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ABSTRACT

MULTI-MODAL STEREO-VISION USING INFRARED / VISIBLE CAMERA
PAIRS

Yaman, Mustafa
Ph.D., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Sinan Kalkan

September 2014, 198 pages

In this thesis, a novel method for computing disparity maps from a multi-modal
stereo-vision system composed of an infrared-visible camera pair is introduced. The
method uses mutual information as the basic similarity measure where a segmentation-
based adaptive windowing mechanism is proposed along with a novel mutual infor-
mation computation surface for greatly enhancing the results. Besides, the method
incorporates joint prior probabilities when computing the cost matrix in addition to
negative mutual information measures. A novel adaptive cost aggregation method
is also proposed using computed cost confidences and resulting minimum cost dis-
parities that are confident enough are fitted planes in segments. The segments are
refined by iteratively splitting and merging according to the fitted confident dispar-
ities that helps to reduce the dependence of the disparity computation to the initial
segmentation. Finally, all the steps are repeated iteratively where more accurate joint
probabilities are calculated by using previous iteration’s disparity map. Two multi-
modal stereo image datasets are generated for evaluating the method and the state of
the art methods confronted in literature; the synthetically altered image pairs from
the Middlebury Stereo Evaluation Dataset, and our own dataset of Kinect Device
infrared- visible camera image pairs, which can function as a benchmark for multi-
modal stereo-vision methods. On these datasets, it is presented that (i) the proposed
method improves the quality of existing MI formulation, (ii) the proposed method
outperforms state of the art methods in literature, and (iii) the proposed method can
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provide depth comparable to the quality of Kinect depth data.

Keywords: multi-modal stereo-vision, mutual information, segmentation, adaptive
windowing, adaptive cost aggregation, plane fitting, iterative, infrared, visible, multi-
modal camera, Kinect device

vi



ÖZ

GÖRÜNÜR VE KIZILÖTESİ KAMERA ÇİFTLERİ KULLANARAK ÇOKLU
BİÇİMLİ STERYO GÖRME

Yaman, Mustafa
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Eylül 2014, 198 sayfa

Bu tezde, kızılötesi ve görünür bantta kamera çiftleri kullanılarak yeni bir çoklu bi-
çimli steryo görme yöntemi önerilmiştir. Yöntem karşılıklı bilgiyi temel benzerlik öl-
çüsü olarak kullanmaktadır. Ancak karşılıklı bilgi değerinin üretilmesinde bölütleme
temelli bir uyarlanır pencere mekanizması önerilmiş ve sonuçlar oldukça geliştiril-
miştir. Ayrıca yöntem maliyet matrisini hesaplarken, negatif karşılıklı bilgi değerine
ek olarak önsel olasılık değerlerini de hesaba katmaktadır. Yeni bir uyarlanır ma-
liyet toplama yöntemi de ayrıca önerilmiş ve bu yöntemde maliyet güvenilirlikleri
hesaplanarak toplama işlemi gerçekleştirilirken, en küçük maliyetle eşleştirilen pik-
sel farklılıklarından yeterince güvenilir olanlar ise daha sonra bölütlere göre düzleme
oturtulmuştur. Bölütler yinelemeli olarak güvenilir farklılık değerlerine göre birleşti-
rilip parçalanarak düzeltilmekte ve farklılık haritası hesaplamasının ilk bölütlemeye
olan bağımlılığı azaltılmaktadır. Son olarak tüm bu adımlar yinelenmektedir. Yeni
adımlarda daha önce üretilmiş olan farklılık haritası da kullanılarak daha doğru ön
olasılık değerleri kullanılabilmektedir. Önerilen yöntemi ve literatürde yer alan diğer
yöntemleri değerlendirmek için iki farklı çoklu biçimli steryo görüntü veri kümesi
oluşturularak kullanılmıştır: Middlebury Steryo Değerlendirme veri kümesinden sen-
tetik olarak değiştirilmiş görüntü çiftleri ve Kinect cihazından elde edilen kızılötesi ve
görünür kamera görüntü çiftleri. Veri kümeleri çoklu-biçimli steryo görme yöntemleri
için performans değerlendirme test veri kümesi olarak kullanılabilecek şekilde oluş-
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turulmuştur. Bu veri kümelerinde, (i) önerilen yöntemin varolan karşılıklı bilgi for-
mulasyonuna göre sonuçları iyileştirdiği, (ii) önerilen yöntemin literatürde yer alan
diğer yöntemlerden daha iyi performans gösterdiği, ve (iii) önerilen yöntemin Kinect
derinlik verisi ile karşılaştırılabilir derecede iyi derinlik verisi elde edebildiği göste-
rilmiştir.

Anahtar Kelimeler: çoklu biçimli steryo görme, karşılıklı bilgi, bölütleme, uyarlanır
pencere, uyarlanır maliyet toplama, düzlem oturtma, yinelemeli, görünür, kızılötesi,
çoklu biçimli kamera, Kinect cihazı
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CHAPTER 1

INTRODUCTION

Imaging systems of different modalities have been in use for a long time, especially

in medical imaging [1, 2, 3, 4, 5, 6, 7] and remote sensing [8, 9, 10, 11, 12, 13,

14]. In such systems, registration and/or fusion of such imagery is a major concern

since information from multiple modalities need to be combined for a solving a task.

However, this is challenging since objects and surfaces look very different in different

modalities in order to relate them to.

In medical imaging, registration of images from multi-modal imaging systems (e.g.

CT-MR, CT-PET, MR-PET, MR-US and even CT-2D Video images [1]) is very im-

portant since complementary information can be acquired by analyzing such imagery

together. For example, CT and MR imagery (Figure 1.1) should be analyzed together

for the planning of radiation therapy where CT is used to calculate the radiation dose

while MR provides the region of target lesion which radiation shall be imposed [6].

Figure 1.1: Sample brain CT and MR images and the registration results (Source:
[15]) Left column: Sample CT image Middle column: Sample MR image Right col-
umn: Registration result
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In remote sensing, imaging systems that acquire images from different band intervals

of the electro-magnetic (EM) spectrum are used. Similarly, to be able to analyze a

target scene of interest by combining information from different portions of the EM

spectrum provides valuable information [8, 9]. Most remote sensing systems work

on the EO/IR (Electro-optic/Infrared) spectral region of the EM spectrum where the

wavelength ranges from 400nm to 14000nm (Figure 1.2).

Figure 1.2: EO/IR spectral region of the EM spectrum along with definitions of the
specific regions and the primary natural sources of EO/IR radiation (Source: [8])

To be able to get accurate land-cover/land-use classifications, the reflectivity and

emissivity properties of objects existing in the region of interest are used. Different

types of objects show different reflectance and emission characteristics at different

wavelengths from visible to thermal bands in the EO/IR spectrum, such that objects

can be differentiated by their so called “spectral signatures”. For instance, Figure 1.3

shows the spectral signatures of water, soil and vegetation along with corresponding

band intervals in Landsat TM channels. In order to be able to distinguish vegetation

from the ground, it is needed to use the Near-Infrared (NIR) channel#4 along with the

visible red channel#3 which has lead to the popular NDVI (Normalized Difference

Vegetation Index) measure [9] that can extract vegetation regions in multi-spectral

images.
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(a) (b)

(c) (d)

Figure 1.3: Image samples from Landsat TM imaging satellite channels along with
corresponding spectral signatures (Source:[16]). (a) The Red Channel (channel#3)
(b) The Near-infrared (NIR) channel (channel#4) (c) The False color composite of
channels#4,3,2 where red colored regions show the vegetation areas (d) Spectral sig-
natures of green vegetation, soil and water [Best viewed in color].

Another popular multi-modal image analysis application in remote sensing is to fuse

information from passive optical and active sensors such as SAR (Synthetic Aperture

Radar) and LIDAR (Light Detection and Ranging) [17, 18, 19, 20, 21]. SAR images

have the ability to provide structural information but not the actual type of the land

coverage where, for instance, it can be used to distinguish urban areas and the cleared

areas for development when used along with a Landsat TM image [9]. Similarly, LI-

DAR data provides very detailed structural information of the vertical structures and
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the terrain surface mapping, which brings opportunities for mapping and analyzing

urban areas [19], forest areas [20] or damage assessment / change detection purposes

after hazards like flooding, earthquakes etc. [21] when used along with SAR and

optical (hyper-spectral or multi-spectral) sensors.

Figure 1.4: Composition of Optical, SAR imagery and LIDAR data showing different
aspects of each data sample of the same region of interest (Source:[17]).

On the other hand, in recent years, using multi-modal cameras for surveillance sys-

tems has been growing in popularity [22, 23, 24, 25, 26]. Multi-modal surveillance

can combine information from multiple sources provided by different types of sensors

in order to be able to get the most accurate and robust interpretation of a target envi-

ronment [24]. The type of sensors can range from imaging sensors to audio, thermal,

infrared, vibration sensors etc. Especially, using bi-modal systems including visi-

ble and infrared/thermal cameras has become quite prevalent in such systems since

surveillance should continue during daytime, night-time, under low visibility or light-

ing conditions [27, 28, 29, 30]. Figure 1.5 provides some of the COTS(Commercial

off the Shelf) products available in the defense and security market today where there

are a wide variety of imaging systems that include visible and infrared camera pairs

for surveillance operations over different platforms, such as ground platforms, ground

vehicle platforms, airborne platforms (UAVs, fixed-wing or rotary-wing aircrafts etc.)

and marine platforms (coastal guard ships etc.). These systems also include laser

range finders for accurate distance calculation to target objects, which is also an im-

portant information for surveillance operations to be able to detect an intruder human

or a vehicle target.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.5: Sample COTS products from defense and security market including multi-
modal imaging systems for surveillance applications (a) FLIR’s Ranger HRC prod-
uct (Source:[27]) (b) L3 Wescam’s MX-RSTA system (Source:[28]) (c) L3 Wescam’s
MX-25D airborne system (Source:[29]) (d) FLIR’s SEAFLIR 380HD marine surveil-
lance system (Source:[30]) (e)-(h) Associated platforms for the imaging systems

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.6: Sample visible-infrared image couples from multi-modal imaging sys-
tems for surveillance applications (Source: [22]). (a,e) Visible-SWIR image couple
(b,f) Visible-MWIR image couple (c,g) Visible-LWIR image couple (d,h) another
Visible-LWIR image couple.
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In order to illustrate the advantages of such multi-modal imaging systems in surveil-

lance applications, Figure 1.6 shows some representative images acquired from such

surveillance systems. In Figures 1.6(a-d), an image couple from both visible and

short-wave infrared cameras are shown. In Figures 1.6(e-h), additional information

that can be acquired by the cameras operating in MWIR and LWIR wavelength re-

gions (see Figure 1.2) are demonstrated. For instance, it can be observed that in

the SWIR image, the low-visibility conditions due to the haze are eliminated where

LWIR, MWIR images provide visibility in night, smoke and camouflaged objects of

different material type.

1.1 Problem Definition and Scope of the Thesis

Computing depth / distance information by the surveillance system products is also

a very important information for the operator or the soldier to detect the distance of

the intruder or the vehicle or any other target to the sensor. Currently, this is done

by an additional active system like a Laser Range Finder (LRF) [27, 28, 29, 30] or

photogrammetrically by assuming an average height of the human, the vehicle or the

vehicle tires detected on the sensor [23] (see Figure 1.7).

The other alternative is to use a unimodal stereo-vision system with an additional

camera of the same modality, where stereo-vision methods are quite a well-studied

area currently (Refer to Chapter 2.1 for the background on stereo-vision methods).

However, currently there is no system yet computing a dense depth map of the scene

from the visible and an infrared camera directly by using multi-modal stereo-vision

techniques, as we know of, although the cameras are already available in these sys-

tems. When such a technique is integrated on these systems, an additional active

system like an LRF or an additional camera of the same modality will not be neces-

sary. Besides, the LRF device can only compute distance on the pointed location of

the target scene which is not a dense depth map calculation either.
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Figure 1.7: Sample study from [23] computing the distance to the human target using
average human height statistics.

Therefore, in this thesis, the problem of whether an accurate depth information can

be computed or not from multi-modal imagery is investigated. The thesis focuses

on dense stereo-vision techniques, which do not require any additional device but

can directly use the information from the already available visible and infrared cam-

eras. The classical stereo-vision techniques are not applicable in this multi-modal

case because of the total difference in corresponding pixel intensities which makes

the problem hard and challenging to solve (see Figure 1.6).

1.2 Contributions of the Thesis

The contributions of the thesis can be summarized as below:

A. During the thesis study, a novel multi-modal stereo-vision method is developed

which can accurately generate dense disparity maps of images taken from cameras

of different modalities. The method is compared to alternative methods that were

confronted during the literature survey and is shown to outperform these state of

the art methods. This part of the study is disseminated in [31, 32].

B. For the performance evaluation, two image datasets are generated. Since, up to

the author’s knowledge, there are no multi-modal stereo-vision datasets available

in the literature, this is considered as another important contribution of the the-

sis. The first dataset is generated from four popular images in the Middlebury

Stereo Vision Page [33] (tsukuba, venus, cones and teddy) where the left images

are replaced with the synthetically altered versions of these images by performing

cosine transform (cos(πI/255)) of pixel intensities just as Fookes [34] did. This
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way, it was possible to compute the statistics of test results to gain more knowl-

edge of the performance of our method and also it is now possible to compare

the result metrics of developed methods with the ones on the evaluation site al-

though they are results for the unimodal image pairs. This part of the study is

disseminated in [31, 32].

The second dataset was generated by our several Kinect camera shootings. The

Kinect devices (see [35] and Figure 1.8) have a built-in infrared (IR) (left), RGB

(right) camera along with an IR projector. The projected infrared beams are de-

tected by the IR camera and the depth of the scene can be acquired for several

purposes like motion recognition for the associated platform, the Xbox 360 video

game console [36]. Such RGB-D devices are becoming more prevalent and af-

fordable each day and drawing more attention in computer vision studies where

the built-in depth computation feature enables many vision applications and opens

up important opportunities on a wide range of areas [37]. In our study, this feature

enabled us to use generated depth data as some reference point to be able com-

pare to our computed depth results. For this purpose, we have proposed a method

for performance statistics computation over the Kinect’s native depth computa-

tion which enabled us to evaluate our results quantitatively in addition to visual

evaluation. This part of the study is disseminated [32, 38].

C. A systematic performance evaluation of alternative similarity measures available

in the literature was also performed as part of this thesis. This is important be-

cause there are no such complete study yet available in the literature, as we know

of. The evaluation was performed over the datasets generated in the scope of

this thesis and "Winner Takes All" (WTA) performances of similarity measures

for the stereo correspondence problem was evaluated. Along with this evalua-

tion, another novel similarity measure that is composed of a modified version of

Census Transform was also proposed and evaluated as part of this same study,

which includes computation of mutual information over the census transformed

images of the initial left-right multi-modal image pairs. This part of the study is

disseminated in [38].
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Figure 1.8: The Kinect device (Source: [35]).

1.3 Outline of the Thesis

The rest of the thesis is structured as follows:

In Chapter 2, background information and literature survey about stereo-vision, multi-

modal stereo-vision and description of methods that were proposed or tested for

multi-modal stereo-vision are provided. Initially, an overview of stereo-vision tech-

niques are provided along with the recent advances in the field. Next, literature survey

on the multi-modal stereo-vision methods are provided including studies for dense or

sparse techniques and related applications like human region of interest (ROI) dispar-

ity detection in thermal-visible image pairs.

In Chapter 3, the test image datasets that were prepared in the scope of this thesis and

the details of the proposed and implemented performance evaluation methods are pre-

sented. Detailed descriptions on the two dataset types generated by synthetically alter-

ing the popular Middlebury Stereo-vision Evaluation Dataset and the Kinect Device

infrared/visible camera image pairs are provided. The calibration and the epipolar

rectification method performed for preparing the Kinect multi-modal stereo images

are also presented. Besides, the description on the performance evaluation statistics

calculation methods that were proposed for the datasets are also provided.

Chapter 4 provides a performance evaluation of the state of the art methods for multi-

modal stereo-vision that were confronted in the literature survey. Both statistical and

visual results are provided on the acquired results. For the evaluation, the datasets
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generated in the scope of this thesis are used. The results are also discussed within the

scope of this chapter along with explanations of how some measures were inadequate

for multi-modal stereo-vision whereas some have promising results.

Chapter 5, on the other hand, includes the description of the novel dense multi-modal

stereo-vision algorithm that were developed in the scope of this thesis. Besides, per-

formance evaluation on the datasets are provided. The method is compared also the

alternative state of the art similarity measures that were confronted in the literature

which are evaluated in Chapter 4 and shown to outperform these methods. Both vi-

sual and statistical results are provided over the two datasets for evaluating the novel

method.

Finally, in Chapter 6 conclusions and discussions are provided. The advantages and

drawbacks of the proposed method are provided. Besides, future work that can be

performed to enhance the method and alternative application areas that the study can

be diverted or applied are discussed.
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CHAPTER 2

BACKGROUND

In this chapter, initially stereo-vision is described along with an overview of the meth-

ods in the literature. Next, the problem of multi-modal stereo-vision is explained and

the state of the art methods proposed and tested for multi-modal imagery are de-

scribed in detail.

2.1 Stereo-vision

Stereo-vision problem is defined as computing the depth information of a scene by

using images taken from two distinct viewpoints. This is generally implemented by

two cameras staring at the same scene located by a defined distance from each other.

Figure 2.1: Recovering depth information using stereo-vision (Source: [39])

Figure 2.1 presents basically the geometrical relationships for the depth information
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computation where T is called the stereo baseline, the distance between optical cen-

ters of the two cameras , OL and OR and f is the focal length of both cameras. Then

from similar triangles, it is trivial to compute the depth of the 3D point P as:

T + x
′ − x

Z − f
=
T

Z
, (2.1)

Z = f
T

d
, (2.2)

d = x
′ − x, (2.3)

where d is called as disparity.

However, this computation requires three known variables; the focal lengths, the

stereo baseline and the so-called disparity term d, which is the difference between

the projected 2D pixel locations assuming they are on the same row (scan line) of the

images. This leads to three major problems of stereo-vision; calibration, correspon-

dence, reconstruction.

Calibration is the process of determining both the internal and external geometry

characteristics of the cameras. The information such as the focal lengths and optical

centers of cameras are among the internal geometry characteristics whereas the rela-

tive position and orientation of two cameras are external geometry characteristics to

be determined. In this study, it is assumed that these information are already available

and static. However, this is a well-known and long-studied problem with successful

solutions [40].

Correspondence on the other hand, is a major problem that it was also needed to

address in this study. Correspondence deals with determining the corresponding 2D

projections (pixel locations) of a 3D scene on the images acquired from the two cam-

eras. The difference in the locations is called the disparity, and the matrix of the all

the corresponding disparities is called the disparity map. However, not all features

could be visible from the left and/or right camera because some objects in the scene

can occlude others partially or completely from the either camera’s point of view.
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This so-called occlusion problem is a big challenge and yet no general solution ex-

ists. Besides, lighting differences and texture mismatches add a certain difficulty to

the correspondence problem and when all combined, correspondence problem is still

a big challenge in vision. The problem is generally relaxed by using additional con-

straints and assumptions such as the epipolar constraint, constant brightness of the

two cameras, surface smoothness etc.

Epipolar constraint is the most important of such constraints which reduces the search

space for a match to a single line in the other image. The cameras should horizontally

lie on the same plane and their horizontal scan lines should perfectly correspond to

each other. However, mostly the case is as given in Figure 2.2. Here, a so-called

epipolar plane is defined by lines T , [POL] and [POR] which intersects the actual

image planes along the so-called epipolar lines. The epipolar lines give us the lo-

cation of the projected points p and p′ of any point P on the scene, i.e. they are on

their respective epipolar lines. However, we can easily project the two image planes

onto a common plane and this way we can get same coordinate systems for the two

images where the epipolar lines lie on the same horizontal scan-line. Therefore, a 2D

correspondence problem becomes a 1D problem, which greatly reduces the complex-

ity of the problem. This method is called image rectification [40] and is generally a

preliminary step before stereo correspondence methods are applied. In this study, it

was assumed to have rectified image pairs available and the stereo correspondence

problem was focused.

Figure 2.2: Rectification to ensure the epipolar constraint (Source: [39])

Reconstruction is indeed determining the 3D structure of a scene from the disparity
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map and known camera geometries. Having the calibrated cameras setup as given in

Figure 2.1 or images are rectified as given in Figure 2.2, the problem reduces directly

to the equations given in Equation 2.1 to 2.3 above.

2.1.1 Overview of Stereo-vision Methods

Stereo vision is a very-well studied problem with a huge literature on the topic. Sev-

eral reviews are already available where the most important ones are [41] (Dhond et

al.) from 1980s, and [39] (Brown et al.) from 1990s to 2000s. Besides, the book

from Hartley and Zisserman [40] provides almost all the aspects of the multiple view

stereo problem. Recently, the study of Scharstein and Szeliski [42] provided a taxon-

omy of comparing the current state of the art solutions to the problem and provided

a website1 enabling researchers to get ready datasets with ground truth images avail-

able and compare the performance characteristics of their methods and publish them.

The website only provides unimodal images and four popular images in the datasets

are used to compare and rank the methods, the tsukuba, venus, teddy and cones (see

Figure 2.3). More recent reviews are also available by [43] (Lazaros et al.) and [44]

(Tippets et al.). These reviews focus on more resource-limited algorithms and hard-

ware (for instance, FPGA or GPU based) solutions.

Stereo-vision methods are mainly clustered around two main axes:

• Sparse / Feature-based vs. Dense Methods

• Local vs. Global Methods

2.1.1.1 Sparse / Feature based vs. Dense methods

This grouping describes whether correspondences (and therefore the pixel disparities)

are computed for all the pixels in the images (i.e., the dense methods), or only for

some reliable features extracted from images, such as salient points, edges, corners,

curves etc.
1 http://vision.middlebury.edu/stereo/
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Figure 2.3: A view from Middlebury Stereo Evaluation web page with comparison of
referenced studies. (Source: [45])

As noted by Dhond and Aggarwal [41], sparse methods were much more popular at

80
′s initially, especially due mainly to the computational efficiency. In addition, these

methods have the advantage of performing better under contrast/illumination varia-

tions, especially by the advances on feature descriptors used by image registration

methods such as SIFT, SURF, Harris or many available edge or shape-based descrip-

tors [46, 47, 48, 49, 50, 51]. However, only limited information can be extracted

from features.Performance of sparse methods can be improved by using hierarchical

grouping of features (e.g., [52]), or using segmentation of the images for matching

[53].

Dense methods on the other hand attracted most researchers during the last decade.

Along with significant improvements on computer hardware performances, the moti-

vation is reported to come from the needs of current applications such as view syn-
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thesis or image-based rendering requiring disparity maps of all pixels including the

occluded or textureless regions. Scharstein and Szeliski totally ignored sparse meth-

ods for their comparative study [42].

2.1.1.2 Local vs. Global methods

Local methods use only the local neighborhood information for finding stereo cor-

respondences. These methods usually perform a WTA (winner takes all) over the

computed costs using this neighborhood information while performing matching (see

Figure 2.4). Dense methods performing a window-based matching over pixels in this

neighborhood are grouped as local methods. As the similarity metric, Sum of Squared

Distances (SSD), Sum of Absolute Distances (SAD), Normalized Cross Correlation

(NCC) and Mutual Information (MI) are widely used [54, 55, 56, 57]. Of course, the

window size brings an important limitation to the solutions. This limitation can be

levitated by using windows whose sizes are adaptively changed, e.g. [58]. Sparse or

feature-based methods can also be local [39, 52].

Figure 2.4: A sketch of local- window based matching over the epipolar line.

Global methods, on the other hand, use global constraints to correct wrong correspon-

dences that are otherwise not possible locally. Although computational complexity

is much higher, significant improvements in the accuracy of disparity maps can be

achieved. Dynamic Programming techniques, and several energy minimization or

global optimization techniques have been employed for this purpose. Dynamic Pro-

gramming techniques make use of ordering constraint and ensure a minimum cost is

achieved on the specific epipolar line [58, 59, 60]. Other energy minimization ap-
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proaches add smoothness, uniqueness or occlusion constraints for defining a global

energy function, and employ methods such as Graph cuts, Simulated Annealing and

Belief Propagation to minimize this energy function [42, 61, 62, 63, 64].

2.2 Multi-modal Stereo-vision

Multi-modal stereo-vision is defined as performing stereo-vision using two camera

pairs of different modalities, for instance an infrared-visible camera pair.

Stereo-vision from multi-modal camera pairs has not been studied much until 2000s.

The earliest of such studies, up to the our knowledge, is from Egnal [54], who, af-

fected from Viola’s studies of multi-modal registration [65], applied mutual infor-

mation (MI) as the basic similarity measure for stereo correspondence. Egnal tested

his method both on unimodal images and also on red / blue filtered, multimodal (an

NIR and Visible/NIR image couple) and differently lighted images and compared to

a modified NCC algorithm as a baseline. The results were promising and revealed the

power of MI compared to standard correlation-based methods especially on images

with different spectral characteristics for the same scene. However, using MI still had

low quality. Figure 2.5 and 2.6 show sample results from his studies.

Fookes et al. extended the MI-based approach with adaptive windowing [66] and

integrated prior probabilities using a 2D matching surface [34]. The 2D match surface

is simply performed by computing MI costs for every possible combination of left and

right pixels in the match window and putting on a 2D surface. Then, first, maximum

of one row is found. It is compared by all the costs on the same column and if it is also

maximum of the column, then determined as a valid match. This is claimed to enforce

left-right and uniqueness constraints. Prior probability incorporation is performed

by computing a joint histogram from all the intensities in the stereo image pair and

using this as prior probabilities added to the joint probability of matching windows

along with a weighting constant. The results were taken from synthetically altered

unimodal images actually, by first computing the negative, solarized, posterized and

simulated (by cos(I ∗ π/255) ) versions of one of the image pairs and compared to

results from NCC and rank transform where MI outperforms all these methods (see
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Figure 2.5: One of Egnal’s experiments, where he uses an image from a camera
with a red filter used on the left image and blue filter used on the right image. MI
outperforms MNCC for intensity conversions while enhancing accuracy for larger
windows (Source: [54]).

Figure 2.7). This study is important to show that stereo-vision results using MI could

be significantly enhanced when combined with other state-of-the-art stereo-vision

techniques, however, the results were taken only from synthetically altered unimodal

images, which do not actually include different segmentation / edge characteristics

that multi-modal images may have.

Krotosky and Trivedi [26, 67, 68] used mutual information for an infrared-visible

camera pair for pedestrian detection and tracking. They applied mutual information

for stereo correspondence within region of interests (ROI) including the human bod-
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Figure 2.6: Another experiment from Egnal ([54]), including a NIR(left) and Visi-
ble/NIR(right) image couple. MI outperforms MNCC at high confidence levels.

ies, and propose a disparity voting method for computing the final depth information

for the corresponding regions as a significant restriction. Finally, this depth informa-

tion is used to accurately register the multi-modal images for the ROIs.

Campo et al. [69] proposed an MI-based method where the similarity measures were

extended using the gradient information. They developed a multi-modal stereo rig

(with thermal and visible cameras) and a database. The 3D depth results presented in

their work are quite sparse for the scenes tested; however, their results are promising

since they show that stereo-vision is possible from images with very distinct spectral

bands.Figure 2.8 shows results from [69], presenting examples of sparse depth maps

from outdoor scenarios (red color in cost map corresponds to high cost values).

Recently, a measure, called Local Self Similarity (LSS), originally proposed for im-
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Figure 2.7: Experiments of Fookes et al. on synthetically altered stereo image pairs
(Source: [34]). (a) Negative (b) Solarized (c) Posterized (d) Simulated images. Dis-
parities computed with (1) ZNCC (2) Rank Transform and (3) MI

age template matching [70], has been applied as a thermal-visible stereo correspon-

dence measure by Torabi and Bilodeau [71]. They implemented a ROI-based image

matching by tracking people in the scene according to their silhouettes, and com-

pared it against MI-based similarity descriptors. In their first publication [72], they

showed that LSS measures outperform MI and HoG (Histogram of Oriented Gradi-

ents). Later, they used LSS measure in an energy minimization framework, enhancing

the results compared to their previous work [73].

In their latest publication [74], with more data (about 300 images), they compared

LSS and MI with (i) traditional descriptors such as SIFT, SURF, HOG, (ii) binary

descriptors such as Census, Fast REtina Keypoint (FREAK) or Binary Robust Inde-

pendent Elementary Feature (BRIEF) and (iii) direct comparisons of windows based

on SSD, NCC. In this study, MI and LSS were shown to be the leading measures

for ROI-based image matching of human silhouettes (see Figure 2.9). MI outper-

formed LSS showing that it is still the best choice for multi-modal image windows
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matching; however, for smaller window sizes where the objects of interest were small

or segmented into small fragments or there were many occlusions between objects,

LSS performed better. On the other hand, LSS measure is not yet tested for a dense

disparity map estimation and still requiring large window sizes. Moreover, it is com-

putationally more expensive, and performs badly on uniform regions or small regions

at salient points that are dissimilar to neighboring regions [72]. Such regions consti-

tute non-informative descriptors and are eliminated in the beginning of the proposed

method which makes the method sparse, i.e., not suitable for dense disparity map

calculation.

2.2.1 Similarity Measures for Multi-Modal Stereo-vision

In this section, the similarity measures that were confronted in the literature that are

proposed and tested as multi-modal stereo correspondence measures are described in

detail. The performances of these similarity measures are evaluated in the scope of

this thesis in Chapter 4.

2.2.1.1 Mutual Information (MI)

Mutual information (MI) was invented by Shannon [75] in 1948 in the field of Infor-

mation Theory. In this study, the concepts of entropy as well as the MI was introduced.

The aim was to propose a measure for counting the information content in a received

data over a random variable x having the probability distribution p(x). For events

that are highly probable and was certain to happen, this should lead to small values or

to a value representing no information, but for events that are less probable and un-

likely occur carrying more information should lead to higher values of the measure.

