
A CONTENT-BOOSTED MATRIX FACTORIZATION TECHNIQUE VIA
USER-ITEM SUBGROUPS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EVIN ASLAN OĞUZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

DECEMBER 2014

Approval of the thesis:

A CONTENT-BOOSTED MATRIX FACTORIZATION TECHNIQUE VIA
USER-ITEM SUBGROUPS

submitted by EVIN ASLAN OĞUZ in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Nihan Kesim Çiçekli
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering Department, METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Dr. Ayşenur Birtürk
Computer Engineering Department, METU

Dr. Ahmet Kara
TÜBİTAK BİLGEM, ILTAREN

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: EVIN ASLAN OĞUZ

Signature :

iv

ABSTRACT

A CONTENT-BOOSTED MATRIX FACTORIZATION TECHNIQUE VIA
USER-ITEM SUBGROUPS

Oğuz, Evin Aslan

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Nihan Kesim Çiçekli

December 2014, 67 pages

This thesis mainly focuses on improving the recommendation accuracy of collabora-
tive filtering (CF) algorithm via merging two successful approaches. Since CF algo-
rithms group like-minded users, a technique called Multiclass Co-Clustering (MCoC)
is used in order to group like-minded users more effectively. Since, CF approaches
lack incorporating content information, a content-boosted CF approach that embeds
content information into recommendation process is used. In the MCoC, a user or an
item can belong to zero, one or more subgroups. Thus, it is possible to predict the
rating scores of users to items present in the same subgroup. However the prediction
results for all users and items are not obtained by MCoC, since a user or an item may
belong to zero subgroups. Therefore, content-boosted CF algorithm is applied to the
whole set of users and items besides subgroups and finally the results are merged.
The content-boosted approach, on the other hand, considers content information in
the recommendation process. As content, the genres of movies are embedded into
the item latent factor vector in the matrix factorization technique. To sum up, the
content-boosted algorithm is applied to the subgroups and the whole set, and the ob-
tained results are merged. Hence the recommendation accuracy is improved.

Keywords: Recommender Systems, User-item Subgroups, Content-boosted MF

v

ÖZ

İÇERİKLE ZENGİNLEŞTİRİLMİŞ GRUPLAMA İLE UYGULANAN MATRİS
AYIRMA TEKNİĞİ

Oğuz, Evin Aslan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Nihan Kesim Çiçekli

Aralık 2014 , 67 sayfa

Bu tezin asıl amacı, işbirlikçi filtreleme algortimasıyla elde edilen önerilerin doğru-
luk derecesini, başarılı iki algoritmayı birleştirerek arttırmaktır. İşbirlikçi algoritmalar
benzer kullanıcı grupları keşfedip, bu gruplar üzerinden öneri yaparlar. Bu tezde grup-
lar MCoC adı verilen bir gruplama tekniği ile keşfedilmektedir. Ayrıca, nesnelerin
içeriğinin öneri sürecine katılması için, içerikle zenginleştirilmiş bir teknik kullanıl-
maktadır. MCoC tekniğinde, bir kullanıcı veya nesne sıfır, bir veya daha fazla altgruba
dahil olabilir. Böylelikle, aynı altgruplara ait kullanıcı ve nesneler için o kullanıcıların
sözkonusu nesnelere yapacağı tahmini değerlendirmeler elde edilmektedir. Ancak bir
kullanıcı ve nesne hiç bir altgruba dahil olmadığında, işbirlikçi algoritma bütün kul-
lanıcı ve nesneler için tekrar koşturulup elde edilen tahmini değerlendirmeler MCoC
yöntemiyle elde edilemeyen değerlendirmeler için kullanılmaktadır. Diğer taraftan,
içerikle zenginleştirilmiş işbirlikçi algoritma ise öneri sürecinde nesnelerin içeriğini
göz önünde bulundurur. Film öneri sistemleri üzerinde çalışıldığından, içerik bilgisi
olarak filmlerin türleri kullanılmaktadır. Özetle, içerikle zenginleştirilmiş işbirlikçi al-
goritma altgruplar ve bütün kullanıcı nesne seti üzerinde uygulanmakta, ve sonuçlar
birleştirilmektedir. Böylece öneri sisteminin doğruluk derecesi arttırılmaktadır.

Anahtar Kelimeler: Öneri Sistemleri, Gruplama, İçerikle Zenginleştirilen matris ayırma

vi

vii

To my dear husband and my parents

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Nihan Kesim
Çiçekli for her expert guidance and supportive, encouraging approach throughout my
masters study and her effort and patience during the supervision of the thesis.

I would like to express my sincere appreciation to the jury members, Prof. Dr. Ahmet
Coşar, Assoc. Prof Dr. Halit Oğuztüzün, Dr. Ayşenur Birtürk and Dr. Ahmet Kara
for reviewing and evaluating my thesis.

I would like to thank my colleagues in TÜBİTAK BİLGEM / İLTAREN, who always
encouraged me and shared their experiences with me.

I would like to thank TÜBİTAK BİLGEM / İLTAREN for supporting my academic
studies.

I would like to thank my whole family, for making me who I am now with their
love, reinforcement, teachings and encouragement throughout my life. Especially, I
would like to thank my dad, who has been one step ahead of me to light my way;
and my brother, Suat Serdar Aslan, who made my life easier with his experience in
Mathematics during my masters study.

Finally my deepest thanks are to my husband, Hüseyin, for his endless patience, en-
couragement, support and delicious meals during this study.

ix

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Thesis Contributions . 3

1.2 Outline . 5

2 RELATED WORK AND BACKGROUND 7

2.1 Content Based Recommendation 10

2.2 Collaborative Filtering . 13

2.2.1 Neighborhood Models 16

2.2.2 Latent Factor Models 16

x

2.3 Matrix Factorization Techniques 17

2.3.1 Stochastic Gradient Descent 20

2.3.2 Alternating Gradient Descent 21

2.3.3 Singular Value Decomposition 22

3 CONTENT-BOOSTED COLLABORATIVE FILTERING AND USER-
ITEM SUBGROUPS . 23

3.1 USER-ITEM SUBGROUPS 23

3.1.1 Xu’s Algorithm 25

3.1.2 MCoC Problem Formulation 25

3.1.3 MCoC Solution 26

3.1.4 Embedding Subgroups into Recommendation . . . 30

3.2 CONTENT-BOOSTED COLLABORATIVE FILTERING . . 33

3.2.1 Chang’s Algorithm 33

3.2.2 Problem Formulation 33

3.2.3 Problem Solution 34

3.3 CONTENT-BOOSTED MATRIX FACTORIZATION VIA
USER-ITEM SUBGROUPS 36

3.3.1 Illustrative Example 41

4 EVALUATION AND EXPERIMENTS 53

4.1 Dataset . 54

4.2 Evaluation Metrics . 54

4.3 Experiments . 56

xi

4.4 Results and Discussions . 57

5 CONCLUSION . 63

REFERENCES . 65

xii

LIST OF TABLES

TABLES

Table 4.1 MAE and RMSE values. 57

Table 4.2 MAP and Precision@10 values. 59

Table 4.3 Percentage of subgroup vs. non-subgroup originated recommendation. 60

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 A hierarchy of proposed solutions to information overload problem. 2

Figure 1.2 A basic activity diagram of MCoC. 4

Figure 1.3 A basic activity diagram of our approach. 4

Figure 2.1 Collaborative Filtering. 14

Figure 2.2 User-item rating matrix. 17

Figure 3.1 Clustering methods. 24

Figure 3.2 Obtaining the partition matrix of users and items. 30

Figure 3.3 Embedding subgroups into recommendation. 32

Figure 3.4 Content-boosted Matrix Factorization. 36

Figure 3.5 Grouped and content-boosted Matrix Factorization. 37

Figure 3.6 Example user-item rating matrix. 42

Figure 3.7 Training matrix. 42

Figure 3.8 Test matrix. 42

Figure 3.9 Dcol matrix. 43

Figure 3.10 Drow matrix. 44

Figure 3.11 S matrix. 44

Figure 3.12 M matrix. 45

Figure 3.13 Partition & Normalized Partition matrix P. 46

Figure 3.14 First subgroup matrix. 47

xiv

Figure 3.15 Second subgroup matrix. 47

Figure 3.16 Third subgroup matrix. 47

Figure 3.17 User and item feature vectors of Content-Boosted Matrix Factor-
ization algorithm. 48

Figure 3.18 Merged subgroup matrix. 49

Figure 3.19 Merged matrix. 50

Figure 3.20 Prediction matrix after the seen items are removed. 50

Figure 3.21 Rating scores overlapping the test matrix 51

Figure 4.1 MAE values of four algorithms. 58

Figure 4.2 RMSE values of four algorithms. 58

Figure 4.3 MAP values of four algorithms. 60

Figure 4.4 Precision@10 values of four algorithms. 61

xv

LIST OF ABBREVIATIONS

RS Recommender System

CF Collaborative Filtering

SVD Singular Value Decomposition

MCoC Multiclass Co-clustering

MF Matrix Factorization

TMF Traditional Stochastic Gradient Based Matrix Factorization

GMF Traditional Stochastic Gradient Based Matrix Factorization via
Subgroups

CMF Content-boosted Stochastic Gradient Based Matrix Factoriza-
tion

GCMF Content-boosted Stochastic Gradient Based Matrix Factoriza-
tion via Subgroups

MAE Mean Absolute Error

RMSE Root Mean Squared Error

MAP Mean Avarage Precision

xvi

CHAPTER 1

INTRODUCTION

As the penetration of the Internet into human life and the technologies of managing,

accessing and distributing the information change dramatically, the difficulty of locat-

ing the right information at the right time is increasing. In order to solve this problem,

new research areas within computer science have emerged. The hierarchy illustrated

in Figure 1.1 indicates the relationship between these proposed solutions [17]. Rec-

ommender systems is one of these solutions, predicting user preferences based on

the analysis of the past behaviour of the user. They can be referred as information

processing tools that extract relevant or significant aspects.

The main reason why the research interest in this area is still very high is, the

practical significance of the problem of dealing with the information overload and

providing them with personalized recommendations, content and the service. Hence,

a number of online companies merged recommender systems with their services.

Some examples of such systems include, product recommendation Amazon, product

advertisement provided by Google based on the search history, movie recommenda-

tions by MovieLens, Netflix and Yahoo! Movies.

The recommendation problem, in its most common formulation, is reduced to

the problem of predicting ratings for the items that a user has not seen before. Once

a user’s ratings for all unrated items are estimated, the items predicted to receive the

highest ratings could be recommended.

Broadly speaking, recommender systems are designed based on the three differ-

ent techniques, namely, collaborative filtering (CF), content-based filtering and the

1

Information overload problem

Information filtering Information retrieval

Recommender systems

Content-based filtering Collaborative filtering

Neighborhood models Latent factor models

Figure 1.1: A hierarchy of proposed solutions to information overload problem.

hybrid approaches combining content-based and CF. The mostly preferred technique

is the CF since, it offers a higher recommendation accuracy compared to content-

based approaches, yet it lacks contributing content information into recommendation

process that could raise recommendation success. The main idea of CF is generating

recommendations based on the users’ past behaviours such as, previous transactions

and product ratings. Namely, a user is associated with a group of like-minded users

and unseen items that are enjoyed by other users in the group are recommended to

the user. The group of like-minded users usually consists of users that have rated

items similarly. However, two users that belong to the same group, may have totally

different tastes when some other item set is considered.

The neighborhood approach and latent factor models are the main branches of

the CF. Having highly allusive ability of describing various aspects of data, latent fac-

tor models attract attention. Some of the successful implementations of latent factor

models use Matrix Factorization (MF) technique [14]. The main idea of matrix fac-

torization is to map both users and items to a shared low dimensional space. In that

space high correspondence of users and items lead to recommendations. Yet, most

recent matrix factorization techniques neither consider that users that are present in

a group of like-minded users may not be in the same group if another item set is

available, nor take the content information into account while generating recommen-

dations.

2

1.1 Thesis Contributions

In this thesis we study recommendation in movie domain and address the following

two problems:

1. Obtaining user-item subgroups

2. Embedding content information into recommendation process

Following the idea that users may have varying tastes when different item sets are

available, we employ Multiclass Co-Clustering (MCoC) technique that is proposed

by Xu et al. [30]. MCoC is a clustering technique, that clusters users and items

into a predetermined number of subgroups. The user or item may belong to at most k

subgroups which is lower than the total number of subgroups say c, i.e. k < c.

In this clustering technique a user or an item can belong to zero, one or more

subgroups. These subgroups are used in order to predict a user’s rating to items that

share the same subgroup. The predictions are obtained by some CF algorithm and

then they are merged by a framework that handles cases where a user or an item

belong to zero, one or more subgroups. By this technique some, yet not all, predic-

tion scores are obtained. An activity diagram that summarizes the basic flow of this

technique is presented below in Fig. 1.2.

