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ABSTRACT 

 

 

AERODYNAMIC ANALYSIS OF FLATBACK AIRFOILS USING VORTEX 

PARTICLE METHOD 

 

 

 

Haser, Senem Ayşe 

MS., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Oğuz Uzol 

December 2014, 70 pages 

 

 

In this thesis, aerodynamic analysis of flatback airfoils, which have been proposed 

and investigated to improve the aerodynamic performance of thick airfoils, is 

studied. Vortex particle method, which is commonly used for simulation of two 

dimensional, incompressible, viscous flows, is used for this purpose.  In the content 

of this thesis, vortex particle method code developed by Kaya [1] is improved by 

changing method of diffusion and method of vorticity releasing from solid boundary. 

Deterministic Particle Strength Exchange (PSE) method is implemented to solve 

diffusion equation. In addition, instead of vortex particle releasing algorithm, 

vorticity releasing algorithm, which is more suitable for PSE method, is 

implemented.  

The method and algorithm are explained in detail and results of analysis are 

presented. The validation and applicability of the improved code is illustrated by 

solving flow past a flat plate, a circular cylinder and a square cylinder. After that, 

flow around FB3500 series flatback airfoils at Reynolds number of 1000 are 

simulated by using the improved vortex particle method code. In order to compare 
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results, laminar and unsteady Computational Fluid Dynamics (CFD) analyses are 

performed.  

Keywords: Vortex Particle Method, Particle Strength Exchange, Flatback Airfoil 
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ÖZ 

 

 

KÜT FİRAR KENARLI KANAT KESİTLERİNİN GİRDAP PARÇACIK 

YÖNTEMİ İLE AERODİNAMİK ANALİZİ 

 

 

 

Haser, Senem Ayşe 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Oğuz Uzol 

Aralık 2014, 70 sayfa 

 

 

Bu tezde, kalın profillerin performansını arttırmak için önerilen ve son zamanlarda 

sıklıkla araştırılan bir konu olan küt firar kenarlı kanat kesitlerinin aerodinamik 

analizleri anlatılmaktadır. Analizler, küt cisimler etrafından geçen iki boyutlu, 

sıkıştırılamayan, sürtünmeli akımların simulasyonlarında sıklıkla kullanılan girdap 

parçacık yöntemi ile gerçekleştirilmiştir. Bu tezin kapsamında, Kaya [1] tarafından 

geliştirilen girdap parçacık yöntemi kodu, difüzyon ve model sınırlarından akışa 

girdap gücü salınımı yöntemleri değiştirilerek geliştirilmiştir. Difüzyon yöntemi 

olarak deterministik bir yöntem olan Parçacık Gücü Değişimi (PGD) yöntemi 

kullanılmıştır. Ayrıca, sınırda oluşan girdap parçacıklarını akışa bırakma yöntemi 

yerine, parçacıkların girdap güçlerini akışa salınımı yöntemi uygulanmıştır.  Bu 

yöntem, PGD difüzyon yöntemi için daha uygun bir yöntemdir. 

Tezde, kullanılan yöntem ve geliştirilen algoritmanın detayları ve analiz sonuçları 

anlatılmaktadır. Geliştirilen algotitmanın doğruluğu ve uygulanabilirliği düz plaka, 

kare kesitli silindir ve dairesel kesitli silindir etrafındaki akış çözümlenerek 

gösterilmiştir. Sonrasında, FB3500 serisi küt firar kenarlı kanat kesitleri etrafındaki 
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1000 Reynolds sayısındaki akış alanı çözülmüştür. Sonuçları karşılaştırmak için 

laminar ve zamana bağlı Hesaplamalı Akışkanlar Dinamiği (HAD) analizleri 

gerçekleştirilmiştir. 

Anahtar Kelimeler: Girdap Parçacık Yöntemi, Parçacık Gücü Değişimi, Küt Firar 

Kenarlı Kanat Kesitleri 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

As power demand increases, the sizes of the wind turbines are expected to be 

increased. Figure 1.1 shows the relation between wind turbine size and power 

produced from a wind turbine. Increasing blade size raises structural concerns like 

increased gravitational and aerodynamic loading and economic concerns like cost of 

materials corresponding rise in blade size and weight. Increasing the thickness of the 

airfoil helps to reduce these concerns. The thicker airfoils reduce the specific weight 

as a function of rotor diameter and also improve structural efficiency [2]. 

Unfortunately, increasing the thickness of airfoils has disadvantages as well. Due to 

surface contamination, the boundary layer laminar to turbulent transition can occur 

very near to the leading edge. In order to remove the sensitivity to premature 

transition the airfoils can be equipped with a blunt trailing edge [3]. Airfoil with 

blunt trailing edge, which is also called flatback airfoil, introduces unique vortex 

shedding behavior due to the blunt trailing edge which acts similar to a bluff body 

[4]. An example for flatback airfoils is given in Figure 1. 2. 
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Figure 1. 1 HAWT Size and Power Trends [2] 

 

 

Figure 1. 2 Flatback Airfoils [5] 

 

Bluff body areodynamics is quite different than lifting body aerodynamics. At 

surfaces with high curvature an adverse pressure gradient will add to the retarding 

action of the skin friction, which may cause the flow to be interrupted entirely and 

reverse in a region adjacent to the surface. This results in a region of backward flow 

and a detached boundary layer beyond it. At sufficiently high Reynolds numbers the 
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circulation region due to the separation becomes unstable. Moreover, the von 

Karman vortex street, which is an oscillating wake comprising large-scale eddies, 

forms downstream of the body. Because of the regularity of the eddy formation, the 

vortex shedding occurs at a dominant frequency f. This dominant frequency depends 

on the geometry and Reynolds number.  

 

In bluff body aerodynamics, the interest in vortex methods boost notably. Vortex 

methods are based on Lagrangian numerical scheme and provide direct numerical 

simulation of unsteady, incompressible and viscous flows. Vortex methods for the 

simulation of incompressible flows have three fundamental properties [6]. First, the 

Navier-Stokes equations are formulated with regard to vorticity, so that the spatial 

discretization is achieved by using the vorticity field instead of the velocity field. In 

addition, the pressure drops out of the governing equation, and thus pressure term is 

solved only when and where force calculations are desired. Second, taking advantage 

of Helmholtz’ theorems, in vortex methods, vortex particles are computational 

elements and convected with the local fluid velocity. Third, velocity field is obtained 

from velocity field by means of Biot-Savart law in vorticity kinematics, which allows 

completely describing the flow field by following vorticity elements. Another 

advantage of vortex methods is that different from the grid methods, no 

computational elements are devoted to the irrotational part of the flow. Moreover, 

boundary condition at the infinity is ensured automatically. Vortex methods can be 

faster than the Eulerian finite difference schemes by up to an order of magnitude, 

even when the volume is completely filled with vorticity [7]. 
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1.1. Literature Survey 

1.1.1. Vortex Methods 

Vortex methods depend on a discrete Lagrangian representation of the vorticity field 

to satisfy the Kelvin & Helmholtz theorems approximately. The dynamics of 

vorticity for inviscid flows are governed by Kelvin & Helmholtz theorems [8]. 

Historically, simulations with vortex methods began at 1930s, with Rosenhead's 

calculations of Kelvin-Helmholtz instabilities [9]. The modern developments of 

vortex methods were started in the 1970s by Chorin [10], Leonard [11], Sarpkaya 

[12] and Rehbach [13]. During the early 1980s vortex methods focused on 

mathematical aspects like the convergence properties. In later years, researchers have 

concentrated on involvement of viscous effects accurately, the boundary conditions 

treatment at solid surfaces, and the reduction of the computational costs. 

 

1.1.1.1. Diffusion Methods 

In vortex methods, modeling diffusion is very critical issue since it includes viscous 

effects. There are three common diffusion methods used in vortex particle methods 

which are Random Walk Method, Core Spreading Model and Particle Strength 

Exchange Method.  

 

The Random Walk Method (RWM) was introduced by Chorin [10] to study slightly 

viscous flows. The RWM simulates vorticity diffusion by pertubing the motion of 

vortex particles by using a Wiener process. The implementation of this method in 

flows with solid boundaries is easy. Leonard [11] references a study which shows 

that in order to model viscous diffusion accurately, the RWM requires a large 

number of particles compared to the Reynolds number. The problem about RWM is 

its low-order non-uniform convergence due to its stochastic character. This method 

also has statistical noise. 