Therefore, Shannon first proposed a function h() which is defined as:

h(x) = − log(p(x)), (2.4)

which is a monotonic function of p(x).

By this function, it can be observed that if two events x and y are unrelated, then

for the joint probability condition p(x, y) = p(x)p(y) of independent variables, the
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Figure 2.8: Results from [69], showing examples of sparse depth maps from outdoor
scenarios (red color in cost map corresponds to high cost values) [Best Viewed in
Color]

total information content will be h(x, y) = h(x) + h(y), which is the sum of the two

information that are unrelated.

Next, Shannon proposed the concept entropy as the average amount of information

that can be calculated before transmitting the data of the random variable x wrt dis-
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(a)

(b)

Figure 2.9: Sample view from experiments of Torabi et al. [74]. (a) Depiction of
1D sliding window algorithm over visible-thermal stereo image pairs for human ROI
identification. (b) Results for comparison of evaluated methods for human ROI de-
tection over visible-thermal stereo image pairs.

tribution p(x) as:

H(x) = −
∑
x

p(x) log(p(x)). (2.5)

Using this concept, Shannon proposed noiseless coding theorem which claims that

the entropy constitutes the lower bound on the number of bits which is needed to
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transmit the state of a random variable [75, 76].

Shannon also defined the joint entropy H(x, y) and the conditional entropy H(x|y)

and showed the relations between them as:

H(x, y) = H(p(x, y)) = −
∑∑

(p(x, y) log(p(x, y))), (2.6)

H(x|y) = H(p(x|y)) = −
∑∑

(p(x|y) log(p(x|y))), (2.7)

where joint entropy can also be defined as:

H(x, y) = H(x) +H(y|x) = H(y) +H(x|y), (2.8)

which yields the mutual information as follows:

MI(x, y) = H(x)−H(y|x) = H(y)−H(x|y) = H(x) +H(y)−H(x, y). (2.9)

Joint entropy is defined as the information describing x and y which corresponds to

information needed to describe x alone and additional information required to specify

y given x , i.e. the conditional entropy. Conditional entropy measures the uncertainty

when, for instance, the received signal is known but the actual sent signal is unknown

due to noise etc.

Mutual Information (MI) on the other hand, is computed as the subtraction of the

information needed to describe x alone and the additional information required to

specify y given x, which corresponds to the reduction in the information content

of x when y is known. Therefore, if their joint entropies are high (meaning joint

probabilities are low) or conditional entropies (conditional probabilities are low) are

high then the mutual information shall be low and opposite in the reverse condition.

Intuitively, it measures the mutual amount of information they share.

Another definition of MI uses Kullback-Leibler distance measure [77], which mea-

sures the additional information required for defining x using another approximating

distribution q(x)instead of p(x) which is assumed unknown.

KL(p‖q) = −
∑
x

p(x) log(q(x))−

(
−
∑
x

p(x) log(p(x))

)
, (2.10)

which is then equal to:

KL(p‖q) = −
∑
x

p(x) log

(
q(x)

p(x)

)
. (2.11)
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KL(p‖q) is also known as Kullback-Leibler divergence or relative entropy [76]. Hence,

when we consider two random variables x and y given p(x, y), if they are indepen-

dent, then p(x, y) = p(x)p(y). But if they are not, we can get their mutual information

from KL divergence as:

KL(p(x, y)‖p(x)p(y)) = −
∑
y

∑
x

p(x, y) log

(
p(x)p(y)

p(x, y)

)
= MI(x, y) (2.12)

From sum and product rules it is obvious to show the equality of Eqn. 2.12 to 2.9.

Regarding computer vision, one can notice that the entropy concept can be applied

to an image pixel values where probability distribution of an image I(x, y) defined

as p(I) can be computed from an histogram hist(I(x, y)) of the pixel intensities. An

image with less intensity levels shall have high numbers in the histogram and high

probabilities leading to low entropy values. A high entropy value will be computed if

image has more intensity levels with less quantities (which means more information

content). Therefore, it can be concluded that the entropy measure stands for the

unsmoothness or irregularity in an image where images with big regions of small

variance in intensity levels shall have low entropy values. It can be stated that entropy

measures the dispersion in the probability distribution of the image pixel intensities

[1].

Similar conclusions can be deduced for joint probabilities of images. If joint proba-

bility of two images are high, this will yield a low joint entropy and vice versa. This

idea has led to using entropy and mutual information measures for the image regis-

tration purposes. First, Collignon et al. [78] and Studholme et al. [79] suggested

to use entropy and mutual information as a measure of image registration, especially

for multi-modal medical images registration. This followed Viola and Well’s [65]

study on multi-modal image registration using mutual information in a maximization

problem which drawed significant attention.

Later, effected from Viola’s studies Egnal [54] first proposed mutual information for

the multi-modal stereo correspondence problem. Later, the studies of [26, 34, 66, 67,

68, 69] are published using mutual information for multi-modal stereo-vision [34, 69,

66] and related problems such as human ROI tracking on multi-modal stereo image

pairs [26, 67, 68, 74]. See Chapter 2.2 for detailed literature survey on multi-modal

stereo-vision.
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Figure 2.10: Joint histogram of an MR image and its rotated version for 0, 2, 5 and
10 degrees from left to right along with computed joint entropy values at the bottom
row. (Source: [1])

Figure 2.10 shows joint histogram of an image over its unrotated and rotated versions

along with the joint entropies calculated. As can be observed, when the dispersion

in the joint histogram is low, this means the pixel intensity values in one image cor-

responds to same or similar intensity values in the other image, which yields low

joint entropy values. Similarly, Figure 2.11 presents another experiment showing the

change in the joint histogram as well as the joint entropy and MI for the registered

and unregistered images.

The advantage of MI over joint entropy is that MI also includes entropies of the two

images (hence the marginal probability distributions) in addition to joint entropy. This

reduces the misalignment problem for the low entropy locations such as background

areas. Having marginal entropies in the calculation, this increases the mutual infor-

mation when pixels containing structural information of objects in the images also

align well [1].

2.2.1.2 Mutual Information with Prior Probabilities (MIwPR)

Incorporating prior probabilities to MI calculation was proposed by Fookes et al. [34]

for multi-modal image matching and stereo correspondence. The aim is to increase

the statistical discriminability of joint probability calculation of the two local match-

ing windows. In order to accomplish this, joint prior probabilities computed from the

whole image is added to the local joint probability calculation.

MI can be calculated from the two local windows WL and WR extracted from the left
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(a)

(b)

Figure 2.11: Depiction of the change in joint histogram, entropy and MI of registered
and unregistered image pairs (images at top row: reference and current image; bottom
row: the difference image and the joint histogram image) (a) registered image (b)
unregistered image (Source: [80])

image L and right image R as:

MI(WL,WR) =
∑
Il∈WL

∑
Ir∈WR

P (Il, Ir) log
P (Il, Ir)

P (Il)P (Ir)
, (2.13)
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where P (Il, Ir) corresponds to joint probability for the left and right image patches

WL and WR, P (Il) and P (Ir) are the marginal probabilities of the pixel intensities.

On the other hand, it is possible to change the formulation as:

MI(wPR))(WL,WR) =
∑
Il∈WL

∑
Ir∈WR

P (Il, Ir) log
P ∗(Il, Ir)

P (Il)P (Ir)
, (2.14)

where P ∗(Il, Ir) can be defined as:

P ∗(Il, Ir) = λP (Il, Ir) + (1− λ)Pprior(Il, Ir), (2.15)

and Pprior(Il, Ir) is the joint prior probability computed from the joint histogram of

the whole images as:

Pprior(Il, Ir) =
hist(Il, Ir)∑
l,r hist(Il, Ir)

, (2.16)

for all corresponding pixels Il in left image L and Ir in right image R.

The λ corresponds to the degree of this incorporation of prior probabilities into the

joint probability calculation. This modification to MI calculation was shown to in-

crease the performance of MI as a similarity measure in stereo correspondence prob-

lem in [34].

2.2.1.3 Local Self-Similarity (LSS)

Local self similarity (LSS) is a similarity measure proposed initially by Shechtman

and Irani [70] for image template matching.

The method simply extracts a small patch (e.g. 5x5) from the center pixel q of a

larger window (e.g. 40x40) and sum of squared distances (SSD) between the small

patch and the surrounding larger region is computed. Next, the SSD costs are normal-

ized by maximum value of small image patch variance and a noise term generating a

correlation surface as given in below equation:

Sq(x, y) = exp

(
− SSDq(x, y)

max(varnoise, varauto(q))

)
. (2.17)

Finally, the LSS descriptor is produced by a partitioned log-polar representation of

this correlation surface like e.g. 20 angles and 4 radial intervals = 80 bins. Figure 2.12
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taken from [70] shows some spectacular results of using LSS including a comparison

with MI.

Figure 2.12: Reported template matching results from [70] using LSS, including a
comparison with MI.

Torabi and Bilodeau introduced LSS measure for thermal-visible image pairs stereo

correspondence problem where they implemented an ROI based image matching

framework for human tracking and computing depth of the human ROI in thermal-

visible image pairs [71, 73]. In their recent studies, they compared this measure with

other similarity measures like MI, HOG, Census, SIFT, SURF, BRIEF, FREAK etc.

[72, 73] where LSS was successful for smallest window size that were tested but MI

was still outperforming LSS for the other two window sizes.
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2.2.1.4 Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG) similarity measure was proposed by Dalal

and Triggs [81] for human detection.

The method first divides the image patch extracted around the center pixel q into a grid

of cells. Each cell accumulates the local 1-D histogram of gradient directions. For ro-

bustness to illumination effects, blocks composed of several of these cells accumulate

the local histograms and they are used for normalization of local cells. The normal-

ized descriptor blocks are called Histogram of Oriented Gradients (HOG). The HOG

descriptors of each pixel in a local detection window can then be combined to have

a feature vector for human detection. Computation of the descriptors are expressed

mathematically as below:

HOGq(k) =
∑

(x,y)∈Wq

T

(
Θ(x, y)

γ

)
, (2.18)

where HOGq(k) corresponds to kth bin in the histogram of K bins, Θ(x, y) is the

gradient at pixel (x, y) and γ is a scaling constant and T is the function defined as:

T (u) =

 1 if u = 0

0 otherwise.
(2.19)

Figure 2.13 summarizes the whole process of computing the HOG descriptors.

HOG was used by Torabi and Bilodeau for comparing their proposed method of hu-

man ROI detection in thermal-visible stereo image pairs using LSS [72] and also

compare to other alternative similarity measures like MI, SIFT, SURF, Census etc. in

[74].

2.2.1.5 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) was proposed by David Lowe [46] for ob-

ject detection. The method generates sets of descriptive features from images that are

claimed to be invariant to rotation and scaling and partially to camera viewpoint and

illumination changes. The method has drawn significant attention since was proposed

30



Figure 2.13: Depiction of computing HOG descriptors process (Source: [82])

at 2004 and become very popular for object detection, template matching and related

applications.

The method is composed of below major steps:

A. Scale-space extrema detection:

In this step, the aim is to identify locations which are invariant to scale and ori-

entation changes. To accomplish this task, the image is transformed into several

scales where at each scale level (called an octave) the image is convolved consec-

utively with Gaussians. Mathematically, for the image I(x, y), the scale space of

the image is defined as a function L(x, y, σ) as:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.20)

where ∗ represents the convolution operation and G is the Gaussian function with

the standard deviation σ.

If the image consecutively convolved with Gaussians of incremented scales as

kσ and the resultant images are subtracted, then Difference of Gaussians (DoG)

D(x, y, σ) images are generated which enables to efficiently detect stable key-

points.

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ). (2.21)
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In Figure 2.14, the generation of DoG images in the scale space is depicted. The

method uses s intervals in each octave, where k = 21/s. At each octave, the

Gaussian images are resampled by halving the resolution of the image.

Figure 2.14: Depiction of generation of DoG images for the scale space images in
each octave (Source: [46] )

Finally, the local extrema are detected in the scale space DoG images generated.

The method compares each sample point in the DoG image by its eight neighbors

in the current scale and nine neighbors in the corresponding images of scale levels

higher and lower by one level. The sample point is selected if it is greater than or

lower than all these neighbor pixels.

B. Accurate Keypoint Localization:

In this step, the keypoint candidates are accurately localized by fitting a 3D quadratic

function to the neighboring data. This method was proposed by Brown and Lowe

in [83]. The Taylor expansion of the D function (Eqn. 2.21) is used for this

purpose as:

D(x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x, (2.22)

where the local extrema, x̂ are accurately localized by taking the derivative of this
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function and setting to zero:

x̂ = −∂
2D

∂x2
∂D

∂x
. (2.23)

The vectors comprised by the location, scale and orientation are generated for

each keypoint. Next, the keypoints having low contrast with the neighbor data

are eliminated at this step by computing the D value at the extremum, D(x̂), as

below:

D(x̂) = D +
1

2

∂DT

∂x
x̂. (2.24)

However, this is not sufficient since edge responses should also be eliminated

which have high DoG values although weakly determined. These locations are

detected by computing principal curvatures from a 2x2 Hessian Matrix, H and

computing the ratio and thresholding as:

Tr(H)2

Det(H)
<

(r + 1)2

r
, (2.25)

where Tr(H) is the trace of the H , Det(H) is the determinant and the r is the

ratio between the largest eigenvalue and smaller one.

C. Assignment of Orientation:

The orientations of the keypoints are also assigned by forming a 36-bin histogram

which was determined experimentally. The histogram entries are weighted by the

gradient magnitude and by a Gaussian weighted circular window. This Gaussian

window has a σ that is 1.5 times of the keypoint‘s own scale.

Later, the local peaks in this orientation histogram are also inspected. Any local

peak greater than %80 of the highest peak is added as another keypoint with this

new orientation.

Finally, a parabola is fit to the three values closest to the peaks in the orientation

histogram to detect an accurate position for the orientation values assigned.

D. Generating the Local Descriptor:

In this final stage, the local descriptors at the salient points detected by the method

are generated.

The process starts by computing image gradients and orientations around the local

region of each keypoint. Next, the gradients and orientations are weighted by a
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Gaussian function with the σ as the half of the descriptor window determining the

2x2 or 4x4 subregions around the keypoint. The gradients and orientations are ac-

cumulated within these descriptor windows where the orientations are binned to 8

directions within each subregion using the gradient values. Figure 2.15 shows this

procedure where a 2x2 subregions of 8-bin orientation histograms are depicted

for illustrative purposes. In the original article examples, [46], 4x4 subregions

are used yielding a total of 4x4x8 = 128 entries for the descriptor vector of the

keypoints.

Figure 2.15: Depiction of computing the SIFT local descriptor: Left: shows the com-
puted gradients and orientations for each sample point in the neighbor region and the
Gaussian window for weighting Right: 2x2 descriptor windows (the subregions) to
accumulate gradients and construct 8-bin orientation histogram (Source: [46])

Finally, to have a more robust descriptor to illumination changes, the descriptor

vectors are normalized and some large values greater than 0.2 (determined exper-

imentally) are removed and then renormalized again. This way the over-effect of

large magnitude gradients are reduced due to non-linear illumination changes.

2.2.1.6 Speeded-Up Robust Features (SURF)

The Speeded-Up Robust Features (SURF) was proposed by Bay et al. [47]. The

aim was to develop a faster similarity measure in contrast to SIFT with comparable

performance.
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The method is based on the Hessian matrix defined as:

H(x, y, σ) =

Lxx(x, y, σ) Lxy(x, y, σ)

Lxy(x, y, σ) Lyy(x, y, σ)

 , (2.26)

where L(x, y, σ) is the convolution of the Gaussian to image I same as in Eqn. 2.20,

Lxx, Lxy and Lyy are the second order derivatives. For computing the Gaussian sec-

ond order derivatives for this purpose, 9x9 approximations (the box filters) are used

which increases the speed of the total method significantly.

The scale space analysis on the other hand is performed by the method by up-sampling

the box filters instead of down-sampling the image. The box filters of size 9x9, 15x15,

21x21 and 27x27 etc. are used. As scales are enlarged, the step sizes between scales

are also scaled. Next, the interest points are localized by using non-maximum sup-

pression in a 3x3x3 neighborhood over the scales of the image. Similar to SIFT,

Brown and Lowe’s method in [83] is used for interpolation in scale space over the

Hessian matrix for the maxima of the determinant.

For achieving rotational invariance, Haar-wavelet responses are computed in x and y

direction in a circular neighborhood of the interest points with radius 6s where s is

the scale of the interest point detected. The responses are weighted by the Gaussian

of scale σ = 2.5s centered on the interest point. The dominant orientation is then

computed by the sum of the responses using a sliding orientation window having an

angle of π
3

determined experimentally.

Finally, for generating the descriptor vector, a square region around the interest point

oriented in the dominant orientation is constructed. The size of this window is set to

20s. Next, this window is split into 4x4 subregions. The subregions are sampled by

5x5 sample points and the wavelet responses dx, dy are summed up over each subre-

gion. The absolute values of the responses are also summed, |dx| and |dy|. Therefore,

the feature vector is comprised by v = (
∑
dx,
∑
|dx|,

∑
dy,
∑
|dy|) for each subre-

gion which yields totally 4x4x4 = 64 sized descriptor vector.

The descriptor vector is normalized for invariance to contrast changes.

Figure 2.16 shows sample descriptor vector responses for a subregion of given pat-

terns.
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Figure 2.16: Depiction of SURF descriptor vector responses of the subregions of
several patterns (Source: [47]) Left: homogeneous region corresponds to low values
Middle: high frequencies in x direction corresponds to high values in |dx| Right:
increasing intensity in x direction corresponds to high values for both dx and |dx|
.

2.2.1.7 Census Transform (CENSUS)

Census Transform was proposed by Zabih et al. [84] which is composed of a non-

parametric local transform. The method simply uses relative ordering of pixel inten-

sities in the image patch over the center pixel and transforms it into a binary encoded

string as the descriptor information. Mathematically, this is expressed as:

C(Wu) = ⊗T (Wu;u, v), (2.27)

where Wu is the image patch extracted from center pixel u, v denotes all neighbor

pixels in Wu, ⊗ is the concatenation operation and the T function is defined as:

T (Wu;u, v) =

 0 if Wu(v) < Wu(u)

1 otherwise.
(2.28)

Therefore, the neighbor pixels are checked if their value is greater than the center

pixel which leads to a 0 in the binary string and 1 otherwise if smaller.

The descriptor is composed of the binary string encoded using this T function as

shown in Eqn. 2.27 and 2.28.

The hamming distance [85] is used to compare the encoded binary strings, that counts
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the number of bits that differ:

hamming(s1, s2) =
∑

i∈(0,N)

Th(s1(i), s2(i)), (2.29)

where Th function is defined as:

Th(c1, c2) =

 1 if c1 6= c2

0 otherwise
(2.30)

and where s1 and s2 are the two binary strings to be compared, s(i) corresponds to

the ith bit in the string s.

Census was used as one of the similarity measures to compare to alternative measures

in their study of Torabi and Bilodeau [74] for human ROI detection in thermal-visible

stereo image pairs.

2.2.1.8 MI of Census Transform (CENSUSMI)

This similarity measure is a novel method proposed in the scope of this thesis [38].

The idea is to use mutual information as the similarity function instead of hamming

distance of the Census Transformed image patches which is claimed to eliminate the

issues in multi-modal image pairs having different intensity responses. Mathemati-

cally, it can be expressed as:

CENSUSMI(WL,WR) = MI(C(WL), C(WR)), (2.31)

where C(WL),C(WR) corresponds to census transform of the left and right image

local windows WL,WR to be matched, as given in Eqn. 2.27.

Figure 2.17 illustrates the method where instead of the two initial multi-modal image

pairs having different gray level intensities the census transformed image patches are

seeked for matching using the mutual information of the transformed image patches.

2.2.1.9 Binary Robust Independent Elementary Features (BRIEF)

Binary Robust Independent Elementary Features (BRIEF) is a similarity measure pro-

posed by Calonder et al. [86] based on features as encoded binary strings over an
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Left Census Transformed Image Right Census Transformed Image

Multi-Modal Left – Right Stereo Image Pairs

Figure 2.17: Illustration of the MI of Census Transform method where multi-modal
image pairs are census transformed and processed for stereo correspondence using
the mutual information of the transformed images

image patch.

The method is composed of three steps:

• A Sampling grid of points in a defined pattern is generated around the region

of the pixel interested.

• List of sampling pairs of points from the sampling grid is computed.

• The binary string is encoded from the sampling pairs.

The binary string is encoded using the T function as in Eqn. 2.32, for an image patch

p of size SxS:

T (p;x, y) =

 1 if p(x) < p(y)

0 otherwise
(2.32)
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The pixel intensities of the image patch are smoothed using Gaussian kernels in order

not to effect from noise.

Regarding the construction of the sampling grid and computing the sampling pairs

(x, y), a number of methods were proposed in [86] as:

• (G I): points are evenly distributed, pairs are randomly selected.

• (G II): points are sampled using a Gaussian distribution and pairs are randomly

selected from this distribution of points, which means points near the center are

preferred.

• (G III): the first location x is sampled from a Gaussian centered around the

origin, the other point is sampled from another Gaussian centered around the

x, which creates more local pairs.

• (G IV): A coarse polar grid is used and pairs are randomly selected from this

grid.

• (G V): A coarse polar grid is used and pairs are selected as x = (0, 0) at the

origin and y is randomly selected.

Figure 2.18 illustrates these five approaches proposed for the construction of the sam-

pling grid and the sampling pairs.

The hamming distance [85] is used to compare the encoded binary strings as given in

Eqn. 2.29.

BRIEF was used as one of the similarity measures to compare to alternative measures

in their study of Torabi and Bilodeau [74] for human ROI detection in thermal-visible

stereo image pairs.

2.2.1.10 Fast Retina Keypoint (FREAK)

Fast Retina Keypoint (FREAK) is yet another similarity measure proposed recently

by Alahi et al. [87] based on features as encoded binary strings over a neighborhood

of a pixel. Like other competitives (such as BRIEF, BRISK etc.), the binary strings
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Figure 2.18: Illustration of the five approaches proposed for the construction of the
sampling grid and the sampling pairs for encoding the BRIEF similarity measure
(Source: [86]).

are generated over a sampling grid, but the difference of FREAK is that the method

was inspired by the human visual system and the topology and spatial relationship of

receptor cells in the retina. The sampling grid was proposed to have a similar pattern

to retinal system.

Briefly, the retinal structure is composed of layers of the photo-receptors (rods and

cones), the inner cells (horizontal, bipolar and amacrine cells) and the ganglion cells

[88] (see Figure 2.19-a). The layers transfer visual information between them where

finally the ganglion cells actually encode the visual information as action potentials

and transfers to the several parts of the brain. The number of ganglion cells decrease

exponentially by the distance from the foveal (where cones are densely packed but no

rods). In the foveal region, it becomes almost 1:1 to have a ganglion cell to each cone.

Therefore, highest resolution of information acquired from the foveal whereas lowest

resolution is acquired from the perifoveal where many photo-receptors influence less

ganglion cells.

Influenced by this structure, it is proposed to have a similar structure and transforma-

tion of image pixels to meaningful binary patters as depicted in Figure 2.19-b.
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Accordingly, the retinal sampling grid is proposed to be circular but more number

of points are near the center of the grid. The density of the sample points are de-

creased exponentially by the distance to the center. For each sampling point, the

associated Gaussian kernel size is also changed comprising bigger receptive fields on

the periphery (i.e. lower resolution). Besides, the receptive fields do overlap which

experimentally found to increase performance.(see Figure 2.19-c)

Using this sampling grid of receptive fields, a binary descriptor is constructed by first

pairing the receptive fields and then thresholding the difference between the receptive

fields, as below, as a sequence of one-bit Difference of Gaussians (DoG):

FREAK =
∑

0≤a<N

2aT (Pa), (2.33)

where T function is defined as:

T (Pa) =

 1 if I(P r1
a )− I(P r2

a ) > 0

0 otherwise,
(2.34)

and Pa is the pair of receptive fields, N is the size of the descriptor binary string.

In order to select the pairings a learning phase is performed over the data which

yields automatically a coarse-to-fine ordering of DoGs similar to human vision sys-

tem. Later at the recognition step, it is preferred to search the binary strings in several

levels where initially first 16 bits are compared which represents the coarser informa-

tion and after locating the candidate matchings a more detailed search is performed

over the rest of the string for a higher resolution matching. This mechanism is also

claimed to mimic how the human visual recognition is performed [87].

The hamming distance [85] is used to compare the encoded binary strings as given

in Eqn. 2.29, like other binary encoded string based similarity measures like Census

and BRIEF.

FREAK was used as one of the similarity measures to compare to alternative mea-

sures in their study of Torabi and Bilodeau [74] for human ROI detection in thermal-

visible stereo image pairs.
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(a)

(b)

(c)

Figure 2.19: Human vision system and depiction of proposed computer vision system
(Source: [87]) (a) Depiction the human visual system along with the layers transfer-
ring visual information from photo-receptors to ganglion cells which encodes and
transfers data to brain (courtesy of [88]) (b) Proposed computer vision system struc-
ture from pixels to encoded binary strings for object recognition. (c) Depiction of
retinal sampling pattern of receptive fields (left image) and sample pairings of the
receptive fields (right image) .

2.2.1.11 Normalized Cross Correlation (NCC)

Normalized Cross Correlation (NCC) is also another traditional similarity measure

[39, 42, 89]. The pixel-wise cross-correlation of the two matching windows are com-

puted and normalized by the overall intensity difference. It is expected to have higher

similarity value when similar patterns of intensities exist during the matching.
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NCC similarity measure is defined as:

NCC(WL,WR, d) =

∑
x,y(WL(x, y)− W̄L)(WR(x− d, y)− W̄R)√∑
x,y(WL(x, y)− W̄L)2(WR(x− d, y)− W̄R)2

, (2.35)

where WL is a local window around the pixel (x, y) in the left image L corresponding

to the pixel in the xth column and yth row of this left image. WR is either of the

matching windows from the same row y in the right image for the candidate disparities

d ∈ [0, dmax] which are tested for maximum similarity (or namely minimum cost in

this case). W̄L, W̄R are the mean pixel intensities of the local windows WL and WR

respectively.

NCC was used as the basic similarity measure to compare the proposed methods for

multi-modal stereo-vision in studies: [54, 74, 72].

2.2.1.12 Sum of Square Distances - SSD

Sum of Square Distances (SSD) is the most basic similarity measure for stereo-vision

[39, 42, 89], which is simply composed of computing the sum of squares of intensity

differences of the pixels in the two matching windows WL and WR from the left L

and right R images respectively.

The similarity measure is defined as:

SSD(WL,WR, d) =
∑
x,y

(WL(x, y)−WR(x− d, y))2 , (2.36)

where WL is a local window around the pixel (x, y) in the left image L corresponding

to the pixel in the xth column and yth row of this left image. WR is either of the

matching windows from the same row y in the right image for the candidate disparities

d ∈ [0, dmax] which are tested for maximum similarity (or namely minimum cost in

this case).
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CHAPTER 3

DATASETS AND PERFORMANCE EVALUATION

In this chapter, the multi-modal stereo image datasets that were generated and pre-

pared in the scope of the thesis are described. Besides, the methods that were pro-

posed and used for the performance evaluation over each dataset are provided.

Two types of datasets are generated. The synthetically altered stereo image pairs from

the Middlebury Stereo Evaluation Dataset [45] and the visible-infrared image pairs

captured from a Kinect device [35].

3.1 Dataset #1 - The Middlebury Dataset

This dataset contains the four popular image pairs (Tsukuba, Venus, Cones and

Teddy) in the Middlebury Stereo Evaluation Dataset [45], where the left images are

replaced with the synthetically altered ones by using a cosine transform (cos(πI/255))

of pixel intensities just as Fookes did [34]. Table 3.1 provides the list of the image

pairs that comprises the dataset along with several properties of the stereo images.

Figure 3.1 presents the image pairs generated and used in the experiments.

This dataset enabled to compute the statistics of test results for gaining more knowl-

edge of the performance of the evaluated methods and it became possible for any

current or future method to be able to be compared for the result metrics regarding

the ones on the evaluation site although they are results for the unimodal image pairs.

Note that, in the left images, important details are lost due to the cosine transforma-

tion.
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Table 3.1: The Dataset #1 - Synthetically Altered Middlebury Stereo Evaluation
Dataset.

Dataset Image Image Resolution Max.
No Name Disparity

Dataset #1 1 Tsukuba 384×288 15
Dataset #1 2 Venus 434×383 19
Dataset #1 3 Teddy 450×375 59
Dataset #1 4 Cones 450×375 59

In the experiments, for the statistics computation, the prepared non-occluded regions

and discontinuity regions are used "as is" as provided by the Middlebury page [45].

Regarding the "all" regions, we performed clipping on the left border for the region

that do not exist in the right image since it is not in the scope of the thesis to perform

any extrapolation for those regions. Besides, the image borders are also excluded by

32 pixels because of the limitations of the similarity measures evaluated. In addi-

tion, for the window-based methods half of the used window sizes at the borders are

also discarded when computing performance statistics for a fair comparison between

methods.

Refer to Figure 3.2 for the "all", "disc" and "nonocc" regions in accordance with the

the Middlebury page [45], where the white pixels show the regions that the perfor-

mance evaluations are performed.

The performance evaluations for dataset#1 are performed using two types of metrics:

the RMS - Root Mean Square distances between computed disparities and the ground

truth disparity map and the Bad - percentage of bad pixels at which the distance be-

tween computed disparity and the ground truth disparity is greater than the designated

threshold. This error threshold δd for the Bad pixels metric is set to 1.5 disparity dis-

tance as was performed in Middlebury Stereo Vision Evaluation Page and suggested

in the description page [90] for non-integer subpixel disparities unless rounded.

These metrics are computed as follows [42]:

RMS =

√√√√ 1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|2, (3.1)
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Figure 3.1: Tsukuba, Venus, Teddy and Cones stereo pairs from the Middlebury
Stereo Vision Page - Evaluation Version 2 [45]. Left column: Synthetically altered
left images. Middle column: The right images. Right column: The ground truth
disparities. Note that, in the left image, important details are lost due to the cosine
transformation.

