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ABSTRACT

COMMUNITY DETECTION IN SOCIAL NETWORKS

Öztürk, Koray

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

Co-Supervisor : Assist. Prof. Dr. Tansel Özyer

December 2014, 105 pages

Today, introduction of social networking applications into every area of our lives

makes social network analysis an important research area. Websites and other

applications on the internet provides large amounts of data and new research

area to the researchers. Also, most of the other data like relationships between

people and objects can be presented as social networks. In this work, detecting

communities on social networks which is an important subject on social network

analysis will be studied. For this, a modi�ed Genetic Algorithm of which chro-

mosome structure and genetic operators are modi�ed to �nd communities in

social networks is used. This modi�ed Genetic Algorithm can be used without

giving proposed community number at the initialization and it runs faster com-

pared to other Genetic Algorithm methods. Additionally, we did experiments

using Newman's Spectral Clustering Method as a preprocess step and it gave

good results.
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ÖZ

SOSYAL A�LARDAK� TOPLULUKLARIN BULUNMASI

Öztürk, Koray

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Tansel Özyer

Aral�k 2014 , 105 sayfa

Günümüzde sosyal a§ uygulamalar�n�n ya³amlar�m�z�n her alan�na girmesi, sos-

yal a§ analizini önemli bir ara³t�rma konusu yapmaktad�r. �nternet üzerindeki

web siteleri ve di§er uygulamalar, ara³t�rmac�lara çok miktarda analiz edilecek

veri ve yeni ara³t�rma alanlar� sunmaktad�r. �nsanlar ve nesneler aras�ndaki ili³-

kileri gösteren günlük hayat�m�zdaki verilerin ço§u da sosyal a§lar olarak mo-

dellenebilmektedirler. Bu çal�³mada, sosyal a§ analizinde önemli bir konu olan,

sosyal a§lardaki topluluklar�n bulunmas� üzerine çal�³aca§�z. Bunun için kromo-

zom yap�s�n� ve genetik operatörlerini, sosyal a§lardaki topluluklar� bulmak için

özelle³tirdi§imiz bir Genetik Algoritma kullan�ld�. Modi�ye edilmi³ bu Genetik

Algoritmay� elde edilmek istenen topluluk say�s�n� ba³lang�çta belirtmeden kul-

lanabiliyoruz ve di§er Genetik Algoritma kullanan yöntemlere göre daha h�zl�

sonuç elde edebiliyoruz. Ayr�ca, Newman'�n a§lar için Spektral Kümeleme Me-

todu'nu ön i³leme ad�m� olarak kulland�§�m�z deneyler de yapt�k ve iyi sonuçlar

verdi§ini gördük.
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Anahtar Kelimeler: Sosyal A§, Topluluk Bulma, Genetik Algoritma, Spektral

Kümeleme
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CHAPTER 1

INTRODUCTION

The concept of social network has become popular after websites like Facebook

and Google+ emerged and become a part of our everyday life. The two main

properties of the social networks are entities and the relationships within these

entities participating in the network. Entities might be "people" and relation-

ships might be the "friendship" of these people like on Facebook and like most of

the other social websites but they are not limited to "people" and "friendship".

Entities might be entirely di�erent e.g., organizations, websites and relation-

ships might be something else e.g., business, trade, collaboration. Relationships

can be all-or-nothing as in Facebook that you are friend with someone or not,

or can be a degree as in Google+. Although social networks and their analysis

has been a very popular research area in sociology [60][68] for decades, recent

revolution on the internet and computer applications have made huge amount

of real world data available to analyze and process for researchers. Real world

networks can be very large in size, even reaching billion of vertices so there is a

need for changing how to handle analyzing and processing networks and a large

number new methods have been produced [56][2][58][38][42][51].

In a randomly generated network, the edge distribution is mostly homogeneous

and degree of vertices are very similar[49]. However, the degree distributions of

real networks are not homogeneous, edges might be denser within some group

of entities and might be rarer within other group of entities [19]. This feature

of real networks that edges within some speci�c group are denser, is called com-

munity structure [26] or clustering. The entities of a social network naturally

fall into communities which the relationships within a community is dense while

1



the relationships between di�erent communities are rare. This study focuses on

�nding communities in social networks and we propose a method for detecting

communities in social networks.

1.1 Social Networks as Graphs

Graph is a convenient tool for network modeling. If we de�ne a graph as

G=(V,E) then V is the set of nodes and E is the set of edges that if an edge

exists between the nodes Vi and Vj then we can say that nodes Vi and Vj are re-

lated to each other and the edge between them is shown as Eij. While modeling

social networks as graphs, an entity is modeled as a node and the relationship

that connecting two entities are modeled as an edge. Undirected graphs are

the best and the most natural exhibition of the social networks, so we will be

using undirected graphs in this work to model social networks. In undirected

graphs, Eij is same as Ej i. Furthermore, in our work, graphs do not include

loops and are non-re�exive meaning that nodes are not related to themselves.

Also, multiple edges from one node to another do not exist. Order of a graph is

number of nodes and size of a graph is number of edges.

We can represent a graph either visually, or with an adjacency matrix A, a V

x V square matrix, where nodes are in rows and columns, and numbers in the

matrix indicate the existence of edges such as if Eij exists then the value of entry

aij is 1 else 0. For unweighted graphs, all entries are 0 or 1; for weighted graphs

the adjacency matrix contains the values of the weights. Since our graph is

non-re�exive, diagonal of the A contains only zeros. In �gure 1.1, an undirected

sample graph with communities is shown.

1.2 Types of Social Networks

Although the most known social network type is friend networks, there are others

types of networks that exhibit a good example of social networks.

• Friend Networks : Here, the nodes represent people and the edges represent
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Figure 1.1: A simple graph with three communities. Reprinted �gure with

permission from [59]

the relationship between them. Edges in these type of networks are usually

unweighted that shows they are friends or not. If the strength of the

relationship is needed to be shown, weighted edges can be used.

• Telephone Networks : Communications of people over the phone can be

modeled as a social network where phone numbers are considered as indi-

viduals and represented as nodes. The calls over a time period between the

individuals can be modeled as edges for example, phone calls in a company

within last two months.

• Email Networks: In this kind of networks, nodes represent email addresses,

which are the individual entities. If an edge is formed between the two

addresses then, it means that there was at least one email in at least

one direction between these two entities. Another way is placing edges if

there are emails only in both directions. By doing this, we can prevent

from accepting spammers as �friends� with their victims. Furthermore, one

approach is to label edges as weak or strong. Strong edges shows existence

of email tra�c in both directions, while weak edges show the tra�c that

the communication was in one direction only. The communities seen in
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email networks come from the same sorts of groupings we mentioned in

connection with telephone networks. Similar sorts of network involves

people who text other people through their mobile phones and people who

send instant messages to other people using instant messaging software

and also people who share �les with each other using �le sharing software.

• Collaboration Networks: Nodes represent individuals who have done joint

works like publishing research papers. Continuing from research paper

example, if two individuals published papers together, an edge is estab-

lished between them. Optionally, we can label edges by the number of

joint publications. The communities in this network are authors working

on a particular topic. Not only academic works but also relationships in a

company or a club or customer-product relationships can be modeled as a

collaboration network.

1.3 Properties of Social Networks

This chapter is intended to introduce basic properties and common character-

istics of real world social networks. These properties and characteristics are

signi�cant because they can guide how to analyze network and how to exploit

network structure for certain purposes [42].

The Small World E�ect : In a complex network, even if the network has many

nodes and a large size, the average distance between any two nodes within the

network is short. This property is called the small-world e�ect[69]. This prop-

erty was �rst examined in 1960s by Milgram in several experiments [65][39]. In

his experiments, randomly selected people from Nebraska are wanted to send

letters to a target person in Boston, a far location, who is known only by name,

occupation and rough location. The paths of the letters from sources to target

destination were kept. Expectation of the letter exchange number in the paths

was hundreds, but at the end, average number of exchange in the paths was six.

Similar experiment done by Dodds et al. [11] by using e-mails. Lately, experi-

ments done using computer networks and instant message applications had the

similar results [34].
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Network Transitivity : Another property is network transitivity which is some-

times referred as clustering. This property is the extent to which my friends are

friends with one another [68]. In other words, if vertices A and B are neighbors

and vertices B and C are neighbors, then there is a huge probability of that

vertices A and C are connected too. Transitivity is quanti�ed by de�ning a

clustering coe�cient:

C =
3× number of triangles in the network

number of connected triples of vertices in network
(1.1)

where connected triples mean three nodes connected to each other through two

edges. The clustering coe�cient C has a value between 0 and 1.

Another approach to network transitivity is proposed by Watts and Strogatz

[69] who choose a way that uses de�ning local clustering coe�cient values:

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
(1.2)

where 0 ≤ Ci ≤ 1.For the situations which denominator is zero, Ci is taken

as zero. Clustering coe�cient for the whole network is the average of the local

clustering coe�cient values:

C =
1

n

∑
i

(Ci) . (1.3)

Since low-degree vertices have smaller denominator in equation 1.2, their addi-

tion to the equation is expected to be higher. Plus, equations 1.2 and 1.1 can

give slightly di�erent results as it seen in �gure 1.2. Although eq. 1.1 seems

easy for calculations, eq. 1.3 is the clustering coe�cient in use, because it is

more convenient for computers and has a wide use in numerical studies and

data analysis[42][66]. Studies about clustering coe�cient are not limited to tri-

angles, several studies have been done for higher-ordering clustering coe�cients

[25][22][1][41] which we can call k-clustering coe�cient, k ≥ 4.

Degree Distributions : Degree of a vertex is the number of the edges incident

with that vertex. We can formulate the degree ki of a vertex i in terms of an

adjacency matrix A, such that

ki =
∑
i∈N

aij. (1.4)

In directed graphs, there are two kind of links called outgoing and incoming

links and the total degree of the vertex is found as ki = kouti + kini . We are
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Figure 1.2: A sample network for illustration of the calculation of clustering

coe�cient. Reprinted �gure with permission from [42]. There are one triangle

and 8 triples so for eq. 1.1 C= 3 x 1/8 = 3/8. For eq. 1.2, local clustering

coe�cients of the nodes are 1, 1, 1/6, 0 and 0. We �nd C= 13/30 for eq. 1.3.

going to deal with undirected graphs so there won't be outgoing and incoming

edges. The degree distribution P(k) is the probability of a degree of a randomly

chosen vertex being k or the fraction of the vertices in the graph having degree

k. Degree distribution of a graph gives important information about topological

characterization of the graph [58]. In an undirected network, distribution of the

degrees among the vertices can be found by a plot of P(k), or by the calculation

of the moments of the distribution. P(k), for a speci�c moment of n is de�ned

as:

< kn >=
∑
k

knP (k). (1.5)

When the connections between vertices in a network are random, the degree

distribution gives all the statistical properties of the network[38].

Community Structure: It is widely accepted that people tend to be grouped

in terms of jobs, interests, education, status, vice versa and in social networks,

edges between vertices within a group are denser than the edges between the

vertices of di�erent groups which is a common property that we call community

structure [60][68]. Another de�nition of the community structure is that: Let

G
′
be a subgraph of the graph G and if the sum of all degrees within G

′
is bigger

than the sum of all degrees toward the rest of the graph, then we can call G
′

as a community [15]. Extracting the community structure of a network might

be called as cluster analysis[14] in some past studies. Data clustering ,which

is a method trying to �nd groups of data located in high dimensional data

spaces[32], and network clustering might seem same, solutions for one problem

can be adapted for the other one but they are di�erent and should not be
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confused with each other.

Betweenness : The shortest path in a graph is the way between two vertices that

passing through the least number of edges. When we call a path AB between

two vertices VA and VB as shortest path, there should be no other path that

using lesser number of edges than the path AB. It is a very important notion

in graph theory and betweenness property is based on shortest paths between

the vertices in the graph. The betweenness of a vertex Vi or an edge Ei is

the total number shortest paths between the all pair of vertices in the network

that passing through the Vi or Ei. This property �rst introduced in sociology

to de�ne social weight of a vertex [20]. If a vertex has a larger betweenness,

it has more in�uence. Betweenness of a vertex can be called as betweenness

centrality[21].

Graph Spectra: A graph G consisting of N vertices has N eigenvalues µi ( i

= 1,2,3...) and N eigenvectors vi ( i = 1,2,3...). The spectrum of the graph

will be the set of its eigenvalues. Since we use undirected graphs, it has a

symmetric adjacency matrix. Therefore, it has real eigenvalues and eigenvectors

of distinct eigenvalues are orthogonal. Connectivity properties of a Graph G can

be extracted from the normal Matrix, N = D−1A where D is a diagonal matrix

and A is adjacency matrix, and Laplacian Matrix, L = D−A. All eigenvalues of
L are real values and greater than or equal to zero. Because all rows of L sum to

zero, �rst eigenvalue λ1 = 0 and its associated eigenvector becomes v1=1,1,...,1.

Therefore, using second smallest eigenvalue, λ2, is better to cut graph G into

pieces. Studies show that if λ2 is larger, cutting G into pieces is harder [4]. In

section 2.5, Newman's Spectral Algorithm [44] using especially graph spectra

property is explained in detail.

1.4 Community Detection in Social Networks

Communities are the core structures of the network that individuals or vertices

in the same community are connected more densely with each other than with

individuals of other communities. Individuals are connected with each other

because they just know them or they have common properties, so we can say
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that if they are in the same community, they share more common and similar

properties. Community detection is signi�cant, because a community might be

a small version of whole graph, which shows the very similar characteristics of

it. Therefore, examining a few communities might enable us to understand the

whole network. This feature is very useful especially when network is a very

large real world data.

Community detection has several application areas in the real world. It is bene�-

cial in commercial, security and academic areas. Recommending same products

or services to individuals who are in the same community and using commu-

nity of the individual as a feature for the recommendation systems are two

very common and known application types[62]. Another example for the ap-

plication areas of community detection in social networks is that, in the work

of Pinheiro[53], usage of community detection in social networks to reveal the

fraud events and other suspicious leakages of money is proposed by generating

a network of customers using the text messages and telephone communications

between the individuals and identifying community structures. It is stated that

unexpected communications between individuals and their type of social struc-

ture can enable us the necessary information to �nd suspicious groups or indi-

viduals. For another example in the academic area, we can show that dividing

citation network into communities can help researchers who are looking for a

cooperation for a specialized �eld [9][13]. There are also studies to detect hid-

den criminals in the networks that we do not have any or have too little prior

knowledge about individuals' identity [7][48]. In this kind of networks, since

there are not much data the to characterize the individuals, the relationships

between the entities become important. The relationships in criminal networks

in this type of studies are built from several resources like police arrest data,

crime location data, kinship or hometown data. This kind of applications make

it easy to �nd suspicious members in the networks. Furthermore, applications

to detect terrorist groups in the networks and generating automated techniques

to prevent terrorist actions have gained a signi�cant focus after 9/11 attacks at

the USA [70]. Not only detecting terrorists, but also analyzing their activities

and predicting their moves are important. For these purposes, there are several

representations of the networks that some of them show individuals as entities
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while others show terrorist activities as entities and if activities are done by the

same terrorist organization, it is accepted to be a link between these entities

[67].

In the studies related to social networks, the topic of community detection has

been discussed largely on the context of block models which are the divisions

of the networks into the basic blocks according to some criteria. If we have the

block model, we can have communities [57][30] and Genetic Algorithms are one

of the well-de�ned methods that we can use block models, generate best building

blocks for the solution and preserve them throughout the solution process.

In this paper, a Genetic Algorithm which is modi�ed for the needs of the commu-

nity detection in social networks is proposed. A Genetic Algorithm is a search

method to �nd the optimal or the nearest optimal solutions for engineering

problems. They are inspired by the evolution process in the nature and Genetic

Algorithms' being close to natural evolution is also one of our reasons to use

them. In Genetic Algorithms, problems are encoded in a structure which they

can be represented best in a computing machine. On the solution space, selec-

tion, crossover and mutation processes are applied to generate new solutions and

worst ones are eliminated from the solution space [31][28]. Detailed stages of the

Genetic Algorithms are explained in section 2.6. Genetic Algorithms especially

performs well on combinatorial and mixed problems. They have a less chance

to stuck at a local optima when compared to gradient search methods. Genetic

Algorithm is one of the stochastic search methods that include methods like

simulated annealing and threshold acceptance. However, most of the stochastic

search methods run on a single solution for the problem, while genetic algo-

rithms run on a population of solutions [18]. Furthermore, in recent years, the

combination of increasing performance and decreasing price of the computing

devices and suitability for the parallel programming makes Genetic Algorithms

attractive.
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CHAPTER 2

LITERATURE SURVEY

In this chapter, I will mention about the some of the state of art works which

help my study. First, traditional clustering methods which consist of Parti-

tional Clustering using distance measures for clustering, Hierarchical Cluster-

ing and Graph Partitioning aiming to cut graph into pieces will be mentioned.

