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ABSTRACT

ONE DIMENSIONAL NUMERICAL ANALYSIS OF PLASMA
PROPERTIES IN THE DISCHARGE CHANNEL OF A HALL EFFECT

THRUSTER

Yüncüler, Ç�nar

M.S., Department of Aerospace Engineering

Supervisor : Prof. Dr. Na�z Alemdaro§lu

Co-Supervisor : Assoc. Prof. Dr. �smail Rafatov

September 2014, 75 pages

The aim of this study is to understand and simulate the physical processes oc-

curring in the discharge channel of a Hall e�ect thruster. Accordingly, based on

a physical model proposed by A. I. Morozov, one-dimensional �uid and hybrid

numerical codes are developed on Matlab software and applied to the analysis of

axial distributions of plasma properties in the discharge channel of the thruster.

In the hybrid model, ions are described by the kinetic Vlasov equation, while

electrons and neutral atoms are treated as �uids. Initially, stationary pro�les

of the plasma properties are obtained. Then solving time dependent equations,

time evolution of these properties is investigated. In di�erent operating regimes,

damped, periodic, and aperiodic irregular oscillations of the plasma properties

are observed and discussed. The performance parameters of the thruster such

as thrust, e�ciency and speci�c impulse are estimated for di�erent input condi-

tions. The results obtained from �uid and hybrid models are compared.
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ÖZ

HALL ETK�L� PLAZMA �TK� S�STEM�N�N BO�ALMA KANALINDAK�
PLAZMA ÖZELL�KLER�N�N B�R BOYUTLU SAYISAL ANAL�Z�

Yüncüler, Ç�nar

Yüksek Lisans, Havac�l�k ve Uzay Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Na�z Alemdaro§lu

Ortak Tez Yöneticisi : Doç. Dr. �smail Rafatov

Eylül 2014 , 75 sayfa

Bu çal�³man�n amac� Hall etkili bir itki motorunun bo³alma kanal�nda gerçekle-

³en �ziksel süreçleri anlamak ve simüle etmektir. Bu do§rultuda, A. I. Morozov

taraf�ndan önerilen bir �ziksel model temel al�narak, Matlab yaz�l�m�nda bir bo-

yutlu ak�³kan ve hibrit say�sal kodlar geli³tirilmi³ ve motorun bo³alma kanal�n-

daki plazma özelliklerinin eksenel da§�l�mlar�n�n çözümlenmesine uygulanm�³t�r.

Hibrit modelde iyonlar kinetik Vlasov denklemiyle betimlenirken elektronlar ve

nötr atomlar ak�³kan olarak al�nm�³t�r. �lk olarak plazma özelliklerinin dura-

§an pro�lleri elde edilmi³tir. Daha sonra zamana ba§l� denklemler çözülerek bu

özelliklerin zaman içindeki de§i³imleri incelenmi³tir. Farkl� çal�³ma rejimlerinde,

plazma özelliklerinin sönümlü, periyodik ve düzensiz aperiyodik sal�n�mlar� göz-

lemlenmi³ ve tart�³�lm�³t�r. Motorun itki, verim ve özgül darbe gibi performans

parametreleri, farkl� girdi ko³ullar� için öngörülmü³tür. Ak�³kan ve hibrit model-

lerden elde edilen sonuçlar kar³�la³t�r�lm�³t�r.
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ṁ Propellant mass �ow rate

M Mass of a xenon atom, spacecraft mass

Md Spacecraft dry mass

Mp Propellant mass

n Particle density

p Plasma pressure

Pd Discharge power

Pin Electric power input

xvii



Pjet Jet power

q Electric charge

rL Larmor radius

T Thrust, temperature in K

TeV Electron temperature in electron volts

U Potential

Ub Beam voltage

Uc Coupling voltage

Ud Discharge voltage

Uex Excitation potential

Ui Ionization potential

v Velocity

vex Exhaust velocity

vD Diamagnetic drift velocity

vE E ×B drift velocity

vth Electron thermal velocity

w Channel width

Γ Flux of particles

δ Dirac delta function

∆v Change in velocity

η Resistivity

λ Mean free path

λD Debye length

µ Mobility

µB Bohm mobility

ν Collision frequency

ρ Charge density

σi Ionization cross-section

σex Excitation cross-section

τ Collision time

φ Relaxation coe�cient

ω Cyclic frequency

ωc Electron cyclotron frequency

ωp Electron plasma frequency

xviii



Subscripts

a Neutral atom

e Electron

f Final

i Ion, initial

s Particle species

⊥ Perpendicular

‖ Parallel

∧ Transverse

xix



xx



CHAPTER 1

INTRODUCTION

1.1 Motivation

Since the launch of the world's �rst arti�cial satellite, the Sputnik 1 in 1957,

thousands of spacecrafts have been sent into space. On most of these vehicles,

chemical rocket engines have been used for orbit transfer, maneuvring or station

keeping purposes. As the performance of these thrusters was constrained by the

limited energy contained in the chemical fuel they carry, scientists worked on

more e�cient ways of propulsion.

Electric propulsion (EP), which encompasses a wide variety of thrusters using

electric power to generate thrust, is accepted today as an alternative to chemical

propulsion. Since the electric propulsion does not rely on the chemical energy

of a fuel but the electric power supplied by an external source, the propellant

in electric thrusters (ETs) can be accelerated to very large velocities depending

on the electric power available onboard. High exhaust velocities permit ETs

to consume less propellant and carry out the tasks unfeasible with chemical

thrusters. For the time being, the main drawback of the EP is the low thrust

generation due to electric power limitation.

The very �rst ideas about electric propulsion were proposed at the beginning

of the 20th century by Konstantin Tsiolkovsky and Robert Goddard [6]. In

later years H. Oberth, V. Glushko and E. Stuhlinger worked on this subject and

demonstrated that such propulsion systems could be manufactured and would

o�er substantial advantages over the chemical rockets [5].
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In 1960s, electric thrusters were extensively studied in the USA and the Soviet

Union. The leading research centers were the NASA (National Aeronautics and

Space Administration), GRC (Glenn Research Center), JPL (Jet Propulsion

Laboratory), KIAE (Kurchatov Institute of Atomic Energy) and TsNIIMASH

(Central Research Institute of Machine Building) [6, 30]. While the Americans

worked mainly on ion thrusters, the Russians focused on Hall e�ect thrusters

(HETs). In 1964, for the �rst time, an ion engine conceived by Harold R.

Kaufman operated in space, on the SERT-1 mission. The �rst space �ight of

a HET took place in 1972. A pair of engines, called SPT-50, were installed on

the Soviet satellite "Meteor". Since then over 200 HETs have been operated in

space.

Until the end of the last century, the primary task of ETs remained as orbit

control. The �rst usage of an ET on a deep space mission was in 1998 when

the NASA sent an ion thruster NSTAR to space on Deep Space 1. In 2003, the

European Space Agency (ESA) used PPS-1350 HET on the SMART-1 probe

which was sent to the moon [6].

Since the invention of EP, the interest in this technology has grown steadily.

Today, the tendency is to develop high power high thrust engines for heavy

geostationary satellites and for deep space missions. In the long term, very

high power electric thrusters (maybe with nuclear power sources) can make the

manned interplanetary �ight possible .

1.2 Objective

The objective of this thesis is to gain an insight into the fundamental concepts

of a Hall e�ect thruster, to understand the dominating physical processes in

its operation, to formulate the operation by relevant physical quantities and

�nally to predict the thruster performance from these physical quantities. For

this purpose, numerical codes have been written based on the physical model

proposed by A.I.Morozov, the developer of the �rst HETs.

At TUBITAK UZAY (Space Technologies Research Institute), a 1.5 kW HET
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similar to the standard SPT-100 is being developed in the scope of the HALE

(Hall E�ect Thruster Development) project. The numerical simulation devel-

oped in this thesis will also be applied to the analysis of this new 1.5 kW thruster.

1.3 Thruster Principles

Thrust

Thrust generation in the electric propulsion systems is based on the same princi-

ple of thrust generation in the chemical rockets: accelerating mass and ejecting

it from the vehicle at high velocity. By the action-reaction law, a force equal

and opposite to the time rate of change of the momentum of the ejected mate-

rial acts on the spacecraft. This propulsive force is called thrust and given by

T = ṁvex, where ṁ is the mass �ow rate of the ejected material and vex is the

exhaust velocity.

Rocket Equation

Thrust accelerates the spacecraft according to Newton's second law. Ignoring

drag and gravity losses, the acceleration of the spacecraft can be expressed by

M
dv

dt
= T = ṁvex. (1.1)

where M is the spacecraft total mass and V is the spacecraft velocity. M

decreases with time due to the ejected material. Therefore, replacing the mass

�ow rate ṁ in Eq. 1.1 by −dM/dt, integration of Eq. 1.1 between initial and

�nal states ∫ vf

vi

dv

vex
=

∫ Mf

Mi

−dM
M

(1.2)

yields the classical Rocket Equation which relates the velocity increment ∆v to

the exhaust velocity, and to the initial and �nal mass ratio Mi/Mf .

∆v = vexln
Mi

Mf

. (1.3)
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We can rewrite Eq. 1.3 in terms of the required propulsion material (Mp =

Mi −Mf ) to be consumed between initial and �nal states. Assuming that the

�nal mass is equal to the dry mass of the spacecraft (Mf = Md) (i.e., all the

propellant is spent), we obtain

Mp = Md[e
∆v/vex − 1]. (1.4)

∆v is often used to de�ne the propulsion requirement of a given space mission.

Obviously for a given ∆v, as the exhaust velocity is higher, the required propel-

lant mass is lower. Therefore, vex is an important parameter characterizing the

performance of a propulsion device . A typical bipropellant rocket engine has

3−4 km/s exhaust velocity. However, using electric thrusters, exhaust velocities

in the range of 10−40 km/s can be reached [6]. Actually in chemical propulsion,

the exhaust velocity is limited by the energy contained in the chemical bonds

of the propellant used. Electric thrusters, on the other hand, separate the pro-

pellant from the energy source (which is now a power supply) and thus are not

subject to the same limitations.

The exhaust velocity superiority of EP makes it suitable for many missions. To

illustrate this, consider a geosynchronous satellite which has a dry mass of 1

tonne and which requires ∆v = 1.5 km/s for stationkeeping during its service

life of 15 years. If this satellite was propelled by a chemical rocket with a 2 km/s

exhaust velocity, it would require 1117 kg of propellant to carry out the mission.

On the other hand an electric thruster with a 20 km/s exhaust velocity would

accomplish the same mission using only 78 kg of propellant.

Speci�c Impulse

In propulsion literature, the speci�c impulse term, Isp, is de�ned as the ratio of

the thrust to the rate of propellant consumption. Speci�c impulse for constant

thrust and propellant �ow rate is

Isp =
T

ṁg
=
vex
g
, (1.5)

where g is the acceleration of gravity, 9.807 m/s. Speci�c impulse related to the

propellant exhaust velocity is a measure of how e�ciently thrust is generated.
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Total E�ciency

The total e�ciency of an electric thruster is de�ned as the jet power, Pjet (kinetic

thrust power of the plasma beam leaving the thruster), divided by the total

electrical power into the thruster, Pin. Expressing the jet power as ṁv2
ex/2 and

thrust as T = ṁvex the total e�ciency, ηT , can be written as

ηT = Pjet/Pin =
T 2

2ṁPin
. (1.6)

Measuring the thruster's input electrical power, propellant mass �ow rate, and

the thrust generated, the total e�ciency of the thruster can be calculated [6].

1.4 Electric Propulsion Types

Electric propulsion be classi�ed in three categories according to the acceleration

mechanism of the propellant: electrothermal, electrostatic and electromagnetic.

1.4.1 Electrothermal

In electrothermal thrusters, the propellant heated up by using electric power

expands through a nozzle. Transforming the enthalpy of the propellant gas into

kinetic energy, thrust is produced. The energy of the gas is determined by its

temperature upstream of the nozzle. Resistojets and arcjets are examples of

this category. Resistojets use a heating element (ohmic resistor) to raise the

temperature of the propellant. Since the heat is transferred to the propellant

gas from thruster components, the speci�c impulse is limited by the maximal

temperature attainable by the thruster components, which results in low values

such as 300− 400 s. The main advantage is the low thrust cost.

To overcome this limitation, arcjets heat the propellant by passing through it a

high current arc generated between an upstream conical cathode and a down-

stream annular anode integral to the exhaust nozzle. In arcjets, the temperature

of the gas can signi�cantly surpass the temperature of the electrodes. Conse-

quently the propellant gas is ejected from the nozzle at much higher velocity
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compared to resistojets. Depending on the propellant (hydrogen, ammonia or

hydrazine) the speci�c impulse may reach 1000 s. The erosion of the internal

cathode, however, is the main drawback in this type of thrusters.

In the early 1980s, resistojets were used for attitude control and station keeping

of commercial satellites. The �rst arcjet was utilized on the satellite AMSAT-

OSCAR 13, in 1988 [12]. Figure 1.1 shows the general schematic of the elec-

trothermal thrusters.