 

The Core Expansion Method was first proposed by Leonard [11]. It is a deterministic 

scheme which accounts for diffusion by allowing each discrete vortex core to grow at 
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a rate proportional to the kinematic viscosity. This formulation has simple 

implementation and grid-free in nature. Its convergence is better than the RWM and 

its scheme does not necessarily rely on the fractional step method. The inconsistency 

of the core spreading method is related to the treatment of the particles as solid 

bodies. With the core spreading method the diffusion of vorticity is approximated 

accurately, but the vorticity is advected with an average velocity and not with the 

actual local velocity. The vorticity is incorrectly convected even in the limit of 

infinitely many particles [6]. 

 

The Particle Strength Exchange (PSE) method is based on the general particle 

methods proposed by Degond and Mas-Gallic [14]. The basis of the algorithm is that 

the Laplacian can be replaced by an integral operator. The principal features of the 

PSE method are [6],  

 

i. It is based on the exchange of circulation among particles to approximate 

diffusion;  

ii. It involves approximating the Laplacian at a particle’s location based on 

nearby particles,  

iii. It is formulated grid-free but requires frequent remeshing of the particle field 

onto a well-ordered field.  

 

PSE has been successfully used for a number of high-resolution studies. Pepin 

simulated flow past an impulsively started cylinder by using PSE method [8]. 

Koumoutsakos used PSE method to simulate the inviscid evolution of an elliptical 

vortex in an unbounded fluid and unsteady separated flows around circular cylinders 

[15]. Ploumhans and Winkelmans used PSE method to simulate flow around a square 

and a capsule at angle of attack. In addition, they simulated 3D flow around a sphere 

by using vortex method based on PSE  [16], [17]. Yang analyzed flow past bridge 

deck sections by means of  vortex method with PSE diffusion algorithm [18].  
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1.1.1.2. Boundary Conditions 

 

There are two commonly used methods for the treatment of viscous boundaries in a 

vortex method. The first one is defining vorticity sheets at the boundary and 

diffusing their vorticity to free elements. The second one is defining vorticity sheets 

at the boundary and shedding their created vorticity on to the free elements. 

 

Chorin [10] introduces a method for creating vorticity at boundaries and shedding 

this vorticity into the flow. The model of vorticity shedding away from a wall was 

also studied. In this method, number of particles is increasing at each time step.  

 

Alternatively, a viscous boundary will create vorticity at its surface and release it into 

the flow. Methods must be created to allow the creation of vorticity of proper 

strength and position at each time step. The implementation of this method is studied 

by Koumoutsakos [15]. In this method, number of particles is kept constant. 

 

1.1.1.3. Hybrid Methods 

In hybrid schemes, Lagrangian vortex methods and Eulerian schemes rnay be 

combined in the same part of the domain, in which each method is used in order to 

discretize different parts of the governing equations. 

 

Particle methods are grid-free methods, so that these methods are more preferable 

than mesh based methods for flows past complex and deforming boundaries. 

However the adaptivity of the Lagrangian particle methods can include errors. In 

order to provide consistent, efficient and accurate simulations, particle methods have 

to be combined with a grid. The grid does not detract from the adaptive character of 

the method. The function of the grid is restoring regularity in the particle locations 

via remeshing while it simultaneously enables systematic multiresolution particle 

simulations, allows fast velocity evaluations and facilitates Hybrid Particle-Mesh 
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methods capableof handling different numerical methods and different equations in 

various parts of the domain [19]. 

 

1.1.2. Flatback Airfoils 

Flatback airfoils have been proposed to improve the aerodynamic performance of 

thick airfoils. In 1950s, Hoerner [20] presented wind tunnel results of symmetric Gö-

490 airfoil with truncated trailing edge at Reynolds number of 500 000 and 

illustrated that truncating Gö-490 airfoil trailing edge, its maximum lift coefficient 

incereases. Several studies have been conducted to determine the aerodynamic effect 

of blunt trailing edges by Standish & van Dam [21]. Their studies are critical to 

understanding the effects of blunt trailing edges because they includes isolated 

comparisons and illustrates problems with the approach in previous studies. Prior 

work had typically relied on a truncation technique for the edge creation. With this 

technique, the rear section of a baseline airfoil is simply cut-off to create a blunt 

edge. Standish & van Dam [21] introduced a method of creating a blunt edge by 

symmetrically blending thickness on either side of the camber line in order to keep 

the maximum thickness and camber constant. Additionally, Winnemoller & van Dam 

[22] presented a numerical optimization scheme using zero-order (genetic) and first-

order (gradient-based) methods resulting in a Pareto front of airfoils with significant 

trailing edge thicknesses.  

 

Flatback airfoil can increase lift, trailing edge strength and resistance to performance 

degradation due to blade soiling, and decrease manufacturing costs [23]. However, 

all this comes at the expense of increased drag and increased noise due to flow 

separation at the trailing edge. The blunt trailing edge gives rise to drag coeffcients 

that negatively affect wind turbine performance. The blunt trailing edge of flatback 

airfoils can also lead to bluff body vortex shedding in the wake of the blade. This 

vortex shedding can cause rapid pressure changes which contribute to unsteady blade 

loading.  Mertes [24] conducted experiments to observe vortex shedding of  the wake 

behind a flatback airfoil under both static and dynamically pitching configurations. 
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In order to decrease drag and aerodynamic noise caused by flatback trailing edge, 

several passive control techniques are proposed. The use of a splitter plate is a 

popular method for drag mitigation due to its simplicity. It is essentially a thin plate 

attached at the center perpendicular to the blunt trailing edge. This modification 

forces the vortex sheet to be displaced further away from the edge allowing for 

increased base pressure. Metzinger states that drag reductions of at least 27% from 

the baseline were observed with the inclusion of a splitter plate length of 50% 

tariling edge thickness. Additionally, increasing splitter plate length was shown to 

continue to decrease the base drag [4]. 

 

 

1.2. Objective and scope 

The objective of this thesis is to improve the vortex particle code developed by Kaya 

[1]. In the previous version of the code which Kaya [1] developed, random walk 

method is used to simulate vortex diffusion. In the content of this thesis, particle 

strength exchange method is implemented to model diffusion. Moreover, algorithm 

for releasing of vorticity generated on solid surface is changed. In this study, instead 

of generating vortex particle and sheeding them into the flow at each time step, 

vorticity is generated at the surface and released into flow without changing particle 

number. Finally, it is aimed to improve reliability of the vortex particle method code 

which is able to simulate flow field around bluff bodies and to analyze flatback 

airfoils with the developed code. 

 

1.3. Thesis content 

The thesis is organized as follows: 

In CHAPTER 2, fundamental of vortex method are summarized. In CHAPTER 3, 

numerical implementation of vortex particle method is explained in detail. In 

CHAPTER 4, validation and applicability of vortex particle method code is shown 
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by solving general fluid dynamics problems like flow past a flat plate, a circular 

cylinder and a square cylinder. In CHAPTER 5, flow past flatback airfoils is 

simulated by using improved code. Comparisons of results obtained with present 

numerical implementation and CFD results are presented. Finally, in CHAPTER 6 

the summary of the present study is given and future works are summarized. 
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CHAPTER 2 

 

 

FUNDAMENTALS OF VORTEX PARTICLE METHOD 

 

 

 

2.1. Governing Equations 

Two-dimensional incompressible flow of a viscous fluid is governed by the Navier-

Stokes equations, the conservation of momentum: 

 𝜕𝒖

𝜕𝑡
+ 𝒖. 𝛻𝒖 = − 

1

𝜌
𝛻𝑝 +  𝜈𝛻2𝒖 (2. 1) 

   

where 𝑢 is velocity of the flow, 𝑝 is pressure of the flow, 𝜌 is the fluid density and 𝜈 

is the fluid kinematic viscosity. The conservation of mass: 

 
𝛻. 𝒖 = 0 (2. 2) 

   

The vorticity is defined as the curl of the velocity. 

 
𝝎 =  𝜵 × 𝒖 (2. 3) 

   

The vorticity – velocity formulation of incompressible Navier-Stokes equations is 

obtained by taking the curl of equation (2. 1). 

 
𝜕𝝎

𝜕𝑡
+  𝒖. 𝛻𝝎 =  𝜈𝛻2𝝎 (2. 4) 
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Rewriting equation (2. 4) in material derivative form, the following equation is 

obtained.  

 𝐷𝝎

𝐷𝑡
=  𝝎. 𝛻𝒖 +  𝜈𝛻2𝝎 (2. 5) 

   

 

In equation (2. 5), I is convection term, II is stretching term and III is diffusion term. 

For two-dimensional flows, stretching term is zero. Then, equation (2. 5) becomes: 

 𝐷𝝎

𝐷𝑡
= 𝜈𝛻2𝝎 (2. 6) 

   

Koumoutsakos proposed a fractional step algorithm for the solution of equation (2. 

6). A time step ∆t of the vortex method is divided into two substeps. 