Secondly, since CF algorithms lack in terms of incorporating content informa-

tion in the recommendation process we use the idea that is proposed by Chang et

al. [11]. The idea is to embed content information into MF process. The attributes

of items are utilized as the content information. More specifically, they use movies’

genre information in order to get more accurate results. They embed this information

into item latent factor vectors and and rearrange user latent factor vectors accordingly.

In our approach we merge these two solutions in order to get more accurate re-

sults. In other words, after discovering user-item subgroups via MCoC we employ

the content-boosted matrix factorization, in order to get prediction results for these

user-item subgroups. Since we do not get all predictions by using MCoC technique

we propose to get prediction results for the whole user-item matrix without using

3

Discover user-item subgroups

Run CF on all subgroups

Merge predictions

Figure 1.2: A basic activity diagram of MCoC.

user item subgroups, and obtain missing predictions that are not found by the MCoC

technique. After that we merge all predictions that are obtained from subgroups and

content-boosted CF for whole user-item rating matrix. An activity diagram that sum-

marizes the basic flow of our approach is presented in Fig. 1.3.

Discover user-item subgroups

Run Content-boosted CF on all subgroups

Merge predictions
Run Content-boosted CF
on whole user-item matrix

Figure 1.3: A basic activity diagram of our approach.

4

1.2 Outline

The rest of the thesis is organized as follows:

Chapter 2, gives background information about recommender systems. Gives

detailed information about two widely used CF techniques, i.e. content-based filtering

and collaborative filtering. Then MF technique, widely used latent factor based CF

technique, is described. Three most widely used MF techniques are presented.

Chapter 3, presents user-item subgroups and content-boosted matrix factoriza-

tion techniques. First these two algorithms are described in detail. Then we describe

how the two algorithms are merged in this thesis.

Chapter 4, focuses on the evaluation and experiments. First, the dataset that

is used throughout experiments is described. Then, used evaluation metrics are pre-

sented. After that, performed experiments are explained in detail. Finally, the results

are presented.

Chapter 5, concludes our thesis. First the summary of our approach is pre-

sented. Then possible extensions that could be done in the future are explained.

5

6

CHAPTER 2

RELATED WORK AND BACKGROUND

A recommender system, in its most common formulation, can be referred as the

estimation of the item ratings that have not been seen by a user. In a recommender

system an item refers to an object that is recommended; and the user refers to in-

dividual to whom recommendation results are addressed [24]. The estimation of

ratings usually depends on the previous ratings given to items by this user and some

other information such as user features and context variables. Once ratings of yet

unseen items are estimated, the item(s) with the highest estimated rating(s) can be

recommended to the user.[2]

Shortly, the recommender systems can be described as software tools and tech-

niques that suggest items that appeal users [24, 16, 23, 4]. There are a number of

possibilities why recommender systems should be studied. Some of them could be

stated as follows: [24]

• Increasing the number of items sold

• Selling more diverse items

• Increasing the user satisfaction

• Increasing user fidelity

• Understanding of what the user wants more clearly

The recommendation task could be accomplished in various ways, since rec-

ommendation applies many distinct areas, such as e-commerce, music, movie etc.

7

Apparently recommendation needs of these areas are diverse. Hence there are many

approaches to deliver recommendations such as finding some good items, finding all

good items, recommending a sequence and recommending a bundle (a group of items

that fits well together are suggested) [24].

In order to solve this specific problem of recommendation; certain techniques

are proposed. F. Ricci et al. [24] categorize these recommendation techniques into

six classes, via a taxonomy provided by [24] and [4]:

1. Content Based

2. Collaborative Filtering

3. Demographic

4. Knowledge Based

5. Community Based

6. Hybrid Recommender Systems

Content Based: This system recommends items depending on the past activities of

the user. In fact recommending new interesting items to the user is accomplished via

a basic process, that mainly focuses on matching up the features of a user profile, in

which interests and preferences are stored, with the features of an item. The system

tries to recommend items which are “similar” to the ones a user liked in the past. The

term “similar” can be quantitatively derived according to the domain of the items.

For instance if recommendation is done in book domain since the author of Anna

Karenina and War and Peace are same, a user who likes the first one ‘may’ like the

second one also and vice versa. [21]

Collaborative Filtering: Schafer et al. [25] refers to collaborative filtering as “people-

to-people correlation”. As it can be deduced from the phrase this type of system rec-

ommends a particular user items that other users with similar tastes liked in the past.

The similarity in the rating history of the users are considered, while determining the

similarity in taste of users. In other words, this approach tries to find ‘peers’ of users

that share similar tastes in the specified domain. After that, items that are mostly liked

by the ‘peers’ of the particular user are recommended [20].

8

Demographic: This system mainly focuses on the demographic information of the

users. The key idea in this system is to generate different recommendations for dif-

ferent demographic niches. That is to say, demographic profile of the user is utilized

to recommend items. For instance, F. Ricci et al. [24] states that effective person-

alization solutions are offered based on demographic profiles of the users in many

web sites, such as dispatching web sites according to the language or country of a

particular user. Also customizing recommendations according to age can be shown

as another example. This approach is more popular in marketing literature compared

to recommender systems, therefore there are relatively little research in RS.

Knowledge Based: In this approach specific domain knowledge is used while recom-

mending items. The concepts of how certain items features meet user needs prefer-

ences and, how the item is useful for the user are examined carefully in this kind of

system. Knowledge-based systems are likely to work better than other recommender

systems at the beginning of their deployment, if equipped with learning components.

However, they may be overshadowed by other shallow methods that can take advan-

tage of the logs of the human/computer interaction (as in CF).

Community Based: This kind of system is mainly interested in preferences of the

friends of the users while recommending items. This technique is closely related

with the epigram “Tell me who your friends are, and I will tell you who you are”

[3]. It has been suggested that, people prefer to rely on recommendations from their

friends more than the recommendations comes from anonymous people [24]. Since

social network popularity is increasing nowadays, making use of friends information

makes sense. Still, the research in this type of recommender system is in its early

phase.

Hybrid Recommender Systems: This type of recommendation system is based on the

combination of early mentioned recommender systems. The idea behind using com-

bination of techniques is basic. For instance; if a hybrid system uses techniques A and

B, then this system tries to use advantages of A in order to diminish the disadvantages

of technique B and vice versa.

It is possible to give a concrete example from the literature. For instance, collab-

orative filtering methods lack suggesting items to the newly presented users since

9

they have no ratings at first. This is known as cold start problem. Content based

approaches, on the other hand, does not need rating information of the item. Because

it makes use of features of an item for recommendation. Hence combining these two

techniques could solve the new item problem that is present in collaborative filtering.

Since our focus will mainly be on Content Based Recommendation and Collab-

orative Filtering, they will be explained in detail below is Section 2.1 and 2.2.

2.1 Content Based Recommendation

Content based recommendation methods estimate the utility of an item i, by the help

of the utilities assigned by the user to items which are similar to i. For instance

while recommending movies to a user, the system tries to identify common features

of items that the user gave a high rating score in the past (these common features

could be subject matter, genres, directors, specific actors etc.). After that the movies

that have a high degree of similarity to the user’s preferences are recommended [2].

Profile based information retrieval methods have significant effect on most of the

content based recommendation techniques [2]. In profile based approaches each user

is represented by a profile containing information about the taste and preference of the

user. This information is obtained from the user explicitly via questionnaires through

signing up for the service or, learned implicity from transactional behaviour. Simi-

larly each item is represented by a profile that is gathered from the item descriptions

or item features. Usually the item profiles are defined by keywords, that represents

a set of most important words associated with the item. In order to determine the

importance of a keyword ki for an item dj a weighting measure wi j is identified.

There are many definitions of the weighting measure wi j. In information re-

trieval, the most used measure is the tf * idf measure, which stand for term frequency

* inverse document frequency. The importance of a keyword in a set is represented

by tf * idf measure. As it can be seen it is the product of two measures term frequency

and inverse document frequency. The term frequency stands for the number of times a

keyword appears for the corresponding item, that is to say frequency of the keyword

in item description. The inverse document frequency stands for the relevance of the

10

keyword in the set of all items. The idf is identified as the ratio of the number of items

containing the keyword to the number of all items. Shortly tf * idf of a keyword k in

an item d could be calculated by the following equation [2, 24].

tf * idf(d,k) = tf(d,k)*log(
|D|
df(k)

)

Here |D| refers to number of items present in the set and df(k) is the number

of items in the set which the keyword k appears. Normalization is applied in order

to balance different factors. It is possible to use other normalization techniques and

motives.

As mentioned earlier, content based systems recommend items similar to the

ones preferred by a user. In order to represent past preference of a user a vector of

keyword weights is constructed via keyword analysis techniques stated above. The

weight vector is matched with the item vectors of unrated items in order to compute

the utility score u(c,d). According to the utility score most similar items are chosen

for recommendation. The similarity is measured based on correlation and association

coefficients used in information retrieval and cluster analysis. Association coefficients

are widely used. Cosine coefficient is the most commonly used measure. So as to

calculate the cosine coefficient between a user profile vector a and an item profile

vector d the calculation below is used.

Cos(ta,td) =
ta.td
|ta||td|

Here ta and td are representing the tf*idf of the user and the item vector respec-

tively. Cosine measure is one of the many variants of the inner product similarity

measure such as inner product measure, dice measure and pseudo-cosine measure.

It is a version where Euclidean length normalization technique is employed and it

comes under the association coefficients.

Correlation coefficient is derived from Pearson product moment correlation co-

efficient which is used widely in statistics. Correlation coefficient is calculated by the

standard formula stated below

P(a,d) =
Cov(a, d)

σaσd

11

Here Cov(a,d) represents the covariance between a & d and σ represents the

standard deviation between the data set a and d.

There are several limitations of content based models such as overspecialization,

limited content analysis and new user problem, even though they are widely used

[2, 21].

Overspecialization

Recommender systems are expected to recommend a range of items to the users. If

not, a user is limited to be recommended items that are similar to those rated in the

past. For instance, a user with no experience with the French cuisine would never

receive a recommendation for trying even the greatest French cuisine in the neigh-

borhood. This problem is overcame by incorporating some randomness to the user

profiles.

Besides, the problem with overspecialization is not only recommending differ-

ent items that user has never seen before, but also recommending too similar items

that a user has already seen. For example, the user should not be recommended two

different news article mentioning the same event. To sum up, the diversity of recom-

mendations is desirable, since the users should not be presented a homogenous set of

items, instead a range of options.

Limited Content Analysis

Content based techniques are limited by the explicit keywords or features associated

with the objects that are going to be recommended. Hence effectiveness of these key-

words or features is of vital importance for each item in the set. So as to acquire these

explicit keywords or features either the content must be in a form that can be parsed

automatically or it must be assigned through an interactive task by users, assigning

the features or keywords manually from a list of most commonly used tags. While

the first method is trivial by making use of information retrieval techniques, the other

one is a challenging tasks since users are usually are not interested in providing other

than minimum required data. Thus the text documents are easy to cope with since

automatic extraction techniques applies. On the other hand, domains like multimedia

data, graphical images, audio streams and video streams have an intrinsic problem

12

with automatic feature extraction.

The other problem with limited content analysis is that, if two distinct items are

associated with the same set of features or keywords, it will be hard to distinguish

these two items. For instance, since text based documents are usually associated with

their most important keywords, content based systems will lack in terms of distin-

guishing between a well written article and a badly written one, if they have the same

set of keywords.

New User Problem

This problem is also known as cold start problem in all types of recommendation

systems. As mentioned before content based recommenders recommend items to

users according to the past behaviour of the users. Therefore the user has to rate a

sufficient number of items before the recommender system infers user preferences

and interests and generate recommendations accordingly. Hence a new user who has

rated a few items is not going to be presented non-trivial recommendations.

2.2 Collaborative Filtering

In contrast with content based recommendation methods, collaborative filtering meth-

ods try to predict the adequacy of items for a user by making use of past behaviour of

other users that are similar to the user, as it is illustrated by Mortensen [17] in Figure

2.1. For instance, in a movie recommender system the recommendations presented

to a user is based on the "peers" of the user that is found by the collaborative rec-

ommender system. Collaborative recommender systems try to find users who have

similar taste in movies, i.e. rate the same movies similarly, in order to assign peers of

a user. Thus, the user will only be suggested to the movies that are most liked by the

"peers" of the user.

There are two primary approaches for collaborative filtering systems:

• Neighborhood Models

• Latent Factor Models

13

User Profile

Taste space
 of Profiles

Filtering
Algorithm

Recommendation

Figure 2.1: Collaborative Filtering.

Neighborhood models are the most common approach to collaborative filtering.

The main idea of this approach is using the similarity of users or items. For exam-

ple, two users are considered to be similar if they have rated the same set of items

similarly.