1

Figure 1.1: a) resistojet, b) arcjet [18]

1.4.2 Electrostatic propulsion

Electrostatic thrusters use electrostatic �elds to accelerate a charged propel-

lant. The most common type of electrostatic thrusters is gridded ion engines

in which biased grids are used to generate the electric �eld. In ion thrusters,

the propellant gas (usually xenon) is injected in a Kaufmann source, composed

of permanent magnets mounted on the surrounding walls. The electrons are

supplied by an internal cathode at the base of the Kaufmann source (see Fig-

ure 1.2). A voltage is applied between the inner surface of the chamber, acting

as an anode, and the internal cathode. The electrons trapped by a magnetic

�eld have enough energy to ionize the injected propellant. At the exit of the

Kaufmann source there are two grids. The potential di�erence between the �rst

grid (positively charged) and the second grid (negatively charged) accelerates

the ions. The electrons supplied by an external cathode neutralizes the posi-

tively charged propellant to prevent the ions from being attracted back to the
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spacecraft (back-streaming ions reduce the net thrust) and to avoid spacecraft

charging. Ion thrusters feature very high speci�c impulse (ranging from 2000 to

10000 s).

The main disadvantage of ion thrusters is the limitation of the ion current density

due to the positive charge accumulation between the electrostatic grids. Since

electrons are absent in the gap between the grids, the extracted ion current

cannot exceed the level at which repulsing ions in the gap would keep new ions

from entering. This e�ect, called the space charge limitation, severely reduces

the thrust density. Consequently, ion thrusters have a bigger exit area than Hall

thrusters for the same thrust.

SERT-1 was the �rst ion thruster to operate in space (1964). Later in 1998, Deep

Space 1 equipped with the NSTAR ion engine became the world's �rst spacecraft

to escape Earth's gravitation from orbit [6] using an electric propulsion system.

1.4.3 Electromagnetic propulsion

Electromagnetic thrusters use both the electric and magnetic �elds to accelerate

the propellant and produce thrust. Pulsed Plasma thruster (PPT) and Magne-

toplasmadynamic thruster (MPDT) belong to this category. In PPTs, a fraction

of a solid propellant is ionized by a pulsed discharge. MPDTs (Figure 1.2b)

use a very high current to ionize a signi�cant fraction of the propellant. In a

MPDT, the propellant injected to the discharge channel is ionized by apply-

ing an electric �eld between the internal cathode and the anode. The current

between the anode and the cathode induces a magnetic �eld perpendicular to

the electric �eld. Therefore, the plasma current experiences the Lorentz force

F = j × B, which accelerates the plasma towards the channel exit. When the

power supplied to the thruster is low (< 200 kW), the induced magnetic �eld is

too weak to create su�ciently high Lorentz force which will enable plasma accel-

eration [12]. In practice, an external magnetic �eld can also be applied in these

low power cases. MPDTs provide very high thrust compared to other electric

propulsion types but they require very high power for operation. Recently, an

MPDT with 12 N thrust, 4500 s speci�c impulse and 400 kW power was tested
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at Princeton University. However, such thrusters are still unpractical for the

moment since the solar panels on the conventional platforms cannot meet the

high electric power requirement yet. In the future, once the power problem is

resolved, manned interplanetary �ights can be achieved using MPDTs .

Figure 1.2: a) gridded ion engine, b) MPD thruster [18]

1.5 Hall thrusters

Hall e�ect thrusters (HET) or Hall thrusters, classi�ed as either electrostatic or

electromagnetic thrusters, are the most commonly used type of electric thrusters.

They were developed at the early 1960s in the Soviet Union under the leadership

of A.I.Morozov. Researches have been conducted in the institutes including

Fakel, TsNIIMASH, MAI and Kurchatov. Since 1960s various Hall thrusters of

di�erent sizes and power levels have been elaborated. The �rst satellite equipped

with a Hall thruster (SPT-50) "Meteor" was put into orbit in 1972. Since then

HETs have been utilized on the Russian telecommunication satellites series, Gals,

Express and Yamal. Among various HETs, SPT-100, which was developed in

1980s, has the most �ight heritage. This thruster served as a base model for

many other thrusters of smaller or larger sizes.

Soviet-built Hall thrusters were introduced to the West in the early 1990s. Since

then, researches on Hall thruster development have also been conducted in the

United States, France, Italy and Japan. In 2003, ESA sent to the Moon an
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experimental probe, SMART-1, which was propelled by a Hall thruster, PPS-

1350, developed by SNECMA in cooperation with Fakel. In 2004, for the �rst

time, a Hall thruster (the Fakel SPT-100) was used by the U.S. on Space Systems

Loral's MBSAT. In August 2010 a U.S. military GEO communication satellite

equipped with the Aerojet BPT-4000 Hall thrusters was launched into orbit. At

4.5 kW, the BPT-4000 is the most powerful HET which has ever �own in space.

This engine with 0.27 N thrust can also provide orbit raising capability besides

the orbital station-keeping.

Figure 1.3: a) Hall thruster cross-section [1], b) three dimensional view of a Hall
thruster

A Hall thruster has a relatively simple geometry (Figure 1.3a). It consists of

an annular discharge channel with an interior anode at its base, and an external

cathode near the channel exit. Propellant gas (usually xenon) is injected into

the channel from the anode surface. Electrons supplied by the cathode ionize

the propellant through collisions. A magnetic circuit creates a radial magnetic

�eld across the channel, which prevents electrons from moving directly to the

anode. The electrons with reduced mobility due to the transverse magnetic

�eld spiral along the �eld lines drifting in the E × B direction and creating

azimuthal Hall current as seen in Figure 1.3b. This permits the distribution of

the applied discharge voltage along the channel axis and creation of an axial

electric �eld between the anode and the cathode plasma. The ionized propellant
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is then accelerated by the electric �eld and reaches very high exhaust velocities

(∼ 16000 m/s) at the channel exit, resulting in the generation of the thrust.

1.6 Outline of the Thesis

The thesis is organized as follows: The second chapter gives an overview of

the basic concepts in plasma physics. The third chapter explains the operation

principles of a Hall thruster. It also includes a survey of the numerical models

that have been developed up to date. The fourth chapter describes the one-

dimensional �uid and hybrid models upon which the numerical analysis carried

out in this thesis is based. The �fth chapter explains the solution procedure

used in the numerical analysis and presents the results from both models. The

sixth and �nal chapter summarizes the thesis �ndings, and discusses the future

work.
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CHAPTER 2

BASIC PLASMA PHYSICS

Hall thrusters are devices in which plasma is generated by electrical discharge.

Studying Hall thrusters, understanding physical processes in their operation and

developing descriptive models require the knowledge of plasma physics. There-

fore, in the following sections, the basic concepts of plasma physics are intro-

duced.

2.1 What is a plasma?

The state of a matter is determined by the equilibrium between the random ki-

netic energy (thermal energy) of the particles that constitute the matter and the

binding forces that hold these particles together [2]. By giving heat energy to

a solid or liquid, the thermal kinetic energy of the atoms or molecules increases

until these particles become able to overcome the binding potential energy. At

this point, phase transition occurs and a solid turns into a liquid then into a

gas. When a gas is heated up further, its molecules dissociate into atoms as a

result of collisions between particles having greater kinetic energy than molecu-

lar binding energy. At higher temperatures, some fractions of the atoms possess

su�cient kinetic energy to overcome, by collisions, the binding energy of the

outermost electrons, and the gas becomes ionized. The ionization increases with

temperature and beyond a certain point, the gas becomes a plasma containing

many interacting free electrons, ions and neutral particles and having very dif-

ferent properties than an ordinary gas. Due to its distinctive characteristics,

plasma is often considered as the fourth state of matter.
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The degree of ionization of a gas in thermal equilibrium is given by the Saha

equation [8]:

ni
na
≈ 2.4× 1021T

3/2

ni
e−Ui/kT . (2.1)

Here na and ni denote the number density of neutral and ionized atoms. k is

Boltzmann's constant, T and Ui are the gas temperature in K and ionization en-

ergy, respectively. The Saha equation tells that any gas is ionized to some degree

depending on the temperature. For example, ordinary air at room temperature

has ni/na ≈ 10−122.

As the temperature increases, the gas particles become more energetic. The

frequent collisions between them lead to removal of electrons from atoms hence

ionization (kT term becomes larger than Ui; and ni/na rises abruptly). Further

increase in temperature results in gradual transformation of the ionized gas into

plasma state. However, ionization is not the only criterion for de�ning a plasma

since it occurs in any gas to some degree. A plasma is de�ned as a quasineutral

gas of charged and neutral particles exhibiting collective behavior [8].

In an ordinary gas, the motion of a particle is controlled by the collisions it

makes with other particles. However, in a plasma, a particle's motion is a�ected

by the electric �elds generated by local concentrations of charge and by the

magnetic �elds induced by the moving charges. Therefore, particles can exert

force on each other even at large distances. In some plasmas, these long range

forces are much bigger than the forces due to ordinary collisions so that such

plasmas are assumed as collisionless. What is meant by the collective behaviour

is that long range interactions between the particles.

Quasineutrality and Debye Length

Another property of the plasma is quasineutrality. Under equilibrium conditions

with no external forces and disturbances, a volume element of plasma, that is

su�ciently large to contain a large number of particles and su�ciently small

compared to characteristic lengths for the variation of macroscopic parameters

such as density and temperature, has no net charge [2]. The reason of this
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behavior is that, the microscopic charge concentrations arising in the interior

of the plasma cancel each other and result in zero net charge on a macroscopic

scale. If the macroscopic neutrality was not maintained, the resulting coulomb

forces between space charge �elds would be enormous compared to the particle

thermal kinetic energy.

In a plasma, the thermal particle energy tends to disturb the electrical neutral-

ity, on the other hand the electrostatic potential energy tends to restore it. In

the absence of external disturbances, excess space charges can occur only over

distances in which the thermal particle energy balances the electrostatic poten-

tial energy resulting from any charge separation. This distance is on the order

of a characteristic length parameter of the plasma, the Debye length (λD), which

is de�ned as

λD =

(
ε0kT

nee2

)1/2

, (2.2)

where e is the electron charge, ne is the electron density and ε0 is the permittivity

of free space. In the absence of external forces, the plasma cannot allow violation

of macroscopic neutrality over distances larger than λD. Because, the electric

�eld, arising from the charge accumulation, redistributes the charges so that the

regions of excess charge are neutralized.

Associated with the "quasineutrality" property, another fundamental character-

istic of a plasma is its ability to shield out electric potentials that are applied to

it. When a test charge q is inserted into a plasma, it is observed that a cloud

of particles of opposite charge simultaneously surrounds it. As a result of this

charge accumulation, the potential falls quickly in the vicinity of the test charge.

Therefore, the potential di�erence between the plasma and the inserted charge

is not distributed throughout the bulk plasma but in a very thin layer. The

thickness of this layer is on the order of Debye length and it is called plasma

sheath. In this thin layer, charge neutrality does not hold. However, the bulk of

the plasma maintains its quasineutrality.

An ionized gas can be considered as a plasma if its density is high enough such
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that Debye length, λD, is much smaller than the characteristic dimension of

the plasma system, L (i.e., λD << L). This criterion ensures that in plasmas,

local charge concentrations are allowed only in a small distance compared with

L, leaving the bulk of the plasma free of large electric potentials. Also, this

condition is valid only if there are enough particles in the charge cloud: The

number of particles in a Debye sphere, ND, must be much greater than 1 (i.e.,

ND = 4nπλ3
D/3 >> 1).

Plasma frequency

When a plasma is instantaneously disturbed from the equilibrium conditions

by an external force (for example, electrons are displaced from a uniform back-

ground of ions), electric �eld resulting from charge separation accelerates the

electrons in such a direction to restore the neutrality of the plasma. Electrons

having much smaller mass will oscillate around the heavier ions until they return

back to their equilibrium positions. These oscillations of electrons are charac-

terized by a natural frequency, called the (electron) plasma frequency, ωp, given

by

ωp =

(
nee

2

meε0

)1/2

, (2.3)

where me is the electron mass. Collisions between electrons and neutral parti-

cles tend to damp these oscillations by dissipative mechanisms. If the electron

neutral collision frequency, νen, is higher than the plasma frequency, electrons

will be forced by these collisions to be in equilibrium with neutrals, in which

case the medium can be treated as a neutral gas. Therefore, another condi-

tion of plasmas is ωpτ > 1, where τ = 1/νen denotes the average time between

electron-neutral collisions. It implies that in a plasma this average time must be

large compared to the characteristic time during which the plasma parameters

are changing. In a weakly ionized gas, the charged particles collide so frequently

with neutral atoms that their motion is controlled by ordinary aerodynamic

forces rather than by electromagnetic forces. However, in plasmas, the situation

is the opposite.