Second Girvan-Newman Algorithm(GN) [27] which introduces a new measure-

ment methodology to evaluate the quality of community structures will be men-

tioned. Furthermore, algorithms using measurement methodology of GN, which

are proven as well functioning for community detection will be mentioned: Duch

and Arenas' Algorithm, Clauset's Algorithm and Newman's Spectral Algorithm.

Finally, I will talk about genetic algorithms and their specialized use for com-

munity detection in social networks.

In the following methods, it is accepted that each individual or node of the net-

work cannot be in more than one community at the same time, belongs to only

one community.

2.1 Traditional Clustering Methodologies

2.1.1 Partitional Clustering

The �rst studies in computer science to �nd communities of similar objects are

based on statistics and data mining. The most signi�cant ones of these old

studies use partitional clustering methodologies like k-means clustering, neural

network clustering and multidimensional scaling [23].
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When the edges of the graph have weights or some properties could be used

as weights, these weights might be usable as a distance measure, depending on

what they represented. Clustering with methods which use traditional distance

measures like K-Means algorithm [36] are proven to be e�ective, especially on

physical networks like cities on a map. However, when the edges do not weighted,

as in a �friends� graph, there is not much we can do to de�ne a suitable distance.

Also, the number of cluster to be �nd must be prede�ned. Therefore, applying

traditional distance-measured methods on social networks is not convenient. K-

Means algorithm can be detailed as following: Initially number of communities

is given. In �rst step, we distribute centroids, centers of the communities and

their number is proposed community number, on network such that they are

away from each other as possible as. Each of the vertices are assigned to the

nearest centroid. In second step, the centers of the mass of the each cluster are

recalculated and centroids are replaced to the newly found mass centers. After

some iterations, locations of the centroids do not change anymore. The solution

is not optimal and might depend on the initial choice of the community number

and location of the centroids.

2.1.2 Hierarchical Clustering

Hierarchical Clustering is one of the most popular community detection methods

for social networks. For a graph with N vertices and its similarity matrix A,

hierarchical clustering is as following for general networks:

1. Assign a unique community number to all N vertices so there will be N

di�erent communities.

2. Find the closest two communities and merge them into one community.

3. Recompute the similarities between the new and old clusters.

4. Repeat the second and third steps until, all of the vertices put into the

same community.

5. Resulting hierarchical tree which is also referred as dendrogram is cut

horizontally and �nal partitions are generated. See �gure 2.1.
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Figure 2.1: Hierarchical tree(dendrogram) of the Zachary's Karate

Club.Reprinted �gure with permission from [46].

Talking speci�cally in terms of graphs of social networks, hierarchical clustering

of a social-network graph starts by joining two nodes that have an edge between

them. Successively, edges that are not between two nodes of the same cluster

would be chosen randomly to combine the clusters to which their two nodes

belong. The choices would be random, because all distances represented by an

edge are the same. Disadvantage of the hierarchical clustering of a graph like

seen in Fig. 2.2 is that at after some point we have to choose to join B and

D, although they are de�nitely in di�erent groups. The reason we are likely to

combine B and D is that D, and any cluster containing it, is as close to B and

any cluster containing it, as A and C are to B. There is even a 1/9 probability

Figure 2.2: Example of a Small Social Network
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that the �rst thing we do is to combine B and D into one cluster. There are

things we can do to reduce the probability of error. We can run hierarchical

clustering several times and pick the run that gives the most coherent clusters.

However, whatever we do, in a large graph with many communities there is a

signi�cant probability that in the beginning stages we shall use some edges that

connect two nodes that do not belong together in any large community.

To sidestep the shortcomings of the hierarchical clustering method, an alter-

native approach to the detection of communities is proposed by Girvan and

Newman [26]. Instead of trying to construct a measure that tells which edges

are most central to communities, least central edges are focused. This term is

called as betweenness, focuses on the edges that are most �between� commu-

nities. The work of Clauset et. al.[8] is a variety of Hierarchical Clustering.

It tries to optimize Modularity Score Q, which is proposed by [26]. It runs in

O(mdlogn) time for a network with n vertices and m edges where d is the depth

of the dendrogram.

2.1.3 Graph Partitioning

In computer science, Graph Partitioning is a typical process that divides the

network into groups having similar size, while trying to minimize the number of

the edges between these groups. Most of the methods for graph partitioning are

based on dividing the graphs into two separate groups iteratively: The spectral

bisection method [17][54] which uses Laplace Matrix of the graph and eigenvec-

tors of it and Kernighan�Lin algorithm [33] which tries to optimize community

structure over an initial partition of the graph in a greedy way.

Dividing the graph into two subgraphs is the main characteristic of the spectral

bisection method but also it may be seen as a disadvantage. If we want to �nd

more than two communities, we need to repeat spectral bisection iteratively on

these subgraphs which is not always giving the ful�lling results. Also, deciding

where to stop dividing the graphs is important. The spectral bisection method

runs in O(n3) time.

The Kernighan�Lin algorithm which is a specialized approach to spectral bi-

section, is a greedy optimization algorithm and it tries to maximize a bene�t
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function. The bene�t function is the sum of edges within groups minus the sum

of the edges between groups. The Kernighan�Lin algorithm is as following:

1. Start with the initial partition of the graph into two groups. Size of the

groups must be prede�ned. Vertices might be assigned to the groups ran-

domly.

2. Consider all possible pairs of vertices which one vertex is chosen from each

groups and calculate the change in the bene�t function in case of we swap

them.

3. The swap that maximizes the bene�t function is chosen and swap is done.

Step 2 and 3 are repeated until all vertices in one of the groups have been

swapped once.

4. The sequence of swaps that were made are re-examined and the point

during this sequence at which Q was highest is found. This is taken to be

the bisection of the graph.

The main disadvantage of the Kernighan�Lin algorithm is that we have to choose

the sizes of the communities at initial phase. Results highly depends on the

initial size and con�gurations so it is inconvenient for real world datasets. Plus,

it su�ers the same disadvantages with other spectral bisection methods: Network

is divided into two communities and division into more than two communities

can be done by iterative processes but we do not where to stop for best division.

Later, Kernighan�Lin algorithm is extended that when the number and sizes

of communities are not speci�ed, a single node moved to other communities

at a time but it also has shortcomings that usually performs poor in time and

detection of communities [3][61].
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2.2 Girvan-Newman Algorithm

2.2.1 Introduction of Modularity

There are many algorithms that divide networks into communities. Most of

them work well on arti�cially generated datasets and on real world datasets of

which communities are known. However, the question of how to evaluate the

quality of community structures found by the algorithms arises when we work

on real world datasets and don't know the communities before. It is mainly

accepted that in a well-de�ned community structure, edges between individuals

are denser. A node must have most of its connections with the nodes which are

in the same community and must have none or very few connections with the

nodes which belongs to other communities.

In the work of Radicchi et al[15], a quantitative measure for evaluation of com-

munities is proposed. However, it is also stated that quantitative measures are

subjective and cannot be exactly accurate for now. Lately,Modularity Q concept

proposed by Newman and Girvan[27] is accepted as a quali�cation measure for

communities. This measure is based on previous work of Newman which focuses

on assortative mixing [45]. Modularity calculation is shown at the following

equation:

Q =
∑
i

(
eii − a2i

)
(2.1)

i is the number of communities, eii is the fraction of edges to the total number

of edges in the network that has both sides inside the community and ai is the

fraction of total number of edges that has at least one side inside the community

to the total number of edges in the network. When we are counting edges for ai,

if one side of the edge is inside the community i and the other side is in another

community then we count that edge as 0.5. If both sides of the edge were in the

community i, then we would count it as 1. After the calculation of modularity,

Modularity Q takes a value between -1 and 1. Q values which are closer to 1,

have better community structures.

In recent studies, it is claimed that the problem of �nding maximum modularity

is an NP-Hard problem [5].
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2.2.2 A Divisive Algorithm

In Girvan-Newman Algorithm(GN)[26][27], removal of most between edges

progressively from the original graph is aimed. In this algorithm, Betweenness

property of the social networks will be used. Betweenness of an edge, is the

number of the shortest paths between the vertices xi and xj of the graph G

such that N is the number of vertices in G, xi and xj ∈ G , 0 < i, j <= N and

i 6= j. If there are more than one shortest path between xi and xj, then their

fraction is taken. While performing GN, �rst, each node is visited by Breadth

First Search and shortest paths from each nodes to other nodes through edges

are calculated. If we look at the Fig. 2.2 again, we see that the edge between

the nodes B and D is used by the shortest paths 24 times and this edge has

biggest betweenness score. To split the community into communities we remove

this edge which has the highest betweenness. Then, betweenness of all edges

a�ected by this removal is recalculated. Until no edges remaining, this process

is repeated. We can summarize the steps as following:

1. For all edges in the network, �nd the betweenness score

2. Select the edge which has the highest betweenness and remove it from the

network.

3. Recalculate betweenness for all remaining edges.

4. Repeat from step 2.

Slowness of GN is an important di�culty. It runs in O(n3) time in sparse graph,

which is ine�cient for networks having more than 10000 nodes. Although it is

inconvenient for large networks, several successful versions of Girvan-Newman

Algorithm is used in di�erent publications by specializing for datasets used.

Holme et al.[50] used it for metabolic networks and Gleiser and Danon [52]

used GN to split early jazz musicians into communities that musicians who

collaborated are aimed to be in the same community. Guimera et al. [55] also

used GN Algorithm by using an e-mail network of a university as dataset.
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2.3 Algorithm of Duch and Arenas

In the work of Duch and Arenas(DA)[12], a novel method to identify com-

munity structures in large complex networks is proposed. The method is based

on extremal optimization of the value of modularity. Also, in this work, mod-

ularity score Q proposed by Newman and Girvan[26] accepted as measure for

de�ning community structures. In initial step, whole graph is partitioned into

two equal communities randomly. In every step, the node with the lower �t-

ness value is transferred from one community to another and then �tness of the

nodes neighbor nodes are recalculated. This process is repeated until a maxi-

mized Modularity Score Q is reached. After that, all links between two resulted

communities are deleted and the same process repeated on each community until

Modularity Score Q cannot be improved further.

2.4 Algorithm of Clauset et. al.

The algorithm proposed by Clauset, Newman and Moore [8] is a kind of agglom-

erative hierarchical clustering method. It also uses modularity score Q proposed

by Girvan and Newman [26] as a measure for optimization of community struc-

tures. In the beginning of the algorithm each vertex belongs to one of the n

communities solely where n is the number of the vertices in the network. Com-

munities are joined together in pairs repeatedly, choosing in each step the join

that results in the greatest increase or least decrease in Q. At the end, a den-

drogram, tree that show the order of the joins, is produced and cuts through

this dendrogram reveals the community structures. According to the level we

cut, we can get small and many communities or get large and lesser number of

communities. Place of the cut might be the chosen by looking for the maximal

value of Q.

After the modi�cations which are done in the algorithm[8], it runs in O(mdlogn)

time for a network with n vertices and m edges where d is the depth of the den-

drogram which is a very good performance.
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2.5 Newman's Spectral Algorithm

In this section, we examine another approach to organizing social-network graphs.

We use some important tools from matrix theory (�spectral methods�) to formu-

late the problem of partitioning a graph to minimize the number of edges that

connect di�erent components. Newman's work of �modularity and community

structure in networks�[44] is a specialized version of Spectral methods for social

network graphs. Given a graph, we would like to divide the nodes into two sets

so that the cut, or set of edges that connect nodes in di�erent sets is minimized.

To develop the theory of how matrix algebra can help us �nd good graph parti-

tions, we �rst need to learn about three di�erent matrices that describe aspects

of a graph. The �rst should be familiar: the adjacency matrix that has a 1 in

row i and column j if there is an edge between nodes i and j, and 0 otherwise.

We repeat our running example graph in Fig. 2.2. Its adjacency matrix appears

in Fig. 2.3.

Figure 2.3: Adjacency Matrix of Fig. 2.2

The second matrix we need is the degree matrix for a graph. This graph has

entries only on the diagonal. The entry for row and column i is the degree of

the ith node. The degree matrix for the graph of Fig. 2.2 is shown in Fig. 2.4.

For instance, the entry in row 4 and column 4 is 4 because node D has edges to

four other nodes. The entry in row 4 and column 5 is 0, because that entry is

not on the diagonal.

Suppose our graph has adjacency matrix A and degree matrix D. Our third

matrix, called the Laplacian matrix, is L = D - A, the di�erence between the

degree matrix and the adjacency matrix. That is, the Laplacian matrix L has
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Figure 2.4: Diagonal Matrix of Fig 2.2

the same entries as D on the diagonal. O� the diagonal, at row i and column j,

L has -1 if there is an edge between nodes i and j and 0 if not. The Laplacian

matrix for the graph of Fig. 2.2 is shown in Fig. 2.5. Notice that each row and

each column sums to zero, as must be the case for any Laplacian matrix.

Figure 2.5: Laplacian Matrix of Fig 2.2

We can get a good idea of the best way to partition a graph from the eigenvalues

and eigenvectors of its Laplacian matrix. By dealing with the Laplacian matrix,

the smallest eigenvalues and their eigenvectors reveal the information that we

need for partitioning. The smallest eigenvalue for every Laplacian matrix is

0 and its corresponding eigenvector is [1, 1, . . . , 1]. So that, we use the

second-smallest eigenvalue of the Laplacian matrix. We compute the leading

eigenvector of this eigenvalue. Vertices are divided into two groups according to

the signs of the elements in this vector. Negative vertices are grouped together

and positive vertices are grouped together. This simple matrix-based method

works even though the sizes of the communities are not speci�ed and is a good

way to divide a network into two parts as described. Many networks, however,
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contain more than two communities, so the method needs to be extended to �nd

good divisions of networks into larger numbers of parts. First, we use this algo-

rithm to divide the network into two parts, and then divide those parts into two

again, repeatedly. if the leading eigenvalue is zero, which is the smallest value

it can take, then the subgraph is indivisible. Absence of positive eigenvalue

addresses to point where subdivision process is halted.

2.6 Genetic Algorithms

2.6.1 Traditional GA

Genetic Algorithms are a kind of optimization algorithm which imitates the

genetic science and natural selection[28][31]. In real world, individuals crossover

their genes in which their genetic data are hold, and generates new o�springs.

Also, sometimes, a gene of a o�spring can be mutated. If the crossovered and

mutated chromosomes of the o�spring have good genetic data to adapt the en-

vironment, then the o�spring will survive. Individuals who cannot adapt the

environment will be extinct[10]. In GA, instead of building high-performance

samplings by trying every conceivable combination of which solution space con-

sists, better samplings can be constructed from the best partial solutions of past

samplings. This is referred as the building block hypothesis [31]. Genetic Al-

gorithms adopt these approaches and try to generate optimized solutions from

a given initial set of solutions by using operators of mutation, crossover and

selection. A �tness function of which score shows how the individual �t the

environment or the solution, is described. After the evaluation phase, o�springs

having the best �tness score survive for next generations. Steps of the Genetic

Algorithm is as following:

1. Initially, �xed number of chromosomes are generated. Number of the

chromosomes are called as population and it is given in the beginning.

Each of the chromosomes are evaluated through a cost function which is

always referred as �tness function.
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2. Genetic Algorithm produces better chromosomes. These chromosomes are

replaced with worst ones because the population needs to be �xed. This

step is called as Selection.

3. New chromosomes are generated by crossover.

4. If a given probability occur, some chromosomes are a�ected from a muta-

tion.

5. If a given probability occur, some chromosomes are a�ected from an in-

version.