 Substep 1: Initially, the local velocity is computed and integrated. Then, 

strength of vortex particles is updated by applying particle strength exchange 

scheme. In this substep, no-slip boundary condition is not explicitly enforced. 

 

Algorithmically, substep 1 is summarized as: 

 
𝑑𝒙

𝑑𝑡
= 𝒖𝑛(𝒙𝑛, 𝑛∆t) (2. 7) 

 
𝜕𝝎𝟏

𝜕𝑡
=  𝜈𝛻2𝝎𝟏 (2. 8) 

   

 Substep 2: In previous substep, vorticity field 𝜔1 causes slip velocity on the 

surface. In this substep, the vortex sheet required to cancel slip velocity is 

computed. This vorticity sheet is emitted by the flow with the modification of 

vorticity field during time step ∆t. 

     I          II          III 
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Substep 2 is expessed as: 

 
𝜕𝝎𝟐

𝜕𝑡
−  𝜈𝛻2𝝎𝟐 = 0 (2. 9) 

   

At the end of Substep 2, vorticity field 𝜔1 obtained in Substep 1 and vorticity field 

𝜔2 obtained in Substep 2 are superimposed. 

 
𝜔𝑛 =  𝜔1 +  𝜔2 (2. 10) 

 

 

  

2.2. Poisson Equation 

In order to evolve the flow, the velocity field needs to be determined. Velocity field 

associated with the stream function is given as: 

 
𝒖 = ∇ × 𝝍 (2. 11) 

   

Poisson equation is derived from equation (2. 11), the conservation of mass equation 

(2. 2) and vorticity equation (2. 3). 

 
∇2𝜓 =  −𝜔 (2. 12) 

   

A common approach to obtain velocity distribution from vorticity field is solving 

Poisson equations using Green’s function. Solution of Poisson equation is given as 

equation (2. 13). 

 

𝑢 = 𝐾 ∗ 𝜔 = −
1

2𝜋
∫ 𝐾(𝑥 − 𝑦) 𝑥 𝜔𝑑𝑦 +  𝑈0 (2. 13) 
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where 𝑼𝟎 is the solution of the homogeneous Poisson equation and K is the Cauchy 

velocity kernel defined below. 

 

𝐾(𝑥 − 𝑦) =  
(𝑥 − 𝑦)

|𝑥 − 𝑦|2
 (2. 14) 

   

Equation (2. 13) is also called Biot-Savart law. 

 

2.3. Convection 

Helmholtz’ theorem states that vortex lines are advected with the local fluid velocity 

while a collocation of these lines conserves its circulation. Convection step of the 

vortex particle method includes the integration of local velocity field to update 

locations of the particles without changing strength of particles.  

 

 
𝑑𝒙𝒏+𝟏

𝑑𝑡
= 𝒖𝑛(𝒙𝑛, 𝑛∆t) (2. 15) 

   

   

2.4. Diffusion 

In this thesis, Particle Strength Exchange (PSE) method is used to solve diffusion 

equation. In this method, the diffusion equation is satisfied by modifying the strength 

of the vortex particles. Diffusion equation is given as; 

 
𝑑𝜔𝑝

𝑑𝑡
= 𝜈Δ𝜔𝑝 (2. 16) 

   

The main idea of PSE method is to replace the diffusion operator by an integral one.  

For this purpose, the kernel η which must satisfy the following moment properties is 

described [14]. 
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∫ 𝑥𝑖𝑥𝑗𝜂(𝑥)𝑑𝑥 = 2𝛿𝑖𝑗       𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, 3 (2. 17) 

 

∫ 𝑥𝑖
𝑖1𝑥𝑗

𝑖2𝜂(𝑥)𝑑𝑥 = 0 𝑖𝑓 𝑖1 + 𝑖2 = 1 𝑜𝑟 3 ≤ 𝑖1 + 𝑖2 ≤ 𝑟 + 1 (2. 18) 

 

∫|𝑥|𝑟+2|𝜂(𝑥)|𝑑𝑥 < ∞ (2. 19) 

   

Laplace operator ∆ is approximated by integral operator ∆𝜀 which is defined as 

 
∆𝜀𝜔 = 휀−2(𝜂𝜀 ∗ 𝜔 − 𝜔)  (2. 20) 

   

where 𝜂𝜀(𝑥) = 휀−2𝜂(𝑥/휀) is a regularization function. 

Then, diffusion equation is replaced by the following integro-differential equation 

 
𝜕𝜔

𝜕𝑡
= 𝜈휀−2 ∫[𝜔(𝑦) − 𝜔(𝑥)]𝜂𝜀(𝑥 − 𝑦)𝑑𝑦 (2. 21) 

   

When the integral operator is discretized using as quadrature points the locations of 

the particles, the equation below is obtained. 

 
𝑑𝜔𝑝

𝑑𝑡
= 𝜈휀−2 ∑(𝜐𝑞𝜔𝑞 − 𝜐𝑞𝜔𝑝)

𝑞

𝜂𝜀(𝒙𝑞 − 𝒙𝑝) (2. 22) 

where 휀 is core radius and 𝜐 is volume of a particle.  

2.5. Potential Flow Analysis in the Presence of a Vortex Cloud 

In quasiy-steady flow the potential flow past a two dimensional body can be 

described by the boundary integral equation 
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−
1

2
𝛾(𝑠𝑚) +

1

2𝜋
∮ 𝑘(𝑠𝑚, 𝑠𝑛)𝛾(𝑠𝑛)𝑑𝑠𝑛 + 𝑊∞. 𝑑𝑠 +

1

2𝜋
∑ 𝐿(𝑚, 𝑗)∆Γ𝑗

𝑍

𝑗=1

= 0 
(2. 23) 

 

  

In equation (2. 23), the first term is the velocity discontinuity experienced when 

moving from the centre of the vorticity sheet onto body surface beneath [25]. The 

second term is the coupling coefficient. The third term is the component of 

freestream 𝑊∞  parallel to the body surface at 𝑚. The last term represents the 

contribution to the Dirichlet boundary condition at the surface element 𝑚 due to 𝑍 

discrete vortices ∆Γ𝑗 which form vortex cloud. The coupling coefficient, 𝐾(𝑠𝑚, 𝑠𝑛), 

can be written as; 

𝐾(𝑠𝑚, 𝑠𝑛) =  
∆𝑠𝑛

2𝜋
{

(𝑦𝑚 − 𝑦𝑛)𝑐𝑜𝑠𝛽𝑚 − (𝑥𝑚 − 𝑥𝑛)𝑠𝑖𝑛𝛽𝑚

(𝑥𝑚 − 𝑥𝑛)2 + (𝑦𝑚 − 𝑦𝑛)2
} 

(2. 24) 

 

 

 

Figure 2. 1 Discrete surface vorticity model – Velocity induced by surface element 𝒔𝒏 

[25] 
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2.6. Surface Pressure 

The determination of aerodynamic forces on solid body embedded in a fluid requires 

the pressure distribution on body surface.  The surface pressure is obtained from 

vorticity flux on the surface. Conservation of momentum equation is 

 𝜕𝒖

𝜕𝑡
+ 𝒖. 𝛻𝒖 = − 

1

𝜌
𝛻𝑝 +  𝜈𝛻2𝒖 (2. 25) 

   

The dot product of the momentum equation with the tangential vector of the body 

surface; 

 
𝐷𝑈𝑠

𝐷𝑡
= −

1

𝜌

𝜕𝑝

𝜕𝑠
− 𝜈

𝜕𝜔

𝜕𝑛
 (2. 26) 

   

where𝑠  and 𝑛  denotes the tangential and normal direction of the surface panels, 

respectively. 

Assuming that the surface velocity is constant, the equation (2. 26) reduces to; 

 
1

𝜌

𝜕𝑝

𝜕𝑠
 = −𝜈

𝜕𝜔

𝜕𝑛
 (2. 27) 

   

where the right hand side term indicates the creation of vorticity at the surface. 

 

𝜈
𝜕𝜔

𝜕𝑛
=

𝜕𝛾

𝜕𝑡
 (2. 28) 

   

Combining equation (2. 27) and equation (2. 28) , equation (2. 29)  which is an 

expression for pressure gradient along the solid boundary, can be obtained. 

 
𝜕𝑝

𝜕𝑠
=  −𝜌

𝜕𝛾

𝜕𝑡
 (2. 29) 
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CHAPTER 3 

 

 

NUMERICAL IMPLEMENTATION OF VORTEX PARTICLE METHOD 

 

 

 

3.1. Computational Scheme 

After describing fundamentals of vortex particle methods in CHAPTER 2, the 

computational scheme of the present code is illustrated below.  