To summarize, a plasma must satisfy the following three conditions:
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1. λD << L

2. ND >>> 1

3. ωpτ > 1

2.2 Maxwell's Equations

In electric propulsion devices, electromagnetic �elds obey Maxwell's equations

formulated in a vacuum that contains charges and currents:

∇ ·E =
ρ

ε0
, ∇×E = −∂B

∂t
, ∇ ·B = 0, ∇×B = µ0

(
j+ ε0

∂E
∂t

)
. (2.4)

where ρ, j, ε0, µ0 denote, respectively, the total charge density, the total electric

current density, the electric permittivity, and the magnetic permeability of free

space. In ρ and j terms, all the charges and currents for all the plasma species, as

well as multiply charged ions are included. They can be expressed, respectively

as

ρ =
∑
s

qsns = e(Zni − ne), j =
∑
s

qsnsvs = e(Znivi − neve) (2.5)

where qs is the charge and vs is the velocity of the charge species s and subscripts

i and e correspond to ions and electrons, respectively. Z denotes the the charge

state.

In the case of static magnetic �eld (∂B/∂t = 0), the curl of the electric �eld

becomes zero hence it can be expressed as the gradient of the electric potential,

U ,

E = −∇U. (2.6)

Substituting E in the �rst of the Maxwell equations (2.4), the Poisson equation

is obtained:

∇2U = − ρ
ε0
. (2.7)
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2.3 Single particle motion

A plasma contains charged particles which are subject to electromagnetic forces.

The motion of a single charged particle in the presence of electric and magnetic

�elds is described by the Lorentz force equation:

m
dv
dt

= q(E+ v×B). (2.8)

In the case E = 0, taking z to be the direction of B (B = Bz), we have

mv̇x = qBvy, mv̇y = −qBvx, mv̇z = 0. (2.9)

Taking derivatives of both sides in the �rst two of the above equations, we get

v̈x

v̈x =
qB

m
v̇y = −

(
qB

m

)2

vx, v̈y = −qB
m
v̇x = −

(
qB

m

)2

vy. (2.10)

These equations describe a simple harmonic oscillator at the cyclotron frequency :

ωc =
|q|B
m

. (2.11)

The solution to Eq. 2.10 is

vx,y = v⊥exp(±iωct), (2.12)

where v⊥ is a positive constant speed in the plane perpendicular to B. Taking

time integrals of the velocities found in Eq. 2.12 and taking real parts of Eq.

2.12, particle position is obtained as a function of time

x− x0 = rLsin(ωct), y − y0 = ±rLcos(ωct) (2.13)

where rL is the Larmor radius which is given by
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rL =
v⊥
ωc

=
mv⊥
|q|B

. (2.14)

These results mean that a charged particle with a velocity, v⊥, in the presence

of a magnetic �eld makes a circular motion with the radius rL, in a plane per-

pendicular to the magnetic �eld about a guiding center (x0, y0). In addition,

if the particle has a velocity vz, along the magnetic �eld, as its motion in the

parallel direction is not a�ected by B, its trajectory forms a helix. Obviously

electrons having the same velocity with the ions have smaller rL and larger ωc

due to their lower mass.

Now, assume that in addition to B, an electric �eld also exists and lies in the

x− z plane so that Ey = 0. The equations of motion, then, become:

v̇z =
q

m
Ez, v̇x =

q

m
Ex ± ωcvy, v̇y = ∓ωcvx. (2.15)

The solution of Eq. 2.15 is

vz =
qEz
m

t+ vz0, vx = v⊥e
iωct, vy = ±iv⊥eiωct − Ex/B. (2.16)

In this case, the Larmor motion is the same as before, but now the guiding

center is drifting with a constant velocity of vE = Ex/B in the −y direction (for

Ex > 0).

A general formula for the drift velocity can be obtained by solving Eq. 2.8 in

vector form. Considering the drift to be steady state, the term mdv/dt in Eq.

2.8 can be omitted [6]. Then the drift velocity is found as

vE =
E×B
B2

, (2.17)

pointing in the direction perpendicular to both electric and magnetic �elds.

2.4 Kinetic Theory

A plasma system contains a vary large number of interacting charged particles.

As it is not practical to track all these individual particles, a statistical ap-
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proach is more convenient. In kinetic theory, plasma species are represented by

a velocity distribution function, f(r,v, t) de�ned in position and velocity spaces.

The f function gives the probable number of particles to be found in a unit

volume, at position r and time t, having velocity components between vx and

vx + dvx, vy and vy + dvy and vz and vz + dvz The integration of f over the

velocity space gives the particle number density at a position and time, n(r, t).

n(r, t) =

∫ ∞
−∞

f(r,v, t)dv (2.18)

Here dv denotes an in�nitesimal volume element dvxdvydvz in velocity space. For

convenience, a normalized velocity distribution function is de�ned, f̂(r,v, t) =

f(r,v, t)/n(r, t) such that the following integral gives unity,

∫ ∞
−∞

f̂(r,v, t)dv = 1. (2.19)

Hence, f̂(r,v, t)dv gives the probability that a particle, at a given position and

time, has velocity components between v and v+ dv.

The macroscopic variables such as �ow velocity, kinetic pressure, thermal energy

�ux can be considered as average values of physical quantities involving the

collective behavior of a large number of particles. Therefore, these variables

can be calculated by taking various moments of the distribution function in the

following way:

〈Q(r,v, t)〉 =
1

n(r, t)

∫ ∞
−∞

Q(r,v, t)f(r,v, t)dv =

∫ ∞
−∞

Q(r,v, t)f̂(r,v, t)dv.

(2.20)

Here Q(r,v, t) is some particle property (It may be the mass, velocity, momen-

tum, or energy of the particle) and 〈Q(r,v, t)〉 stands for the average value of

this property with respect to velocity space. The average value is a macroscopic

quantity always independent of v, being a function of only r and t.

The fundamental di�erential kinetic equation which the distribution function
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has to satisfy is the Boltzmann equation:

∂fs
∂t

+ v · ∇fs +
F
ms

· ∇vfs =

(
δfs
δt

)
coll

(2.21)

where fs is the velocity distribution function for the species, s, the right hand

side (RHS) term represents the rate of change of fs (the net loss or gain of s

type particles due to collisions) and F is the force acting on the particles. For a

collisionless plasma the RHS is zero and if the force F is entirely electromagnetic

(Lorentz force in Eq. 2.8) the Boltzmann equation takes the special form

∂fs
∂t

+ v · ∇fs +
qs(E+ v×B)

ms

∇vfs = 0 (2.22)

which is called the Vlasov equation. Here qs is the charge of a particle of type s.

The equilibrium distribution function is the time independent (∂f/∂t = 0) so-

lution of the Boltzmann equation in the absence of external forces (Fext = 0).

In the equilibrium state the particle interactions do not cause any change in the

distribution function with time and there are no spatial gradients in the particle

number density. Under these conditions, the distribution function is homoge-

neous (∇f = 0 and f = f(v)). The velocity distribution function satisfying

the Boltzmann equation with the conditions mentioned above and therefore

representing the equilibrium state is called Maxwell-Boltzmann or Maxwellian

distribution function and it has the form

f̂(v) =
( m

2πkT

)1/2

exp

(
−mv

2

2kT

)
. (2.23)

The average kinetic energy of a particle in the Maxwellian distribution in three

dimensions is

Eave = 〈1
2
mv2〉 =

∫ ∞
−∞

1

2
mv2f̂(v)dv =

3

2
kT. (2.24)

Since T is related to average energies of particles, it is very common in plasma

physics to give temperatures in units of energy such as eV (electronvolt). For

kT = 1 eV = 1.6 × 1019 J , we have T = 1.6×10−19J
1.38×10−23J/K

= 11600 K. Thus the
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conversion factor is 1 eV = 11600 K. For example, a 10 eV plasma means that

kT = 10 eV and T = 1, 16× 105 K.

The velocity distribution functions hence the energies of the particles tend to

equilibrate via collisions between like particles and between di�erent species.

It often happens in a plasma that the ions and the electrons have separate

Maxwellian distributions with di�erent temperatures, Ti and Te. The reason of

this is that the collision rate among ions or among electrons themselves is larger

than the rate of collisions between an ion and an electron. Each species reach its

own thermal equilibrium long before the equalization of the two temperatures.

Actually the plasma may not last so long that the temperature equalization

of di�erent species occurs. This is why a plasma is generally characterized by

separate temperatures for electrons and ions.

2.5 Transport Equations

In the previous section, it has been mentioned that macroscopic variables can

be obtained from the velocity distribution function. However, instead of solving

the Boltzmann equation for the distribution function, the di�erential equations

governing the macroscopic variables can be derived directly from the Boltzmann

equation by taking its moments. Multiplying the Boltzmann equation by 1,v

and v2/2, respectively and integrating over the velocity space give the three

macroscopic transport equations : conservation of particles, momentum and en-

ergy.

In many cases, the plasma species are treated as �uids assuming that they

have Maxwellian velocity distributions. In this case they are described by the

following �uid equations.

2.5.1 Particle Conservation

The continuity equation describes the conservation of particles and/or charges

in the plasma and it is given by
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∂ns
∂t

+∇ · (nsvs) = ṅs, (2.25)

where ṅs represents a source or sink term for a plasma species, s.

2.5.2 Momentum Conservation

The momentum transfer for each particle species s is described by the following

equation:

msns
dvs
dt

= msns

[
∂vs
∂t

+ (vs · ∇)vs

]
= qsns(E+ vs ×B)−∇ · ps −msns

∑
s,r

νsr(vs − vr). (2.26)

The forces represented on the right-hand side of Eq. 2.26 are the Lorentz force,

the pressure gradient (ps) force and the forces due to collisions, respectively. If

the pressure is isotropic, it is a scalar given by P = nkT . In the collision term,

νsr is the collision frequency between species s and r.

2.5.3 Energy Conservation

For a charged species s, moving with velocity vs, the energy equation is given in

a general form by

∂

∂t

(
nsms

vs
2

2
+

3

2
ps

)
+∇ ·

(
nsms

vs
2

2
+

5

2
ps

)
vs −∇ · (Ks∇Ts)

= qsns

(
E+

Rs

qsns

)
· vs +Qs −Ψs. (2.27)

On the left-hand side, the �rst divergence term represents the macroscopic en-

ergy �ux, the second the work done by the pressure and the third the heat

conduction. Ks denotes the thermal conductivity.

The �rst term on the right-hand side of Eq. 2.27 is the Joule heating. The term,

Rs, represents the momentum change of particles s as a result of collisions with
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other particles. Qs represents the heat generated/lost due to elastic collisions

and Ψs, is the energy loss due to inelastic collision processes such as excitation

and ionization.

2.6 Collisions and Ionization

As already expressed in previous sections, charged particles in a plasma undergo

collisions with other charged particles and neutral atoms which allow momentum

transfer between them. Many plasma processes and properties such as ionization

rate, di�usion, mobility, and resistivity depend on the collision rate of the parti-

cles. Collision frequencies strongly depend on the particle velocities and collision

cross-sections. To illustrate this, consider a thin slice with an area, A, and a

thickness, dx, containing neutral gas atoms which are spheres of cross-sectional

area, σ. The number of atoms in the slice is naAdx, where na is the density of

the neutral gas. Assume that fast-moving charged particles are incident upon

the slice(Fig. 2.1).

Figure 2.1: a slice of neutral gas with an area of A and a thickness of dx (taken
from)

The spheres occupy a fraction of the slice area, naAσdx/A = naσdx. If the

incident �ux of particles is Γ, then the �ux that emerges on the other side of the

slice without making a collision is

Γ
′
= Γ(1− naσdx). (2.28)
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The change in the �ux as the particles pass through the slice can be written as

dΓ/dx = −Γnaσ. (2.29)

The solution to Eq. 2.29 is

Γ = Γ0e
−naσx = Γ0e

−x/λ. (2.30)

In a distance λ, the particle �ux would decrease to 1/e of its initial value. This

quantity, λ, is the mean free path for particle collisions:

λ =
1

naσ
. (2.31)

Therefore, the mean time between collisions can be calculated by the mean free

path divided by the charged particle velocity v:

τ =
λ

v
=

1

naσv
. (2.32)

The mean frequency of collisions is then τ−1 = v/λ. Averaging over particles

of all velocities v in a Maxwellian distribution, the collision frequency can be

expressed as ν = na〈σv〉.

In the case of a relatively slowly moving particle, such as a neutral atom incident

on a volume containing fast-moving electrons, the mean free path for the neutral

atom is given by

λ =
va

ne〈σve〉
, (2.33)

where va and ve are the neutral atom and the electron velocities respectively.

The neutral atoms are ionized as a result of the inelastic electron-neutral col-

lisions. The ionization rate coe�cient is 〈σive〉, which is the ionization cross

section, σi, averaged over the electron velocity distribution function. The ion-

ization rate coe�cient for a Maxwellian electron velocity distribution is given in

Appendix A. The ion production rate per unit volume is given as a function of

this coe�cient and neutral and electron densities:
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dni
dt

= nane〈σive〉. (2.34)

The inelastic electron-neutral collisions may also result in the excitation of the

neutral atoms. The production rate per unit volume of excited neutrals, nex, is

dnex
dt

=
∑
j

nane〈σexve〉j, (2.35)

where σex is the excitation cross section. The excitation rate coe�cient is aver-

aged over the electron distribution function and summed over all possible excited

states j.