Bad =
1

N

∑
(x,y)

(|dC(x, y)− dT (x, y)| > δd) . (3.2)

where dC(x, y) is the computed disparity map, dT (x, y) is the the ground truth dis-

parity map, δd is the error threshold (=1.5), N is the number of pixels accounted for

metrics computation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.2: Regions where evaluations are performed, for Tsukuba, Venus, Teddy
and Cones image pairs. Only "White" pixels are included in performance evaluation
calculations. (a)-(d) the "all" regions including regions of both non-occluded dis-
continuities (c)-(h) the "disc" regions - discontinuities (i)-(l) the "nonocc" regions -
non-occluded regions.

3.2 Dataset #2 - The Kinect Dataset

The Kinect dataset contains infrared (left) and visible (right) images captured from

a Kinect device. The Kinect Device was introduced by Microsoft for the Xbox 360

game console [36] which enabled the user use his/her own body as the game con-

troller.

As shown in Figure 3.3, the device has a built-in RGB camera and an infrared camera

and projector couple. The infrared projector sends beams to the scene and the beams

are sensed on the infrared camera which enables the device to generate a 3D depth

map of the scene where the intention is the human body.

To be able to use the built-in infrared and visible camera images for multi-modal

stereo-vision, it is needed to perform stereo rectification on the two cameras so that

epipolar constraint (refer to 2) is satisfied. This is accomplished by using RGBDemo
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(a)

(b)

Figure 3.3: The Kinect Device : (a) Kinect device built-in camera, sensors and fea-
tures (Source: [91]) (b) Illustration of depth image generation process (Source: [92])

software with OpenNI backend [93] with a set of images including a checkerboard of

around 50 poses) to find the extrinsic and intrinsic parameters of the IR and RGB cam-

eras. The software uses OpenCv camera calibration and 3D reconstruction (calib3d)

module for this purpose [94].

Figure 3.4 depicts this process by showing the sample chessboard images taken by

the Kinect infrared and visible cameras, the detected chessboard grid points for the

computation of the rectification parameters and the achieved stereo rectification re-
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sults.

Stereo-
rectification

Raw Image 
Couple

Rectified 
Image Pairs

Figure 3.4: Depiction of the Kinect calibration process

The wavelength of the infrared camera in Kinect refers to around 830nm which is

defined in the NIR region (refer to Figure 1.2 for the EO/IR spectrum).

Using the Kinect device, a stereo vision evaluation dataset composed of infrared and

visible image pairs is constructed. For this purpose, several scenes of indoor environ-

ments such as the office cubicles and living room corners with several objects located

in the scene which have different reflectance properties are prepared and recorded by

the infrared and visible camera of the device. The images are stereo-rectified and

totally 24 image pairs are stored in the dataset.

Table 3.2 provides the list of the image pairs that comprises the dataset along with the

properties of the images acquired and stereo rectified for multi-modal stereo-vision

performance evaluations.

Figure 3.5 provides visuals of sample image pairs from the dataset.
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Table 3.2: The Dataset #2 - Kinect Dataset

Dataset Image Image Resolution Max.
No Name Disparity

Dataset #2 1 Kinect01 640×480 36
Dataset #2 2 Kinect02 640×480 21
Dataset #2 3 Kinect03 640×480 20
Dataset #2 4 Kinect04 640×480 20
Dataset #2 5 Kinect05 640×480 27
Dataset #2 6 Kinect06 640×480 25
Dataset #2 7 Kinect07 640×480 20
Dataset #2 8 Kinect08 640×480 16
Dataset #2 9 Kinect09 640×480 16
Dataset #2 10 Kinect10 640×480 33
Dataset #2 11 Kinect11 640×480 23
Dataset #2 12 Kinect12 640×480 33
Dataset #2 13 Kinect13 640×480 33
Dataset #2 14 Kinect14 640×480 33
Dataset #2 15 Kinect15 640×480 23
Dataset #2 16 Kinect16 640×480 23
Dataset #2 17 Kinect17 640×480 23
Dataset #2 18 Kinect18 640×480 23
Dataset #2 19 Kinect19 640×480 23
Dataset #2 20 Kinect20 640×480 23
Dataset #2 21 Kinect21 640×480 20
Dataset #2 22 Kinect22 640×480 20
Dataset #2 23 Kinect23 640×480 30
Dataset #2 24 Kinect24 640×480 15

The performance evaluation on the Kinect image pairs are performed by using the

depth data that Kinect computes. Two types of metrics are proposed for performance

evaluation on this dataset:

(i) "Percentage Good Depth" (PGD): Percentage of estimates zc that are close to

the Kinect depth zk for different thresholds δz (namely, 10, 20, 30 or 40 cm) for

only valid zk. Note that Kinect’s depth is limited to (0., 5.0] meters.

PGD =
1

N

∑
x,y

LT (|zc(x, y)− zk(x, y)|, δz) : {∀(x, y)|zk(x, y) ∈ (0., 5]},

(3.3)
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LT (a, b) =

 1 if a < b

0 otherwise
(3.4)

(ii) "Percentage Total Coverage" (PTC): The percentage added to PGD where Kinect

does not provide an estimation (zk /∈ (0., 5] meters) but the evaluated method

provides an estimation in the range (0., 5] meters.

PTC = PGD +
1

N

∑
x,y

R(zc(x, y), 0, 5) : {∀(x, y)|zk(x, y) /∈ (0., 5]}, (3.5)

Figure 3.5: Sample image pairs from Dataset #2 - Kinect Dataset Left column: Left
(IR) camera images. Middle column: Right (RGB) camera images. Right column:
Kinect’s native depth computations
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R(a, b, c) =

 1 if a ∈ (b, c]

0 otherwise
(3.6)

Note that, since there is no ground truth available, it is not possible to provide a

quantitative evaluation of which estimation is better, other than these two criteria.
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CHAPTER 4

COMPARISON OF SIMILARITY MEASURES USED FOR

MULTI-MODAL STEREO-VISION

In this chapter, a list of similarity measures that are widely used in the literature

(see Chapter 2.2) are evaluated for their performances using the datasets that were

generated in the scope of this thesis (see Chapter 3 for the description of datasets).

The similarity measures can be grouped into three categories similar to [74]:

1. Local Window Based Methods: These methods perform calculation of the mea-

sures by using local windows extracted around the compared pixels from left and

right images. The SSD, NCC and MI (with and without Prior Probability) measures

fall into this category. The similarity measures are computed as below, where the

details are provided in Section 4:

SSD(WL,WR) =
∑
x,y

(WL(x, y)−WR(x, y))2, (4.1)

NCC(WL,WR) =

∑
x,y(WL(x, y)− W̄L)(WR(x, y)− W̄R)√∑
x,y(WL(x, y)− W̄L)2(WR(x, y)− W̄R)2

, (4.2)

MI(woPR)(WL,WR) =
∑
X∈WL

∑
Y ∈WR

P (X, Y ) log
P (X, Y )

P (X)P (Y )
, (4.3)

MI(wPR)(WL,WR) =
∑
X∈WL

∑
Y ∈WR

P ∗(X, Y ) log
P ∗(X, Y )

P (X)P (Y )
, (4.4)

where WL and WR are the two matching local windows around left and right pixels

to be tested for correspondence and W̄L, W̄R are the mean pixel intensities of the

local windows, P (X, Y ) is the joint probability distribution, P (X) and P (Y ) are the
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prior probabilities of the two matching windows and P ∗(X, Y ) are the joint probabil-

ities incorporated with joint prior probabilities, i.e. P ∗(X, Y ) = λP (X, Y ) + (1 −
λ)Pprior(X, Y ). Pprior is computed from the joint histogram of corresponding pixels

through the whole image (Refer to Section 4 for the details).

2. Measures as a Collection of Feature Vectors: These methods are composed of

initially calculating feature vectors densely for each pixel. The LSS, HOG, SIFT and

SURF measures fall into this category. To compute the stereo correspondences, a

similarity measure using the sum of distances of each corresponding feature vector of

the pixels within the local windows around the matching left and right image pixels

are used, which is defined as below:

SM(WL,WR) =

√∑
x,y

(fL(x, y)− fR(x, y))2, (4.5)

where fL and fR are the feature vectors of each pixel in the two matching windows

WL and WR.

3. Measures based on Binary Comparisons: These methods are based on binary

descriptors for each pixel. CENSUS, CENSUSMI, BRIEF, FREAK measures fall

into this category. Hamming distance of the matching windows are applied to the

binary descriptors as the similarity measure (see Eqn. 2.29).

4.1 Performance Evaluation Using Dataset #1 - The Synth. Alt. Middlebury

Dataset

In this section, the performance evaluation of the similarity measures are performed

using the Dataset #1 - The Synthetically Altered Middlebury Dataset. After comput-

ing the similarity measures for the matching pixels, the "WTA" - Winner Takes All

disparities are computed by selecting the best disparity having the maximum similar-

ity value over candidate disparities. The performance evaluations are performed as

described in Chapter 3.

Three different experiments are conducted in the scope of this section, as provided

in the following subsections. Initially, the measures are tested using three different

window sizes, 9x9, 21x21 and 31x31. Next, the measures are tested for different
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multi-modality levels of the left image. Finally, several levels of Gaussian noise are

added to the left image and the measures are tested for increasing noise levels.

Appendix A provides the parameter settings used in the experiments for each of the

similarity measure method.

4.1.1 Effect of Window Size

0.000

5.000

10.000

15.000

20.000

25.000

MI
(woPR)

MI
(wPR)

LSS HOG CENSUS CENSUS
MI

BRIEF SIFT SURF NCC SSD FREAK

RMS(all)-9x9 10.292 7.642 12.699 6.843 14.223 11.428 19.402 11.934 14.152 15.803 17.839 15.503

RMS(all)-21x21 4.995 4.480 9.857 5.080 14.998 6.618 19.924 10.188 14.660 16.796 18.411 16.265

RMS(all)-31x31 4.057 3.861 8.518 4.568 15.433 4.673 20.260 9.139 15.108 17.768 18.735 16.588

Avg. RMS (all) Errors - Dataset#1 - Synth. Altered Middlebury
for Local Window Sizes (9x9, 21x21, 31x31)

RMS(all)-9x9 RMS(all)-21x21 RMS(all)-31x31

Figure 4.1: Average RMS(all) errors of all methods’ "WTA" performances for three
different window sizes for Dataset #1 - the synthetically altered Middlebury image
pairs

The experiments in this part consist of performance evaluation over the computed

disparity maps by using three different local window sizes, 9x9, 21x21 and 31x31

pixels for the similarity measure computations. The table of performance statistics

computed are provided in Table B.1 in Appendix B along with the whole set of visual

results.

On the other hand, Figure 4.1 and Figure 4.2 show the average RMS and Bad pixel

percentage errors for the "all" regions of performance evaluation where Figures B.1,

B.2, B.3 and B.4 in Appendix B show the RMS and Bad pixel performances for each

image separately, i.e. Tsukuba, Venus, Teddy and Cones. The Figure 4.3 shows

sample visual results of the "WTA" disparity maps obtained from the Tsukuba image
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for the leading similarity measures tested.
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Bad(all)-9x9 43.01% 31.41% 59.85% 40.40% 95.70% 61.74% 98.92% 65.93% 96.15% 96.93% 98.36% 92.84%

Bad(all)-21x21 16.35% 16.93% 47.16% 31.77% 96.60% 25.86% 99.44% 47.10% 98.06% 98.23% 99.02% 93.54%

Bad(all)-31x31 14.13% 15.33% 42.50% 29.55% 96.82% 18.37% 99.41% 40.58% 98.33% 98.63% 98.87% 94.03%

Avg. Bad (all) Pixel Perc. Errors – Dataset #1 - Synth. Altered Middlebury
for Local Window Sizes (9x9, 21x21, 31x31)

Bad(all)-9x9 Bad(all)-21x21 Bad(all)-31x31

Figure 4.2: Average Bad(all) pixels percentage errors of all methods’ "WTA" perfor-
mances for three different window sizes for the dataset1 - the synthetically altered
Middlebury image pairs

It can be observed from the results that the average RMS and Bad pixel percentage er-

rors are obtained as the smallest for the MI(wPR) and MI(woPR) similarity measures

where incorporation of the prior probabilities enhanced the results of MI measure.

Besides, MI of Census Transform measure that was proposed in the scope of this the-

sis enhanced the Census Transform results significantly. HOG is ranked right after the

MI results which shows us the effect of using gradient information in the multi-modal

image pairs help to match the image patches for stereo correspondence problem. LSS

is following these measures using the spatial information in the images and SIFT is

following LSS which also effectively uses the gradient information in several scale

levels.

On the other hand, the similarity measures SURF, CENSUS, BRIEF, FREAK, NCC

and SSD are totally confused for this set of image pairs which depend more on simi-

larity in the intensity levels and texture.

When the results are evaluated for the effect of local window sizes extracted for com-

puting the similarity measures, it is observed that as the size of the windows increase,

the performances also increase but by decreasing distances for the measures that can

58



9x9 21x21 31x31

MI (woPR)

MI (wPR)

HOG

LSS

SIFT

CENSUS

CENSUSMI

Figure 4.3: Sample visual results of the leading similarity measures for the synthet-
ically altered Tsukuba image pair in Dataset #1, for the different window sizes 9x9,
21x21 and 31x31 pixels. (includes the results of the novel CENSUSMI method along
with the original CENSUS method results)

represent multi-modal image patches to some extent (i.e. MI, HOG, CENSUSMI,

LSS, SIFT). Especially for teddy and cones images having bigger and curved objects
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are affected more by the local window size. HOG affected less than all other measures

by the window size where it provides best result in average for the smallest window

size 9x9. This is because of the similarity measure computing method since an inner

window is used to compute each feature vector for each pixel in the compared local

window yielding a greater window in total.

4.1.2 Effect of Multi-Modality

The experiments in this part aims to evaluate the performances of the similarity mea-

sures for different multi-modality levels. To accomplish this task, the below equation

is proposed (Eqn.4.6), which generates image pairs where the left images range from

the synthetically-altered cosine transformed image in the dataset#1 to the original

unimodal left image in the Middlebury image database.

Im(x, y) = Iorig(x, y)(1−m) + Icos(x, y)(m), (4.6)

where Iorig is the original image from the Middlebury Image Database, Icos is the

cosine transformed image as (Icos = cos(πIorig/255)) and m (m ∈ [0, 1]) is the

multi-modality level for generating Im image. Therefore, when m = 1, Im shall be

equal to Icos and when m = 0, Im shall be equal to Iorig. Figure 4.4 illustrates this

method of how the images of different modality are generated synthetically by this

equation.

Figure 4.4: Figure illustrating the method for generating images of different multi-
modality. m: the multi-modality level scale (m=0.5 in this case) Left image: Original
Tsukuba image from Middlebury image database Middle image: Cosine transformed
image Right image: Generated image of multi-modality level m=0.5

Regarding the experiments presented in this section, 10 multi-modality levels are

generated and the performance statistics of each level are computed for each of the

similarity measure. The experiments are held with local window sizes set to 21x21
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pixels.

Figure 4.5 and Figure 4.6 shows the average RMS and Bad pixel percentage errors

for the "all" regions of performance evaluation, for the 10 levels of multi-modality

of Tsukuba, Venus, Teddy and Cones images in the Dataset #1 where M10 (corre-

sponds to m = 1) stands for the cosine transformed left image in Dataset #1 and M0

(corresponds to m = 0) stands for the original left image in the Middlebury image

database.
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Figure 4.5: Average RMS(all) errors of all methods for 10 multi-modality levels for
the Dataset#1 image pairs

The Figures B.6, B.7, B.8 and B.9 in Appendix B provide the RMS(all) and Bad(all)

pixels percentage errors of all similarity measures tested for the 10 multi-modality

levels for each image pair in Dataset #1 separately, i.e. Tsukuba, Venus, Teddy and

Cones. Figure 4.7 shows sample visual results for the disparities generated by some

similarity measures for computed multi-modality levels.

As can be observed from the obtained results, the similarity measures are clustered

into three groups. The 1st group is MI(woPR), MI(wPR) and CENSUSMI where no

significant change occurs from the multi-modal to unimodal image pairs. HOG can
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Figure 4.6: Average Bad(all) pixel percentage errors of all methods for 10 multi-
modality levels for the Dataset#1 image pairs

also be added into this group which has worse results in bad pixels percentage but the

change in the performance curve is still not significant.

The 2nd group is composed of LSS and SIFT which present moderate results for

the multi-modal case although yield good results in unimodal case. LSS makes an

increase in error at the M3 level which is concluded to result from the disappearance

of some of the spatial features at this level.

The 3rd group includes the rest of the measures which are SURF, CENSUS, BRIEF,

FREAK, NCC and SSD. Among these, the SURF, FREAK, CENSUS and BRIEF

starts having good results at and after M2nd level and NCC at the M1st level. SSD

needs to wait until the original unimodal case is configured (M0) as can be expected.
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LSS
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Figure 4.7: Sample visual results of selected similarity measures for given multi-
modality levels (M9, M6, M3 and M0) of the Tsukuba image pair (local window
size=21x21). 1st row shows altered left images of given multi-modality levels).
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4.1.3 Effect of Noise

The experiments in this part aims to evaluate the performances of the similarity mea-

sures for different noise levels. To accomplish this, a noise image is generated using a

normal distribution of random values of gray levels z determined for the mean µ = 0

and for standard deviation σ as:

N(z, µ, σ) =
1

σ
√

2π
e−

(z−µ)2

2σ2 , (4.7)

for all pixels (x, y) and added to the initial cosine transformed left image as:

Inoisy(x, y, z) = Icos(x, y, z) +N(z, µ, σ). (4.8)

(a) (b)

(c) (d)

Figure 4.8: Different noise levels applied to left Tsukuba image in Dataset #1. (a)
Noise level n = 10 (σ = 20.0) (b) Noise level n = 6 (σ = 12.0) (c) Noise level
n = 3 (σ = 6.0) (d) Noise level n = 0 (σ = 0.0) the noiseless cosine transformed left
image.

The left images of different noise levels are generated by changing the σ in the range

[20.0, 0.0]) where regarding the experiments presented in this section, 10 noise levels
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are generated for σ = 20.0 for noise level n = 10 and decreasing by 2.0 at each level

up to σ = 2.0 for n = 1 and σ = 0.0 for n = 0 which is the noiseless image. The

performance statistics of each level are computed for each of the similarity measure.

The experiments are held with local window sizes set to 21x21 pixels. Figure 4.8

shows several of the images with decreasing noise levels.

Figure 4.9 and Figure 4.10 shows the average RMS and Bad pixel percentage errors

for the "all" regions of performance evaluation, for the 10 levels of noise in the left

images of Tsukuba, Venus, Teddy and Cones images in the dataset#1 where N10

stands for the noise level n = 10 and N0 stands for noiseless left image.
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Figure 4.9: Average RMS(all) errors of all methods for 10 noise levels for the
dataset#1 image pairs

Figures B.10, B.11, B.12 and B.13 in Appendix B show the RMS and Bad pixel

performances for each image pair separately, i.e. Tsukuba, Venus, Teddy and Cones,

for the noise levels.

Figure 4.11 shows sample visual results for the disparities generated by some simi-

larity measures for computed noise levels.

In this type of experiments, it is intended to check the vulnerability of the similarity
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Figure 4.10: Average Bad(all) pixel percentage errors of all methods for 10 noise
levels for the dataset#1 image pairs

measures which have promising results for multi-modal image pairs. The results of

the measures classified as the 1st and 2nd group, i.e. MI, CENSUSMI, HOG, LSS and

SIFT should be focused. As can be observed from the obtained results, CENSUSMI,

SIFT and HOG are concluded as the most vulnerable measures to noise. MI (woPR)

also increase the performance as noise is decreased. MI(wPR) is concluded as the

most robust method to noise. On the other hand, LSS is not affected by the noise and

even has a small shift in error upwards. It is concluded that this behavior was due

to the small increase in spatial correlation of homogeneous segments due to added

noise, as can be observed from the results in venus, teddy and cones alone given in

Figures B.10, B.11, B.12 and B.13.

4.2 Performance Evaluation Using Dataset #2 - The Kinect Dataset

In this section, the performance evaluation of the similarity measures are performed

using the Dataset #2 - The Kinect Dataset. Four representative image pairs are se-

lected from the dataset which includes properties like fronto-planar, tilted surfaces as
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Figure 4.11: Sample visual results of some similarity measures for the added noise
levels to Tsukuba left image in Dataset #1 (local window size=21x21) (noise levels:
N10 (n = 10), N6 (n = 6),N3 (n = 3) and noiseless N0 (n = 0)

well as objects composed of curved and irregular surfaces.

Same as the previous section, the experiments are held for the "WTA" - Winner Takes

All disparities that are computed by selecting the best disparity having the maxi-
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mum similarity value over candidate disparities. The performance evaluations on the

Dataset #2 are performed using the evaluation method and the metrics as described in

Section 3.2.

The measures are computed using the local window sizes of 31x31, since the reso-

lution of these images are higher than Dataset #1 images. Appendix A provides the

parameter settings used in the experiments for each of the similarity measure method

where same settings are used as the Dataset #1 experiments.

The table of performance statistics computed are provided in Appendix B in Table

B.2.

Figure 4.12 shows selected images from Dataset #2 for the experiments to be held

for the performance evaluation of all similarity measures along with the left (IR) and

right (RGB) image pairs and the kinect built-in depth image which is used as the

ground truth depth for computing the performance metrics.

Figure 4.13 shows average Percentage Good Depth and Percentage Total Coverage

metrics computed for similarity measures for the Dataset #2 selected image pairs.

The metrics are computed using the final depth data reconstructed from the disparity

maps and comparing the depth data to Kinect generated depth data for thresholds of

10cm, 20cm, 30cm and 40 cm for the depth range of the scenes < 500cm.

Figure 4.14 shows visual results of generated disparities for the dataset image Kinect06

for all the similarity measures tested. See Figure 4.12 for the Kinect generated depth

data (note that brighter pixels have more depth in the depth image in contrast to dis-

parity image results provided.)

Experiments over the Kinect infrared-visible image pairs show that SURF and FREAK

in addition to the leading performing measures in the Dataset #1 - Synthetically Al-

tered Middlebury Dataset (MI, CENSUSMI, HOG, SIFT and LSS) also performed

well over the metrics computed from Kinect generated depth image. This is explained

by the low multi-modality in Near-Infrared and visible image pairs where only cloth

textures and monitors behave well different than the rest of the scene objects where

almost all measures failed to match well. Besides, the performance metrics of none

of the similarity measures were greater than %55 even for the 40 cm threshold where
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Figure 4.12: Selected Dataset #2 - Kinect Dataset Image Pairs and kinect computed
depth images: Left column: Left (IR) camera images. Middle column: Right (RGB)
camera images. Right column: Kinect’s native depth computations (brighter pix-
els have more depth). From top to bottom, Dataset #2 Image Ids : Img#2, Img#3,
Img#6,Img#10

most of the measures were below %50 compared to Kinect depth data.

4.3 Summary and Discussion

In this chapter, a list of similarity measures that are widely used in the literature

(see Chapter 2.2) are evaluated for their performances using the datasets that were
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Figure 4.13: Average Percentage Good Depth and Percentage Total Coverage metrics
computed for similarity measures for the Dataset #2 selected image pairs.

generated in the scope of this thesis (see Chapter 3 for the description of datasets).

The experiments conducted using Dataset #1 - Synthetically Altered Middlebury

Images provides a good evaluation of the measures regarding the effect of multi-
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Figure 4.14: Sample visual results of computed WTA disparities of the similarity
measures for Kinect06 image in Dataset #2 (local window size=31x31) (brighter pix-
els have more disparity meaning more closer and have less depth)

modality, noise and the local window sizes. MI, CENSUSMI and HOG are shown to

have better performance than the rest of the measures for multi-modal imagery where

LSS and SIFT yields moderate results. Among these, CENSUSMI, SIFT and HOG

are shown to have vulnerability to noise. Finally, the local window sizes increase the
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performance figures as the sizes increase, however, at the expense of blurring in the

resultant disparity image as expected. The upward shift in performance is smaller

than the difference in the growing window sizes.

Experiments over Kinect image pairs show that although FREAK and SURF pro-

vides good performance metrics on the computed depth images, the regions where

the multi-modality is high like cloth textures or monitor screens which does not pro-

vide any image in infrared band interval are still challenging to match for almost all

methods. Overall metrics show that there is still a significant space for improvement

on WTA results of these measures.
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CHAPTER 5

AN ITERATIVE MULTI-MODAL STEREO-VISION METHOD

In this chapter, a new MI-based multi-modal stereo-vision method, composed of sev-

eral consecutive steps that are iteratively refined, is proposed. The method starts

with a segmentation of the IR image, estimates disparities using windows that are

adapted to the sizes of the segments, improves the estimated disparities with segment

merging-splitting, and re-iterates these steps to get even better estimates.

The implemented method was applied to the two datasets that were presented in Chap-

ter 3: Namely, Dataset #1 - the Synthetically Altered Middlebury Stereo Evaluation

Dataset and Dataset #2 - the Kinect Dataset.

5.1 Method

The overview of the proposed method is depicted in Figure 5.1. The method takes

as input a pair of rectified multi-modal images, satisfying the epipolar line constraint

such that correspondences can be found on horizontal scanlines. The initial step is

to segment the left (IR) image. Next, the cost matrix for all candidate matching

pixels in each scanline of the rectified image pair according to a predefined maximum

disparity is computed by the MI computation algorithm using adaptive windowing

method proposed uniquely in this study. Later, the raw costs are adaptively aggregated

using confidence metrics and the segmentation information. Next, the disparity planes

corresponding to segments are computed from the stable pixels where the outliers of

each disparity plane are inspected for splitting the segment. Finally, the segments

are inspected for merging with a neighboring segment by comparing the similarities
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Figure 5.1: Overview of the proposed iterative multi-modal stereo-vision method.

between the associated disparity planes. The new iteration uses refined segmentation

and current disparity map for the new disparity plane computation. In the following

subsections, each of these steps are explained in more detail. Table 5.1 provides

the definitions of the symbols used throughout this chapter for the description of the

proposed method.

5.1.1 Segmentation of the IR Image

As the first step in the method, the IR image is segmented where the rest of the

processing relies on this segmentation. The reason for segmenting only the IR image

is that the surfaces in IR images are also common in the RGB images but the reverse

is not true (see Figure 5.2) since RGB images contain more detailed and textured

surfaces which do not exist in the IR images in our datasets. With this step, non-

overlapping segments representing homogeneous regions in the IR image is generated

(see Figure 5.6). It is assumed that each segment corresponds to a planar surface

in the scene, which is a common assumption in segmentation-based stereo-vision

techniques [95, 96, 97, 98, 99, 100, 101].

For segmenting the IR image, Synergistic Image Segmentation (SIM) algorithm [102]

is used. The SIM method incorporates an edge magnitude/confidence map into the
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Table 5.1: List of notations and acronyms used for the method descriptions

Symbol Definition Symbol Definition

L Left (IR) image lc current center pixel in left image

R Right (RGB) image Conf Confidence map regarding calculated costs
(i) Iteration number (i ∈ [0, N ]) c1 Min. cost of the candidate disparities

S Segmentation c2 Second min. cost of the candidate disparities

C Cost matrix ρ Ceiling value for the maximum confidence

D Disparity map w Weights for performing cost aggregation

MI Mutual Information b Half-size of the window for cost aggregation

WTA Winner Takes All SD Spatial Distance

x Column number of a pixel DD Disparity Distance

y Row number of a pixel λSD Designated scaling constant for spatial distance

d Disparity in range [0, dmax] λDD Scaling constant for disparity distance

p Current pixel f Function for subpixel disparity computation

q Neighbor pixel τic Confident inlier disparity threshold

s Segment in (s ∈ S) τir Stable segment ratio threshold

Il Intensities of left image pixels τod Outlier disparity distance threshold

Ir Intensities of right image pixels τos Outlier disparities size threshold

W Local window of computation for a center pixel τoc Confident outlier disparity threshold

ω Assumed thickness of discontinuities in images Plane Set of disparity planes

P Joint Probability α Angle between two disparity planes

Pprior Prior Joint Prob. of Left & Right Images τα Angle threshold for parallel planes

Pwindow Joint Prob. of Left & Right Images τpd Plane to plane distance threshold

λ Ratio of incorporating prior prob. to joint prob. hs Spatial bandwidth in mean-shift segm.

hw Histogram computed for the adaptive window hr Feature (range) bandwidth in mean-shift segm.

T () Counter function for hist. computation M Minimum segment size in mean-shift segm.

L1 L1 distance n Size of the grad. window in syn. image segm.

k Increment of counts for histograms aij Mixture parameter in syn. image segm.

te Threshold value for the edge computation

mean-shift segmentation algorithm [103] enhancing the results on especially weak

edges, and hence, separating the objects better. The algorithm makes use of the pa-

rameters of the mean shift segmentation algorithm; the spatial bandwidth hs, the fea-

ture (range) bandwidth hr and the minimum segment size M as well as the size of the

gradient window n, the mixture parameter for blending of the gradient magnitude aij

and the threshold for the discontinuities te - see [102] for the details.

5.1.2 Computing the Cost Matrix

Computing the cost matrix is the key step of the method, and a significant part of the

contributions in the thesis (see Algorithm 1). The inputs to the algorithm are the left

(IR) image L and the right (RGB) image R, the segmentation S(i) (computed from

the left image for the initial iteration and modified at the previous iteration for the

subsequent iterations) and the disparity map D(i) (D(0) = 0, and otherwise, D(i) is

the disparity map generated in the previous iteration).
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(a) (b)

Figure 5.2: The Doll dog from a Kinect image pair in Dataset #2 - The Kinect Image
Database (a) The Kinect RGB Image. (b) The Kinect IR image. [Best viewed in
color].

Algorithm 1 Cost matrix computation.