Latent factor approaches, on the other hand, represents users and items as vectors

in the same latent factor space through a reduced number of hidden factors. Therefore,

users and items could be compared directly such that, the rating of a user to an item

is predicted by the proximity (inner product for instance) between the related latent

factor vectors [5].

Collaborative recommender systems do not face shortcomings that are encoun-

tered in content based recommender systems, as these systems use other users ratings

and they are able to recommend items independent from their contents. Yet collab-

orative recommender systems have their own limitations such as sparsity, new user

problem and new item problem [2].

Sparsity

In any recommender system the number of items that need to be predicted is usually

much more than the number of items for which ratings have already been acquired.

Therefore it is important to generate effective predictions from a small number of

14

known ratings. Likewise, a collaborative recommender systems’s success depends on

whether a critical mass of users is available or not. For instance, considering movie

recommendation system, there may be many movies that are rated by only a few

users. Even though they get high scores from only a few users, these movies have a

smaller chance to be recommended. Further, the systems will not be able to find peers

of the users whose tastes are unusual when compared to the rest of the users, leading

to poor recommendations.

One way to deal with the problem of sparsity is to incorporate user profile in-

formation while calculating similarity of users [22]. Namely, two users could be

considered similar if they belong to the same demographic segment, besides having

rated the same movies similarly. The other way to address the problem of sparsity

is to use associative retrieval frameworks in order to explore transitive associations

among users through their past activities and feedback [10].

New User Problem

This problem resembles to the problem in content based recommender systems, since

the systems must learn the user’s preferences and interests to give adequate recom-

mendations.

Several techniques proposed in order to solve this problem and most of them use

hybrid recommendation through combining collaborative and content based recom-

mender systems. An alternative approach is to make a new user to rate a set of items

that is prepared before. Therefore a number of rating will be available for the system

to generate successful recommendations [2].

New Item Problem

New items are always added to recommender systems. Since collaborative systems

are based solely on the user’s preferences, the system will not be able to recommend

the newly added items unless they are rated by a substantial number of users. Hybrid

approaches are addressed in order to solve this problem.

15

2.2.1 Neighborhood Models

The predictions done by neighborhood models are based on the relationships of

similar users or items.

Algorithms based on the user-user similarity predict rating of an item for a

particular user according to the ratings expressed to the same item by the similar

users of this particular user. Algorithms based on the item-item similarity, on the

other hand, compute the user preference for a particular item according to the ratings

of the user given to similar items in the past. Item-item similarity is more preferable

since number of items are typically smaller when compared to the number of users

[5].

The crucial part of the neighborhood model is the similarity computations. There-

fore mechanisms such as Pearson Correlation and Vector Cosine Similarity are used

while detecting the similarity of the users or items [28, 26].

2.2.2 Latent Factor Models

Latent factor models predict the rating by characterizing both users and items on for

example 5 to 100 factors that are inferred from rating patterns. For

example, if movie domain is concerned; the meaning of factor changes according

to the users and items (movies). For users, each particular factor measures how much

the user likes movies which have a high score on the corresponding movie factor. For

movies, the discovered factors may measure obvious dimensions such as horror ver-

sus drama, orientation to children or adults, amount of action; non-trivial dimensions

such as strangeness or depth of a character development; or entirely un-interpretable

dimensions [14].

Matrix factorization methods play a key role in some of the most successful

realizations of latent factor models [14], as well as SVD methods. These techniques

are discussed in detail in section 2.3.

16

3 - 2 - 5 ... -

- 2 - 5 - ... 4

...

4 - 5 - 4 ... 1

i(m)

u(2)

u(N)

i(1)

u(1)

i(M)

Figure 2.2: User-item rating matrix.

2.3 Matrix Factorization Techniques

Matrix factorization technique, being a hot research topic, has been studied by many

researchers [12, 8, 6, 31, 9, 13].

Matrix factorization, in its basic form, characterizes users and items through vec-

tors of factors inferred from item rating patterns. In fact recommendations are elicited

by a high correspondence between user and item factors. As a result of combining

both good scalability and predictive accuracy, these methods have become very pop-

ular in recent years. Furthermore, they are very flexible in terms of modeling various

real life situations.

Recommender systems are based on different types of input data. The input

data is often placed in a matrix with one dimension representing users and other

dimension representing items of interest. High quality explicit feedback, including

explicit input of users regarding their interests in items, is the most convenient data

for the recommender system. One example of explicit feedback may be shown as

star rating that Netflix collects for movies. The term explicit feedback is going to

be referred as ratings from now on. Since any user probably rate a small percentage

of the available items, the ratings will compose a sparse matrix. An illustration of

user-item rating matrix can be seen in Figure 3.6.

One strength of matrix factorization is that additional information could eas-

ily be incorporated to matrix factorization. For example, when explicit feedback is

not available, user preferences can be inferred by recommender systems from user’s

behaviour, such as browsing history, search pattern, purchase history etc. Since im-

plicit feedback is based on presence or absence of an event, the representation is going

17

to be a densely filled matrix.

There are three well known techniques of matrix factorization. They are stochas-

tic gradient descent, alternating gradient descent and singular value decomposition.

Stochastic gradient descent and alternating gradient descent are based on the same

model which is referred as "Basic Matrix Factorization Model". However, singular

value decomposition uses a model which is a little bit different from these techniques.

Therefore first the notion of "Basic Matrix Factorization Model" is explained, then

stochastic gradient descent and alternating gradient descent models are presented,

and finally singular value decomposition is discussed.

Basic Matrix Factorization Model

Matrix factorization models are based on mapping users and items to a joint latent

factor space of dimensionality f to model user item interactions as inner products in

that space [18].

Let rui denote the rating of user u to item i, for a given set of users U = {u1, ...,

uN}, and set of items I = {i1,..., iM}. These ratings compose a user-item matrix, R =

[rui]N ×M . The value of rui is usually a binary value indicating "like" and "dislike"

or a certain range containing integer values, indicating different levels of preferences

(e.g., rui ∈ {1, ..., 10}), even though it can take any real valued number.

Since the rating matrix R is highly sparse because of unknown entries, the set of

known indices is denoted as follows:

T = {(u,i) : rui is known}

The goal of the recommender system is to predict the rating, r̂ui, that user u

would give to item i, for an unknown user item pair. Moreover let Tu. be the set of

items that have been rated by user u, and T.i be the set of users who rated item i be

denoted as follows:

Tu. ≡ {i : (u,i) ∈ T}

T.i ≡ {u : (u,i) ∈ T}

18

As mentioned above, matrix factorization uses all known ratings to decompose

the rating matrix R into the dot product of two low-rank latent feature matrices in

order to predict unknown ratings in R. User latent features are represented by PN ×K ,

and item features are represented by QM ×K

R ≈ R̂ = PQT =



p1

p2

p3

.

.

.

pN


︸ ︷︷ ︸
N ×K

[
q1

T q2
T q3

T ... qM
T

]
︸ ︷︷ ︸

K ×M

(2.1)

Each user is associated with a vector pu ∈ Rf where (u = 1,2,...,N), and each item

is associated with a vector qi ∈ Rf where (i = 1,2,...,M). These feature vectors are K

dimensional vectors, where K � min{M,N}. For a user u, pu represents the amount

of interest that the user has in items that are high on the corresponding factors either

positive or negative. Likely, for an item i, the elements of qi represents the amount

that item possesses those factors, again either positive or negative. The result of the

dot product puqi
T captures the user u’s overall interest in the item i’s characteristics.

This result, is an approximation of user u’s rating for the item i, denoted by rui, leads

to following estimation.

r̂ui = puqi
T (2.2)

The main challenge is the mapping of each item and user to factor vectors

pu, qi ∈ Rf . After this mapping is completed by the recommender system the rating

a user will give to any item can easily be estimated by using Equation 2.1.

19

The factorization of Equation (2.1) can be achieved by solving the following

optimization problem, mathematically:

min
P,Q
‖R− PQT‖2 (2.3)

where ‖.‖ is the Frobenius norm. Also it is common to include a regularization

penalty on the sizes of P and Q in order to prevent over-fitting. After adding reg-

ularization penalty above equation turns into the following:

min
P,Q
‖R− PQT‖2 + λ(‖P‖2 + ‖Q‖2) (2.4)

Moreover it has been argued that [18] one should always penalize ‖pu‖2 and

‖qi‖2 by different amounts. Therefore the equation becomes:

min
P,Q

∑
(u,i) ∈ T

(rui − puqi
T)2 + λ

(∑
u

‖pu‖2 + γ
∑

i

‖qi‖2
)

(2.5)

To sum up, recommender system tries to minimize the regularized squared error

on the set of available ratings in order to learn the user and item factor vectors pu and

qi).[18]

Two approaches minimizing Equation 2.5 are stochastic gradient descent and

alternating gradient descent (or alternating least squares - ALS).

2.3.1 Stochastic Gradient Descent

This algorithm loops through all known set of ratings in order to optimize the equation

2.4. For each known tuple, the systems predicts rui and computes the prediction error.

eui = rui − puqi
T (2.6)

After that, parameters are modified by a magnitude proportional to γ in the op-

20

posite direction of the gradient as follows [14]:

pu ← pu + γ.(eui.qi − λ.pu) (2.7)

qi ← qi + γ.(eui.pu − λ.qi) (2.8)

2.3.2 Alternating Gradient Descent

Equation 2.4 is not convex, since both pu and qi are unknowns. However, if one of

the unknowns are fixed, the optimization problem becomes quadratic. Hence it can

be solved optimally.

Therefore alternating gradient descent techniques rotate between fixing the pu’s

and fixing the qi’s. When all qi’s are fixed, the system recomputes the pu’s by solving

the optimization problem, and vice versa.

Let 5BL
u denote the derivative of LBL with respect to pu, and similarly 5BL

i

denote the derivative of Eq. (2.5) with respect to qi. Then [18],

5BL
u ∞

∑
i ∈ Tu.

−(rui − pu qi
T)qi + λpu (2.9)

5BL
i ∞

∑
i ∈ Ti.

−(rui − pu qi
T)pu + λγqi (2.10)

for every u = 1,2,...,N and i = 1,2,...,M. At iteration (k+1), the updating equations for

pu and qi is as follows:

pu
(k+1) = pu

(k) − η5BL
u

(
pu

(k),qi
(k)) (2.11)

qi
(k+1) = qi

(k) − η5BL
i

(
pu

(k),qi
(k)) (2.12)

where η is the step size or learning rate [18].

21

2.3.3 Singular Value Decomposition

Singular value decomposition is also a matrix factorization technique whose key idea

is to factorize user-item rating matrix to a product of two lower rank matrices P and

Q.

In addition, SVD employs another matrix D, which is a diagonal matrix of rank

K, in order to design P and Q to be orthogonal, i.e. P TP = I and QTQ = I .

Therefore, Eq. (2.3) becomes the following [18]:

min
P,Q
‖R− PDQT‖2 (2.13)

Hence, SVD tries to minimize equation (2.13).

In this thesis Stochastic Gradient Descent technique is used.

22

CHAPTER 3

CONTENT-BOOSTED COLLABORATIVE FILTERING AND

USER-ITEM SUBGROUPS

In order to improve the recommendation accuracy of recommender systems in movie

domain we aim to merge two successful algorithms, i.e. MCoC and Content-boosted

matrix factorization technique by Xu et al. [30] and by Chang et al. [11] respectively.

We show that merging these two successful approaches result in better prediction

results. In this chapter we present these two algorithms in detail and then present the

proposed process of merging the two.

3.1 USER-ITEM SUBGROUPS

Recommender systems based on collaborative filtering, typically associate a user with

a group of like-minded users according to their preferences over all of the items. Then

the items enjoyed by others in the group, that is not seen by the user, is recommended.

Mainly, it is presumed that users with similar behaviour (e.g. item preferences), will

have similar tastes on all the items. However, it is stated by Xu et al. [30] that this

assumption is not always credible since, two users that have similar tastes on one

item subset may have completely distinct tastes if another item subset is in question.

Furthermore, they say that one user’s interest is usually not dispersive over all items,

rather it is focused on some topics. Hence, it can be said that a group of users are

having similar tastes, on a subset of items. Therefore, in the rest of the thesis a subset

of items and a group of users interested in these items is referred as a user item

subgroup. It is expected that subgroups will support capturing similar user tastes

23

when a subset of items considered.

A cluster is defined as a collection of data samples that have close relationships

or whose features are similar. Clustering is widely used as an intermediate process

since obtained clusters are used for further analysis in collaborative filtering algo-

rithms. Lots of collaborative filtering models that use clustering, exploit item clusters,

user clusters or co-clusters while designing algorithms [7, 30]. In all of these models,

a user or item is presumed to be in only one cluster. However, in reality it is more

likely for users or items to belong multiple clusters or subgroups.