2.7 Di�usion and Mobility

In a plasma, particles tend to di�use to lower density regions. The simplest

case of di�usion is observed under zero magnetic �eld and an expression for the

di�usion can be found from the �uid equation of motion:

mn
dv
dt

= qnE−∇ · p−mnν(v− v0). (2.36)

In this case, further assume that the velocity of the particle species of interest

is large compared to the other species(v >> v0) and the plasma is isothermal,

∇p = kT∇n. Also let the di�usion be steady state and assume that it is

occurring with a su�ciently high velocity such that the convective derivative

can be neglected. Eq. 2.36 can then be solved for the particle velocity:

v =
q

mν
E− kT

mν

∇n
n
. (2.37)

In Eq. 2.37 the coe�cient in front of the electric �eld is called the mobility :

µ =
|q|
mν

. (2.38)

Similarly, the coe�cient of the density gradient term is called the di�usion

coe�cient :

D =
kT

mν
. (2.39)
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Therefore the mobility is related to the di�usion coe�cient as in the following

equation, known as Einstein relation:

µ =
|q|D
kT

. (2.40)

In the presence of a magnetic �eld, charged particle motion can be analyzed in

two separate directions. Along the magnetic �eld lines, mobility and di�usion

have the same expressions as in the B = 0 case (Eq. 2.38 and Eq. 2.39 ), since

B does not a�ect the motion of the particles in parallel direction. However, in

the perpendicular direction, the magnetic �eld strength in�uences the mobility

and di�usion coe�cients. Therefore, by applying a magnetic �eld, the plasma

di�usion can be reduced as in the case of electron con�nement in Hall thrusters.

The perpendicular component of the �uid equation of motion for either species

with the same assumptions used in the magnetic �eld-free case is written as

follows

mn
dv⊥
dt

= qn(E+ v⊥ ×B)− kT∇n−mnνv⊥ = 0. (2.41)

With B = B(z), the x and y components of the above equation in (x, y, z)

rectangular coordinate system are

mnνvx = qnEx− kT
∂n

∂x
+ qnvyB, mnνvy = qnEy − kT

∂n

∂y
+ qnvxB. (2.42)

Using the de�nitions of µ, D and ωc, the x and y components of the velocity

can be written as

vx = µEx − kT
∂n

∂x
+ qnvyB, vy = µEy − kT

∂n

∂y
+ qnvxB. (2.43)

Solving these two equations, vx and vy are found. Then the perpendicular ve-

locity can be written in vector form as

v⊥ = ±µ⊥E−D⊥
∇n
n

+
vE + vD

1 + (ν2/ωc2)
. (2.44)

Here, µ⊥ is the perpendicular electron mobility,

µ⊥ =
µ

1 + ωc2/ν2
, (2.45)
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D⊥ is the perpendicular di�usion coe�cient,

D⊥ =
D

1 + ωc2/ν2
, (2.46)

vE is the E×B drift (Eq. 2.17) and vD is the the diamagnetic drift,

vD = − kT

qB2

∇n×B
n

. (2.47)

From Eq. 2.44, it is evident that drifts are slowed down by collisions with neu-

trals; the drag factor is 1 + ν2/ωc
2. The mobility and di�usion drifts, compared

to the B = 0 case, are reduced by the factor 1+ωc
2/ν2. When ωc2/ν2 << 1, the

magnetic �eld has little e�ect on di�usion. When ωc
2/ν2 >> 1, however, the

magnetic �eld signi�cantly retards the rate of di�usion across B. In this case,

D⊥ =
kT

mν

1

ωc2/ν2
=

kTν

mωc2
. (2.48)

Contrary to B = 0 case, where di�usion is inhibited by collisions (in Eq. 2.39,

ν is on the denominator), in the B 6= 0 case, collisions enhance the cross-�eld

di�usion (in Eq. 2.48, ν is on the numerator). That means, without collisions,

particles are totally con�ned by the magnetic �eld and they do not di�use at

all.

The classical cross-�eld di�usion coe�cient derived above is proportional to

1/B2. However, in the laboratory experiments of many devices, including Hall

thrusters, the perpendicular di�usion coe�cient over some regions is found to be

close to the following expression, which is called the anomalous Bohm di�usion

coe�cient [6]:

DB =
kTe

16eB
. (2.49)

Collisions of electrons with other species lead to resistivity which causes the

so called ohmic heating. The momentum equation (Eq. 2.26) for electrons,

assuming steady state and neglecting electron inertia, can be written as

0 = −en(E+ ve ×B)−∇ · pe −mn[νei(ve − vi) + νen(ve − va)]. (2.50)
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Here, both electron-ion and electron-neutral collisions are taken into account.

Neglecting va (since it is typically very small with respect to electron velocity)

and using the charged particle current density given by j = qnv, the above

equation can be rewritten as

ηje = E+
∇ · pe − je ×B

en
− ηeiji. (2.51)

This is theOhm's law for partially ionized plasmas. Here, η is the total resistivity

and de�ned as

η =
m(νei + νen)

e2n
. (2.52)

ηei is the plasma resistivity due to only electron-ion collisions:

ηei =
mνei
e2n

. (2.53)

The resistivity term is related to mobility such that η = 1/(enµ). Also note that

the conductivity, σ, is the inverse of the resistivity, σ = 1/η.
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CHAPTER 3

THEORY OF HALL THRUSTERS

The main components of a Hall thruster and its operation principles have been

explained brie�y in Section 1.4. Here, the physics of the Hall thrusters will be

analyzed in more detail.

3.1 General properties of a Hall Thruster

In Hall thrusters, a potential di�erence, Ud, generated by the discharge power

supply is applied between the anode and the cathode. From the anode, the

neutral propellant gas is injected into the discharge channel (Figure 1.3). The

cathode, located outside the channel, ejects electrons, some fraction of which

(∼ 1/3) ionizes the propellant gas through collisions with neutral atoms. The

rest of the electrons neutralizes the ion beam leaving the discharge channel.

A magnetic circuit generates an axisymmetric magnetic �eld primarily in the

radial direction between the inner and outer poles. The magnetic circuit consists

of inner and outer coils which are most typically connected in series to the power

supply. By using the magnetic �eld, the mobility of the electrons �owing from

the cathode to the anode is reduced (see Sec. 2.7). These electrons spiral along

the the magnetic �eld lines with a Larmor radius (Eq. 2.14) and drift in the

E × B direction. Since the motion of electrons across the magnetic �eld lines

is slowed down, their travel time to the anode is signi�cantly increased. This

elongated travel time of electrons in the channel permits �rst of all to e�ciently

ionize the propellant and secondly to distribute the applied discharge voltage
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along the channel axis in such a way that the created axial electric accelerates

the ions. However, the electrons are not permanently con�ned: they di�use by

collisional processes toward the anode and channel walls. Electrons, reaching the

anode, pass through the outer circuit and are then emitted from the cathode to

complete the circuit.

3.2 Types of Hall Thrusters

There are two main variants of Hall thrusters depending on the material of the

discharge channel. The thrusters having dielectric insulating channel walls are

called stationary plasma thruster (SPT). The walls are manufactured from ce-

ramics such as boron nitride (BN), borosil (BN − SiO2 ) or alumina (Al2O3).

The second version of Hall thrusters, having metallic conducting walls are called

thruster with anode layer (TAL). Although the basic operation principles men-

tioned in the previous section are the same for both types, they have some

distinctive features.

Figure 3.1: schematic of SPT (left) and TAL (right) type Hall Thrusters [31].

In SPTs, the ceramic wall is critical in the discharge. The collisions of charged

particles with the walls generate low energy secondary electrons which lower the

electron temperature in the discharge plasma. As a result of the low electron

temperature, the acceleration process is more extended and gradual. The chan-

nel length of this type of thrusters, L, is greater then the channel width, w (in
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general L ≈ 2w).

In TALs, without the reduction of the electron temperature, the plasma potential

increases sharply toward the anode such that the ion generation and acceleration

occur mainly in a very thin layer near the anode. Therefore ionization and

acceleration region is shorter in this type of thrusters. The channel length in

TALs is smaller than the channel width. The channel wall is biased negatively

such that it repels the electrons. Consequently, the electron impingement on

the walls and electron-power losses are reduced. The schematic of both types of

Hall thrusters are shown in Fig. 3.1.

Until now only SPTs had �ight experience except one TAL model, D-55. In this

thesis, the SPT type is the subject of the study.

3.3 Propellant

The most common propellant used in Hall thrusters is xenon. As an inert gas,

it does not react with the spacecraft therefore the spacecraft contamination is

minimized. Moreover, compared with the other inert gases (argon, krypton and

neon), Xenon has a higher atomic weight but a moderate ionization energy.

Therefore, it has the lowest ratio of ionization energy to propellant mass. This

advantage makes a Hall thruster work more e�ciently on xenon than the other

inert gases at similar discharge voltages. The disadvantage of the xenon is its

high cost and low availability. Therefore, some inert gases have been studied

as an alternative to xenon and tested in laboratory experiments. In missions

with high speci�c impulse requirement, the relatively higher ionization energy

per unit mass may not cause a serious problem and therefore other inert gases

may be utilized [31].

3.4 Magnetic and Electric Fields

The axial variation of the radial magnetic �eld magnitude in Hall thrusters

has the typical distribution shown in Fig. 3.2, having a maximum near the
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channel exit and decreasing toward the anode [6]. In the strong magnetic �eld

region, the electrons have reduced mobility and they experience heating due to

collisions. The high electron temperature in this region provides high ionization

rate. Consequently, the axial electric �eld also reaches its maximum near the

channel exit plane (Fig. 3.2). The region located upstream of the electric �eld

peak is called the �ionization region�. Here, almost all neutral atoms are ionized

before leaving the channel through collisions with the energetic electrons. The

ionization rate coe�cient (〈σive〉 in Eq. 2.34) is a function of the electron velocity
and ionization cross-section, both of which depend on the electron temperature.

For Maxwellian electrons, 〈σive〉 is given in Appendix A.

Figure 3.2: Typical radial magnetic �eld and axial electric �eld pro�les in a
HET [6].

Ions in the discharge channel are mostly singly charged. The reason of this is

that once the ions are created they are quickly accelerated by the electric �eld

and ejected from the channel before another collision with an electron takes place

and one more electron is removed from the ion. However, multiply charged ions

also exist in the channel. Such ions are produced in general as a result of single

collisions with electrons that have su�cient energy to remove more than one

electron in a single collision from a neutral atom. The energy required for such

collisions is high and the cross sections for multiple ionization in a single collision

are small. As a consequence, the amount of multiply charged ions is relatively

small (10-15 % of the ions [23]).
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The region near the exit plane where the electric �eld peaks is called the accel-

eration region. Since the ions may be generated at any location throughout the

channel of the thruster, there is no a distinct boundary between the ionization

and acceleration regions [31].

The velocity that an ion reaches at the end of the acceleration region depends

on the potential at the location where it is generated. Therefore, the maximum

velocity of a singly charged ion at the channel exit is

vmax =

(
2e

M
(Ud −∆)

)1/2

, (3.1)

where ∆ is the voltage spent for ionization. At ∆ = 0 and for Ud = 300 V

vmax is found approximately as 21 km/s for Xe+. Experimentally, the mean ion

energy corresponds to 70− 90 % of Ud.

In the region where the magnetic �eld is large, the electrons con�ned by the B

drift in the E×B direction, which is normal to the electric and magnetic �elds.

As the B is almost radial (Br) and E is almost axial (Ez), the electrons drift in

the azimuthal direction (θ̂ in cylindrical coordinates). This strong magnetic �eld

region which spans the ionization and the acceleration regions is often called the

closed drift region and it covers a signi�cant fraction of the total channel length.

The closed drift region has an annular shape. The radial width (the di�erence

between the outer and inner radii), w, is much smaller than the channel mean

radius. The electric �eld is almost uniform in the radial direction and negligible

outside the closed drift region. Therefore, it can be approximated as E = Ud/lD,

where lD is the length of the closed drift region. The drift of electrons in the

azimuthal direction gives rise to the Hall current which is the integral of the

drift velocity, vE (Eq. 2.17) and the electron plasma density, ne, over lD:

IH = nee

(∫ lD

0

vEdz

)
w = nee

(∫ lD

0

E/Bdz

)
w. (3.2)

As we assume E = Ud/lD, the Hall current is approximated by

IH ≈ neewUd/B. (3.3)
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It can be deduced from this equation that for a �xed magnetic �eld the Hall

current is proportional to the applied discharge voltage and the channel width.

In Hall thrusters optimized for high e�ciency, the optimal magnetic �eld is

proportional to the discharge voltage [6]. Therefore, from Eq. 3.3 it can be

concluded that for a given plasma density or beam current in high-e�ciency

Hall thrusters, the Hall current is approximately constant.