Firstly, input data which includes information about model geometry, conditions of 

analysis such as freestream velocity components, viscosity and time step and grid 

properties like grid size are loaded. At the beginning, all particles are located at grid 

points and their strengths are zero. Then, boundary vortices are determined by using 

vortex panel method and released into the flow field. Strengths of released vortex 

particles are distributed to vortex particles located at grid points near the boundary. 

After that, time step iterations start with calculation of velocity vectors of vortex 

particles from Biot Savart law. Then, particles are convected with these velocity 

vectors. Particles’ locations are updated at the end of convection process. Before 

moving on diffusion part, strengths of particles are redistributed to gird points. 

During diffusion with PSE method, only strengths of particles are updated.  At the 

end of diffusion, slip velocity is generated on the surface. Then, the boundary 

vortices to cancel this slip velocity are calculated and diffused into the flow. Finally, 

pressure distiribution and aerodynamic forces on the surface are calculated and new 

time step starts with calculation of vortex particles’ velocity vectors.  
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Figure 3. 1 Computational Scheme 
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3.2. Vortex Sheet Diffusion 

Vorticities created at the wall surface is diffused into the flow by using a method 

proposed by Porthouse [26]. According to this method, vortex particles are released 

to flow field in the normal direction of wall with an offset 𝜖 which is a function of 

viscosity and time step size.  

 
𝜖 = √4𝜐𝛥𝑡/3 (3. 1) 

In this study, initially, vortex particles are released into the flow. Then, their vorticity 

values are distributed to the particles located at the nearast grid points. Distribution 

of particles’ vorticity values is done by using Λ1  interpolation scheme which is 

explained in Section 3.5.  

 

3.3. Velocity Calculation 

Using Biot-Savart law described in Section 2.2, velocity of each particle is calculated 

by summing up the contribution of all particles in the domain. 

 

 

𝒖𝒑 = 𝑼𝟎 −
1

2𝜋
∑

(𝒙𝒑 − 𝒙𝒊)

|𝒙𝒑 − 𝒙𝒊|
2

𝑁

𝑖=1

 ×  Γ𝑖𝒌 (3. 2) 

 
  

In equation (3. 2), N is number of particles, 𝑥𝑝  is location of particle and Γ  is 

circulation of particle. 
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3.4. Convection 

In this study, first order Euler scheme is used to integrate velocity field. Convection 

equation is given below.  

 
𝒙𝒊

𝒏+𝟏 = 𝒙𝒊
𝒏 +  𝛥𝑡𝑼𝒊(𝒙𝒏, 𝛤𝑛) (3. 3) 

 
  

3.5. Redistribution of Vortex Particle Strength 

In order to maintain accuracy by regulating particles and to be able to perform faster 

analyses a redistribution of vortex particle strength is performed. Redistribution of 

vortex particle strength to grids is done when one of the following cases takes place; 

 

 Particles cease to overlap at any location of the computational domain  

 Particles cluster in some region  

 There are not enough to properly resolve the diffusion step 

 

Redistribution includes interpolating vorticity field �̃� with particles located at �̃� to 

vorticity field 𝝎  with particles located at 𝒙 . Vorticity field before redistribution 

(𝝎(𝒙)) and after redistribution (�̃�(�̃�)) should be equal.  

 

 
�̃�(�̃�) ≈ 𝝎(𝒙) (3. 4) 

   

 

�̃�(�̃�𝒊) ≈ ∑ 𝚪𝒋(𝒙𝒋)𝜦(�̃�𝒊 − 𝒙𝒋)

𝑴

𝒋=𝟏

 (3. 5) 

   

where �̃�  and 𝚪  denote new and old particle strengths respectively and 𝜦  is 

interpolation kernel.  
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In this study, first order linear interpolation function is used for particle to mesh 

interpolations.   

 

 
𝜦𝟏(𝒖) = {

𝟏 − 𝒖,             𝟎 ≤ 𝒖 ≤ 𝟏
𝟎,               𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆   

 
(3. 6) 

   

where 𝑢 = |𝑥|/ℎ. 𝑥  denotes particle location and ℎ denotes grid spacing. For two 

dimensional schemes, equation (3. 7) can be used.  

 
𝛬(𝑥, 𝑦) =  𝛬(𝑥)𝛬(𝑦) (3. 7) 

   

In this study, a rectangular grid is used. Figure 3. 2 shows Λ1 interpolation scheme. 

Particles at grid points, which encircle shaded area are affected by particle to mesh 

interpolation. 

 

Figure 3. 2 𝚲𝟏 scheme interpolation 
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3.6. Diffusion 

In this thesis, diffusion of vortex particles is modelled by using Particle Strength 

Exchange method which is described in Section 2.4. Cottet et. al [19] state that 

Gaussian kernel 𝒢 can be used in equation (2. 22) 𝜂  kernel. Gaussian kernel 𝒢  is 

defined as; 

 

𝒢(𝑥 − 𝑦) =
1

4𝜋𝑠
𝑒−(𝑥−𝑦)2/4𝑠 (3. 8) 

   

where 𝑠 = 𝜈∆𝑡. 

Using Gaussian kernel and discretizing equation (2. 22) by means of explicit forward 

Euler scheme with a time step ∆𝑡, diffusion equation to advance from time 𝑡𝑛 to 𝑡𝑛+1 

becomes;  

 

𝜔𝑝
𝑛+1 = 𝜔𝑝

𝑛 +
1

4𝜋휀2
∑ 𝜐𝑞(𝜔𝑞 − 𝜔𝑝)𝑒−(𝒙𝑞−𝒙𝑝)

2
/4𝜈∆𝑡

𝑞

 (3. 9) 

 

In diffusion subroutine, strength of particles is updated by implementing equation (3. 

9). 

 

3.7. Calculation of Boundary Vortices 

After completion of convection steps in which location of particles are modified and 

completion of diffusion step in which strengths of particles are modified, slip 

velocity is generated on the solid boundary. However, for a viscous flow, normal and 

tangential velocity components on the solid boundary must be zero. In other words, 

flow must adhere to the boundary. In order to cancel slip velocity caused by 

particles, vorticity is generated on the solid boundary.  
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In this study, firstly, slip velocity on the solid boundary is calculated by using Biot-

Savart law. Then, surface vorticity which ensures no-slip boundary condition is 

calculated by using Dirichlet type boundary condition.  

Boundary vorticies at the first time step are calculated by using equation (3. 10)  

which is numerical form of equation (2. 23). 

∑ 𝐾(𝑠𝑚, 𝑠𝑛)

𝑀

𝑛=1

𝛾(𝑠𝑛)

= −(𝑈∞𝑐𝑜𝑠𝛽𝑚 − 𝑉∞𝑠𝑖𝑛𝛽𝑚)

− ∑ ∆Γ𝑗(𝑈𝑚𝑗𝑐𝑜𝑠𝛽𝑚 + 𝑉𝑚𝑗𝑠𝑖𝑛𝛽𝑚)

𝑍

𝑗=1

 

       (3. 10) 

  

 

In order to calculate boundary vorticies at the next time steps, vorticity conservation 

equation for vortex particle models equation (3. 11) and equation (3. 10) are 

combined and equation (3. 12) is obtained. 

 

∑ 𝛾(𝑠𝑛)∆

𝑀

𝑛=1

𝑠𝑛 + ∑ ∆Γ𝑗

𝑍

𝑗=1

− Γ𝑐𝑖𝑟𝑐 = 0                        (3. 11) 

  

∑(𝐾(𝑠𝑚, 𝑠𝑛) + ∆𝑠𝑛)

𝑀

𝑛=1

𝛾(𝑠𝑛)

= −(𝑈∞𝑐𝑜𝑠𝛽𝑚 + 𝑉∞𝑠𝑖𝑛𝛽𝑚)

− ∑ ∆Γ𝑗(𝑈𝑚𝑗𝑐𝑜𝑠𝛽𝑚 − 𝑉𝑚𝑗𝑠𝑖𝑛𝛽𝑚 + 1) + Γ𝑐𝑖𝑟𝑐

𝑍

𝑗=1

 

(3. 12) 

 

The vorticies which are some distance downstream of a body are eliminated to 

reduce computational requirements and their effect is added to Γ𝑐𝑖𝑟𝑐 term. 
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3.8. Pressure Force Calculation 

The expression for the pressure gradient along the solid boundary which is obtained 

in Section 0 can be discretized as; 

 

∆𝑝𝑖 = −𝜌
𝛾𝑖∆𝑠𝑖

∆𝑡
 (3. 13) 

   

Moreover, the discrete pressure values at surface panels are obtained as 

 

𝑝𝑖 = 𝑝1 −
𝜌

∆𝑡
∑ 𝛾𝑗∆𝑠𝑗

𝑖

𝑗=1

 (3. 14) 

Using equation (3. 14), surface pressure can be calculated relative to a datum value 

𝑝1. Lewis states that pressure 𝑝1 should be taken as zero for numerical convenience 

[25]. Then, the pressure at leading edge stagnation point (𝑝𝑠) is searched. Then, the 

surface pressure values is increased by the amount of  
1

2
𝜌𝑈∞

2 − 𝑝𝑠.  

