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ABSTRACT

DYNAMIC ANALYSIS OF SPUR GEARS
DOGRUER, Can Ulas
M. S., Department of Mechanical Engineering
Supervisor: Prof. Dr. H. Nevzat 0ZGUVEN

June, 1999, 147 pages

This study deals with dynamic analysis of spur gear systems which
consist of shafts on elastic bearings, and coupled by a non-linear three degree of
freedom gear mesh interface. The mathematical model and the software
(NLGRD) developed in a previous study is extended to compute natural
frequencies and dynamic bearing forces. The software NLGRD is also modified
further by including an interface for a friendly use. The software NLGRD
analyzes non-linear gear-shaft system by using the output of the so-called LDP
version 10.1 which was developed at the Ohio State University. LDP computes
loaded static transmission error and mesh compliance for the contact points in a
typical mesh cycle of spur and helical gears. Although a constant mesh stiffness
is assumed in the mathematical model of this study, it includes the excitation
effect of time varying mesh stiffness through a periodic displacement

representing loaded static transmission error.

Computer program which was originally written for main frame

computer is modified and extended by including a friendly user interface



(NLGRD version 2.0). Multi disk, multi bearings, stepped shafis and gear
meshes can be modeled through NLGRD interface easily. The program
calculates dynamic to static load ratio, dynamic transmission error, reaction
forces and displacements at bearings. The code, NLGRD version 2.0, is
validated by analyzing some example cases, and comparing the results with

available experimental data as well as results found in literature.

Several case studies are examined by changing various parameters
of an example system, and the effects of some system parameters, such as mean
load , module, center distance, on system response are studied. It is found that
there is a logarithmic relation between maximum dynamic to static load ratio
and module of the gear. It is believed that this empirical relation may have an
important application. Parabolic and linear profile modifications are applied to
spur gears. Within the limits of this study, it is found that there is a linear
relation between maximum dynamic to static load ratio and amount of
modification. Finally, effects of backlash and damping ratio on tooth separation

are studied

Key words: Dynamic to static load ratio, Gear dynamics, Gear mesh interface,
Non-linear, Non-linear gear dynamics, Mathematical modeling, Spur gears,

User-interface
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Haziran, 1999 147 Sayfa

Bu ¢ahgma, dogrusal olmayan, ¢ serbestlik derecesine sahip disli
ara birimiyle birlestirilmig, elastik yataklar {izerindeki millerden olusmus, diiz
disli sistemlerinin analizini kapsamaktadir. Bir onceki ¢ahsmada gelistirilmis
olan, matematiksel model ve yazihm (NLGRD), dogal frekanslann ve dinamik
yatak kuvvetlerini hesaplamak iizere genisletilmistir. Bu yazihm modellemeyi
kolaylasgtirmak amaciyla, kullamci arabirimi de eklenerek gelismis hale
getirilmistir. Bu yazihm, NLGRD, Ohio State University’de gelistirilmis olan
LDP versiyon 10.1°in g¢iktisim kullanarak dogrusal olmayan digli mil sistemini
inceler. LDP, statik iletim hatasiru ve disliler arasindaki direngenligi tipik bir diiz
veya helisel digli dongisindeki temas noktalan igin hesaplar. Matematiksel
modelde sabit bir kavrama direngenligi oldugu varsayllmasina ragmen, model
dolayh yoldan, statik iletim hatasim temsil eden periyodik bir yerdegistirme
fonksiyonu aracilify ile zamanla degisen kavrama direngenliginin tahrik etkisini

icermektedir.

Daha o6nce merkezi bilgisayar sisteminde kullamlmak amac ile

v



yazilmi§ olan bilgisayar program: bir kullanici arabirimi eklenerek degistirilmis
ve genisletilmigtir. Cok sayida disk, ¢ok sayida yatak, degisken ¢apta mil ve digli
¢ifti, kullamic1 arabirimi ile kolaylik ile modellenebilir. Yazilim dinamik faktori,
dinamik iletim hatasimi, tepki kuvvetlerini ve yataklardaki yerdegistirmeyi
hesaplamaktadir. NLGRD versiyon 2.0 yazilim, bazt 6rnek uygulamalar analiz
edilerek ve bunlann sonuglan, elde edilen deneysel veriler ve literatiirde bulunan

sonuglarla karsilagtinlarak dogrulanmusgtir.

Bir gok uygulamali galigma, 6rnek bir sistemdeki gesitli parametreler
degistirilerek yapilmis ve statik yiik, modiil, merkezler arasindaki uzakhk gibi
bazi sistem parametrelerinin etkileri incelenmigtir. Maksimum dinamik faktor ile
dislinin modiili arasinda logaritmik bir bagmnt1 oldugu bulunmustur. Bu ampirik
bagmntinin 6nemli sonuglan olabilecegine inanilmaktadir. Diiz dislilere parabolik
ve dogrusal profil modifikasyonlan uygulanmus ve bu g¢alismamin smirlan
cergevesinde, maksimum dinamik faktor ile modifikasyonun miktan arasinda
dogrusal bir baginti oldugu bulunmustur. Son uygulamali ¢aligmada, dis

boslugunun ve séniimlenmenin sistem tepkisi tizerindeki etkileri incelenmistir.

Anahtar kelimeler : Dinamik faktér, Disli dinamigi, Digli arabirimi, Dogrusal
olmayan, Dogrusal olmayan disli dinamigi, Diiz disliler, Kullamci arabirimi



If T have been able to see a little farther than other
man, it is because I stood on the shoulder of giants.

Sir Isaac Newton
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CHAPTER 1

INTRODUCTION

1.1 General

Gear noise is a major factor in the design of transmission systems
such as automotive, aerospace, industrial, marine and appliance geared systems.
While the contribution of the transmission to the total sound level is relatively
minor, many consumers associate gear whine with mechanical problems within

the transmission.

In extreme situations the vibrations associated with the gear mesh
frequency will cause mechanical failure of the gears or the neighboring

hardware.

The usual approach followed in reducing gear noise is to reduce the
effective transmission error by the use of stringent quality control measures in
gear manufacture and perhaps through the use of profile modifications. While
these steps are beneficial, they seldom provide dramatic reductions in gear noise
and they fail to recognize the contribution of the system dynamics to the

problem.

A more thorough design study will include a consideration of the
effects of gear train dynamics. In many instances the system dynamics cause the

design to be extremely sensitive to manufacturing induced transmission error. In



applications that are sensitive to gear noise it is advantageous to minimize the

design sensitivity through the use of dynamic analysis.

Quite gearing can be designed by considering design modifications

directed at two different aspects of the system dynamics:

Dynamic Mesh Force Control: Design of the rotating components
in order to limit the amount of dynamic mesh force developed at the mesh due
to the transmission error. In this approach, basically, the dynamic compliance is
included into the system. It is one of the most effective approaches to quite
gearing design. The magnitude of the dynamic mesh stiffness plays a major role

in determining the sensitivity of a transmission design to gear noise.

Control of the Force Transmissibility: This involves the design of
the shafts and their supports to reduce the transmissibility of the force from the
mesh location to the housing. What fraction of the dynamic force developed
between the mating gear teeth actually is transmitted to the housing is the major

consideration.

The problem of geared rotor dynamics is difficult to handle due to
the change of the number of meshing gear teeth pair in one tooth contact
cycle, which leads to variable mesh stiffness. Therefore even in the absence of
geometric and material type of non-linearities the problem is formulated as a
parametrically excited system with linear differential equations. Presence of
backlash and other type of non-linearities will complicate the problem further.
Therefore several assumptions must be made before modeling the system. It is
obvious that the type of the model, that should be used for a reliable dynamic
analysis, depends on the object of the study as well as the relative dynamic
properties of different elements in the system and its configuration. (Ozgiiven
and Houser, 1988b)

Some of the important parameters in gear dynamic models are :
2



Backlash

Elements considered in the model that affect the degrees of freedom of the

system. They are:

1. Gear mesh interface

2. Prime mover and load inertia

3. Shaft inertia and stiffness

4. Bearings stiffness

Gyroscopic effects

Friction at gear mesh

Symmetry

1. Symmetric stator

2. Symmetric rotor

Off line of action of the contact

Excitations

1. External excitations. This group includes excitations due to rotating mass
unbalances, geometric eccentricities, and prime mover and/or load
torque fluctuations. Such excitations are typically at low frequencies,
which are the first few multiples of the input shaft speed. Practical
problems include rattle problem in lightly loaded automotive
transmissions and machine tools.

3



2. Internal excitations: This group includes the high frequency excitations
caused by the manufacturing related profile and spacing errors, and time
dependent tooth stiffness. Under static conditions, all such mechanisms
can be combined with elastic deformation due to all other elastic
members (such as shafts and bearings) to yield an overall kinematic error
known as the Static Transmission Error. In gear dynamic problems STE
is used as a periodic displacement excitation at the mesh point along line

of action.

e Solution techniques:

1. Digital simulation : Gives time response history of the system

2. Modal Analysis : Gives steady state response of the system

3. Analytical Methods : Available only for some systems (Harmonic Balance

Method - Method of Multiple Scales) (Kahraman and Singh, 1990,
1991a)

e Assumptions: There may be several assumptions in the model used. A well
accepted assumption is to use an average linear time-invariant mesh stiffness
with a periodic displacement excitation at the mesh point along the line of
action which represents the loaded static transmission error (Ozgiiven and
Houser, 1988b). Thus a system of equations with time varying coefficients
reduces to a system of constant coefficient linear differential equations. The
steady state response of the resulting system due to the excitation
representing STE, which is approximated by FFT, can be found by modal

analysis.



1.2 Literature Survey

There are many models in literature, which consider different

aspects of gear dynamics problem. An extensive review of the literature on

dynamic modeling of gears, has been given by Ozgiiven and Houser (1988a).

The mathematical models developed in gear dynamics can be

classified into five main categories:

1.2.1 Simple Dynamic Models

This group includes most of the early studies in which a dynamic
factor that can be used in gear root stress formulae is determined. These studies
include empirical and semi-empirical approaches as well as recent dynamic

models constructed for the determination of a dynamic factor.

Although the history of studies on gear loads dates back almost two
centuries, the dynamic factor (which was then called speed factor) was
originally suggested in 1868 by Walker (Fisher, 1968). It is defined as :

DF =— (1.1)

where DF is the dynamic factor, SL is the static load and DL is the dynamic
load. Concept of speed factor was originally introduced on the basis of
strength consideration. In the earliest studies, dynamic factors were
determined empirically by comparing the gear size and strength calculations
with records of tooth failures at different speeds. Carl G. Barth expressed
the dynamic factor, based on Walker’s original factor as

600

DF = o7

(1.2)



where V is the pitch line velocity in fpm (feet per minute ).

In 1927, Ross found that even the lowest dynamic factor (which
gives the highest stress) was too conservative for velocities over 4000 rpm and

recommended a modified form:

T8 13
T 784V '

Both the Barth equation and several modified forms of it are still
used in some field of design and are given in design books. The formulae that
are widely used in gear standards of American Gear Manufacturing Association
are modified versions of these equations. However, these modifications were

made after the 1950s.

The results of several works conducted by the ASME Researches
Committeon Strength of Gear Teeth were published in 1931 by Buckingham.
After the development of the dynamic load equation in this report, which is
more popularly known as Buckingham’s Equation, little was done until the
1950s.

In 1950 a new era in gear dynamics was initiated which
incorporated the use of vibratory models in the gear dynamic analysis of gears.
Such mathematical models made it possible to study dynamic properties of the
geared systems in addition to the dynamic loads. However the earlier dynamic
models were very simple and therefore could provide little additional

information beyond the dynamic load for the gear system.

In the first spring-mass model, which was introduced by Tuplin, an
equivalent constant mesh stiffness was considered and gear errors were modeled
as insertion and withdrawal of wedges with various shapes at the base of the

spring.



The work of Strauch (1953) seems to be the first study in which
periodic excitation was considered. He considered the step changes in the mesh
stiffness due to changing from single pair to double tooth contact. He analyzed
the forced vibrations that might build up as a result of the continuo's error

between two unmodified involute gears.

Zeman (1957) considered the effects of periodic profile errors,
assuming a constant mesh stiffness. He analyzed transitory effects of four

different forms of gear errors.

1.2.2 Models with Tooth Compliance

In such models tooth stiffness is the only energy storing element in
the system. That is, the flexibilities of shafts, bearings, etc. are neglected. In
such studies the system is model as single degree of freedom spring-mass

system.

The resulting models are either translational or torsional. With
torsional models one studies the torsional vibrations of gears in mesh, whereas
with translational models the tooth of gear is considered as a cantilever beam
and one can study the forced vibrations of teeth. In either of these models,

transmission error is simulated by a displacement excitation at the mesh.

Nakada and Utagawa (1956) considered varying elasticities of the
mating teeth in their vibratory model. The time variation of stiffness was
approximated as a rectangular wave, and closed form solutions of piecewise
linear equations were obtained for different damping cases for accurately

manufactured gear tooth profile.

Harris’s (1958) work was an important contribution. In his single
degree of freedom model, Harris considered three internal sources of vibration:

manufacturing errors, variation in the tooth stiffness, and non-linearity in tooth

7



due to loss of contact. Harris seems to have been the first to point out to the

importance of transmission error.

Gregory et al. (1963) extended the theoretical analysis of Harris.
Gregory et al. included sinusoidal type stiffness variation as an approximation.
They treated the excitation as periodic, and solved the equations of motion
analytically for zero damping and on an analog computer for non-zero damping.
He pointed out that non-linear effects are significant when the system is lightly
damped.