Although electrons are con�ned to the closed drift region by the magnetic �eld,

they di�use to the anode as a result of collisions (see Sec. 2.7). However, as

they di�use at a low rate, electrons emitted by the cathode and the secondary

electrons created from the ionization of neutrals continuously replace them such

that the quasi-neutrality assumption always holds within the closed drift region

[6].

Due to low axial electron current density near the channel exit, the ion current

dominates in the closed drift region. Thus, the current is carried mostly by ions,

jz = jiz. In the near-anode region, however, the electron current dominates due

to low ionization rate and small ion velocity.

In order to create the ionization and acceleration regions as described above,

the magnetic �eld strength must be chosen such that the electrons are con�ned

to closed drift region whereas the ions' motion is not obstructed. The reduction

of electrons' mobility necessitates that ω2
c/ν

2 >> 1 (See Eq. 2.45). This means

that the electrons must be magnetized such that they make many orbits around

a �eld line before a collision with a neutral occurs and results in cross-�eld

di�usion [6]. Accordingly, the electron Larmor radius, re, must be much less

than the closed drift region length, lD. If an electron's velocity is characterized

by its thermal velocity, vth, the electron Larmor radius is

re =
vth
ωc

=
m

eB

√
8kTe
πm

=
1

B

√
8m

πe
TeV << lD. (3.4)

For example, the electron Larmor radius at a temperature of 25 eV and a typical

radial magnetic �eld strength of 150 G typical in Hall thrusters is 0.13 cm, which

is much smaller than the channel width and plasma length in HETs [6].
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On the other hand, the ions must be non magnetized so that their motion is

not in�uenced by the magnetic �eld and they can be accelerated e�ectively out

of the channel by the electric �eld. Hence, the length of the closed drift region,

lD, should be signi�cantly less than the Larmor radius for ions, ri. Taking the

maximum ion velocity as in Eq. 3.1, the ion Larmor radius is

ri =
vi
ωc

=
M

eB

√
2eUd
M

=
1

B

√
2M

e
Ud >> lD. (3.5)

For example, ri, in the 150 G radial �eld and at 300 V of applied discharge

voltage is about 180 cm, which is much larger than the channel or plasma di-

mensions [6]. To sum up, the magnetic �eld strength is determined such that

the electrons are trapped by the �eld while the ions are insensitive to it.

Figure 3.3: Usual magnetic �eld con�guration of a HET [6].

The distribution of the magnetic �eld lines is also important because their shape

controls the ion trajectories. The magnetic �eld between the anode and the

maximum �eld location should align in the radial direction at the mean diameter

of the discharge chamber [31]. In order to focus the ions such that they are

accelerated in the axial direction and to minimize their impingement on the

inner and outer walls of the discharge channel, the magnetic �eld strength must

be continuously increasing from the anode to the location of maximum strength

near the exit plane. Such a con�guration results in the curved �eld lines, concave

as seen in Fig. 3.3.
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As the equipotential lines approximately follow the shapes of magnetic �eld lines

(explained in Sec 3.6), a �eld con�guration as in Fig. 3.3 allows the focusing of

ions away from the channel walls, so that much of the ions can leave the channel

without striking a wall. A desirable shape of the magnetic �eld can be obtained

by adjusting the relative strengths of the inner and outer magnet windings.

3.5 Potential and Current Distributions

In HETs, the discharge voltage, Ud, applied between the anode and the cathode

typically has the axial pro�le as shown in Fig. 3.4. In the previous section it has

been mentioned that the electric �eld is nearly zero in the near anode region and

peaks toward the channel exit. Accordingly, the potential is almost constant in

the weak electric �eld region then it falls sharply toward the cathode potential

near the channel exit (Fig. 3.4). The voltage of the beam,Ub, formed by the

exhausted ions and neutralizing electrons is slightly lower than the discharge

voltage. The di�erence between them is called the coupling voltage, Uc, which

is required to extract electrons from the cathode.

Figure 3.4: Hall thruster potential distribution (adapted from [6]).

The discharge current, Id (see Fig. 3.5), is the net current �owing through the

discharge supply. Ion �ux to the anode is very small so the discharge current is

almost equal to the the electron current collected by the anode, Ia. Similarly,

the discharge current is equal to the electron current emitted by the cathode, Ic,

since the ion �ux to the cathode is negligible. Hence, the discharge current is

approximately Id = Ia = Ic. The ion and electron currents to the channel walls
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are equal so the net current to the walls is zero.

Figure 3.5: Schematic showing the electric currents in the discharge channel of
a HET (adapted from [6]).

Some fraction of the electrons �owing to the anode comes from the ionized

atoms, Ies (secondary electrons) and the other from the cathode Icp (primary

electrons). Thus Id = Ia = Ies + Icp.

Since in the ionization event, the total charge of the electrons removed from

atoms is equal to the total charge of the ions generated, the ion beam current

is equal to the secondary electron current to the anode (Iib = Ies).

Some fraction of the electrons emitted by the cathode neutralizes the ion beam,

Icb . Therefore the ion beam current and the neutralizing electron current are

equal (Iib = Icb) which means that Icb = Ies.

The total electron current from the cathode is then Ic = Icp + Icb = Icp + Ies =

Ia = Id. A schematic of the electric currents is shown in the Fig. 3.5.

3.6 Modeling of Hall thrusters

An exact and self-consistent description of a SPT can be done by solving the

kinetic Boltzmann equation (Eq. 2.21) for each species with Maxwell's equa-

tions (Eq. 2.4) simultaneously [23]. However, complexity of the full description
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of real processes in SPTs and therefore the substantial computational load of

large number of particles in kinetic approach forces researchers to use some as-

sumptions such as describing the plasma species as �uids instead of particles

and reducing the problem to one or two dimensions in space.

Early Hall thruster studies were based predominantly on experiments rather

than numerical analyses due to insu�cient computational tools available at that

time. However, during the past 20 years, numerical models have also evolved.

These models can be divided into three main categories: �uid, kinetic and hybrid

models.

Some assumptions are common in almost all HET models. First of all, as the

time variation of the magnetic �eld due to moving charges is small compared to

the externally applied �eld, the magnetic �eld is assumed as static. It is either

numerically calculated at the beginning or taken from experimental studies or

it is expressed in an approximate analytical form. Since ∂B/∂t = 0, ∇×E = 0

(Eq. 2.4) and the electrostatic approximation is valid, E = −∇U . Also, as the
ion Larmor radius is much larger than the thruster dimensions, the magnetic

force acting on ions is neglected.

In kinetic models, for each plasma species, particle motion is described by the

velocity distribution function obtained from the solution of the Boltzmann equa-

tion. Although kinetic modeling is advantageous in providing detailed informa-

tion about the physics of plasma processes, it is not practical due to very large

computation time required. Fluid models include continuity, momentum and

energy equations which are derived by taking moments of the Boltzmann equa-

tion in velocity space (Sec. 2.5). Therefore, plasma properties of interest in �uid

models are macroscopic quantities. Although these models are computationally

more e�cient, they do not represent all the physical aspects adequately. Hy-

brid modeling, where electrons are modeled as �uid while neutrals and ions are

treated as particles, is a compromise between the kinetic and �uid approaches.

In many thruster models, electrons are assumed to have the Maxwellian ve-

locity distribution and treated as �uids. In the �uid formulation, the electron

transport is described in the magnetic frame of reference by the Ohm's law (Eq.
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2.51), which is derived from the electron momentum equation. There are three

components of the resistivity in the direction perpendicular, parallel and trans-

verse to the local magnetic �eld, which are represented by the subscripts ⊥, ‖,∧,
respectively.

ηj = η⊥j⊥ + η‖j‖ + η∧j∧ (3.6)

Along the magnetic �eld lines, j×B is zero. Therefore, the electric �eld along

the B �eld lines is

E = −∇p
en

+ ηje + ηeiji = −∇u. (3.7)

The motion of electrons is not constrained along magnetic �eld lines. Thus, the

electron di�usion coe�cient is much higher along �eld lines than across them.

Therefore, it is possible to consider a simple balance of pressure and electric

forces along the �eld lines by ∇p = en∇U .

Electrons moving very fast along the �eld lines reach thermal equilibrium very

rapidly. Assuming uniform electron temperature along the �eld lines, the po-

tential at any point on a given �eld line is [6]

U = U0 +
kTe
e
ln

(
n

n0

)
, (3.8)

where U0 and n0 are the potential and density at a reference point on a given

�eld line, respectively. The density gradient is relatively small along the �eld

lines, therefore potential is almost constant. Equipotential lines coincide with

the magnetic �eld lines within kTe/e [6].

Across the magnetic �eld lines, the perpendicular resistivity can be written in

terms of the perpendicular electron mobility:

η⊥ =
1

enµe
=

1 + ωc
2/ν2

enµe
. (3.9)

Then the perpendicular electron �ux can be written from the Ohm's law as

je⊥ = µe⊥

(
enE⊥ +

∂pe
∂x

)
− νe⊥
νei

ji⊥, (3.10)
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where µei is the electron mobility due to only electron-ion collisions.

The collision frequency include both electron-ion and electron-neutral collisions.

Measurements show that the electron transport across the magnetic �eld is

higher than that predicted by the classical theory. Two mechanisms play a

role in this "anomalous" electron transport. First is the electron wall interac-

tions by which the electron momentum is scattered and secondary electrons are

introduced into the channel. This e�ect is represented by an e�ective wall scat-

tering frequency. The second is the Bohm di�usion which arises from azimuthal

drift instabilities. Using the Bohm di�usion coe�cient from Eq. 2.49 and Eq.

2.40 , Bohm mobility can be de�ned as

νB =
1

γB
=

e

γmωc
, (3.11)

where γ is a coe�cient adjusted to make the results of the numerical analysis

�t the experimental data [6]. The Bohm collision frequency is then νB = γωc.

Therefore, the total collision frequency is

νm = νei + νen + νw + νB. (3.12)

The electron energy equation applied in Hall thrusters is derived from the general

form of the energy equation 2.27 (see Ref. [6]).

∂

∂t

(
3

2
nekTe

)
+∇ ·

(
5

2
nekTeve

)
−∇(Ke∇Te) = E · je −R− S − Pw, (3.13)

where E · je is the ohmic heating, R is the radiative energy loss due to excitation

of neutrals, S is the ionization energy loss, and Pw is the electron energy loss

to the walls. Note that the electron directed kinetic energy term (nemve2) is

omitted since it is small compared to electron thermal energy [20]. The radiative

energy loss is R = Uexnena〈σexve〉 and the ionization energy loss is given by

S = Uinena〈σive〉, where Uex and Ui are the excitation and ionization potentials,

respectively.

Contrary to electrons, ions in a Hall thruster have low random velocities and

temperatures, but high directed velocities as they are accelerated by the electric

�eld. Therefore they do not reach thermal equilibrium, their velocities and �uxes
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tend to be di�erent from Maxwellian distribution. Also, ions are assumed to be

collisionless, because electron-ion collisions mean free path is much larger than

the discharge channel length [6, 3]. Due to their high directed velocities they

leave the channel after a single pass. Therefore the dynamics of the ions is

described by the kinetic Boltzmann equation [25]:

∂fi
∂t

+ vi · ∇fi +
e

M
(E+ vi ×B) · ∇vi

fi = neσivefa(vi). (3.14)

Here, the term on the RHS represent the ion generation. The electron-ion recom-

bination is ignored since the recombination rate is several order of magnitude

smaller than the ionization rate [20].

Similarly, the neutral atoms dynamics is described by

∂fa
∂t

+ va · ∇fa = −neσivefa(vi). (3.15)

Then, the ion number density and the ion current are calculated by the following

integrals:

ni(r, t) =

∫ ∞
−∞

fi(r,vi, t)dvi, ji(r, t) = e

∫ ∞
−∞

vifi(r,vi, t)dvi. (3.16)

3.7 Survey of Numerical Models

Fluid models consider all species to have Maxwellian velocity distribution. Ions

are typically assumed as cold (ion thermal pressure is neglected) and electrons

have a single temperature. Fluid codes are very fast and they have been ap-

plied for both 1-D and 2-D axisymmetric geometries and both stationary and

time-dependent solutions. A 1-D steady-state model including the anode sheath

region and the plume region near the exit plane was developed by Ahedo et

al. [7]. 2-D models were developed by Roy and Pandey [26], S.Barral [27] and

Mikellides et al. [10].

The kinetic approach allows to handle the non-Maxwellian distribution functions

expected in Hall thrusters. Therefore, the accuracy of the results is improved,

but at the expense of greater computational cost. In such models, kinetic equa-

tions are typically solved using particle-in-cell (PIC) method while collisions are
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modeled by Monte-Carlo (MCC) method. In the PIC-MCC method, plasma

species are represented by discrete macro-particles in each cell. The algorithm

is as follows: Electric charges are distributed to the computation domain. The

electric potential is calculated from the Poisson equation. Having determined

the electric �eld, particles are propagated. Then for each macro-particle, colli-

sion probability is calculated by using the cross-section data for various type of

collisions and comparing it to a random number. If the collisions result in ion-

ization, new particles are introduced to the system. The new charge distribution

is calculated and the whole procedure is repeated. Electrons move on a much

smaller timescales than ions and neutral atoms. Thus, timesteps for electrons

are two order of magnitude smaller than timesteps for heavy particles. Several

kinetic models have been developed by M.Hirakawa and Y.Arakawa [9], Szabo

[11], Gorshkov et al. [28] and Taccogna [29].