6. Each newly generated chromosomes are evaluated by �tness function.

7. If aimed �tness score is reached then stop else go to step 2.

Selection is a step that after the �tness function is evaluated for each chromo-

some, prede�ned number of chromosomes are chosen from the solution space and

these chromosomes are used for the next iteration. We can refer these chromo-

somes as survivors. There are several ways for the selection process. Selecting

the chromosomes with better �tness score is one of these ways and we used this

method in our study. One of the other selection methods is Proportional Selec-

tion [31], usually implemented using roulette wheel strategy. In this strategy,

chromosomes are placed around a wheel and the place a chromosome cover on

the wheel is related to its �tness value, as large as its �tness value's ratio over

sum of �tness values of all chromosomes. In other words, the chromosomes are

selected randomly but the chromosomes with larger �tness values have a higher

chance for selection. Not being a guarantee for the selection of the best chromo-

some is the disadvantage in this strategy. Another method for the selection is

Tournament selection, in which tournaments, comparison of the �tness values,

are run between the randomly chosen a few chromosomes. Tournaments contin-

ues until proposed survivor number is reached [6].

Crossover is the core process of the GA. Two chromosomes from the solution

space are chosen randomly and one crossover point or crossover points, depend-

ing on the crossover type we choose, is determined on each chromosome. In

one-point crossover, one point on each chromosome is selected and chromo-
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somes are divided into two pieces. Pieces with same location and size of the

chromosomes are exchanged within them and new o�springs are generated. In

two-point crossover, chromosomes are cut from two points and middle pieces of

the chromosomes are exchanged. In uniform crossover, some genes of the one

parent's chromosome are chosen which is also referred as crossover bits, and

these crossover bits are exchanged with other parent's genes. See Fig. 2.6.

Figure 2.6: Crossover in GA

Mutation is a probabilistic operation. If a prede�ned probability occurs then

mutation on a randomly selected chromosome occurs and values of the mutated

genes changes. Mutation might be on a single random gene or might be on

several random genes. In Fig. 2.7, a mutation example is shown.

Inversion operator is not always applied on real datasets. It does not change

the information on the genes, it changes the presentation of the information on

these genes. However, it might be important in some cases since position of the

gene on di�erent GA operations can cause di�erent o�spring information.
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Figure 2.7: Mutation in GA

Figure 2.8: Inversion in GA

Mutation and inversion operators should not be applied on every iteration and

on every chromosome. There are some ways to choose whether apply mutation

or not. One of them is using probability: if a randomly generated value is bigger

than the prede�ned mutation rate than we apply mutation operator. Another

way is that if best chromosomes in a solution space do not change until a pre-

de�ned threshold for number of iterations is reached. When the threshold is

reached, the mutation is applied.

2.6.2 Falkanuer's Grouping Genetic Algorithm

There are more specialized techniques focusing on other grouping and cluster-

ing problems using Genetic Algorithms(GA). Grouping genetic algorithm

(GGA)[16] is an evolution of the GA where the focus on the individual items,

like in classical GAs, is shifted to groups or subgroup of items. The idea behind

this GA evolution proposed by Emanuel Falkenauer is that developing solutions

to some complex problems, such that clustering or partitioning problems where

a set of items must be split into disjoint group of items in an optimal way, would
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better be achieved by making characteristics of the groups of items equivalent to

genes. Examples of these kind of problems include bin packing, line balancing,

clustering according to a distance measure, equal piles, etc., on which classic

genetic algorithms are proved to perform poorly. Making genes equivalent to

groups implies chromosomes that are in general of variable length, and special

genetic operators that manipulate whole groups of items.

2.6.3 Grouping Genetic Algorithm of Tasgin et. al.

Genetic Algorithms can be adapted for many optimization problems. Commu-

nity Detection in networks is one of these problems which tries to �nd best

community structure in a network by maximizing network modularity. In the

work of Mürsel Ta³g�n and Haluk Bingöl [63], community detection using genetic

algorithms is studied. In their work, network modularity equation proposed by

Newman is used as �tness function, rewritten from Eq. 2.1:

Q =
∑
i

(
eii − a2i

)
(2.2)

In Eq. 2.2, i is the number of communities, eii is the fraction of edges to the

total number of edges in the network that has both sides inside the community

and ais the fraction of total number of edges that has at least one side inside

the community to the total number of edges in the network. In initialization

step, as it is seen in Fig. 2.9, for the purpose of diversity, all the community

IDs of every member in the population is initialized to a random number. The

random number is limited with the number of nodes in the population, namely

n. Theoretically, in the worst case, every node will fall into separate commu-

nity and there will be n communities in the network. In initialization phase a

prede�ned variable called randomization rate is de�ned. Random vertices are

chosen according to this randomization rate and if the randomization is provided

then the neighbors of the randomly chosen vertex are assigned the same com-

munity ID. In Crossover, genes are not exchanged simply, instead transferred

the community identi�ers of nodes in a community to nodes in the destina-

tion chromosome. As community structure is a relational property and di�erent

community identi�ers in di�erent chromosomes may mean the same community.
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Figure 2.9: Presentation and initialization of chromosomes. Reprinted from [63]

For example, communityID=1 in solution member A and communityID=34 in

solution member B have identical members, while communityID=1 in solution

B has nothing to do with communityID=1 in solution A. For the reason that I

have mentioned above, one way crossover is applied. Figure 2.10 explains it.

In mutation, node is placed into a random community in the network. This is

done in this way: a random node is chosen and a new cluster number is gener-

ated by modfying a digit in its binary representation.

Also, a new mechanism called Clean-up, which is based on a new metric named

community variance, aims to reduce all such misplacements, is added as a next

step. It is needed to reduce the number of misplaced nodes. If the number of

such misplacements is high, it is detected by the mechanisms of genetic algo-

rithm via �tness evaluation. However, although the overall �tness value is good

for a community split, there may be a small number of misplaced nodes that does

not a�ect the overall �tness value very much. Tests of the algorithm is claimed

to be giving accurate results but made only on small datasets: Zachary's Karate

Club Network [71] and American College Football Network [26].
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Figure 2.10: One-way crossover performed by the method of M. Tasgin et. al.

Reprinted from [63]

Figure 2.11: Mutation performed by the method of M. Tasgin et. al. Reprinted

from [63]

27



28



CHAPTER 3

OUR METHOD

In this chapter, our method for community detection is introduced. A Genetic

Algorithm which is specialized for detecting communities in social networks is

used. For large real world datasets, a spectral method presented by Newman

[43] is used as a preprocess for the initialization phase of the genetic algorithm.

Entities in the network will be presented as vertices and relationships between

the entities will be presented as edges. An adjacency matrix will be used to

show nodes and edges. In our method, all vertices are accepted to be only in

one community. In other words, overlapping communities [24][47] will not be

considered.

As our algorithm is a genetic algorithm, it tries to �nd optimal solution by max-

imizing the �tness value. In the following sections, the steps of the algorithm,

operators used in the genetic algorithm and how they are customized for the

special needs of our algorithm and how all these steps are implemented will be

explained.

3.1 Encoding and Initialization

Encoding of the genetic algorithm is inspired by the Grouping Genetic Algo-

rithms (GGA) which is proposed by Falkenauer[16]. Our focus is shifted from

individuals of the network to communities of the network. In our encoding,

communities are represented as the genes of the chromosomes. Every gene in

the chromosome represents a community. The data that is held in the genes

contains vertices belonging to that community. During crossover and mutation
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Figure 3.1: Example of Encoding

processes, vertices can change their communities. If a vertex is moved from one

community from the other, data of the communities is updated. In Fig. 3.1, we

see an example encoding of our specialized GGA. Chromosome 1 is consists of

three communities which are shown as genes, and the data held in genes con-

tains their vertices. In chromosome 1, vertices with numbers 3,7,4 belongs to

one community shown by gene E, 2 and 4 belongs to another community shown

by gene C and 1,6,8 belongs to other community shown by gene F. Chromosome

2 is also similar, gene A has individuals 3, 5 and gene H has individuals 2,7,8

and gene D has individuals 1,4,6.

In initialization step, communities are generated and the vertices are assigned.

If we use preprocess step, communities coming from the preprocess step are gen-

erated and the vertices belonging to these communities are assigned. Vertices of

which community info have not come from preprocess step will be assigned to

newly generated random communities. For each vertex that does not belong to

a community, a new community is generated and the vertex is assigned to that

community. In the case that we do not use the preprocess step, preprocess step

can be skipped when size of the network is small, n communities are generated

that n is the number of vertices in the network and each sole vertex is assigned

to a sole community that no more than one vertex is assigned to same commu-

nity. For randomly generated communities, some vertices are chosen, of which

number proportional to the number of randomly generated communities, and

if they have connection with a vertex of which community also randomly -not

from the preprocess step- selected then it is moved to its neighbor's community.

By this way, �rst iterations are planned to be evolve rapidly.

Before running the program, some variables must be de�ned. Population is the

number of chromosomes that must exist through the iterations. In initialization

step, we de�ne chromosomes as much as the population, which is prede�ned.
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Mutation rate is the probability of whether a chromosome will be applied to a

chromosome or not.

3.2 Fitness Function

As �tness function, the network modularity equation proposed by Newman et

al. [44] is used, which is explained in section 2.2 in detail. It is shown in Eq.

3.1 that Eq. 2.1 is rewritten and also used in the work of M.Tasgin et. al. [63].

Q =
∑
i

(
eii − a2i

)
(3.1)

i is the number of communities, eii is the fraction of edges to the total number

of edges in the network that has both sides inside the community. If we talk in

terms of the community i, total number of the edges of which both sides belong

to the vertices which are the members of community i is divided to the total

number of edges in the network, and that gives us the eii. ai is the fraction of

total number of edges that has at least one side inside the community to the

total number of edges in the network. Again, if we look at the community i, let

de�ne a variable mi that mi is the total number of edges that has at least one

side inside the community and de�ne a variable E that E is the total number

of edges in the network. Initial value of mi is set to zero and we calculate mi as

following: all the edges of which both sides belong to the vertices which are the

members of community i increases the mi by one and all the edges of which only

one side belongs to a vertex in community i increases the mi by 0.5. Finally, we

divide mi to E, mi/E, and �nd ai. After we �nd all the modularity scores for

each community, their summation gives as the modularity score of the network,

Q.

Q =
∑
i

Qi (3.2)

In Eq. 3.2, Qi is the modularity score of the community i and the summation of

the modularity scores of each community produces the Q, the modularity score

of the network.

After each iteration, �tness score of each chromosome is recalculated and the

chromosomes having higher modularity score Q are advantageous for the survival

for next iteration.
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3.3 Crossover

Crossover is done between two randomly selected chromosomes and after the

crossover, an o�spring chromosome is produced. Our crossover method di�er-

entiate from traditional crossover operators: Communities will be exchanged

between the chromosomes. Selecting two parents from the solution space, two

new members, which we can call as children or o�springs, are generated by in-

serting the selected communities of the �rst parent into the second one, and by

doing the same process in the reverse way that crossover from second parent to

�rst one.

Figure 3.2: Crossover

The crossover consists of four steps:

1. Two cutting points are selected on each parent randomly and the part

between these cutting points is chosen as crossing section.

2. The communities, which are the genes of the chromosomes, are chosen by

the crossing section of one parent and they are put at the crossing section

of the other parent. At this point, there is a possibility that some of the

vertices may be seen in more than one communities of the chromosome.

3. The communities which are already existing in second parent and contain-

ing vertices that are already in the inserted communities are eliminated,
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for example, some vertices are not belonging to any community anymore.

If some communities become empty after this elimination process, they

are deleted from the solution, too.

4. The vertices left aside are reassigned to the communities and by this way,

they are reinserted into the solution. While reinserting, according to a

prede�ned probability rate, the vertex is put in a community randomly or

put in a community in which it will increase the network modularity of

that community the most or decrease it least.

3.4 Mutation

Aim of the mutation operator is to add new members with new characteristics

into a population to increase the search space of the Genetic Algorithm. For

our proposed method, randomly a few communities are selected according to a

prede�ned probability rate and the communities are eliminated from the chro-

mosome. After the elimination, there will be vertices which do not belong to

any community. The vertices are put in a community randomly or put in a

community in which it will increase the network modularity of that community.

If a prede�ned random value for vertex reinsertion is met then the vertex will be

put in a community to increase the modularity of that community. If the pre-

de�ned random value is not met or there are not any community that increase

its modularity, then the vertex put in a community randomly, or put in a newly

created community.

In Fig. 3.4, mutation operator of our method is shown: Genes A and D are

selected randomly from the chromosome and they are eliminated. Now, since

the vertices belonging to these communities do not belong any community, these

vertices are reinserted to other communities. With the probability p1, vertices

put in a community in which have more neighbors and if we cannot �nd a com-

munity in which vertex have neighbors, we generate a new community with the

probability p2 or put in a community randomly with the probability 1−p2. With

the probability 1− p1, they put in a community randomly.
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Figure 3.3: Diagram of crossover step
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Figure 3.4: Mutation

3.5 Selection

After the generation of new o�springs which are produced by applying crossover

and mutation operators to the chromosomes, and their insertion to the solution

space, chromosome number exceeds the prede�ned population. Chromosomes

must be chosen at the number of prede�ned population to survive for the next

iteration. To decide which chromosomes will survive for next iteration, �rst,

�tness value of all chromosomes and newly generated o�springs are evaluated,

and then they are sorted in decreasing order according to their �tness values.

We take the chromosomes with the best �tness values at the number of the

prede�ned population, and use them for parents at the next iteration. Chromo-

somes which cannot survive after this selection process are eliminated from the

solution space. This selection can be referred as elite selection, only selecting

the chromosomes with best �tness values.
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3.6 Preprocess

We expect our algorithm being satisfactory and e�cient for the small datasets

of which number of vertices not larger than 1000. However, for large real world

dataset, de�nition of the communities in the initialization step can make a signif-

icant di�erence. Starting the algorithm with the well-de�ned community struc-

tures and doing operations on these well-de�ned structures help the evolving

of the community structures of the network rapidly and accurately, as it is

mentioned in the Building Block Hypothesis [31][30]. Therefore, we decided to

use other algorithms which are proven to be giving good results, which means

producing higher network modularity scores, for detecting communities in a

network. We use several of the communities produced from these algorithms as

building block inputs.

Spectral Algorithm for partitioning graph of a social network [44], and the

Girvan-Newman Algorithm [26] are used as a preprocess step. These meth-

ods are run half-of-initial-chromosome-number times. The network modularity

functions used by these algorithms and our specialized genetic algorithm are the

same. Communities generated by this step are used as initial communities for

the genetic algorithm. We do not use all the community structures produced

by these communities that if the size of the community is bigger than one of

third of the network size it is not used as an input because it can dominate the

results. Also, when getting inputs, overlapping communities are not used, every

vertex must be in a sole community.

3.7 The Algorithm

The algorithm we use is the combination of the preprocess step and our ge-

netic algorithm which is specialized for the needs of the community detection

in social networks. As we mentioned in section 2.2, �tness function is the net-

work modularity score Q. Also, some prede�nitions and variables need to be

explained:
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• N is the population.

• pcr is the probability for the randomness to reinsert vertices after crossover.

If randomly generated number is smaller than the pcr, then idle vertices

are reinserted randomly, else they inserted to a community where they

have more neighbors.

• pm is the probability for the mutation. If a randomly generated number is

smaller than pm, then mutation is applied

• pmr is the probability for the randomness to reinsert vertices after mu-

tation. If randomly generated number is smaller than the pmr, then idle

vertices are reinserted randomly, else they inserted to a community where

they have more neighbors.

• QF is the planned �nal modularity score. If it is reached, program termi-

nates.

• IF is the planned �nal iteration count. If iteration count reaches to it,

program terminates.

Now we can pass through the steps of the our algorithm. As a �nal Steps are in

order as following:

1. Preprocess: Dataset is run in several algorithms.

2. Initialization: Community structures that are output of the preprocess

step are used as input for the initialization. Vertices that are not assigned

to a community after preprocess, are assigned to newly created communi-

ties.

3. Evaluation: Evaluate the network modularity score of the all chromosomes.

4. Selection: Select best N chromosomes for the next steps. Remove the

others.