  

3.9. Parallelization 

In VPM code, velocity vectors of particles are calculated by using Biot Savart law. 

As can be seen from equation (3. 2), velocity of one particle is affected by all of the 

particles in the flow field. If number of particles in the flow field is N, velocity field 

calculation requires work proportional to N
2
. In VPM code, velocity field 

determination is the most time consuming part. It can be also seen from Figure 3. 3 

which shows total loop time at each time step and time required for velocity 

calculation subroutine at each time step.  
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Figure 3. 3 Total loop time at each time step and time required for velocity calculation 

subroutine at each time step  

 

Parallelization is only implemented to velocity calculation subroutine by using 

OPENMP (Open Multi-Processing) which supports multi-platform shared memory 

multiprocessing programming libraries. 

The parallel computation of the improved method is achieved by using a shared 

memory system (on a workstation computer) for a test case. The computer has two 

Intel Xeon E5530 2.4 GHz processors. Each processor has 4 cores and 24 GB shared 

memory. The operating system is Microsoft Windows Vista Business. In order to test 

efficiency of parallelization, flow around a square cylinder with 200 panels is solved 

for 200 time steps by using respectively 1, 2, 4, 8 cores of the computer. Flow field 

of the test case includes 180 000 (300*600) grid points.  

Effect of parallelization on total loop time at each time step is shown in Figure 3. 4 

and the spped-up graph is given in Figure 3. 5.  
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Figure 3. 4 Effect of parallelization of velocity calculation subroutine on total loop time 

at each time step 

 

Figure 3. 5 The speed-up graph 

 

As can be seen from Figure 3. 5, there is a linear relation between number of core 

and VPM code speed-up for core numbers up to 8. 
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CHAPTER 4 

 

 

VALIDATION STUDIES 

 

 

 

4.1. Introduction 

 

In this chapter, the improved code is validated by solving case studies. Firstly, flow 

past a flat plate at Reynolds numbers of 200 and 1000 are analyzed to validate 

boundary layer solution of VPM code. Results are compared with Blasius boundary 

layer solutions. Then, flow around a circular cylinder at Reynolds number of 200 is 

analyzed for different panel numbers and grid sizes. VPM results which are pressure 

distribution, Strouhal number, lift and drag coefficients are compared with 

experimental and numerical results from literature. After that, flow around a square 

cylinder at Reynolds number of 200 is solved and results are validated with results 

from literature. Finally, flow around a circular cylinder at Reynolds number of 200 is 

analyzed by using RVM code developed by Kaya [1]. Results are compared and 

differences due to different diffusion methods are discussed.   

 

4.2. Flow Past a Flat Plate 

 

Flow past a flat plate is a fundamental test case to validate diffusion part of VPM 

code because boundary layer formed along an infinitely long flat plate surface is 

determined by viscous effects and analytical solution for this boundary layer profile 

is known.  
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4.2.1. Blasius Solution for Laminar Boundary Layer 

 

Blasius equation for the laminar boundary layer on a flat plate is given below.  

 𝑓. 𝑓′′ + 2𝑓′′′ = 0 (4. 1) 

   

where 𝑓(𝜂) = 𝑢(𝜂)/𝑈∞  and 𝑓′ =   𝜕𝑓/𝜕𝜂  with 𝜂  being the similarity parameter 

which is defined as: 

 

𝜂 = 𝑦√
𝑈∞

𝜈𝑥
 (4. 2) 

   

A schematic view of flate plate with laminar boundary layer is given in Figure 4. 1. 

 

 

Figure 4. 1 Schematic view laminar boundary layer 

 

 

4.2.2. Flat Plate at Re = 200 

 

The flat plate having aspect ratio of 1:100 is used in simulation. Figure 4. 2 shows a 

snapshot of the instantaneous velocity contour plot for flow past the flat plate at 

Reynold number of 200. Laminar boundary layer development on the flat plate 

surface is observed from Figure 4. 2. 
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Figure 4. 2 Velocity contour of flow around flat plate at Re = 200 

 

Figure 4. 3 shows boundary layer profiles at the 3 different locations of flat plate and 

comparison of results obtained from VPM code with Blasius solution. VPM results 

presented are time-averaged over 20 time steps. Figure 4. 3 shows that the agreement 

between the simulated boundary layer and the laminar Blasius solution is fairly good.  
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Figure 4. 3 Boundary layer profile at Re=200 – (a) x/L=0.2, (b) x/L=0.5, (c) x/L=0.8 

 

 

 

    

    

    

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1



U
/U

in
f

x/L = 0.2

 

 

VPM Result

Blasius Solution

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1



U
/U

in
f

x/L = 0.5

 

 

VPM Result

Blasius Solution

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1



U
/U

in
f

x/L = 0.8

 

 

VPM Result

Blasius Solution



33 

 

Figure 4. 4 illustrates Blasius similarity plot for 3 different locations of flat plate and 

comparison of results with Blasius solution. It can be clearly seen that VPM results 

are well-matched with Blasius solution.  

 

Figure 4. 4 Blasius similarity plot for 3 different locations of flat plate at Re=200 

 

 

4.2.3. Flat Plate at Re = 1000 

 

The flat plate used in this simulation has an aspect ratio of 1:100. Figure 4. 5 shows a 

snapshot of the instantaneous velocity contour plot for flow past the flat plate at 

Reynold number of 1000.  
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Figure 4. 5 Velocity contour of flow around flat plate at Re = 1000 

 

Figure 4. 6 shows boundary layer profiles at the 3 different locations of flat plate 

which are obtained from VPM analysis and comparison of VPM results with Blasius 

solution. VPM results presented are time-averaged over 20 time steps. As can be 

seen from figure Figure 4. 6, the laminar boundary layer profile which VPM code 

provides is very similar to Blasius solution.  
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Figure 4. 6 Boundary layer profile at Re=1000 – (a) x/L=0.2, (b) x/L=0.5, (c) x/L=0.8 
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Figure 4. 7 illustrates Blasius similarity plot for 3 different locations of flat plate and 

comparison of results with Blasius solution. As can be seen, VPM results are well-

matched with Blasius solution.  

 

Figure 4. 7 Blasius similarity plot for 3 different locations of flat plate at Re=1000 

 

4.3. Flow Past a Circular Cylinder 

 

In this part of the thesis, flow past a circular cylinder is simulated by using improved 

VPM code. The reason for selecting this case is that there is a lot of experimental and 

numerical test data in literature for flow around a circular cylinder to compare VPM 

simulation results.  

 

4.3.1. Convergence Study 

The purpose of this study is to investigate the effect of the numerical resolution on 

the quality of the computed solution. The numerical experiments are conducted at 

Reynolds number of 200.  Convergence studies are achieved for three different 

resolutions whih are called as coarse, medium and fine. Numerical parameters of the 

medium resolution case are selected such that there is a relation between grid size 

and time step as Koumoutsakos [15]  and Pepin [8] suggested. 
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 ∆𝑠2 = 4𝜐∆𝑡 (4. 3) 

   

Another consideration about selection of grid size and time step is convection. Lewis 

suggested that during convection, particles should go distance between half grid size 

an done grid size [25]. This consideration is taken into account for there resolution 

cases.  

 

Numerical parameters of 3 cases are given in Table 4.1. 

 

Table 4. 1 Numerical parameters of the convergence study 

Resolution No. of panels Grid size No. of grid Time step 

Coarse 100 0.08 525x350 0.08 

Medium 200 0.04 1050x700 0.04 

Fine 400 0.02 2100x1400 0.02 

 

Results of lift coeficients r.m.s. values, drag coefficients and Strouhal numbers 

obtained with 3 different resolution cases and comparison of these results with values 

from literature are presented in Table 4. 2, Table 4. 3 and Table 4. 4 respectively.  

 

Table 4. 2 Comparison of CL  r.m.s. results between VPM simulations with different 

resolutions and numerical values 

Resolution 
Present 

Result 

2D Numerical 

Value [27] 

Difference 

(%) 

Coarse 0.36 0.4 10.0 

Medium 0.37 0.4 7.5 

Fine 0.37 0.4 7.5 
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Table 4. 3 Comparison of CD results between VPM simulations with different 

resolutions and experimental values 

Resolution 
Present 

Result 

Experimental 

Value [28] 

Difference 

(%) 

Coarse 1.48 1.30 13.8 

Medium 1.25 1.30 3.8 

Fine 1.23 1.30 5.4 

 

 

Table 4. 4 Comparison of Strouhal number results between VPM simulations with 

different resolutions and experimental values 

Resolution 
Present 

Result 

Experimental 

Value [29] 

Difference 

(%) 

Coarse 0.15 0.18 16.7 

Medium 0.17 0.18 5.6 

Fine 0.17 0.18 5.6 

 

As can be seen from the results presented above, Strouhal number and drag 

coefficient cannot be predicted accurately by using coarse resolution parameters. 