Hybrid models, by considering heavy species as particles and electrons as a

�uid, combine the accuracy of the kinetic models and speed of the �uid models.

The hybrid codes were pioneered by M.Fife [20]. In his 2-D model he used

the PIC treatment for heavy particles. For electrons, he used the thermalized

potential concept (Eq. 3.8), therefore he reduced the 2-D problem to a quasi

1-D problem. Having determined �rst the thermalized potential values for each

individual �eld lines, he calculated the potentials at grid points along those lines.

This approach was also adopted in models by Komurasaki and Arakawa [16],

Garrigues et al. [17] and Koo [13]. Besides these 2-D models, there exist also

many 1-D hybrid codes which are simpler but which can good results to some

extent. Some examples of them are the models developed by Lentz [4], Boeuf

[3], Morozov and Savelyev [23], Hara and Boyd [15]. In these models, kinetic

Vlasov equation for ions is directly solved instead of using a PIC algorithm.
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CHAPTER 4

ONE DIMENSIONAL FLUID AND HYBRID MODELS

In this thesis, a numerical analysis of the plasma properties in the discharge

channel of a Hall thruster is carried out, based on a physical model by A. I. Mo-

rozov [23, 24, 22, 21]. In this chapter, the model is presented: the assumptions,

governing equations and boundary conditions are explained in detail. Then, the

non-dimensional forms of the governing equations are derived.

Our model is one dimensional so that plasma variables are uniform in the radial

and azimuthal directions but change in the axial direction (x− axis) along the

discharge channel (as in the models in references [4, 3, 23, 15]). The compu-

tational domain is bounded by the anode surface (at the base of the channel)

(x = 0) and the channel exit (x = L) where the cathode is placed.

Xenon is used as the propellant. Three species are considered in the model: Xe

atoms, Xe+ ions and electrons. Although it is known from experiments that

doubly charged xenon ions, Xe+2, also exist in the channel, they are neglected

in this model due to their low concentration (see Sec 3.4). Ions are insensitive

to the magnetic �eld since their Larmor radius is much greater than the channel

dimensions (Eq. 3.5) and they leave the discharge channel without colliding

with other particles [3].

Xe atoms are injected into the discharge channel with a velocity va. Since no

force is acting on them, they move with this constant velocity along the channel

[3]. Therefore momentum equation for neutral atoms is eliminated.

Another assumption in the model is quasi-neutrality. Everywhere along the
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discharge channel, ion and electron number densities are assumed to be equal,

ni ≈ ne. Therefore, both densities are denoted by n. The axial electric �eld is

not obtained from Poisson's equation but is calculated from Ohm's law.

It was explained in Sec. 3.6 that in Hall thrusters, magnetic �eld induced by the

motion of charged particles is small compared to externally applied magnetic

�eld. Therefore, the magnetic �eld is assumed to be static and approximated

analytically.

4.1 Fluid approach

4.1.1 Governing equations

The governing equations of the �uid model are taken from the model by Morozov

[23, 24] and they can be derived from the macroscopic transport equations given

in Sec. 2.5.

- the ion continuity equation

Eq. 2.25 can be written for ions in one dimension as

∂n

∂t
+
∂nv

∂x
= βnna, (4.1)

where v is the ion velocity and na is the neutral density. The source

term on the right-hand side (RHS) represents the ion generation. β is the

ionization rate coe�cient.

- the ion momentum equation

Since the ions are assumed as cold and collisionless, the second and third

terms in the momentum equation (Eq. 2.26) are dropped. Also, ion loss

to the channel walls is not taken into account. Therefore, the momentum

equation for ions is

∂nv

∂t
+
∂nv2

∂x
=
en

M
E + βnnava. (4.2)

HereM is the mass of a Xe atom. The second term on the RHS represents

the momentum contribution by the ionized atoms having a velocity va

before ionization.
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Multiplying Eq. 4.1 with v and substracting it from Eq. 4.2, the ion

momentum equation can also be written as

∂v

∂t
+ v

∂v

∂x
=
eE

M
+ βna(va − v). (4.3)

- the neutral atom continuity equation

∂na
∂t

+ va
∂na
∂x

= −βnna. (4.4)

As mentioned before, the neutral atom velocity, va, is constant throughout

the channel. The term on the RHS represents the neutral atom depletion

due to ionization.

- Ohm's law

The electron dynamics is governed by the Ohm's law (Eq. 2.51) de-

rived from the electron momentum equation. Neglecting electron di�usion

(∇p = 0) and electron-ion collisions (νei = 0), Ohm's law can be written

in a simpli�ed form as

E =
je
σ(x)

=
J − ji
σ(x)

, (4.5)

where J, je and ji are the discharge, electron and ion currents (per area),

respectively. The ion current density is ji = env and σ(x) is the plasma

conductivity which is the inverse of the resistivity. According to the clas-

sical transport theory, σ(x) ∼ 1/B2 (see Sec. 2.7), and it is de�ned in [21]

as

σ(x) = σ0

[
B0

B(x)

]2

, σ0 = const, B0 = const. (4.6)

Here B0 is the magnetic �eld strength at the anode surface and B(x) is the

pro�le of the magnetic �eld which is approximated in [24] as a parabolic

function of the axial position:

B(x) = B0[b0 + (1− b0)(x/L)2], (4.7)

where b0 = B(0)/B0.

- the equation of the electric circuit

Finally, the equation of the electric circuit is given by

Lc
dJ

dt
+RJ +

∫ L

0

Edx = U0. (4.8)
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Here U0 is the applied discharge voltage (It was denoted by Ud in the previous

chapters), Lc is the inductance and R is the resistance of the circuit.

The boundary conditions at the anode surface are

n(0, t) = n0, na(0, t) = na0, v(0, t) = v0, (4.9)

where constants n0, na0, v0 will be de�ned later on.

4.1.2 Non-dimensionalization of the �uid model equations

In order to simplify the problem, dimensionless form of the variables is intro-

duced. Dimensionless equations containing new variables are derived from the

original equations 4.1-4.8. In the application of the non-dimensionalization pro-

cess, the channel length L is taken as a unit of length. Then E0 = U0/L is a

unit of the electric �eld and J0 = U0/R0 a unit of the electric current density,

where R0 = L/σ0 is the resistivity of the channel with a cross-section of S = 1

m2. The neutral density at the anode na0 is taken as a unit density for both

neutrals and ions. Similarly, the ion velocity at the anode, v0, is taken as a unit

velocity for both neutrals and ions. The unit time is the unit length over the

unit velocity, t0 = L/v0.

Using the unit quantities mentioned above, new non-dimensional variables are

de�ned according to the relation p̂ = p/p0, where p is the physical variable, p0

is the unit quantity and p̂ is the nondimensional variable.

Then, a new set of equations is obtained. Substituting n = n̂na0, na = n̂ana0,

x = x̂L and t = t̂t0 = t̂L/v0 into Eq. 4.1, the ion continuity equation becomes

v0na0

L

∂n̂

∂t̂
+
na0v0

L

∂n̂v̂

∂x̂
= βn2

a0n̂n̂a.

Then, multiplying both sides with L/v0na0, we obtain

∂n̂

∂t̂
+
∂n̂v̂

∂x̂
=
βna0L

v0

n̂n̂a.

Similarly, the neutral continuity equation (Eq. 4.4) has the dimensionless form

∂n̂a

∂t̂
+ v̂a

∂n̂a
∂x̂

= −βna0L

v0

n̂n̂a. (4.10)
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Substituting E = U0Ê/L into Eq. 4.3 and using the non-dimensional variables

mentioned above, the ion momentum equation becomes

∂v̂

∂t̂
+ v̂

∂v̂

∂x̂
=

eU0

Mv2
0

Ê +
βna0L

v0

(v̂a − v̂). (4.11)

Inserting σ0 = L/R0 and J = ĴU0/R0 into Eq. 4.5, the Ohm's Law can be

written as

Ê
U0

L
=
Ĵ U0

R0
− en̂na0v̂v0

L
R0

1

[B̂(x̂)]2

. (4.12)

Multiplying both sides by L/U0, the non-dimensional electric �eld becomes

Ê =

[
Ĵ − ena0v0R0

U0

n̂v̂

]
[B̂(x̂)]2. (4.13)

Similarly, the equation of the electric circuit (Eq. 4.8) transforms into

LcU0v0

LR0

dĴ

dt̂
+ rR0

U0

R0

Ĵ +

∫ 1

0

(
U0Ê

L

)
Ldx̂ = U0,

where r is the non-dimensional circuit resistance and R is replaced by rR0.

Dividing both sides by U0, the circuit equation becomes

Lcv0

LR0

dĴ

dt̂
+ rĴ +

∫ 1

0

Êdx̂ = 1.

For convenience, the following dimensionless parameters are de�ned:

µ =
eU0

Mv0
2
, ν =

βna0L

v0

, χ =
ena0v0R0

U0

, l =
Lcv0

LR0

, r =
R

R0

. (4.14)

Using these parameters, the following set of �ve non-dimensional equations with

�ve unknowns (n̂, n̂a, v̂, Ê, Ĵ) is obtained:

∂n̂

∂t̂
+
∂n̂v̂

∂x̂
= νn̂n̂a,

∂v̂

∂t̂
+ v̂

∂v̂

∂x̂
= µÊ + νn̂a(v̂a − v̂),

∂n̂a

∂t̂
+ v̂a

∂n̂a
∂x̂

= −νn̂n̂a, (4.15)
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Ê = [B̂(x̂)]2(Ĵ − χn̂v̂),

l
dĴ

dt̂
+ rĴ +

∫ 1

0

Êdx̂ = 1.

The magnetic �eld in the dimensionless form is B̂ = B(x)/B0 (adopted from

[23]) and represented by the following analytical expression:

B̂(x̂) = b0 + (1− b0)(x̂)2, (4.16)

where b0 = B(0)/B0.

The inputs to the numerical code are the xenon �ow rate, ṁ, within the range

2.5− 5 mg/s, and the discharge voltage, U0, within the range 300− 500 V. The

channel length is L = 3 cm and the unit time is t0 = 15 µs. The ionization rate

parameter, β, is taken as β ' 5× 10−14 m3/s which is the ionization rate of Xe

at Te = 15 eV (the average electron temperature in the discharge channel). The

neutral atom velocity at the anode is va = 200 m/s. Then for a channel cross-

sectional area of A = 25 cm2, the neutral atom number density is calculated

from na0 = ṁ/MAva as na0 = 3× 1019 m−3 [3].

The value of the channel resistivity, R0, is estimated by Morozov as R0 ' 8 Ω

m2, such that it results in a stationary solution with a total discharge current

of Id = 3 A under U0 = 300 V discharge voltage and thus ensures a good agree-

ment with the experimental results. The parameters l, r and b0 are estimated

experimentally as l ' 10−2, r ' 10−3, b0 = 0.1 [23] and we use the same values

in our model.

4.2 Hybrid approach

4.2.1 Governing equations

In the hybrid model, ions are treated kinetically using an ion velocity distribution

function (VDF), f(x, v, t). 1D-1V (one dimensional in coordinate space and in

velocity space) Vlasov equation (2.22) describes ion motion.

Neutral atoms and electrons are treated as �uid. The electron energy equation

is also included in the model in order to understand the role of the electron heat
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conduction. As only the electron temperature is considered in this model, it is

denoted by T without the subscript e. The ionization rate, β, is now expressed

as a function of the electron temperature.

The equations of the hybrid model are [22]:

- the ion kinetic equation

∂f

∂t
+ v

∂f

∂x
+
eE

M

∂f

∂v
= β(T )nnaδ(v − va). (4.17)

The right-hand side represents the ion production. δ denotes the Dirac

delta function. It is assumed that the newly generated ions are introduced

with a velocity equal to the neutral atoms velocity va [3].

- the neutral atom continuity equation

∂na
∂t

+ va
∂na
∂x

= −β(T )nna. (4.18)

- the electron energy equation,

3

2

∂nT

∂t
+

5

2

∂nveT

∂x
=

∂

∂x

(
κe
∂T

∂x

)
+ jeE − αβ(T )nna. (4.19)

On the RHS, the �rst term describes the heat conduction, the second the

joule heating, the third the energy spent for ionization.