5. Crossover: Crossover is applied N/2 times to randomly selected pair of

chromosomes. For the probability of pcr, reinsert idle vertices to commu-
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Figure 3.5: Diagram of the Algorithm
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nities randomly, else reinsert them to communities where they have largest

number of neighbors.

6. Mutation: Mutation is applied to each chromosome with a probability of

pm. For the probability of pmr, reinsert idle vertices to communities ran-

domly, else reinsert them to communities where they have largest number

of neighbors.

7. Control: If Q is reached to QF or iteration count is reached to IF then

program terminates, else continue from step 3, evaluation of the modularity

scores of all chromosomes.

In Figure 3.5, you see a diagram that showing the processes of our method. As

you see, initialization step does not get all of inputs from the preprocess step, it

also gets vertices of which communities not decided.
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CHAPTER 4

EXPERIMENTS

I run the method proposed in this theses on several datasets. First, I will run

the algorithm without preprocess step on small datasets to see the accuracy of

the genetic algorithm proposed in this thesis. Second, I will compare results of

genetic algorithm with other studies. After that, I will do experiments to larger

datasets with preprocess step is involved. And then, I will do comparison with

other methods again.

4.1 Datasets

In this section, the datasets that is used through the experiments are introduced

and their main characteristics are explained.

Zachary's Karate Club [71] is a very popular network used by many researchers.

It shows a university karate club which is divided in two communities after a

con�ict. The network consists of 34 vertices and 78 edges. Figure 4.1 shows the

Zachary's Karate Club Network after the run of our modi�ed Genetic Algorithm

which is proposed in this thesis. Vertices belonging to the same community col-

ored with the same color. As it seen genetic algorithm works �ne on this small

dataset and divides it to two communities as expected.

Collaboration in Jazz Network Dataset [52]: The data were obtained from The

Red Hot Jazz Archive digital database. The data include 198 bands that per-

formed between 1912 and 1940, with most of the bands performing in the 1920's.

In this case each vertex corresponds to a band, and a link between two bands is

established if they had at least one musician in common. The network consists
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Figure 4.1: Zachary Karate Club Social Network

of 198 vertices and 2742 edges. Figure 4.2 shows how our genetic algorithm

method divides this network into communities. Vertices belonging to the same

community colored with the same color.

Metabolic Network Dataset [12]: This dataset is the graph that showing the

metabolic pathways of a multicellular organism, C. Elegans [29]. This network

consists of 453 vertices and 2032 edges.

E-mail Network Dataset [55]: This dataset is the network of e-mail interchanges

between the members of the University of Rovira i Virgili in Tarragona. This

network consists of 1133 vertices and 5451 edges.

Facebook(NIPS) Dataset [37]: It has the data of the Facebook users who installed

the application of a Facebook Social API. This undirected networks contains

Facebook user�user friendships. A node represents a user. This network consists

of 2888 vertices and 2981 edges. Figure 4.3 shows the result after our modi�ed

genetic algorithm run on this dataset. Vertices belonging to the same community

colored with the same color.

PGP Network Dataset [35]: This dataset is the graph of a component of a
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Figure 4.2: Collaboration in Jazz Social Network
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Figure 4.3: Facebook NIPS Social Network

network, consisting the users of the Pretty-Good-Privacy algorithm for secure

information interchange. PGP network contains 10680 vertices and 24316 edges.

Cond-Mat Network Dataset [40]: This network shows the relationships between

the authors that shared any paper on Condense Matter. Cond-Mat Network

consists of 27519 vertices.

4.2 Experimental Setup

Implementation of our algorithm is done with Java 1.6. For visualization, Graph-

Stream (http://graphstream-project.org/), which is a java library to model and

analyze dynamic graphs is used. For the experiments for Newman's Spectral
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Table4.1: Datasets Used

Network Size Cited From
Zachary's Karate Club 34 [52]
Collaboration in Jazz 198 [52]
Metabolic 453 [12]
E-mail 1133 [55]
Facebook(NIPS) Data 2888 [37]
PGP 10680 [35]
Cond-Mat 27519 [40]

Algorithm, Jmod Tool (http://tscha�ter.ch/projects/jmod/) which is a toolkit

for community detection in networks is used. For Girvan-Newman Algorithm, A

program called Gephi(https://gephi.github.io/) and its Girvan Newman Clus-

tering Plugin is used.

Hardware speci�cations of the computer used for experiments are following:

Windows 7 Operating System(64 bit), 6 GB RAM as memory of which 4000m

is allocated to Java Heap Space, Intel(R) Core(TM) i5-2520M 2.50 GHz CPU

as processor.

4.3 De�ning Parameters for Datasets

In this section, we compare our modi�ed Genetic Algorithm for social networks

with other two Genetic Algorithms: Traditional Genetic Algorithm and the

GACD proposed by M.Tasgin et. al.[63]. Zachary's Karate Club, Collaboration

in Jazz, Facebook(NIPS) and E-mail networks are the datasets that all three

algorithms will be run on. We will look at the three metrics for the comparison:

maximum modularity score of each methods, how modularity scores of each

methods evolves over iterations and how modularity scores of each methods

evolve over the time. For these experiments, each methods run on the datasets

50 times and their best results are taken. Since the datasets used in these

experiments are not too large, preprocess step is not applied for our Modi�ed

Genetic Algorithm. For the section 4.2, Constant variables and parameters taken

are explained in the following:
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4.3.1 Parameters for Tests on Zachary's Karate Club

For Zachary's Karate Club, parameters and constant variables are found speci�c

to each of the three algorithms of which the algorithms perform the best. For

the algorithm of Tasgin et. al., these values are taken from [64]. Randomization

rate during the initialization phase is taken as 0.4, mutation rate is taken as 0.4,

clean up rate is taken as 0.2. Population size is decided as 100. For Traditional

GA, two way crossover is will be done in every iteration, so experiments are

�rst done to �nd the mutation rate, pm, taking population 100 and maximum

iteration count 250 by running the algorithm 50 times for each mutation rate

value. As seen in Table 4.2, maximum Modularity Q values for each mutation

rate and percentage of how many times these maximum Q values reached are

shown. As result, the best pm for Traditional GA is 0.8. After we put the

Table4.2: Tests on Zachary's Karate Club to �nd mutation rate for Traditional
GA

Mutation Rate Max. Q Accuracy
0.1 0.4198 0.22
0.2 0.4198 0.30
0.3 0.4198 0.38
0.4 0.4198 0.40
0.5 0.4198 0.30
0.6 0.4198 0.34
0.7 0.4198 0.38
0.8 0.4198 0.48

0.9 0.4198 0.46

mutation rate having the value of 0.8 to its place, experiments are done to �nd

random initialization rate. On initialization phase, If the randomly generated

number smaller than the random initialization rate, then the neighbors of the

chosen vertex will be the member of the same community with the vertex. As it

is seen in Table 4.3, this parameter is found as 0.6 for Traditional GA. After we

set all the parameters for Traditional GA, we do experiments to �nd which initial

population count performs better. In Figure 4.4, you can see how modularity

score is evolving over iteration for di�erent number of initial populations. As it

is mentioned in Chapter 3, our algorithm, which is described in this thesis, uses

46



Table4.3: Tests on Zachary's Karate Club to �nd random initialization rate for
Traditional GA

Mutation Rate Max. Q Accuracy
0.0 0.4172 0.02
0.1 0.4198 0.02
0.2 0.4198 0.04
0.3 0.4198 0.08
0.4 0.4188 0.04
0.5 0.4198 0.04
0.6 0.4198 0.12

0.7 0.4198 0.08
0.8 0.4198 0.10
0.9 0.4198 0.02

Figure 4.4: Population comparison for Traditional GA

some di�erent parameters. Probability rate of whether the nodes which do not

belong to any community after the crossover will be reinserted to a community

randomly or reinserted to the community which it increases the Q is shown with

the parameter pcr. If the randomly produced number is larger than pcr, then

the vertex will be reinserted to any community randomly. Otherwise, the vertex

which do not belong to any community will be reinserted to the community

where the vertex increase the Modularity Q most or decrease it least.

The probability of the mutation rate is shown with pm and the probability

rate of the reinsertion of the nodes randomly after the mutation is shown with
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Table4.4: Tests done on Zachary's Karate Club dataset to �nd pm and pmr for
The Work done in This Thesis

pm pmr Accuracy
0.1 0.0 0.08
0.1 0.1 0.12
0.1 0.2 0.04
0.1 0.3 0.04
0.1 0.4 0.12
0.1 0.5 0.10
0.1 0.6 0.14
0.1 0.7 0.04
0.1 0.8 0.08
0.1 0.9 0.08
0.2 0.0 0.22
0.2 0.1 0.26
0.2 0.2 0.30
0.2 0.3 0.38
0.2 0.4 0.40
0.2 0.5 0.38
0.2 0.6 0.44
0.2 0.7 0.48
0.2 0.8 0.44
0.2 0.9 0.48
0.3 0.0 0.50
0.3 0.1 0.52
0.3 0.2 0.46
0.3 0.3 0.48
0.3 0.4 0.50
0.3 0.5 0.50
0.3 0.6 0.54
0.3 0.7 0.62
0.3 0.8 0.70
0.3 0.9 0.66

pm pmr Accuracy
0.4 0.0 0.54
0.4 0.1 0.54
0.4 0.2 0.60
0.4 0.3 0.68
0.4 0.4 0.60
0.4 0.5 0.58
0.4 0.6 0.72
0.4 0.7 0.72
0.4 0.8 0.80
0.4 0.9 0.74
0.5 0.0 0.46
0.5 0.1 0.68
0.5 0.2 0.72
0.5 0.3 0.72
0.5 0.4 0.74
0.5 0.5 0.72
0.5 0.6 0.76
0.5 0.7 0.84
0.5 0.8 0.80
0.5 0.9 0.82
0.6 0.0 0.68
0.6 0.1 0.84
0.6 0.2 0.76
0.6 0.3 0.78
0.6 0.4 0.84
0.6 0.5 0.90
0.6 0.6 0.86
0.6 0.7 0.88
0.6 0.8 0.88
0.6 0.9 0.88

pm pmr Accuracy
0.7 0.0 0.74
0.7 0.1 0.78
0.7 0.2 0.82
0.7 0.3 0.80
0.7 0.4 0.80
0.7 0.5 0.96
0.7 0.6 0.90
0.7 0.7 0.92
0.7 0.8 0.98
0.7 0.9 0.92
0.8 0.0 0.76
0.8 0.1 0.92
0.8 0.2 0.88
0.8 0.3 0.86
0.8 0.4 0.86
0.8 0.5 0.90
0.8 0.6 0.94
0.8 0.7 0.94
0.8 0.8 0.92
0.8 0.9 0.94
0.9 0.0 0.84
0.9 0.1 0.82
0.9 0.2 0.96
0.9 0.3 0.92
0.9 0.4 0.92
0.9 0.5 0.92
0.9 0.6 0.94
0.9 0.7 0.92
0.9 0.8 1.00

0.9 0.9 0.94
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pmr. Application of pmr is the same as pcr, such that the vertex, belonging no

community, will be assigned to any community if randomly produced number

larger than pmr, otherwise reinserted to a community where its membership

contribute the Modularity Q the most or decrease it least. Experiments are

done to �nd the most accurate pcr, pm and pmr taking population count 100,

iteration count 250, �rst, the algorithm run 50 times for each pair of pm and pmr.

pcr is accepted as 1 such that vertices which are not member of a community

will be assigned a community where it can contribute to Q most. After that,

the algorithm is run again 50 times with previously found pm and pmr values

placed for pcr. Experiments are made and test results are shown in table 4.5 for

pcr and in table 4.4 for both pm and pmr. Accuracy values in the tables show the

percentage of the algorithm runs which are reaching to maximum Modularity Q

found in tests. We choose the most accurate parameters as optimal ones.

Table4.5: Tests done on Zachary's Karate Club dataset to �nd pcr for The Work
of This Thesis

pcr Max. Q Accuracy
0.0 0.4197 0.52
0.1 0.4197 0.56
0.2 0.4197 0.62
0.3 0.4197 0.68
0.4 0.4197 0.72
0.5 0.4197 0.76
0.6 0.4197 0.88
0.7 0.4197 0.92
0.8 0.4197 0.94
0.9 0.4197 1.00

Later, the parameters pm, pmr and pcr are replaced on the algorithm and the

optimal random initialization rate for our method is calculated. It is necessary

to remind again that all Modularity Q values shown on the test results tables

are obtained after the algorithm is run 50 times for each speci�ed parameter

rates and the highest scores among them are taken. Accuracy values are the

percentage of how many times the maximum modularity Q value is reached

during these 50 runs.

After the test results, for our Modi�ed Genetic Algorithm(MGA) presented in
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Table4.6: Tests on Zachary's Karate Club to �nd random initialization rate for
The Work of This Thesis

pcr Max. Q Accuracy
0.0 0.4197 0.80
0.1 0.4197 0.92
0.2 0.4197 0.88
0.3 0.4197 0.92
0.4 0.4197 1.00

0.5 0.4197 0.94
0.6 0.4197 1.00

0.7 0.4197 0.96
0.8 0.4197 0.92
0.9 0.4197 0.92

this thesis, pcr is taken as 0.9 which means that vertices do not belonging to any

community will be assigned to a community increasing the Modularity Q most

or decreasing it least. pm is taken as 0.9, pmr is taken as 0.8 and the random

initialization rate is taken as 0.4.

After we set all the parameters for MGA, we do experiments to �nd which initial

population count performs better. In Figure 4.5, you can see how modularity

score is evolving over iteration for di�erent number of initial populations. All

population counts reaches the same highest point. Although 50 is the least one,

we used 100 for a better comparison with the solution of Tasgin et al. In Table

Figure 4.5: Population Comparisons of this work on Zachary's Karate Club

4.50, the maximum Modularity Score Q for the Zachary's Karate Club Network
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is tried to �nd for each algorithm that each of them were run 500 iterations.

In Fig. 4.18, how modularity scores of the algorithms are evolving over the

iterations on Zachary's Karate Club data set is shown. Time comparison of the

algorithms was not done since size of the network is too small and there won't

be any signi�cant di�erence.

4.3.2 Parameters for Tests on Collaboration in Jazz Network

For Collaboration in Jazz Network, experiments are done for all parameters and

parameter combinations needed by each algorithms that we are comparing, like

we did in the examinations of the parameters of Zachary's Karate Club dataset.

Population sizes are taken as 100 and iteration counts are taken as 250 to �nd

the parameters for each algorithm which are in fact very large numbers for this

dataset.

For Traditional GA, examinations for the probable mutation rates are shown in

Table 4.7. For each rate, the algorithm is run 50 times and the most accurate

result among the records with the highest Modularity Q is chosen as the optimal

rate. The most optimal value for the mutation rate is found as 0.8 because it

has the highest Q. After that, 0.8 is placed as mutation rate on the algorithm

and the algorithm is run 50 times for each random initialization rate. The value

of 0.6 is chosen as the best random initialization rate, as seen in Table 4.8.

Table4.7: Tests done on Collaboration in Jazz Network to �nd mutation rate
for Traditional GA

Mutation Rate Max. Q Accuracy
0.1 0.3579 0.02
0.2 0.3864 0.02
0.3 0.3972 0.02
0.4 0.3998 0.02
0.5 0.4047 0.02
0.6 0.4121 0.04
0.7 0.4098 0.02
0.8 0.4188 0.02

0.9 0.4019 0.02
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Table4.8: Tests done on Collaboration in Jazz Network to �nd random initial-
ization rate for Traditional GA

Random
Init. Rate

Max. Q Accuracy

0.0 0.4172 0.02
0.1 0.4198 0.02
0.2 0.4198 0.04
0.3 0.4198 0.08
0.4 0.4198 0.04
0.5 0.4198 0.04
0.6 0.4198 0.12

0.7 0.4198 0.08
0.8 0.4198 0.10
0.9 0.4198 0.06

In Figure 4.6, we run Traditional GA on Collaboration on Jazz Network using

di�erent initial population counts. For each initial population we run the algo-

rithm 10 times and took the solution which have the highest modularity score.

If there are more than one solutions having the same modularity score, than the

one which reaches the peak point earlier is chosen. As it is seen, taking initial

population 300 gives better initial scores and reaches a higher peak point at the

end.