Nakamura (1967) investigated the separation of tooth meshing with
a single degree of freedom model. He accounted for single and double tooth
pair contact with a square wave tooth mesh stiffness variation and used a

sinusoidal representation of tooth errors.

1.2.3 Models for Gear Dynamics

Such models include the flexibility of the other elements as well as
the tooth compliance. Of particular interest have been the torsional flexibility of

shafts and lateral flexibility of the bearings and shafts along the line of action.

In some models, the lateral vibrations of gear blank in mutually
perpendicular directions are considered. However considering two coupled
lateral vibrations of a gear shaft system makes the problem a rotor dynamics

problem.

Tordion (1963) presented a torsional model in which the torsional
vibrations of two gear shafts were coupled by a constant mesh stiffness. In his
model all non-linear effects, including backlash, were neglected and the general
receptance technique was used to obtain the system response when there is a

periodic transmission error that was then called error in action.



An important contribution in this area came from Kohler, Pratt and
Thomson (1970). They developed a six degrees of freedom dynamic model with
four torsional degrees of freedom and one lateral degree of freedom in the
direction of tooth force on each shaft. They assumed constant tooth mesh

stiffness in their model.

Rettig (1975) modeled a single gear stage with six degrees of
freedom, four lateral and two torsional, with all lateral degree of freedom being
in the same direction He considered a variable tooth mesh stiffness and
presented simplified formulae for the calculation of dynamic factors in three

different regions: sub-critical, main resonance and super critical regions.

Toda and Tordion (1979) proposed a four degrees of freedom
torsional model for a gear system in which they included the non-linearity of
tooth mesh stiffness, damping and tooth separation, and studied the effects of

the transmission error excitation on the dynamic response of the system.

An eight degree of freedom model of Kiigiikay (1984) for single
stage spur and helical gears included the axial vibrations of rigid disks that
represented gear blanks, as well as torsional, transverse and tipping motion.
Periodic tooth mesh stiffness, tooth errors, and external torque were considered
in his model, as well as load dependent contact ratio and non-linearities due to
the separation teeth. Steady state solutions for dynamic tooth displacements and

loads were found by using perturbation methods and the linearized model.

Lin and Huston (1986) used a torsional model to develop a
computer program for the design of spur gear systems. Variable tooth mesh
stiffness was calculated by taking a tooth as cantilever beam and also
considering the flexibilities of the fillet, foundation and the local compliance
due to contact forces. Damping due to lubrication of gears and shafis were
expressed with constant damping coefficients and the friction between gear

teeth was included in the model with a frictional torque. This model was
9



developed for low-contact ratio gear pairs, and the transverse flexibilities of the
shafts and bearings were not considered in the model. A linearized-itrative

procedure was used for the numerical solution.

Ozgiiven and Houser (1988b) studied single degree of freedom
torsional model of a gear pair that are coupled by a non-linear mesh stiffness.
They used STEP that was developed at OSU to find mesh stiffness and STE.
They computed DSLR and concluded that using constant mesh étiffness with a
displacement excitation at the mesh point representing the loaded STE is a very
good approximate approach for including the time variation of mesh stiffness

into the analysis.

Ozgiiven (1989) developed a six degrees of freedom non-linear
semi-definite model with time varying mesh stiffness for the analysis of spur
gears. The dynamic response to internal excitation has been calculated by using
the static transmission error method. The software prepared (DYTEM) is
capable of calculating dynamic tooth forces, dynamic transmission error,

dynamic bearing forces and torsion of shafts.

Kahraman and Singh (1990) examined the non-linear frequency
response characteristics of a spur gear pair with backlash for both external and
internal excitations. Two solution methods, namely the digital simulation
technique and the method of harmonic balance, have been used to develop the
steady state solutions. They concluded that chaotic and subharmonic resonances
may exist in a gear pair depending upon the mean or design load, mean to
alternating force ratio, damping and backlash. The mean load determines the

conditions for no impacts, single-sided and double-sided impacts.

Kahraman and Singh (1991a) developed a three degrees of freedom
model that includes non-linearities associated with radial clearances in the radial
rolling element bearings and backlash between a spur gear pair. Linear time-

invariant gear mesh stiffness is assumed. Several key issues such as non-linear
10



modal interactions and differences between internal static transmission error
excitation and external torque excitations are discussed. Additionally parametric
studies are performed to understand the effects of system parameters such as
bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and

radial preload to mean force ratio on the non-linear dynamic behavior.

Kahraman and Sing (1991b) developed a three degrees of freedom
model with time varying mesh stiffness and clearance non-linearities associated
with gear backlash and rolling element bearings, which is excited by STE under
a mean torque load. Model is solved by digital simulation technique. They
investigated interactions between the mesh stiffness variation and clearance non-
linearities. A strong interaction between time-varying mesh stiffness and gear
backlash is found whereas the coupling between time-varying mesh stiffness and

bearing non-linearities is weak.

Kahraman (1993) studied planetary gear trains that are also known
as epicyclical gears. They have numerous advantages over simple counter-shaft
gear drives, including higher torque-to-weight ratio, compactness, decreased
radial bearing loads and reduced noise. In his study he proposed a simplified
purely torsional model of a single stage planetary gear set. Closed form
expressions for torsional natural frequencies are derived in terms of a limited

number of system parameters.

Rook and Singh (1993) studied reverse idler gear system to gain a
better understanding of the non-linear behavior. Results of the Galerkin method
(multi-term harmonic balance) are compared with results of numerical

integration techniques.

Lin et al. (1994) conducted a computer simulation to investigate
the effects of both linear and parabolic tooth profile modifications on the
dynamic response of low-contact-ratio-spur gears. The effects of the total

amount of modification and length of the modification zone were studied at
11



various loads and speeds to find the optimal profile modification for minimal

dynamic loading.

Litvin et al. (1995) proposed an approach for the design and
generation of low-noise helical gears with localized bearing contact. The
approach is applied to double circular arc helical gears and modified involute
gears. The reduction of noise and vibration is achieved by application of
predesigned parabolic function of transmission errors that is able to absorb a
discontinuous linear function of transmission errors caused by misalignment.
Computerized simulation of meshing and contact of designed gears
demonstrated that the proposed approach will produce a pair of gears that has a

parabolic transmission error function even when misalignment is present.

Cai (1995) developed a vibration model for helical gears, assuming
that there are no spacing error and no shaft run-out, in consideration of non-
linear tooth separation phenomenon. In the model, a simple modified stiffness
function, including the effect of tooth numbers and addendum modification

coefficients, is proposed for a helical involute tooth pair.

Blankenship and Singh (1995) developed a new model that
describes mesh force transmissibility in a helical gear pair. New spectral stiffness
and transmissibility matrices are developed, based on linear theory, which
completely characterize the steady state forced response of a helical gear pair.
They concluded that additional degree of freedom must be included in the gear
mesh interface model in those geared systems analyses which attempts to
predict structure borne noise and casing vibration associated with power

transmission systems.

Vinayak et al. (1995) developed a model for multi-mesh
transmissions with external, fixed center, helical or spur gears. Each gear is

modeled as a rigid body with six degrees of freedom. Excitation to the system is

12



considered in the form of either external torque pulsation or internal static

transmission error. They compared the results with finite element model results.

Yoon and Rao (1996), presented a method to minimize the STE
using cubic splines for gear tooth profile. They conducted a parametric study to
establish the superiority of cubic spline based gear profile over the involute
profile as well as other profiles based on the use of linear and parabolic tip

reliefs.

1.2.4 Models for Geared Rotor Dynamics

In some studies, the transverse vibrations of the gear-carrying
shafts are considered in two mutually perpendicular directions, thus allowing the
shaft to whirl. In such models, the torsional vibration of the system is generally

considered.

Pioneer models of this group are those for studying whirling of
gear-carrying shafts, rather than the dynamics of the gear itself. Although
investigators have studied whirling of disk carrying shafts for many years, it was
not until the 1960s that the influence of the constraint imposed by gears on the

whirling of geared shafts was considered in rotor dynamics problem.

Mitchell an Mellen (1975) presented experimental data indicating
the torsional lateral coupling in a geared high-speed rotor system. They pointed
out that mathematical models based on uncoupled lateral-torsional effects fail to
provide the necessary information for proper design of high performance

machinery.

Daws and Mitchell (1983) analyzed gear coupled rotors by
developing a three-dimensional model in which variable mesh stiffness was

considered as a time-varying three dimensional tensor.
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Iida et al. have published series of papers between 1980 and 1986
on the coupled torsional-transverse vibrations of geared rotors. In their early
work, a two shaft-two gear system was analyzed by assuming that one of the
shafts was rigid, and the response to gear eccentricities and mass unbalance was

determined.

Hagiwara et al. (1981) used a simple model to study the vibration of
geared shafts due to unbalanced and run-out errors. The flexibility of shafts was
considered using discrete stiffness values. A constant mesh stiffness was

assumed, and backlash and tooth separation were not considered in the analysis.

Iwatsubo et al. (1984) studied the rotor dynamics problem of the
geared shafts by including a constant mesh stiffness and the forcing due to
unbalanced mass but by neglecting the tooth profile error and backlash. The
transfer matrix method was employed in the solution and free and forced

vibration analyses were made.

1.2.5 Models for Torsional Vibrations

The models in the third and fourth groups consider the flexibility of
gear teeth by including constant or variable mesh stiffness in the model.
However there is also a group of studies in which the flexibility of gear teeth is
neglected and a pure torsional model of geared system is constructed by using

torsionally flexible shafts connected by rigid gears.

1.2.6 Studies on Solution Techniques and Backlash

Tomlinson and Lam (1984) analyzed the forced frequency response
characteristics of systems that can be considered to exhibit single or normal
mode characteristics and which incorporate spatially localized clearance-type

non-linearities by using both analytical and digital simulation technique methods.
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Comparin and Singh (1990) studied the frequency response
characteristics of a multi-degree-of-freedom system with clearances. The
method of harmonic balance is used to develop approximate analytical solutions
for the undamped equations of the motion of a multi degree of freedom system

composed of three coupled non-linear oscillators.

Sinha and Wu (1991) suggested a new efficient numerical scheme
for the stability analysis of linear systems with periodic parameters. The
approach is based on the idea that the state vector and periodic matrix of the
system can be expanded in terms of Chebyshev polynomials over the principal
period. Such an expansion reduces the original problem to a set of linear
algebraic equations from which the solution in the interval of one period can be

obtained.

Kujath and Liu (1992) studied a class of dynamic multi degrees of

freedom systems with time varying parameters.

Padmanabhan and Singh (1992) dealed specifically with the issue of
dynamic interactions between resonances. They used harmonic balance method,
digital solutions and analog computer simulations to investigate a two degrees
of freedom system under mean load, when subjected to sinusoidal excitations.
The existence of harmonic, periodic and chaotic solution is demonstrated using

digital simulation.

Blankenship and Singh (1995a) examined a class of viscosity
damped mechanical oscillators having spatially periodic stiffness and
displacement excitation functions that are exponentially modulated by the

instantaneous vibratory displacement of the inertial element.

Blankenship and Singh (1995b) examined mechanical system
exhibiting combined parametric excitation and clearance type non-linearity by

analytical methods and did experiments to explain complex behavior that is
15



commonly observed in the steady state forced response of rotating machinery.
They considered a specific case of a preloaded mechanical oscillator having a
periodically time-varying stiffness function and subject to a symmetric backlash.
A generalized solution methodology is proposed based on the harmonic balance

method.

Padmanabhan and Singh (1995a) applied parametric continuation
scheme based on the shooting method to overcome the problem that is
associated with harmonic balance method or Galerkin schemes, piecewise linear
techniques, analog simulation and/or direct numerical integration technique
(digital simulation).

Padmanabhan and Singh (1995b) proposed to utilize the technique
of parametric continuation to study the steady state response and global
dynamics of two degrees of freedom piecewise non-linear system with backlash

or multi-valued springs and impact damping.

In 1996, Kim (1996) developed a modified FPA (Fixed Point
Algorithm) to analyze quasi-periodic responses of strongly non-linear dynamical

systems with multi inputs.

Perret and Liaudet (1996) proposed an original method to compute
the steady state forced response of linear systems with periodically varying
parameters under external excitation. The procedure is based on the modal

approach with developments in the frequency domain.

Kahraman and Blankenship (1996) investigated the steady state
response of a system with clearance subject to parametric and external forcing
excitation by analytically considering a mechanical oscillator with time-varying
stiffness and a dead zone type clearance non-linearity. A generalized multiple

term harmonic balance procedure is used.
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Pilipchuk (1996) formulated a special saw-tooth temporal
transformation technique that is simple enough to allow analytical computation
of strongly non-linear free and forced dynamic responses, but at the same time,

it can be applied to the analysis of general classes of non-linear problems.

1.3 Scope of Thesis

In this thesis, firstly some of the basic gear dynamics models and
related softwares (Table 1.1) are studied. The most advanced model, Non-
linear Geared Rotor Dynamics, is modified further to include the following

features.

Pre and post-processor are written for the program. Emphasis is
placed on user-friendliness of the program. Therefore a new interface is written
in VB 5.0 to NLGRD v1.0 in which the graphical drawing of the rotor gear
system is formed while the user adds new elements to the system. Thus any
user-error is tried to be minimized. Having completed the analysis, user can see

the results graphically without terminating the interface.

The analysis of the program is extended and the software is
modified to calculate the reaction forces at bearings and make the modal

analysis of the corresponding linear rotor gear system.