Results obtained by using medium and fine resolutions are similar and well-matched 

with data from literature.  When computational case is considered, fine resolution 

case has the highest computational cost. It can be concluded that medium resolution 

parameters are optimum for flow past a circular cylinder simulation at Reynolds 

numbers of 200.   

 

4.3.2. Vorticity Field 

Vorticity fields of flow around a circular cylinder at different non-dimensional times 

are given in Figure 4. 8.  
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Figure 4. 8 Vorticity contours of flow past a circular cylinder at Re = 200 – (a) T = 2, 

(b) T = 10, (c) T = 20, (d) T = 30, (e) T = 40 
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4.3.3. Pressure Distribution and Force Coefficients  

The comparisons for the flow around a circular cylinder case are made also with 

force data. It should be mentioned that, VPM calculates forces by considering only 

pressure forces, so viscous forces are neglected. This assumption is reasonable, 

because the pressure force is dominant for bluff bodies. 

For flow around a circular cylinder, mean pressure coefficient distribution calculated 

in the medium resolution test case is given below. The comparison of pressure 

distribution result is made with the 2D numerical results based on finite volume 

method [30]. As can be seen, present pressure coefficient results and numerical 

values from literature are similar. 

 

Figure 4. 9 Mean pressure coefficient distribution around a circular cylinder at Re = 

200 and comparison of present results with numerical results of Rajani et. al [30] 
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The time history of lift and drag coefficients obtained in medium resolution case 

study are figured below.  

 

 

Figure 4. 10 Time histories of force coefficients for flow around a circular cylinder at 

Re = 200 

 

4.3.4. Vortex Shedding Frequency 

The vortex shedding frequency which are obtained with the numerical simulations, 

are calculated by using lift coefficient oscillations. By taking discrete Fourier 

transform of lift oscillations, the frequencies of vortex shedding are calculated. Then, 

Strouhal number is determined by averaging the dominant frequencies according to 

their amplitude, 

 

𝑆𝑡 =
𝑓𝐿

𝑉
 (4. 4) 
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where St is Strouhal number, f is the vortex shedding frequency and V is freestream 

velocity. 

Single-sided amplitude spectrum of lift coefficient data of medium resolution case is 

given below.  

 

Figure 4. 11 Discrete Fourier transformation result of lift oscillation of flow around a 

circular cylinder at Re = 200 

 

4.4. Flow Past a Square Cylinder 

Another test case to validate VPM code is flow around a square cylinder at Reynolds 

number of 200. Numerical parameters of current simulation are selected same as 

medium resolution parameters given in Table 4. 1.  

 

4.4.1. Vorticity Field 

Vorticity fields at different non-dimensional times are given in Figure 4. 12.  
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Figure 4. 12 Vorticity contours of flow past a square cylinder at Re = 200 – (a) T = 2, 

(b) T = 15, (c) T = 30, (d) T = 45, (e) T = 60 
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4.4.2. Pressure Distribution and Force Coefficients  

For flow around a square cylinder case, mean pressure coefficient distribution 

calculated in the present study is given below. The comparison of pressure 

distribution result is made with the 2D numerical results [31]. It can be seen that 

present pressure coefficient results and numerical values from literature are matched 

well. 

  

 

 

Figure 4. 13 Mean pressure coefficient distribution around a square cylinder at Re = 

200 and comparison of present results with numerical results of Yoon et. al [31] 
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Figure 4. 14 Time histories of force coefficients for flow around a square cylinder at 

Re=200 

 

Sohankar [32] compiled the drag coefficient values from different numerical and 

experimental studies in literature. Figure 4. 15 shows these drag coefficients at 

different Reynolds numbers for a square cylinder. 

 

 

Figure 4. 15 Variation of drag coefficient with Reynolds number for a square cylinder 

[32] 
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Comparison of present drag coefficient and root mean square of lift coefficient with 

the values in literature are presented in Table 4. 5 and Table 4. 6, respectively. 

Comparisons show that present results are in good agreement with values in 

literature. 

 

Table 4. 5 Comparison of the present drag coefficient result with experimental value in 

literature 

 
Present 

Result 

 Experimental 

Value [32] 

Difference 

(%) 

CD 1.37 1.45 5.5 

 

 

Table 4. 6 Comparison of the present lift coefficient rms result with numerical value in 

literature [33] 

 
Present 

Result 

Experimental 

Value [33] 

Difference 

(%) 

CL rms 0.365 0.377 3.2 

 

 

4.4.3. Vortex Shedding Frequency 

Strouhal number is determined from time history of lift coefficient. Discrete Fourier 

transform of lift coefficient is calculated to obtain vortex shedding frequency (Figure 

4. 16).  
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Figure 4. 16 Discrete Fourier transformation result of lift oscillation of flow around a 

square cylinder at Re = 200 

 

Figure 4. 17 illustrates the experimental results about the relation between Strouhal 
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Figure 4. 17 Variation of Strouhal number with Reynolds number for a square cylinder 

[34] 

 

Table 4. 7 Comparison of the present Strouhal number result with experimental value 

in literature [34] 

 
Present 

Result 

Experimental 

Value [34] 

Difference 

(%) 

Strouhal 

number 
0.147 0.145 1.4 

 

 

4.5. Comparison of Random Walk Method and Particle Strength Exchange 

Method 

As explained in Section 1.1.1, Random Walk method is a stochastic method, whereas 

Particle Strength Exchange method is deterministic. Random Walk method has 

statictical noise and low rate of convergence. Koumoutsakos solved a 1D diffusion 

problem, by using Random Walk (RW) and Particle Strength Exchange (PSE) 



49 

 

methods of diffusion and he compared results with analytical results [15]. Figure 4. 

18 illustrates comparison of results.  

 

Figure 4. 18 Comparison of PSE and RW methods for a 1D diffusion problem [15] – (a) 

Comparison of PSE result with exact solution, (b) Comparison of RW result with exact 

solution 

 

As can be seen, result obtained by using PSE algoritm and exact solution are 

matched well. PSE result does not have any noise, whereas RW result is noisy. 

Flow around a circular cylinder at Reynolds number of 200 is simulated by using 

RVM algoritm developed by Kaya and includes diffusion Random Walk algorihm 

[1] and results are compaired with the results obtained by VPM algorithm, which 

includes diffusion with PSE, in Section 4.3.  

Figure 4. 19 ilustrates the time history of oscillating part of lift and drag coefficients 

obtained by means of VPM and RVM.  
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Figure 4. 19 Time histories of force coefficients for flow around a circular cylinder at 

Re = 200 obtained by using VPM and RVM methods 
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Table 4. 8 Comparison of CL  r.m.s. results of VPM and RVM simulations and 

numerical values from literature 

Method 
Present 

Result 

2D Numerical 

Value [27] 

VPM 0.37 0.4 

RVM 0.48 0.4 

 

Table 4. 9 Comparison of CD results of VPM and RVM simulations and experimental 

values from literature 

Method 
Present 

Result 

Experimental 

Value [28] 

VPM 1.25 1.30 

RVM 1.40 1.30 

 

Table 4. 10 Comparison of Strouhal number results of VPM and RVM simulations and 

experimental values from literature 

Method 
Present 

Result 

Experimental 

Value [29] 

VPM 0.17 0.18 

RVM 0.17 0.18 

 

Comparison of results shows that Strouhal numbers obtained by VPM and RVM are 

same. However, RVM overpredict drag coefficient and r.m.s. value of lift coefficient.  
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CHAPTER 5 

 

 

AERODYNAMIC ANALYSIS OF FLATBACK AIRFOILS 

 

 

 

5.1. Introduction 

 

In this thesis, aerodynamic analysis of FB3500-1750 flatback airfoil, which is 

commonly used in wind turbine airfoil investigations, is carried out by means of 

Vortex Particle Method (VPM). Coordinates of FB3500-1750 airfoil are found in 

literature. FB3500 series flatback airfoils are obtained by adding thickness to both 

sides of the airfoil from maximum thicknesss location to trailing edge. In order to 

investigate effect of trailing edge thickness on aerodynamic parameters FB3500-

2250 flatback airfoil is generated. FB3500 flatback airfoil series are given below. 