Figure 4.6: Population Comparison of Traditional GA on Collaboration on Jazz

Network
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The algorithm in the work of M. Tasgin et al had not been performed on Col-

laboration in Jazz Network dataset [64]. However, we are going to test it on

Collaboration in Jazz Network, so we need to �nd the parameters with which

the method is giving the best results. First, experiments are done to �nd muta-

tion rate, while it is assumed that there is not random initialization -all vertices

belongs to a di�erent community at the beginning- and no clean up phase. The

algorithm is run 50 times for each rate and the highest modularity score and

percentage how many times it is reached in these tests are shown in Table 4.9.

The optimal probability rate of the mutation operator is found as 0.9 for this

part. For the other two parameters, same methodology is also applied: After the

mutation rate is placed on the algorithm, experiments were done to �nd random

initialization rate as it seen in Table 4.10 which is found as 0.7. Finally, clean

up rate is found as 0.3 after we placed other two parameters, in table 4.11.

Table4.9: Tests on Collaboration in Jazz Network to �nd mutation rate for
GACD of M. Tasgin et. al.

Mutation Rate Max. Q Accuracy
0.1 0.0302 0.04
0.2 0.0343 0.02
0.3 0.0441 0.04
0.4 0.0525 0.02
0.5 0.0551 0.02
0.6 0.0673 0.02
0.7 0.0736 0.02
0.8 0.0782 0.14
0.9 0.0855 0.10

In Figure 4.7, we run algorithm of Tasgin et al on Collaboration on Jazz Net-

work using di�erent initial populations. After we placed all the parameters, the

algorithms with each of the populations 100, 200 and 300 is run 10 times. All of

them reach the same peak point after 240 iterations. Although population 100

does not begin well, it evolves quicker. Since its population count 100 is lesser

than 200 and 300 and it is also producing the same results at the end, we choose

initial population count as 100.

For our Modi�ed Genetic Algorithm in this thesis, again, parameters are found
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Table4.10: Tests on Collaboration in Jazz Network to �nd randomization rate
on initialization for GACD of M. Tasgin et. al.

Random
Init. Rate

Max. Q Accuracy

0.0 0.0090 0.02
0.1 0.4259 0.02
0.2 0.4242 0.30
0.3 0.4266 0.38
0.4 0.4342 0.40
0.5 0.4310 0.30
0.6 0.4301 0.34
0.7 0.4392 0.38

0.8 0.4326 0.48
0.9 0.4340 0.46

like we have done in Zachary's Karate Club dataset. As our standard testing

methodology for parameters, for each probable value of the parameter rates,

the algorithm is run 50 times and the highest modularity score reached and

percentage of how many times it is reached, is shown on the tables that are

showing the test results. Experiments are done �rst for the pair of pm and pmr,

as seen in the Table 4.12. The pcr and random initialization rate are turned

o� so that in initialization phase all of the vertices will be assigned to di�erent

communities and after the crossover phase all vertices not belonging to any

community will be assigned to a community randomly. By putting the values

of the parameters found, pm and pmr, to their places on the algorithm, optimal

value of pcr is calculated, as seen in the Table 4.13. Last, the value of pcr is also

updated and then the random initialization rate is calculated. Results of the

tests for random initialization rate can be seen in the Table 4.14.

In Figure 4.8, we run our algorithm on Collaboration on Jazz Network using

di�erent initial populations. After we placed all the parameters found, the

algorithms having each of the populations 100, 200 and 300 is run 10 times

and the ones with best modularity scores are shown in Figure 4.8. All of them

reach the peak point before 200 iterations. Although population 100 does not

begin well, it evolves quicker. Since its population count 100 is lesser than 200

and 300 and it is also producing the same results with the two others at the end,
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Table4.11: Tests on Collaboration in Jazz Network to �nd clean up rate on
initialization for GACD of M. Tasgin et. al.

Cleanup Rate Max. Q Accuracy
0.1 0.4392 0.40
0.2 0.4402 0.44
0.3 0.4444 0.64

0.4 0.4444 0.62
0.5 0.4444 0.56
0.6 0.4422 0.60
0.7 0.4444 0.60
0.8 0.4444 0.58
0.9 0.4410 0.56

Figure 4.7: Population Comparisons of Tasgin et al on Jazz Network

we choose initial population count as 100.

At the end of the experiments, for our Modi�ed Genetic Algortihm, pcr is taken

as 0.3, pm is taken as 0.8 and pmr is taken as 0.4, Random initializaton rate is

taken as 0.5. In Table 4.50, the maximum Modularity Score Q for the Collab-

oration in Jazz Network is tried to �nd for each algorithm that each of them

were run 500 iterations. The initial chromosome count is taken as 100. In Fig.

4.19, how modularity scores of the algorithms are evolving over the iterations

on Collaboration in Jazz Network Dataset is shown. Furthermore, In Fig. 4.20,

time comparison of the change on the modularity scores of the algorithms is

shown.
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Table4.12: Tests done on Collaboration in Jazz Network dataset to �nd pm and
pmr for The Work done in This Thesis

pm pmr Accuracy
0.1 0.0 0.02
0.1 0.1 0.02
0.1 0.2 0.02
0.1 0.3 0.02
0.1 0.4 0.02
0.1 0.5 0.02
0.1 0.6 0.02
0.1 0.7 0.02
0.1 0.8 0.02
0.1 0.9 0.14
0.2 0.0 0.12
0.2 0.1 0.02
0.2 0.2 0.02
0.2 0.3 0.02
0.2 0.4 0.02
0.2 0.5 0.04
0.2 0.6 0.16
0.2 0.7 0.14
0.2 0.8 0.20
0.2 0.9 0.24
0.3 0.0 0.02
0.3 0.1 0.02
0.3 0.2 0.20
0.3 0.3 0.26
0.3 0.4 0.30
0.3 0.5 0.34
0.3 0.6 0.36
0.3 0.7 0.40
0.3 0.8 0.42
0.3 0.9 0.50

pm pmr Accuracy
0.4 0.0 0.02
0.4 0.1 0.08
0.4 0.2 0.14
0.4 0.3 0.22
0.4 0.4 0.28
0.4 0.5 0.30
0.4 0.6 0.34
0.4 0.7 0.40
0.4 0.8 0.54
0.4 0.9 0.58
0.5 0.0 0.22
0.5 0.1 0.12
0.5 0.2 0.20
0.5 0.3 0.28
0.5 0.4 0.30
0.5 0.5 0.30
0.5 0.6 0.34
0.5 0.7 0.44
0.5 0.8 0.60
0.5 0.9 0.64
0.6 0.0 0.12
0.6 0.1 0.22
0.6 0.2 0.24
0.6 0.3 0.36
0.6 0.4 0.48
0.6 0.5 0.50
0.6 0.6 0.54
0.6 0.7 0.60
0.6 0.8 0.64
0.6 0.9 0.66

pm pmr Accuracy
0.7 0.0 0.22
0.7 0.1 0.22
0.7 0.2 0.30
0.7 0.3 0.38
0.7 0.4 0.40
0.7 0.5 0.50
0.7 0.6 0.54
0.7 0.7 0.58
0.7 0.8 0.68
0.7 0.9 0.68
0.8 0.0 0.42
0.8 0.1 0.42
0.8 0.2 0.50
0.8 0.3 0.58
0.8 0.4 0.72

0.8 0.5 0.50
0.8 0.6 0.54
0.8 0.7 0.58
0.8 0.8 0.68
0.8 0.9 0.68
0.9 0.0 0.42
0.9 0.1 0.42
0.9 0.2 0.50
0.9 0.3 0.58
0.9 0.4 0.60
0.9 0.5 0.50
0.9 0.6 0.54
0.9 0.7 0.58
0.9 0.8 0.68
0.9 0.9 0.68
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Table4.13: Tests done on Collaboration in Jazz Network dataset to �nd pcr for
The Work of This Thesis

pcr Max. Q Accuracy
0.1 0.4202 0.14
0.2 0.4444 0.64
0.3 0.4444 0.82

0.4 0.4444 0.72
0.5 0.4444 0.74
0.6 0.4444 0.76
0.7 0.4444 0.76
0.8 0.4444 0.80
0.9 0.4444 0.78

Table4.14: Tests on Collaboration in Jazz Network to �nd random initialization
rate for The Work of This Thesis

Random
Init. Rate

Max. Q Accuracy

0.0 0.3987 0.22
0.1 0.4112 0.42
0.2 0.4202 0.54
0.3 0.4444 0.70
0.4 0.4444 0.82
0.5 0.4444 0.90

0.6 0.4444 0.86
0.7 0.4444 0.74
0.8 0.4444 0.76
0.9 0.4444 0.88
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Figure 4.8: Population Comparisons of this work on Collaboration in Jazz Net-

work

4.3.3 Parameters for Tests on Metabolic Network

For Metabolic Network, population sizes are taken as 100 and iteration counts

are taken as 250 to �nd the parameters for each algorithm. For all parameter

combinations seen in the tables, the algorithms run 50 times for each mutation

rate value.

For the Traditional GA, In Table 4.15, there are Modularity Q values and their

accuracy rates that showing percentage of how many times the maximum Mod-

ularity Q value is reached for each mutation rate. Later, optimal mutation rate

found is placed and experiments for randomization rate at initial phase are done,

which is shown in Table 4.16.

Table4.15: Tests on Metabolic Network to �nd mutation rate for Traditional
GA

Mutation Rate Max. Q Accuracy
0.1 0.0131 0.02
0.2 0.0173 0.02
0.3 0.0258 0.02
0.4 0.0240 0.02
0.5 0.0287 0.02
0.6 0.0336 0.02
0.7 0.0342 0.02
0.8 0.0326 0.02
0.9 0.0407 0.02
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Table4.16: Tests on Metabolic Network to �nd random initialization rate for
Traditional GA

Random
Init. Rate

Max. Q Accuracy

0.0 0.0414 0.02
0.1 0.2334 0.02
0.2 0.2646 0.02
0.3 0.2793 0.02
0.4 0.2746 0.02
0.5 0.3193 0.02
0.6 0.2992 0.02
0.7 0.3117 0.02
0.8 0.3192 0.02

0.9 0.2892 0.02

In Figure 4.9, we run Traditional GA on Metabolic Network using di�erent initial

population counts. After all parameters are placed to its place on the algorithm,

we run it 10 times for each population counts seen in Figure 4.9. As it is seen,

taking initial population 200 gives better initial scores and reaches higher peak

point at the end.

Figure 4.9: Population Comparison of Traditional GA on Metabolic Network

For the mutation rate of GACD of Tasgin et al, experiments are done and

results can be seen in Table 4.17. Mutation rate is taken as 0.7 since it has the

largest Modularity Q and accuracy values and then it placed on the algorithm
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experiments are done to decide random initialization rate. As it seen in Table

4.17, the optimal random initialization rate is taken as 0.9. Last, clean up rate

is found as 0.4, seen in Table 4.19. As we see in the tables, mutation rate and

random initialization rate do large amount of di�erences while clean up rate

does small amount of di�erences.

Table4.17: Tests on Metabolic Network dataset to �nd mutation rate for Tasgin
et al.

Mutation Rate Max. Q Accuracy
0.1 0.0086 0.02
0.2 0.0086 0.02
0.3 0.0131 0.02
0.4 0.0156 0.02
0.5 0.0194 0.02
0.6 0.0231 0.02
0.7 0.0269 0.02

0.8 0.0236 0.02
0.9 0.0224 0.02

Table4.18: Tests on Metabolic Network to �nd random initialization rate for
Tasgin et al.

Random
Init. Rate

Max. Q Accuracy

0.0 0.0269 0.02
0.1 0.2248 0.02
0.2 0.2889 0.02
0.3 0.2815 0.02
0.4 0.3109 0.02
0.5 0.3071 0.02
0.6 0.3230 0.02
0.7 0.3340 0.02
0.8 0.3026 0.02
0.9 0.3349 0.02

In Figure 4.10, we run the algorithm of Tasgin et al on Metabolic Network using

di�erent initial population counts. After all parameters are placed to its place

on the algorithm, we run it 10 times for each population counts seen in Figure
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Table4.19: Tests on Metabolic Network to �nd clean-up rate for Tasgin et al.

Clean up Rate Max. Q Accuracy
0.1 0.3683 0.02
0.2 0.4039 0.02
0.3 0.4140 0.02
0.4 0.4170 0.02

0.5 0.3980 0.02
0.6 0.3925 0.02
0.7 0.4121 0.02
0.8 0.3992 0.02
0.9 0.4100 0.02

4.10. As it is seen, taking initial population 200 gives better results.

Figure 4.10: Population Comparison of Tasgin et al on Metabolic Network

Now, we look for our algorithm. First, experiments to �nd pm and pmr are done.

Our algorithm run 50 times for each pm and pmr combination and pcr is turned

o� during this process that the vertices do not belonging to any community after

the crossover session will be assigned to a community randomly. We take the

highest modularity score Q within these 50 runs. As it is seen in Table 4.20,

the optimal pm is found as 0.8 and the pmr is found as 0.8 and they placed on

the algorithm for our next experiments to �nd pcr. Percentage of how many

times the algorithm reached to maximum Q value is taken as the accuracy of

the pm and pmr combination. If more than one result having same modularity
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score, the record with the higher accuracy accepted as a better result. Again,

the algorithm is run 50 times for each pcr value and highest modularity score

is shown on Table 4.21. The optimal pcr is taken as 0.7, as seen in Table 4.21.

Last, results of the experiments to �nd random initialization rate can be seen in

Table 4.22, which is taken as 0.6.

In Figure 4.11, we run our algorithm on Metabolic Network using di�erent initial

population counts. After all parameters are placed to its place on the algorithm,

we run it 10 times for each population counts seen in Figure 4.11. As it is seen,

taking initial population 200 gives better results. Populations, except 100, gives

better results. To compare with other algorithms clearly, we choose 200 as initial

population count.

Figure 4.11: Population Comparison of this work on Metabolic Network

4.3.4 Parameters for Tests on E-mail Network

For E-mail Network, we apply the same methods to �nd optimal parameters for

each of the three algorithms. Population sizes are taken as 100 and iteration

counts are taken as 250 to �nd the parameters for each algorithm. For all pa-

rameter combinations seen in the tables, the algorithms run 50 times for each

mutation rate value.