The model is verified by carrying out some case studies and by
comparing the results with available experiment results and the results of other
theoretical models. As an example case, the experimental set up of Kubo is

used.

The effects of several parameters such as mean load, module,
center distance are studied by varying the parameters of Kubo’s system to
investigate their effects on the dynamic to static load ratio. Parabolic and linear

profile modifications are applied to spur gears, and the effects of these profile
17



modifications are studied. Lastly, tooth separation is studied in depth, and

effects of backlash and damping ratio on separation are investigated.
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CHAPTER I1

DYNAMIC MODEL OF GEAR MESH INTERFACE

2.1 Introduction

The study of gear dynamics is essential to the design of quite and
reliable power transmission products exhibiting high torque-to-weight ratios and
acceptable levels of gear noise. Critical to every gear dynamic analysis is the
expression used to quantify the vibratory source strength and force coupling
associated with the gear mesh interface. Virtually all gear dynamic models
consider a scalar expression for the force generated within the gear mesh and
consider mostly kinematic transmission error and variation in the mesh stiffness

as the primary sources of noise and vibration.

In this chapter, a recently developed dynamic model for a gear mesh
(Kahraman and Singh, 1991), which is also used in this study, is explained. Gear
bodies are assumed to be rigid except for the elastic compliance of meshing gear

teeth as it is the case in most recent models.

2.2 Problem Formulation

2.2.1 Coordinate Systems and Vector Notation

The cylindrical element shown in Figure 2.1 represents a typical

gear body. Two Cartesians coordinate systems are shown. The non-rotating
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Figure 2.1 : Coordinate system

geometric reference frame (Xg Yg,Zg) is used to describe the position and
orientation of gear body with the intended rotational motion Og(t) occurring

about the Zg axis. The mean location and orientation of the geometric frame
with respect to the inertial frame (X,Y,Z) are described by time-invariant global
position vector lig and angular misalignment vector o) g that respectively
represent the translation of the origin Og and the rotational orientation of the

(Xg,Yg,Zg) frame with respect to the inertial frame.
R, (1)=R;+R_, (1) 2.1)

0, (1 =0,+0,,() (2.2)
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where R, (t)and O, (t)are time varying components of the respective

vectors from their mean location.

Thus the displacement vector of the gear body is denoted by

7, 0={R7(®) (0 23)

Furthermore the coordinate vector can be written as the sum of a time-invariant
vector which describes the mean position of the gear and a time-varying

vibratory coordinate vector which describes the deviation of gear body from its

ideal position defined by
9, (1) =4, + g pu(t) 24)
0, ={r7 o7} @)
1 ={R7 @) 0, ()} 2.6)

2.2.2 Dynamic Mesh Force Concept

The translational forces acting on gear as a result of its meshing

with pinion are denoted by mesh force vector F* (t) having three components.

Any moments acting on the gear are denoted by mesh moment vector T* (t).
The generalized force vector is
o= ={F=" (1) 7 (0} @7

The transmitted gear mesh force is decomposed into static component due
to the mean transmitted load and a vibratory component which arises due to

the meshing action.
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07(1)=0 +0,%(1) 2.8)

Further QF (t) is written as the sum of conservative or elastic forces and

dissipative forces.

0,7 ()= 0x(0)+0m () (2.9)

Vibratory elastic deformations of mating gear teeth give rise

to Q% (t) . A Hookean expression for Q% (t) is assumed in the form
GAOES —Kg”(t)[rif” (t)]" (2.10)

where K¥(t)is a mesh stiffness matrix 8% (t)is a vector of equivalent

displacements and n is an exponent. In this study n is taken as 1.

The vibratory displacement vector 8% (t) is separated into two
distinct components; 8% (t) due to gear body displacement q®(t)andq”(t), and

&% (t) due to deviations of gear tooth profiles from perfect conjugate form over
some finite regions of contact; such tooth errors or deviations may be described

by a generic error function say e (¢)

85 (1) =87 (1) -3 (1) (2.11)
Then the expression for Q% becomes

Qe (1) = K= ()87 (1) + K= ()87 (1) (2.12)

The term —K* (t)8% (t) may be viewed as a source of parametric
excitation and force coupling in the dynamic equation of motion and

K® ()52 (t) as an external forcing excitation. In general

K#()=K"O[Q*(1) ¢*(t) q’(t) ()] (2.13)
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()= (M[QT(M) (1) (1) e”(1)] (2.14)

Hence explicit computation of K®(t) and e® (1) independent of a complete

dynamic analysis is impossible.
2.2.3 Motion Analysis

Displacement vector q.,(t) =qL(t;0")=q.,(0")+qL,(t) may be
further expanded in terms of spatially varying nominal component q: (6*)and
a time-varying dynamic component q_,,(t). The motion described by q’, (8")
includes system misalignment effects and deflections due to static loading or

mean transmitted torque as the system is rotated by angle 8. Under quasi-

static condition as Q" approaches zero

lim q.,(t) = 9,,(67) (2.15)
where
(l}gr_r)loe =0, (2.16)

Hence, q.,(8") may be determined from a quasi-static or low
frequency analysis, or even measured experimentally under quasi-static loaded
conditions. Under operating conditions when Q" >0,q' (8") and other

spatially varying parameters, such as the gear mesh stiffness and kinematic
transmission error, give rise to dynamic forces and moments which result in

dynamic displacement g, (t) about the instantaneous nominal position q}, (t)

2.3 Backlash Non-linearity

Many mechanical system exhibit non-linearities that are often non-

analytical and non-differentiable. One typical example is the clearance non-
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linearity that can be used to describe backlash in a gear pair, preset or preload in

springs and a bilinear dry friction clutch.

Clearances exist in many complex mechanical systems either by
design, due to manufacturing errors and wear, or as a result of mechanical
failures. Vibration of a translational or rotational system with clearances can
result in relative motion across the clearance space and impacting between the
components. Repeated impacts, may lead to excessive noise, large dynamic

loads, and large changes in the dynamic stiffness.

Previous studies have shown that the dynamic behavior of a system
with discontinuous non-linearities is quite different from a system with

continuous non-linearities.

The gear backlash non-linearity is essentially a discontinuous and
non differentiable function and it represents a strong non-linear interaction in the
governing differential equation. In this study, the gear mesh of a spur gear pair
is represented by a non-linear spring and a linear damper. The non-linear spring
can be modeled by a dead space function with backlash of 2b, and a time-
invariant mesh stiffness k, when in contact. For a relative displacement p, the

non-linear displacement function for gear mesh stiffness fi(p) is defined as

] 0 for ‘p\<b
f,.(p)-{khp for p|>b 2.17)

The graphical illustration of this formula is shown in Figure 2.2.
As shown in Figure 2.3 there are three possible cases :

e No impact : The tooth separation is not observed in a geared system if the

displacement q(t) lies in the region q(t)>1 all the time where q(t) = %

9. +q.|>1 and |g, -q.]>1 (2.18)
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where q, and q, are the mean and alternating part of the relative

displacement which is normalized with respect to backlash.

Figure 2.2 : Backlash non-linearity

Single-sided impact : Mathematically, the single-sided impacts ( tooth

separation without back collision ) are observed if

q, +q,>1 and lqm—qa <1 (2.19)

Double-sided impact : Double-sided impact exists if q_and q,are such

that the following conditions are satisfied
q, >'1—qm! and q, >|]+qm[ (2.20)

The non-linearity can be regarded as an amplitude dependent

stiffness. The non-linearity is hardening if the stiffness is increasing with

alternating displacement, and softening if it is decreasing with alternating

displacement. The hardening or softening nature of the clearance nonlinearity

depends on the mean deflection and on whether the system is undergoing

double or single-sided vibro-impacts (the system is linear for the no-impact

case). For the case of single-sided impacts, if the mean deflection is in non zero

stiffness stage; as alternating displacement increases the time spent in the
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Figure 2.3 : No impact, single-sided and double-sided regions

backlash region increases, thereby reducing the average stiffness (softening
effects). If however, the mean deflection is within the backlash region, the
average stiffness increases, as alternating displacement increases, for both
double and single-sided vibro-impacts, leading to hardening effect
(Padmanabhan and Singh, 1992).

2.4 Mesh Compliance and LDP
There are several formulas to compute mesh compliance and STE in

the literature. K.Y. Yoon and et. al. (1996) reported one of them in a recent
article. The drawing of the tooth model is given in Figure 2.4

The compliance of the tooth is computed at all points of contacts
during a mesh cycle in the undeformed configuration. The following

assumptions are made for this purpose:
1. The tooth deflects as a cantilever beam due to bending and shear loads
2. The tooth base is assumed to be rigid

3. The deflection due to contact forces are assumed to be Hertzian
33
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Figure 2.4 : Tooth model

For the purpose of computation, the range of contact is divided

into a series of transverse segments of rectangular cross-section as indicated in

figure. A typical segment is indicated by the index i. The total deflection of the

point of load application can be found by summing the contributions of

individual segments where each segment is considered to be a cantilever beam

by itself. The deflections due to the transverse force D, and bending moment

D, induced on segment i by the applied load W; can be expressed as

N
(Cornell, 1981)
Woos®) ,
= ——6ET(2Li 315,

_ Wj(Sﬁ cos(B;) - y; Sin(Bi))(

™ 2EI,

1

L’ +2LS;)

i iV

where

E=Young’s modulus of elasticity

34
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I, =second moment of inertia of the segment

W, =normal load at the point of contact
S;=moment arm of load W; for the segment

L, =thickness of the tooth segment

B ;=pressure angle at the point of contact

and the subscript j denotes the current point of contact.

The shear deformation of the tooth due to segment i can be written

as (Cornell, 1981)

12W,L; cos(B))
W GA,

1

(2.23)

where G is the shear modulus of elasticity. Thus the total deflection of the tooth
at the point of load application along the direction of applied load (normal to

the profile), D, can be expressed as :

n

D, =>.(p, +D,, +D,) (2.24)

1=

—

The total compliance coeflicient due to tooth bending as cantilever

beam for the jﬁl contact, ij , can be defined as

Q, = (2.25)

Although the root of the tooth (cantilever beam) was assumed to be
fixed (rigid) in deriving the equations, the base of the tooth will have some
flexibility due to the elasticity of the tooth support material and the fillet

geometry. In addition the load at the contact point W; was considered to be a
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statically applied load in deriving equations. In reality, the problem has to be
treated as a Hertzian contact stress problem. Hence a more accurate estimate of

the total tooth compliance at point j can be obtained by adding to Q,,, the

compliances due to the base and the Hertzian stress;
Qj = ij +ng +Q, . (2.26)

where the base compliance Q, and the Hertzian compliance Q, are given in

Comell(1981). The total static transmission error at point j , T.E.; is generally is
defined to be the sum of the contributions due to the applied load and the profile

modification used for the tooth:

TE;=TE, +TE, (2.27)

where T.E., and T.E., denote the transmission error due to applied load and

profile modifications, respectively. The static transmission error and the shared
tooth load for a low -contact-ratio (less than 2) gear pair can be found from the

following equations (Cornell 1981).

QW; +(E,)} =(E,)! (2.28)
Q'W; +(E,)] =(E,); +(E)Y (2.29)
W+ W, =W, (2.30)
(E)); =(E,); (2.31)

where E,,E_,E, represent the static transmission error, the profile

modification error and the tooth spacing error, respectively. The subscript j
represents the contact point on the tooth profile, and the subscript a and b

represents the leading and the lagging tooth pairs (Yoon et al., 1996).
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NLGRD uses LDP (Load Distribution Program) which was
developed at Ohio State University, to find mesh compliance and STE in loaded
helical and spur gears

2.4.1 How LDP Works

The Load Distribution Program (LDP) is a computer program for
predicting the load distribution across the zone of contact for a single pair of
spur or helical gears. The gears may have an internal or an external mesh and be
mounted on shafts between centers or overhung. The model assumes the load
distribution to be a function of the elasticity of gear system and errors or
modifications on the gear teeth. Below is a list of effects that the program

considers in its calculations.

Elasticity(Elastic Deformations)

¢ Bending deflection of gear bodies and supporting shafts
e Flexibility of bearings and housings

¢ Torsional deflection of gear bodies

¢ Bending of teeth in contact

o Local contact deflections

Errors and Medifications (Initial Separation)
e Shaft misalignment

¢ Involute error

o Lead error

¢ Tooth spacing error

2.4.2 Elastic Deformation Calculations

The following assumptions are made in calculating the elastic
deflections in LDP:

1. The total elastic deformation is the sum of the individual elastic deformations
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2. The elastic deformations are small, thus tooth contact is assumed to be on

the line of contact

3. The gear bodies and supporting shafts behave as solid cylinders for the

purpose of determining the bending and torsional deformations

2.5 Static Transmission Error

The periodic displacement excitation acts along the line of action
and taken as the loaded static transmission error. The period of the displacement

excitation is given by Q, =N _Q_ where N, is the number of teeth on pinion
and Qis the rotational speed of pinion. A typical loaded transmission error is

shown Figure 2.5.

Although the transmission error is periodic it is not harmonic, which
is not suitable for modal analysis. However, periodic functions can be defined in

terms of harmonic sine waves, by using Fourier series.