Inputs: L : Left (IR) Image

R : Right (RGB) Image

S(i) : Input segmentation (i ∈ [0, N ] : iteration)

D(i) : Input disparity map (D(0) is zero)

Outputs: C(i) : The cost matrix

1: Compute P (i)
prior(L,R,D

(i)) //see Eqn. 5.1

2: for y = 0 to height do

3: for x = 0 to width do

4: for d = 0 to dmax do

5: C(i)(x, y, d)← −M
(
WL(x, y),WR(x− d, y), S(i), P

(i)
prior

)
// see Eq. 5.8 for M()

6: end for

7: end for

8: end for

9: return C(i)

Algorithm 1 first computes joint prior probabilities for all corresponding pixel inten-

sities in left and right images using the current disparity map available (for the sake

of simplicity, in the rest of the section, the current iteration superscript “(i)" is omitted

since all variables correspond to their values in iteration i):

Pprior(Il, Ir) =
h(Il, Ir)∑
l,r h(Il, Ir)

, (5.1)
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where Il, Ir are respectively the intensities of the pixels l(i, j) ∈ L and the corre-

sponding pixel r(i, j − D(l)) ∈ R. Prior probabilities are computed using h(), the

2D histogram of all the corresponding pixel intensities.

Having defined the prior probability, computation of the cost matrix using MI (the

negative of the MI measure is used as the cost) is performed as follows:

WL(x, y) = L(xmin : xmax, ymin : ymax), (5.2)

xmin = x− δxl − ω, (5.3)

xmax = x+ δxr + ω, (5.4)

ymin = y − δy, (5.5)

ymax = y + δy, (5.6)

where δxl and δxr are distances to the border of the segment which the current pixel

(x, y) belongs to; and the window is enlarged by ω; the assumed thickness of dis-

continuity at the images on the segment border (Figure 5.3). δy similarly provides

the window size in vertical direction, and it is currently an empirically determined

parameter (δy ≤ 4 pixels for the Middlebury database). The segment borders in the

vertical direction are not considered since the segment plane may not be a fronto-

planar surface and will confuse cost calculation. The same window is applied to the

right image by moving the window for each candidate disparity d:

WR(x, y) = R(xmin − d : xmax − d, ymin : ymax). (5.7)

Given two windows, the MI measure between them is computed using the segment

information and the prior probabilities as:

M(WL,WR, S, Pprior) =
∑
W

P (Il, Ir) ln
P (Il, Ir)

P (Il)P (Ir)
, (5.8)

where joint probabilities are computed using the adaptive correlation surface, and the

prior probabilities are incorporated, just like Fookes did [34], as follows:

P (Il, Ir) = λPwindow(Il, Ir) + (1− λ)Pprior(Il, Ir). (5.9)

The correlation surface used in finding the joint probability is another key contribution

of the thesis for the MI cost calculation, where the joint histogram is derived by
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Figure 5.3: Adaptive window calculation.

considering pixels within the current segment in the window and the pixels nearby

the edge of the segment as:

Pwindow(Il, Ir, S) =
hw(Il, Ir, S)∑
w hw(Il, Ir, S)

, (5.10)

hw(Il, Ir, S) =
∑
w

T (Il, Ir, S), (5.11)

(5.12)

where the T () function is defined as follows:

T (Il, Ir, S) =


k if S(l) = S(lc) & L1 > ω

k − k
exp(L1)

elif S(l) = S(lc) & L1 ≤ ω

k
exp(L1)

elif L1 ≤ ω

0 otherwise

(5.13)

where L1 = ‖l − S(lc)‖ is the L1 distance between the neighbor pixel l and the

border of the segment that the current pixel being matched lc belongs to; and ω is the

assumed thickness of the segment border as defined in Equation 5.2.

The usage of L1 distance (Figure 5.4) in Eq. 5.13 incorporates the pixels near the seg-

ment borders to MI calculation with some penalty due to possible occlusions around

borders and this way, it was possible to consider both the segment and the edges ex-

cluding other segments within the rectangular window in MI measure computation.
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Figure 5.4: Adaptive MI computation surface using segmentation.

5.1.3 Adaptive Cost Aggregation

In this step, the major concern is to detect, revise and reduce the un-confident cost

measures from the previous step that cause a majority of wrong disparities in the

WTA step.

The cost confidences are used to detect un-confident costs computed for a pair of cor-

responding pixels and for this purpose, a modified version of the confidence measure

that was used in [99] is proposed:

Conf(x, y) = min

(
|c1 − c2|
|c1|

, ρ

)
, (5.14)

where c1 is the minimum cost within the disparity range [0..dmax], and c2 is the second

minimum cost. The ratio of the minimum and the second minimum cost value margin

to the minimum cost value is used as the confidence measure and the obtained values

are truncated with respect to a predetermined value ρ. This way, higher confidence

values are prevented from dominating the cost aggregation step. See Figure 5.5 for

the confidence values on an example.

Cost aggregation is performed by visiting all the pixels p in the initially computed cost

matrix C(i)(p, d) (see Algorithm 1) and aggregating the costs according to the follow-
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Figure 5.5: Cost Confidences for Tsukuba image pair (scaled and truncated to [0..255]

range for the sake of visibility).

ing weights within a local neighborhood for all the disparities d in range [0..dmax]:

C(i)
agg(p, d) =

∑
q∈wp

w(p, q)C(i)(q, d), (5.15)

where wp is a square support window of size (2b + 1) × (2b + 1) (b: half window

size) where the costs of the same disparity in the neighborhood are aggregated by a

weighting mechanism incorporating the current segmentation effectively as:

w(p, q) =

{
Conf (i)(q) if S(i)(p) = S(i)(q)

Conf (i)(q) exp
(
−(SD(p,q)

λSD
+ DD(p,q)

λDD
)
)

if S(i)(p) 6= S(i)(q)
(5.16)

where Conf (i)(q) is the confidence of aggregating pixel q (see Eqn. 5.14); SD(p, q)

is the spatial distance between pixels p and q; DD(p, q) is the WTA (winner takes all)

disparity distance of initial costs C(i) between pixels p and q; λSD and λDD are the

designated scaling constants for the spatial distance and the disparity distance.

To sum up, the proposed scheme aggregates costs of neighboring pixels within the

same segment according to the confidences of the pixels and penalizes aggregating

weights according to the spatial distance and the WTA disparity distances of initial

costs for the pixels in the other segments around.
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5.1.4 Computation of Disparity Planes

In this step, the main idea is to fit planes to the segments using disparities of the

confident pixels. Algorithm 2 shows the major steps of the method proposed in this

step. The inputs to the algorithm are the segmentation for current iteration S(i) and

the aggregated cost matrix C(i)
agg computed as described in the previous step (refer to

Section 5.1.3). Below, each step of the algorithm is described in detail:

Algorithm 2 Computation of disparity planes.

Inputs: S(i) : Segments of current iteration, (i ∈ [0, N ]: iteration)

C
(i)
agg : Aggregated cost matrix, (refer to Section 5.1.3)

Outputs: S
(i)
final : Revised segmentation,

D
(i)
final : Disparity map computed from the fitted planes

1: D(i)
agg ←WTA disparity map corresponding to C(i)

agg aggregated cost matrix

2: D(i)
aggsub ← D

(i)
agg + f(C

(i)
agg) //estimate subpixel disparities - See Equation 5.18

3: D(i)
aggsub,m ← medWm(D

(i)
aggsub) //perform 3x3 median filter to subpixel disparities

4: Conf (i)
agg ← Compute confidences for aggregated cost matrix C(i)

agg // See Equation 5.14

5: (S
(i)
split, P

(i)
split)← Perform iterative segment splitting step

using (D(i)
aggsub,m, S(i), Conf (i)

agg) // See Algorithm 3

6: (S
(i)
final, P

(i)
final, D

(i)
final)← Perform segment merging & finalization step

using (D(i)
aggsub,m, S(i)

split, P
(i)
split, Conf

(i)
agg) // See Algorithm 4

7: return (S
(i)
final, D

(i)
final)

1. WTA of aggregated costs: The Winner Takes All (WTA) disparities D(i)
agg cor-

responding to the aggregated cost matrixC(i)
agg (see Equation 5.15) are computed

as the first step.

2. Subpixel disparity computation: As the next step, the subpixel disparity esti-

mates (D(i)
aggsub) are computed using the aggregated cost matrix C(i)

agg by finding

the minimum of the parabola fitted to the minimum cost disparity in D(i)
agg and

the two neighboring cost values.

Let us use d to denote the integer disparity of minimum cost (the WTA dispar-

ity) in the cost matrix C within the disparity range d0 to dmax;

d = arg min
di∈{d0,...,dmax}

C(di), (5.17)

the subpixel disparity estimate is defined as:

dsub = d+ f(C(d− 1), C(d), C(d+ 1)), (5.18)
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where f is the function for parabolic interpolation:

f =
C(d− 1)− C(d+ 1)

2(C(d− 1)− 2C(d) + C(d+ 1))
. (5.19)

This yields floating-point disparities, having more smooth transitions within a

segment.

3. Median filtering: Next, a median filter is applied to the subpixel disparities so

that outliers are eliminated (yielding D(i)
aggsub,m), if there is any. This step may

affect disparity plane fitting.

4. Compute confidences of the aggregated cost matrix: Confidences (Conf (i)
agg)

of the aggregated cost matrix C(i)
agg are computed in order to rely on only the

confident pixels in the following steps.

5. Iterative segment splitting: In the next step, the confident disparities within

the segments are fitted planes, and the outlier disparities are re-evaluated by

splitting the segments. The step is iteratively re-applied for the new segmen-

tation map (S(i)
split) until no further segment splitting can occur - see Section

5.1.4.1.

6. Segment merging & finalization: Finally, the split segments (S(i)
split) and the

corresponding disparity planes (P (i)
split) are inspected for finalization by (i) merg-

ing neighboring segments that are co-planar at the same disparity level and (ii)

refining unstable segments that may be generated during the segment splitting

operations or which may have inadequate number of confident pixels to be able

compute a disparity plane (i.e., when the number of pixels is less than 4). The

final disparity map is computed from the resultant segmentation and the corre-

sponding segment plane equations - see Section 5.1.4.2 for the details of this

step.

5.1.4.1 Iterative Plane Fitting and Segment Splitting Step

This step revises the input segmentation according to the confident outlier disparities

within the corresponding segments once plane fitting is performed - see Algorithm 3.

This way, the dependency of the performance of the algorithm on the initial segmen-

tation is reduced.
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Algorithm 3 Iterative plane fitting & segment splitting.
Inputs: D : Input disparity map

S : Initial segmentation map

Conf : Confidences of the disparities

Outputs: S : Revised segmentation,

PlaneS : Fitted disparity plane equations for each segment

1: repeat

2: for all segment s ∈ S do

3: repeat

4: Cloud← {(p, d) | ∀p ∈ s, d = D(p), Conf(p) > τic} //extract the point cloud of confident pixels p in s

5: if size(Cloud) < 4 or size(Cloud)/size(s) < τir then

6: stable(s)←FALSE

7: else

8: stable(s)←TRUE

9: Fit plane PlaneS(s) to Cloud using RANSAC

10: OutCloud← {(p, d) | ∀p ∈ s : d = D(p), |d− PlaneS(s, p)| > τod} //extract outlier point cloud of

disparities according to fitted plane

11: if (size(OutCloud) > τos) then

12: OutCloud2← {(p, d) | ∀(p, d) ∈ OutCloud,Conf(p) > τoc}

13: Split segment s for all the connected subsets of OutCloud2

14: Append splitted segments to segments list S

15: end if

16: end if

17: until segment s is not splitted

18: end for

19: Re-compute segments map S //since new segments can break bigger segments to two or more disconnected sub-

segments

20: until no segment splitting performed

21: return (S,PlaneS )

In the algorithm, the disparity plane for each segment in the current segmentation

map S is computed from the confident disparities only. Plane fitting is performed us-

ing RANSAC (RANdom SAmple Consensus) [104]. Next, the outlier disparities are

analyzed in each plane fitted segment and checked whether they constitute connected

regions of a significant size; if so, the outlier region is split out. This operation is

performed iteratively until the segment is no longer split. Finally, in the outer loop,

the segmentation map is re-computed and the above described steps are re-applied

since the segments might break more than once. This way, the segmentations and the

plane fits are revised iteratively until no further segment splits can be performed. The

algorithm returns the revised segmentation map along with the fitted disparity plane

equations to the segments.
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Algorithm 3 makes use of several thresholds effectively to perform its goal. τic is

the disparity confidence value threshold to be able to construct the initial point cloud

of disparities from the segment disparities. τir is the stable segment ratio threshold

which determines whether a segment is stable or not by checking the ratio of the size

of the confident disparities point cloud and the segment size. If the size of the cloud is

also smaller than 4 pixels then it will not be possible to fit a plane and therefore such

segments are marked as unstable and left for the next step for correction. τod threshold

is used for determining the outlier points of the fitted plane which is designed to be

greater than the RANSAC distance threshold parameter used for plane fitting. τos

determines the minimum size of the outlier point cloud of disparities to continue

splitting operation and τoc is the confidence threshold for the outlier points which are

to be selected for segment splitting. Therefore, to be able to create a new segment by

splitting from the original segment, a connected region whose size is greater than a

designated threshold should be available.

5.1.4.2 Segment Merging and Finalization of Disparity Planes Step

This step computes the final segmentation and the disparity map of the scene - see

Algorithm 4. The step is composed of three phases: In the first phase, all the stable

segments are inspected along with their neighbors and merged if they are coplanar.

The coplanarity of two disparity planes are defined as:

cop(s, s′) =

{
1, if (α(s, s′) < τα) and (‖s− s′‖< τpd)

0, otherwise
(5.20)

which checks if the normal of the planes are parallel (the difference in their normals

α is smaller than a threshold τα) and if they are at the same disparity level (the dis-

tance between planes is smaller than a threshold τpd). Moreover, the segments that

were marked as unstable are re-evaluated by decrementing the confidence threshold

iteratively.

In the second phase, the equations for the disparity planes are recomputed for the

merged segments and finally, in the third phase, the disparity of each pixel is com-

puted from the disparity plane equations, except for the still-unstable segments where

the input disparity map is accepted as is for those pixels.

84



Algorithm 4 Segment Merging and Finalization
Inputs: D : Input disparity map

S : Input segmentation map

Conf : Confidences of the disparities

PlaneS : Fitted disparity planes for segments

Outputs: S : Revised segmentation by merged segments

PlaneS : Fitted disparity plane equations for each segment

DPlane : Disparity map computed from fitted disparity plane equations

// Phase 1: merge stable segments & retry for unstable segments

for all segment s ∈ S do

if stable(s) =TRUE /* See Algorithm 3 */ then

for all s′ ∈ Ω(s) {Ω(s): neighboring segments of s} do

if cop(s, s′) =TRUE /* Coplanar planes - See Equation 5.20 */ then

s← Merge(s, s′) //Segments are merged

merged(s)← TRUE

S ← S − s′ //remove s′ from set S since it is merged with s

end if

end for

else if stable(s) =FALSE then

repeat

τic2 ← τic ∗ λτic //Decrement confidence threshold by λτic ∈ (0, 1)

Re-compute plane fitting PlaneS(s) forCloud where: Cloud← {(p, d) | p ∈ s, d = D(p), Conf(p) > τic2}

if size(Cloud) < 4 or size(Cloud)/size(s) < τir then

stable(s)←FALSE

else

stable(s)←TRUE

end if

decrement(λτic , γ) //Decrement λτic by γ ∈ (0, 1)

until (λτic2 = 0) or (stable(s) =TRUE)

end if

end for

// Phase 2: recompute plane fits for merged segments

for all (segment s ∈ S) and (stable(s) =TRUE) and (merged(s) =TRUE) do

Re-compute plane fitting PlaneS(s) forCloud where Cloud← {(p, d) | p ∈ s, d = D(p), Conf(p) > τc}

end for

//Phase 3: compute final disparity map

for all segment s ∈ S do

if stable(s) =TRUE then

Compute disparitiesDPlane(s) for pixels in segment s using fitted plane equation Plane(s)

else if stable(s) =FALSE then

Set disparitiesDPlane(s) for pixels in segment s to original disparities in inputD(s) // for segments which are still unstable

end if

end for

return (S,PlaneS ,DPlane)

5.1.5 Iterative Refinement

As a result of the previous steps, an updated segmentation map is generated along

with the corresponding disparity map. With this segmentation map as the new seg-

mentation map, the same steps are repeated as a new iteration. The new iteration

uses the current disparity map for better estimation of the joint prior probabilities

(see Equations 5.1 and 5.9) along with some adjustments that can be performed with

such a priori data. Therefore, this step starts with the segmentation S(i+1) set to resul-
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.6: The intermediate steps of the proposed method. (a) WTA disparities of
raw costs with No-Adaptive Windowing - 1st iteration (MI(woPR)). (b) WTA dispar-
ities of raw costs with Adaptive Windowing - 1st iteration. (c) WTA disparities after
adaptive cost aggregation - 1st iteration. (d) Plane fitted disparities - 1st iteration.
(e-h) Resultant plane fitted disparities for iterations 1-4. (i) The initial segmentation
of the left image. (j-l) The input segmentations to iterations 2-4 (after segment break
& merge steps are applied in the previous iteration). (m-p) Edge map of the corre-
sponding input segmentation at each iteration. [Best viewed in color]

tant segmentation of the current iteration S(i)
final, and disparities D(i+1) set to resultant

disparity map D(i)
final for the current iteration (see Algorithm 2).

Moreover, for iterations after the first iteration (i.e., i ≥ 1), there is now the oppor-

tunity to adjust the adaptive window calculation method presented in Equation 5.2,
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where xmax value can be moved back in the direction of the center pixel if the right

neighboring segment has a disparity level greater than the current segment, and the

shifting value is determined by the difference in the disparity levels of segments. This

enables to not fetch the pixels in the right segment when the same window is applied

to right image for correspondence matching.

5.2 Experiments and Results

The performance evaluation of the proposed method is performed using the two

datasets that were generated in the scope of this thesis; i.e., the Dataset #1 - the Syn-

thetically Altered Middlebury Stereo Evaluation Dataset and Dataset #2 - the Kinect

Dataset and the performance evaluation methods proposed for the datasets (see Chap-

ter 3 for the description of datasets and the performance evaluation methods). The

following sections include the experiments and results over these datasets along with

the evaluation of the results. Besides, in Appendix D a detailed analysis of the pa-

rameters of the proposed method is provided.

5.2.1 Performance Evaluation of the Proposed Method with State of the Art

Similarity Measures

In this section, the 1st iteration “WTA" performance of the proposed method is eval-

uated by comparing the performance metrics of the similarity measures that were

already evaluated in Chapter 4. Only the first step, i.e., negative MI costs computed

by the adaptive windowing algorithm described in Section 5.1.2 is compared to the

similarity measures for the WTA disparity maps generated in the experiments.

5.2.1.1 Results on Dataset #1

Figures 5.7 and 5.8 show the average RMS and Bad pixel percentage errors for the

“all" regions of performance evaluation. The WTA performances of the adaptive win-

dowing algorithm for the three window sizes are compared with the selected similarity

measures with the leading performances in the experiments held in Section 4.1.1.
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RMS(all)-9x9 10.292 7.642 12.699 6.843 11.428 11.934 5.349

RMS(all)-21x21 4.995 4.480 9.857 5.080 6.618 10.188 4.128

RMS(all)-31x31 4.057 3.861 8.518 4.568 4.673 9.139 3.769

Avg. RMS (all) Errors - Dataset#1 - Synth. Altered Middlebury
for local window sizes (9x9, 21x21, 31x31)

RMS(all)-9x9 RMS(all)-21x21 RMS(all)-31x31

Figure 5.7: Average RMS (all) errors of “WTA" performances using the Dataset #1
for the Performance Evaluation of Adaptive Windowing Algorithm (ADAPMI) to
state of the art similarity measures.
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Bad(all)-9x9 43.01% 31.41% 59.85% 40.40% 61.74% 65.93% 17.14%

Bad(all)-21x21 16.35% 16.93% 47.16% 31.77% 25.86% 47.10% 12.51%

Bad(all)-31x31 14.13% 15.33% 42.50% 29.55% 18.37% 40.58% 11.43%

Avg. Bad(all) Pixel Perc. Errors - Dataset#1 - Synth. Altered Middlebury
for local window sizes (9x9, 21x21, 31x31)
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Figure 5.8: Average Bad (all) pixels percentage errors of "WTA" performances using
the Dataset #1 for the Performance Evaluation of Adaptive Windowing Algorithm
(ADAPMI) to state of the art similarity measures.

Figures C.1, C.2, C.3 and C.4 in Appendix C show the RMS and Bad pixel per-

formances for each image separately, i.e., Tsukuba, Venus, Teddy and Cones. The

88



Figure 5.9 shows sample visual results of the “WTA" disparity maps obtained from

the Tsukuba image. The whole table of performance statistics computed are provided

in Appendix C in Table C.1.

9x9 21x21 31x31

ADAPMI

MI (woPR)

MI (wPR)

Figure 5.9: Sample visual results of the WTA disparity results of the Adaptive Win-
dowing algorithm (ADAPMI) and the leading similarity measures for the syntheti-
cally altered Tsukuba image pair in Dataset #1, using different window sizes 9x9,
21x21 and 31x31 pixels.

As can be observed from the results, the proposed method outperforms in this dataset

in all the tested similarity measures even at the initial phase of the computation, i.e.,

computing the cost matrix using the developed adaptive windowing algorithm for MI

computation.

5.2.1.2 Results on Dataset #2

In this section, the results obtained from the selected image pairs in Dataset #2 are

provided similarly for the WTA disparities of the tested similarity measures and the

proposed method’s initial step - the adaptive windowing algorithm. The same set of

images are used with the ones used in Section 4.2.
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Figure 5.10 shows average Percentage Good Depth and Percentage Total Coverage

metrics, and Table C.2 provides all the experiment results over the dataset. Figure

5.11 shows visual results of generated WTA disparities for the dataset image Kinect02

for leading similarity measures tested and the adaptive windowing algorithm of the

proposed method. See Figure 4.12 for the Kinect-generated depth data (note that

brighter pixels have more depth in the depth image in contrast to disparity image

results provided).

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0%

AdapMI WTA - ITER1

BRIEF

CENSUSMI

CENSUS

FREAK

HOG

LSS

MI (wPR)

NCC

MI (woPR)

SIFT

SSD

SURF

AVERAGE % TOTAL COVG. &  % GOOD DEPTH METRICS FOR DATASET#2-

KINECT SELECTED IMAGE PAIRS

10 cm 20 cm 30 cm 40 cm

Figure 5.10: Average Percentage Good Depth and Percentage Total Coverage met-
rics computed for similarity measures for the dataset#2 selected image pairs and the
Adaptive Windowing Algorithm (ADAPMI) of the proposed method - initial itera-
tion.

As can be observed from these results, the proposed method outperforms in the Kinect
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ADAPMI MI (woPR) MI (wPR)

SIFT SURF FREAK

Figure 5.11: Sample visual results of computed WTA disparities of the Adaptive Win-
dowing Algorithm (ADAPMI) of the proposed method and the similarity measures
for Img#2 in Dataset #2 (local window size=31x31)

dataset also, when compared using all the tested similarity measures, even if method

is at the initial phase of the computation, i.e., computing the cost matrix using the

developed adaptive windowing algorithm for MI computation.

5.2.2 Performance Evaluation of Cost Aggregation and Plane Fitting Steps of

the Proposed Method

In this section, the WTA results of the initial step of the method (the adaptive win-

dowing algorithm) are taken as the baseline and are used to show the enhancement in

performances by adaptive cost aggregation (Section 5.1.3) and using disparity planes

(Section 5.1.4), i.e., with the subsequent steps of the method without any iterative

refinements yet.

The results in Figure 5.12 show that WTA with cost aggregation improves the dis-

parity estimation of the WTA with adaptive windowing method. Plane fitting, how-

ever, improves the RMS values of the estimated disparities in all image pairs whereas

the bad matching percentage is almost the same with WTA with cost aggregation in

Tsukuba image pair (composed of fronto-parallel surfaces) and worse in Teddy image

pair (including curved surfaces mostly) whereas, for the Venus (totally composed of
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planar surfaces), the bad matching percentage improves significantly.
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Figure 5.12: Results on Dataset #1 - Synt. Altered Middlebury Images for WTA of
Adaptive Windowing Costs, WTA of Adaptively Aggregated Costs and Plane Fitting.

5.2.3 Performance Evaluation of Iterative Refinement

Finally, the effect of iterative refinement on the estimated disparities is analyzed in

this section. Figures 5.13 and 5.14 show the qualities of the estimated disparities in

10 iterations following Section 5.1.5. It is observed from the figures that the RMS and
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bad matching percentage decrease drastically in the second iteration and the values

more or less stabilize. This suggests that iterating twice over the disparity estimation

steps as suggested in Section 5.1.5 is sufficient.
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Figure 5.13: Effect of iterations on RMS and the percentage of bad pixels for “all"
regions (a-b) Tsukuba, (c-d) Venus pairs.

Figure 5.6 in Section 5.1.5 shows the resultant WTA disparity maps of non-adaptive

vs. adaptive windowing costs, the aggregated costs and plane fitted disparities as well

as the resultant first 4 iterations of disparity maps, the segmentation maps computed

for the Tsukuba image. Analyzing the results of all the image pairs in the dataset, it

is concluded that two iterations is an ideal stop.

93



5,00

5,50

6,00

6,50

7,00

7,50

8,00

8,50

9,00

1 2 3 4 5 6 7 8 9 10

R
M

S
 

Iterations 

Teddy - RMS (all) 

WTA WTA of Agg. Plane Fitting

(a)

14,0%

16,0%

18,0%

20,0%

22,0%

24,0%

26,0%

28,0%

1 2 3 4 5 6 7 8 9 10

%
 B

ad
 (

al
l)

 

Iterations 

Teddy - Bad (all) 

WTA WTA of Agg. Plane Fitting

(b)

5,00

6,00

7,00

8,00

9,00

10,00

11,00

1 2 3 4 5 6 7 8 9 10

R
M

S
 

Iterations 

Cones - RMS (all) 

WTA WTA of Agg. Plane Fitting

(c)

14,0%

16,0%

18,0%

20,0%

22,0%

24,0%

26,0%

28,0%

1 2 3 4 5 6 7 8 9 10

%
 B

ad
 (

al
l)

 

Iterations 

Cones - Bad (all) 

WTA WTA of Agg. Plane Fitting

(d)

Figure 5.14: Effect of iterations on RMS and the percentage of bad pixels for “all"
regions (a-b) Teddy and (c-d) Cones stereo pairs.

5.2.4 Performance Evaluation on Dataset #2- Kinect Dataset

In previous subsections, it was shown that the proposed method outperforms state of

the art similarity measures with no iterations yet and that the subsequent steps (cost

aggregation, plane fitting and iterative refinement) enhance the results significantly.

In this section, the results obtained from the whole Dataset #2 are provided for the

proposed method. The iterations are stopped after the 2nd iteration due to the conclu-

sion given in Section 5.2.3 that two iterations are sufficient.

Table 5.2 provides the mean of the resultant depth maps generated by the proposed

method when compared to the Kinect’s native depth map and Table 5.3 lists the stan-
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dard deviation of the results over the mean performance values. The whole table of

performance statistics computed are provided Table C.3 in Appendix C.

Table 5.2: Average Results on the 24 images in the Dataset #2- The Kinect Dataset
for WTA, WTA of Agg. Costs and Plane Fitted Disparities vs. Kinect’s native depth
in 2 Iterations.

Method Metric 10cm 20cm 30 cm 40 cm Total

WTA - Iter1
Perc. Good Depth 31% 15% 11% 5% 63%
Perc. Total Covg. 43% 13% 9% 5% 69%

WTA - Iter2
Perc. Good Depth 33% 16% 11% 5% 65%
Perc. Total Covg. 44% 13% 9% 5% 71%

Agg. - Iter1
Perc. Good Depth 35% 17% 11% 6% 68%
Perc. Total Covg. 46% 14% 9% 5% 74%

Agg. - Iter2
Perc. Good Depth 36% 17% 11% 5% 69%
Perc. Total Covg. 48% 14% 9% 5% 75%

PFIT - Iter1
Perc. Good Depth 39% 17% 9% 6% 71%
Perc. Total Covg. 50% 14% 8% 5% 76%

PFIT - Iter2
Perc. Good Depth 41% 16% 9% 6% 72%
Perc. Total Covg. 52% 13% 7% 5% 77%

Table 5.3: Standard Deviations of the Results on the 24 images in the Dataset #2 for
WTA, WTA of Agg. Costs and Plane Fitted Disparities vs. Kinect native depth in 2
Iterations.

Method Metric 10cm 20cm 30 cm 40 cm Total

WTA - Iter1
Perc. Good Depth 10% 5% 6% 2% 23%
Perc. Total Covg. 10% 4% 4% 2% 20%

WTA - Iter2
Perc. Good Depth 10% 5% 6% 2% 24%
Perc. Total Covg. 10% 5% 4% 2% 20%

Agg. - Iter1
Perc. Good Depth 10% 6% 5% 2% 24%
Perc. Total Covg. 10% 5% 4% 2% 20%

Agg. - Iter2
Perc. Good Depth 11% 5% 5% 3% 24%
Perc. Total Covg. 9% 4% 4% 2% 19%

PFIT - Iter1
Perc. Good Depth 11% 6% 4% 3% 24%
Perc. Total Covg. 10% 5% 3% 2% 20%

PFIT - Iter2
Perc. Good Depth 12% 6% 5% 3% 25%
Perc. Total Covg. 10% 5% 3% 2% 20%

Figure 5.15 provides the same figures obtained in a bar chart graphics representation.

Figures 5.16 and 5.17 are sample visual results of computed disparity maps compared
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Figure 5.15: Depiction of Average Results on the 24 images in the Dataset #2-
The Kinect Dataset for WTA, WTA of Agg. Costs and Plane Fitted Disparities vs.
Kinect’s native depth in 2 Iterations

to the native depth map of Kinect for the two iterations performed.

Finally, Figure 5.18 shows a merged 3D rendered view of the Kinect’s native depth

map and the proposed method’s final depth map for a sample (Img #1) in Dataset #2.