For the Traditional GA, In Table 4.23, there are Modularity Q values and their
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Table4.20: Tests done on Metabolic Network dataset to �nd pm and pmr for The
Work done in This Thesis

pm pmr Max. Q
0.1 0.0 0.1002
0.1 0.1 0.2416
0.1 0.2 0.2437
0.1 0.3 0.2811
0.1 0.4 0.2836
0.1 0.5 0.2616
0.1 0.6 0.2773
0.1 0.7 0.2869
0.1 0.8 0.3061
0.1 0.9 0.2736
0.2 0.0 0.1081
0.2 0.1 0.2472
0.2 0.2 0.2737
0.2 0.3 0.2616
0.2 0.4 0.2901
0.2 0.5 0.3220
0.2 0.6 0.3182
0.2 0.7 0.3219
0.2 0.8 0.3410
0.2 0.9 0.3421
0.3 0.0 0.1127
0.3 0.1 0.2666
0.3 0.2 0.2742
0.3 0.3 0.2925
0.3 0.4 0.3226
0.3 0.5 0.3335
0.3 0.6 0.3384
0.3 0.7 0.3529
0.3 0.8 0.3480
0.3 0.9 0.3708

pm pmr Max. Q
0.4 0.0 0.1378
0.4 0.1 0.2735
0.4 0.2 0.3044
0.4 0.3 0.2980
0.4 0.4 0.3100
0.4 0.5 0.3326
0.4 0.6 0.3215
0.4 0.7 0.3623
0.4 0.8 0.3337
0.4 0.9 0.3622
0.5 0.0 0.1776
0.5 0.1 0.1403
0.5 0.2 0.2740
0.5 0.3 0.3026
0.5 0.4 0.3454
0.5 0.5 0.3697
0.5 0.6 0.3283
0.5 0.7 0.3068
0.5 0.8 0.3531
0.5 0.9 0.3550
0.6 0.0 0.1847
0.6 0.1 0.2889
0.6 0.2 0.3099
0.6 0.3 0.3187
0.6 0.4 0.2944
0.6 0.5 0.2615
0.6 0.6 0.3523
0.6 0.7 0.3413
0.6 0.8 0.3647
0.6 0.9 0.3588

pm pmr Max. Q
0.7 0.0 0.1645
0.7 0.1 0.2702
0.7 0.2 0.2877
0.7 0.3 0.3443
0.7 0.4 0.3542
0.7 0.5 0.3347
0.7 0.6 0.3415
0.7 0.7 0.3496
0.7 0.8 0.3887

0.7 0.9 0.3430
0.8 0.0 0.1888
0.8 0.1 0.3008
0.8 0.2 0.3217
0.8 0.3 0.3327
0.8 0.4 0.3296
0.8 0.5 0.3323
0.8 0.6 0.3019
0.8 0.7 0.3361
0.8 0.8 0.3439
0.8 0.9 0.3785
0.9 0.0 0.1643
0.9 0.1 0.3015
0.9 0.2 0.3217
0.9 0.3 0.3327
0.9 0.4 0.3295
0.9 0.5 0.3323
0.9 0.6 0.3019
0.9 0.7 0.3591
0.9 0.8 0.2999
0.9 0.9 0.3613
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Table4.21: Tests done on Metabolic Network dataset to �nd pcr for The Work
of This Thesis

pcr Max. Q Accuracy
0.1 0.3808 0.02
0.2 0.3809 0.02
0.3 0.3828 0.02
0.4 0.3849 0.02
0.5 0.3870 0.02
0.6 0.3881 0.02
0.7 0.3920 0.02
0.8 0.3952 0.02
0.9 0.4011 0.02

Table4.22: Tests on Metabolic Network to �nd random initialization rate for
The Work of This Thesis

Random
Init. Rate

Max. Q Accuracy

0.0 0.4011 0.02
0.1 0.3793 0.02
0.2 0.4024 0.02
0.3 0.4044 0.02

0.4 0.3865 0.02
0.5 0.3881 0.02
0.6 0.3767 0.02
0.7 0.3644 0.02
0.8 0.3914 0.02
0.9 0.3780 0.02
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accuracy rates that showing percentage of how many times the maximum Mod-

ularity Q value is reached for each mutation rate. Later, optimal mutation rate

is placed and experiments for randomization rate at initial phase are done, in

Table 4.24.

Table4.23: Tests on E-mail Network to �nd mutation rate for Traditional GA

Mutation Rate Max. Q Accuracy
0.1 0.0013 0.02
0.2 0.0018 0.02
0.3 0.0024 0.02
0.4 0.0045 0.02
0.5 0.0055 0.02
0.6 0.0067 0.02
0.7 0.2014 0.02
0.8 0.0074 0.02

0.9 0.0072 0.02

Table4.24: Tests on E-mail Network to �nd random initialization rate for Tra-
ditional GA

Random
Init. Rate

Max. Q Accuracy

0.0 0.0998 0.22
0.1 0.1144 0.22
0.2 0.1344 0.30
0.3 0.1934 0.38
0.4 0.2450 0.40
0.5 0.2555 0.30

0.6 0.2546 0.34
0.7 0.2550 0.38
0.8 0.2239 0.48
0.9 0.2132 0.46

In Figure 4.12, we run Traditional GA on E-mail Network using di�erent initial

population counts. After all parameters are placed to its place on the algorithm,

we run it 10 times for each population counts seen in Figure 4.12. As it is seen,

taking initial population 200 gives better initial scores and reaches higher peak

point at the end.
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Figure 4.12: Population Comparison of Traditional GA on E-Mail Network

For the mutation rate of GACD of Tasgin et al, experiments are done and

results can be seen in Table 4.25. Mutation rate is taken as 0.9 since it has the

largest Modularity Q and accuracy values and then it placed on the algorithm

experiments are done to decide random initialization rate. As it seen in Table

4.26, the optimal random initialization rate is taken as 0.4. Last, clean up rate

is found as 0.3, seen in Table 4.27.

Table4.25: Tests done on E-mail Network dataset to �nd mutation rate for
Tasgin et al.

Mutation Rate Max. Q Accuracy
0.1 0.0016 0.02
0.2 0.0027 0.02
0.3 0.0032 0.02
0.4 0.0045 0.02
0.5 0.0060 0.02
0.6 0.0062 0.02
0.7 0.0067 0.02
0.8 0.0075 0.02
0.9 0.0084 0.02

In Figure 4.13, we run algorithm of Tasgin et al on E-mail using di�erent initial

population counts. After all parameters are placed to its place on the algorithm,

we run it 10 times for each population counts seen in Figure 4.13. We choose
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Table4.26: Tests on E-mail Network to �nd random initialization rate for Tasgin
et al.

Random
Init. Rate

Max. Q Accuracy

0.0 0.0085 0.02
0.1 0.2211 0.02
0.2 0.2635 0.02
0.3 0.2780 0.02
0.4 0.3018 0.02
0.5 0.3017 0.02
0.6 0.2912 0.02
0.7 0.3048 0.02
0.8 0.3122 0.02

0.9 0.2957 0.02

Table4.27: Tests on E-mail Network to �nd random initialization rate for Tasgin
et al.

Clean up Rate Max. Q Accuracy
0.1 0.3001 0.02
0.2 0.3543 0.02
0.3 0.3980 0.04
0.4 0.4170 0.64

0.5 0.4170 0.52
0.6 0.4170 0.24
0.7 0.4170 0.32
0.8 0.4122 0.16
0.9 0.3957 0.08

initial population count as 200 since it gets obviously better when compared to

other population counts.

For our algorithm in this work, �rst, experiments to �nd pm and pmr are done.

Our algorithm run 50 times for each pm and pmr combination and pcr is turned

o� during this process. We take the highest modularity score within these 50

runs. As it is seen in Table 4.28, optimal pm is found as 0.7 and pmr is found

as 0.6 and they placed on the algorithm for our next experiments to �nd pcr.

Percentage of how many times the algorithm reached to maximum Q value is

taken as the accuracy of the pm and pmr combination. Again, the algorithm
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Figure 4.13: Population Comparisons of Tasgin et al on E-mail Network

run 50 times for each pcr value and highest modularity score is shown on Table

4.29. The optimal pcr is taken as 0.7, as seen in Table 4.29. Last, results of the

experiments to �nd random initialization rate are seen in Table 4.30, which is

taken as 0.6.

In Figure 4.14, we run algorithm of this work on E-mail Network using di�erent

initial population counts. After all parameters are placed to its place on the

algorithm, we run it 10 times for each population counts seen in Figure 4.14.

Although population count 300 performs better, we choose initial population

count as 200 to be the same with the other two methods.

Figure 4.14: Population Comparisons of this work on E-mail Network

In Table 4.50, using the parameters found in this subsection, maximum modu-
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Table4.28: Tests done on E-mail Network dataset to �nd pm and pmr for The
Work done in This Thesis

pm pmr Accuracy
0.1 0.0 0.02
0.1 0.1 0.02
0.1 0.2 0.02
0.1 0.3 0.02
0.1 0.4 0.02
0.1 0.5 0.02
0.1 0.6 0.02
0.1 0.7 0.02
0.1 0.8 0.02
0.1 0.9 0.02
0.2 0.0 0.02
0.2 0.1 0.02
0.2 0.2 0.02
0.2 0.3 0.02
0.2 0.4 0.02
0.2 0.5 0.04
0.2 0.6 0.16
0.2 0.7 0.14
0.2 0.8 0.20
0.2 0.9 0.24
0.3 0.0 0.02
0.3 0.1 0.02
0.3 0.2 0.20
0.3 0.3 0.26
0.3 0.4 0.30
0.3 0.5 0.34
0.3 0.6 0.36
0.3 0.7 0.40
0.3 0.8 0.42
0.3 0.9 0.50

pm pmr Accuracy
0.4 0.0 0.02
0.4 0.1 0.08
0.4 0.2 0.14
0.4 0.3 0.22
0.4 0.4 0.28
0.4 0.5 0.30
0.4 0.6 0.34
0.4 0.7 0.40
0.4 0.8 0.54
0.4 0.9 0.58
0.5 0.0 0.22
0.5 0.1 0.12
0.5 0.2 0.20
0.5 0.3 0.28
0.5 0.4 0.30
0.5 0.5 0.30
0.5 0.6 0.34
0.5 0.7 0.44
0.5 0.8 0.60
0.5 0.9 0.64
0.6 0.0 0.12
0.6 0.1 0.22
0.6 0.2 0.24
0.6 0.3 0.36
0.6 0.4 0.48
0.6 0.5 0.50
0.6 0.6 0.54
0.6 0.7 0.60
0.6 0.8 0.64
0.6 0.9 0.66

pm pmr Accuracy
0.7 0.0 0.22
0.7 0.1 0.22
0.7 0.2 0.30
0.7 0.3 0.38
0.7 0.4 0.40
0.7 0.5 0.50
0.7 0.6 0.54
0.7 0.7 0.58
0.7 0.8 0.68
0.7 0.9 0.68
0.8 0.0 0.42
0.8 0.1 0.42
0.8 0.2 0.50
0.8 0.3 0.58
0.8 0.4 0.72

0.8 0.5 0.50
0.8 0.6 0.54
0.8 0.7 0.58
0.8 0.8 0.68
0.8 0.9 0.68
0.9 0.0 0.42
0.9 0.1 0.42
0.9 0.2 0.50
0.9 0.3 0.58
0.9 0.4 0.60
0.9 0.5 0.50
0.9 0.6 0.54
0.9 0.7 0.58
0.9 0.8 0.68
0.9 0.9 0.68
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Table4.29: Tests done on E-mail Network dataset to �nd pcr for The Work of
This Thesis

pcr Max. Q Accuracy
0.1 0.0043 0.02
0.2 0.0130 0.02
0.3 0.0324 0.02
0.4 0.1344 0.02
0.5 0.3023 0.04
0.6 0.3453 0.02
0.7 0.4154 0.14
0.8 0.4240 0.12

0.9 0.4234 0.18

Table4.30: Tests on E-mail Network to �nd random initialization rate for The
Work of This Thesis

Random
Init. Rate

Max. Q Accuracy

0.0 0.4240 0.02
0.1 0.4543 0.12
0.2 0.4789 0.22
0.3 0.4940 0.30
0.4 0.4940 0.68
0.5 0.4940 0.76
0.6 0.4940 0.70
0.7 0.4940 0.80

0.8 0.4940 0.78
0.9 0.4940 0.68
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larity score Q for the E-mail Network is tried to �nd for each algorithm that each

of them were run 500 iterations for 50 times by getting their maximum �tness

scores. In Fig. 4.23, how modularity scores of the algorithms are evolving over

the iterations on E-mail Network Dataset is shown. Also, In Fig. 4.24, time

comparison of the modularity scores of the algorithms is shown.

4.3.5 Parameters for Tests on Facebook(NIPS) Network

For Facebook(NIPS) Network, we apply the same methods to �nd optimal pa-

rameters for each of the three algorithms. For Traditional GA, the algorithm

run 50 times for each mutation rate value. In Table 4.31, there are values and

their accuracy rates that showing percentage of how many times the maximum

Q value is reached. We take the parameter which have the highest Modularity Q

and if the modularity scores are equal then the record with the highest accuracy

is taken. In Table 4.31, experiments done to �nd the optimal modularity rate

are shown and it is taken as 0.8. The random initialization rate is taken as 0.8

as seen in Table 4.32.

Table4.31: Tests on Facebook-NIPS Network to �nd mutation rate for Tradi-
tional GA

Mutation Rate Max. Q Accuracy
0.1 0.0024 0.02
0.2 0.0037 0.02
0.3 0.0084 0.02
0.4 0.0102 0.02
0.5 0.0132 0.02
0.6 0.0180 0.02
0.7 0.0243 0.02
0.8 0.0408 0.02

0.9 0.0398 0.02

In Figure 4.15, we run Traditional GA on Facebook(NIPS) Network using dif-

ferent initial population counts. As it is seen, taking initial population 300 gives

better initial scores and reaches higher peak point at the end.

For the mutation rate of GACD of Tasgin et al, experiments are done and
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Table4.32: Tests on Facebook-NIPS Network to �nd random initialization rate
for Traditional GA

Random
Init. Rate

Max. Q Accuracy

0.0 0.0408 0.02
0.1 0.0897 0.02
0.2 0.1243 0.02
0.3 0.2194 0.02
0.4 0.3949 0.02
0.5 0.3890 0.02
0.6 0.3940 0.02
0.7 0.4054 0.02
0.8 0.4299 0.02

0.9 0.4198 0.02

results can be seen in Table 4.33. Mutation rate is taken as 0.9 since it has the

largest Modularity Q and accuracy values and then it placed on the algorithm

experiments are done to decide random initialization rate. As it seen in Table

4.34, the optimal random initialization rate is taken as 0.4. Last, clean up rate

is found as 0.5, seen in Table 4.35.

Table4.33: Tests on Facebook-NIPS Network to �nd mutation rate for Tasgin
et al.

Mutation Rate Max. Q Accuracy
0.1 0.0001 0.02
0.2 0.0005 0.02
0.3 0.0009 0.02
0.4 0.0012 0.02
0.5 0.0019 0.02
0.6 0.0023 0.02
0.7 0.0034 0.02
0.8 0.0035 0.02
0.9 0.038 0.02

In Figure 4.15, we run Tasgin et al on Facebook(NIPS) Network using di�erent

initial population counts. As it is seen, the algorithm reaches the same maximum

scores on all di�erent populations tried before the 50th iteration. To enable a

better accuracy while comparing with Traditional GA, we decided to choose
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Figure 4.15: Population Comparison of Traditional GA on Facebook(NIPS) Net-

work

initial population as 300.

Figure 4.16: Population Comparisons of Tasgin et al on Facebook(NIPS) Net-

work

For our algorithm in this work, �rst, experiments to �nd pm and pmr are done.

Our algorithm run 50 times for each pm and pmr combination and pcr is turned

o� during this process. We take the highest modularity score obtained within

these 50 runs. As it is seen in Table 4.36, the optimal pm value is found as 0.8 and

pmr is found as 0.4 and they placed on the algorithm for our next experiments

to �nd pcr. Percentage of how many times the algorithm reached to maximum
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Table4.34: Tests on Facebook-NIPS Network to �nd random initialization rate
for Tasgin et al.

Random
Init. Rate

Max. Q Accuracy

0.0 0.0039 0.02
0.1 0.3700 0.02
0.2 0.5393 0.08
0.3 0.6369 0.08
0.4 0.6006 0.24
0.5 0.6931 0.30
0.6 0.7832 0.40
0.7 0.7417 0.42
0.8 0.7389 0.40
0.9 0.7944 0.46

Table4.35: Tests on Facebook-NIPS Network to �nd clean up rate for Tasgin et
al.

Clean-up Rate Max. Q Accuracy
0.1 0.7101 0.22
0.2 0.7684 0.30
0.3 0.7546 0.38
0.4 0.7754 0.40
0.5 0.8086 0.50

0.6 0.8086 0.44
0.7 0.8086 0.48
0.8 0.8086 0.48
0.9 0.7980 0.46

Q value is taken as the accuracy of the combination of pm and pmr. Again, the

algorithm run 50 times for each possible pcr value and highest modularity score

is shown on the Table 4.37. The optimal pcr is taken as 0.7, as seen in Table

4.37. Last, values of all found parameters put on their places on the algorithm

and it is run again 50 times to �nd random initialization rate. Results of the

experiments can be seen in Table 4.38, that random initialization rate is taken

as 0.9.