Now consider a function f(t) which has a period T, then the
fundamental frequency is @=2m/T. Such a function may be represented by

Fourier series of the form :

f(t) = Z(am cos(mot) + b, sin(mot)) (2.32)
m=0
In this study, STE is approximated by the highest n harmonics. A
typical STE which is approximated by Fourier harmonics, is shown in Figure

2.6. These harmonics can be found by two methods :

Rectangular wave approximation : The periodic STE is taken as a
rectangular wave with an amplitude of the periodic transmission error
(Maliha, 1994). The coeflicients a, and by of such a rectangular wave can
be calculate analytically as :
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Figure 2.5 : Static transmission error graph
a, = ;——{[3 cos(mcoy)] sin(mo —) sin(moy) cos(mam —)} (2.33)

_ % N X : P
b, = —. {[cos(muy) I]cos(mn 2) sin(mmny) sin(m7 2)} (2.34)
where x+y/y is the gear contact ratio, e, is the amplitude of the STE function.

Then the highest n coefficients are taken to represent the STE function.

2. DFT ( Discrete Fourier Transform Method ) : The expression for Fourier

coefficients in DFT is given as

1 N1 - j(27mmr)
@, +jb) = xe ¥ (2.35)
=0

where (N+1) and x; are the number and the amplitude of discrete data points,
respectively. It should be noted that the maximum calculated (m) should be
less than N/2 to prevent aliasing.
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Figure 2.6 : FFT approximation of STE

2.6 Formulation of Spur Gear Mesh

A typical spur gear mesh that is shown in Figure 2.7 is represented
by a pair of rigid disks which are coupled by a non-linear displacement function
fi and a viscous damping coeflicient C,, along the pressure line which is tangent
to the base circles of the gears. Friction forces at the mesh point can be assumed
to be negligible. Thus the transverse vibrations along the pressure line are
uncoupled from the vibration in the direction perpendicular to the pressure line.
The damping coefficient can be assumed to be time-invariant. The effect of
tooth separation is considered but no tooth impact is assumed. (Maliha, 1994,
Kahraman et al. 1991).

The relative displacement p along the pressure line can be defined as

p=y,+r,0,+¢&;sn6, -y, —r.0, —¢,sinfg, —e (¢) (2.36)
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GEAR

Figure 2.7: Dynamic mesh interface model

where 0, and 0, are the total angular rotations, r, and r, are the base circle radii

and g, and g, are the geometric eccentricities of driving and driven gears,

respectively. e(t) is the static transmission error which is approximated by
e,(t)=) a,cos(mN ,Q 1)+ jb, sin(mN ,Q 1)
m=1

Dynamic transmission error DTE is defined as :

DIE=y,+r,0,-y, -0, (2.38)

Total angular positions 8, and 0, are given by

0,=0Q,1+0,.() (2.39)
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6,=Q.1t+6,(0) (2.40)

Substituting Equation 2.39 and Equation 2.40 into Equation 2.36

and noting that
0,>>6,. (2.41)
0g>> 0, (2.42)
r >>g (2.43)

"

the relative displacement p and velocity p reduce to
p=y, +1,6, +&sin(Q t) -y, ~1,6 — ¢, sin(€,t)—e,(t) (2.44)

*

P=Y,+L, 6+, cos(€,t)—y,— 1, 6,— £, cos(€,t)—e,(t) (2.45)

The mesh forces in the y direction along the pressure line can be

written as :
W, =C, p+&,D)f,(P) (2.46)
W,=-W (2.47)

where W; and W are the mesh forces at the driving and driven gear locations,
respectively, and fu(p) is the gear backlash non-linear force-displacement
function. ky is the mesh stiffness and Cy, is the viscous mesh damping which can

be expressed in terms of equivalent mass my and viscous damping coefficient

C_as:
C,=2muw/l (2.48)
(2.45)

where

mn = th/mcl (2'49)

42



Equations of motions of the meshing gears, on the other hand, can

be written as :
1,6,+W]r, +&,cos,0] =17, (2.50)
1,8,-Wr, +¢,cos(@,n]=-T, @.51)

The eccentricity term is included in the relative displacement
formulae however it can safely be omitted with respect to gear radius term for
the sake of simplicity, which implies that change in the moment arm is
neglected. This leads to fime-invariant equivalent mesh inertia. Thus, the spur

gear mesh interface is modeled by a linear time invariant system.

A term in the force equation is neglected which means that a
second-order coupling term is ignored whereas it is kept in the displacement
equation. This idea is basically identical to the very basic assumption used by
several investigators : using a constant mesh stiffness while representing the
change in the gear mesh stiffness as a periodic displacement excitation at the

mesh point along the line of action.

1,0,+Wr, =T, (2.52)
1,6,+Wr,=-T, (2.53)

The equations can be combined to give the following equation
m(r,0,-r,0)+W, =W (2.54)

where equivalent mass m, and the load W are
I1
r g
m; =" 2 (2.55)
r, L +r A,
W=m,(T,+T) (2.56)
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In Equation 2.54, substituting for (r, 8,-1, 8;) gives
mc,[ P Y, Y +,Q,7sin(Q, ) - £,Q 7 sin(Q 1) +e, (t)} +W,=W (2.57)
Substituting W in Equation 2.56 and rearranging in matrix form

Pl kfo)] |/,

mcl mcl mcI g Cm 0 O
0 m, Oy |+{C, 0 O}y, |+ k. f(p)|=|0 (2.58)
0 0 m | | [C0 0}y ks@)] LO

where the total excitation force is given by

[, =W+ mc,[— e,—£,Q,7sin(Q 1) +£,Q° sin(Qgt):l (2.59)

As a final step, after the mass, stiffness and damping matrices are
formed for each shaft by assembling the elementary matrices, the gear mesh
interface is inserted in to the equations to couple the uncoupled equations of

separate shafts.



CHAPTER 111

SOLUTION TECHNIQUE

3.1 Forced Periodic Response

The equation of motion of an axisymmetric non-linear geared rotor
in which the non-linearities are involved only in elastic part of the system and
damping is assumed to be linear, can be written by adding a term {N},
expressing the non-linear behavior of the system, to the linear differential
equations of motion. (Genta and Bona, 1990)

[M1{§

+[c]{§} +[Kl{x} +{N} = {E. } + {F} (3.1)

It is well known that it is not possible to separate the study of the
free behavior of the system from that of the response to forced vibration such as
unbalance or the deformation under static loads. An approximate solution of

Equation 3.1 can be of the type
fd = {X,) + {3, Jo + 3 {x, Jet (3.2)
k=1

This is an approximate solution, since it takes into account only the

fundamental harmonics of the response which is certainly non harmonic.

Static forces will also be neglected, which is obviously an
approximation and it can limit the application of the present approach in some

cases.
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It can be assumed that the system response is periodic when the
external forcing is periodic. A solution of the type of Equation 3.1 is

consequently assumed as
{x} = {X}e™" 33

Owing to the axial symmetry of the system, Equation 3.3 certainly
expresses an exact solution of Equation 3.1, even if solution is not the only
possible one and is not necessarily stable. If the considerations of Tondl are
intuitively generalized to system with many degrees of freedom (Tondl, 1976),
such a solution can be considered to be the goveming one, at least up to the

threshold of instability of the linearized system.

In fact Kahraman et al. (1990) studied non-linear single degree of
freedom spur gear model and has shown that the steady state response of the
system is strongly dependent on the initial conditions and system properties
even in some cases it is not possible to get a deterministic steady state response,
indeed the response is chaotic, especially for lightly loaded systems with low
damping.

Equation 3.3 allows one to transform the non-linear differential

Equation 3.1 into the non-linear algebraic equation.
[~ (mo)"[M] + i(mo)[C] + [H] +[KI}{X} . +{N} = {F},, (3:4)

Equation 3.4 can be solved directly by using an iterative technique,
which is generally very difficult.

As often the number of degrees of freedom directly involved in the
non-linearities is small, condensation techniques can be used to simplify the
solution. If the number of the degrees of the freedom afier condensation is

greater than two, the iterative solution is a difficult task. Moreover, the
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condensation has to be performed for each value of the speed, and this leads to

long and costly computation.

In this problem non-linearity is associated only with three degrees of
freedom of the dynamic gear mesh interface since shafts and bearings models
are linear. Maliha (1994) has expressed these three non-linearities associated

with the dynamic gear mesh interface as follows :

k,f, (p)
{N} =1 k,f, (p) (3.5)
-k, f,(p)

In his work he used the formulation and solution technique
developed by Budak and Ozgiiven (1990,1993) and extended by Tannkulu and
Ozgiiven (1993).

Re-expressing the non-linear function f, (p) by using the describing

function

fu(p) = i Va(A)P,e™ (3.6)

1 n o0 T )
f(p) = (&F [t (p)doJ P+ Z(n% [5.) sin(mm)dw)Pmem 3.7

m 9

{N} = {G} ,e™ (3.8)
where
v, (A) P
{G}, =1 va(A) kP, =[AlL Y, ™ 3.9)
-v,(A) Y, .
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and

kv, 0 0
[Al,=| k,v, O 0 (3.10)
-k,v, 0 0
Then
[- (mo)*[M] + j(mo)[C] + {H] +[K] +[Al )X}, = {F}.. (.11
and
{X}, =la].{F}, (3.12)

where [a]_ is the response level dependent quasi-linear receptance matrix of

the system at frequency mom and can be expressed as
[al, = [~ (me)* (M) + j(me)C]+ j{6] + [K] + (AL ] (3.13)

The quasi-linear receptance matrix is a function of frequency ma,
the linear and non-linear coefficient matrices of the system, and all the

harmonics response components

3.2 Solution Technique

The quasi-linear theory presented above converts a set of
differential equations into a set of non-linear complex algebraic equations. To
reduce the computational time one can separate the non-linear equations from
the linear ones. After the linear equations are separated from the non-linear
ones, the number of non-linear equations left is three. Then perform the iteration
only for the non-linear set of equations and solve the linear set directly as

follows:
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Equation 3.12, can be first rearranged as :

[B]. X} +{G}.. = {F}..

Then Equation 3.14, can be written as
o] B0
[BuJix}+[puf{x:}+{a )= 5.}
[} + (B )%, ) = .}

Solving Equation 3.17, for {X2 } yields

) =[al [} - [ Jx.}]

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Substituting Equation 3.18 in Equation 3.16 and noting that

6.3 =[Au]ix.} give

[[B,.] [a,]-[B.IB] [Bn]] { ~[B..[B] {2}} (3.19)

As shown in Equation 3.19, the right hand side contains the non-

considerably.
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linear matrix [A,,] which depends on the unknown vector {X,} and thus it

should be recalculated in each iteration step in the solution process. It should be
noted that by using this technique, the size of non-linear algebraic problem is
reduced to the number of coordinates associated with non-linearity matrix. This
implies that only the limited number of coordinates rather than all coordinates,

are updated in the iteration procedure which reduces the computational time



Note that {Fz} =0 since there is no external force on the system

other then the mesh force. Then the non-linear set of equations can be arranged

as

{x.}= [[Y]Jr[ﬂu]]—l {r.} (3.20)

where

[11={[B.]-[8. J-.] '[p..] @.21)

Equation 3.20 represents 3(n+1) set of non-linear equations and

have to be solved simultaneously. The coupling terms are functions of vectors
{X | }o, {X : }1"“{X | }n They must be found by iteration as [A”] includes the
elements of {X1 } and in each iteration they should be substituted in non-linear

coupling terms to form the non-linearity matrix [A,,]. The linear response is

used to form the non-linearity matrix in the first trial. The iteration is continued
until the required accuracy is achieved. To reduce the computational time
required to solve the problem the following procedure is implemented. (See

Figure 3.1)
e The 3(nt+1) set of equations are decomposed into ntl set of equations

having 3 unknowns in 3 equations (i.e. the vector {X ,}i )

e Initially, each vector {X ,}i is calculated independently by inverting the

matrix [[7].- +[A“]i] (of order 3), where [AHL is evaluated by neglecting

the non-linear terms in the first trial
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After solving for the whole set of vectors {X 1} (i.e. solving (n+1) system of
equations), the non-linear terms in matrix [Au] are evaluated using the

computed vector {X 1}

The previous steps are repeated using the new evaluated non-linearity

matrix [Au] in each iteration until attaining a convergence for the whole

vector {X ,}

The following iteration scheme is used at a particular frequency

(See Figure 3.2)

1.

The quasi-linear receptance matrix [e] is formed for the m-th harmonic

The non-linear matrix [[7] +[ A]] is calculated from [a]
The internal excitation vector [F;] is calculated for the m-th harmonic

Steps 1-3 are repeated for m=0,1,2.....n, to form [710’[7]:’ ..... [}/]n and

The complex displacement amplitude vectors {X, }o,{_X, }l,....{X, }" are
calculated using the linear receptance matrices [7] o’[7]1’""[7]n' Note that

for this case [An](),,_'A,,]l,....[A,,]'l matrices are assumed to be zero (linear

case).

The non-linear coupling matrices [A,,]o,[A"]],....[A,,]" are determined by

using the new {X,}O,{Xl}l,....{Xl}” vectors
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7. The complex displacement amplitude vectors at the next iteration step are
determined using the non-linear part of quasi-linear receptance matrices.
Since the system is highly non-linear, the new vectors are determined by

applying a relaxation factor.

8. The iteration is continued until the displacement root mean square error

drops below a certain limit.

Figure 3.3 shows the flow of the NLGRD code .
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SET OF DIFFERENTIAL EQN'S
3*(n+1} Eqn's

DX=F. _ (x)

1,0 3(n+1)2,
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3"'n 3(n+1)

Group Eqn’'s——

X F s
szn: (o111 )
n ~ Tamen (X)

START YES —»

NO

l

Evaluate [A] by using the
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Non-linear terms

Calculate X by inverting
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Calculate X by inverting
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X
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Figure 3.1 Solution technique
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Quasi-linear receptance
matrix is formed for the mf
harmonic

Non-linear matrdfy}+[A]} is
calculated from the[a]

internal excitation vector [F}
is calculated for the m-th
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Figure 3.2 : Iteration scheme used at a particular frequency
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MAIN
Control and drive the excution of
subroutines

!