As one can observe, Kinect’s native depth map is not successful in such cases, since

the device can not generate depth on reflective surfaces when the sent infrared beams

do not return back to the sensor. The figure shows that the proposed method’s depth

generation method can be used to fill in empty depth information in the acquired

scene.

To sum up, from both the statistical and visual evaluation, this section showed that

depth map generated by the proposed method is comparable to Kinect native depth.

Besides, the method can compute depth information on edges and non fronto-planar

surfaces where Kinect’s depth generation fails. Therefore, the method can also be

used in combination with Kinect to get a better coverage of the scene.
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(a) WTA+Agg (i = 1) (b) WTA+Agg(i = 2)

(c) Plane-fit (i = 1) (d) Plane-fit (i = 2)

(e) Kinect’s depth

Figure 5.16: Sample visual results of computed disparity maps compared to native
depth of Kinect, for Kinect01 image pair 1st row: WTA disparity of aggregation
results- 1st and 2nd iteration. 2nd row: Plane fitting disparity results - 1st and 2nd
iteration. 3rd row: Kinect’s native depth image (brighter pixels are farther)
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(a) WTA+Agg (i = 1) (b) WTA+Agg (i = 2)

(c) Plane-fit (i = 1) (d) Plane-fit (i = 2)

(e) Kinect’s depth

Figure 5.17: Sample visual results of computed disparity maps compared to native
depth of Kinect, for Kinect10 image pair 1st row: WTA disparity of aggregation
results- 1st and 2nd iteration. 2nd row: Plane fitting disparity results - 1st and 2nd
iteration. 3rd row: Kinect’s native depth image (brighter pixels are farther)
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Figure 5.18: Merged 3D rendering of Kinect01 image’s native depth map to proposed
method’s final depth map where invalid depth in the native depth map is filled with
the proposed method’s depth information.
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CHAPTER 6

CONCLUSION

In this thesis, a novel dense multi-modal stereo-vision method is introduced which (i)

is iterative, (ii) uses adaptive windowing and (iii) adaptive cost aggregation along with

(iv) iteratively refined disparity plane fitting. The method uses mutual information as

the basic similarity measure and was tested on multi-modal stereo images from two

image datasets generated in the scope of the thesis; the synthetically altered image

pairs from the Middlebury Stereo Evaluation Dataset, and our own dataset of Kinect

Device infrared-visible camera image pairs. The datasets are also used for evaluating

the state of the art methods in literature.

On these datasets, it is presented that (i) the proposed method improves the quality

of existing MI formulation, (ii) the proposed method outperforms state of the art

methods in literature, and (iii) the proposed method can provide depth comparable to

the quality of Kinect depth data

The results show that significant increase in performance is achieved by the initial

step of the proposed method, the adaptive windowing step, when compared to a non-

adaptive local window MI calculation scheme as well as the other state of the art sim-

ilarity measures in the literature for multi-modal stereo-vision. Moreover, the adap-

tively aggregated costs enhance the results while smoothing out the disparity maps

whereas plane fitting enables to get more clean disparity maps although it depends

on the current segmentation. This dependence is levitated by performing iterative

segment splitting/merging over confident disparities and finally the whole method

is re-applied in the next iteration where an initial disparity map is available now to

incorporate more accurately the prior probabilities into joint probability calculation.
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The results show that two iterations are sufficient to converge to reasonable results.

Regarding the evaluations on the Kinect dataset; from the quantitative and visual

evaluation, it is observed that the depth map generated by the method is compara-

ble to Kinect native depth and the proposed method can compute depth information

on edges and non fronto-planar surfaces where Kinect’s depth estimation fail due to

insufficient reflectance of infrared beams on such surfaces. Another potential appli-

cation of the method can also be to use in combination with Kinect to get a better

depth coverage of the scene.

The proposed method is limited only to planar surfaces, though it provides reasonable

estimations on curved surfaces as well. Moreover, the method does not run in real-

time (the computational complexity is O(Ndw), where N is the number of pixels in

the image, d is maximum designated disparity and w is the maximum segment size

in number of pixels in the image segmentation); rather the focus was to develop an

accurate method for multi-modal stereo-vision.

A systematic performance evaluation of alternative similarity measures available in

the literature is also performed as part of this thesis. The evaluated measures are

MI with and without incorporating prior probabilities, i.e. MI(woPR) and MI(wPR),

LSS, HOG, Census, MI of Census, SIFT, SURF, BRIEF, FREAK, NCC and SSD. Be-

sides, a modified version of Census Transform which is based on computing mutual

information similarity over the locally transformed image patches is introduced.

Mutual information and its derivatives are concluded to be the best performing mea-

sures in all cases of multi-modality levels where HOG, MI of Census and SIFT

showed promising results. On the Kinect dataset, SURF and BRIEF are also per-

forming well in the whole image however, in the local regions corresponding to more

diverged intensity levels of the NIR band to visible band, these two measures still lack

in performance. Regarding the noise experiments; MI of Census, SIFT and HOG are

concluded as the most vulnerable measures and MI(wPR) is concluded as the most

robust method to noise.

The future work regarding this study can be defined as (i) to develop a hierarchical

processing method (ii) evaluating the method on thermal-visible camera pairs (iii)
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evaluating alternative segmentation algorithms including texture segmentation algo-

rithms.

Hierarchical processing can overcome the high computational cost of the proposed

method while enhancing the results. Besides, within the hierarchical steps, the itera-

tive method can still be applied for reducing the dependency of the method on initial

segmentation.

The thermal-visible camera pairs are widely used in surveillance products since ther-

mal cameras provide enhanced visibility under low visibility conditions like low light

or night conditions, smoke and camouflaged human, vehicles or weapons. Since ther-

mal cameras work at the emission bands of the EM spectrum, performing stereo cor-

respondence is challenging. In this study, performing the cosine transformation over

the unimodal images, these challenging conditions were tested to some extent where

the proposed method outperformed all the alternative methods providing promising

results for the thermal-visible camera pairs also.

Initial segmentation of the left IR images is very important for the performance of the

algorithm although the dependency is shown to be reduced to some extent. There-

fore, alternative segmentation algorithms can be applied for better performance of the

method including texture segmentation. These algorithms can also enable to eval-

uating the segments of both left and right images and compromise to a one set of

segmentation map to increase the details in the final disparity map.

A final future work can be to continue comparing the method with more alterna-

tive similarity measures available in the literature like the multi-modal version of the

SIFT.

103



104



REFERENCES

[1] J.P. Pluim, J. A. Maintz, and M. A. Viergever. Mutual-information-based reg-
istration of medical images: a survey. IEEE Transactions on Medical Imaging,
22(8):986–1004, 2003.

[2] P.A. Van den Elsen, Pol E-J.D., and Viergever. Medical image matching – a
review with classification.

[3] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio
as a new similarity measure for multimodal image registration. In Medical
Image Computing and Computer-Assisted Interventation, MICCAI-98, pages
1115–1124. Springer, 1998.

[4] M. Mellor and M. Brady. Non-rigid multimodal image registration using local
phase. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2004, pages 789–796. Springer, 2004.

[5] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Mul-
timodality image registration by maximization of mutual information. IEEE
Transactions on Medical Imaging, 16(2):187–198, 1997.

[6] C. B. Fookes. Medical image registration and stereo vision using mutual in-
formation.

[7] S. Periaswamy and H. Farid. Medical image registration with partial data.
Medical Image Analysis, 10(3):452–464, June 2006.

[8] M. T. Eismann. Hyperspectral remote sensing, volume PM210. SPIE Press
Monograph.

[9] J. A. Richards. Remote Sensing Digital Image Analysis, volume PM210.
Springer-Verlag, 5 edition.

[10] P. E Anuta. Spatial registration of multispectral and multitemporal digital im-
agery using fast fourier transform techniques. IEEE Transactions on Geo-
science Electronics, 8(4):353–368, 1970.

[11] E. Rignot, R. Kwok, J. Curlander, and S. Pang. Automated multisensor regis-
tration: Requirements and techniques. In IEEE International Geoscience and
Remote Sensing Symposium, pages 945–948. IEEE, 1990.

105



[12] M. A. Ali and D. A. Clausi. Automatic registration of sar and visible band
remote sensing images. In IEEE International Geoscience and Remote Sensing
Symposium, volume 3, pages 1331–1333. IEEE, 2002.

[13] X. Liu, J. Yang, and H. Shen. Automatic image registration by local descrip-
tors in remote sensing. Optical Engineering, 47(8):087206–087206, 2008.

[14] A. Wong and D. A. Clausi. Arrsi: automatic registration of remote-sensing
images. IEEE Transactions on Geoscience and Remote Sensing, 45(5):1483–
1493, 2007.

[15] A. Wong and P. Fieguth. Fast phase-based registration of multi modal image
data. Signal Processing, 89:724–737, June 2009.

[16] Esa eduspace: Remote sensing in depth. http://www.esa.int/
SPECIALS/Eduspace_EN/SEM7IQ3Z2OF_0.html. Accessed: 20
Aug 2014.

[17] C. Berger, M. Voltersen, R. Eckardt, J. Eberle, T. Heyer, N. Salepci, S. Hese,
C. Schmullius, J. Tao, S. Auer, R. Bamler, K. Ewald, M. Gartley, J. Jacobson,
A. Buswell, Q. Du, and F. Pacifici. Multi-modal and multi-temporal data fu-
sion:outcome of the 2012 grss data fusion contest. IEEE Journal of Selected
Topics In Applied Earth Observations and Remote Sensing, 6(3), June 2013.

[18] M. Hasan, M.R. Pickering, and X. Jia. Multi-modal registration of sar and op-
tical satellite images. pages 447–453. Digital Image Computing: Techniques
and Applications, 2009.

[19] A. Brook, E. Ben-Dor, and R Richter. Fusion of hyperspectral images and lidar
data for civil engineering structure monitoring. In 2nd Workshop Hyperspec-
tral Image and Signal Processing: Evolution in Remote Sensing, pages 1–5.
WHISPERS, June 2009.

[20] J. M. Kellndorfer, W. S. Walker, E. LaPoint, K. Kirsch, and J. Bishop. Sta-
tistical fusion of lidar, insar, and optical remote sensing data for forest stand
height characterization: A regional-scale method based on lvis, srtm, landsat
etm plus, and ancillary data sets. Journal of Geophysical Research: Biogeo-
sciences, 115, June 2010.

[21] N. Longbotham, F. Pacifici, T. Glenn, A. Zare, M. Volpi, D. Tuia,
E. Christophe, J. Michel, J. Inglada, J. Chanussot, and Q. Du. Multimodal
change detection, application to the detection of flooded areas: Outcome of the
2009–2010 data fusion contest. IEEE Journal of Selected Topics In Applied
Earth Observations and Remote Sensing, 5(1):331–342, February.

[22] A. A. Richards. Alien Vision: Exploring the Electromagnetic Spectrum with
Imaging Technology, volume PM205. SPIE Press Monograph, 2011.

106

http://www.esa.int/SPECIALS/Eduspace_EN/SEM7IQ3Z2OF_0.html
http://www.esa.int/SPECIALS/Eduspace_EN/SEM7IQ3Z2OF_0.html


[23] T. P. Breckon, A. Gaszczak, J. Han, M. L. Eichner, and S. E. Barnes. Multi-
modal target detection for autonomous wide area search and surveillance. In
Proceedings of SPIE: Emerging Technologies in Security and Defence; and
Quantum Security II; and Unmanned Sensor Systems X, volume 8899. SPIE.

[24] Z. Zhu and T. S. Huang, editors. Multimodal Surveillance: Sensors, Algo-
rithms and Systems. Artech House, 2007.

[25] C. Beyan and A. Temizel. Mean-shift tracking for surveillance applications us-
ing thermal and visible band data fusion. In Proceedings of SPIE: Airborne In-
telligence, Surveillance, Reconnaissance (ISR) Systems and Applications VIII,
volume 8020. SPIE.

[26] S. Krotosky and M. Trivedi. Mutual information based registration of multi-
modal stereo videos for person tracking. Computer Vision and Image Under-
standing, 106(2):270–287, 2007.

[27] Ranger hrc: Portable, long range thermal imaging surveillance
system with multi-sensor option. http://gs.flir.com/
surveillance-products/ranger-imagers/ms-hrc. Accessed:
20 Aug 2014.

[28] Mx-rsta: A multi-sensor, multi-spectral imaging system. http:
//www.wescam.com/index.php/products-services/
ground-market/mx-rsta/. Accessed: 20 Aug 2014.

[29] Mx-25d: Fully digital, high definition, ultra long-range multi-sensor,
multi-spectral imaging and targeting systems. http://www.wescam.
com/index.php/products-services/airborne-targeting/
mx-25d/. Accessed: 20 Aug 2014.

[30] Seaflir 380hd: The only all-digital, full hd system. http://gs.flir.
com/surveillance-products/seaflir/seaflir-380-hd. Ac-
cessed: 20 Aug 2014.

[31] M. Yaman and S. Kalkan. Multimodal stereo vision using mutual information
with adaptive windowing. In 13th IAPR International Conference on Machine
Vision Applications. IAPR, 2013.

[32] M. Yaman and S. Kalkan. An iterative adaptive multi-modal stereo-vision
method using mutual information. Journal of Visual Communication and Im-
age Representation, August 2014 (Major Revision).

[33] The middlebury stereo vision page. http://vision.middlebury.
edu/stereo/. Accessed: 20 Aug 2013.

[34] C. Fookes, A. Maeder, S. Sridharan, and J. Cook. Multi-spectral stereo image
matching using mutual information. In International Symposium on 3D Data
Processing, Visualization and Transmission, pages 961–968. IEEE, 2004.

107

http://gs.flir.com/surveillance-products/ranger-imagers/ms-hrc
http://gs.flir.com/surveillance-products/ranger-imagers/ms-hrc
http://www.wescam.com/index.php/products-services/ground-market/mx-rsta/
http://www.wescam.com/index.php/products-services/ground-market/mx-rsta/
http://www.wescam.com/index.php/products-services/ground-market/mx-rsta/
http://www.wescam.com/index.php/products-services/airborne-targeting/mx-25d/
http://www.wescam.com/index.php/products-services/airborne-targeting/mx-25d/
http://www.wescam.com/index.php/products-services/airborne-targeting/mx-25d/
http://gs.flir.com/surveillance-products/seaflir/seaflir-380-hd
http://gs.flir.com/surveillance-products/seaflir/seaflir-380-hd
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/


[35] Microsoft’s kinect for windows. http://www.microsoft.com/
en-us/kinectforwindows/. Accessed: 6 Oct 2013.

[36] The xbox 360 video game console. http://www.xbox.com. Accessed: 6
Oct 2013.

[37] M. Beetz, D. Cremers, J. Gall, W. Li, Z. Liu, D. Pangercic, J. Sturm, and Y.-W.
Tai. Special issue on visual understanding and applications with rgb-d cam-
eras. Journal of Visual Communication and Image Representation, 25(1):1–
238, 2014.

[38] M. Yaman and S. Kalkan. A performance evaluation of similarity measures
for dense multi-modal stereo-vision applications. Journal of Visual Communi-
cation and Image Representation, Sep 2014 (Initial Submission).

[39] Z. B. Myron, B. Darius, and D. H. Gregory. Advances in computational stereo.
IEEE Transactions On Pattern Analysis and Machine Intelligence, 25(8):993–
1008, 2003.

[40] R. Hartley and A. Zisserman. Multiple view geometry in computer vision.
Cambridge Univ Press, 2000.

[41] U. R. Dhond and J. K. Aggarwal. Structure from stereo-a review. IEEE Trans-
actions on Systems, Man and Cybernetics, 19(6):1489–1510, 1989.

[42] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. International Journal of Computer Vision,
47(1-3):7–42, 2002.

[43] N. Lazaros, G. C. Sirakoulis, and A. Gasteratos. Review of stereo vision algo-
rithms: from software to hardware. International Journal of Optomechatron-
ics, 2(4):435–462, 2008.

[44] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald. eview of stereo vision
algorithms and their suitability for resource-limited systems. Journal of Real-
Time Image Processing, pages 1–21, 2008.

[45] Middlebury stereo evaluation - version 2. http://vision.
middlebury.edu/stereo/eval/. Accessed: 20 Aug 2013.

[46] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, 2004.

[47] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
European Conference on Computer Vision–ECCV, pages 404–417. Springer,
2006.

[48] B. Zitova and J. Flusser. Image registration methods: a survey. Image and
Vision Computing, 21(11):977–1000, 2003.

108

http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.xbox.com
http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/eval/


[49] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey
vision conference, volume 15, page 50. Manchester, UK, 1988.

[50] C. Schmid, R. Mohr, and C. Bauckhage. Comparing and evaluating interest
points. In Sixth International Conference on Computer Vision, pages 230–235.
IEEE, 1998.

[51] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In
European Conference on Computer Vision, pages 128–142. Springer, 2002.

[52] V. Venkateswar and R. Chellappa. Hierarchical stereo and motion correspon-
dence using feature groupings. International Journal of Computer Vision,
15(3):245–269, 1995.

[53] S. Birchfield and C. Tomasi. Depth discontinuities by pixel-to-pixel stereo.
International Journal of Computer Vision, 35(3):269–293, 1999.

[54] G. Egnal. Mutual information as a stereo correspondence measure. Technical
Report MS-CIS-00-20, University of Pennsylvania, page 113, 2000.

[55] M. J. Hannah. Computer matching of areas in stereo images. PhD thesis,
Stanford University, 1974.

[56] P. Aschwanden and W. Guggenbuhl. Experimental results from a compara-
tive study on correlation-type registration algorithms. Robust computer vision,
pages 268–289, 1992.

[57] K. Ambrosch, W. Kubinger, M. Humenberger, and A. Steininger. Flexible
hardware-based stereo matching. EURASIP Journal on Embedded Systems,
2008(2), 2008.

[58] T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive
window: Theory and experiment. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(9):920–932, 1994.

[59] C. S. Park and H. W. Park. A robust stereo disparity estimation using adap-
tive window search and dynamic programming search. Pattern Recognition,
34(12):2573–2576, 2001.

[60] O. Veksler. Stereo correspondence by dynamic programming on a tree. In
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, volume 2, pages 384–390. IEEE, 2005.

[61] C. Cassisa. Local vs global energy minimization methods: application to
stereo matching. In IEEE International Conference on Progress in Informatics
and Computing (PIC), volume 2, pages 678–683. IEEE, 2010.

109



[62] J. Marroquin, S. Mitter, and T. Poggio. Probabilistic solution of ill-posed prob-
lems in computational vision. Journal of the American Statistical Association,
82(397):76–89, 1987.

[63] V. Kolmogorov and R. Zabih. Computing visual correspondence with occlu-
sions using graph cuts. In IEEE International Conference on Computer Vision,
volume 2, pages 508–515. IEEE, 2001.

[64] J. Sun, N. Zheng, and H. Shum. Stereo matching using belief propagation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):787–
800, 2003.

[65] P. Viola and W. M. Wells III. Alignment by maximization of mutual informa-
tion. International Journal of Computer Vision, 24(2):137–154, 1997.

[66] C. Fookes, A. Lamanna, and M. Bennamoun. A new stereo image matching
technique using mutual information. International Conference on Computer,
Graphics and Imaging, 2001.

[67] S. Krotosky and M. Trivedi. Multimodal stereo image registration for pedes-
trian detection. In IEEE Intelligent Transportation Systems Conference, pages
109–114. IEEE, 2006.

[68] S. Krotosky and M. Trivedi. Registration of multimodal stereo images using
disparity voting from correspondence windows. In IEEE International Con-
ference on Video and Signal Based Surveillance, pages 91–91. IEEE, 2006.

[69] F. Barrera Campo, F. Lumbreras Ruiz, and A.D. Sappa. Multimodal stereo
vision system: 3d data extraction and algorithm evaluation. IEEE Journal of
Selected Topics in Signal Processing, 6(5):437–446, 2012.

[70] E. Shechtman and M. Irani. Matching local self-similarities across images and
videos. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2007.

[71] A. Torabi and G-A Bilodeau. Local self-similarity as a dense stereo corre-
spondence measure for themal-visible video registration. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 61–67. IEEE, 2011.

[72] A. Torabi, M. Najafianrazavi, and G-A Bilodeau. A comparative evaluation
of multimodal dense stereo correspondence measures. In IEEE International
Symposium on Robotic and Sensors Environments (ROSE), pages 143–148.
IEEE, 2011.

[73] A. Torabi and G-A Bilodeau. A lss-based registration of stereo thermal–visible
videos of multiple people using belief propagation. Computer Vision and Im-
age Understanding, 117(12):1736–1747, 2013.

110



[74] G-A Bilodeau, A. Torabi, P.-L. St-Charles, and D. Riahi. Thermal-visible reg-
istration of human silhouettes: a similarity measure performance evaluation.
Infrared Physics & Technology, 64:79–86, 2014.

[75] C. E. Shannon. A mathematical theory of communication. Bell Systems Tech-
nical Journal, 27:379–423, 1948.

[76] C. M. Bishop, editor. Pattern Recognition and Machine Learning. Springer,
2006.

[77] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Math-
ematical Statistics, 22(1):79–86, 1951.

[78] P. Suetens A. Collignon, D. Vandermeulen and G. Marchal. 3d multi-modality
medical image registration using feature space clustering. In Proceedings
of 1st International Conference On: Computer Vision, Virtual Reality, and
Robotics in Medicine, volume 905, page 195–204, April 1995.

[79] D. L. G. Hill C. Studholme and D. J. Hawkes. Multiresolution voxel simi-
larity measures for mr-pet registration. In Information Processing in Medical
Imaging, page 287–298, 1995.

[80] Mutual information for image registration and feature selection. www.cse.
msu.edu/~cse902/S03/mut_info.ppt. Accessed: 20 August 2014.

[81] B. Triggs N. Dalal. Histograms of oriented gradients for human detection.
In Proceedings of the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, page 886–893. IEEE,
2005.

[82] M. Yuasa T. Kozakaya, T. Shibata and O. Yamaguchi. Facial feature localiza-
tion using weighted vector concentration approach. Image and Vision Com-
puting, 28(5):772–780, 2010.

[83] M. Brown and D. Lowe. Invariant features from interest point groups. In
British Machine Vision Conference, pages 656–665, 2002.

[84] R. Zabih and J. Woodfill. Non-parametric local transforms for computing vi-
sual correspondence. In Computer Vision ECCV ’94, Lecture Notes in Com-
puter Science, volume 801, page 151–158. Springer, 1994.

[85] R. W. Hamming. Error detecting and error correcting codes. Bell System
Technical Journal, 297(2):147–160, 1950.

[86] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: binary robust indepen-
dent elementary features. In Computer Vision ECCV 2010, Lecture Notes in
Computer Science, volume 6314, page 778–792. Springer, 2010.

111

www.cse.msu.edu/~cse902/S03/mut_info.ppt
www.cse.msu.edu/~cse902/S03/mut_info.ppt


[87] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: fast retina keypoint. In Con-
ference on Computer Vision and Pattern Recognition (CVPR), page 510–517.
IEEE, 2012.

[88] Avian visual cognition. http://pigeon.psy.tufts.edu/avc/,
September 2001. Accessed: 20 Aug 2014.

[89] H. Hirschmüller and D. Scharstein. Evaluation of stereo matching costs on
images with radiometric differences. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(9):1582–1599, September 2009.

[90] Middlebury stereo evaluation - version 2 new features and main differences
to version 1. http://vision.middlebury.edu/stereo/eval/
newFeatures.html. Accessed: 20 Aug 2013.

[91] Company behind microsofts kinect sensor sold to apple
for 345 million. http://www.winbeta.org/news/
company-behind-microsofts-kinect-sensor-sold-apple-345-million.
Accessed: 20 August 2014.

[92] How it works: Xbox kinect. http://www.jameco.com/jameco/
workshop/howitworks/xboxkinect.html. Accessed: 20 August
2014.

[93] Rgbdemo software - calibrating kinect with openni backend. http:
//labs.manctl.com/rgbdemo/index.php/Documentation/
Calibration. Accessed: 6 Oct 2013.

[94] Opencv api reference: Camera calibration and 3d reconstruction.
http://docs.opencv.org/modules/calib3d/doc/camera_
calibration_and_3d_reconstruction.html. Accessed: 20
August 2014.

[95] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo matching using
belief propagation and a self-adapting dissimilarity measure. In International
Conference on Pattern Recognition, volume 3, pages 15–18. IEEE, 2006.

[96] Y. Taguchi, B. Wilburn, and C. L. Zitnick. Stereo reconstruction with mixed
pixels using adaptive over-segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[97] H. Tao, H.S. Sawhney, and R. Kumar. A global matching framework for
stereo computation. In IEEE International Conference on Computer Vision,
volume 1, pages 532–539. IEEE, 2001.

[98] Z. Wang and Z. Zheng. A region based stereo matching algorithm using co-
operative optimization. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8. IEEE, 2008.

112

http://pigeon.psy.tufts.edu/avc/
http://vision.middlebury.edu/stereo/eval/newFeatures.html
http://vision.middlebury.edu/stereo/eval/newFeatures.html
http://www.winbeta.org/news/company-behind-microsofts-kinect-sensor-sold-apple-345-million
http://www.winbeta.org/news/company-behind-microsofts-kinect-sensor-sold-apple-345-million
http://www.jameco.com/jameco/workshop/howitworks/xboxkinect.html
http://www.jameco.com/jameco/workshop/howitworks/xboxkinect.html
http://labs.manctl.com/rgbdemo/index.php/Documentation/Calibration
http://labs.manctl.com/rgbdemo/index.php/Documentation/Calibration
http://labs.manctl.com/rgbdemo/index.php/Documentation/Calibration
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html


[99] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo matching
with color-weighted correlation, hierarchical belief propagation, and occlusion
handling. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(3):492–504, 2009.

[100] C. L. Zitnick and S.B. Kang. Stereo for image-based rendering using image
over-segmentation. International Journal of Computer Vision, 75(1):49–65,
2007.

[101] C. L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-
quality video view interpolation using a layered representation. ACM Trans-
actions on Graphics (TOG), 23(3):600–608, 2004.

[102] C. M. Christoudias, B. Georgescu, and P. Meer. Synergism in low-level vi-
sion. In 16th International Conference on Pattern Recognition, pages 150–
155, 2002.

[103] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(5):603–619, 2002.

[104] M. A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

113



114



APPENDIX A

PARAMETER SETTINGS USED IN EXPERIMENTS

Table A.1 provides the configured parameters of the similarity measures implemented

for the performance evaluation experiments in Chapter 4, over the datasets provided.

Table A.2 provides the configured parameters of the proposed method applied to

Dataset #1 for the experiments given in Chapter 5.

Table A.3 provides the configured parameters of the proposed method applied to

Dataset #2 for the experiments given in Chapter 5.
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Table A.1: Parameter Settings used for the implementation of the evaluated similarity
measures

Method Name Parameter Name Value
MI(woPR) binsize(hist) 40

MI(wPR) λ 0.3

LSS
size(smallpatch) 5

size(largepatch) 41

num(angles) 20

HOG

K 9

γ 1

size(detectionwindow) 16

size(cells) 8

SIFT

σ 3

num(octaves) 4

num(octaveintervals) 3

size(descriptor) 128

SURF

σ 3.3

num(octaves) 4

num(octaveintervals) 2

size(descriptor) 64

CENSUS
size(window) 3

size(descriptorstrbits) 8

CENSUSMI binsize(hist) 40

BRIEF

size(descriptorbits) 32

size(patch) 48

size(kernel) 9

gridtype GIV

FREAK

num(octaves) 4

num(scales) 64

num(pairs) 512

num(oripairs) 45
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Table A.2: Parameter Settings of the Proposed Method Used in Dataset #1 (Synt.
Altered Middlebury) Experiments.

Segmentation
hs hr M n aij te
7 6 50 7 0.5 0.2

Adaptive Windowing
δy λ ω Size(hw) k

4,10,15 0.3 1 40 5

Adaptive Cost Aggregation
ρ λSD λDD Size(w(p, q))

0.25 1 1 17x17

Iterative Plane Fitting
τic τir τod τos τoc

0.007 0.25 1.0 20 0.014

Segment Merging & Finalizing
τα (o) τpd γ

0.1 0.15 0.25

Table A.3: Parameter Settings of the Proposed Method Used in Dataset #2 (Kinect)
Experiments.

Segmentation
hs hr M n aij te
7 4 300 2 0.3 0.4*,0.6

Adaptive Windowing
δy λ ω Size(hw) k

15 0.4 2 40 5

Adaptive Cost Aggregation
ρ λSD λDD Size(w(p, q))

0.25 1 1 37x37

Iterative Plane Fitting
τic τir τod τos τoc

0.0015 0.25 2.0 200 0.004

Segment Merging & Finalizing
τα (o) τpd γ

0.1 0.15 0.25
*: for the kinect IR images having low contrast
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APPENDIX B

EXPERIMENT RESULTS FOR THE PERFORMANCE

EVALUATION OF SIMILARITY MEASURES

Table B.1 provides the experiment results of the similarity measures tested over Dataset

#1 using three different window sizes.