There are several distinct categories of clustering methods as illustrated in Figure

3.1 [30]. Partitioning the users into several distinct groups may be the most straight-

forward way for clustering. There are several approaches for partitioning users. The

user set may be clustered according to user-user similarity and clusters may be used

as neighborhoods. On the contrary, user rating data could be used in order to cluster

items or k-means or Gibbs sampling could be used in order to partition users and items

separately. Then users can be re-clustered based upon the number of items in each

item cluster they rated and similarly items can be clustered based upon the number

of users in each user cluster that rated them. All of these algorithms can be referred

as one-sided since they only make use of either users or clusters while partitioning.

Such partitioning algorithms are illustrated in Figure 3.1.a and Fig 3.1.b.

There are some other algorithms that use two-sided clustering model. These al-

gorithms can be referred as co-clustering based collaborative filtering models, since

they use co-clustering techniques traditionally. For instance, user and item neighbor-

hoods may be obtained by co-clustering and then predictions may be generated based

on the average ratings of co-clusters. Distinct co-clusters with both users and items

can be generated by some row and column changes as seen in Figure 3.1.c.

(a) User Clustering

 items

 users

(b) Item Clustering

 items

 users

(c) Co-Clustering

 items

 users

(d) Biclustering

 items

 users

(e) Multiclass CoC

 items

 users

Figure 3.1: Clustering methods.

24

The limitation of both one-sided and two-sided (co-clustering) algorithms is that,

a user or an item can belong to only one cluster. However it may be beneficial for

recommender systems to provide the ability of clustering users and items in such a

way that a user or an item can belong to several clusters. For instance, in movie

domain, a movie can be popular in distinct groups from different aspects or, a user

may like multiple movie topics. Hence the multiclass co-clustering (MCoC) model,

which is shown in Figure 3.1.e, makes more sense by allowing users and items to

exist in multiple subgroups at the same time [30].

Another clustering model which is named as biclustering model, which is seen in

Figure 3.1.d. and which is mostly studied in gene expression data analysis [15, 19].

The MCoC and bicluster model may seem alike, however their main difference is

that, in contrast to MCoC, in bicluster model all of the rows and columns may not

be covered since this model tries to find some maximum biclusters with low residue

scores. Therefore we will be focusing on the MCoC model.

3.1.1 Xu’s Algorithm

The primary goal is to find possible user item subgroups and use these subgroups to

enhance the performance of collaborative recommender systems. There are two main

issues to consider in this algorithm. The first issue is how to cluster users and items

into meaningful user item subgroups via the user item rating matrix we have. The sec-

ond is how to utilize these subgroups with existing collaborative filtering algorithms.

The algorithm by Xu et al. [30] defines a way to deal with these two issues.

They use MCoC to find meaningful subgroups and present a strategy to combine

these subgroups with collaborative filtering systems.

3.1.2 MCoC Problem Formulation

Suppose T is a user item rating matrix and T in nxm where n is the number of users

and m is the number of items. Let each element of Tij denote the preference of user i

to item j and let ui denote i-th user and yj denote j-th item.

25

The main goal is to divide the users and items into c subgroups simultaneously,

where a user or an item can belong to multiple subgroups. Therefore it is called as

multi-clustering problem or shortly MCoC.

They represent MCoC result as a partition matrix P ∈ [0, 1](n+m)×c. Each ele-

ment of P that is represented by Pij, indicates whether a user or an item i belongs to

subgroup j. If a user or an item i belongs to subgroup j then Pij > 0, if not then Pij

= 0. The magnitude of each element indicates the relative weight of a user’s or an

item’s i belonging to subgroup j, hence each row of partition matrix P sums to 1. If

the number of groups that each user or item can belong to is fixed, which is a number

that is smaller than the number of subgroups say k (1 ≤ k ≤ c), then there are exactly

k non-zero values in each row of P. If k is fixed to be 1 (k = 1) then the clustering

problem turns into traditional Co-Clustering problem. The matrix P is designed to be

as follows:

P =

Q

R

 (3.1)

where Q ∈ [0, 1]n×c represents the partition matrix of users and R ∈ [0, 1]m×c repre-

sents the partition matrix of items.

3.1.3 MCoC Solution

A very simple yet reasonable solution is proposed to solve MCoC problem. They

follow the intuition that if a user and an item have a high rating score then they are

expected to occur in one or more subgroups together. They employ the following loss

function for modeling user-item relationships, so as to make the strongly associated

users and items together.

ε(Q,R) =
n∑

i=1

m∑
j=1

(‖ qi√
Drow

ii

− rj√
Dcol

jj

‖2 Tij) (3.2)

where qi represents the i-th row of Q and rj represents the j-th row of R. Drow ∈ Rn × n

stands for the diagonal matrix of users and Dcol ∈ Rm × m stands for the diagonal

26

matrix of items where Drow
ii =

∑m
j=1 Tij and Dcol

jj =
∑n

i=1 Tij. Because of the fact that

the loss function is based only on the user-item interaction information, minimizing

Eq. (3.1) means that the user vector qi and item vector rj should be very close if they

have a high rating score. Furthermore, there is no restriction to missing user-item

rating pairs. By some linear algebra derivations the loss function could be rewritten

as follows:

ε(Q,R)

=
n∑

i=1

‖ qi ‖2 +
m∑

j=1

‖ rj ‖2 −
n∑

i=1

m∑
j=1

2qTi rjTij√
Drow

ii Dcol
jj

= Tr(QTQ+RTR−QTSR)

= Tr

([
QT RT

] In −S
−ST Im

Q
R

)

= Tr(P TMP),

(3.3)

where

S = (Drow)−
1
2T (Dcol)−

1
2 , M =

 In −S
−ST Im

 . (3.4)

In× n and Im×m represent identity matrices of size n × n and m × m respectively.

Because of the several strong constraints on partition matrix P, that are described in

Section 3.1.2, solution of the loss function means solving the following optimization

problem.

min
P

Tr(P TMP)

s.t. P ∈ R(m+n)×c,

P ≥ 0,

P1c = 1m+n

|Pi| = k, i = 1, ..., (m+ n).

(3.5)

27

Each element of P is forced to stay in the range of [0,1] by the help of the combined

constraints P ≥ 0 and P 1c = 1m + n, where c is the total number of subgroups and k is

the number of subgroups that a user or an item can belong to (1 ≤ k ≤ c). |.| stands

for the cardinality constraint that is the number of non-zero elements in a vector. Pi

represents the i-th row of the matrix P.

Due to the fact that Eq. (3.5) is nonconvex and discontinuous, its solution is not

straightforward. However, Xu et al. [30] proposed an efficient approximation method

in order to solve this problem. Their method consists of two primary stages. The first

stage is to map all users and items into a shared low dimensional space. The second

stage is discovering subgroups.

First Stage: Map users and items to low dimensional space.

It is suggested that optimal r-dimensional embedding X∗ can be obtained by

solving the following problem, that preserves the user-item preference information

meanwhile.

min
X

Tr(XTMX)

s.t. X ∈ R(m+n)×c, XTX = I.
(3.6)

where arbitrary scaling of X is preserved by the constraint XTX = I. They state that

it can be inferred from Eq. (3.2) and Eq. (3.3) that M is a semidefinite matrix. The

optimal solution X∗ that minimizes (3.6) is the same as the solution of eigenvalue

problem MX = λX. As a result X∗ = [x1, ..., xr]. x1, ..., xr represent eigenvectors of

matrix M that is sorted by their corresponding eigenvalues.

Second Stage: Discover subgroups.

After mapping users and items to the shared low dimensional space, the partition

matrix P is needed to be computed in order to find user-item subgroups.

A user or an item can belong to one or more subgroups. If it can belong to

only one subgroup, it is suggested that clustering can be done via k-means clustering,

resulting each row of the partition matrix P having only one non-zero value. However,

28

if it can belong to multiple subgroups, then it is suggested to use fuzzy c-means

for clustering, which is the iterative optimization minimizing the following criterion

function.

Jm(P, V) =
m+n∑
i=1

c∑
j=1

(Pij)
ld(xi, vj)

2, (3.7)

where Pij indicates whether the user or item xi is a member of cluster j and vj indicates

the center of the cluster j. The function d indicates the distance function and the

parameter l is the weighting exponent that controls the fuzziness of the partition.

They prefer to use the Euclidian distance for d and 2 for l. P and V is updated as

follows at each iteration.

Pij = (d(xi, vj))
2/(1−l)

/[
c∑

k=1

(d(xi, vk))
2/(1−l)

]
, (3.8)

and

vj =

[
m+n∑
i=1

P l
ijxi

]/[
m+n∑
i=1

P l
ij

]
. (3.9)

where i = 1,..., (n + m) and j = 1,...,c. The algorithm is designed to stop when the ob-

jective function is improved less than a threshold value ε after two successive steps.

After the iteration stops, only top-k biggest elements are kept in each row, and nor-

malized in such a way that the sum would be one.

The process of obtaining the partition matrix P is illustrated in Figure 3.2

29

Construct Drow and Dcol

Construct S

Construct M

Find EigenVectors of M

Initialize V

Initialize P

Update P and V

Calculate Criterion Function

[Improvement < ε]

[Improvement > ε]

Normalize P

Figure 3.2: Obtaining the partition matrix of users and items.

3.1.4 Embedding Subgroups into Recommendation

Having user-item subgroups, the question is how to combine these subgroups into

recommendation process. They propose to apply some CF algorithm on each sub-

group and then merge the obtained prediction results together. Since the only input

of CF algorithms is the user-item rating matrix, a user-item rating matrix could be

30

extracted for each subgroup from the big user-item rating matrix T. As a result the

prediction scores of each subgroup will be obtained. When it comes to merge these

results, a unified framework is proposed in [30] to handle the cases that a user or item

belonging to several or zero subgroups. The framework is as follows:

Yij =


∑

k Pre(ui, yj, k).δik if ui and yj belong to one or more subgroups

0 otherwise.

where Pre(ui, yj, k) is the prediction score of user i to item j in subgroup k. δik is

an indicator value of user i that represents whether the subgroup k is the user’s most

interesting subgroup among all subgroups shared with item j. In other words, if the

weight of the user i item j tuple of the subgroup k in the partition matrix is more than

the other subgroups shared with item j then this indicator value will be greater than

the other subgroups’ indicator values. The indicator value could be the weight of the

user-item tuple in the subgroup k, or it can be a hard weight (i.e. 0 or 1) according to

the weights in the partition matrix, where the subgroup that has the maximum weight

among the shared subgroups with a specific item is 1 and the others are 0. By the help

of such a framework all cases of users and items could be handled.

The process of embedding subgroups into recommendation is illustrated in Fig-

ure 3.3

However notice that by this strategy the prediction scores for each user-item tu-

ple are not obtained, since a user and an item tuple may not belong to any subgroups.

In other words, prediction scores for some user-item tuples are unknown. Therefore,

each user is suggested to unseen items that have top scores from the available predic-

tion scores and the unknown prediction scores are not taken into consideration. To

overcome this problem we will propose a solution while explaining merging process

of the two algorithms.

31

Extract Subgroups from P

SubgroupList

<<loop>>

[setup]

Initialize PredictionList

[test] for all subgroups in SubgroupList

[body]

Generate Predictions via CF

PredictionMatrix

Add to PredictionList

PredictionList

Merge Predictions

Recommend top-N ratings

Figure 3.3: Embedding subgroups into recommendation.

32

3.2 CONTENT-BOOSTED COLLABORATIVE FILTERING

Despite the fact that collaborative filtering approaches has higher recommendation

accuracy compared to content-based filtering, they ignore any information that is re-

lated to the content information.

Latent factor models attract attention because of their highly allusive ability of

describing various aspects of data [27]. And matrix factorization technique is the

basis of some of the most successful realizations of latent factor models [14]. The

main idea of matrix factorization is to map users and items to a shared latent factor

space, where high correspondence between user and item factors results in a recom-

mendation. These techniques are successful techniques. Yet, they lack considering

content information in the recommendation process, that could contribute significant

and meaningful information in terms of improving recommendation accuracy. Con-

sidering such an improvement Chang et al. [11] proposed a model that incorporates

usable content information directly into the matrix factorization approach. The details

of the proposed algorithm, content boosting problem and the solution to the problem

are covered in the next sections.

3.2.1 Chang’s Algorithm

To enhance the accuracy of the collaborative filtering based recommendations, Chang

et al. [11] offer an algorithm that incorporates content information into recommenda-

tion process. They suggest that item attributes could be used as content information.

They advise to use movie genres, list of actors, keywords or producers as the content

information in movie domain. In the proposed model, they extend the matrix factor-

ization approach by placing these item attributes as a part of the latent factor vectors

of items.

3.2.2 Problem Formulation

In order to make use of item content information, that could be useful in terms of im-

proving significant and meaningful information about the user’s interests, they embed

33

the content information directly into the matrix factorization technique. They employ

a set called G(i) containing the attributes of item i. If item content information is con-

sidered to be genre of movies then, the set G(i) of a particular movie i will store the

genres that the movie is related to. The set will be composed of values that indicate

the genres, such as horror, thriller, drama, comedy etc. If the movie is related to a

specific genre then the value corresponding to that genre in the set will be 1, it will be

0 otherwise.