MASTER
Control input and output of NLGRD

T

ASSEMB
Form and assemble elemantal
matrices for the first and second
shaft
T

v

INFORC/FORCE
Calculate Fourier coefficients

SOLUTION 7

Form linear receptance matrices
corresponding to excitation
frequencies

'

MATDIV
Separate set of linear equations to
be added to non-lnear set of
equations

.

GRMESH
Calculate gear mesh non-linear
and linear coupling equations and
add them to the separated linear
set of equations

—b‘ Find displacement vectors l

¥
GRMESH
Calcutate DF values (Delta
matrix) and add them to the
separated set of non-linear

d&@_—‘

Find displacement vectors

Del(Disp)<Error

DYNF
Calculates DSLR and DTE

Figure 3.3 : Flowchart of the original program
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CHAPTER 1V

USER INTERFACE

4.1 Introduction

NLGRD user interface - pre-processor and post-processor - is
written in VB 5.0. The emphasis is placed on user-friendliness. The graphical
drawing of the geared rotor system is formed while the user add new items to
the system. Thus any user dependent error is minimized. The program is capable
of making more than one analysis at the same time. The user interface, Visual
Geared Rotors (VGR), could prepare input file for both NLGRD and LDP

version 10.1
There are four basic items in the program:
e Bearing elements
o Weight elements
¢ Rotor elements
o Gear elements

Every time user clicks one of these buttons, NLGRD interface loads

a new item on the CAD form.

Material, geometric and other types of data can be entered by just

double clicking the items.
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Beside these elements there are:
e Stop button
e Move button
e Delete Button

The main window of NLGRD interface is shown in Figure 4.1.
Having formed the system, user can make analysis by clicking the processor
button.

4.2 Pre-processor

Connectivity of the system is formed while the user is clicking the
basic item buttons. Position of the items are irrelevant to connectivity.
Therefore items must be loaded from left fo right, top to buttom. So user must
first construct the first shaft from left to right, then click stop button, then start
constructing the second shaft and click stop button again when finished. The

construction of typical geared rotor system is shown in Figure 4.2.

Loaded items can be dragged anywhere on the screen after clicking

the move button.

Geometric properties of the items can be defined on screen after
stretch button is clicked or first double clicking the item then entering the
geometric properties through data windows.

4.2.1 Bearing Element

When the bearing button shown in Figure 4.1 is clicked a new
bearing element is loaded on the CAD window. In order to enter bearing
stiffness and hysteric damping constants the user must double click the bearing
element. Figure 4.3 is displayed immediately after double click.
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Pre-processor, assembly of geared rotors

Figure 4.2



BEARING DATA =

Figure 4.3 Bearing data window

Figure 4.4 Weight data window

4.2.2 Weight Element

When the weight button shown in Figure 4.1 is clicked, a new
weight element (e.g. flywheel) is loaded on the CAD window. As soon as the
user double clicks the weight element, Figure 4.4 is displayed on the screen.

User can enter the following NLGRD data:
e diameter
e width
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e density

through this window.

Figure 4.5 Rotor data window

4,2,.3 Rotor Element

When the rotor element shown in Figure 4.1 is clicked, a new rotor
element is loaded on the CAD window. Figure 4.5 is displayed when the user

double clicks the rotor elements. User can enter the following NLGRD data :
e outer diameter
e inner diameter

e length
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e axial load

through this window. In order to enter material properties of the rotor material
button must be clicked. Figure 4.6 is loaded when the material button is clicked.

User can enter the following NLGRD data :
e Density

e Modulus of elasticity (NLGRD and LDP)
e Shear modulus of elasticity

e Viscous damping coefficient

e Hysteric damping coefficient

through this window.

User can reach misalignment and shaft dimensions window through
rotor data window. When the user clicks the misalignment button Figure 4.7 is
displayed. User can enter the following LDP data :

e Misalignment at X=0
e Misalignment slope

When the user clicks the shaft dimension button, Figure 4.8 is
displayed. User can enter the following LDP data :

e OQuter, inner diameter and length of shaft
¢ Before pinion

e After pinion
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Figure 4.6 Shaft material data window

Figure 4.7 Misalignment data window

e Before gear
e After gear

e Gear and pinion hub diameter
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LDP can only take into account single shaft before and after the gear pair

therefore equivalent shaft dimensions must be entered.

SHAFT DIMENSIONS

Figure 4.8 Shaft dimensions data window

4.2.4 Gear Element

When the gear button shown in Figure 4.1 clicked, a new gear
element is loaded on the CAD window. Figure 4.9 is displayed when the user
double clicks the gear element. User can enter the following NLGRD data :

o Pitch diameter
e Face width
e Density

through this window. Three new windows can be reached through Figure 4.9.
When the user clicks mesh data button Figure 4.10 is displayed. User can enter

e Number of teeth
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e Viscous damping coefficient
e Backlash

e Static load

e Eccentricity

through this window.

When the user clicks STE button, Figure 4.11 is displayed. User can
enter the following NLGRD data :

e Contact ratio

e Amplitude of STE

e Average mesh stiffness
e Name of STE file

User can choose either LDP output file or rectangular wave approximation.
User must enter contact ratio, amplitude of STE and average mesh stiffness
unless he chooses the STE file option. By clicking data button user can reach
Figure 4.12. This windows controls the flow of the NLGRD processor. User
can enter the following NLGRD parameters shown in Figure 4.12 :

Number of FFT Terms : The number of harmonics used in the approximation

of STE. The maximum number of harmonics is five.
Starting angular speed (rpm) : The simulation starts at this rpm.
Upper Limit of angular speed (rpm) : The simulation ends at this rpm.

Increment : Speed increment between successive simulation.

65



PIMION DATA

Figure 4.9 Gear data window

GEAR MESH DATA

Figure 4.10 Gear mesh data window
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Figure 4.11 Static transmission error data window

Tolerance : It controls the error limit (Recommended : 0.01)

Relaxation Factor : The result of NLGRD is modified by a weighted average
of the results of the previous and present iterations. (Recommended

Relaxation factor 1 = 0.001, Relaxation factor 2 = 0.13)

When the user clicks gear geometry button, Figure 4.13 is
displayed. User can enter the following LDP data :

Number of teeth

e module

e Generating pressure angle
o Helix angle

e OQuter diameter
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Figure 4.12 Data window

e Root diameter

o (Center distance

e Input torque

e Location of the output torque relative to input torque
e Type of gear mesh (External / Internal )

When the user click the tooth data button, Figure 4.14 is displayed. User can
enter the following LDP data :
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PINION GEOME

Figure 4.13 Gear geometry data window

e Starting tooth number
e Face width
e Ifbacklash is choosen
e Amplitude of backlash
e Percentage of backlash attributed to pinion
o Iftooth thickness is choosen

e Tooth thickness
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e Diameter at which tooth thickness measured

When the user clicks the tooth model button, Figure 4.15 is
displayed. User must choose the model of the tooth (Flat/Tapered). If he choose
tapered tooth model he must decide on the type of calculation method
(manual/automatic). If he choose manual method, he must enter the following

parameters :

e Tooth thickness at tip

e Tooth thickness at root

Beside these, user must enter the following constants :
e Plate bending exaggeration factor

o Tooth base rotation factor

e Hertz exaggeration factor

When the user click gear material button, Figure 4.16 is displayed.
User can enter the following LDP data :

e Young’s modulus
e Poisson’s ratio

When the “use the same material” check box is checked, both gear and pinion

has the same material properties.

When the user clicks the lead data button, Figure 4.17 is displayed.

User can enter the following LDP profile modification data :
e Straight modification on X=0 side

e Parabolic modification on X=0 side
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Figure 4.14 Tooth data window
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TOOTH MODEL

PINION MATERIAL

Figure 4.16 Gear material data window
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o Beginning position on X=0 side

e Straight modification on X=F side

e Parabolic modification on X=F side
e Beginning position on X=F side

e Circular modification on X=0,F side
o Lead angle error

When the user click involute data button, Figure 4.18 is displayed.

User can enter following LDP profile modification data :
e Roll angle at start of tip modification

e Parabolic tip modification magnitude

e Straight tip modification magnitude

e Roll angle at start of root mod;ﬁcation

e Parabolic root modification magnitude

e  Straight root modification magnitude

¢ Circular modification at tip and root

e Pressure angle error

When the user clicks the program control button, Figure 4.19 is
displayed. This window controls the flow of LDP. User can enter the following

LDP data :
e Beginning position constant

¢ Ending position constant
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Number of positions to analyze

Multiplier for number of points across face

Include shaft effects in transmission error calculation ? (Yes/No)
How profile modifications are entered ?

Interactive

PINION LEAD MODIFICATION

e

Figure 4.17 Lead modification data window
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Figure 4.18 Involute modification data window

75



PUHAH CTF:L

\")’;\e i

R

\,aw L

R L,X W

o R
S “ﬂ%‘”‘““’
S

R
_,v

s

Sk R e
e ey u:,,,,,,,r,“ e
W gz‘fa»\f«ﬁf\‘w‘n.‘,,,ﬁr,,,., Gl
%éwm;. -
R

L

@ ‘,.««.,(' 4

i
; -
Sgadaiing
Ty
L

V\,\}\t e

8

o \‘;, ‘:‘ :a o

i
i ,,.m"»‘;\*

S

A
i

s <
P Rt

e

i
o e
o

Figure 4.19 Program control data window

76




o Files

e Both

e Notatall
e Are there spacing errors ? (Yes/No)
e Create dynamic analysis file ? (Yes/No)
e Use off line action of model ? (Yes/No)
e Perform varying torque analysis ? (Yes/No)
e Perform multi/single torque analysis ?
e Which shaft use gfiles ?

e Pinion shaft

o Gear shaft

e Both pinion and gear shaft

e None of them

When the user clicks title and filenames button, Figure 4.20 is

displayed. User can enter the filenames necessary for LDP. These are :
e Program identity title
e Output file name

e File name for detailed pinion data (when tooth spacing option is

checked)

e File name for detailed gear data (when tooth spacing option is

checked)
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e File name for torque values (when varying torque analysis is

checked)
¢ File name for pinion shaft (when the pinion shaft use gfiles)
o File name for gear shaft (when gear shaft use gfiles)
e Position constants (number of positions to be printed)

¢ Do you want detail in output file (Yes/No)

4.3 Post-processor

After NLGRD version 2.0 analyses the system, results can be seen
through user interface graphically. The post-processor window is shown in
Figure 4.21. User can control the graph window by changing parameters of
control window. X and Y-axis variable, X and Y-axis scale can be changed. The
user can take the advantage of seeing both the results and the model of the

system at the same time.

78



Figure 4.20 Title and filenames data window
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CHAPTER V

CASE STUDIES

5.1 Introduction

In this chapter several case studies are carried out. Firstly, the
numerical results obtained by using NLGRD are compared with those of the
experimental studies available in literature. Then the Kubo’s setup is used to
study the effect of several system parameters on system response; namely the
effects of mean load, module, center distance, parabolic and linear modifications
on DSLR, bearing forces, STE and mesh stiffness are investigated. Finally,
empirical relations are suggested between DSLR and module, and between

DSLR and amount of profile modifications.

5.2 Case Study I : Verification by Experimental Results - Munro’s

Experimental Setup

Munro used a four-square test rig, which is shown in Figure 5.1, to
measure dynamic transmission error of a spur gear pair. High precision spur
gears with manufacturing errors much smaller than tooth deflections were
selected. Pinion and gear were identical with 32 teeth, face width of 12.7 mm
and diametral pitch of 4. Tooth profile modifications were applied to obtain a
minimum (but not zero) static transmission error at design load (DL) of 3780 N.

Other components of the set-up including shafts, bearings and casing
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Figure 5.1 Munro’s test rig

were made as rigid as possible. Dynamic transmission error was measured for a
range of gear mesh excitation frequencies under different mean loads. Some of
the key parameters were not specified by Munro. For example, it was stated that
some additional inertias were added to the gears to shift the primary resonant
frequency within the operational speed range, but the specific values of such
inertias were not given. It was also reported that the damping ratio varies with
load in a random manner. Also backlash was not measured or reported. System

parameters used in the following study are given in Table 5.1.