In Figure 4.17, we run this work on Facebook(NIPS) Network using di�erent

initial population counts: 50, 100, 200 and 300. We run the algorithm for each
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Table4.36: Tests done on Facebook-NIPS Network dataset to �nd pm and pmr

for The Work done in This Thesis

pm pmr Accuracy
0.1 0.0 0.02
0.1 0.1 0.02
0.1 0.2 0.02
0.1 0.3 0.02
0.1 0.4 0.02
0.1 0.5 0.02
0.1 0.6 0.02
0.1 0.7 0.02
0.1 0.8 0.02
0.1 0.9 0.02
0.2 0.0 0.02
0.2 0.1 0.02
0.2 0.2 0.02
0.2 0.3 0.02
0.2 0.4 0.02
0.2 0.5 0.02
0.2 0.6 0.02
0.2 0.7 0.02
0.2 0.8 0.02
0.2 0.9 0.02
0.3 0.0 0.02
0.3 0.1 0.02
0.3 0.2 0.02
0.3 0.3 0.02
0.3 0.4 0.02
0.3 0.5 0.02
0.3 0.6 0.02
0.3 0.7 0.02
0.3 0.8 0.02
0.3 0.9 0.02

pm pmr Accuracy
0.4 0.0 0.02
0.4 0.1 0.02
0.4 0.2 0.02
0.4 0.3 0.02
0.4 0.4 0.02
0.4 0.5 0.02
0.4 0.6 0.02
0.4 0.7 0.02
0.4 0.8 0.02
0.4 0.9 0.02
0.5 0.0 0.02
0.5 0.1 0.02
0.5 0.2 0.02
0.5 0.3 0.02
0.5 0.4 0.02
0.5 0.5 0.02
0.5 0.6 0.02
0.5 0.7 0.02
0.5 0.8 0.02
0.5 0.9 0.02
0.6 0.0 0.02
0.6 0.1 0.02
0.6 0.2 0.02
0.6 0.3 0.02
0.6 0.4 0.02
0.6 0.5 0.02
0.6 0.6 0.04
0.6 0.7 0.02
0.6 0.8 0.02
0.6 0.9 0.02

pm pmr Accuracy
0.7 0.0 0.02
0.7 0.1 0.02
0.7 0.2 0.02
0.7 0.3 0.02
0.7 0.4 0.04
0.7 0.5 0.02
0.7 0.6 0.04
0.7 0.7 0.02
0.7 0.8 0.02
0.7 0.9 0.08
0.8 0.0 0.02
0.8 0.1 0.02
0.8 0.2 0.02
0.8 0.3 0.02
0.8 0.4 0.08

0.8 0.5 0.02
0.8 0.6 0.02
0.8 0.7 0.08
0.8 0.8 0.02
0.8 0.9 0.02
0.9 0.0 0.02
0.9 0.1 0.02
0.9 0.2 0.02
0.9 0.3 0.02
0.9 0.4 0.04
0.9 0.5 0.02
0.9 0.6 0.02
0.9 0.7 0.04
0.9 0.8 0.08
0.9 0.9 0.08
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Table4.37: Tests done on Facebook-NIPS Network dataset to �nd pcr for The
Work of This Thesis

pcr Max. Q Accuracy
0.1 0.0045 0.02
0.2 0.0063 0.02
0.3 0.0071 0.02
0.4 0.0079 0.02
0.5 0.0084 0.02
0.6 0.0090 0.02
0.7 0.0092 0.02
0.8 0.0088 0.02
0.9 0.0086 0.02

Table4.38: Tests done on Facebook-NIPS Network dataset to �nd random ini-
tialization rate for The Work of This Thesis

Random
Init. Rate

Max. Q Accuracy

0.0 0.0092 0.22
0.1 0.2608 0.22
0.2 0.2813 0.22
0.3 0.2969 0.30
0.4 0.3081 0.38
0.5 0.3141 0.40
0.6 0.3099 0.30
0.7 0.3457 0.34
0.8 0.3396 0.36
0.9 0.3474 0.34
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of these population counts and taken the ones reaching the highest modularity

scores. As it is seen, the algorithm performs so close on all di�erent populations

tried, although there are di�erences at their initial scores. Choosing any of them

will not di�er much. However, to enable the accuracy while doing comparison

with Traditional GA and the algorithm of Tasgin et al, we decided to choose the

initial population as 300.

Figure 4.17: Population Comparisons of this work on Facebook(NIPS) Network

In Table 4.50, which is in the next subsection, the maximum Modularity Score Q

for the Facebook(NIPS) Network is tried to �nd for each algorithm that each of

them were run 500 iterations using the parameter values found in this subsection.

Each algorithm is run for 50 times and the highest modularity scores of the

algorithms are taken as their maximum Modularity Score Q for that dataset.

4.3.6 Parameters for Tests on PGP Network

For PGP, we apply the previous methods to �nd optimal parameters for each

of the three algorithms. However, there is a di�erence: We had to take the

value of number of the iterations 20 for each test, not the 50, because PGP

Network is a large network of which vertex numbers are more than 10000 and

it would consume so much time to run the algorithm 50 times for each of the

possible parameter rates. For Traditional GA, the algorithm run 20 times for

each mutation rate value. In Table 4.39, there are values and their accuracy

rates that showing percentage of how many times the maximum Q value is
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Table4.39: Tests on PGP Network to �nd mutation rate for Traditional GA

Mutation Rate Max. Q Accuracy
0.1 0.2614 0.02
0.2 0.2907 0.02
0.3 0.2994 0.02
0.4 0.3099 0.02
0.5 0.3123 0.02
0.6 0.3146 0.02
0.7 0.3166 0.02
0.8 0.3178 0.02
0.9 0.3208 0.02

Table4.40: Tests on PGP Network to �nd random initialization rate for Tradi-
tional GA

Random
Init. Rate

Max. Q Accuracy

0.0 0.3208 0.02
0.1 0.4298 0.02
0.2 0.4994 0.02
0.3 0.5449 0.02
0.4 0.5727 0.02
0.5 0.5949 0.02

0.6 0.5539 0.02
0.7 0.5526 0.02
0.8 0.5603 0.02
0.9 0.5782 0.02

reached. We take the parameter which have the highest Modularity Q and if

the modularity scores are equal then the record with the highest accuracy is

taken. In Table 4.39, experiments done to �nd the optimal modularity rate are

shown and it is taken as 0.8. The random initialization rate is taken as 0.8 as

seen in Table 4.40.

For the mutation rate of GACD of Tasgin et al, experiments are done and

results can be seen in Table 4.41. Mutation rate is taken as 0.9 since it has the

largest Modularity Q and accuracy values and then it placed on the algorithm

experiments are done to decide random initialization rate. As it seen in Table
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Table4.41: Tests on PGP Network to �nd mutation rate for Tasgin et al.

Mutation Rate Max. Q Accuracy
0.1 0.2716 0.02
0.2 0.3607 0.02
0.3 0.3909 0.02
0.4 0.5657 0.02
0.5 0.6099 0.02
0.6 0.6504 0.02
0.7 0.6819 0.02
0.8 0.6939 0.02
0.9 0.7155 0.02

Table4.42: Tests on PGP Network to �nd random initialization rate for Tasgin
et al.

Random
Init. Rate

Max. Q Accuracy

0.0 0.7155 0.02
0.1 0.3391 0.02
0.2 0.4355 0.02
0.3 0.7549 0.02
0.4 0.7612 0.02
0.5 0.7769 0.02
0.6 0.7926 0.02

0.7 0.7737 0.02
0.8 0.7581 0.02
0.9 0.7692 0.02

4.42, the optimal random initialization rate is taken as 0.4. Last, clean up rate

is found as 0.5, seen in Table 4.43.

For our algorithm in this thesis, �rst, experiments to �nd pm and pmr are done.

Our algorithm run 20 times for each pm and pmr combination. pcr is turned o�

during this process that the vertices do not belonging to any community after

the crossover session will be assigned to a community randomly. We take the

highest modularity score within these 20 runs.

As it is seen in Table 4.44, which is in the next subsection, optimal pm is found

as 0.8 and pmr is found as 0.6 and they placed on the algorithm for our next
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Table4.43: Tests on PGP Network to �nd clean up rate for Tasgin et al.

Clean-up Rate Max. Q Accuracy
0.1 0.7947 0.02
0.2 0.8053 0.02
0.3 0.8069 0.02

0.4 0.7953 0.02
0.5 0.8012 0.02
0.6 0.8035 0.02
0.7 0.8035 0.02
0.8 0.7954 0.02
0.9 0.8000 0.02

experiments to �nd pcr. Percentage of how many times the algorithm reached

to maximum Q value within these 20 runs, is taken as the accuracy of the pm

and pmr combination. If more than one result having same modularity score,

the record with the higher accuracy accepted as a better result. Again, the

algorithm run 20 times for each pcr value and highest modularity score is shown

on Table 4.45. The optimal pcr is taken as 0.8, as seen in Table 4.45. At the

last step, optimal value found for pcr is put its place in the algorithm and the

algorithm is run again 20 times to decide random initialization rate. Results of

the experiments to �nd random initialization rate are seen in Table 4.46, which

is taken as 0.7.

Initial population count is taken as 100 for the experiments of this dataset since

the size of the network has more than 10000 nodes and doing experiments for

other populations will consume too much time.

4.3.7 Parameters for Tests on Cond-Mat Network

Only our algorithm examined on this dataset. Therefore, this section explains

only de�nition of parameters of our algorithm.

First, experiments to �nd pm and pmr are done. Our algorithm run 5 times

for each pm and pmr combination and pcr is turned o� during this process that

the vertices do not belonging to any community after the crossover session will
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Table4.44: Tests done on PGP Network dataset to �nd pm and pmr for The
Work done in This Thesis

pm pmr Max. Q
0.1 0.0 0.1139
0.1 0.1 0.2094
0.1 0.2 0.2013
0.1 0.3 0.2158
0.1 0.4 0.3467
0.1 0.5 0.3711
0.1 0.6 0.4131
0.1 0.7 0.4364
0.1 0.8 0.4489
0.1 0.9 0.4692
0.2 0.0 0.4080
0.2 0.1 0.4492
0.2 0.2 0.4804
0.2 0.3 0.5063
0.2 0.4 0.5247
0.2 0.5 0.5365
0.2 0.6 0.5582
0.2 0.7 0.5945
0.2 0.8 0.5947
0.2 0.9 0.6171
0.3 0.0 0.4092
0.3 0.1 0.4733
0.3 0.2 0.5094
0.3 0.3 0.5217
0.3 0.4 0.5303
0.3 0.5 0.5561
0.3 0.6 0.5795
0.3 0.7 0.5966
0.3 0.8 0.5896
0.3 0.9 0.6008

pm pmr Max Q.
0.4 0.0 0.4135
0.4 0.1 0.4957
0.4 0.2 0.5389
0.4 0.3 0.5745
0.4 0.4 0.5880
0.4 0.5 0.5976
0.4 0.6 0.6188
0.4 0.7 0.6406
0.4 0.8 0.6799
0.4 0.9 0.6605
0.5 0.0 0.4705
0.5 0.1 0.5138
0.5 0.2 0.5753
0.5 0.3 0.6075
0.5 0.4 0.6103
0.5 0.5 0.6592
0.5 0.6 0.6743
0.5 0.7 0.6887
0.5 0.8 0.6854
0.5 0.9 0.6937
0.6 0.0 0.5546
0.6 0.1 0.6045
0.6 0.2 0.6174
0.6 0.3 0.6538
0.6 0.4 0.6743
0.6 0.5 0.6802
0.6 0.6 0.6854
0.6 0.7 0.6941
0.6 0.8 0.7049
0.6 0.9 0.6933

pm pmr Max. Q
0.7 0.0 0.5877
0.7 0.1 0.6094
0.7 0.2 0.6577
0.7 0.3 0.6602
0.7 0.4 0.6836
0.7 0.5 0.6745
0.7 0.6 0.6943
0.7 0.7 0.7036
0.7 0.8 0.7022
0.7 0.9 0.7084
0.8 0.0 0.6194
0.8 0.1 0.6757
0.8 0.2 0.6873
0.8 0.3 0.6984
0.8 0.4 0.7099
0.8 0.5 0.7002
0.8 0.6 0.7190

0.8 0.7 0.7023
0.8 0.8 0.7128
0.8 0.9 0.7139
0.9 0.0 0.6142
0.9 0.1 0.6311
0.9 0.2 0.6895
0.9 0.3 0.7032
0.9 0.4 0.7176
0.9 0.5 0.7134
0.9 0.6 0.7121
0.9 0.7 0.7188
0.9 0.8 0.7189
0.9 0.9 0.7157
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Table4.45: Tests done on PGP Network dataset to �nd pcr for The Work of This
Thesis

pcr Max. Q Accuracy
0.1 0.3983 0.02
0.2 0.4922 0.02
0.3 0.5604 0.02
0.4 0.6281 0.02
0.5 0.6687 0.02
0.6 0.7001 0.02
0.7 0.7077 0.02
0.8 0.7190 0.02

0.9 0.7187 0.48

Table4.46: Tests on PGP Network to �nd random initialization rate for The
Work of This Thesis

Random
Init. Rate

Max. Q Accuracy

0.0 0.7190 0.02
0.1 0.7523 0.02
0.2 0.7602 0.02
0.3 0.7865 0.02
0.4 0.7931 0.02
0.5 0.7982 0.02
0.6 0.8123 0.02
0.7 0.8202 0.02

0.8 0.8103 0.02
0.9 0.8162 0.02

be assigned to a community randomly. We had to take the value of number of

the iterations 5, lesser than our previous choices of 50 and 20, because Cond-

Mat Network is a large network having more than 27000 vertices and it would

consume so much time to run the algorithm for each parameter rate. We take

the highest modularity score within these 5 runs. As it is seen in Table 4.47,

the optimal value of pm is found as 0.7 and the optimal value of pmr is found

as 0.6 and they placed on the algorithm for our next experiments to �nd pcr.

Percentage of how many times the algorithm reached to maximum Q value is

taken as the accuracy of the pm and pmr combination. If more than one result
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Table4.47: Tests done on Cond-Mat Network dataset to �nd pm and pmr for The
Work done in This Thesis

pm pmr Max. Q
0.1 0.0 0.0023
0.1 0.1 0.0032
0.1 0.2 0.0047
0.1 0.3 0.0088
0.1 0.4 0.0112
0.1 0.5 0.0134
0.1 0.6 0.0144
0.1 0.7 0.0175
0.1 0.8 0.0188
0.1 0.9 0.0192
0.2 0.0 0.0080
0.2 0.1 0.0102
0.2 0.2 0.0174
0.2 0.3 0.0203
0.2 0.4 0.0267
0.2 0.5 0.0485
0.2 0.6 0.0787
0.2 0.7 0.0945
0.2 0.8 0.1056
0.2 0.9 0.1244
0.3 0.0 0.0357
0.3 0.1 0.0422
0.3 0.2 0.0733
0.3 0.3 0.1317
0.3 0.4 0.1903
0.3 0.5 0.2361
0.3 0.6 0.2595
0.3 0.7 0.2766
0.3 0.8 0.2896
0.3 0.9 0.2908

pm pmr Max Q.
0.4 0.0 0.0335
0.4 0.1 0.0957
0.4 0.2 0.1389
0.4 0.3 0.1745
0.4 0.4 0.2180
0.4 0.5 0.2376
0.4 0.6 0.2988
0.4 0.7 0.3106
0.4 0.8 0.3299
0.4 0.9 0.3376
0.5 0.0 0.1305
0.5 0.1 0.2108
0.5 0.2 0.2516
0.5 0.3 0.2988
0.5 0.4 0.3124
0.5 0.5 0.3445
0.5 0.6 0.3560
0.5 0.7 0.3574
0.5 0.8 0.3683
0.5 0.9 0.3749
0.6 0.0 0.1401
0.6 0.1 0.1832
0.6 0.2 0.2114
0.6 0.3 0.2333
0.6 0.4 0.2672
0.6 0.5 0.3003
0.6 0.6 0.3271
0.6 0.7 0.3428
0.6 0.8 0.3732
0.6 0.9 0.3830

pm pmr Max. Q
0.7 0.0 0.1277
0.7 0.1 0.1924
0.7 0.2 0.2735
0.7 0.3 0.3554
0.7 0.4 0.4302
0.7 0.5 0.4402
0.7 0.6 0.4965

0.7 0.7 0.4848
0.7 0.8 0.4804
0.7 0.9 0.4902
0.8 0.0 0.1994
0.8 0.1 0.2857
0.8 0.2 0.3882
0.8 0.3 0.3912
0.8 0.4 0.4263
0.8 0.5 0.4187
0.8 0.6 0.4013
0.8 0.7 0.4384
0.8 0.8 0.4416
0.8 0.9 0.4379
0.9 0.0 0.2010
0.9 0.1 0.2983
0.9 0.2 0.3942
0.9 0.3 0.4302
0.9 0.4 0.4963
0.9 0.5 0.4204
0.9 0.6 0.4598
0.9 0.7 0.4734
0.9 0.8 0.4839
0.9 0.9 0.4927
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Table4.48: Tests done on Cond-Mat Network dataset to �nd pcr for The Work
of This Thesis

pcr Max. Q Accuracy
0.1 0.4965 0.02
0.2 0.4932 0.02
0.3 0.4994 0.02
0.4 0.5092 0.02
0.5 0.5102 0.02
0.6 0.5188 0.02
0.7 0.5293 0.02

0.8 0.5193 0.02
0.9 0.4965 0.02

Table4.49: Tests on Cond-Mat Network to �nd random initialization rate for
The Work of This Thesis

Random
Init. Rate

Max. Q Accuracy

0.0 0.5293 0.02
0.1 0.5334 0.02
0.2 0.5943 0.02
0.3 0.5743 0.02
0.4 0.6002 0.02
0.5 0.6154 0.02
0.6 0.6229 0.04
0.7 0.6187 0.02
0.8 0.6056 0.04
0.9 0.6086 0.02
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having same modularity score, the record with the higher accuracy accepted as

a better result. Again, the algorithm run 5 times for each pcr value and highest

modularity score is shown on Table 4.48. The optimal pcr is taken as 0.7, as

seen in Table 4.48. Last, results of the experiments to �nd random initialization

rate are seen in Table 4.49, which is taken as 0.6.