3.2.3 Problem Solution

As a solution, they propose to embed the item attributes into item factor vector qi

directly. Before item attributes are embedded into item feature vector, the factor

vector of item i is represented as qi = (fi1, fi2, ..., fim). Similarly, the factor vector of

user u is represented as pu = (fu1, fu2, ..., fum), where m is the number of latent factors.

Therefore the feature vector of each user and item is of size (1xm). The size of the

item feature vector increases to (1x(k+m)) after placing item attributes to the first k

columns of the vector. The size of the user feature vectors is also increased to be

compatible with item feature vectors, making them also of size (1x(k+m)). However,

note that the first k columns of the user feature vectors are initialized with random

values, while the first k columns of item feature vectors are initialized with item

attributes. After content information is embedded into qi, the size of the feature

vector of item i, and the size of the user feature vector pu are increased, they look

like as follows:

qi = (gi1, gi2, ..., gik, fi(k+1), ..., fi(m+k)) (3.10)

pu = (fu1, fu2, ... , fu(m+k)) (3.11)

where k is the number of attributes. Hence Eq. (2.6) turns into follows:

r̂ui = (fu1, fu2, ... , fu(m+k))× (gi1, gi2, ..., , gik, fi(k+1), ..., fi(m+k))
T (3.12)

34

Let c1 be

c1 = fu1 × gi1 (3.13)

Then the formula (3.12) is equivalent to following.

r̂ui = c1 + c2 + ...+ ck +
m+k∑

d=k+1

fud × fid (3.14)

where cl is the user preference on item attribute l. The meaning of above equation is

adding constant biases to the matrix factorization model. In matrix factorization ap-

proach the data is viewed from a high level perspective. Hence, a global cost function

is minimized while iterating. Therefore, incorporating bias to the matrix factorization

model can express personalized preferences of individuals.

In order to obtain the user and item factor vectors pu and qi, the method that is

presented in Eq. (2.5) is used. The major difference is that, since item attributes

are placed in the first k rows of the item vector qi, these columns are not altered in

the iterations. In other words, while Eq. (2.8) is applied, the first k columns that

represent item attributes (qi1 to qik) are not updated during the iteration.

Since the first k columns of qi are assigned to corresponding item attributes in-

stead of random values, it is needed to add k columns to user vector pu. Then by

iterating over the set of known ratings T and updating user and item factor vectors

via moving them in the opposite direction of the gradient, the rating scores can be

predicted.

The process of content-boosted matrix factorization is illustrated in Figure 3.4

35

Initialize P

Initialize Q with Content

[error < ε]

[error > ε]

Multiply P and QT

Update P and Q with prediction error

Calculate Error

Figure 3.4: Content-boosted Matrix Factorization.

3.3 CONTENT-BOOSTED MATRIX FACTORIZATION VIA USER-ITEM SUB-

GROUPS

We propose an algorithm that uses content information directly in the recommenda-

tion process while providing better suggestions to users by considering their taste via

user-item subgroups. In order to accomplish that, we merge Content-Boosted matrix

factorization technique described in Section 3.2 and MCoC algorithm described in

Section 3.1. First the stages of the algorithm are discussed and this process is illus-

trated on a small user-item rating matrix. Also the activity diagram of this process is

illustrated in Figure 3.5.

36

Calculate Partition Matrix P

Extract Subgroups from P

SubgroupList

<<loop>>

[setup]
Initialize PredictionList

[test] for all subgroups in SubgroupList

[body]

Generate Predictions via Content-boosted CF

PredictionMatrix

Add to PredictionList

PredictionList

Merge Predictions

Calculate MAE and RMSE or Recommend Top K items

Generate Predictions for
whole user-item Matrix
via Content-boosted CF

Figure 3.5: Grouped and content-boosted Matrix Factorization.

37

The proposed method consists of three stages:

1. Discover user-item subgroups

2. Run Content-Boosted matrix factorization on all subgroups

3. Run Content-Boosted matrix factorization on the whole set and merge with

subgroup predictions

First of all the big user-item rating dataset is divided into two parts. The first part

is composed of the randomly selected 80% of all rating scores in the dataset and is

used for training purposes. Therefore it is called the training matrix. The remaining

20% of the rating scores is used for testing purposes while evaluating the results.

Hence it is called the test matrix.

Stage 1: Discovering Subgroups

The aim is to find like-minded users on a subset of items. To discover user-item

subgroups we use MCoC algorithm. Hence a partition matrix is created for users and

items that indicates whether they belong to any subgroups or not.

Since the information we have is only rating scores, the partition matrix is

derived from these scores by some derivations. The idea of MCoC algorithm is

that, if rating score of user i to the item j is high, then the vectors of user i and

item j should be close. Therefore the loss function presented in Equation 3.2 (

ε(Q,R) =
∑n

i=1

∑m
j=1(‖

qi√
Drow

ii
− rj√

Dcol
jj
‖2 Tij)) is used. Minimizing the loss

function means that the user and item vectors are close, and therefore the possibility

of this user and this item belonging to the same subgroup is high. Note that, Drow is

the diagonal degree matrix of users, and Dcol is the diagonal degree matrix of items.

Each diagonal entry of the Drow matrix is the sum of all rating scores that the user

gave to the items in the dataset. Similarly, each diagonal entry of the Dcol matrix is

the sum of all rating scores that are given to the item by all users in the dataset. The

visual representations of these matrices are provided in the section 3.3.1 in order to

clarify the process.

Since minimizing the loss function 3.2 is the same as minimizing the transi-

tion function 3.5 (Tr(P TMP)) the matrix M should be computed. Since M =

38

 In −S
−ST Im

 where S = (Drow)−
1
2T (Dcol)−

1
2 , and T is the user-item training ma-

trix, the matrix M is obtained.

Since matrix M is a big matrix and computations with big matrices are costly

and time consuming, eigenvectors of M is computed and the smallest eigenvectors

are used to find the partition matrix P.

The partition matrix is computed with the fuzzy c-means soft clustering method.

The fuzzy c-means algorithm is an iterative optimization that minimizes the criterion

function 3.7 (Jm(P, V) =
∑m+n

i=1

∑c
j=1(Pij)

ld(xi, vj)
2). During the iterations the

partition matrix P and the center of cluster V matrices are updated. When the im-

provement of the function is less than a threshold, then the algorithm halts and the

partition matrix P is obtained.

The rows of the partition matrix represent the users and items, the columns rep-

resent the subgroups. In fact, the partition matrix vertically consists of two parts; the

first part is for users the second part is for items. In the first part each row indicates a

user’s belonging to the subgroups and, likewise in the second part of the matrix each

row indicates an item’s belonging to the subgroups. The columns of the partition

matrix include values between 0 and 1. These values sum up to 1 and each column

represents the weight of a user’s or an item’s belonging to the subgroup. However,

the partition matrix should be normalized in a way that a user or an item can belong to

a maximum number of subgroups. According to MCoC algorithm a user can belong

to at most k subgroups where k = dlog2(c)e, if there are c subgroups. Therefore the

rows of the matrix are normalized in such a way that at most k nonzero values exist

in each row.

Considering a subgroup, if the corresponding weights of a user and an item are

greater than zero then they belong to this subgroup. In this manner, the user-item

tuples that belong to the same subgroups are extracted and new matrices are created

for these subgroups. Newly created matrices are composed of rating scores of the

users to the items that belong to the same subgroups and the scores are obtained from

the training matrix. Notice that all the newly created matrices are a portion of the

training matrix. These portions may overlap, since a user-item tuple may belong

39

to more than one subgroup. Also some portions of the training matrix may not be

covered in case of a user-item tuple not sharing any subgroups.

Stage 2: Running Content-Boosted matrix factorization on all subgroups

Newly created subgroup rating matrices can be treated as user-item rating matrix

independent from each other. Therefore Content-Boosted matrix factorization can be

applied to all of them. Then the results of all subgroup matrices can be merged.

While applying Stochastic Gradient Matrix Factorization technique, user and

item feature vectors are initialized with small random values and they are updated in

the opposite direction of the gradient until the prediction error is minimized. Conse-

quently, the multiplication of the user and item feature matrices lead to a new predic-

tion matrix. In order to be able to run Content-Boosted matrix factorization, on the

other hand, the genre information of the items is embedded into the item feature vec-

tors. If there are G number of genre categories available in the dataset, then the first

G columns are initialized with the genre information of the items instead of random

values. The genre information is represented by a 0 or 1. If the item is of the specified

genre then the value is set to 1, 0 otherwise. For instance, if there are four genre cate-

gories in the dataset, then each item vector is preceded with four 0 or 1 values (e.g. 1

0 0 1). In this manner, the genre information of each item is placed at the beginning

of each item feature vector. The important point is not to update the first G columns

of the item vectors while iterating over and updating user, item feature vectors. Thus

the genre information of the items are directly used in the recommendation process.

In order the user feature vectors to be compatible with the item feature vectors,

they are also preceded with G more columns. In other words, G number of random

values are placed in front of the user factor vectors. Note that, the first G columns

of user feature vectors are initialized with random values, while item feature vectors’

are initialized with the genre information.

After embedding genre information into item feature vectors and adjusting the

user factor vectors accordingly, Stochastic Gradient Descent algorithm is applied to

these vectors. After the updating of the user and item feature vectors is over, the

multiplication of these matrices leads to the new user-item rating matrix.

40

The prediction score matrix of each subgroup are obtained, after running the

algorithm on all of the subgroup matrices. These matrices are merged according to the

user’s interest in the items. The partition matrix is used in order to find the subgroup

in which user is the most interested for each item, and the prediction score is taken

from the corresponding subgroup’s matrix. This process is applied for all user-item

tuples. However, a user-item tuple may not share any subgroups, as a consequence of

the MCoC algorithm. In that case the prediction scores of these tuples are unknown.

Such user-item tuples are handled in the next stage.

Stage 3: Run Content-Boosted matrix factorization on the whole set and merge with

subgroup predictions

In order to cover prediction scores of the tuples that are unknown after merging

subgroup predictions, Content-Boosted Matrix Factorization is applied to the whole

training dataset. The resulting prediction score matrix is merged with the matrix that

is obtained by merging subgroup matrices. As a result, the prediction score of each

user-item tuple becomes available. Thus prediction accuracy of the resulting matrix

can be evaluated and unseen items that have high rating scores can be recommended

to the users.

3.3.1 Illustrative Example

Recommendation algorithms give more accurate results provided that a big dataset

is used. However, in order to explain the proposed algorithm, an illustration of the

process on a small user-item rating matrix that is composed of 8 users and 16 items

is presented (Figure 3.6). The user-item rating matrix is used only for illustration

purposes and is not a real life matrix. In fact the rating scores are randomly selected.

The dataset contains 45 rating scores. First, the dataset is divided into two parts.

The first part is used for training purposes and contains 36 rating scores (i.e. 80%

of the whole dataset), and the remaining 9 rating scores are used for testing purposes

(i.e. 20% is the dataset). The training and the test matrices can be seen in Figure 3.7

and in Figure 3.8 respectively.

41

0
2
4
0
3
0
2
0

3
0
0
0
0
3
0
4

0
0
3
4
0
0
0
0

0
3
0
0
2
0
5
3

2
4
0
3
0
3
0
2

0
0
2
0
0
0
0
0

4
5
0
0
5
0
3
0

0
0
5
0
0
4
0
5

0
2
0
3
0
0
5
0

0
0
0
0
2
0
0
0

5
0
0
0
0
0
0
0

0
3
0
5
0
0
0
4

0
0
3
0
1
0
0
0

2
2
0
1
0
0
0
3

0
0
0
0
0
2
0
0

4
0
4
0
5
5
0
0

u8
u7

u6

u5
u4

u3

u2
u1

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16

Figure 3.6: Example user-item rating matrix.

0
2
4
0
3
0
0
0

3
0
0
0
0
3
0
4

0
0
3
4
0
0
0
0

0
3
0
0
0
0
0
3

2
4
0
3
0
0
0
2

0
0
0
0
0
0
0
0

4
0
0
0
5
0
3
0

0
0
5
0
0
4
0
5

0
2
0
3
0
0
5
0

0
0
0
0
2
0
0
0

0
0
0
0
0
0
0
0

0
3
0
5
0
0
0
4

0
0
3
0
1
0
0
0

2
2
0
1
0
0
0
3

0
0
0
0
0
0
0
0

0
0
4
0
5
5
0
0

u8
u7

u6

u5
u4

u3

u2
u1

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16

Figure 3.7: Training matrix.