- Ohm's law (Eq. 4.5)

- the equation of the electric circuit (Eq. 4.8)

The macroscopic quantities such as the ion number density n used in Eq. 4.17,

4.18, and the ion current density ji used in Eq. 4.5 are calculated from the ion

velocity distribution function f(x, v, t):

n =

∫ ∞
−∞

f(v)dv, ji = e

∫ ∞
−∞

vf(v)dv. (4.20)

The electron velocity, ve, in Eq. 4.19 is

ve = − je
en

= −J − ji
en

. (4.21)

The boundary conditions of the hybrid model are [23]:
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1- at the anode surface, x = 0

na(0, t) = na0, ∂T/∂x = 0, f(0, v, t) = f0(v) for v > 0. (4.22)

2- at the channel exit, x = L

T = T0. (4.23)

The ion distribution function at the anode surface is taken in the form [23]:

f0(v) =
π

2

n0

v0
2
v exp

[
−π

4

(
v

v0

)2
]
. (4.24)

The magnetic �eld, the plasma conductivity and the neutral velocity are set to

the same values used in the �uid model.

The ionization rate parameter β is a function of the electron temperature (see

Sec 3.4) and it is given in Appendix A. As seen in Fig. A.1, β increases almost

linearly with the electron temperature. In [22] β is approximated as

β(T ) =

0 if T < T+

β0(T/T+ − 1) if T ≥ T+

with β0 = 2.2 × 10−14 m3/s and T+ = 4 eV. The ion production cost and the

electron temperature at the channel exit are indicated in [23] as α = 40 eV and

T0 = 20 eV, and set to the same values in our model.

The electron heat conduction coe�cient, κe, is taken as a function of the electron

temperature and the magnetic �eld,

κe = κe0

T

B
, (4.25)

where κe0 = const [23].

4.2.2 Non-dimensionalization of the hybrid model equations

The procedure of non-dimensionalization, used earlier in the �uid model, is

applied to the hybrid model. Note that f = na0f̂ since function f is related to

the particle number density.

50



In addition to the dimensionless parameters given in Eq. 4.14, two new param-

eters arise, which are

ζ =
eU0

T0

, κ =
κe0

Lv0na0

. (4.26)

Introducing the dimensionless parameters and variables, the Vlasov equation

becomes

∂f̂

∂t̂
+ v̂

∂f̂

∂x̂
+ µÊ

∂f̂

∂v
= β̂(T )νn̂n̂aδ(v̂ − v̂a), (4.27)

where β̂(T ) = β(T )/β0 and β in the parameter ν (Eq. 4.14) is replaced by β0.

δ function is taken in the dimensionless form as

δ(v̂ − v̂a) =
1√
πv̂a

exp

[
−
(
v̂ − v̂a
v̂a

)2
]
. (4.28)

The dimensionless boundary condition for the ion velocity distribution function

is

f̂0(v̂) =
π

2

n̂0

v̂2
a

v̂ exp

[
−π

4

(
v̂

v̂0

)2
]
. (4.29)

Ion density and current given by Eq. 4.20 become

n̂ =

∫ ∞
−∞

f̂(v̂)dv̂, ĵi = χ

∫ ∞
−∞

v̂f̂(v̂)dv̂. (4.30)

The neutral atom continuity equation in non-dimensional form is

∂n̂a

∂t̂
+ v̂a

∂n̂a
∂x̂

= −β̂(T )νn̂n̂a. (4.31)

The dimensionless electric �eld is

Ê = [B̂(x̂)]2(Ĵ − χn̂v̂).

Finally, the electron energy equation becomes

3

2

∂n̂T̂

∂t̂
+

5

2

∂n̂v̂eT̂

∂x̂
= κ

∂

∂x̂

(
T̂

B̂

∂T̂

∂x̂

)
+
ζ

χ
ĵeÊ − α̂β̂(T )νn̂an̂, (4.32)

where α̂ = α/T0 = 2 and κ = 1 as given in [23].
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CHAPTER 5

NUMERICAL SOLUTION AND RESULTS

In this chapter, the solution procedure of the governing equations given in the

previous chapter is described. The equations are solved by applying �nite di�er-

ence schemes. Numerical codes for both stationary and transient solutions are

developed using Matlab software [19].

5.1 Fluid model

5.1.1 Stationary solution

In order to �nd the stationary solution, time derivatives in Eq. 4.15 are elimi-

nated and the following system of equations is obtained:

∂n̂v̂

∂x̂
= νn̂n̂a,

v̂
∂v̂

∂x̂
= µÊ + νn̂a(v̂a − v̂),

v̂a
∂n̂a
∂x̂

= −νn̂n̂a, (5.1)

Ê = [B̂(x̂)]2(Ĵ − χn̂v̂),

(r + r0)Ĵ − χ
∫ 1

0

[B̂(x̂)]2n̂v̂dx̂ = 1.

Here r0 =
∫ 1

0
[B̂(x̂)]2dx̂. Now, let's remove the ˆ notation on the non-dimensional

variables for the sake of simplicity and introduce C = µE+ νvana. Rearranging
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the �rst two equations in 5.1, the derivatives of the ion density and velocity can

be written as

∂n

∂x
=

2νnna
v
− nC

v2
,

∂v

∂x
=
C

v
− νna. (5.2)

From the ion and neutral continuity equations in Eq. 5.1, it is obvious that

∂nv

∂x
= −va

∂na
∂x

. (5.3)

Integrating both sides, the following equation is obtained:

vana + nv = n0v0 + na0va = n0 + va. (5.4)

Note that the non-dimensional v0 and na0 are equal to 1. Using this algebraic

equation, the di�erential neutral continuity equation is eliminated from the sys-

tem.

Let r1 =
∫ 1

0
[B(x)]2nvdx. The discharge current density in terms of r0 and r1 is

J =
1 + χr1

r + r0

. (5.5)

Stationary solution is obtained using the Euler method on a uniform grid with

320 nodes. This number is determined by trial-and-error such that the conver-

gence of the solution is ensured. The solution procedure is iterative. First, an

initial estimation for J is introduced. Using this value, E and C are calculated

at the left boundary (at the anode surface). Then, ion density and velocity are

calculated step by step from Eq. 5.2 at each grid point:

ni+1 = ni + ∆x

(
2νninai
vi

− niCi
v2
i

)
, (5.6)

vi+1 = vi + ∆x

(
Ci
vi

+ νnai

)
. (5.7)

Simultaneously, na, E and C are evaluated:

nai =
n0 + va − nivi

va
,
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Ei = [B(xi)]
2(J − χnivi),

Ci = µEi + νnaiva.

After n, na, v and E are found at each grid point, J is updated from Eq. 5.5

where r0 and r1 are calculated by the trapezoidal rule. Then n, na, v and E are

recalculated. These iterations are repeated until J converges:

(Jnew − Jold)/Jnew < Tol, where Tol = 10−3.

Figure 5.1: Fluid model stationary solution: (a) ion number density, (b) neutral
atom number density, (c) ion velocity and (d) electric �eld pro�les along the
discharge channel obtained under di�erent discharge voltages for ṁ = 3.25 mg/s.

Figure 5.1 shows the axial pro�les of the main thruster parameters. The pro�les

are obtained for di�erent discharge voltages, U0 = 300 − 500 V , while the pro-

pellant �ow rate is held constant, ṁ = 3.25 mg/s. At x/L ' 0.2, the ion number

density reaches its maximum which is (7.5 − 9) × n0 for the given range of the

input discharge voltages. At x/L = 0.25, atoms are depleted, the propellant

gas is almost fully ionized. Then the �ow accelerates to an average velocity of
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Figure 5.2: The ion density and velocity and neutral atom density distributions
obtained in a stationary model with ṁ = 3 mg/s, U0 = 400V [23].

(10− 12)× v0 at the channel exit. As can be seen in Fig. 5.1, the electric �eld

and the ion velocity curves shift upwards with increasing discharge voltage. The

pro�le of the atom number density remains almost the same at di�erent dis-

charge voltage regimes. Actually, the pro�les plotted in Figure 5.1 are in good

agreement with the results found in [23] and demonstrated in Fig. 5.2 where

the ion velocity at the channel exit plane is vex = 10 v0 and the maximum ion

density in the channel is nmax = 8 n0 for U0 = 400 V and ṁ = 3 mg/s.(Vertical

axes in Fig. 5.2 correspond to the non-dimensional ion density, ion velocity and

neutral atom density, respectively).

As almost all the neutral atoms become ionized towards the channel exit, only

ions contribute to the thrust, which can be expressed as

T = ṁvex. (5.8)

The e�ciency is de�ned as the ratio of jet power to the input power [6]. The
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jet power is Pjet = T 2/2ṁ. As most of the power is used for the discharge, the

discharge power Pd may be taken as the input power Pin [14]. Therefore, the

e�ciency becomes

η = Pjet/Pin =
T 2

2ṁPd
, (5.9)

where Pd = IdUd.

Figure 5.3: (a) The discharge current Id, (b) the thrust T and (c) the e�ciency
η versus the discharge voltage U0.

Figure 5.3 shows the dependence of the discharge current, the thrust and the

e�ciency on the discharge potential. There is a linear relationship between the

discharge current and voltage. The thrust increases with the discharge voltage

but this cannot compensate for the high discharge power input which results in

a decrease in thruster e�ciency. Results illustrated in Fig. 5.3 agree well with

those from [24].
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5.1.2 Transient solution and oscillation regimes

The stability of the stationary solutions is studied by taking them as initial con-

ditions for the time dependent equations. Time evolutions of plasma variables

are calculated using the �rst order upwind scheme [32] on the same uniform

grid used in the stationary solution. Time step is determined according to

Courant�Friedrichs�Lewy (CFL) condition:

∆t = C
∆x

max(v)
, (5.10)

where C ≤ 1 and ∆t is updated at each time iteration as max(v) (the maximum

value of the ion velocity in the discharge channel) changes with time.

In the transient solution, for numerical stability, an upwind scheme is used. At

the new time step k + 1, ni and vi are updated by using the values from the

previous time step k using the following �nite di�erence equations:

If vi ≥ 0:

nk+1
i = nki −

∆t

∆x
(vki n

k
i − vki−1n

k
i−1) + ∆t(νnki na

k
i ), (5.11)

vk+1
i = vki −

∆t

∆x
vki (vki − vki−1) + ∆t(µEk

i + νna
k
i (va − vki )). (5.12)

If vi < 0:

nk+1
i = nki −

∆t

∆x
(vki+1n

k
i+1 − vki nki ) + ∆t(νnki na

k
i ), (5.13)

vk+1
i = vki −

∆t

∆x
vki (vki+1 − vki ) + ∆t(µEk

i + νna
k
i (va − vki )). (5.14)

nai is updated by backward di�erence scheme, since va is a constant and always

positive:

na
k+1
i = na

k
i −

∆t

∆x
va(na

k
i − naki−1)−∆t(νnki na

k
i ). (5.15)

The electric �eld is updated using the new values of n and v:

Ek+1
i = [B(xi)]

2(J − χnk+1
i vk+1

i ). (5.16)
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After having calculated new values of n, v, na and E at each grid point, the

discharge current density J is updated from the circuit equation:

Jk+1 = Jk +
∆t

l

(
1−

imax∑
i=1

Ek
i + Ek

i+1

2
∆x− rJk

)
, (5.17)

where imax is the total number of grid points.

Figure 5.4: Time evolutions of (a) Id(t), (b) n(x = L, t), (c) U(t) in the aperiodic
regime for U0 = 300 V (χ = 255).

The stationary solution for U0 = 300 V is found to be unstable and oscillations of

the discharge current Id(t), the ion number density at the channel exit n(x = L)

and the channel voltage U(t) (=
∫
Edx) are aperiodic as seen in Figure 5.4.

Morozov explains in [23] that the behavior of the transient solution in his �uid

model depends on the parameter, χ, which is inversely proportional to the dis-

charge voltage (4.14). He states that for su�ciently small values of χ, a sta-

tionary stable solution can be found. Increasing χ, a periodic solution emerges.

If χ is increased further, the solution becomes unsteady and oscillations of the

plasma variables become aperiodic. Actually the last case corresponds to the

discharge voltages within the range of practical interest (U0 = 200− 600 V).
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In order to see the e�ect of the parameter χ as mentioned in [23], the discharge

voltage is increased to large values even though the fact that these high values

are not realistic for the operation conditions of Hall thrusters. Figure 5.5 (1)

and (2) present the evolutionary behavior of Id(t), n(x = L, t) and U(t) for χ

values of 38 and 16 which correspond to discharge voltages 2000 and 4800 V

respectively for a channel resistivity of R0 ' 8 Ω m2. Oscillations are periodic

in the �rst case and damped in the second con�rming that solution becomes

stable with su�ciently decreased χ. These results are consistent with those

found by Morozov (see Fig. 5.6) where periodic and non-periodic oscillations

were observed for χ = 45 and χ = 175, respectively. In Fig. 5.6, vertical axes

correspond to the non-dimensional discharge current, channel voltage and the

ion density at the channel exit.

Figure 5.5: Time evolutions of (a) Id(t), (b) n(x = L, t), (c) U(t) in the (1)
periodic regime and the (2) stable regime.
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Figure 5.6: Oscillograms of the discharge current, the channel voltage, and
the ion density at the channel exit, changing the parameter χ. (a) Periodic
oscillations (χ = 45), (b) A non-periodic case (χ = 175) [23].