 

Figure 5. 1 FB3500 Flatback Airfoil Series 

Literature survey about flatback airfoils shows that flow around flatback airfoils is 
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developed in the content of this thesis is a laminar solver, so that it is not able to 

solve turbulent flow accurately. Thus, VPM analyses are done for Reynolds number 

of 1000 at 0º angle of attack. In order to compare VPM results, unsteady CFD 

analyses are employed. 

CFD analyses are performed with FLUENT software. Laminar, pressure based, 

implicit and node based solver is used for analyzing flow field around the flatback 

airfoils. The unsteady computations are carried out until a steady or a periodic 

behavior in aerodynamic coefficients is observed.  

 

5.2. Computational Grids for CFD Analysis 

 

Computational grid used in CFD analyses is illustrated in Figure 5. 2. Near the solid 

boundary, grids are structured. For the rest of the computational domain, 

unstructured grids are generated. The computational grid is refined at the airfoil wake 

location to prevent numerical diffusion.  
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Figure 5. 2 Computational domain used in CFD analyses (a) Computational domain (b) 

Zoomed view of computational domain (c) Grid near the solid boundary 
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Cartesian grid with uniform grid size is used in VPM analyses. In Figure 5. 3, a 

zoomed view of computational domain used in VPM analyses is given. In VPM 

analysis, flow variables at grid points inside the model are set zero, so that these grid 

points are ignored during the calculations.  

 

 

Figure 5. 3 Zoomed view of computational domain used in VPM analyses 

 

 

5.3. Vorticity Field 

Vorticity fields of FB3500-1750 and FB3500-2250 airfoils at different non-

dimensional times are given Figure 5. 4 and Figure 5. 5 respectively. 
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Figure 5. 4 Vorticity contours of flow past a FB3500-1750 flatback airfoil at Re = 1000 – 

(a) T = 0.5, (b) T = 2.5, (c) T = 5, (d) T = 10, (e) T = 15 
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Figure 5. 5 Vorticity contours of flow past a FB3500-2250 flatback airfoil at Re = 1000 – 

(a) T = 0.5, (b) T = 2.5, (c) T = 5, (d) T = 7.5, (e) T = 10 
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5.4. Pressure Distributions 

For flow around flatback airfoil cases, mean pressure coefficient distribution 

calculated in the present study is given below.  

 

Figure 5. 6 Mean pressure coefficient distribution around FB3500-1750 flatback airfoil 

at Re = 1000 – VPM and CFD results 

 

Figure 5. 7 Mean pressure coefficient distribution around FB3500-2250 flatback airfoil 

at Re = 1000 – VPM and CFD results 
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As can be seen from figures, pressure distributions obtained from CFD and VPM are 

in fairly good agreement. Minimum pressure coefficient values calculated by CFD and 

VPM are similar. There is a small difference between base pressure values which 

explains difference in drag coefficient values.  

 

Pressure coefficient distributions of FB3500-1750 and FB3500-2250 airfoils at 

different non-dimensional times are given Figure 5. 8 and Figure 5. 9 respectively. 

 

Figure 5. 8 Pressure coefficient distributions of flow past a FB3500-1750 flatback airfoil 

at Re = 1000 – (a) T = 18.9, (b) T = 19.5, (c) T = 20 

 

 

Figure 5. 9 Pressure coefficient distributions of flow past a FB3500-2250 flatback airfoil 

at Re = 1000 – (a) T = 27.0, (b) T = 27.2, (c) T = 27.4 
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5.5. Force Coefficients and Vortex Shedding Frequency 

Figure 5. 10 and Figure 5. 12 show time history of lift coefficient and drag 

coefficient at Reynolds number of 1000 obtained from VPM analyses for FB3500-

1750 and FB3500-2250 flatback airfoils respectively. 

 

 

Figure 5. 10 Time histories of force coefficients for flow around FB3500-1750 flatback 

airfoil at Re = 1000 – VPM result 

 

 

Figure 5. 11 Time histories of force coefficients for flow around FB3500-2250 flatback 

airfoil at Re = 1000 – VPM result 
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Singel-sided amplitude spectrums of lift coefficient data for FB3500-1750 and 

FB3500-2250 flatback airfoils are given below.  

 

Figure 5. 12 Discrete Fourier transformation result of lift oscillation of flow around a 

FB3500-1750 flatback airfoil at Re = 1000 – VPM result 

 

 

Figure 5. 13 Discrete Fourier transformation result of lift oscillation of flow around a 

FB3500-2250 flatback airfoil at Re = 1000 – VPM result 
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Comparisons of lift coeficients, drag coefficients and Strouhal numbers obtained 

from VPM and CFD analysis for FB3500-1750 and FB3500-2250 airfoils are 

presented in Table 5.1 and Table 5.2. It should be noted that drag coefficients given 

in Table 5.1 and Table 5.2 are due to pressure forces. Since the forces calculated with 

VPM is obtained by considering only pressure forces, drag coefficients due to 

viscous forces in CFD results are neglected.  

 

Table 5. 1 Comparison of VPM and CFD Results for FB3500-1750 Flatback Airfoil at 

Re = 1000 

Parameter VPM Results CFD Results 

CL (mean) -0.0112 -0.0115 

CL (rms) 0.0259 0.0267 

CD (mean)
 

0.1508 0.1390 

Strouhal Number 0.0940 0.1030 

 

Table 5. 2 Comparison of VPM and CFD Results for FB3500-2250 Flatback Airfoil at 

Re = 1000 

Parameter VPM Results CFD Results 

CL (mean) -0.0221 -0.0189 

CL (rms) 0.0283 0.0296 

CD (mean)
 

0.1650 0.1430 

Strouhal Number 0.1210 0.1320 

 

Comparison of results shows that drag coefficients, lift coefficients and Strouhal 

numbers obtained from VPM and CFD analyses are well-matched. As can be 

explained before, the small difference between drag coefficient results is due to the 

difference between base pressures.   
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

6.1. Summary 

In the present study, aerodynamic analysis of flatback airfoils are investigated by 

using vortex particle method, which is commonly used for simulation of two 

dimensional, incompressible, viscous flows. In the content of this thesis, vortex 

particle method code developed by Kaya [1] is improved by changing diffusion 

method. Previously, diffusion of vortex particles was modelled by means of Random 

Walk Method. In the present study, deterministic Particle Strength Exchange method 

is employed to solve diffusion equatiton. In addition, vorticity creation method, 

which provides the enforcement of boundary condition, is modified. Instead of 

generating particles at each time step as Kaya [1] did, number of particles in the flow 

domain is kept constant. 

The validation and applicability of the improved algorithm is illustrated by solving 

several test cases which are flow past a flat plate, flow past a square cylinder and 

flow past a circular cylinder. After that, flow field around FB3500 series flatback 

airfoils at Reynolds number of 1000 are simulated by using the improved vortex 

particle method code. In order to compare results, laminar and unsteady CFD 

analyses are achieved. Comparisons show that reasonable flow features and physical 

quantities are obtained by present numerical simulations. VPM code provides fairly 

good results for laminar regime. Unlike RVM code which is developed by Kaya [1] 

and uses Random Walk Method to model diffusion, VPM simulation results do not 
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include noise. In additon, VPM algorithm has higher rate of convergenge and gives 

more stable results than RVM algorithm.  

 

6.2. Recommendations for Future Works 

 

In order to improve code, to be able to get more accurate results and to have more 

useful analysis tool, future works listed below could be implemented; 

 The most time consuming part of the VPM code is velocity calculation 

subroutine. Fast algorithms could be used in this subroutine. For instance, 

poisson equation could be solved by using fast Fourier transform instead of 

direct method.  

 In the present code, uniform grid size is employed. To decrease 

computational time, adaptive grid sizes could be used. For example, near the 

solid boundary, grid sizes could be much smaller than grid sizes of the rest of 

the domain. 

 

  



67 

 

REFERENCES 

 

 

[1] H. Kaya, “Aerodynamic Analysis of Long-Span Bridge Cross-Sections Using 

Random Walk Method,” Middle East Technical University, 2012. 

[2] C. P. van Dam, “Blade Aerodynamics - Passive and Active Load Control for 

Wind Turbine Blades,” Department of Mechanical & Aeronautical 

Engineering, University of California, 2009. 

[3] T. Winnemöller and C. P. Van Dam, “Design and Numerical Optimization of 

Thick Airfoils Including Blunt Trailing Edges,” J. Aircr., vol. 44, no. 1, pp. 

232–240, Jan. 2007. 

[4] C. N. METZINGER, “Flatback Airfoils : An Experimental Evaluation of 

Aerodynamic Performance and Vortex Shedding Behavior,” University of 

California, 2012. 