0
0
0
0
0
0
2
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
2
0
5
0

0
0
0
0
0
3
0
0

0
0
2
0
0
0
0
0

0
5
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

5
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
2
0
0

4
0
0
0
0
0
0
0

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16

u8

u7

u6

u5

u4

u3

u2

u1

Figure 3.8: Test matrix.

42

Stage 1: Discovering Subgroups

Subgroups are created from the partition matrix P. In order to compute the parti-

tion matrix P, matrix M should be computed first. Therefore S, Drow and Dcol matri-

ces are needed. Each diagonal value of Dcol matrix is the summation of rating scores

that are given to that item. For instance, the first item’s corresponding value is 9,

which is the summation of the rating scores 3 + 4 + 2. After each item’s value is

computed, the resulting matrix Dcol is presented in Figure 3.9. Similarly, Drow ma-

trix is computed. Each diagonal value of Drow matrix is the summation of that user’s

rating scores available in the dataset. For example, the first user’s diagonal value is

21, which is the summation of the rating scores 4 + 3 + 2 + 5 + 4 + 3. Each user’s

value is computed in the same way. After each user’s rating scores is computed the

resulting Drow matrix is presented in the Figure 3.10.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9

0
0
0
0
0
0
0
0
0
0
0
0
0
0

10
0

0
0
0
0
0
0
0
0
0
0
0
0
0
7
0
0

0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0

0
0
0
0
0
0
0
0
0
0
0

11
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

12
0
0
0
0
0
0

0
0
0
0
0
0
0
0

14
0
0
0
0
0
0
0

0
0
0
0
0
0
0

10
0
0
0
0
0
0
0
0

0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
12
0
0
0
0
0
0
0
0
0
0
0

0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0

0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16

u8

u7

u6

u5

u4

u3

u2

u1

u16

u15

u14

u13

u12

u11

u10

u9

Figure 3.9: Dcol matrix.

43

0
0
0
0
0
0
0
21

0
0
0
0
0
0
8
0

0
0
0
0
0

12
0
0

0
0
0
0

15
0
0
0

0
0
0

16
0
0
0
0

0
0

19
0
0
0
0
0

0
16
0
0
0
0
0
0

11
0
0
0
0
0
0
0

u8

u7

u6

u5

u4

u3

u2

u1

i1 i2 i3 i4 i5 i6 i7 i8

Figure 3.10: Drow matrix.

Having computed Drow and Dcol matrices, the S matrix is computed by S =

(Drow)−
1
2T (Dcol)−

1
2 and the resulting matrix is presented in Figure 3.11.

0
0,1
0,3
0

0,2
0

0,2
0

0,2
0
0
0
0

0,2
0

0,3

0
0

0,2
0,4
0
0
0
0

0
0,2
0
0

0,1
0

0,4
0,2

0,1
0,2
0

0,2
0

0,2
0

0,1

0
0

0,3
0
0
0
0
0

0,2
0,3
0
0

0,3
0

0,2
0

0
0

0,3
0
0

0,3
0

0,3

0
0,1
0

0,2
0
0

0,4
0

0
0
0
0

0,3
0
0
0

0,5
0
0
0
0
0
0
0

0
0,2
0

0,4
0
0
0

0,3

0
0

0,3
0

0,1
0
0
0

0,2
0,2

0
0,1
0
0
0

0,2

0
0
0
0
0

0,3
0
0

0,2
0

0,2
0
0

0,3
0
0

8x16

Figure 3.11: S matrix.

Since matrix M is computed by M =

 In −S
−ST Im

, after the computations

obtained matrix is presented in Figure 3.12.

44

0
0

-0,2
0

-0,3
0
0
0

-0,3
0
0

-0,1
-0,2

0
-0,3

0
0
0
0
0
0
0

-0,4
0

-0,2
0
0

-0,4
0
0

-0,3
-0,3

0
0
0
0
0
0

-0,3
0
0

-0,2
0
0

-0,2

-0,3
0
0

-0,1
0
0

-0,3
0
0

-0,3
0
0

-0,1
0
0

0
0

-0,1
0

-0,4
0
0

-0,2
0
0
0

-0,2
0

-0,4
0

-0,2
0
0

-0,3
0
0
0
0

-0,3
0

-0,3
0
0

-0,2
0

0
0

-0,2
0

-0,2
0
0

-0,1
0

-0,3
0

-0,2
-0,2

0
0

-0,2
0

-0,2
0
0

-0,5
0
0
0

-0,2
0

-0,1
0
0

-0,2

-0,2
0
0
0
0

-0,2
0

-0,3

0
0

-0,2
-0,4

0
0
0
0

0
-0,2

0
0

-0,1
0

-0,4
-0,2

-0,1
-0,2

0
-0,2

0
-0,2

0
-0,1

0
0

-0,3
0
0
0
0
0

-0,2
-0,3

0
0

-0,3
0

-0,2
0

0
0

-0,3
0
0

-0,3
0

-0,3

0
-0,1

0
-0,2

0
0

-0,4
0

0
0
0
0

-0,3
0
0
0

-0,5
0
0
0
0
0
0
0

0
-0,2
0

-0,4
0
0
0

-0,3

0
0

-0,3
0

-0,1
0
0
0

-0,2
-0,2

0
-0,1

0
0
0

-0,2

0
0
0
0
0

-0,3
0
0

-0,2
0

-0,2
0

-0,3
-0,3

0
0

I8X8

I16X16

24x24

Figure 3.12: M matrix.

After eigenvectors of matrix M are extracted and the criterion function is opti-

mized, a partition matrix is obtained. In this example the number of subgroups is 3.

Therefore the maximum number of subgroups that a user or an item can belong to is

dlog2(3)e = 2. The resulting partition matrix is presented in 3.13.a. Note that this

matrix is not normalized, that is the number of nonzero values in a row is greater than

2. Since the user-item rating matrix is not a real life rating matrix and available rating

scores are too many when compared to a real life rating matrix, all of the user-item

tuples belong to some of the subgroups. In a real life dataset however, it is more

likely that some user-item tuples do not belong to any subgroups. In order to cover

such cases the normalized partition matrix that will be used in computations is pre-

sented in Figure 3.13.b. Notice that, 8th user, 12th and 15th items do not belong to

any subgroups, that is the weights of the subgroups are 0.

45

0,08
0,7

0,46
0,87

0,8
0,03

0,07

0,48

0,87

0,1
0,87

0,05
0,13

0,07
0,11

0,08
0,89
0,08

0,7
0,27
0,08

0,46
0,08
0,68

0,04
0,05
0,16

0,89
0,41
0,05

0,87
0,09
0,02

0,05
0,03
0,05

0,16
0,25
0,05

0,19
0,05

0,25
0,86

0,12
0,06

0,37
0,06

0,08
0,87

0,87
0,08
0,14

0,87
0,05
0,35

0,19

0,16

0,14
0,81

0,08
0,48

0,94
0,88

0,08

0,03

0,58

0,06

0,15

0,04

0,84

0,92

0,12

 }
 }

 8 rows
for users

 16 rows
for items

a. Partition Matrix

24x3

0,09
0,82

0,53
0,92

0,88
0,03

0,08

0,64

0,92

0
0,91

0
0

0,07
0,12

0,08
0,92
0,08

0,82
0,36
0,08

0,57
0,08
0,78

0
0

0,18

0,93
0,47
0

0,93
0
0

0
0
0

0,18
0
0

0
0

0,3
0

0
0,07

0,44
0

0,08
0,92

0,92
0
0

0,92
0,05
0,43

0,22

0

0
0

0,08
0,56

0,97
0,92

0

0

0,7

0

0

0

0

0,95

0

 }
 }

 8 rows
for users

 16 rows
for items

24x3

b. Normalized Partition Matrix

Subgroups
1 2 3} Subgroups

1 2 3}

u6

u5
u4
u3
u2
u1

i4

i3
i2
i1
u8
u7

i10

i9
i8
i7
i6
i5

i16

i15
i14
i13
i12
i11

u6

u5
u4
u3
u2
u1

i4

i3
i2
i1
u8
u7

i10

i9
i8
i7
i6
i5

i16

i15
i14
i13
i12
i11

Figure 3.13: Partition & Normalized Partition matrix P.

According to the partition matrix 3.13.b, there are three subgroups. Therefore

three new group matrices are created from the training matrix rating scores. The group

matrices are created based on the weights of the users and items in the subgroups. If

a user-item tuple belong to the first subgroup, i.e. the weight of the first subgroup is

greater than zero, then the corresponding rating score in the training matrix is inserted

into the first subgroup matrix. In this manner, all the subgroup matrices are created.

The created subgroup matrices are presented in Figures 3.14 3.15 3.16.

Stage 2: Running Content-Boosted matrix factorization on all subgroups

The subgroup matrices can be thought independent from each other, and the

Content-Boosted Matrix Factorization algorithm can be applied to all of them sepa-

rately. In this algorithm, as in the Stochastic Gradient Descent algorithm, the predic-

tion matrix is obtained from the multiplication of user item feature vectors. In the

46

traditional Stochastic Gradient Descent algorithm, if 5 latent factors are considered

for instance, the prediction matrix is computed by R = PQT , where P is the user fea-

ture vector of size 8x5 and Q is the item feature vector of size 16x5 for this dataset.

Hence the multiplication of these feature vectors results in a prediction matrix of size

8x16, which is of the same size with the original user-item rating matrix, and the rec-

ommendations are provided from the obtained prediction matrix. The representations

of the user and item feature vectors can be seen in Figure 3.17.a.

4
0
3
0
2
0

0
0
0
3
0
4

3
4
0
0
0
0

0
0
2
0
5
3

0
3
0
3
0
2

0
0
0
0
0
0

5
0
0
4
0
5

0
3
0
0
5
0

0
0
2
0
0
0

3
0
1
0
0
0

0
1
0
0
0
3

4
0
5
5
0
0

i1 i2 i3 i4 i5 i7 i8 i9 i10 i13 i14 i16

u6

u5

u4

u3

u2

u1

Figure 3.14: First subgroup matrix.

2
4
0
0
2
0

0
0
0
3
0
4

0
3
4
0
0
0

3
0
0
0
5
3

4
0
3
3
0
2

0
2
0
0
0
0

5
0
0
0
3
0

0
5
0
4
0
5

2
0
3
0
5
0

2
0
1
0
0
3

i1 i2 i3 i4 i5 i6 i7 i8 i9 i14

u7

u6

u5

u3

u2

u1

Figure 3.15: Second subgroup matrix.

5

5
0

2

0

1

0

5

i7 i10 i13 i16

u7

u4

Figure 3.16: Third subgroup matrix.

47

1
1
1
0
0
1
0
0
0
1
0
1
0
1
0
1

1
0
0
0
1
0
0
1
0
0
1
0
1
0
0
0

0
0
0
1
0
1
0
0
0
1
1
0
0
0
1
1

0
0
0
0
0
1
0
0
0
1
0
1
0
1
0
0

random
values

16x(4+5)

random
values

8x5 16x5

8x(4+5)

a. Without content information

b. With content information

random
values

random
values

genres}

Figure 3.17: User and item feature vectors of Content-Boosted Matrix Factorization

algorithm.

In the Content-Boosted Matrix Factorization algorithm, since the genre infor-

mation of the items are embedded into the item feature vector the size of the item

feature vector increases. In this dataset we assumed that the items have four cat-

egories of genre information, where the items can belong to multiple genres, and

provided the genres of the 16 items. Hence the item feature vector becomes the size

of 16x(4+5), and the columns of item features are preceded with the corresponding

genre information. Since the multiplication of the user and item feature vectors lead

to the prediction matrix, their size should match. Therefore the size of the user feature

48

vector is also increased and it becomes size of 8x(4+5). The visual representations of

these user and item feature vectors can be seen from Figure 3.17.b.

After embedding content information into item feature vectors, the Content-

Boosted Matrix Factorization algorithm is applied to the subgroup matrices and three

different result matrices are obtained. Then the results of these matrices are merged

by the framework proposed by Xu et al. [30], where the rating score of a user-item

tuple is obtained from the subgroup vector, which is the subgroup that the user is

most interested in (the subgroup that has the maximum weight among all the sub-

groups shared with that item in the partition matrix). The resulting matrix of merged

subgroup matrices is presented in Figure 3.18. Note that there are not any predic-

tion scores of user number 8, since this user does not belong to any subgroups in the

partition matrix. Hence the prediction score of this user will be obtained in next stage.

1,7
4,2
3,3
2,8
0,4
2,1
3,1

1,4
4,1
3,4
1,9
3,1
3,7
4,2

3,2
2,9
3,9
0,4
0,2
1,4
2,3

2,9
1,6
1
2

0,7
0,1
3,1

4,1
2,8
2,4
0,2
3,1
1,5
2,8

2,1
2

0,3
1
2,8
2,8
2,7

4,5
4,5
4,2
4,9

2
3,2
1,5

3,8
4,9
3
4

3,8
1,4
4,4

2,7
3,3
3,3
2,2
1,7
4,8
2,3

3,1
2,6
5
3

1,4
1,2
1

1,6
2,9
2

0,3
3

4,2
4,8

2
3

1,4
1,3
4,5
3,4
1,4

1,1
0,8
0,8
1,2
2,2
0,1
4,1

3
4,3
1,1
4,2
3,6
4

3,4
i1 i4 i5 i6 i7 i8 i9 i10 i13 i14 i15 i16i2 i3

u7

u6

u5

u4
u3

u1
u2

Figure 3.18: Merged subgroup matrix.

