seen from the Figure 6.8 all variations of the prioritized ISLIP algorithms

become unstable under heavy load (after around 0.7-0.75 offered load). However

ISLIP is stable until offered load becomes 0.95.
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6.6.4 Experiment 6.4 70% video-30% data Overall Delays

This experiment again shows the overall delay performances of the algorithms. Only

difference from experiment 6.3 is the ratio of the video cells.
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Figure 6.9: 70% video-30% data Overall Delays

When Figure 6.8 and Figure 6.9 are compared, it can be seen that, prioritized algo-

rithms stay stable a little more when the ratio of the video cells are high.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Simulation platforms have become critically important for performance analysis in

every field of research. For fabric scheduler algorithms, using software simulators

in order to evaluate the performance of a given algorithm under different traffic sce-

narios and according to various metrics is indispensable. Today’s famous network

simulation tools such as OPNET and NS-2 do not provide support in order to evalu-

ate switch fabric scheduler algorithms.

The first contribution of this thesis work is SwitchSim which is a software tool de-

veloped in order to simulate IQ switches’ fabric scheduler algorithms. SwitchSim is

designed with a modular, object oriented architecture with well defined interfaces to

enable plugging in different fabric scheduler algorithms and traffic models. Switch-

Sim currently implements the well-known and most used IQ switch fabric scheduler

algorithm ISLIP and PIM. SwitchSim is verified by comparing the results for a given

traffic arrival trace to a hardware switch fabric scheduler implementation as well as

the results provided in the original ISLIP work.

As the second contribution, in order to provide QoS support to IQ switch architec-

tures, ISLIP algorithm is extended with two different algorithms: SP-ISLIP and LP-

ISLIP. Development of these algorithms includes adding a new block, named IMC,

to the algorithm which manages requests, and altering the structure of VOQs.

We present the results of a number of experiments that are performed by SwitchSim

both for the verification of the correctness and to evaluate the performances of SP-

ISLIP and LP-ISLIP algorithms. New proposed extensions of ISLIP are tested with
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2-level prioritization. Considering rapidly increasing importance of video traffic over

the Internet these two levels can be interpreted as video and data packets.

The proposed architecture of the simulation tool supports fabric scheduler algorithms

of IQ switches. As a future work; implementing other well-known IQ switch fab-

ric scheduler algorithms other than ISLIP and PIM will increase contribution of the

simulator.

As another future work, the simulator can be extended to support fabric architectures

other than IQ switch fabrics, such as OQ ,CIOQ, Clos Network fabric architectures.
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