Table B.1: Results on Dataset #1 for the Similarity Mea-

sures Tested using Three Different Window Sizes

Image Method RMS RMS RMS Bad Bad Bad

(all) (all) (all) (all) (all) (all)

(9x9)* (21x21) (31x31) (9x9) (21x21) (31x31)

Avg. All MI (woPR) 10,292 4,995 4,057 43,01% 16,35% 14,13%

MI (wPR) 7,642 4,480 3,861 31,41% 16,93% 15,33%

LSS 12,699 9,857 8,518 59,85% 47,16% 42,50%

HOG 6,843 5,080 4,568 40,40% 31,77% 29,55%

CENSUS 14,223 14,998 15,433 95,70% 96,60% 96,82%

CENSUSMI 11,428 6,618 4,673 61,74% 25,86% 18,37%

BRIEF 19,402 19,924 20,260 98,92% 99,44% 99,41%

SIFT 11,934 10,188 9,139 65,93% 47,10% 40,58%

SURF 14,152 14,660 15,108 96,15% 98,06% 98,33%

NCC 15,803 16,796 17,768 96,93% 98,23% 98,63%

SSD 17,839 18,411 18,735 98,36% 99,02% 98,87%

FREAK 15,503 16,265 16,588 92,84% 93,54% 94,03%

Tsukuba MI (woPR) 3,695 2,223 1,930 31,02% 12,93% 11,96%

Continued on next page
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Table B.1 – Continued from previous page

Image Method RMS RMS RMS Bad Bad Bad

(all) (all) (all) (all) (all) (all)

(9x9)* (21x21) (31x31) (9x9) (21x21) (31x31)

MI (wPR) 2,647 2,023 1,832 20,28% 12,53% 12,29%

LSS 4,153 3,073 2,358 38,63% 25,64% 21,70%

HOG 2,593 2,293 2,233 27,25% 27,59% 28,21%

CENSUS 6,372 7,051 7,320 93,95% 95,33% 95,64%

CENSUSMI 4,317 2,493 2,237 47,63% 18,77% 16,41%

BRIEF 8,730 9,433 9,469 98,67% 99,34% 99,28%

SIFT 4,278 3,034 2,656 46,91% 29,06% 24,91%

SURF 6,347 6,988 7,179 94,79% 98,88% 99,51%

NCC 6,920 7,696 7,945 93,29% 96,42% 97,34%

SSD 6,917 7,436 7,516 97,17% 98,19% 98,05%

FREAK 6,774 7,677 8,022 88,04% 89,79% 91,28%

Venus MI (woPR) 5,607 2,783 2,084 38,11% 13,77% 9,26%

MI (wPR) 4,153 2,915 2,462 28,50% 15,21% 11,77%

LSS 7,842 6,092 5,308 69,41% 49,62% 41,01%

HOG 3,887 2,338 1,774 37,44% 25,78% 20,41%

CENSUS 8,108 8,603 8,826 93,43% 94,13% 94,36%

CENSUSMI 6,342 3,615 1,959 60,65% 24,50% 10,73%

BRIEF 11,965 12,801 12,906 99,17% 99,94% 99,99%

SIFT 6,583 5,423 4,635 66,66% 50,16% 43,32%

SURF 8,273 8,558 8,817 94,79% 95,51% 95,81%

NCC 9,195 9,848 10,426 96,61% 98,09% 98,78%

SSD 9,663 9,675 9,734 99,58% 99,94% 100,00%

FREAK 9,344 10,094 10,384 92,28% 93,15% 93,40%

Teddy MI (woPR) 15,840 8,433 6,415 55,65% 20,40% 15,94%

MI (wPR) 11,210 7,019 6,206 39,49% 20,60% 17,49%

LSS 18,474 15,853 14,545 69,29% 60,37% 57,87%

HOG 11,886 9,104 8,489 50,93% 38,67% 35,55%

CENSUS 20,471 21,910 22,633 97,53% 98,37% 98,56%

Continued on next page
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Table B.1 – Continued from previous page

Image Method RMS RMS RMS Bad Bad Bad

(all) (all) (all) (all) (all) (all)

(9x9)* (21x21) (31x31) (9x9) (21x21) (31x31)

CENSUSMI 17,527 10,909 7,920 72,81% 30,93% 21,39%

BRIEF 28,744 29,732 30,222 99,21% 99,64% 99,52%

SIFT 18,196 16,087 14,649 74,86% 56,53% 48,49%

SURF 20,464 21,266 21,906 97,56% 98,65% 98,82%

NCC 22,869 24,716 26,368 98,76% 99,50% 99,29%

SSD 25,317 26,673 27,573 98,57% 99,19% 99,19%

FREAK 22,329 22,703 23,025 94,49% 93,32% 93,06%

Cones MI (woPR) 16,025 6,540 5,797 47,3% 18,3% 19,4%

MI (wPR) 12,557 5,964 4,944 37,3% 19,4% 19,8%

LSS 20,328 14,407 11,862 62,1% 53,0% 49,4%

HOG 9,006 6,586 5,776 46,0% 35,0% 34,0%

CENSUS 21,941 22,430 22,954 97,9% 98,6% 98,7%

CENSUSMI 17,525 9,454 6,576 65,9% 29,3% 25,0%

BRIEF 28,168 27,728 28,445 98,6% 98,9% 98,9%

SIFT 18,678 16,210 14,616 75,3% 52,7% 45,6%

SURF 21,525 21,826 22,530 97,5% 99,2% 99,2%

NCC 24,229 24,924 26,333 99,1% 98,9% 99,1%

SSD 29,457 29,859 30,118 98,1% 98,8% 98,2%

FREAK 23,565 24,586 24,922 96,6% 97,9% 98,4%

Figures B.1, B.2, B.3 and B.4 depicts these RMS and Bad pixel performances for

each image separately, i.e. Tsukuba, Venus, Teddy and Cones for the three window

sizes tested over Dataset #1.
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RMS(all)-9x9 3.695 2.647 4.153 2.593 6.372 4.317 8.730 4.278 6.347 6.920 6.917 6.774

RMS(all)-21x21 2.223 2.023 3.073 2.293 7.051 2.493 9.433 3.034 6.988 7.696 7.436 7.677

RMS(all)-31x31 1.930 1.832 2.358 2.233 7.320 2.237 9.469 2.656 7.179 7.945 7.516 8.022
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Figure B.1: RMS(all) and Bad(all) pixels percentage errors of all methods’ "WTA"
performances for three different window sizes for Tsukuba image in Dataset1
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Bad(all)-21x21 13.77% 15.21% 49.62% 25.78% 94.13% 24.50% 99.94% 50.16% 95.51% 98.09% 99.94% 93.15%
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Figure B.2: RMS(all) and Bad(all) pixels percentage errors of all methods’ "WTA"
performances for three different window sizes for Venus image in Dataset1
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BRIEF SIFT SURF NCC SSD FREAK

RMS(all)-9x9 15.840 11.210 18.474 11.886 20.471 17.527 28.744 18.196 20.464 22.869 25.317 22.329

RMS(all)-21x21 8.433 7.019 15.853 9.104 21.910 10.909 29.732 16.087 21.266 24.716 26.673 22.703

RMS(all)-31x31 6.415 6.206 14.545 8.489 22.633 7.920 30.222 14.649 21.906 26.368 27.573 23.025
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Bad(all)-21x21 20.40% 20.60% 60.37% 38.67% 98.37% 30.93% 99.64% 56.53% 98.65% 99.50% 99.19% 93.32%
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Figure B.3: RMS(all) and Bad(all) pixels percentage errors of all methods’ "WTA"
performances for three different window sizes for Teddy image in Dataset #1.
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RMS(all)-9x9 16.025 12.557 20.328 9.006 21.941 17.525 28.168 18.678 21.525 24.229 29.457 23.565

RMS(all)-21x21 6.540 5.964 14.407 6.586 22.430 9.454 27.728 16.210 21.826 24.924 29.859 24.586
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Bad(all)-9x9 47.28% 37.35% 62.05% 45.99% 97.89% 65.86% 98.63% 75.28% 97.46% 99.08% 98.09% 96.56%

Bad(all)-21x21 18.31% 19.38% 53.02% 35.04% 98.56% 29.25% 98.85% 52.65% 99.20% 98.91% 98.76% 97.89%

Bad(all)-31x31 19.35% 19.77% 49.41% 34.02% 98.73% 24.96% 98.86% 45.59% 99.19% 99.10% 98.23% 98.37%
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Figure B.4: RMS(all) and Bad(all) pixels percentage errors of all methods’ "WTA"
performances for three different window sizes for Cones image in Dataset #1.

In the below part, Figure B.5 shows all the visual results for the "WTA" disparities

generated by the similarity measures using Tsukuba image pair in Dataset #1 for three

different window sizes, 9x9, 21x21 and 31x31 pixels.
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Figure B.5: continued

SIFT

SURF

NCC

SSD

FREAK

Figure B.5: The visual results of all the similarity measures

for the Tsukuba image pair, for the different window sizes

9x9, 21x21 and 31x31.

The Figures B.6, B.7, B.8 and B.9 provide the RMS(all) and Bad(all) pixels percent-

age errors of all similarity measures tested for the 10 multi-modality levels for each

image pair in Dataset #1 separately, i.e. Tsukuba, Venus, Teddy and Cones.
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(a)

(b)

Figure B.6: RMS(all) and Bad(all) pixels percentage errors of all methods for 10
multi-modality levels for Tsukuba image in Dataset #1 [Best viewed in color].
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(a)

(b)

Figure B.7: RMS(all) and Bad(all) pixels percentage errors of all methods for 10
multi-modality levels for Venus image in Dataset #1 [Best viewed in color].
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(a)

(b)

Figure B.8: RMS(all) and Bad(all) pixels percentage errors of all methods for 10
multi-modality levels for Venus image in Dataset #1 [Best viewed in color].
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(a)

(b)

Figure B.9: RMS(all) and Bad(all) pixels percentage errors of all methods for 10
multi-modality levels for Cones image in Dataset #1 [Best viewed in color].

Figures B.10, B.11, B.12 and B.13 show the RMS and Bad pixel performances for

each image pair separately, i.e. Tsukuba, Venus, Teddy and Cones, for the noise

levels.
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(a)

(b)

Figure B.10: RMS(all) and Bad(all) pixels percentage errors of all methods for 10
noise levels for Tsukuba image in Dataset #1 [Best viewed in color].
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(a)

(b)

Figure B.11: RMS(all) and Bad(all) pixels percentage errors of all methods for 10
noise levels for Venus image in Dataset #1 [Best viewed in color].
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(a)

(b)

Figure B.12: RMS(all) and Bad(all) pixels percentage errors of all methods for 10
noise levels for Teddy image in Dataset #1 [Best viewed in color].
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(a)

(b)

Figure B.13: RMS(all) and Bad(all) pixels percentage errors of all methods for 10
noise levels for Cones image in Dataset #1 [Best viewed in color].

In the below part, Table B.2 provides the experiment results of the similarity measures

tested over Dataset #2, the Kinect Dataset.
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Table B.2: Results on Dataset #2 Selected Image Pairs for

all the Similarity Measures

Image Method Metric 10cm 20cm 30cm 40cm Total

Avg. All BRIEF Perc. Good Depth 20.4% 12.9% 9.0% 5.8% 48.0%

Perc. Total Covg. 32.5% 11.1% 7.5% 5.0% 56.1%

CENSUSMI Perc. Good Depth 22.7% 13.4% 8.8% 4.5% 49.4%

Perc. Total Covg. 35.7% 11.2% 7.3% 3.8% 58.1%

CENSUS Perc. Good Depth 10.8% 7.0% 5.3% 3.8% 26.9%

Perc. Total Covg. 20.8% 6.3% 4.7% 3.3% 35.1%

FREAK Perc. Good Depth 27.2% 14.5% 9.3% 5.1% 56.2%

Perc. Total Covg. 39.5% 12.3% 7.6% 4.3% 63.7%

HOG Perc. Good Depth 21.6% 13.7% 9.2% 5.9% 50.4%

Perc. Total Covg. 34.8% 11.5% 7.7% 5.0% 59.0%

LSS Perc. Good Depth 23.8% 13.6% 7.8% 3.7% 48.9%

Perc. Total Covg. 35.5% 11.5% 6.6% 3.1% 56.8%

MI (wPR) Perc. Good Depth 26.2% 13.6% 9.0% 4.3% 53.1%

Perc. Total Covg. 38.7% 11.4% 7.4% 3.6% 61.1%

NCC Perc. Good Depth 20.4% 11.8% 8.0% 4.9% 45.1%

Perc. Total Covg. 33.1% 10.0% 6.5% 4.1% 53.6%

MI (woPR) Perc. Good Depth 25.4% 13.9% 8.6% 4.0% 52.0%

Perc. Total Covg. 38.4% 11.6% 7.0% 3.4% 60.4%

SIFT Perc. Good Depth 24.5% 13.2% 8.6% 4.3% 50.5%

Perc. Total Covg. 37.6% 10.9% 7.0% 3.6% 59.2%

SSD Perc. Good Depth 7.8% 5.8% 4.0% 3.4% 21.0%

Perc. Total Covg. 17.6% 5.1% 3.4% 2.9% 29.1%

SURF Perc. Good Depth 27.1% 15.0% 9.4% 5.8% 57.4%

Perc. Total Covg. 39.9% 12.5% 7.9% 4.9% 65.2%

Kinect02 BRIEF Perc. Good Depth 20.7% 16.7% 9.5% 6.1% 53.0%

Perc. Total Covg. 29.0% 14.9% 8.5% 5.5% 57.9%

CENSUSMI Perc. Good Depth 26.6% 14.6% 9.2% 4.8% 55.2%

Perc. Total Covg. 34.5% 13.0% 8.2% 4.3% 60.0%

Continued on next page
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Table B.2 – Continued from previous page

Image Method Metric 10cm 20cm 30cm 40cm Total

CENSUS Perc. Good Depth 11.4% 7.8% 5.2% 3.6% 28.1%

Perc. Total Covg. 17.6% 7.2% 4.9% 3.4% 33.1%

FREAK Perc. Good Depth 30.7% 18.5% 9.5% 5.0% 63.7%

Perc. Total Covg. 38.0% 16.5% 8.5% 4.5% 67.5%

HOG Perc. Good Depth 25.6% 15.5% 9.0% 5.1% 55.0%

Perc. Total Covg. 33.1% 13.9% 8.1% 4.5% 59.6%

LSS Perc. Good Depth 28.5% 13.7% 7.3% 3.5% 52.9%

Perc. Total Covg. 34.4% 12.6% 6.7% 3.2% 56.8%

MI (wPR) Perc. Good Depth 26.7% 17.7% 8.9% 4.5% 57.8%

Perc. Total Covg. 34.0% 16.0% 8.0% 4.1% 62.0%

NCC Perc. Good Depth 26.6% 16.3% 8.4% 5.0% 56.3%

Perc. Total Covg. 33.8% 14.7% 7.6% 4.5% 60.6%

MI (woPR) Perc. Good Depth 26.4% 17.7% 8.6% 3.7% 56.4%

Perc. Total Covg. 34.7% 15.7% 7.6% 3.3% 61.3%

SIFT Perc. Good Depth 31.0% 15.7% 7.7% 3.6% 58.0%

Perc. Total Covg. 38.5% 14.0% 6.9% 3.2% 62.6%

SSD Perc. Good Depth 3.5% 3.2% 1.6% 1.2% 9.6%

Perc. Total Covg. 4.9% 3.2% 1.6% 1.2% 10.8%

SURF Perc. Good Depth 25.1% 19.7% 14.7% 6.7% 66.2%

Perc. Total Covg. 33.9% 17.4% 13.0% 5.9% 70.2%

Kinect03 BRIEF Perc. Good Depth 12.0% 10.9% 11.4% 4.6% 38.9%

Perc. Total Covg. 36.6% 7.9% 8.2% 3.3% 56.0%

CENSUSMI Perc. Good Depth 9.6% 13.5% 9.5% 4.8% 37.3%

Perc. Total Covg. 37.0% 9.4% 6.6% 3.4% 56.4%

CENSUS Perc. Good Depth 6.0% 6.2% 6.7% 3.9% 22.9%

Perc. Total Covg. 28.0% 4.8% 5.1% 3.0% 40.9%

FREAK Perc. Good Depth 16.2% 12.3% 12.8% 5.9% 47.3%

Perc. Total Covg. 43.1% 8.4% 8.7% 4.0% 64.2%

HOG Perc. Good Depth 7.2% 13.9% 10.5% 4.9% 36.5%

Perc. Total Covg. 35.2% 9.7% 7.3% 3.4% 55.7%

Continued on next page
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Table B.2 – Continued from previous page

Image Method Metric 10cm 20cm 30cm 40cm Total

LSS Perc. Good Depth 10.6% 15.2% 8.1% 4.3% 38.2%

Perc. Total Covg. 35.6% 11.0% 5.9% 3.1% 55.5%

MI (wPR) Perc. Good Depth 12.4% 14.4% 12.2% 4.1% 43.1%

Perc. Total Covg. 39.7% 9.9% 8.4% 2.8% 60.8%

NCC Perc. Good Depth 11.5% 12.8% 13.8% 5.1% 43.2%

Perc. Total Covg. 39.0% 8.8% 9.5% 3.5% 60.8%

MI (woPR) Perc. Good Depth 11.6% 15.2% 11.5% 4.0% 42.4%

Perc. Total Covg. 39.7% 10.4% 7.9% 2.7% 60.7%

SIFT Perc. Good Depth 10.4% 15.1% 10.8% 4.4% 40.6%

Perc. Total Covg. 39.3% 10.2% 7.3% 3.0% 59.8%

SSD Perc. Good Depth 6.0% 5.7% 6.6% 5.3% 23.5%

Perc. Total Covg. 31.5% 4.1% 4.8% 3.8% 44.2%

SURF Perc. Good Depth 15.5% 15.7% 8.0% 5.2% 44.4%

Perc. Total Covg. 41.7% 10.8% 5.5% 3.6% 61.7%

Kinect06 BRIEF Perc. Good Depth 14.2% 14.7% 7.8% 8.2% 45.0%

Perc. Total Covg. 22.0% 13.4% 7.1% 7.4% 49.9%

CENSUSMI Perc. Good Depth 22.6% 15.9% 10.6% 5.7% 54.8%

Perc. Total Covg. 30.9% 14.2% 9.4% 5.1% 59.7%

CENSUS Perc. Good Depth 9.0% 7.5% 5.5% 5.4% 27.4%

Perc. Total Covg. 14.8% 7.0% 5.2% 5.1% 32.0%

FREAK Perc. Good Depth 20.9% 17.8% 9.0% 6.8% 54.5%

Perc. Total Covg. 28.9% 16.0% 8.1% 6.1% 59.1%

HOG Perc. Good Depth 20.8% 16.3% 10.0% 9.1% 56.2%

Perc. Total Covg. 29.7% 14.5% 8.9% 8.1% 61.2%

LSS Perc. Good Depth 22.4% 17.2% 9.7% 5.1% 54.5%

Perc. Total Covg. 30.5% 15.5% 8.7% 4.6% 59.2%

MI (wPR) Perc. Good Depth 25.4% 14.3% 10.1% 6.9% 56.7%

Perc. Total Covg. 33.4% 12.8% 9.0% 6.1% 61.3%

NCC Perc. Good Depth 15.0% 11.2% 6.1% 7.3% 39.7%

Perc. Total Covg. 23.3% 10.2% 5.5% 6.6% 45.6%
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Image Method Metric 10cm 20cm 30cm 40cm Total

MI (woPR) Perc. Good Depth 25.4% 15.1% 9.4% 6.5% 56.3%

Perc. Total Covg. 33.4% 13.5% 8.4% 5.8% 61.0%

SIFT Perc. Good Depth 26.1% 13.8% 10.0% 6.2% 56.0%

Perc. Total Covg. 33.7% 12.4% 8.9% 5.6% 60.6%

SSD Perc. Good Depth 7.5% 9.4% 5.3% 5.6% 27.8%

Perc. Total Covg. 14.1% 8.7% 5.0% 5.2% 32.9%

SURF Perc. Good Depth 25.3% 14.6% 11.5% 8.7% 60.2%

Perc. Total Covg. 33.8% 12.9% 10.2% 7.8% 64.7%

Kinect10 BRIEF Perc. Good Depth 34.5% 9.3% 7.1% 4.2% 55.2%

Perc. Total Covg. 42.3% 8.2% 6.3% 3.7% 60.5%

CENSUSMI Perc. Good Depth 32.1% 9.5% 5.8% 2.8% 50.2%

Perc. Total Covg. 40.4% 8.4% 5.1% 2.4% 56.3%

CENSUS Perc. Good Depth 16.8% 6.5% 3.8% 2.0% 29.2%

Perc. Total Covg. 22.8% 6.1% 3.5% 1.9% 34.3%

FREAK Perc. Good Depth 41.0% 9.4% 6.1% 2.7% 59.2%

Perc. Total Covg. 47.9% 8.3% 5.3% 2.4% 64.0%

HOG Perc. Good Depth 32.9% 9.1% 7.4% 4.4% 53.7%

Perc. Total Covg. 41.1% 8.0% 6.4% 3.8% 59.4%

LSS Perc. Good Depth 33.8% 8.1% 6.0% 1.8% 49.8%

Perc. Total Covg. 41.5% 7.2% 5.3% 1.6% 55.6%

MI (wPR) Perc. Good Depth 40.4% 7.8% 4.9% 1.8% 55.0%

Perc. Total Covg. 47.6% 6.9% 4.3% 1.6% 60.3%

NCC Perc. Good Depth 28.4% 7.0% 3.7% 2.1% 41.2%

Perc. Total Covg. 36.0% 6.2% 3.3% 1.9% 47.5%

MI (woPR) Perc. Good Depth 38.3% 7.7% 4.8% 2.0% 52.8%

Perc. Total Covg. 45.8% 6.8% 4.2% 1.8% 58.6%

SIFT Perc. Good Depth 30.5% 8.1% 5.8% 3.0% 47.3%

Perc. Total Covg. 38.9% 7.1% 5.1% 2.6% 53.6%

SSD Perc. Good Depth 14.2% 4.8% 2.6% 1.6% 23.2%

Perc. Total Covg. 19.8% 4.5% 2.4% 1.5% 28.2%
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Image Method Metric 10cm 20cm 30cm 40cm Total

SURF Perc. Good Depth 42.5% 10.3% 3.3% 2.7% 58.7%

Perc. Total Covg. 50.1% 8.9% 2.8% 2.3% 64.2%

140



APPENDIX C

EXPERIMENT RESULTS OF THE PROPOSED METHOD

C.1 Adaptive Windowing Step vs. State of the Art Similarity Measures for

Dataset #1

Table C.1 provides the WTA performance results of the Adaptive Windowing Algo-

rithm (ADAPMI) of the proposed method along with the similarity measures tested,

using Dataset #1 for three different window sizes.

Table C.1: Results on Dataset #1 for the WTA performances

of the Adaptive Windowing Algorithm (ADAPMI) of the

proposed method along with the Similarity Measures Tested

using Three Different Window Sizes

Image Method RMS RMS RMS Bad Bad Bad

(all) (all) (all) (all) (all) (all)

(9x9)* (21x21) (31x31) (9x9) (21x21) (31x31)

Avg. All AdapMI 5,349 4,128 3,769 17,14% 12,51% 11,43%

MI (woPR) 10,292 4,995 4,057 43,01% 16,35% 14,13%

MI (wPR) 7,642 4,480 3,861 31,41% 16,93% 15,33%

LSS 12,699 9,857 8,518 59,85% 47,16% 42,50%

HOG 6,843 5,080 4,568 40,40% 31,77% 29,55%

CENSUS 14,223 14,998 15,433 95,70% 96,60% 96,82%

CENSUSMI 11,428 6,618 4,673 61,74% 25,86% 18,37%

BRIEF 19,402 19,924 20,260 98,92% 99,44% 99,41%

Continued on next page
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Table C.1 – Continued from previous page

Image Method RMS RMS RMS Bad Bad Bad

(all) (all) (all) (all) (all) (all)

(9x9)* (21x21) (31x31) (9x9) (21x21) (31x31)

SIFT 11,934 10,188 9,139 65,93% 47,10% 40,58%

SURF 14,152 14,660 15,108 96,15% 98,06% 98,33%

NCC 15,803 16,796 17,768 96,93% 98,23% 98,63%

SSD 17,839 18,411 18,735 98,36% 99,02% 98,87%

FREAK 15,503 16,265 16,588 92,84% 93,54% 94,03%

Tsukuba AdapMI 1,574 1,457 1,433 7,71% 6,41% 5,44%

MI (woPR) 3,695 2,223 1,930 31,02% 12,93% 11,96%

MI (wPR) 2,647 2,023 1,832 20,28% 12,53% 12,29%

LSS 4,153 3,073 2,358 38,63% 25,64% 21,70%

HOG 2,593 2,293 2,233 27,25% 27,59% 28,21%

CENSUS 6,372 7,051 7,320 93,95% 95,33% 95,64%

CENSUSMI 4,317 2,493 2,237 47,63% 18,77% 16,41%

BRIEF 8,730 9,433 9,469 98,67% 99,34% 99,28%

SIFT 4,278 3,034 2,656 46,91% 29,06% 24,91%

SURF 6,347 6,988 7,179 94,79% 98,88% 99,51%

NCC 6,920 7,696 7,945 93,29% 96,42% 97,34%

SSD 6,917 7,436 7,516 97,17% 98,19% 98,05%

FREAK 6,774 7,677 8,022 88,04% 89,79% 91,28%

Venus AdapMI 1,799 1,157 1,008 9,24% 6,53% 6,01%

MI (woPR) 5,607 2,783 2,084 38,11% 13,77% 9,26%

MI (wPR) 4,153 2,915 2,462 28,50% 15,21% 11,77%

LSS 7,842 6,092 5,308 69,41% 49,62% 41,01%

HOG 3,887 2,338 1,774 37,44% 25,78% 20,41%

CENSUS 8,108 8,603 8,826 93,43% 94,13% 94,36%

CENSUSMI 6,342 3,615 1,959 60,65% 24,50% 10,73%

BRIEF 11,965 12,801 12,906 99,17% 99,94% 99,99%

SIFT 6,583 5,423 4,635 66,66% 50,16% 43,32%

SURF 8,273 8,558 8,817 94,79% 95,51% 95,81%
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Image Method RMS RMS RMS Bad Bad Bad

(all) (all) (all) (all) (all) (all)

(9x9)* (21x21) (31x31) (9x9) (21x21) (31x31)

NCC 9,195 9,848 10,426 96,61% 98,09% 98,78%

SSD 9,663 9,675 9,734 99,58% 99,94% 100,00%

FREAK 9,344 10,094 10,384 92,28% 93,15% 93,40%

Teddy AdapMI 8,008 7,037 6,650 24,29% 18,24% 17,11%

MI (woPR) 15,840 8,433 6,415 55,65% 20,40% 15,94%

MI (wPR) 11,210 7,019 6,206 39,49% 20,60% 17,49%

LSS 18,474 15,853 14,545 69,29% 60,37% 57,87%

HOG 11,886 9,104 8,489 50,93% 38,67% 35,55%

CENSUS 20,471 21,910 22,633 97,53% 98,37% 98,56%

CENSUSMI 17,527 10,909 7,920 72,81% 30,93% 21,39%

BRIEF 28,744 29,732 30,222 99,21% 99,64% 99,52%

SIFT 18,196 16,087 14,649 74,86% 56,53% 48,49%

SURF 20,464 21,266 21,906 97,56% 98,65% 98,82%

NCC 22,869 24,716 26,368 98,76% 99,50% 99,29%

SSD 25,317 26,673 27,573 98,57% 99,19% 99,19%

FREAK 22,329 22,703 23,025 94,49% 93,32% 93,06%

Cones AdapMI 10,016 6,860 5,985 27,3% 18,9% 17,2%

MI (woPR) 16,025 6,540 5,797 47,3% 18,3% 19,4%

MI (wPR) 12,557 5,964 4,944 37,3% 19,4% 19,8%

LSS 20,328 14,407 11,862 62,1% 53,0% 49,4%

HOG 9,006 6,586 5,776 46,0% 35,0% 34,0%

CENSUS 21,941 22,430 22,954 97,9% 98,6% 98,7%

CENSUSMI 17,525 9,454 6,576 65,9% 29,3% 25,0%

BRIEF 28,168 27,728 28,445 98,6% 98,9% 98,9%

SIFT 18,678 16,210 14,616 75,3% 52,7% 45,6%

SURF 21,525 21,826 22,530 97,5% 99,2% 99,2%

NCC 24,229 24,924 26,333 99,1% 98,9% 99,1%

SSD 29,457 29,859 30,118 98,1% 98,8% 98,2%
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Image Method RMS RMS RMS Bad Bad Bad

(all) (all) (all) (all) (all) (all)

(9x9)* (21x21) (31x31) (9x9) (21x21) (31x31)

FREAK 23,565 24,586 24,922 96,6% 97,9% 98,4%
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(a)

(b)

Figure C.1: RMS(all) and Bad(all) pixels percentage errors of "WTA" performance
of the Adaptive Windowing Algorithm (ADAPMI) and the state of the art similarity
measures for three different window sizes for Tsukuba image in Dataset1

Figures C.1, C.2, C.3 and C.4 depict these RMS and Bad pixel performances for each

image separately in Dataset #1, i.e. Tsukuba, Venus, Teddy and Cones for the three

window sizes and along with the leading similarity measures.
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(a)

(b)

Figure C.2: RMS(all) and Bad(all) pixels percentage errors of "WTA" performance
of the Adaptive Windowing Algorithm (ADAPMI) and the state of the art similarity
measures for three different window sizes for Venus image in Dataset1
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(a)

(b)

Figure C.3: RMS(all) and Bad(all) pixels percentage errors of "WTA" performance
of the Adaptive Windowing Algorithm (ADAPMI) and the state of the art similarity
measures for three different window sizes for Teddy image in Dataset1
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(a)

(b)

Figure C.4: RMS(all) and Bad(all) pixels percentage errors of "WTA" performance
of the Adaptive Windowing Algorithm (ADAPMI) and the state of the art similarity
measures for three different window sizes for Cones image in Dataset1
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C.2 Adaptive Windowing vs. State of the Art Similarity Measures using Dataset

#2, The Kinect Dataset

Table C.2 provides the experiment results of WTA performance obtained from the

adaptive windowing algorithm (AdapMI) of the proposed method for the 1st iteration

and the similarity measures tested over Dataset #2, the Kinect Dataset.