Stage 3: Run Content-Boosted Matrix Factorization on the whole set and merge with

subgroup predictions

The aim of this stage is to cover the user-item tuples that have no recommenda-

tion scores because of not belonging to the same subgroup with that item. Therefore

the Content-Boosted Matrix Factorization technique is applied to the whole training

matrix 3.7. The obtained prediction matrix is merged with the prediction matrix of

merged subgroups. For each user-item tuple, the predicted rating score is obtained

from the merged subgroup matrix as long as it is available. Otherwise, the predicted

rating score is obtained from the Content-Boosted Matrix Factorization predicted ma-

49

trix. After merging, the prediction matrix of this dataset is presented in Figure 3.19.

3,5
1,7
4,2
3,3
2,8
0,4
2,1
3,1

3
1,4
4,1
3,4
1,9
3,1
3,7
4,2

3,9
3,2
2,9
3,9
0,4
0,2
1,4
2,3

 3,9
2,9
1,6
1
2

0,7
0,1
3,1

2
4,1
2,8
2,4
0,2
3,1
1,5
2,8

2,5
2,1
2

0,3
1

2,8
2,8
2,7

4
4,5
4,5
4,2
4,9
2

3,2
1,5

4,6
3,8
4,9
3
4
3,8
1,4
4,4

 0,2
2,7
3,3
3,3
2,2
1,7
4,8
2,3

1,1
3,1
2,6
5
3

1,4
1,2
1

5
3,7
2

1,2
1,4
2,4
4,5
0,1

1,4
1
2

2,6
5

4,3
3,7
4

1,8
1,6
2,9
2

0,3
3

4,2
4,8

2,1
2
3

1,4
1,3
4,5
3,4
1,4

1,3
1,1
0,8
0,8
1,2
2,2
0,1
4,1

4
3

4,3
1,1
4,2
3,6
4

3,4

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16

u8

u7

u6

u5

u4

u3

u2

u1

Figure 3.19: Merged matrix.

After the prediction matrix is obtained the prediction accuracy and top-N recom-

mendations can be computed based on the test matrix. First, seen items, i.e. the items

that have nonzero values in the training matrix, are removed from the resulting pre-

diction matrix, in order not to recommend the items that exist in the training matrix.

Figure 3.20 represents the unseen item matrix matrix, from which the seen items are

extracted.

3,5
0
0

3,3
0

0,4
2,1
3,1

0
1,4
4,1
3,4
1,9
0

3,7
0

3,9
3,2
0
0

0,4
0,2
1,4
2,3

 3,9
0

1,6
1
2

0,7
0,1
0

0
0

2,8
0

0,2
3,1
1,5
0

2,5
2,1
2

0,3
1

2,8
2,8
2,7

0
4,5
4,5
4,2
0
2
0

1,5

4,6
3,8
0
3
4
0

1,4
0

 0,2
0
3,3
0
2,2
1,7
0
2,3

1,1
3,1
2,6
5
0

1,4
1,2
1

5
3,7
2

1,2
1,4
2,4
4,5
0,1

1,4
0
2
0
5

4,3
3,7
0

1,8
1,6

0
2
0
3

4,2
4,8

0
0
3
0

1,3
4,5
3,4
0

1,3
1,1
0,8
0,8
1,2
2,2
0,1
4,1

4
3
0

1,1
0
0
4

3,4

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16

u8
u7

u6

u5
u4

u3

u2
u1

Figure 3.20: Prediction matrix after the seen items are removed.

In Figure 3.21, the framed scores represent the prediction scores of the unseen

item matrix, that overlap with the test matrix. From the framed scores MAE and

RMSE values are obtained. In order to compute MAE, the error between the predic-

tion matrix and test matrix is calculated for each user, and the summation of error

values averaged by the number of users (Equation 4.1). RMSE is computed by the

50

same fashion except that the summation of the squared error values that are aver-

aged by the number of users is square rooted (Equation 4.2). For example the error

value of the 3rd user is |3.1 − 3| + |2.2 − 2| = 0.3, and the squared error value is

(3.1 − 3)2 + (2.2 − 2)2 = 0.05. The obtained MAE and RMSE values of the whole

dataset are 0.51 and 0.45 respectively.

3,5
0
0

3,3
0

0,4
2,1
3,1

0
1,4
4,1
3,4
1,9
0

3,7
0

3,9
3,2
0
0

0,4
0,2
1,4
2,3

 3,9
0

1,6
1
2

0,7
0,1
0

0
0

2,8
0

0,2
3,1
1,5
0

2,5
2,1
2

0,3
1

2,8
2,8
2,7

0
4,5
4,5
4,2
0
2
0

1,5

4,6
3,8
0
3
4
0

1,4
0

 0,2
0
3,3
0
2,2
1,7
0
2,3

1,1
3,1
2,6
5
0

1,4
1,2
1

5
3,7
2

1,2
1,4
2,4
4,5
0,1

1,4
0
2
0
5

4,3
3,7
0

1,8
1,6

0
2
0
3

4,2
4,8

0
0
3
0

1,3
4,5
3,4
0

1,3
1,1
0,8
0,8
1,2
2,2
0,1
4,1

4
3
0

1,1
0
0
4

3,4

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16

u8
u7

u6

u5
u4

u3

u2
u1

Figure 3.21: Rating scores overlapping the test matrix

MAP and Precision@10 values are computed according to Equation 4.4 and

Equation 4.3 respectively. Considering the 3rd user, the ranked list of 10 items {14,

12, 5, 13, 6, 11, 15, 9, 10, 4} are recommended. Notice that the nonzero values in the

test matrix (i.e. 5 and 15) are recommended to the user. After computation for each

user the MAP and Precision@10 values are 0.23 and 0.1 respectively.

51

52

CHAPTER 4

EVALUATION AND EXPERIMENTS

In order to evaluate our method, we performed experiments based on MovieLens

dataset. We compared the performance of the following four algorithms in terms of

MAE, RMSE, Precision@10 and MAP.

1. Traditional Stochastic Gradient Based MF (TMF)

2. Traditional Stochastic Gradient Based MF via Subgroups (GMF)

3. Content-boosted Stochastic Gradient Based MF (CMF)

4. Content-boosted Stochastic Gradient Based MF via Subgroups (CGMF)

The first algorithm refers to traditional MF algorithm that is based on the Stochas-

tic Gradient Descent technique that is explained in Section 2.3.1. This algorithm,

from now on, will be referred as traditional MF or TMF in short.

The second algorithm GMF is the technique that is explained in Section 3.1. It

discovers subgroups and run TMF algorithm on these subgroups. Since the prediction

results for all the set of user-item tuples are not available we run TMF algorithm on

the whole set and fill the missing prediction values from the generated results by TMF.

This approach will be referred as GMF hereafter.

The third algorithm CMF is explained in Section 3.2. This method incorporates

content information into TMF by employing item attributes of the movies. We choose

to use the genre of the movies as the item attribute. The details of the dataset are

presented in detail in section 4.1.

53

The last algorithm is our proposed approach. In this method, we first discover

subgroups via creating subgroups method that is explained in Section 3.1 and run

the CMF algorithm for all of these subgroups. We then run CMF algorithm on the

whole user item rating matrix. Finally we merge the prediction results obtained from

subgroups and fill the missing prediction values from the prediction results of running

CMF algorithm on the whole set.

We use 5-fold cross-validation and apply same initializations for the shared val-

ues, in evaluating the performance of all algorithms.

4.1 Dataset

We performed experiments on the MovieLens 100k dataset [1]. This dataset is a

widely used dataset that includes 100,000 rating scores provided by 943 users on

1682 items. The basic information about movies and users are also available. The

scores range from 1 to 5. Each user has at least 20 scores available in the dataset.

This version of the dataset provides 19 different genres for each movie. Each movie

can belong to one or more genres.

In the experiments, we considered the genres information only; however, addi-

tional content information can be used with a few modifications of our method (i.e.

adding some more columns to the user and item matrices). We choose the training set

to be 80 percent of the dataset and choose testing set to be the remaining 20 percent

of the dataset.

4.2 Evaluation Metrics

There are several metrics while evaluating recommender systems such as, Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), Precision@K, Mean

Avarage Precision (MAP), Receiver Operating Characteristic curves (ROC curves),

F1 metric [30]. MAE and RMSE are mostly used to measure the accuracy of the pre-

dicted user ratings. Precision@K and MAP, on the other hand, are used to evaluate

the quality of the recommended top K items. While conducting the experiments we

54

aimed to measure the predictive accuracy and the quality of the top 10 recommen-

dations of all methods in order to compare them properly. Therefore we used MAE,

RMSE, Precision@10 and MAP evaluation metrics during the evaluation.

The definition of the MAE and RMSE is as follows [11]:

MAE =
1

|T |
∑

(u,i)∈T

|rui − r̂ui| (4.1)

RMSE =

√
1

|T |
∑

(u,i)∈T

(rui − r̂ui)2 (4.2)

where rui represents the real rating and r̂ui represents the predicted rating. T refers to

the known set of user ratings since rui is not known for all user-item tuples in the real

test dataset. Naturally, |T | is the cardinal number of the test set. Therefore, getting

lower values for MAE and RMSE means that the predictions of the recommendation

systems are more accurate.

The definition of the Precision@K and MAP is as follows [29, 30]:

Precision@K =
relevant items in top K items

K
(4.3)

MAP (U) =
1

|U |

|U |∑
j=1

1

mj

mj∑
k=1

Precision(Rjk) (4.4)

where precision is the number of items that are relevant to the user in the top K items,

and Average Precision is the average of the precisions computed at the point of each

correctly recommended item (d1, ..., dmj) in the ranked list, for a single user j. The

value is then averaged over the user set U to find the Mean Average Precision. The

bigger values of Precision and MAP means the recommendation is more successful.

55

4.3 Experiments

We implemented four recommendation methods that we described and we checked

whether our approach improved MAE, RMSE, Precision@10 and MAP values or not.

The performance of recommendation algorithms highly depends on the param-

eter selection, i.e. an algorithms performance may drastically vary based upon the

selected parameter values. In order to be confident with our results, we used the

same initialization procedures and same parameter values in all of the methods when

applicable.

First for TMF, the initialization of P and Q matrices and the choice of λ and γ

are the key points. We initialized P and Q with small random values. We realized

that increasing the number of factors K produced better RMSE values, however it

increased memory consumption linearly and training time almost linearly. Similarly

increasing λ and decreasing γ cause same effect of increasing memory consumption

and training time. Therefore, we choose K= 5, λ = 0.02 and γ = 0.0002.

For GMF, the key parameters are r and k. Since the performance of using just

a few eigenvectors is competitive, as experienced in by Xu et al. [30], we choose

r to be 3. As for parameter k we set it k= dlog2(c)e as Xu et al. [30] suggested.

We choose c = 3, 10, 20 and respectively k = 2, 4, 5 in our experiments. The same

initializations are applied while running TMF for generating prediction results for all

subgroups and the whole set. When it comes to merging the prediction results, we

used the hard weight for δik , i.e. 0 or 1, as Xu et al. [30].

For CMF, the key parameters is almost the same as TMF, except content infor-

mation i.e. k. In order to incorporate item attributes we initialized first k columns of Q

to be the corresponding item’s attributes. Moreover, we initialized the first k columns

of P to be zero. We used the same values for K, λ and γ, i.e. K= 5, λ = 0.02 and γ =

0.0002. Since 19 genres are available in MovieLens dataset we used k = 19.

Lastly; for our method CGMF, we used the same parameter values of GMF while

discovering subgroups to generate recommendations. However, notice that CGMF

uses CMF in order to generate recommendations for all subgroups and the whole

56

training set, while GMF uses TMF. We chose c = 3, 10, 20 and respectively k = 2,

4, 5. While applying CMF to the subgroups and the whole set we used the same

parameter values as in CMF. The same merging strategy is used as in GMF.

4.4 Results and Discussions

We ran the four recommendation methods under the same circumstances and com-

pared their MAE, RMSE, Precision@10 and MAP values.

We considered TMF results as baseline, in order to compare the other three al-

gorithms. MAE and RMSE values of the four algorithms are presented in Table 4.1.

The table presents the MAE and RMSE values that are obtained respectively by sub-

group numbers 3, 10 and 20. Since the TMF and CMF are independent from the

subgroup number, their values are constant for all of the subgroups.