5.2 Hybrid model

5.2.1 Stationary solution

The stationary equations of the hybrid model are

v
∂f̂

∂x̂
+ µE

∂f̂

∂v
= β̂(T )νn̂n̂aδ(v̂ − v̂a), (5.18)

v̂a
∂n̂a
∂x̂

= −β̂(T )νn̂n̂a, (5.19)

5

2

∂n̂v̂eT̂

∂x̂
= κ

(
∂

∂x̂

T̂

B̂

∂T̂

∂x̂

)
+
ζ

χ
ĵeÊ − α̂β̂(T )νn̂an̂, (5.20)

Ê = [B̂(x̂)]2(Ĵ − χn̂v̂),

Ĵ =
1

r

(
1−

∫ 1

0

Êdx̂

)
.
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Again, let's remove theˆnotation on the non-dimensional variables and denote

the RHS of Eq. 5.18 by S. In the hybrid model, as the electric �eld may change

sign locally throughout the iterations, stationary Vlasov equation (Eq. 5.18) is

solved using the �rst order upwind method [32] in order to have numerically

stable algorithm.

The Eq. 5.18 is discretized as shown below:

fi+1,j = fi,j −
µEi
vj

(fi,j − fi,j−1)
(∆x)i

∆v
+
Si(∆x)i
vj

, if Ei ≥ 0,

and

fi+1,j = fi,j −
µEi
vj

(fi,j+1 − fi,j)
(∆x)i

∆v
+
Si(∆x)i
vj

, if Ei < 0.

Here

Si = νβ(T )ninaiδ(vi − va). (5.21)

Since the electric �eld grows sharply toward the channel exit, the uniform grid

previously used does not yield a converging solution. Instead a non-uniform

grid is utilized with decreasing step sizes toward the channel exit, determined

according to CFL condition:

∆x = C
∆v min(v)

µ |E(x)|
, (5.22)

where min(v) = ∆v in the velocity space and C ≤ 1.

The mean values of ion density and velocity are calculated by integrating the

ion VDF. The velocity domain should be chosen su�ciently large so that these

macroscopic quantities are properly calculated. Therefore, the maximum veloc-

ity in VDF is set to one and half of the vex which is the maximum value of

the stationary ion velocity pro�le in the �uid model. For the velocity space, a

uniform grid with 300 nodes is used, which provides a �ne enough resolution for

the ion VDF.

As in the �uid model, J is found iteratively. But in order to increase stability, a

relaxation scheme for J is implemented such that J corrected = φJnew+(1−φ)Jold

with parameter φ between 0 and 1).
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Grouping the derivatives of T on one side, the electron energy equation (Eq.

5.20) can be rewritten as

∂

∂x

(
κ0
T

B

∂T

∂x

)
− 5

2
nve

∂T

∂x
=

5

2
T
∂nve
∂x
− ζjeE

χ
+ ανβ(T )nna. (5.23)

Boundary value problem for this second order non-linear di�erential equation

can be solved by using the tridiagonal matrix algorithm (TDMA) [32]. However,

we solved this equation by reducing it to two �rst order equations and using the

Euler method. Let's denote the RHS by S and ∂T/∂x by T ′. Then, we get

∂T ′

∂x
=

[
S + 5

2
nve

κ0

T ′ − (T ′)2

B
+
T ′T

B2

∂B

∂x

]
B

T
,

∂T

∂x
= T ′, (5.24)

with the boundary conditions T (1) = 1 and T ′(0) = 0.

First, Si is calculated at each grid point.

Si =
5

2
Ti
ni+1vei+1 − ni−1vei−1

2∆x
− jeiEiζ

χ
+ ανβTininai. (5.25)

Then, Ti and T ′i+1 are evaluated at each grid point as follows:

Ti = Ti−1 + T ′i∆x. (5.26)

T ′i+1 = T ′i + ∆x
B(xi)

Ti

[
Si + 5

2
nivei

κ0

T ′i −
(T ′i )

2

B(xi)
+

T ′iTi
[B(xi)]2

B(xi+1)−B(xi−1)

2∆x

]
.

(5.27)

Using the initial estimation of T and T ′, T is calculated at each grid point from

Eq. 5.26. Then, T ′ is computed from Eq. 5.27 using the updated values of T .

This process is repeated until T converges.

Figure 5.7 shows the axial pro�les of the main plasma variables in the thruster

discharge channel. When the results of the �uid and the hybrid models are

compared, it is seen that the electric �eld and mean ion velocity pro�les are

nearly the same. The ion mean velocity reaches ≈ 10 v0 at the channel exit.

On the other hand, the ionization takes places closer to the anode in the hybrid

model. The neutral atoms are depleted before x/L ' 0.2. The electron temper-

ature varies only slightly. The temperatures near the anode surface are found
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to be higher than expected. Consequently, near the channel base ionization rate

parameter is higher in the hybrid model than in the �uid model. Therefore,

ionization region shifts slightly to the left in the hybrid case. The electron ve-

locity increases near the anode and reaches ≈ 10×v0. In Fig. 5.8, the stationary

velocity distribution function (VDF) of ions is illustrated, where x,y and z axes

correspond to dimensionless velocity, position and VDF.

Figure 5.7: Spatial pro�les of the main plasma variables in the discharge channel
obtained for �uid and hybrid models: (a) ion number density , (b) neutral
atom number density, (c) ion velocity, (d) electric �eld, (e) electron velocity, (f)
electron temperature.

5.2.2 Transient solution

As in the �uid model, taking the stationary pro�les as initial conditions, time de-

pendent solutions are computed. The time-dependent Vlasov equation involves

both position and velocity derivatives. The position derivative at the ith and jth

grid point, (∂xf)i,j is evaluated by the backward di�erence:

(∂xf)i,j =
fi,j − fi−1,j

∆x
.
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Figure 5.8: Stationary velocity distribution function of ions.

As the electric �eld may change sign at some locations, the velocity derivative

at the ith and jth grid point, (∂vf)i,j is evaluated by the upwind scheme:

(∂vf)i,j =
fi,j+1 − fi,j

∆v
, if Ei < 0,

(∂vf)i,j =
fi,j − fi,j−1

∆v
, if Ei ≥ 0,

so that

fk+1
i,j = fki,j + ∆t[Ski,j − vkj (∂xf)ki,j − νEk

i (∂vf)ki,j]. (5.28)

The time step is determined according to CFL condition:

∆t = min

(
C∆x

max(v)
,

C∆v

µ max(|E|)

)
, C ≤ 1. (5.29)

na, E and J are evaluated as in the �uid model from Eq. 5.15, 5.16 and 5.17,

respectively. It is assumed that the electron energy is steady in the time scale

of ion transport and the time derivative term in the electron energy equation is

neglected [3, 15]. Therefore, the electron temperature is calculated by solving

the stationary electron energy equation as in the previous section.

Figure 5.9 shows the change of the axial pro�les of the ion number density

and velocity with time. Contrary to the stationary solution, the pro�les of the
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transient solution are not monotonic but have some peaks and dips. Obviously,

the peaks and dips of the ion number density pro�les correspond to the dips

and peaks of the ion mean velocity pro�les, respectively. The �rst peaks of the

pro�les appear in the ionization region. Their amplitude reach the maximum

and then they propagate along the channel to right (toward the channel exit)

conserving their shape but decreasing their amplitude. As an ion density peak

approaches the channel exit, a new one appears in the ionization region and the

same process repeats.

Figure 5.10 demonstrates the time dependent behavior of the discharge current

Id(t), the channel voltage U(t) and the ion number density n at the channel

exit (x = L) for the input parameters ṁ = 3.25 mg/s and U0 = 300 V. Despite

the irregular oscillations of these variables for the same input parameters in the

�uid model, the hybrid model yielded periodic oscillations with the main period

of τ = 50 µs. This is due to the fact that transitions from stable to periodic

and from periodic to aperiodic regimes occur at lower discharge voltages in the

hybrid model than in the �uid model. Therefore, while a discharge voltage

value of practical interest commonly used on thrusters such as (300 V) falls into

chaotic regime in the �uid model, it remains within the periodic regime in the

hybrid model. Thus, the hybrid model turns out to be more stable than the

�uid model [23]. The oscillation frequency, calculated as 20 kHz for U0 = 300

V, agrees with the results in [3] where frequencies are found to be 15− 22 kHz

for the voltage range of 200 − 350 V and with the data taken during tests at

NASA/GRC (adopted from [10]) shown in Fig. 5.11.

In Hall thruster operation, di�erent modes of oscillations are observed. The

longitudinal oscillation mode with frequencies in the range of 10− 100 kHz and

which is characterized by strong discharge current oscillations is often referred

to as the breathing mode [27]. These low-frequency oscillations are related to

ionization instabilities that result from the ionization front propagating irregu-

larly around the circumference of the discharge channel [31]. J.M.Fife proposed

a simple physical model for breathing mode oscillations in [20]. Linearizing ion

and neutral continuity equations around the stationary state, he obtained the
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Figure 5.9: Hybrid model spatial pro�les of (a) ion number density and (b) ion
velocity at di�erent time steps (t1 = 0.45 ms and time intervals are ∆t = 2.5

µs) for ṁ = 3.25 mg/s and U0 = 300 V.

following expression for the breathing mode frequency, fB:

fB =

√
viva

2πLi
, (5.30)

where Li is the characteristic length of the ionization region. For the charac-

teristic ion velocity vi = 20000 m/s, the neutral velocity va = 200 m/s, and

Li = 0.02 m, fB = 16 kHz. This relationship relies on many simpli�cations,

but it does provide correct estimates of the oscillation frequency (about 10− 30

kHz).
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Figure 5.10: Hybrid model time evolutions of (a) Id(t), (b) n(x = L, t), (c) U(t)

for ṁ = 3.25 mg/s and U0 = 300 V.

Figure 5.11: Measured evolution of the discharge current for the SPT-100 (data
taken during tests at NASA/GRC) [10].
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CHAPTER 6

CONCLUSION

6.1 Summary and Conclusions

In this thesis, one-dimensional �uid and hybrid numerical codes are developed

in order to study the stationary and evolutionary behaviour of the plasma prop-

erties in the discharge channel of a Hall e�ect thruster. In the �uid model,

neutral continuity, ion continuity and momentum equation are solved, while in

the hybrid model the �uid equations for ions is replaced by the kinetic Vlasov

equation. In both models, electrons are treated as a �uid with a classical con-

ductivity in the direction perpendicular to the magnetic �eld. The hybrid model

additionally includes the electron energy equation.

Stationary pro�les of the plasma variables in the discharge channel are obtained

from both models. The pro�les are found to be close to each other except that the

ion density peak is located slightly nearer to the the anode in the hybrid model.

Using the values of the plasma properties at the channel exit, the performance

parameters of the thruster are predicted.

Using the stationary solutions as initial conditions, time evolution of the plasma

variables is investigated. In the time dependent solution, di�erent operating

regimes (damped, periodic and aperiodic irregular oscillations about stationary

states) are observed as functions of the discharge voltage. The time-dependent

simulation predicts the existence of low-frequency discharge oscillations which

are typical in Hall thruster operation and accurately estimates the frequency of

such oscillations. In general, the results of the numerical code match very well
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with those presented in the reference papers [23, 24, 22]. Hence, the accuracy of

the numerical methods employed is validated.

It is found out that the convergence of the �uid model code is strongly dependent

on the initial estimation of the discharge current. In the hybrid model, however,

the code converges for a wider range of the initial discharge current. On the

other hand, the �uid model is more e�cient in terms of computation time than

the hybrid model.

6.2 Future Work

Although the models are based on many approximations, they reproduce quali-

tatively the basic features of the thruster operation. The quantitative accuracy

of the model, however, can be improved by including plasma-wall interaction and

considering the e�ect of secondary electrons emitted by the walls. A weak point

of the model is that the electron dynamics is described by the simpli�ed Ohm's

Law where the electron conductivity is assumed to have 1/B2 dependence. Con-

sequently, electron conductivity is too low in the strong magnetic �eld region.

However, in reality, the electron transport is enhanced by the electron-wall colli-

sions and azimuthal �eld �uctuations (represented by the Bohm mobility term).

Including these e�ects and electron di�usion term in the model, electron dynam-

ics can be described more accurately.

In this work, it has been assumed that all electron-neutral collisions result in

single ionization. However, doubly charged xenon ions and excited xenon atoms

are also present in the discharge channel and they should be taken into account.

Finally, a two dimensional model of the discharge channel should be developed

in order to investigate the variation of the plasma properties in the radial di-

rection. E�ects of plasma-wall interaction on the thruster operation and better

description are left to be studied in a more sophisticated model, which is to be

developed in a future follow up work.
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APPENDIX A

IONIZATION REACTION RATE COEFFICIENT

Ionization reaction rate coe�cient β (which was denoted by 〈σive〉 in Sec. 2.6) for
xenon is calculated from ionization cross-section data averaged over a Maxwellian

electron distribution (See Appendix E in [6]). In the graph below, the ionization

rate coe�cient, β, is plotted as a function of the electron temperature, where

TeV is in eV .

Figure A.1: Ionization reaction rate coe�cient versus the electron temperature
in eV
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