Table C.2: Results on Dataset #2 Selected Image Pairs for

WTA Performances of the Adaptive Windowing Algorithm

(AdapMI) of the Proposed Method and the Similarity Mea-

sures Tested

Image Method Metric 10cm 20cm 30cm 40cm Total

Avg. All AdapMI Perc. Good Depth 30.5% 15.9% 16.7% 5.1% 68.3%

Perc. Total Covg. 44.3% 12.9% 12.7% 4.2% 74.1%

BRIEF Perc. Good Depth 20.4% 12.9% 9.0% 5.8% 48.0%

Perc. Total Covg. 32.5% 11.1% 7.5% 5.0% 56.1%

CENSUSMI Perc. Good Depth 22.7% 13.4% 8.8% 4.5% 49.4%

Perc. Total Covg. 35.7% 11.2% 7.3% 3.8% 58.1%

CENSUS Perc. Good Depth 10.8% 7.0% 5.3% 3.8% 26.9%

Perc. Total Covg. 20.8% 6.3% 4.7% 3.3% 35.1%

FREAK Perc. Good Depth 27.2% 14.5% 9.3% 5.1% 56.2%

Perc. Total Covg. 39.5% 12.3% 7.6% 4.3% 63.7%

HOG Perc. Good Depth 21.6% 13.7% 9.2% 5.9% 50.4%

Perc. Total Covg. 34.8% 11.5% 7.7% 5.0% 59.0%

LSS Perc. Good Depth 23.8% 13.6% 7.8% 3.7% 48.9%

Perc. Total Covg. 35.5% 11.5% 6.6% 3.1% 56.8%

MI (wPR) Perc. Good Depth 26.2% 13.6% 9.0% 4.3% 53.1%

Perc. Total Covg. 38.7% 11.4% 7.4% 3.6% 61.1%

NCC Perc. Good Depth 20.4% 11.8% 8.0% 4.9% 45.1%

Perc. Total Covg. 33.1% 10.0% 6.5% 4.1% 53.6%

MI (woPR) Perc. Good Depth 25.4% 13.9% 8.6% 4.0% 52.0%

Perc. Total Covg. 38.4% 11.6% 7.0% 3.4% 60.4%
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Image Method Metric 10cm 20cm 30cm 40cm Total

SIFT Perc. Good Depth 24.5% 13.2% 8.6% 4.3% 50.5%

Perc. Total Covg. 37.6% 10.9% 7.0% 3.6% 59.2%

SSD Perc. Good Depth 7.8% 5.8% 4.0% 3.4% 21.0%

Perc. Total Covg. 17.6% 5.1% 3.4% 2.9% 29.1%

SURF Perc. Good Depth 27.1% 15.0% 9.4% 5.8% 57.4%

Perc. Total Covg. 39.9% 12.5% 7.9% 4.9% 65.2%

Kinect02 AdapMI Perc. Good Depth 28.1% 22.7% 10.9% 6.9% 68.7%

Perc. Total Covg. 37.7% 19.7% 9.4% 6.0% 72.8%

BRIEF Perc. Good Depth 20.7% 16.7% 9.5% 6.1% 53.0%

Perc. Total Covg. 29.0% 14.9% 8.5% 5.5% 57.9%

CENSUSMI Perc. Good Depth 26.6% 14.6% 9.2% 4.8% 55.2%

Perc. Total Covg. 34.5% 13.0% 8.2% 4.3% 60.0%

CENSUS Perc. Good Depth 11.4% 7.8% 5.2% 3.6% 28.1%

Perc. Total Covg. 17.6% 7.2% 4.9% 3.4% 33.1%

FREAK Perc. Good Depth 30.7% 18.5% 9.5% 5.0% 63.7%

Perc. Total Covg. 38.0% 16.5% 8.5% 4.5% 67.5%

HOG Perc. Good Depth 25.6% 15.5% 9.0% 5.1% 55.0%

Perc. Total Covg. 33.1% 13.9% 8.1% 4.5% 59.6%

LSS Perc. Good Depth 28.5% 13.7% 7.3% 3.5% 52.9%

Perc. Total Covg. 34.4% 12.6% 6.7% 3.2% 56.8%

MI (wPR) Perc. Good Depth 26.7% 17.7% 8.9% 4.5% 57.8%

Perc. Total Covg. 34.0% 16.0% 8.0% 4.1% 62.0%

NCC Perc. Good Depth 26.6% 16.3% 8.4% 5.0% 56.3%

Perc. Total Covg. 33.8% 14.7% 7.6% 4.5% 60.6%

MI (woPR) Perc. Good Depth 26.4% 17.7% 8.6% 3.7% 56.4%

Perc. Total Covg. 34.7% 15.7% 7.6% 3.3% 61.3%

SIFT Perc. Good Depth 31.0% 15.7% 7.7% 3.6% 58.0%

Perc. Total Covg. 38.5% 14.0% 6.9% 3.2% 62.6%

SSD Perc. Good Depth 3.5% 3.2% 1.6% 1.2% 9.6%

Perc. Total Covg. 4.9% 3.2% 1.6% 1.2% 10.8%
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Image Method Metric 10cm 20cm 30cm 40cm Total

SURF Perc. Good Depth 25.1% 19.7% 14.7% 6.7% 66.2%

Perc. Total Covg. 33.9% 17.4% 13.0% 5.9% 70.2%

Kinect03 AdapMI Perc. Good Depth 12.2% 18.4% 35.2% 4.8% 70.6%

Perc. Total Covg. 42.1% 12.2% 23.2% 3.1% 80.6%

BRIEF Perc. Good Depth 12.0% 10.9% 11.4% 4.6% 38.9%

Perc. Total Covg. 36.6% 7.9% 8.2% 3.3% 56.0%

CENSUSMI Perc. Good Depth 9.6% 13.5% 9.5% 4.8% 37.3%

Perc. Total Covg. 37.0% 9.4% 6.6% 3.4% 56.4%

CENSUS Perc. Good Depth 6.0% 6.2% 6.7% 3.9% 22.9%

Perc. Total Covg. 28.0% 4.8% 5.1% 3.0% 40.9%

FREAK Perc. Good Depth 16.2% 12.3% 12.8% 5.9% 47.3%

Perc. Total Covg. 43.1% 8.4% 8.7% 4.0% 64.2%

HOG Perc. Good Depth 7.2% 13.9% 10.5% 4.9% 36.5%

Perc. Total Covg. 35.2% 9.7% 7.3% 3.4% 55.7%

LSS Perc. Good Depth 10.6% 15.2% 8.1% 4.3% 38.2%

Perc. Total Covg. 35.6% 11.0% 5.9% 3.1% 55.5%

MI (wPR) Perc. Good Depth 12.4% 14.4% 12.2% 4.1% 43.1%

Perc. Total Covg. 39.7% 9.9% 8.4% 2.8% 60.8%

NCC Perc. Good Depth 11.5% 12.8% 13.8% 5.1% 43.2%

Perc. Total Covg. 39.0% 8.8% 9.5% 3.5% 60.8%

MI (woPR) Perc. Good Depth 11.6% 15.2% 11.5% 4.0% 42.4%

Perc. Total Covg. 39.7% 10.4% 7.9% 2.7% 60.7%

SIFT Perc. Good Depth 10.4% 15.1% 10.8% 4.4% 40.6%

Perc. Total Covg. 39.3% 10.2% 7.3% 3.0% 59.8%

SSD Perc. Good Depth 6.0% 5.7% 6.6% 5.3% 23.5%

Perc. Total Covg. 31.5% 4.1% 4.8% 3.8% 44.2%

SURF Perc. Good Depth 15.5% 15.7% 8.0% 5.2% 44.4%

Perc. Total Covg. 41.7% 10.8% 5.5% 3.6% 61.7%

Kinect06 AdapMI Perc. Good Depth 35.8% 15.4% 14.2% 6.0% 71.4%

Perc. Total Covg. 43.4% 13.6% 12.5% 5.3% 74.8%
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Image Method Metric 10cm 20cm 30cm 40cm Total

BRIEF Perc. Good Depth 14.2% 14.7% 7.8% 8.2% 45.0%

Perc. Total Covg. 22.0% 13.4% 7.1% 7.4% 49.9%

CENSUSMI Perc. Good Depth 22.6% 15.9% 10.6% 5.7% 54.8%

Perc. Total Covg. 30.9% 14.2% 9.4% 5.1% 59.7%

CENSUS Perc. Good Depth 9.0% 7.5% 5.5% 5.4% 27.4%

Perc. Total Covg. 14.8% 7.0% 5.2% 5.1% 32.0%

FREAK Perc. Good Depth 20.9% 17.8% 9.0% 6.8% 54.5%

Perc. Total Covg. 28.9% 16.0% 8.1% 6.1% 59.1%

HOG Perc. Good Depth 20.8% 16.3% 10.0% 9.1% 56.2%

Perc. Total Covg. 29.7% 14.5% 8.9% 8.1% 61.2%

LSS Perc. Good Depth 22.4% 17.2% 9.7% 5.1% 54.5%

Perc. Total Covg. 30.5% 15.5% 8.7% 4.6% 59.2%

MI (wPR) Perc. Good Depth 25.4% 14.3% 10.1% 6.9% 56.7%

Perc. Total Covg. 33.4% 12.8% 9.0% 6.1% 61.3%

NCC Perc. Good Depth 15.0% 11.2% 6.1% 7.3% 39.7%

Perc. Total Covg. 23.3% 10.2% 5.5% 6.6% 45.6%

MI (woPR) Perc. Good Depth 25.4% 15.1% 9.4% 6.5% 56.3%

Perc. Total Covg. 33.4% 13.5% 8.4% 5.8% 61.0%

SIFT Perc. Good Depth 26.1% 13.8% 10.0% 6.2% 56.0%

Perc. Total Covg. 33.7% 12.4% 8.9% 5.6% 60.6%

SSD Perc. Good Depth 7.5% 9.4% 5.3% 5.6% 27.8%

Perc. Total Covg. 14.1% 8.7% 5.0% 5.2% 32.9%

SURF Perc. Good Depth 25.3% 14.6% 11.5% 8.7% 60.2%

Perc. Total Covg. 33.8% 12.9% 10.2% 7.8% 64.7%

Kinect10 AdapMI Perc. Good Depth 45.9% 7.2% 6.6% 2.6% 62.4%

Perc. Total Covg. 54.2% 6.1% 5.6% 2.2% 68.1%

BRIEF Perc. Good Depth 34.5% 9.3% 7.1% 4.2% 55.2%

Perc. Total Covg. 42.3% 8.2% 6.3% 3.7% 60.5%

CENSUSMI Perc. Good Depth 32.1% 9.5% 5.8% 2.8% 50.2%

Perc. Total Covg. 40.4% 8.4% 5.1% 2.4% 56.3%
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Image Method Metric 10cm 20cm 30cm 40cm Total

CENSUS Perc. Good Depth 16.8% 6.5% 3.8% 2.0% 29.2%

Perc. Total Covg. 22.8% 6.1% 3.5% 1.9% 34.3%

FREAK Perc. Good Depth 41.0% 9.4% 6.1% 2.7% 59.2%

Perc. Total Covg. 47.9% 8.3% 5.3% 2.4% 64.0%

HOG Perc. Good Depth 32.9% 9.1% 7.4% 4.4% 53.7%

Perc. Total Covg. 41.1% 8.0% 6.4% 3.8% 59.4%

LSS Perc. Good Depth 33.8% 8.1% 6.0% 1.8% 49.8%

Perc. Total Covg. 41.5% 7.2% 5.3% 1.6% 55.6%

MI (wPR) Perc. Good Depth 40.4% 7.8% 4.9% 1.8% 55.0%

Perc. Total Covg. 47.6% 6.9% 4.3% 1.6% 60.3%

NCC Perc. Good Depth 28.4% 7.0% 3.7% 2.1% 41.2%

Perc. Total Covg. 36.0% 6.2% 3.3% 1.9% 47.5%

MI (woPR) Perc. Good Depth 38.3% 7.7% 4.8% 2.0% 52.8%

Perc. Total Covg. 45.8% 6.8% 4.2% 1.8% 58.6%

SIFT Perc. Good Depth 30.5% 8.1% 5.8% 3.0% 47.3%

Perc. Total Covg. 38.9% 7.1% 5.1% 2.6% 53.6%

SSD Perc. Good Depth 14.2% 4.8% 2.6% 1.6% 23.2%

Perc. Total Covg. 19.8% 4.5% 2.4% 1.5% 28.2%

SURF Perc. Good Depth 42.5% 10.3% 3.3% 2.7% 58.7%

Perc. Total Covg. 50.1% 8.9% 2.8% 2.3% 64.2%

C.3 Dataset #2 Results of the Proposed Method All Steps

In the below part, Table C.3 provides the experiment results obtained from the whole

Dataset #2 - the Kinect Dataset (which includes 24 multi-modal stereo image pairs)

for the steps of the proposed method along with two iterations applied.
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Table C.3: Results on Dataset #2 for Proposed Method in

two iterations

Image Method Metric 10cm 20cm 30cm 40cm Total

Avg. All WTA - Iter1 Perc. Good Depth 31% 15% 11% 5% 63%

Perc. Total Covg. 43% 13% 9% 5% 69%

WTA -Iter2 Perc. Good Depth 33% 16% 11% 5% 65%

Perc. Total Covg. 44% 13% 9% 5% 71%

Agg. - Iter1 Perc. Good Depth 35% 17% 11% 6% 68%

Perc. Total Covg. 46% 14% 9% 5% 74%

Agg. - Iter2 Perc. Good Depth 36% 17% 11% 5% 69%

Perc. Total Covg. 48% 14% 9% 5% 75%

PFIT - Iter1 Perc. Good Depth 39% 17% 9% 6% 71%

Perc. Total Covg. 50% 14% 8% 5% 76%

PFIT - Iter2 Perc. Good Depth 41% 16% 9% 6% 72%

Perc. Total Covg. 52% 13% 7% 5% 77%

Kinect01 WTA - Iter1 Perc. Good Depth 40.1% 19.7% 7.8% 4.0% 71.7%

Perc. Total Covg. 62.5% 12.4% 4.9% 2.5% 82.3%

WTA -Iter2 Perc. Good Depth 43.8% 18.0% 7.5% 3.3% 72.7%

Perc. Total Covg. 64.9% 11.3% 4.7% 2.1% 82.9%

Agg. - Iter1 Perc. Good Depth 44.8% 20.1% 8.5% 3.9% 77.3%

Perc. Total Covg. 65.7% 12.5% 5.3% 2.5% 85.9%

Agg. - Iter2 Perc. Good Depth 48.1% 19.1% 7.0% 3.8% 78.1%

Perc. Total Covg. 67.7% 11.9% 4.4% 2.4% 86.4%

PFIT - Iter1 Perc. Good Depth 46.7% 19.3% 7.7% 4.2% 77.9%

Perc. Total Covg. 66.9% 12.0% 4.8% 2.6% 86.3%

PFIT - Iter2 Perc. Good Depth 57.3% 16.3% 7.1% 3.1% 83.8%

Perc. Total Covg. 73.6% 10.1% 4.4% 1.9% 90.0%

Kinect02 WTA - Iter1 Perc. Good Depth 28.1% 22.7% 10.9% 6.9% 68.7%

Perc. Total Covg. 37.7% 19.7% 9.4% 6.0% 72.8%

WTA -Iter2 Perc. Good Depth 29.4% 22.8% 11.8% 7.6% 71.5%

Perc. Total Covg. 38.7% 19.8% 10.2% 6.6% 75.3%
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Image Method Metric 10cm 20cm 30cm 40cm Total

Agg. - Iter1 Perc. Good Depth 31.5% 24.4% 12.0% 6.7% 74.6%

Perc. Total Covg. 40.7% 21.1% 10.4% 5.8% 78.0%

Agg. - Iter2 Perc. Good Depth 32.5% 24.8% 12.4% 7.3% 76.9%

Perc. Total Covg. 41.6% 21.5% 10.7% 6.3% 80.0%

PFIT - Iter1 Perc. Good Depth 34.2% 24.7% 14.7% 6.5% 80.2%

Perc. Total Covg. 43.2% 21.4% 12.7% 5.6% 82.9%

PFIT - Iter2 Perc. Good Depth 34.9% 25.4% 13.1% 6.5% 80.0%

Perc. Total Covg. 43.7% 22.0% 11.3% 5.7% 82.7%

Kinect03 WTA - Iter1 Perc. Good Depth 12.2% 18.4% 35.2% 4.8% 70.6%

Perc. Total Covg. 42.1% 12.2% 23.2% 3.1% 80.6%

WTA -Iter2 Perc. Good Depth 14.5% 20.1% 36.3% 5.0% 75.8%

Perc. Total Covg. 42.8% 13.4% 24.3% 3.3% 83.8%

Agg. - Iter1 Perc. Good Depth 14.7% 25.9% 32.7% 4.7% 78.1%

Perc. Total Covg. 45.7% 16.5% 20.8% 3.0% 86.0%

Agg. - Iter2 Perc. Good Depth 15.5% 27.5% 33.9% 4.2% 81.1%

Perc. Total Covg. 45.9% 17.6% 21.7% 2.7% 87.9%

PFIT - Iter1 Perc. Good Depth 18.8% 27.1% 23.4% 12.4% 81.8%

Perc. Total Covg. 48.3% 17.3% 14.9% 7.9% 88.4%

PFIT - Iter2 Perc. Good Depth 16.0% 30.7% 27.9% 9.2% 83.7%

Perc. Total Covg. 46.5% 19.5% 17.7% 5.8% 89.7%

Kinect04 WTA - Iter1 Perc. Good Depth 19.7% 11.5% 9.6% 8.8% 49.6%

Perc. Total Covg. 52.1% 6.9% 5.7% 5.3% 69.9%

WTA -Iter2 Perc. Good Depth 20.5% 11.7% 9.5% 10.2% 51.9%

Perc. Total Covg. 52.7% 7.0% 5.7% 6.1% 71.4%

Agg. - Iter1 Perc. Good Depth 22.5% 12.6% 9.7% 8.3% 53.1%

Perc. Total Covg. 54.9% 7.3% 5.6% 4.8% 72.7%

Agg. - Iter2 Perc. Good Depth 23.0% 12.3% 9.6% 11.2% 56.2%

Perc. Total Covg. 55.4% 7.1% 5.6% 6.5% 74.6%

PFIT - Iter1 Perc. Good Depth 22.5% 11.6% 16.4% 9.8% 60.2%

Perc. Total Covg. 55.5% 6.6% 9.4% 5.6% 77.2%
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Image Method Metric 10cm 20cm 30cm 40cm Total

PFIT - Iter2 Perc. Good Depth 23.4% 11.4% 10.3% 15.4% 60.6%

Perc. Total Covg. 54.8% 6.7% 6.1% 9.1% 76.7%

Kinect05 WTA - Iter1 Perc. Good Depth 22.9% 16.1% 10.3% 2.5% 51.8%

Perc. Total Covg. 50.8% 10.3% 6.6% 1.6% 69.2%

WTA -Iter2 Perc. Good Depth 22.8% 14.2% 12.3% 2.5% 51.9%

Perc. Total Covg. 51.2% 9.0% 7.8% 1.6% 69.6%

Agg. - Iter1 Perc. Good Depth 25.6% 16.5% 9.1% 2.1% 53.2%

Perc. Total Covg. 52.6% 10.5% 5.8% 1.3% 70.2%

Agg. - Iter2 Perc. Good Depth 26.3% 14.3% 11.0% 1.6% 53.3%

Perc. Total Covg. 53.3% 9.1% 7.0% 1.0% 70.4%

PFIT - Iter1 Perc. Good Depth 31.5% 15.1% 5.4% 4.0% 55.9%

Perc. Total Covg. 56.7% 9.5% 3.4% 2.5% 72.1%

PFIT - Iter2 Perc. Good Depth 32.1% 12.5% 6.4% 6.4% 57.3%

Perc. Total Covg. 57.2% 7.9% 4.0% 4.0% 73.1%

Kinect06 WTA - Iter1 Perc. Good Depth 35.8% 15.4% 14.2% 6.0% 71.4%

Perc. Total Covg. 43.4% 13.6% 12.5% 5.3% 74.8%

WTA -Iter2 Perc. Good Depth 38.3% 15.0% 13.1% 5.8% 72.3%

Perc. Total Covg. 45.6% 13.2% 11.6% 5.2% 75.6%

Agg. - Iter1 Perc. Good Depth 41.6% 13.9% 14.6% 7.2% 77.3%

Perc. Total Covg. 48.6% 12.2% 12.8% 6.4% 80.0%

Agg. - Iter2 Perc. Good Depth 43.0% 12.5% 14.4% 6.3% 76.3%

Perc. Total Covg. 49.9% 11.0% 12.6% 5.6% 79.1%

PFIT - Iter1 Perc. Good Depth 39.6% 19.7% 11.0% 5.3% 75.7%

Perc. Total Covg. 46.8% 17.4% 9.7% 4.7% 78.6%

PFIT - Iter2 Perc. Good Depth 44.7% 16.1% 9.6% 5.3% 75.7%

Perc. Total Covg. 51.4% 14.2% 8.4% 4.7% 78.7%

Kinect07 WTA - Iter1 Perc. Good Depth 30.1% 21.3% 13.8% 6.2% 71.4%

Perc. Total Covg. 43.5% 17.2% 11.1% 5.0% 76.9%

WTA -Iter2 Perc. Good Depth 31.0% 22.4% 14.4% 6.1% 74.0%

Perc. Total Covg. 44.4% 18.1% 11.6% 4.9% 79.0%
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Image Method Metric 10cm 20cm 30cm 40cm Total

Agg. - Iter1 Perc. Good Depth 34.4% 22.9% 14.1% 6.4% 77.8%

Perc. Total Covg. 47.3% 18.4% 11.3% 5.2% 82.2%

Agg. - Iter2 Perc. Good Depth 35.2% 23.1% 14.0% 6.1% 78.4%

Perc. Total Covg. 47.9% 18.6% 11.2% 4.9% 82.6%

PFIT - Iter1 Perc. Good Depth 40.5% 23.3% 10.2% 6.9% 80.8%

Perc. Total Covg. 52.1% 18.7% 8.2% 5.5% 84.5%

PFIT - Iter2 Perc. Good Depth 40.1% 24.1% 9.9% 6.8% 81.0%

Perc. Total Covg. 51.9% 19.4% 8.0% 5.5% 84.7%

Kinect08 WTA - Iter1 Perc. Good Depth 34.1% 17.8% 14.8% 5.6% 72.3%

Perc. Total Covg. 44.1% 15.1% 12.5% 4.8% 76.5%

WTA -Iter2 Perc. Good Depth 35.8% 18.0% 14.4% 5.4% 73.6%

Perc. Total Covg. 45.6% 15.2% 12.2% 4.5% 77.6%

Agg. - Iter1 Perc. Good Depth 39.6% 17.0% 14.5% 5.7% 76.8%

Perc. Total Covg. 49.0% 14.4% 12.2% 4.8% 80.4%

Agg. - Iter2 Perc. Good Depth 39.9% 17.8% 14.6% 5.9% 78.2%

Perc. Total Covg. 49.2% 15.0% 12.4% 5.0% 81.6%

PFIT - Iter1 Perc. Good Depth 43.7% 17.0% 12.0% 5.5% 78.1%

Perc. Total Covg. 52.6% 14.3% 10.1% 4.6% 81.6%

PFIT - Iter2 Perc. Good Depth 48.1% 15.5% 12.1% 4.8% 80.5%

Perc. Total Covg. 56.3% 13.0% 10.2% 4.1% 83.6%

Kinect09 WTA - Iter1 Perc. Good Depth 26.6% 25.8% 11.6% 6.3% 70.3%

Perc. Total Covg. 35.7% 22.6% 10.1% 5.5% 74.0%

WTA -Iter2 Perc. Good Depth 28.8% 27.5% 10.0% 6.4% 72.7%

Perc. Total Covg. 37.6% 24.1% 8.8% 5.6% 76.1%

Agg. - Iter1 Perc. Good Depth 32.4% 26.3% 13.4% 6.4% 78.5%

Perc. Total Covg. 40.9% 23.0% 11.7% 5.6% 81.2%

Agg. - Iter2 Perc. Good Depth 38.2% 25.4% 10.5% 6.3% 80.4%

Perc. Total Covg. 46.0% 22.2% 9.2% 5.5% 82.9%

PFIT - Iter1 Perc. Good Depth 44.5% 25.7% 8.1% 5.9% 84.2%

Perc. Total Covg. 51.6% 22.4% 7.1% 5.1% 86.2%
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Image Method Metric 10cm 20cm 30cm 40cm Total

PFIT - Iter2 Perc. Good Depth 46.8% 23.6% 8.1% 5.5% 84.0%

Perc. Total Covg. 53.5% 20.6% 7.1% 4.8% 86.0%

Kinect10 WTA - Iter1 Perc. Good Depth 45.9% 7.2% 6.6% 2.6% 62.4%

Perc. Total Covg. 54.2% 6.1% 5.6% 2.2% 68.1%

WTA -Iter2 Perc. Good Depth 45.7% 8.7% 7.1% 2.4% 63.9%

Perc. Total Covg. 54.1% 7.4% 6.0% 2.0% 69.5%

Agg. - Iter1 Perc. Good Depth 48.5% 8.8% 6.4% 2.6% 66.2%

Perc. Total Covg. 56.6% 7.4% 5.4% 2.2% 71.6%

Agg. - Iter2 Perc. Good Depth 47.4% 9.5% 7.2% 2.4% 66.6%

Perc. Total Covg. 55.8% 8.0% 6.1% 2.1% 71.9%

PFIT - Iter1 Perc. Good Depth 50.7% 9.9% 6.9% 3.2% 70.7%

Perc. Total Covg. 58.7% 8.3% 5.8% 2.7% 75.4%

PFIT - Iter2 Perc. Good Depth 52.6% 9.2% 6.2% 2.5% 70.4%

Perc. Total Covg. 60.4% 7.7% 5.2% 2.1% 75.3%

Kinect11 WTA - Iter1 Perc. Good Depth 41.9% 9.0% 7.2% 2.6% 60.6%

Perc. Total Covg. 51.0% 7.6% 6.0% 2.2% 66.8%

WTA -Iter2 Perc. Good Depth 42.9% 9.7% 7.3% 2.7% 62.6%

Perc. Total Covg. 51.6% 8.2% 6.2% 2.3% 68.3%

Agg. - Iter1 Perc. Good Depth 43.9% 10.8% 6.3% 2.6% 63.6%

Perc. Total Covg. 53.0% 9.0% 5.3% 2.2% 69.5%

Agg. - Iter2 Perc. Good Depth 44.9% 10.2% 6.8% 2.2% 64.2%

Perc. Total Covg. 53.9% 8.6% 5.7% 1.9% 70.1%

PFIT - Iter1 Perc. Good Depth 49.5% 8.6% 5.3% 3.8% 67.1%

Perc. Total Covg. 57.5% 7.2% 4.4% 3.2% 72.3%

PFIT - Iter2 Perc. Good Depth 49.9% 9.2% 4.9% 3.9% 67.9%

Perc. Total Covg. 58.3% 7.7% 4.1% 3.2% 73.3%

Kinect12 WTA - Iter1 Perc. Good Depth 38.0% 11.1% 10.5% 4.1% 63.7%

Perc. Total Covg. 47.7% 9.3% 8.9% 3.5% 69.4%

WTA -Iter2 Perc. Good Depth 39.6% 10.6% 10.1% 3.9% 64.2%

Perc. Total Covg. 49.0% 8.9% 8.6% 3.3% 69.8%
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Image Method Metric 10cm 20cm 30cm 40cm Total

Agg. - Iter1 Perc. Good Depth 40.5% 12.1% 10.4% 3.5% 66.6%

Perc. Total Covg. 50.0% 10.2% 8.7% 2.9% 71.9%

Agg. - Iter2 Perc. Good Depth 42.9% 11.7% 9.7% 3.3% 67.6%

Perc. Total Covg. 51.9% 9.8% 8.2% 2.8% 72.7%

PFIT - Iter1 Perc. Good Depth 45.9% 10.6% 8.1% 5.2% 69.7%

Perc. Total Covg. 54.5% 8.9% 6.8% 4.3% 74.5%

PFIT - Iter2 Perc. Good Depth 46.4% 9.8% 8.3% 4.9% 69.4%

Perc. Total Covg. 54.7% 8.3% 7.1% 4.1% 74.1%

Kinect13 WTA - Iter1 Perc. Good Depth 44.0% 9.1% 9.7% 3.9% 66.7%

Perc. Total Covg. 52.1% 7.8% 8.3% 3.3% 71.5%

WTA -Iter2 Perc. Good Depth 45.4% 10.3% 9.1% 3.8% 68.7%

Perc. Total Covg. 53.2% 8.8% 7.8% 3.3% 73.2%

Agg. - Iter1 Perc. Good Depth 48.1% 10.3% 11.4% 2.8% 72.6%

Perc. Total Covg. 55.6% 8.8% 9.8% 2.4% 76.6%

Agg. - Iter2 Perc. Good Depth 50.0% 11.0% 11.1% 2.4% 74.4%

Perc. Total Covg. 57.2% 9.4% 9.5% 2.0% 78.1%

PFIT - Iter1 Perc. Good Depth 53.2% 11.3% 9.5% 4.8% 78.8%

Perc. Total Covg. 60.0% 9.7% 8.1% 4.1% 81.9%

PFIT - Iter2 Perc. Good Depth 54.4% 11.6% 8.1% 4.8% 78.9%

Perc. Total Covg. 61.1% 9.9% 6.9% 4.1% 82.0%

Kinect14 WTA - Iter1 Perc. Good Depth 22.5% 11.6% 6.8% 9.6% 50.4%

Perc. Total Covg. 29.4% 10.6% 6.2% 8.7% 54.9%

WTA -Iter2 Perc. Good Depth 24.1% 10.6% 7.3% 8.9% 50.9%

Perc. Total Covg. 30.8% 9.6% 6.7% 8.2% 55.2%

Agg. - Iter1 Perc. Good Depth 28.3% 13.6% 9.8% 9.6% 61.2%

Perc. Total Covg. 34.8% 12.3% 8.9% 8.7% 64.8%

Agg. - Iter2 Perc. Good Depth 28.4% 13.6% 9.3% 9.9% 61.2%

Perc. Total Covg. 35.0% 12.3% 8.5% 9.0% 64.8%

PFIT - Iter1 Perc. Good Depth 28.9% 19.1% 12.6% 9.7% 70.2%

Perc. Total Covg. 35.2% 17.4% 11.4% 8.8% 72.8%
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Image Method Metric 10cm 20cm 30cm 40cm Total