Table 4.1 shows that both GMF and CMF algorithms improve the prediction

accuracy when compared to TMF. Also increasing the number of subgroups increases

GMF algorithm’s prediction accuracy. When it comes to our approach, it reveals a

dramatic improvement in both MAE and RMSE values. A detailed comparison of

MAE and RMSE values are presented in Table 4.1.

Table 4.1: MAE and RMSE values.

c = 3 c = 10 c = 20
Method MAE RMSE MAE RMSE MAE RMSE
TMF 0.792 1.165 0.792 1.165 0.792 1.165
GMF 0.714 0.941 0.663 0,768 0.689 0.845
CMF 0.78 1.03 0.78 1.03 0.78 1.03
CGMF 0.665 0.770 0.603 0.633 0.632 0.731

Also the four algorithms are compared in terms of MAE and RMSE in the same

Chart, in order to understand the improvements more clearly. They are presented in

Chart 4.1 and Chart 4.2 respectively. We see from charts that our approach show

very good performance in terms of recommendation accuracy.

57

0,55

0,6

0,65

0,7

0,75

0,8

c = 3 c = 10 c = 20

TMF

GMF

CMF

CGMF

M
A

E

Number of Subgroups

Figure 4.1: MAE values of four algorithms.

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

c = 3 c = 10 c = 20

TMF

GMF

CMF

CGMF

R
M

SE

Number of Subgroups

Figure 4.2: RMSE values of four algorithms.

58

Similarly, in order to compare the quality of top 10 items, MAP and Precision@10

values of all algorithms are presented in Table 4.2. The table presents the MAP and

Precision@10 values that are obtained by subgroup numbers 3, 10 and 20, respec-

tively. Since the TMF and CMF are independent from the subgroup number, their

values are constant for all of the subgroups.

Table 4.2: MAP and Precision@10 values.

c = 3 c = 10 c = 20
Method MAP Prec@10 MAP Prec@10 MAP Prec@10
TMF 0.0144 0.0062 0.0144 0.0062 0.0144 0.0062
GMF 0.0167 0.0063 0.0194 0.0073 0.0213 0.0079
CMF 0.0214 0.0083 0.0214 0.0083 0.0214 0.0083
CGMF 0.0224 0.0089 0.0227 0.0084 0.0246 0.0096

Also the four algorithms are compared in terms of MAP and Precision@10 in

the same Chart, in order to understand the improvements more clearly. They are

presented in Chart 4.3 and Chart 4.4 respectively. TMF algorithm’s MAP and Pre-

cision@10 values are weak when compared to the algorithms used by Xu et al. [30].

Therefore the performance of the other three algorithms are also weak since they

are based on the TMF. However, it can be seen from the charts 4.3 and 4.4, that

our approach increases MAP and Precision@10 values when compared to other three

algorithms.

By using CGMF, ultimate recommendations are obtained from merging the rec-

ommendations that are obtained from subgroups and the recommendations obtained

from applying Content-Boosted Matrix Factorization on the whole training matrix

without subgroups. While conducting experiments we realized that the recommen-

dations originated from subgroups are almost 65-70% of the total recommendations,

while remaining 30-35% recommendations are obtained from the Content-Boosted

Matrix Factorization applied on the whole training matrix. The percentages of the

recommendation origins are presented in Table 4.3 for the subgroup numbers 3, 10

and 20.

59

Table 4.3: Percentage of subgroup vs. non-subgroup originated recommendation.

c = 3 c = 10 c = 20
Method Sub Non-Sub Sub Non-Sub Sub Non-Sub
GMF 61 39 84 16 72 28
CGMF 64 36 87 13 73 27

0

0,005

0,01

0,015

0,02

0,025

0,03

c = 3 c = 10 c = 20

TMF

GMF

CMF

CGMF

M
A

P

Number of Subgroups

Figure 4.3: MAP values of four algorithms.

60

0

0,002

0,004

0,006

0,008

0,01

0,012

c = 3 c = 10 c = 20

TMF

GMF

CMF

CGMF

Number of Subgroups

P
re

ci
si

o
n

@
1

0

Figure 4.4: Precision@10 values of four algorithms.

61

62

CHAPTER 5

CONCLUSION

CF algorithms lack incorporating content information into recommendation process

and group like-minded users based solely on same ratings to the same items, without

thinking that users’ taste may change according to the available item set. Hence we

proposed an approach that offers a solution to both of these problems. We use an

algorithm called MCoC in order to get user-item subgroups. The users in the same

subgroup share similar tastes over the items that are present in that subgroup. For

the CF technique to be used on these subgroups, we employ a content-boosted matrix

factorization technique. The content-boosted matrix factorization technique makes

use of the genre information of the movies in the set. In other words, the genre

information of the movies is directly embedded into the item factor matrix that is

used in MF technique.

We first discover subgroups via MCoC technique and run content-boosted MF

technique over all of these subgroups. In this manner, the prediction results of all

subgroups are obtained. However, since a user or an item may belong to zero, one or

more subgroups, the prediction result for the whole set is not present after this process.

In order to overcome this problem we also run the content-boosted CF algorithm on

the whole user-item set and merge the results in order to have missing predictions

caused by user-item subgroups.

In order to evaluate our approach we compared the following four methods.

1. Traditional Stochastic Gradient Based MF (TMF)

2. Traditional Stochastic Gradient Based MF via Subgroups (GMF)

63

3. Content-boosted Stochastic Gradient Based MF (CMF)

4. Content-boosted Stochastic Gradient Based MF via Subgroups (CGMF)

We performed our experiments on the Movielens 100k dataset. In the evaluation

process we used 5-fold cross-validation. Namely, we set the %80 of the whole set

to be the training set, and remaining %20 of the set as testing set. We partitioned

the dataset into five mutually exclusive sets and assign one of them as testing set and

others as training set, and we do it for each partitioned set. Hence, in total we covered

the whole set. We ran all algorithms with the same initial values of parameters when

applicable. Also we provided different number of subgroups in order to better test

our approach. To sum up, we ran each algorithm five times with different training and

test sets, we initialized shared parameters in the same way, and took the average of

the obtained results.

We compared the accuracy of these algorithms in terms of MAE and RMSE

values obtained from the experiments explained above. We observed that both CMF

and GMF methods improve recommendation accuracy when compared to TMF. Rec-

ommendation accuracy of our approach, on the other hand, that combines CMF and

GMF, is very satisfying. The results of the experiments showed that our approach

improves the recommendation accuracy dramatically by both incorporating content

information into recommendation process, and grouping like-minded users via user-

item subgroups, when compared to other three methods.

As a future work, some other content information besides genre information of movies

could be incorporated in the recommendation process of content-boosted MF. More-

over, better subgroups may be discovered to make all user item tuples belong to some

subgroups. Also, the merging algorithm of the prediction results may be enhanced in

order to recommend user a diverse set of items.

64

REFERENCES

[1] Movielens, 2014.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Trans.
on Knowl. and Data Eng., 17(6):734–749, June 2005.

[3] O. Arazy, N. Kumar, and B. Shapira. Improving social recommender systems.
IT Professional, 11(4):38–44, 2009.

[4] R. Burke. The adaptive web. chapter Hybrid Web Recommender Systems,
pages 377–408. Springer-Verlag, Berlin, Heidelberg, 2007.

[5] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algo-
rithms on top-n recommendation tasks. In Proceedings of the Fourth ACM Con-
ference on Recommender Systems, RecSys ’10, pages 39–46, New York, NY,
USA, 2010. ACM.

[6] P. Forbes and M. Zhu. Content-boosted matrix factorization for recommender
systems: Experiments with recipe recommendation. In Proceedings of the Fifth
ACM Conference on Recommender Systems, RecSys ’11, pages 261–264, New
York, NY, USA, 2011. ACM.

[7] T. George and S. Merugu. A scalable collaborative filtering framework based on
co-clustering. In Data Mining, Fifth IEEE International Conference on, pages
4–pp. IEEE, 2005.

[8] A. Gupta, A. Mohapatra, and T. Tenneti. Towards a hybrid approach to netflix
challenge. 2009.

[9] B. Hidasi and D. Tikk. Enhancing matrix factorization through initialization for
implicit feedback databases. In Proceedings of the 2Nd Workshop on Context-
awareness in Retrieval and Recommendation, CaRR ’12, pages 2–9, New York,
NY, USA, 2012. ACM.

[10] Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to
alleviate the sparsity problem in collaborative filtering. ACM Transactions on
Information Systems (TOIS), 22(1):116–142, 2004.

[11] Q. L. R. H. R. Z. Huiyuan Chang, Dingxia Li. Content-enhanced matrix fac-
torization for recommender systems. In Applied Mechanics and Materials [11],
pages 1084–1089.

65

[12] M. Jamali and M. Ester. A matrix factorization technique with trust propagation
for recommendation in social networks. In Proceedings of the Fourth ACM
Conference on Recommender Systems, RecSys ’10, pages 135–142, New York,
NY, USA, 2010. ACM.

[13] Y.-D. Kim and S. Choi. A method of initialization for nonnegative matrix fac-
torization. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 2007, April 15-20, 2007, Honolulu,
Hawaii, USA, pages 537–540. IEEE, 2007.

[14] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, Aug. 2009.

[15] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data
analysis: a survey. Computational Biology and Bioinformatics, IEEE/ACM
Transactions on, 1(1):24–45, 2004.

[16] T. Mahmood and F. Ricci. Improving recommender systems with adaptive con-
versational strategies. In C. Cattuto, G. Ruffo, and F. Menczer, editors, Hyper-
text, pages 73–82. ACM, 2009.

[17] M. Mortensen. Design and evaluation of a recommender system. 2007.

[18] J. Nguyen and M. Zhu. Content-boosted matrix factorization techniques for
recommender systems. Statistical Analysis and Data Mining, 6(4):286–301,
2013.

[19] A. Oghabian, S. Kilpinen, S. Hautaniemi, and E. Czeizler. Biclustering meth-
ods: Biological relevance and application in gene expression analysis. PloS one,
9(3):e90801, 2014.

[20] U. Panniello, A. Tuzhilin, and M. Gorgoglione. Comparing context-aware rec-
ommender systems in terms of accuracy and diversity. User Modeling and User-
Adapted Interaction, 24(1-2):35–65, Feb. 2014.

[21] S. A. P. Parambath. Matrix factorization methods for recommender systems,
2013.

[22] M. J. Pazzani. A framework for collaborative, content-based and demographic
filtering. Artificial Intelligence Review, 13(5-6):393–408, 1999.

[23] P. Resnick and H. R. Varian. Recommender systems. Commun. ACM,
40(3):56–58, Mar. 1997.

[24] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. Recommender Systems Hand-
book. Springer-Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[25] J. B. Schafer, J. A. Konstan, and J. Riedl. E-Commerce Recommendation Ap-
plications. Data Mining and Knowledge Discovery, 5(1-2):115–153, Jan. 2001.

66

[26] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques.
Advances in artificial intelligence, 2009:4, 2009.

[27] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Scalable collaborative filtering
approaches for large recommender systems. J. Mach. Learn. Res., 10:623–656,
June 2009.

[28] Wikipedia. Collaborative filtering Wikipedia, the free encyclopedia, 2014. [On-
line; accessed 20-November-2004].

[29] Wikipedia. Mean average precision Wikipedia, the free encyclopedia, 2014.
[Online; accessed 20-November-2004].

[30] B. Xu, J. Bu, C. Chen, and D. Cai. An exploration of improving collabora-
tive recommender systems via user-item subgroups. In Proceedings of the 21st
International Conference on World Wide Web, WWW ’12, pages 21–30, New
York, NY, USA, 2012. ACM.

[31] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel sgd for matrix
factorization in shared memory systems. In Proceedings of the 7th ACM Con-
ference on Recommender Systems, RecSys ’13, pages 249–256, New York, NY,
USA, 2013. ACM.

67

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Thesis Contributions
	Outline

	RELATED WORK and BACKGROUND
	Content Based Recommendation
	Collaborative Filtering
	Neighborhood Models
	Latent Factor Models

	Matrix Factorization Techniques
	Stochastic Gradient Descent
	Alternating Gradient Descent
	Singular Value Decomposition

	CONTENT-BOOSTED COLLABORATIVE FILTERING AND USER-ITEM SUBGROUPS
	USER-ITEM SUBGROUPS
	Xu's Algorithm
	MCoC Problem Formulation
	MCoC Solution
	Embedding Subgroups into Recommendation

	CONTENT-BOOSTED COLLABORATIVE FILTERING
	Chang's Algorithm
	Problem Formulation
	Problem Solution

	CONTENT-BOOSTED MATRIX FACTORIZATION VIA USER-ITEM SUBGROUPS
	Illustrative Example

	EVALUATION AND EXPERIMENTS
	Dataset
	Evaluation Metrics
	Experiments
	Results and Discussions

	CONCLUSION
	REFERENCES