Initial population count is taken as 100 for the experiments of this dataset since

the size of the network is huge and doing experiments for other populations will

consume too much time.

4.4 Comparison of Modularity Score and Time with Other Genetic

Algorithms

After the replacement of the optimal values of the parameters we found for each

algorithm, we run each of them 50 times and take their highest Modularity Q

value for comparison. Each run is done for 500 iterations to let them to reach

their peak points.

Table4.50: Comparison of Modularity Scores of GA Technics

Dataset
Traditional

GA
Tasgin's
GGA

MGA (Work in
Thesis)

Zachary's Karate Club 0.4198 0.4198 0.4198
Collaboration in Jazz 0.4393 0.4444 0.4444
Metabolic 0.3341 0.4338 0.4373
E-mail 0.2555 0.4339 0.5654
Facebook(NIPS) Data 0.7976 0.8086 0.8087
PGP 0.7893 0.8071 0.8557

As you can see in Table 4.50, our Modi�ed Genetic Algorithm for social net-

works gives accurate and satisfactory results when modularity scores compared

to Traditional GA and GACD of Tasgin et al. Especially, you can see signi�cant

di�erences of maximum modularity scores reached on E-mail and PGP datasets.

In the results shown in Figure 4.18, you can see how modularity scores evolve
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Figure 4.18: comparison on Zachary Karate Club over Iterations

Figure 4.19: comparison on Collaboration in Jazz over Iterations
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Figure 4.20: comparison on Collaboration in Jazz over Time

over each iteration while they are running on the Zachary's Karate Club dataset.

The Modi�ed Genetic Algorithm which is the work done in this thesis, GACD

which is the work done by Tasgin et al and the Traditional GA is run with their

optimal parameters for the Zachary's Karate Club dataset and their modularity

scores are shown for every 10 turns. As you can see from the graphic, modular-

ity scores obtained from the Modi�ed Genetic Algorithm proposed in this work

evolves better and reaches higher values quickly although the method of Tasgin

et al and Traditional GA has a good start.

In �gure 4.19, comparison is made on the dataset of Collaboration in Jazz So-

cial Network. Modularity scores, which are obtained after the run of all three

algorithms with their optimized parameters, are shown for every 10 turns. Only

after 20 turns, our method reaches so close to the peak modularity score while

method of Tasgin et al needs to be run more turns, around 80 turns. Also, In

�gure 4.20, evolution of the modularity scores of these three Genetic Algorithms

is shown for every 5 seconds. Our work approaches so close to the peak point

in 5 seconds and catches it up in 10 seconds, while GACD of Tasgin et al need

to take around more 10 seconds and Traditional GA need to take around more

130 seconds to catch up.
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Figure 4.21: comparison on Metabolic over Iterations

Figure 4.22: comparison on Metabolic over Time

88



Figure 4.23: comparison on E-mail Network over Iterations

Figure 4.24: comparison on E-Mail Network over Time
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Figure 4.25: comparison on Facebook(NIPS) Dataset over Iterations

Figure 4.26: comparison on Facebook(NIPS) Dataset over Time
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Figure 4.27: comparison on PGP Dataset over Iteration

Figure 4.28: comparison on PGP Dataset over Time
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In �gure 4.21, comparison is made on the Metabolic Network. The graph shows

the runs of the algorithms that reaches the maximum modularity score. Modu-

larity score values taken from each iteration. Also, �gure 4.22 shows the mod-

ularity score values taken for each seconds. As you can see, there are not any

important di�erence between Tasgin's method and out method when consider-

ing Metabolic Network dataset.

In �gure 4.23, comparison is made on the E-mail Network dataset that each of

the algorithms is run with their optimal parameters. Graph shows the values of

the Modularity Score Q for every 10 iterations. As you can see, all three algo-

rithms start from a point which is very close to each one of them. Our Modi�ed

GA evolves better and approaches to peak point quicker than the both the other

methods. It can also be seen from the graphic that when our algorithm reaches

0.4940 -the highest modularity Q value for this dataset- at the 300. iteration,

modularity score of the Traditional GA is around 0.26 and modularity score of

the work of Tasgin et al is around 0.42.In �gure 4.24, this time, we run these

three algorithms 50 times an use the values from their best results to compare

in terms of time. In the graphic, we see the evolution of the modularity scores

for every 5 seconds. As you can see, our Modi�ed GA take a large step after

�fth second while, Traditional GA and GACD of Tasgin et al performs poorly.

At the 200th second, our algorithm reaches the value of 0.4940 while modularity

score of the Traditional GA is around 0.24 and modularity score of the work of

Tasgin et al is around 0.32.

In �gures 4.25 and 4.26, you can see how modularity scores of each methods

evolve over each iterations and each seconds on the Facebook(NIPS) dataset. As

you can see, after the initialization phase, algorithms begin with high modular-

ity scores and this dataset is not much suitable to make di�erence.

Furthermore, in the �gure 4.27, you can see how modularity scores of each

methods evolve over each iterations on the PGP dataset. As you can see, our

algorithm performs better than other algorithms. Also, evolution of the algo-

rithms over time on PGP can be seen in �gure 4.28 in which the modularity

scores during the �rst 300 minutes of the run of the algorithms are shown. These

values are taken from the best ones after we run each algortihm 10 times.
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4.5 Comparison with Di�erent Community Detection Algorithms for

Social Networks

We compare our Modi�ed Genetic Algorithm with other four algorithms which

are accepted as proven ways for community detection in social networks. These

four algorithms are these: The betweenness based algorithm of Girvan and New-

man [26], the greedy optimization algorithm of Clauset et. al.[8], the extremal

optimization algorithm of Duch and Arenas[12] and the spectral method of New-

man which uses eigenvectors of similarity matrices of the networks. These algo-

rithms are run on the same datasets and their modularity scores are calculated.

In Table 4.51 and Table 4.52, you can see the comparison of modularity scores

of these algorithms. Datasets are, in order, Zachary's Karate Club[71], Collab-

oration in Jazz Network[52], Metabolic Network for the nematode C. Elegans,

E-mail Network[55], PGP which is a trust network on mutual signing of cryp-

tography keys and Cond-Mat which is a network showing the relations of the

authors and the papers in Condense Matters archive. Abbreviations are used

for the algorithms names:

• GN: Girvan Newman Algorithm

• CNM: Algorithm of Clauset et al.

• DA: Algorithm of Duch and Arenas

• NSA: Newman's Spectral Algorithm

• MGA: The work studied in this thesis is referred as MGA. Abbreviation

is the combination of the capitals that are taken from the �rst letters of

Modi�ed Genetic Algorithm.

We did not need to �nd parameters for other algorithms since experiments are

done for these algorithms on datasets we are using and their best results are

claimed [26][8][12][44]. Speaking of MGA for both with preprocess and without

preprocess methods, the same parameters are used. For the datasets Zachary's

Karate Club, Collaboration in Jazz Network and E-mail Network, the values of
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our variables and prede�nitions are the same with the ones mentioned in section

4.3. However, we have not done experiments to �nd optimal parameters on

Metabolic Network, PGP Network and Cond-Mat Network For PGP Network,

in previous sections so we will do these experiments in this section.

4.5.1 Comparisons Between Algorithms

In terms of MGA, optimized parameter values and prede�ned constants are

de�ned and summarized in the following. For Zachary's Karate Club Network,

Collaboration in Jazz Network and E-mail Network, values of the parameters will

be the ones de�ned in section 4.3. For Metabolic Network mutation rate is taken

as 0.8, initial chromosome count is taken as 100. pcr is taken as 0.7, pmr is taken

as 0.8. For Cond-Mat Network, mutation rate is taken as 0.7, initial chromosome

count is taken as 100. pcr is taken as 0.7, pmr is taken as 0.6. For both PGP and

Cond-Mat, no maximum iteration count is de�ned. Termination condition for

PGP is modularity score's does not changing for 100 iterations after its reaching

to 0.855, which is the maximum modularity value found by other methods, and

for Cond-Mat is modularity score's does not changing for 200 iterations after its

reaching to 0.723 which is the again the maximum modularity value found by

other methods.

Table4.51: comparison of Modularity Scores with Other Community Detection
Methods

Dataset GN CNM DA NSA
MGA without
Preprocess

Zachary 0.4011 0.3812 0.4192 0.4191 0.420
Jazz musicians 0.4051 0.4392 0.4452 0.4421 0.445
Metabolic 0.4031 0.4022 0.4342 0.4241 0.437
Email 0.5321 0.4942 0.5742 0.5521 0.565
PGP 0.8161 0.7332 0.8462 0.8551 0.856
Cond-Mat not applicable 0.6682 0.6792 0.7231 0.723

1This data is not found by our experiment. It is claimed in and taken from the work of Newman

[44]
2This data is not found by our experiment. It is claimed in and taken from the work of Duch and

Arenas[12]
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For the algorithms of Girvan Newman and Newmans's Spectral Algorithm, li-

braries and tools which have been mentioned in Section 4.2 Experimental Setup,

are used. The results of the algorithm of Duch and Arenas and algorithm of

Clauset et al are taken from the experiments mentioned in other studies [44].

In Table 4.51, maximum network modularity scores of the algorithms when they

run on the same datasets are shown. Each algorithm is run on the same datasets

40 times and their largest value of Modularity Q taken. Girvan Newman algo-

rithm is not applied to Condense Matters dataset because of its time complexity,

it takes so much time to run. The work done in this thesis referred as MGA,

Modi�ed Genetic Algorithm, and in Table 4.51, results of MGA of which pre-

process is not applied is shown.

Table4.52: comparison of Modularity Scores with Other Community Detection
Methods

Dataset GN CNM DA NSA
MGA with
Preprocess

Zachary 0.4011 0.3812 0.4192 0.4191 not applied
Jazz musicians 0.4051 0.4392 0.4452 0.4421 not applied
Metabolic 0.4031 0.4022 0.4342 0.4241 0.438
Email 0.5321 0.4942 0.5742 0.5521 0.576
PGP 0.8161 0.7332 0.8462 0.8551 0.858
Cond-Mat not applicable2 0.6682 0.6792 0.7231 0.729

In Table 4.52, also, maximum network modularity scores of the algorithms when

they run on the same datasets are shown. Again, GN is not applied for Condense

Matters dataset. For this time, MGA is run including the preprocess step. We

did not run MGA on Zachary's Karate Club and Collaboration in Jazz Network

datasets, because their size is too small for a preprocess step and it does not

re�ne the results. For preprocess step, we have taken communities from the

results of GN and NSA. For Metabolic and E-mail datasets, all the communities

given as output after the run of GN and NSA and communities not larger than

one third of the network size are used as input. For PGP and Cond-Mat datasets,

1This data is not found by our experiment. It is claimed in and taken from the work of Newman

[44]
2This data is not found by our experiment. It is claimed in and taken from the work of Duch and

Arenas[12]
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Figure 4.29: Time comparison on PGP Network

GN and NSA run for one hour and the indivisible communities found during the

�rst one hour are used as input. Because of GN is not being applied to Condense

Matters dataset, we use only results from NSA.

In the Figure 4.29, time comparison of the modularity scores between NSA

and MGA with preprocess is made. MGA has taken 15 di�erent communities

randomly assigned to the communities from the community pool generated by

running NSA and GACD of Tasgin et al for one hour. The snapshots of the

PGP network are taken when the NSA divided it into smaller pieces. Modularity

scores of the NSA and MGA with preprocess are compared at the times when

the mentioned snapshots are taken. Our pool of communities consisting of 37

communities. Quality of these communities are found by dividing the edge

number to the number of vertices in the community. In the Figure 4.30, it

is shown how MGA with preprocess(experiments shown with numbers 1, 2, 3,

4) and MGA without preprocess step(experiment shown with number 5). The

initial population for each experiments is taken as 100. In the Figure 4.30,

the experiment shown by number one is taken 15 best communities, experiment

with number two is taken 30 best communities, experiment with number three is
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Figure 4.30: Comparison on PGP

taken 45 random communities, experiment with number �ve is taken 60 random

communities and experiment with number �ve is not taken any community as

input.
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CHAPTER 5

CONCLUSIONS

In this thesis, a new method which is for the needs of detecting communities

in social networks is studied. Several studies which focuses on the subjects like

graph partitioning, clustering and community detection in networks and genetic

algorithms are examined. Finally, a new method which uses a specialized version

of the Genetic Algorithms which is specialized on detecting communities in so-

cial networks is proposed. Our proposed method does not need the information

of how many communities are to be generated and it is not given as an input.

Vertices in the networks form together and create communities to maximize the

�tness score.

In this method, we inspired from Falkenauer's presentation of grouping genetic

algorithms and we shifted our focus from individuals of the graph to the commu-

nities of the graph, and used an encoding that keeping communities as genes of

the chromosomes and keeping individuals as the data of the genes. Additionally,

for large real network data, a preprocess step which makes use of the community

structure outputs produced from running of other algorithms are used. With

the preprocess step, we planned to take advantage of building blocks for a more

rapid run and accurate results. To evaluate the success of the algorithm, Mod-

ularity Q is used as �tness function.

First, we examined our algorithm with other genetic algorithms: Grouping Ge-

netic Algorithm of Tasgin et al and Traditional Genetic Algorithm. The tests

are done without using a preprocess step to focus on the performance of the

genetic algorithms and to show how our way of encoding and operators perform.

Results were satisfactory that our method �nds community structures faster and
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reaches the top modularity value sooner than other two methods. We compared

how Modularity Q values changed through the iterations and changed through

the time passes. Both of these comparisons show that our modi�ed genetic al-

gorithm is superior for community detection to GACD of Tasgin et al and the

Traditional Genetic Algorithm even without using a preprocess step.

Our method's comparison with other algorithms shown in section 4.5 that all

of them are using di�erent approaches but using modularity Q in common to

evaluate quality of the community structure of the network. As it is seen, our

method has better results when compared to others. To improve the modularity

of the network more, we used a preprocess step. Since it gives building blocks

to solution space, it enhances the modularity scores of the networks. After the

experiments, we see that number of the building blocks is not as e�ective as the

quality of the building blocks for our method. As a result, our method is an

e�ective way of using building blocks.

There are some disadvantages of our method. Since it is a genetic algorithm,

it �nds the optimal solution eventually, as it is expected. Also it has rapid re-

�nements. However, its re�nement gets slower when it gets closer to the peak

points, that we can refer as saturation points. In future works, we will look for

re�nements to overcome the saturation points quicker. Plus, implementation

of parallel programming to our methods can speed up the running time. Fur-

thermore, we have an opinion that our encoding might be a suitable solution

for the networks which are consisting of overlapping communities and future

experiments will be done to observe our method's e�ciency on these kind of

networks.
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