The measured and predicted dynamic transmission error, on a peak
to peak basis, at the design load and at %, %2 and % of the design load,
respectively are compared. The results of Munro’s experiment and the results of
NLGRD for design load are shown in Figure 5.2. The frequency ratio on the x-
axis of Figure 5.2 can be defined as the ratio of rotational speed to torsional
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Table 5.1 Parameters of Munro’s experiment set-up

Diametral pitch 4
Number of tecth 32/32
Pitch diameter (mm) 204.8
Face width (mm) 12.7
Backlash (mm) 0.12
Contact ratio® 1.60
Mesh stiffness (N/m) 3.44E8
Mesh damping ratio 0.0175
Amplitude of STE (m) 0.1143E-5
Design load (N) 3780
L=l (kgm?® 0.02563
L.=L (kgm®) 0.03426
L* (kgm®) 0.67
Ly (kgm?) 0.60
Bearing stiffness (N/m) 0.58E9
Bearing damping (Ns/m) 0.58E5
Shaft damping ratio 0.005

& Estimated data

Table 5.2 Mesh stiffness and STE for different loads

Design load % DL Y52 DL Y2 DL
Stiffness (N/m) | 2.6620E08 | 2.6352E08 | 2.5983E8 | 2.5376E+09
STE (m) 3.1378E-6 | 2.3924E-6 | 1.6283E- | 8.4383E-7

natural frequency. It is observed in Figure 5.2 that the subharmonic and
resonance frequencies are predicted correctly. Although NLGRD predicts the
subharmonic peaks which are also reported in the experiment, the amplitude of
the predicted main resonance is lower than that of the experiment results. The
STE and mesh stiffness which are calculated by LDP for different mean loads
are shown in Table 5.2. The profile modifications, which were used in Munro’s
experiment to give minimum STE, are not modeled in LDP. Damping ratio of
the gear mesh, shafts and bearings are estimated. Such slight changes in the
critical system parameters can alter the results drastically. Munro has also used
some extra flywheels to shift the system resonance frequency. Although these
flywheels are modeled through NLGRD, their exact dimensions are not known.
Therefore the results of NLGRD are not expected to be in very good agreement
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Figure 5.2 Comparison of the results of NLGRD with Munro’s experimental
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Figure 5.3 Comparison of the results of NLGRD with Munro’s experimental
results at % DL
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Figure 5.4 Comparison of the results of NLGRD with Munro’s experimental
results at %2 DL

with Munro’s experimental results. Figure 5.3 and Figure 5.4 show the results
of NLGRD and Munro’s experimental results for 3% and % design load
respectively. As the design load is decreased, the experimental results in Figure
53 and Figure 5.4 start having irregular shapes. Munro has reporged
unrepeatable response (probably chaos) at Y of the design load. NLGRD

predicts response up to ¥ design load and cannot run for the % design load.

The whole trend of the results obtained by NLGRD follow the trend
of Munro’s experimental results. The jump at the main resonance and the
subresonance whose frequency is half of the main resonance are predicted

successfully.

5.3 Case Study II : Verification by Experimental Results - Kubo’s

Experimental Setup

Kubo used a heavily damped (£=0.1) four-square spur gear test rig

which is shown in Figure 5.5 and measured dynamic factors as the ratio of the
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dynamic to static tooth stresses. The experimental set-up was designed to
support gear pair with very stiff shafts and bearings. Table 5.3 shows the
parameters of Kubo’s setup. The parameters shown in Table 5.3, are extracted

from Ozgiiven (1991), and Kahraman and Singh (1991a).

In this study the dynamic factor is defined as the dynamic to static
load ratio which is equivalent to the dynamic factor calculated, based on the

e

B

I ||E|JM 1

Figure 5.5 Kubo’s test rig

stress analysis under the assumption that the change in the moment arm due to
changes in the contact point is negligible. Since this assumption is not a valid
one, dynamic factors calculated by NLGRD are not expected to match with the
experimental values. However the change of dynamic forces with rotating speed
can be compared. Comparison of the results of NLGRD and Kubo’s experiment
results are shown in Figure 5.6. In Figure 5.6 the results of the NLGRD with 1
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Figure 5.6 Comparison of NLGRD results with Kubo’s experimental results

Table 5.3 Parameters of Kubo’s setup

Module (mm) 4
Number o tecth 25/25
Base diameter (mm) 94
Outside diameter (mm) 108
Root diameter (mm) 90
Pitch diameter (mm) 100
Face width (mm) 15
Backlash (mm) 0.1
Pressure angle (deg) 20
Contact ratio 1.56
Mesh stiffness (N/m) 0.2587E9
Amplitude of STE (m) 0.2479E-5
Drive and load torques (Nm) 107.9
Static load (N) 2295

| L (kgm?) 0.1152E-2
I, (kgm®) 0.1152E-2
I, (kgm?) 0..1152E-2
Iy (kgm®) 0.5762E-2
Bearing stiffness (N/m) 0.3503E13
Bearing damping (Ns/m) 0.3503E6
Shaft damping ratio 0.005

harmonic follow the trend of the Kubo’s experiment results envelope. It predicts
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the jump which exists in the experiment. However the predicted main resonance

around the jump is observed at a slightly higher frequency.

5.4 Case Study III: Comparison of Results of NLGRD with Those of
Other Mathematical Models

Lin et al. (1994) have developed a four degree of freedom torsional
model. The equations are linearized by dividing the mesh period into small
intervals. Then the solution is obtained by iteration as follows: to start the
iteration process, initial values of the angular displacement were obtained by
preloading the input shaft with nominal torque carried by the system. Initial
values of the angular speed were taken from the nominal operating speed. The
calculated values of angular displacement and speed after one mesh period
were compared with the assumed initial values. Until the differences between
them were smaller than a preset tolerance, the procedure was repeated using the
average of the initial and the calculated values as the new initial condition. The

data related to this study is given Table 5.4.

The predictions obtained by NLGRD and Lin’s model are given in
Figure 5.7. It can be observed that, both NLGRD and Lin’s model predict the
subharmonic peaks at 3000 rpm and 6000 rpm. However Lin’s model gives the
main resonance at 12000 rpm whereas NLGRD predicts the main resonance at a
slightly lower frequency (11000 rpm). The trend observed in both results are
comparable. Both models predict the subharmonics at ', '/; of the main

resonance frequency.

Ozgiiven (1991) has developed a six degree of freedom non-linear
gear dynamics model and the program (DYTEM). It is an improved version of
the DYTE. The results of NLGRD are also compared with those of DYTEM

for the Kubo’s gears set.
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Table 5.4 Parameters of Lin’s gear set

Gear tooth Standard involute full-depth tooth
Module (mm) 3.18
Pressure angle (deg) 20
Number of teeth 28
Face width (mm) 254
Design load (N) 2540
Theoretical contact ratio 1.64
3 I T
—O—NLGRD
25 - - & --Lin /l}
2
[ , A “-A
@ 15 A :
2 e e
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Figure 5.7 Comparison of NLGRD results with Lin’s results

Both the results of NLGRD and the results of DYTEM are shown
in Figure 5.8. In Figure 5.8 both programs predicted the subharmonics but the
DSLR, found by NLGRD, is a little bit higher than the result of DYTEM. The
resonance frequency found by NLGRD is 12000 rpm whereas DYTEM predicts
it as 11000 rpm. The jump in the results of NLGRD is not as significant as the
jump in the results of DYTEM. Generally the results of NLGRD are in good
agreement with the results of DYTEM.
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5.5 Case Study IV: Effect of Mean Load

In this part the effects of mean load on DSLR, dynamic transmission
error, mesh stiffness and static transmission error are studied. While keeping ail
the parameters of the Kubo’s setup fixed, the mean load is increased to two
times of the design load and then three times of the original design load. In
Figure 5.9 the results of NLGRD for different mean loads are shown. Figure
5.10 shows the mesh stiffness calculated by LDP for different mean loads. As
shown in Figure 5.9 the results for different mean loads almost coincide with
each other. This suggests that it will be convenient to use the same DSLR for
off design loads. These results do not imply that maximum dynamic force

remains constant. Although the DSLR is the same for different mean loads,
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Figure 5.10 Effect of mean load on mesh stiffness
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dynamic forces change, since the mean load is not the same at each case. As it is
seen in Figure 5.10 the mesh stiffness tends to increase with the increasing mean

load.
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Figure 5.11 Effect of mean load on static transmission error

Static transmission error for different mean loads are plotted in
Figure 5.11. It is seen that both single tooth contact and double tooth contact
part of the static transmission error graph increase with increasing load. As a
result the jump amplitude increases too. STE certainly depends on the

deflections of the tooth through the applied load.

Figure 5.12 shows the dynamic transmission error for different
mean loads. In Figure 5.12 it is seen that dynamic transmission error increases
with increasing mean load. In fact this increase in the amplitude of dynamic
transmission error is the effect of mean load through STE. Although the DSLR
which is simply the maximum dynamic force over mean load, is the same for

different analyses, it is seen that dynamic transmission error which has direct
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relation with dynamic forces is not the same. This implies high noise and high

dynamic forces when mean load increases.

When the jump magnitudes versus load to design load ratio are
plotted in Figure 5.13, it is observed that there is almost a linear relation
between jump magnitude and load to design load ratio.

High STE does not always implies high DSLR but the magnitude of
the jump in STE causes high dynamic forces. There is a linear relation between
load to design load ratio and jump magnitude which is the main cause of
dynamic forces. As the mean load is increased, the dynamic force increases as a
result of high jump in STE, nevertheless the ratio of dynamic forces to static
forces tends to remain constant. It can be said that DSLR is a system property
which is determined by the system parameters. It is independent of the applied

mean load. The dynamic transmission error also increases with mean load.

5.6 Case Study V: Effect of module

In this part, effect of gear module on DSLR, mesh stiffness and STE
are studied. All the parameters of the Kubo’s setup other than module is kept

the same and module has been changed.

Mesh stiffness which is calculated by LDP for different modules are
shown in Figure 5.14. It can be seen in Figure 5.14 that, as the module is
increased the mesh stiffness increases for single tooth contact, whereas it
decreases for double tooth contact. However the average mesh stiffness remains

the same.

In Figure 5.15 STE calculated by LDP for different modules are
shown. As it is seen in Figure 5.15 both STE and the magnitude of jump

decrease as the module increases. However contact ratio does not change.
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Frequency response of the system for different modules are plotted
on Figure 5.16. It can be that DSLR decreases as the module is increased due to
the high STE, and the resonance frequency shifts to lower frequencies since the
gear mass increases. The tooth separation becomes more significant at small
modules, since the magnitude of jump in the excitation displacement, which is

given by the difference between maximum and minimum values of STE, attains

larger values for smaller modules.
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Figure 5.14 Effect of module on mesh stiffness

In Figure 5.17 maximum DSLR versus module is plotted.
Logarithmic regression fits the data best. In Figure 5.18 log (Max DSLR)

versus log(Module) is plotted, and the equation of the linear regression line is

obtained as:
log(Max. DSLR) = —0.3718log(Module) + 05758 5.1)

In Figure 5.19 Equation 5.1 is plotted for a wide range of modules.
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Figure 5.15 Effect of module on static transmission error

The marked points show the values calculated by NLGRD. The square ones are
used in regression analysis, and the triangles are used to compare with the
empirical predictions, which are represented by the continuos line. When
module is very large, maximum DSLR approaches to zero. When module is
small, amplitudes of Maximum DSLR attains larger values. Table 5.5 shows
maximum DSLR calculated by using NLGRD and the empirical equation. The

extrapolation is observed to be very successful.

In the second attempt, gear pair is moved to the middle of the
second shaft and NLGRD is ran for modules 2, 2.5, 3, 4, 5 mm. The maximum
DSLR versus module is plotted in Figure 5.20 and linear regression is made.

The equation of the regression is :

log(Max. DSLR) = —0.45431og(Module) + 05857 (5.2)

In Figure 5.21 Equation 5.2 is plotted for a wide range of modules
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Table 5.5 Empirical and calculated DSLR

Module (mm) Max DSLR (NLGRD) Max. DSLR (Empirical)
10 1.563 1.599
20 1.278 1.244

and compared with the calculated Maximum DSLR. Equation 5.2 is successful

in interpolation. It is also successful in extrapolation up to module
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Figure 5.17 Maximum DSLR versus Module graph

10 mm however after 10 mm it is not successful. DSLR falls suddenly under
unity for modules larger than 20 mm which seems unlogical.

In order to improve accuracy, the data points 10, 15, 20, 25 mm are

included in the regression analysis. In Figure 5.22 it is seen that the data points

have a curvature, so a parabolic polynomial is fitted. The new equation is :

Jog(Max. DSLR) = 0.154910g” (Module) - 0.62141og(Module) + 0.6264 (5.3)
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The coefficient of the second order term of Equation 5.3 is
significant which justifies using a parabolic equation. Then Equation 5.3 is
plotted for a wide range of module values in Figure 5.23. The new data points
and higher order regression analysis has improved the trend of the empirical
formula at high module values and for high modules empirical formula estimates
maximum DSLR values higher than unity which is logical. Table 5.6 shows
maximum DSLR calculated by NLGRD and empirical equation results. The
error between DSLR calculated by NLGRD and those predicted by Equation
5.3 is very small.

Table 5.6 Empirical and calculated DSLR

Module (mm) Max DSLR (NLGRD) Max. DSLR
(Empirical)

10 1.409 1.428

15 1.295 1.273

20 1.223 1.188

25 1.139 1.136

When the gear pair is near the bearings, it is seen that there is a
logarithmic relation between maximum DSLR and module, and a straight line in
log-log scale is able to successfully predict the maximum DSLR at modules
other than those used for the regression analysis. But when the gear pair is
moved to the middle of the second shaft, and shaft and bearing effects become
significant, then a second order curve in log-log scale represents the relation

between maximum DSLR and module better.

5.7 Case Study VI: Effect of Center Distance

In this case study the effect of center distance modification on the
DSLR, STE and mesh stiffness is studied. Kubo’s test rig is used as a model.
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In Figure 5.24 the effect of center distance on mesh stiffness is shown. As it is
seen in Figure 5.24, when the center distance increases, the mesh stiffness
function assumes curvature and single tooth contact part starts covering the
whole mesh period. Thus it reduces the average mesh stiffness. The amplitude
of single tooth contact and double tooth contact parts do not change much,

though.

Effect of center distance on STE is shown in Figure 5.25. This is the
counterpart of the mesh stiffness function. Center distance has the same effect
on STE. Figure 5.25 shows that the single tooth contact part of STE starts
covering the whole mesh period since the ratio of single tooth contact period to

mesh period increases as the center distance increases

Table 5.7 tabulates the theoretical contact ratio and pressure angle
for different center distances. Table 5.7 shows that contact ratio decreases as

the center distance increases. This validates the results of LDP.