PFIT - Iter2 Perc. Good Depth 31.9% 15.4% 9.5% 10.1% 66.9%

Perc. Total Covg. 38.1% 14.0% 8.7% 9.2% 69.9%

Kinect15 WTA - Iter1 Perc. Good Depth 28.2% 14.0% 7.0% 4.6% 53.9%

Perc. Total Covg. 35.8% 12.6% 6.3% 4.1% 58.7%

WTA -Iter2 Perc. Good Depth 30.1% 12.6% 7.2% 4.9% 54.9%

Perc. Total Covg. 37.5% 11.3% 6.4% 4.4% 59.6%

Agg. - Iter1 Perc. Good Depth 30.6% 14.5% 6.9% 5.2% 57.3%

Perc. Total Covg. 38.0% 13.0% 6.2% 4.7% 61.8%

Agg. - Iter2 Perc. Good Depth 33.3% 13.0% 7.1% 5.2% 58.7%

Perc. Total Covg. 40.5% 11.6% 6.4% 4.6% 63.2%

PFIT - Iter1 Perc. Good Depth 31.6% 11.5% 5.9% 9.5% 58.5%

Perc. Total Covg. 38.8% 10.3% 5.3% 8.5% 62.9%

PFIT - Iter2 Perc. Good Depth 36.1% 8.7% 6.7% 9.8% 61.3%

Perc. Total Covg. 43.0% 7.8% 6.0% 8.8% 65.5%

Kinect16 WTA - Iter1 Perc. Good Depth 23.3% 13.7% 8.7% 7.8% 53.4%

Perc. Total Covg. 28.5% 12.7% 8.1% 7.2% 56.6%

WTA -Iter2 Perc. Good Depth 25.7% 15.3% 7.9% 7.3% 56.2%

Perc. Total Covg. 31.1% 14.2% 7.3% 6.8% 59.4%

Agg. - Iter1 Perc. Good Depth 25.6% 14.8% 11.1% 8.2% 59.8%

Perc. Total Covg. 30.8% 13.8% 10.4% 7.6% 62.6%

Agg. - Iter2 Perc. Good Depth 27.4% 16.5% 10.0% 8.6% 62.5%

Perc. Total Covg. 32.6% 15.4% 9.3% 8.0% 65.2%

PFIT - Iter1 Perc. Good Depth 30.2% 15.7% 10.5% 5.2% 61.5%

Perc. Total Covg. 34.7% 14.7% 9.8% 4.9% 64.0%

PFIT - Iter2 Perc. Good Depth 29.6% 18.0% 10.0% 6.2% 63.9%

Perc. Total Covg. 34.4% 16.8% 9.4% 5.8% 66.4%

Kinect17 WTA - Iter1 Perc. Good Depth 17.0% 13.5% 10.7% 5.2% 46.4%

Perc. Total Covg. 28.1% 11.7% 9.3% 4.5% 53.6%

WTA -Iter2 Perc. Good Depth 18.5% 14.9% 11.2% 4.6% 49.3%

Perc. Total Covg. 29.6% 12.9% 9.7% 4.0% 56.1%
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Image Method Metric 10cm 20cm 30cm 40cm Total

Agg. - Iter1 Perc. Good Depth 20.4% 17.2% 10.8% 5.1% 53.5%

Perc. Total Covg. 31.5% 14.8% 9.3% 4.4% 60.0%

Agg. - Iter2 Perc. Good Depth 21.5% 17.3% 11.0% 4.0% 53.8%

Perc. Total Covg. 32.4% 14.9% 9.5% 3.4% 60.3%

PFIT - Iter1 Perc. Good Depth 22.9% 16.4% 10.0% 5.1% 54.3%

Perc. Total Covg. 33.7% 14.1% 8.6% 4.4% 60.7%

PFIT - Iter2 Perc. Good Depth 26.2% 19.6% 8.8% 5.0% 59.6%

Perc. Total Covg. 36.6% 16.8% 7.6% 4.3% 65.3%

Kinect18 WTA - Iter1 Perc. Good Depth 26.9% 18.8% 9.5% 5.2% 60.4%

Perc. Total Covg. 37.2% 16.1% 8.1% 4.5% 66.0%

WTA -Iter2 Perc. Good Depth 28.8% 19.3% 9.1% 4.8% 61.9%

Perc. Total Covg. 38.7% 16.6% 7.8% 4.1% 67.3%

Agg. - Iter1 Perc. Good Depth 28.2% 21.2% 9.2% 4.1% 62.7%

Perc. Total Covg. 38.4% 18.2% 7.9% 3.5% 68.0%

Agg. - Iter2 Perc. Good Depth 32.4% 19.0% 9.2% 3.3% 63.9%

Perc. Total Covg. 41.8% 16.4% 7.9% 2.8% 68.9%

PFIT - Iter1 Perc. Good Depth 34.1% 12.1% 13.5% 4.6% 64.4%

Perc. Total Covg. 43.5% 10.4% 11.6% 4.0% 69.5%

PFIT - Iter2 Perc. Good Depth 38.0% 13.1% 9.2% 3.9% 64.2%

Perc. Total Covg. 46.8% 11.2% 7.9% 3.3% 69.3%

Kinect19 WTA - Iter1 Perc. Good Depth 37.1% 11.2% 7.2% 4.2% 59.6%

Perc. Total Covg. 47.6% 9.3% 6.0% 3.5% 66.4%

WTA -Iter2 Perc. Good Depth 37.0% 12.3% 7.1% 4.2% 60.7%

Perc. Total Covg. 47.5% 10.2% 5.9% 3.5% 67.2%

Agg. - Iter1 Perc. Good Depth 40.1% 11.1% 6.6% 4.4% 62.2%

Perc. Total Covg. 50.3% 9.2% 5.5% 3.7% 68.7%

Agg. - Iter2 Perc. Good Depth 40.8% 12.4% 7.2% 3.4% 63.8%

Perc. Total Covg. 50.8% 10.3% 6.0% 2.8% 70.0%

PFIT - Iter1 Perc. Good Depth 45.6% 8.8% 5.1% 3.8% 63.2%

Perc. Total Covg. 54.9% 7.3% 4.2% 3.1% 69.5%
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Image Method Metric 10cm 20cm 30cm 40cm Total

PFIT - Iter2 Perc. Good Depth 45.3% 9.4% 5.0% 4.1% 63.8%

Perc. Total Covg. 54.7% 7.8% 4.1% 3.4% 70.0%

Kinect20 WTA - Iter1 Perc. Good Depth 26.2% 10.6% 7.5% 7.7% 52.0%

Perc. Total Covg. 33.6% 9.5% 6.8% 6.9% 56.8%

WTA -Iter2 Perc. Good Depth 27.3% 10.6% 7.8% 6.6% 52.3%

Perc. Total Covg. 33.8% 9.7% 7.1% 6.0% 56.5%

Agg. - Iter1 Perc. Good Depth 28.7% 13.6% 8.3% 8.7% 59.3%

Perc. Total Covg. 36.0% 12.2% 7.4% 7.8% 63.4%

Agg. - Iter2 Perc. Good Depth 30.0% 14.4% 8.1% 7.6% 60.1%

Perc. Total Covg. 37.1% 13.0% 7.3% 6.8% 64.2%

PFIT - Iter1 Perc. Good Depth 31.7% 15.0% 6.5% 7.9% 61.1%

Perc. Total Covg. 38.8% 13.5% 5.8% 7.1% 65.1%

PFIT - Iter2 Perc. Good Depth 32.0% 15.6% 7.5% 7.3% 62.5%

Perc. Total Covg. 39.0% 14.0% 6.8% 6.6% 66.3%

Kinect21 WTA - Iter1 Perc. Good Depth 35.9% 14.4% 8.4% 5.4% 64.1%

Perc. Total Covg. 42.5% 12.9% 7.5% 4.8% 67.8%

WTA -Iter2 Perc. Good Depth 39.3% 17.7% 8.8% 5.3% 71.1%

Perc. Total Covg. 45.5% 15.9% 7.9% 4.8% 74.1%

Agg. - Iter1 Perc. Good Depth 38.1% 13.8% 10.3% 6.1% 68.3%

Perc. Total Covg. 44.5% 12.4% 9.2% 5.5% 71.6%

Agg. - Iter2 Perc. Good Depth 43.6% 16.8% 9.9% 5.8% 76.0%

Perc. Total Covg. 49.4% 15.0% 8.9% 5.2% 78.5%

PFIT - Iter1 Perc. Good Depth 47.0% 15.8% 7.3% 6.5% 76.6%

Perc. Total Covg. 52.4% 14.2% 6.6% 5.8% 79.0%

PFIT - Iter2 Perc. Good Depth 47.6% 15.8% 7.3% 5.8% 76.4%

Perc. Total Covg. 53.0% 14.2% 6.5% 5.2% 78.9%

Kinect22 WTA - Iter1 Perc. Good Depth 27.4% 17.5% 10.3% 7.1% 62.3%

Perc. Total Covg. 37.3% 15.1% 8.9% 6.1% 67.5%

WTA -Iter2 Perc. Good Depth 27.6% 17.8% 10.0% 7.6% 63.0%

Perc. Total Covg. 37.6% 15.3% 8.6% 6.5% 68.1%
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Image Method Metric 10cm 20cm 30cm 40cm Total

Agg. - Iter1 Perc. Good Depth 31.3% 19.1% 10.7% 7.7% 68.7%

Perc. Total Covg. 41.2% 16.3% 9.1% 6.6% 73.2%

Agg. - Iter2 Perc. Good Depth 32.0% 18.4% 11.0% 7.8% 69.2%

Perc. Total Covg. 41.7% 15.8% 9.5% 6.7% 73.7%

PFIT - Iter1 Perc. Good Depth 33.4% 21.7% 5.2% 7.4% 67.7%

Perc. Total Covg. 43.2% 18.5% 4.4% 6.3% 72.5%

PFIT - Iter2 Perc. Good Depth 34.7% 20.9% 4.9% 7.0% 67.5%

Perc. Total Covg. 44.2% 17.8% 4.2% 6.0% 72.3%

Kinect23 WTA - Iter1 Perc. Good Depth 57.0% 12.6% 6.1% 2.9% 78.6%

Perc. Total Covg. 62.0% 11.2% 5.4% 2.6% 81.1%

WTA -Iter2 Perc. Good Depth 59.1% 13.2% 6.1% 3.0% 81.4%

Perc. Total Covg. 63.9% 11.6% 5.4% 2.6% 83.6%

Agg. - Iter1 Perc. Good Depth 61.2% 13.8% 5.4% 3.8% 84.1%

Perc. Total Covg. 65.9% 12.1% 4.7% 3.3% 86.1%

Agg. - Iter2 Perc. Good Depth 63.1% 14.6% 6.4% 3.9% 88.0%

Perc. Total Covg. 67.6% 12.8% 5.6% 3.4% 89.5%

PFIT - Iter1 Perc. Good Depth 68.6% 14.2% 3.7% 1.1% 87.7%

Perc. Total Covg. 72.6% 12.4% 3.2% 1.0% 89.2%

PFIT - Iter2 Perc. Good Depth 68.7% 15.1% 3.9% 1.4% 89.1%

Perc. Total Covg. 72.7% 13.2% 3.4% 1.2% 90.5%

Kinect24 WTA - Iter1 Perc. Good Depth 29.5% 26.1% 8.0% 7.1% 70.7%

Perc. Total Covg. 40.4% 22.0% 6.8% 6.0% 75.2%

WTA -Iter2 Perc. Good Depth 29.9% 26.1% 8.3% 7.9% 72.1%

Perc. Total Covg. 40.7% 22.0% 7.1% 6.7% 76.4%

Agg. - Iter1 Perc. Good Depth 31.2% 30.4% 7.1% 7.2% 75.8%

Perc. Total Covg. 42.0% 25.6% 5.9% 6.1% 79.6%

Agg. - Iter2 Perc. Good Depth 35.3% 25.7% 6.9% 8.1% 76.0%

Perc. Total Covg. 45.5% 21.7% 5.8% 6.8% 79.8%

PFIT - Iter1 Perc. Good Depth 39.4% 27.1% 8.2% 4.4% 79.1%

Perc. Total Covg. 49.2% 22.7% 6.9% 3.7% 82.5%
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Image Method Metric 10cm 20cm 30cm 40cm Total

PFIT - Iter2 Perc. Good Depth 44.2% 21.7% 7.6% 5.7% 79.3%

Perc. Total Covg. 53.2% 18.2% 6.4% 4.8% 82.6%
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APPENDIX D

PARAMETER ANALYSIS OF THE PROPOSED METHOD

This appendix is dedicated to the detailed analysis of the parameters that the proposed

method uses (see Section 5.1). Regarding the experiments presented in Section 5.2,

the experimentally determined set of values were already provided in Tables A.2 and

A.3. In the following subsections, the parameters of each of the proposed method

steps are analyzed separately for their effects on the results. In the experiments, only

the analyzed parameter’s value is changed and the other parameters are fixed to the

values in Tables A.2 and A.3. Below, Table D.1 shows the list of parameters analyzed

along with the corresponding steps of the proposed method they are used in (see Table

5.1 for the description of each symbol). Note that the table and the following subsec-

tions contains all the parameters except for the ρ parameter (of the Adaptive Cost

Aggregation step) and the γ parameter (of Segment Merging and Finalizing step).

The former is the truncation value of confidence map and is evaluated as not being

a significant parameter. The latter defines how fast the inlier confidence threshold is

decreased in Algorithm 4, which does not significantly affect the results.

Table D.1: Parameters of the Proposed Method.

Segmentation hs hr M n aij te
Adaptive Windowing δy λ ω Size(hw) k

Adaptive Cost Aggregation λSD λDD Size(w(p, q))

Iterative Plane Fitting τic τir τod τos τoc
Segment Merging & Finalizing τα (o) τpd
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D.1 Segmentation

The effect of initial segmentation on the performance of the proposed method is an-

alyzed in this section. Table D.2 shows the parameters of the 10 different segmenta-

tion configurations, which yielded segmentations from over-segmentation to under-

segmentation of the left (IR) images. Figure D.1 shows the four sample segmentation

maps for the Tsukuba image tested.

Table D.2: Parameters of 10 segmentation levels used.

Segmentation Level (S) hs hr M n aij te
1 7 1 50 7 0.5 0.1
2 7 2 50 7 0.5 0.2
3 7 4 50 7 0.5 0.2
4 7 4 50 7 0.5 0.4
5 7 6 50 7 0.5 0.2
6 7 6 50 7 0.5 0.6
7 7 9 50 7 0.5 0.6
8 7 9 50 7 0.5 0.9
9 7 10 50 7 0.5 1.0

10 7 12 50 7 0.5 1.0

(a) (b) (c) (d)

Figure D.1: The four sample segmentation maps for the Tsukuba image from over-
segmentation to under- segmentation (a) 1st segmentation level (b) 4th segmentation
level (c) 7th segmentation level (d) 10th segmentation level [Best viewed in color]

The average results are provided in Figure D.2, showing that the dependence of the

proposed method on segmentation parameters are low. However, when the separate

results for each of the image in Dataset #1 are inspected as given in Figure D.3, it is

observed that better results are achieved when the level of segmentation is more in ac-

cordance with the existing surfaces in the scene. For instance, results on Tsukuba are

better with under-segmentation since Tsukuba has many small surfaces; on the other
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hand, for Venus, one requires larger segments for better disparity map computation.

Another conclusion is that, for most of the adjacent segmentation levels, the second

iteration results are more closer than the first iteration results, showing the decreased

dependency on the initial segmentation by iterations.

(a)

(b)

Figure D.2: Average Results for Different Levels of Segmentation for Dataset #1.
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Graph Result

Tsukuba

RMS(all)

Tsukuba

Bad(all)

Venus
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Figure D.3: continued

RMS(all)

Venus

Bad(all)

Teddy
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Figure D.3: continued

RMS(all)

Teddy

Bad(all)

Cones
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Figure D.3: continued

RMS(all)

Cones

Bad(all)

Figure D.3: The results of for the Dataset #1 image pairs, for

the 10 different segmentation levels from over-segmentation

to under-segmentation
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D.2 Parameters of Adaptive Windowing Step

In this part, the parameters of the Adaptive Windowing step of the proposed method

are analyzed.

D.2.1 The Vertical Window Size - δy

Regarding the window size used in the vertical direction of the adaptively-computed

windows, values from [1-40] are used, and the results are provided in Figure D.4. As

can be observed from the results, the vertical window size affects the results to some

extent, which should be adjusted according to the resolution of the images and the

size of the segments in the images. However, after some point, e.g., δy = 10 yielding

a 21-pixel window size in the vertical direction, the results converge and even get

worse along with more running time.

D.2.2 The Ratio of Incorporating Prior Probabilities - λ

This parameter adjusts how much the joint prior probabilities will be incorporated to

the MI calculation - see Eqn. 5.9. The results in Figure D.5 show that a reasonable

incorporation ratio is around λ = 0.5 where, towards the edges, all results get worse.

This also proves incorporation of prior probabilities improves the results.

D.2.3 The Thickness of Discontinuities - ω

The ω parameter defines the assumed thickness of discontinuities when the size of the

adaptive window is determined in the horizontal direction (see Eqn. 5.2) and Figure

5.3). The results in Figure D.6 show that a small ω value, e.g., values smaller than 3

pixels, is enough. Increasing ω does not drastically affect the results since pixels away

from the segment borders are weighted by inverse exponential distance to border (see

Eqn. 5.13).
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(a)

(b)

Figure D.4: Results for Increasing δy for Dataset #1.

D.2.4 The Histogram Size - Size(hw)

The size of the intensity bins used when constructing the histogram is an important

parameter when computing the joint probabilities. Figure D.7 shows results obtained

by changing the bin sizes in the interval [10 − 255] (10 bins correspond to a bin

size of 25 intensity levels whereas 255 bins correspond to a separate bin for each

intensity level). The results show that around 40 bins is adequate for matching two

local windows in accordance with the Fookes’ study in [34].
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(a)

(b)

Figure D.5: Results of Increasing λ for Dataset #1.

D.2.5 The Incrementation Constant for Histogram Computation - k

The k parameter used in T () function in Eqn. 5.13 enables incrementing correspond-

ing histogram bin values. The incrementation is not performed by a constant value

but rather adaptively decreased by the distance to the segment border if neighbor pixel

is around the segment border. However, as the results given in Figure D.8 shows, the

selection of any k value does not change the ordering of candidate disparities but only

the scale of computed values changes. In the experiments, k = 5 value was used only

for easy debugging of the method when computing the histogram counts.
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(a) (b)

Figure D.6: Effect of increasing ω on Dataset #1.

D.3 Parameters of Adaptive Cost Aggregation Step

In this section, the parameters of the Adaptive Cost Aggregation step of the proposed

method is analyzed.

D.3.1 The Size of the Aggregation Window - Size(w(p, q))

This parameter defines the size of the local window of cost aggregation step explained

in Section 5.1.3 (see Eqn. 5.15). The results are provided in Figure D.9 for the

window sizes ranging from 3x3 to 81x81.

As can be observed from the results, the window size should be adjusted according to

the resolution of the image pair and the objects in the scene where, after some point,

the blurring of the output disparity maps occurs and the performance of the method

degrades.
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(a)

(b)

Figure D.7: Effect of increasing histogram size on Dataset #1.

D.3.2 The Scaling Parameters of the Aggregation Weights - λSD and λDD

The λSD and λDD parameters in Eqn. 5.16 were used as scaling constants in the equa-

tion for the pixels outside the current segment within the neighborhood of aggrega-

tion. λSD parameter scales the spatial distance and λDD scales the disparity distance.

In the experiments, each of the parameters are set to values from 1 to 20 where the

other is fixed at 1 as default. Increasing λSD means decreasing the importance of

spatial distance and increasing the importance of disparity distance for the cost ag-

gregation weights computation regarding the pixels outside the current segment, and

vice versa.
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(a)

(b)

Figure D.8: Results of different k parameter values for Dataset #1.

When the results given in Figure D.10 are analyzed together, it is concluded that, for

some image pairs (like Tsukuba and Cones), increasing the effect of either parame-

ter can affect the results and for some others, no significant effect occurs. Tsukuba

has smaller segments and softer disparity decreases in neighboring segments, which

yields worse results when spatial distance is more incorporated into the weight cal-

culation. On the other hand, Cones has larger segments and steeper disparity changes

between neighboring regions that yields better results when disparity distance is more

incorporated. Therefore, the user can make use of these parameters according to the

image scene worked on.
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(a)

(b)

Figure D.9: Effect of increasing aggregation window size on Dataset #1 (WTA cost
aggregation results).

D.4 Parameters of Iterative Plane Fitting Step

In this section, the parameters of the Iterative Plane Fitting step of the proposed

method is analyzed.

D.4.1 Confidence Threshold for Inlier Disparities - τic

This parameter is used in Algorithm 3 while selecting confident pixels for the segment

to be plane-fitted using the inlier disparities only. Figure D.11 shows the average
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(a) (b)

(c) (d)

Figure D.10: WTA Results of Cost Aggregation Step Regarding Increasing Scaling
Parameter Values for the Aggregation Weights Computation for Dataset #1.

results obtained for two iterations using Dataset #1 for the increasing τic parameters

given in units of 10s of the percentage (see Eqn. 5.14). Figure D.12 provides the

separate results for each of the image in Dataset #1.

When the average results are inspected, as the threshold is increased, more confident

but less number of disparities are extracted, which, in turn, affects the fitted plane’s

accuracy. When analyzed along with the separate results for each image, although the

threshold can be determined separately for each image for better optimization, a value

smaller than 0.10% as a confidence metric can be used for all the images in Dataset

#1 experimentally.
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(a)

(b)

Figure D.11: Average Results for different τic as confidence threshold for determining
inlier disparities to perform plane fitting.

D.4.2 Stable Segment Ratio Threshold - τir

This parameter is used in Algorithm 3 when selecting the pixels for the segment

which is to be plane fitted using the inlier disparities only. The selected disparities are

marked as stable if the ratio of the number of confident pixels over the segment size is

greater than this threshold and the plane fitting is performed over the stable segment.

Figure D.13 shows the average results obtained for two iterations using Dataset #1

for the increasing τir parameters given in percentage units. Figure D.14 provides the

separate results for each of the image in Dataset #1. When the average results are
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(c) (d)

(e) (f)

(g) (h)

Figure D.12: Results for each of the image pair in Dataset #1 for different τic as
confidence threshold for determining inlier disparities to perform plane fitting.

inspected, it is seen that, as the threshold increases, more stable but less number of

segments are marked as stable, which affects the total performance of the method.

When analyzed along with the separate results of each image, although the threshold
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can be determined separately for each image for better optimization, a value around

25% as the stable segment ratio threshold can be used for all the images in Dataset #1

experimentally.

(a)

(b)

Figure D.13: Average Results for different τir as stable segment ratio threshold.

D.4.3 Distance Threshold for Outlier Disparities - τod

This parameter is used in Algorithm 3 when selecting the outlier pixels after a dis-

parity plane is fitted to the segment. These pixels are later inspected for splitting

segments from the initial segment. Figure D.15 shows the average results obtained

for two iterations on Dataset #1 for increasing τod values, given in units of disparities.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure D.14: Results for each of the image pair in Dataset #1 for different τir as stable
segment ratio threshold

Figure D.16 provides the separate results for each of the image in Dataset #1.

When the average results are inspected, as the threshold increases, more distant but

less disparities are extracted, which affects the accuracy in the results due to split seg-
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(a)

(b)

Figure D.15: Average Results for different τod as disparity distance threshold for
determining outlier disparities to split segment after plane fitting.

ments. When the separate results are also analyzed, an optimal threshold is concluded

to be in the interval [1.0, 2.0] disparities.

D.4.4 Confidence Threshold for Outlier Disparities - τoc

This parameter is used in Algorithm 3 when constructing the outlier disparities that

are confident enough after a disparity plane is fitted to the segment. These disparities

are later inspected for splitting segments from the initial segment. Figure D.17 shows

the average results obtained for two iterations using Dataset #1 for the increasing τoc

184



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure D.16: Results for each of the image pair in Dataset #1 for different τod as
disparity distance threshold for determining outlier disparities to perform segment
splitting after plane fitting.

values given in units of 10s of the percentage (see Eqn. 5.14). Figure D.18 provides

the separate results for each of the image in Dataset #1.
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(a)

(b)

Figure D.17: Average Results for different τoc as confidence threshold for determining
outlier disparities to split segment after plane fitting.

Inspecting the average results shows that, as the threshold increases, more confident

but less disparities are extracted, which yields decreased performance in the results

due to less split segments. When analyzed along with the separate results of each

image, although the threshold can be determined separately for each image for better

optimization, a value around 0.14% as the outlier confidence threshold can be used

for all the images in Dataset #1 experimentally.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure D.18: Results for each of the image pair in Dataset #1 for different τoc as
confidence threshold for determining outlier disparities to perform segment splitting
after plane fitting.
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D.4.5 Minimum Size Threshold for Segment Splitting of Outlier Disparities -

τos

This parameter is used in Algorithm 3 when determining whether or not the selected

outlier disparities of a plane fitted segment should continue for the segment split oper-

ation. Figure D.19 shows the average results obtained for two iterations using Dataset

#1 for the increasing τos values given in units of number of pixels. Figure D.20 pro-

vides the separate results for each of the image in Dataset #1.

(a)

(b)

Figure D.19: Average Results for different τos as minimum size threshold for segment
splitting

From the average results, it is seen that, as the threshold increases, less outlier dispar-
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(c) (d)

(e) (f)

(g) (h)

Figure D.20: Results for each of the image pair in Dataset #1 for different τos as
minimum size threshold for selecting outlier disparity regions for segment splitting.

ity regions are selected for segment splitting, affecting the performance of the method.

When analyzed along with the separate results of each image, although the threshold

can be determined separately for each image for better optimization, a value around
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20 pixels is concluded to be used for all the images in Dataset #1 experimentally.

D.5 Parameters of Segment Merging and Finalizing Step

In this section, the parameters of the Segment Merging and Finalizing step of the

proposed method is analyzed.

D.5.1 Angle Threshold of Coplanar Disparity Planes for Segment Merging- τα

This parameter is used in Algorithm 4 when determining the coplanarity of two dis-

parity planes - by checking whether the corresponding disparity planes are parallel.

Figure D.21 shows the average results obtained for two iterations using Dataset #1

for the increasing τα parameters given in units of degrees. Figure D.22 provides the

separate results for each of the image in Dataset #1.

When the average results are inspected, it is seen that, as the angle threshold increases,

more non-coplanar segments are merged affecting the performance of the method

negatively. When analyzed along with the separate results of each image, although

the threshold can be determined separately for each image for better optimization, a

small value less than 0.5 degrees as the angle difference between plane normals is

concluded to be an optimal threshold for all the images in Dataset #1 experimentally.

D.5.2 Distance Threshold of Coplanar Disparity Planes for Segment Merging-

τpd

This parameter is used in Algorithm 4 in determining the coplanarity of two disparity

planes, used as a threshold for the distance between the planes. Figure D.23 shows

the average results obtained for two iterations using Dataset #1 for the increasing τpd

values given in units of disparities. Figure D.24 provides the separate results for each

of the image in Dataset #1.

When the average results are inspected, it is seen that, as the threshold increases,

more non-coplanar segments are merged affecting the performance of the method
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(a)

(b)

Figure D.21: Average Results for different τα as angle threshold for determining
coplanar disparity planes for segment merging

negatively. When analyzed along with the separate results of each image, although

the threshold can be determined separately for each image for better optimization,

a small value such as 0.20 disparity distance between planes is concluded to be an

optimal threshold for all the images in Dataset #1 experimentally.

D.6 Experiments on RGB and Cosine-Transformed RGB Image Pairs

In this section, the applicability of the defined cosine transform (cos(πI/255)) that

was applied to generate Dataset #1 for multi-modal stereo image correspondence
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure D.22: Results for each of the image pair in Dataset #1 for different τα as angle
threshold for checking coplanarity of two disparity planes for segment merging.

matching is analyzed over arbitrary RGB images. The goal is to see the performance

of the proposed method in different scene characteristics. An image in this set is

cosine-transformed and shifted by a fixed disparity. Figure D.25 provides the four
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(a)

(b)

Figure D.23: Average Results for different τpd as disparity distance threshold for
determining the coplanar disparity planes for segment merging

images that this experiment was applied. The ground truth disparities are 12, 11, 15

and 7 pixels respectively. The results are provided in Table D.3 for two iterations. As

can be observed, proposed method is totally successful estimating the disparities of

these images.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure D.24: Results for each of the image pair in Dataset #1 for different τpd as dis-
tance threshold for checking coplanarity of two disparity planes for segment merging.
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Figure D.25: The free-form RGB images converted to stereo image pairs. Left col-
umn: Original RGB image. Middle column: The cosine transformed images used as
the left image. Right column: The shifted RGB images used as the right image.
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Table D.3: Results of the Proposed Method on RGB images converted to Stereo Im-
age Pairs.

Image Method Iter1 Iter2 Iter1 Iter2
RMS RMS Bad Bad
(all) (all) (all) (all)

RGB#1
WTA of Adap.W. 0.985 0.608 2.0% 0.7%

WTA of Agg. 0.678 0.413 0.5% 0.1%
Plane Fitting 0.321 0.313 0.1% 0.0%

RGB#2
WTA of Adap.W. 0.269 0.0 0.0% 0.0%

WTA of Agg. 0.229 0.0 0.0% 0.0%
Plane Fitting 0.013 0.01 0.0% 0.0%

RGB#3
WTA of Adap.W. 0.0 0.0 0.0% 0.0%

WTA of Agg. 0.0 0.0 0.0% 0.0%
Plane Fitting* 0.015 0.09 0.0% 0.0%

RGB#4
WTA of Adap.W. 0.0 0.0 0.0% 0.0%

WTA of Agg. 0.001 0.0 0.0% 0.0%
Plane Fitting* 0.01 0.01 0.0% 0.0%

* Due to the subpixel disparity computation, plane fitting may yield RMS values > 0 even when WTA of Agg.
has no errors.
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