[5] D. E. Berg and M. Barone, “Aerodynamic and Aeroacoustic Properties of a 

Flatback Airfoil ( Will it Rumble or Whisper ?),” AIAA Aerosp. Sci. Meet. 

Exhib. Wind., pp. 4–13, 2008. 

[6] L. A. Barba, “Vortex Method for computing high-Reynolds number flows: 

Increased accuracy with a fully mesh-less formulation,” California Institute of 

Technology, 2004. 

[7] M. L. Ould-Salihi, G.-H. Cottet, and M. El Hamraoui, “Blending Finite-

Difference and Vortex Methods for Incompressible Flow Computations,” 

SIAM J. Sci. Comput., vol. 22, no. 5, pp. 1655–1674, May 2000. 

[8] F. M. Pepin, “Simulation of the flow past an impulsively started cylinder using 

a discrete vortex method,” 1990. 



68 

 

[9] L. Rosenhead, “The formation of vortices from a surface of discontinuity,” in 

Proceedings of the Royal Society of London, 1931. 

[10] A. J. Chorin, “Numerical study of slightly viscous flows.” 

[11] A. Leonard, “Vortex methods for flow simulation,” J. Comput. Phys., vol. 37, 

no. 3, pp. 289–335, 1980. 

[12] T. Sarpkaya, “Computational Methods With Vortices—The 1988 Freeman 

Scholar Lecture,” J. Fluids Eng., vol. 111, no. 1, pp. 5–52, Mar. 1989. 

[13] C. REHBACH, “Numerical calculation of three-dimensional unsteady flows 

with vortex sheets,” in 16th Aerospace Sciences Meeting, American Institute 

of Aeronautics and Astronautics, 1978. 

[14] P. Degond and S. Mas-Gallic, “The Weighted Particle Method for 

Convection-Diffusion Equations Part 1 : The Case of an Isotropie Viscosity,” 

vol. 53, no. 188, pp. 485–507, 1989. 

[15] P. D. Koumoutsakos, “Direct Numerical Simulations of Unsteady Separated 

Flows Using Vortex Methods,” California Institute of Technology, 1993. 

[16] P. Ploumhans and G. . Winckelmans, “Vortex Methods for High-Resolution 

Simulations of Viscous Flow Past Bluff Bodies of General Geometry,” J. 

Comput. Phys., vol. 165, no. 2, pp. 354–406, Dec. 2000. 

[17] P. Ploumhans, G. S. Winckelmans, J. K. Salmon, a. Leonard, and M. S. 

Warren, “Vortex Methods for Direct Numerical Simulation of Three-

Dimensional Bluff Body Flows: Application to the Sphere at Re=300, 500, 

and 1000,” J. Comput. Phys., vol. 178, no. 2, pp. 427–463, May 2002. 

[18] S. Yang, C. Cremona, Z. Zhou, and A. Chen, “Analysis of Reynolds number 

effects on bridge deck sections by the PSE method,” Eur. J. Environ. Civ. 

Eng., vol. 15, no. 1, pp. 99–124, Jan. 2011. 



69 

 

[19] G.-H. Cottet and P. Koumoutsakos, Vortex Methods: Theory and Practice. 

Cambridge University Press, 2000. 

[20] S. F. Hoerner, “Base Drag and Thick Trailing Edges,” J. Aeronaut. Sci. 

(Institute Aeronaut. Sci., vol. 17, no. 10, pp. 622–628, Oct. 1950. 

[21] K. J. Standish and C. P. van Dam, “Aerodynamic Analysis of Blunt Trailing 

Edge Airfoils,” J. Sol. Energy Eng., vol. 125, no. 4, p. 479, 2003. 

[22] T. Winnemöller and C. P. Van Dam, “Design and Numerical Optimization of 

Thick Airfoils Including Blunt Trailing Edges,” J. Aircr., vol. 44, no. 1, pp. 

232–240, Jan. 2007. 

[23] C. P. C. Van Dam, E. A. Mayda, D. D. Chao, and D. E. Berg, “Computational 

Design and Analysis of Flatback Airfoil Wind Tunnel Experiment,” no. 

March, 2008. 

[24] C. E. Mertes, “Dynamic Wake Studies of a Flatback Airfoil,” The University 

of Wyoming, 2012. 

[25] R. I. Lewis, Vortex Element Methods for Fluid Dynamic Analysis of 

Engineering Systems. Cambridge University Press, 1991. 

[26] D. T. C. Porthouse, Numerical Simulation of Aerofoil and Bluff Body Flows by 

Vortex Dynamics. University of Newcastle upon Tyne, 1983. 

[27] C. Norberg, “Flow Around a Circular Cylinder: Aspects of Fluctuating Lift,” 

J. Fluids Struct., vol. 15, no. 3–4, pp. 459–469, Apr. 2001. 

[28] A. ROSHKO, “On the development of turbulent wakes from vortex streets,” 

1954. 



70 

 

[29] C. WIESELSBERGER, “Neuere Festellungen uKber die Gesetze des 

FluKssigkeits- und Luftwiderstandes,” Phys. Zeitschrift, vol. 22, pp. 321–328, 

1921. 

[30] B. N. Rajani, a. Kandasamy, and S. Majumdar, “Numerical simulation of 

laminar flow past a circular cylinder,” Appl. Math. Model., vol. 33, no. 3, pp. 

1228–1247, Mar. 2009. 

[31] D.-H. Yoon, K.-S. Yang, and C.-B. Choi, “Flow past a square cylinder with an 

angle of incidence,” Phys. Fluids, vol. 22, no. 4, p. 043603, 2010. 

[32] A. Sohankar and C. Norberg, “Numerical simulation of unsteady low-

Reynolds number flow around rectangular cylinders at incidence,” vol. 71, pp. 

189–201, 1997. 

[33] A. Sohankar, C. Norberg, and L. Davidson, “Low-Reynolds-number flow 

around a square cylinder at incidence: study of blockage, onset of vortex 

shedding and outlet boundary condition,” Int. J. Numer. Methods Fluids, vol. 

26, no. 1, pp. 39–56, 1998. 

[34] A. Okajima, “Strouhal numbers of rectangular cylinders,” J. Fluid Mech., vol. 

123, no. -1, p. 379, Apr. 2006.  

 


	AERODYNAMIC ANALYSIS OF FLATBACK AIRFOILS USING VORTEX PARTICLE METHOD
	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	CHAPTER 1
	INTRODUCTION
	1.1. Literature Survey
	1.1.1. Vortex Methods
	1.1.1.1. Diffusion Methods
	1.1.1.2. Boundary Conditions
	1.1.1.3. Hybrid Methods

	1.1.2. Flatback Airfoils

	1.2. Objective and scope
	1.3. Thesis content

	CHAPTER 2
	FUNDAMENTALS OF VORTEX PARTICLE METHOD
	2.1. Governing Equations
	2.2. Poisson Equation
	2.3. Convection
	2.4. Diffusion
	2.5. Potential Flow Analysis in the Presence of a Vortex Cloud
	2.6. Surface Pressure

	CHAPTER 3
	NUMERICAL IMPLEMENTATION OF VORTEX PARTICLE METHOD
	3.1. Computational Scheme
	3.2. Vortex Sheet Diffusion
	3.3. Velocity Calculation
	3.4. Convection
	3.5. Redistribution of Vortex Particle Strength
	3.6. Diffusion
	3.7. Calculation of Boundary Vortices
	3.8. Pressure Force Calculation
	3.9. Parallelization

	CHAPTER 4
	VALIDATION STUDIES
	4.1. Introduction
	4.2. Flow Past a Flat Plate
	4.2.1. Blasius Solution for Laminar Boundary Layer
	4.2.2. Flat Plate at Re = 200
	4.2.3. Flat Plate at Re = 1000

	4.3. Flow Past a Circular Cylinder
	4.3.1. Convergence Study
	4.3.2. Vorticity Field
	4.3.3. Pressure Distribution and Force Coefficients
	4.3.4. Vortex Shedding Frequency

	4.4. Flow Past a Square Cylinder
	4.4.1. Vorticity Field
	4.4.2. Pressure Distribution and Force Coefficients
	4.4.3. Vortex Shedding Frequency

	4.5. Comparison of Random Walk Method and Particle Strength Exchange Method

	CHAPTER 5
	AERODYNAMIC ANALYSIS OF FLATBACK AIRFOILS
	5.1. Introduction
	5.2. Computational Grids for CFD Analysis
	5.3. Vorticity Field
	5.4. Pressure Distributions
	5.5. Force Coefficients and Vortex Shedding Frequency

	CHAPTER 6
	CONCLUSION
	6.1. Summary
	6.2. Recommendations for Future Works

	REFERENCES