Table 5.8 tabulates the average mesh stiffness, amplitudes of STE
and torsional resonance frequency for different center distances. It can be
observed from Table 5.8 that average mesh stiffness decreases with increasing
center distance. In Figure 5.24, although the amplitudes of single tooth contact
and double tooth contact parts of the mesh stiffness do not change. Their period
ratio changes, and therefore average mesh stiffness approaches to the amplitude
of the single tooth contact part of mesh stiffness function. Since the average
mesh stiffness decreases, the torsional resonance frequency decreases too. As
the center distance increases, amplitude of STE decreases, therefore the

amplitude of vibration is expected to decrease.

Figure 5.26, Figure 5.27 and Figure 5.28 show the FFT
approximation of STE for center distances 100 mm, 102 mm and 102.5 mm,
respectively. In Figure 5.26 where period of high and low amplitude parts of

STE are almost equal, the single harmonic is sufficient to approximate the
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general shape of STE. However in Figure 5.27 and Figure 5.28 where the high

Table 5.7 Contact ratio and pressure angle for different center distances

Center distance (mm) [ Contact ratio | Pressure angle (deg)
100 1.51 20
100.5 1.40 20.72
101 1.29 21.45
102 1.09 22.84
102.5 1.0 23.5

Table 5.8 Mesh stiffness, STE and resonance for different center distances

Center distance Average mesh stiffness (N/m) | Amplitude of STE { Resonance
(mm) (m) RPM
100 0.2258E9 0.20263E-5 11967.6
100.5 0.21033E9 0.22434E-5 11550.4
101 0.19495E9 0.22091E-5 11120.2
102 0.16809E9 0.14467E-5 10325.7
102.5 0.15282E9 0.87478E-6 9845 4

amplitude and low amplitude parts of STE are not equal, higher harmonics
contribute to the shape of approximation. Therefore higher harmonics must be
included in the analysis of gear pairs which have low contact ratio. Figure 5.29
and Figure 5.30 show the amplitudes of harmonics of STE and change of DLSR
with rotation speed for different center distances, respectively. It can be
observed that for center distances 100 mm, 100.5 mm and 101 mm, the
amplitudes of the first harmonics are almost the same, therefore in Figure 5.30
the trend of DSLR graph is almost the same around the resonance region which
is mainly dominated by the first harmonic of STE. In Figure 5.29, the amplitude
of second harmonic of STE for center distance 102 mm is larger than the first
harmonic amplitude. This results in a subresonance peak amplitude higher than

main resonance peak amplitude, as can be seen in Figure 5.30.
The main effect of the center distance in this example is the
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changing contact ratio through mesh stiffness function and STE function. As the

center distance increases, the contact ratio decreases. This results in small
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Figure 5.24 Effect of center distance modification on mesh stiffness
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Figure 5.25 Effect of center distance modification on STE
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average mesh stiffness and low STE amplitude. However it is observed that for
a specific configuration and a data set up, to a critical value (101 mm in this
case) center distance does not effect the frequency response around resonance.
At some critical contact ratio (102 mm in this case) at which there exists a
sudden impulse in STE function, the amplitudes of higher harmonics can
overtake the amplitude of the first harmonic which results in a subresonance

peak amplitude higher than the main resonance peak amplitude.

5.8 Case Study VII: Parabolic Profile Modification

The explanation for the change of the static transmission error and
mesh stiffness in time lies in the conjugate action of gears. The number of pairs
of teeth in contact for a low contact ratio spur gear pair oscillates between one
and two. This leads to a sudden increase or decrease in the mesh stiffness hence,
results in the variation of the static transmission error. One way to reduce this
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Figure 5.26 FFT approximation of STE (center distance = 100 mm)
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variation is to modify the profile of the gear tooth (by relieving the tip/root of
gear tooth) such that one tooth starts unloading when the second tooth makes
initial contact. This process, called tooth modification, reduces the chance of

premature gear tooth impact.

For convenience, the same amount and the same length of profile
modifications are assumed to be applied to the tooth tip of both pinion and gear.
Since modifying the root of one member has the same effect as modifying the
tip of mating member. The amplitude of applied profile modifications used in
Kubo’s system are listed in Table 5.9

Mesh stiffness functions for different amount of parabolic profile
modifications are plotted in Figure 5.31. Figure 5.31 shows that the jump in the
mesh stiffness graph takes a more smooth form as the amount of applied profile

modification is increased.

Table 5.9 Magnitudes of parabolic modifications

CASE STUDIES AMOUNT (mm)
No profile modification 0

Case A 0.005

Case B 0.008

Case C 0.01

Figure 5.32 shows the STE for different amount of parabolic profile
modifications. It is seen that the lower part of the STE approaches the higher
part of STE and takes a curvature form. As a result the main reason of gear

vibrations, sudden jump in STE diminishes.

Figure 5.33 and Figure 5.34 show the FFT approximation of STE.
These figures suggest that more harmonics are necessary to model the sudden
jump in no profile modification case. In Figure 5.34 it is observed that a square

wave model of STE is insufficient to simulate the effect of real STE function.
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Amplitudes of STE harmonics for different amount parabolic profile
modifications are plotted in Figure 5.35. Amplitudes of first five harmonics
decrease with increasing amount of parabolic profile modification which implies

small vibration amplitude.

Figure 5.36 shows the DSLR versus frequency graph. It is seen that
application of parabolic profile modification decreases DSLR at all frequencies.

Figure 5.37 shows the dynamic forces on the bearing which is at the
left of the first shaft. It shows that dynamic forces follow the same trend of the

dynamic mesh forces.

Figure 5.38 shows the dynamic forces on the bearing which
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Figure 5.31 Effect of parabolic modification on mesh stiffness

Figure 5.38 shows the dynamic forces on the bearing which is at
right end of the first shaft. This figure shows that dynamic forces on this bearing

decrease at all frequencies as a result of applied modification.
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Figure 5.32 Effect of parabolic modification on STE

The maximum DSLR is plotted against the amount of parabolic
profile modification in Figure 5.39. Figure 5.39 shows that there is a linear
relation between maximum DSLR and the amount of parabolic profile

modification within the limits of this study.

Application of parabolic profile modification decreases the DSLR as
expected. As the amount of parabolic profile modification is increased both
mesh stiffness and STE function start taking a smoother shape so the sudden
jump in these graphs diminishes. Therefore the amplitudes of harmonics which
directly effect the DSLR graph decrease. It is concluded that using square wave
model for STE in case of parabolic profile modification may give wrong results.
It is seen that there is a linear relation between the amount of parabolic profile

modification and maximum DSLR.

5.9 Case Study VIII: Linear Profile Modification
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In this case study the effects of linear profile modification on DSLR,
STE, harmonics of STE and mesh stiffness are studied and compared with those
of the parabolic profile modification. The amplitudes of the linear profile

modifications used are given in Table 5.10

Table 5.10 Magnitudes of linear modifications

CASE STUDIES AMOUNT (mm)
No profile modification 0

Case A 0.005

Case B 0.007

Case C 0.008

Case D 0.01
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Figure 5.33 FFT approximation of STE (no modification)
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The mesh stiffness which is calculated by LDP for different amounts of linear
profile modifications are shown in Figure 5.40. Figure 5.40 shows that the mesh
stiffness function assumes a smooth form as the amount of linear profile
modification is increased. Therefore the difference between the maximum and
minimum values of the mesh stiffness decreases. Figure 5.41 shows STE which
is calculated by LDP for different amounts of linear profile modification. It is
seen that as the amount of modification is increased the STE functions becomes
a constant line and the jump diminishes. Since the main cause of the gear
vibration is the sudden jump in STE it is expected that the amplitude of

vibration will decrease.

Figure 5.42 and Figure 5.43 show the amplitude of STE harmonics
and DSLR respectively. In Figure 5.42 the amplitudes of all harmonics
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Figure 5.40 Mesh stiffness for different linear profile modifications
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Figure 5.42 Amplitudes of STE harmonics for different linear modifications
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Figure 5.43 DSLR for different linear profile modifications

decreases as a result of linear profile modifications. Figure 5.43 shows that

DSLR decreases as the amplitude of linear profile modification is increased.

Figure 5.44 and Figure 5.45 show the dynamic force on the on the
left and the right bearings, respectively. It is seen that application of linear

profile modification decreases the dynamic forces on both bearings as well.

In Figure 5.46 the maximum DSLR is plotted against the amount of
linear profile modification. It is observed that there is a linear relation between
the amount of profile modification and Maximum DSLR within the limits of this
study.

This case study shows that linear profile modification is effective in
reducing both the dynamic mesh force and the dynamic bearing force as it is
stated by other authors. Linear profile modification reduces the dynamic mesh

force by giving a smooth form to both mesh stiffness and STE.

Figure 5.42 and Figure 5.43 suggest that there is a direct correlation
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between the magnitudes of STE harmonics and DSLR. Although dynamics of
the geared rotor system has important aspects in the analysis, one can approach
the problem purely from an excitation point of view in order to decrease the

dynamic mesh force.

Comparing Figure 5.43 with Figure 5.36 it can be said that linear
profile modifications are more effective in reducing the DSLR than parabolic
profile modifications. Both modifications do not change the contact ratio.
Figure 5.46 and Figure 5.39 show that the slope of the line giving maximum
DSLR is steeper for linear profile modification than for parabolic modification.
Therefore it can be concluded that gears with parabolic modifications are much
less sensitive to changes in the amount of modification compared to gears with
linear modifications. Therefore it is expected that dynamics of parabolic profile

modifications of gears would be less affected by manufacturing tolerances.
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Figure 5.44 Effect of linear modification on left bearing force
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In this case study tooth separation is studied and several plots giving
the change of DSLR and dynamic transmission error with tooth separation are

presented.

In this case study the module of the Kubo’s setup is reduced to 2
mm since case study VI shows that gears with small modules are more sensitive

to tooth separation. The amount of applied backlash is given in Table 5.11

Figure 5.47 and Figure 5.48 show the DSLR for different

Table 5.11 Amount of backlash

CASE STUDIES AMOUNT (mm)
No backlash 0

Case A 0.005

Case B 0.05

Case C 0.1

backlash amplitudes and damping ratio. In Figure 5.47 when backlash is
introduced, resonance frequency shift from 24000 rpm to 20500 rpm and DSLR
decreases since the mesh stiffness decreases (as the time spent in backlash

region increases, the average mesh stiffness decreases).

Figure 5.47 and Figure 5.48 show that backlash has no effect on DSLR in
subharmonic regions where dynamic transmission error is not large enough to
cause tooth separation. When the damping ratio is reduced from 0.1 to 0.08 the
jump at the resonance becomes more apparent in Figure 5.48. The peak of the
system with 0.005 mm backlash (Case A) is larger than the peak of he system
with 0.05 mm backlash (Case B).

Figure 5.49 and Figure 5.50 show dynamic transmission error for
mesh damping ratio of 0.1 and 0.008 for Case A, respectively. Comparison of
Figure 5.49 and Figure 5.50 shows that double sided impact has become more
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apparent as the damping ratio is decreased which results in an increase in the

average mesh stiffness.

Figure 5.51 and Figure 5.52 show the dynamic transmission error between gears
for mesh damping ratio of 0.1 and 0.008 for Case B. Figure 5.51 and Figure
5.52 show that Case A has single-sided impact in both cases.

Up to a certain frequency the system is certainly linear since tooth separation
does not take place, however when it reaches to the speed at which backlash is

effective (20500 rpm in this case ) tooth separation occurs

and dynamic transmission error suddenly increases as there is no restoring force

in the system. This causes a sudden increase in DSLR as well.

As the backlash is increased from zero up to a certain value, first
double-sided impact then single-sided impact take place. Once tooth separation
occcurs, a further increase in backlash does not affect the system response at

this speed.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

In this thesis, firstly, the computer code NLGRD developed for
nonlinear dynamic analysis of gear-shaft-bearing systems, is modified further to
compute dynamic bearing forces and make a modal analysis of the
corresponding linear system. A user interface which is written in VB 5.0 is also
added to the program which allows the user to model the system more easily by
using graphical construction. Thus user errors in modeling are tried to be
minimized by this new visual interface. Although there exist several dynamic
models which consider spur gears, they are neither as accurate as NLGRD for
complex configuration nor as professional as the interface of NLGRD.
Therefore, the resulting model and the computer code is the most advanced one

developed until now.

The dynamic model consists of finite element models of two shafts
that are coupled by a typical nonlinear three degrees of freedom spur gear
model, which had been used successfully by other authors. The finite element
modeling allows one to construct any possible configuration for a single stage
gear mesh such as a gear pair on simply supported shafts or overhung shafis,
etc. It also allows the user to construct stepped shafis. Thus this new code,
NLGRD, has a flexible preprocessor that makes it possible to study more than

one configuration by the same computer program. Another important feature of
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this code is the solution technique. Backlash type nonlinearity in the three
degrees of freedom spur gear mesh is modeled by describing functions which
allows one to express the dynamic equations of a nonlinear system in frequency
domain. Hence nonlinear differential equations are simply converted into
nonlinear algebraic equations. Since only a limited number of coordinates are
affected from nonlinearity ( the three coordinates of the spur gear mesh) system
matrices are partitioned and a new method suggested in a previous study is used
to reduce the size of the problem to the number nonlinear coordinates and solve
them with an iterative process. This method reduces the computational time
considerably. Time variation of stiffness is considered in the model by taking the
average value of the mesh stiffness in the gear mesh interface, but including the
excitation effect of the time varying mesh stiffness through a periodic

displacement function representing loaded static transmission error.

In this thesis, secondly, results obtained by NLGRD are validated by
comparing them with Munro’s and Kubo’s experimental results. The results are
found to be in good agreement with the experimental results, although some
deviations are observed. Reasons for these deviations are explained in the

related sections.

The results obtained by NLGRD are also compared with the results
obtained from the models of Ozgiiven (1988b) and Lin (1994). The change of

dynamic to static load ratio with rotating speed is found to be similar.

In the last part of this thesis, several parametric studies are
performed to understand the effects of several parameters on dynamic behavior
of the geared rotor systems, such as mean load, module, center distance,
parabolic profile modifications and linear profile modifications. The effect of
tooth separation is also studied. In this study the following conclusions are

drawn :
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Mean load increases the static transmission error as well as the difference
between the maximum and minimum values of the static transmission error,
which in turn, however does not change the dynamic to static load ratio.
This suggests that dynamic to static load ratio is a system property which is
independent of the transmitted load and therefore the same dynamic to static
load ratio can be safely used at off design loads. Dynamic load itself and

dynamic transmission error increases, though.

As the module is increased static transmission error decreases since both
gear and tooth dimensions take larger values and so the difference between
maximum and minimum values of STE decreases too. This decreases the
dynamic load and therefore the dynamic to static load ratio. Dynamics of the
system is also affected from an increase in module since the equivalent gear
mass increases which in turn shifts the torsional resonance to lower

frequencies.

There is almost a linear relation between maximum dynamic to static load
ratio and module on logarithmic scale. An empirical equation is suggested
for the calculation of the maximum dynamic to static load ratio as a function
of gear module in a given geared rotor system. The following observations

are made as a result of this part o the study :

By using a few experimental data for different modules, the dynamic
response of a specific geared rotor configuration can be determined for all

possible gear modules at a certain speed.
As the relationship between dynamic to static load ratio and module is linear

on logarithmic scale, in an experimental study logarithmically increasing

values of modules are to be used.
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As the module takes larger values, maximum dynamic to static load ratio

approaches to unity.

A change in center distance changes contact ratio which affects the Fourier
components of static transmission error. A small change in contact ratio,
which in turn changes dynamic to static load ratio slightly do not affect the
Fourier components of static transmission error considerably up to a critical
value, after which higher harmonics overtake the main harmonic, and a
subharmonic peak takes larger values than the main resonance peak
amplitude. However, as the contact ratio is reduced further so that it
approaches to unity, dynamic to static load ratio approaches to unity but of

course, showing slight increases around resonance frequency.

When the contact ratio is integer, the difference between maximum and

minimum of static transmission error graph is minimum.

Case studies have shown that high loaded static transmission error does not
always imply high dynamic to static load ratio. The difference between
maximum and minimum values of static transmission error as well as the

shape of static transmission error curve are the basic factors determining the

dynamic response.

Rectangular wave approximation does not simulate static transmission error

when profile modification is applied.

Parabolic and linear profile modifications decrease dynamic to static load
ratio. There is almost a linear relation between maximum dynamic to static
load ratio and amplitude of modification. Linear profile modification is much
more effective than the parabolic profile modification in reducing dynamic to

static load ratio.
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The slope of the linear modification line is steeper than the parabolic one.
From manufacturing point of view, this shows that linear profile
modification is more sensitive to manufacturing errors and tolerances than

parabolic profile modification.

When there is tooth separation, the dynamics of the system becomes truly
nonlinear and resonance frequency shifts to lower frequencies since due to
backlash average mesh stiffness decreases. Damping value and the amount

of backlash have significant effects on double-sided impact.

As the backlash is increased from zero to a certain value, it is observed that
first double-sided then single-sided impact take place. Increasing backlash
beyond a critical value does not have an effect on dynamic to static load

ratio.

Although increasing backlash decreases the maximum dynamic to static load
ratio, it does not have any effect on dynamic to static load ratio at off

resonance and subresonances where tooth separation does not take place.

6.2 Recommendation

In this study a comprehensive finite element model is developed

mainly for the dynamic analysis of spur gears. The flexibility of the finite

element method is the main advantage of this code. Several different single

stage spur gear mesh configuration can be analyzed by the same code. This

model considers backlash in spur gear pair. The gear mesh interface is modeled

as a three degree of freedom spur gear model, which includes the relative

displacement along the pressure line between gear pair and rotational motion of

gears about their pivot points. Although this model works perfectly for spur

gears, a more advanced helical gear mesh interface can be inserted into the finite

element model.
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Blankenship and Singh (1995a) has developed a twelve degree of
freedom linear helical gear mesh interface. Having extended the interface to
include backlash, this dynamic gear mesh interface can be integrated in NLGRD.
So an improved version of NLGRD, which considers both helical and spur gears

can be developed.

In this case the number of nonlinear coordinates will increase. This
will result in a more complicated interface between two shafts. However,

attention must be paid to the iteration technique.

The user interface, Visual Geared Rotors (VGR), can be extended

to show the mode shapes of geared rotor system graphically.
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APPENDIXE A

A.1 Nomenclature of Spur Gears

Spur gears are used to transmit rotary motion between parallel
shafts; they are usually cylindrical in shape, and the teeth are straight and

parallel to the axis of rotation.

The terminology of gear teeth is illustrated in Figure A.1. The
pitch circle is a theoretical circle upon which all calculations are usually based.
The pitch circles of a mating gears are tangent to each other. A pinion is the

smaller of the mating gears. The larger is often called gear.

The circular pitch is the distance, measured on pitch circle, from a
point on one tooth to a point on an adjacent tooth. Thus the circular pitch is

equal to the sum of the tooth thickness and width of space.

The module is the ratio of the pitch diameter to the number of
teeth. The customary unit of length used is the millimeter. The module is the

index of gear tooth size in SI.

A pair of meshing gears, consisting of a pinion and a gear, must

have exactly the same module, of course, to mesh properly.

The addendum is the radial distance between the top land and the
pitch circle. The dedendum is the radial distance from the bottom land to the

pitch circle. The whole depth is the sum of the addendum and dedendum.

The clearance circle is a circle that is tangent to the addendum

circle of the mating gear. The clearance is the amount by which the dedendum
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in given circle exceeds the addendum of its mating gear. The backlash is the

amount by which the
Addendum circle
) / /
’,‘/ e \\ . .
Yy ;ﬂ/—x i Pitch circle
,/ Y \ Base circle
i Dedendum circle

Figure A.1 Nomenclature of gear teeth

Table A.1 Basic tooth dimensions

FORMULAS FOR TOOTH DIMENSIONS FOR
PRESSURE ANGLE OF 20 AND 25

Addendum m
Dedendum 1.25m
Working Depth 2m
Whole Depth (min) 2.25
Tooth Thickness m/2
Fillet Radius of Basic Rack 0.300m
Clearance (min) 0.25m
Clearance Shaved or Ground Teeth 0.35m
Minimum Number of Teeth
20 deg. 18
25 deg. 12
Width of Top Land 0.25m
m : module
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width of a tooth space exceeds the thickness of the engaging tooth

measured on the pitch circles.

A.2 Basic Tooth Dimensions

A tooth system is a standard which specifies the relationships
involving addendum, dedendum, working depth, tooth thickness and pressure
angle, for the purpose of standardizing cutting tool. The standard also achieves
interchangeability of gears of all tooth numbers but of the same pressure angle

and module.

Table A.1 lists the basic tooth dimensions for full-depth teeth having
pressure angles 20° and 25°. The 20° pressure angle is most widely used. The
25° angle tooth is used mostly when a pinion with the least number of teeth is

desired.

The addendum listed in Table A.1 are for gears having tooth
numbers equal to or greater than the minimum numbers listed, and for these
numbers there will be no undercutting. For a fewer numbers of teeth a

modification called the long and short addendum system should be used.
A.3 Contact Ratio

The contact ratio, a number which indicates the average number of
pairs of teeth in contact, can be calculated by Equation A.1

u,+u,

) A1
u, =, +af -1} -1 sin(6) A2)
4, =, +af -1’} -1, sin8) A3)
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where

r; and 3 : pitch circle’s radius of the driven and driving gear
a : addendum

1y . base circle radius

@ : Pressure angle

p : circular pitch

A.4 Varying the Center Distance

When a pair of meshing gears having involute teeth are separated by
increasing center distance slightly. Clearance or backlash, now exists between
the teeth. When the center distance is increased, new pitch circles having larger
radii are created because the pitch circles are always tangent to each other.
However the base circles are a constant and fundamental characteristic of the
gears. This means that an increase in center distance changes the inclination of
the line of action and results in a larger pressure angle. Notice, too, that a
tracing point on the new pressure line will still generate the same involute, the
normal to the tooth profiles still passes through the same pitch point, and hence

the law of gearing is satisfied for any center distance.

A second effect of increasing the center distance is the shortening of
the path of contact. The contact ratio can be defined as the length of the path of
contact to the base pitch. The limiting value of this ratio is unity.; otherwise,
periods would occur in which there would be no contact at all. Thus the center

distance cannot be larger than that corresponding to a contact ratio of unity.

141



APPENDIXE B

PROFILE MODIFICATION

For convenience the same amount and length of profile modification
are assumed to be applied to the tooth tip of both pinion and gear. Since
modifying the root of one member has the same effect as modifying the tip of
the mating member, all modification is assumed to be applied at the tooth tips.
Extra care must be taken in modifying the roots of gear teeth, because of their
complex geometry. This is particularly true for gears with small number of
teeth. In some extreme cases with low-contact-ratio gears, root modification
can destroy the effects of tip modification, making it preferable to employ only

tip modification.

The minimum tip relief should be equal to twice the maximum
spacing error plus the combined tooth deflection evaluated at the highest point
of single tooth contact. A typical tooth profile showing both the
unmodified(true involute) profile and a modified profile is illustrated in Figure
B.1. Note that although, in Figure B.1, the length of modification is shown as
vertical distance (parallel to axis of tooth), it is actually defined in terms of the

gear roll angle

The optimum length of tip relief will allow loading pass smoothly
from one tooth to the next. The length required depends on the contact ratio.
Tip relief should not extend to the pitch radius unless the contact ratio is at least
2.
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Figure B.1 Gear tooth with linearly modified tooth profile
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APPENDIXE C

USER MANUAL

C.1 Installation

The VGR version 2.0 is a user friendly interface which controls

several sub codes. These codes are :

e NLGRD version 2.0 (Non-Linear Geared Rotor Dynamics)

e LDP version 10.1 (Load Distribution Program)

e Pine version 1.0

NLGRD version 2.0 is a finite element program which computes the
dynamic to static load ratio, dynamic transmission error, bearing forces and

natural frequencies of a geared rotor sytem.

LDP version 10.1 computes the several key issues of gears by static
analysis, of which the loaded static transmission error has the most significance

for this study.

Pine version 1.0 converts the output of VGR version 2.0 to the

format of LDP version 10.1.

The four computer code, VGR, NLGRD, LDP and Pine must be

installed properly to run the VGR version 2.0.
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The VGR version 2.0 must be installed under the directory named :

C:\VGR\ Vgr20.exe

The NLGRD version 2.0 must be installed under the directory

named :

C:\VGR\NLGRD\Nlgrd20.exe

The LDP version 10.1 must be installed under the directory named :

C:\VGR\LDP\Ldp101.exe

The Pine version 10 must be installed under the directory named :

C:\VGR\PINE\Pine10.exe

C.2 Visual Geared Rotors

The Visual Geared Rotors (VGR) consists of two sub programs.

These are :

¢ NLGRD

e LDP

The VGR is able to prepare input data for both program. The LDP
part of the program is placed in frames named LDP and the NLGRD part of the
program is placed in frames named NLGRD. The parts which are common to
LDP and NLGRD are placed in frames named NLGRD/LDP. All units are in SI
standards. The units of the input data is indicated next to the input boxes.
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Before going further, firstly user must construct the system
geometrically, because the computer code, VGR, could automatically detect
the order and type of the basic elements. If system is constructed in a wrong
way. For instance clicking the stop button is forgotten, shaft one and two
cannot be differentiated or gear and pinion have the same code number which

may result in wrong matching of the input data.

When the user save the program files, VGR automatically creates

the following files :
o *vgr

o *ldp

e ‘*shp

e File.vgr

*vgr file holds the input data which is necessary for NLGRD
version 2.0 to run, basically the material and geometric properties of the basic

elements that are present is the system.

*1dp file holds the input data which is necessary for LDP version
10.1 to run. However the format of this file is not appropriate for LDP

version10.1. It must be converted by Pine version 1.0 through VGR version 2.0.

*.shp file holds the dimensions and place of basic object pictures in
it. Thus when a preexist file is opened VGR is able to construct the system
graphically.

File.vgr is a file which is automatically opened by NLGRD version
2.0. It holds the name of the input file name which is going to be read by
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NLGRD version 2.0 and the name of the other output files that is going to be

written by it. These are

e *mod (holds the modal analysis output)

e * dsl (holds the dynamic to static load ratio data)

e * brf (holds the bearing forces)

e *brd (holds the bearing displacements)

e * msh (holds the dynamic transmission error data)

When the user run the Pine version 1.0, File.pin is automatically
created under the directory in which Pine version 1.0 is placed. It contains the

source and the target file names. Pine version 1.0 automatically opens this file.
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