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ABSTRACT

DYNAMIC MODULARITY BASED COMMUNITY DETECTION FOR LARGE
SCALE NETWORKS

Aktunç, Rıza

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. İsmail Hakkı Toroslu

January 2015, 67 pages

In this work, a new fast dynamic community detection framework for large scale
networks is presented. Most of the previous community detection algorithms are de-
signed for static networks. Static modularity optimizer framework (SMO), which is
introduced by Waltman & Van Eck, consists of such community detection algorithms.
However, large scale social networks are dynamic and evolve frequently over time. To
quickly detect communities in dynamic large scale networks, we proposed dynamic
modularity optimizer framework (DMO) that is constructed by making the modu-
larity based community detection algorithms placed in SMO dynamic. The proposed
framework is tested on the mobile communication networks which are extracted from
the raw call detail records (CDR) data of a GSM operator in Turkey. According to the
results, community detection algorithms in the proposed framework perform better
than algorithms in SMO when large scale dynamic networks are considered.

Keywords: dynamic, modularity optimization, community detection, large scale net-
works
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ÖZ

BÜYÜK ÖLÇEKLİ AĞLARDA DİNAMİK TOPLULUK ALGILAMA
ALGORİTMASI

Aktunç, Rıza

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. İsmail Hakkı Toroslu

Ocak 2015 , 67 sayfa

Bu çalışmada büyük ölçekli ağlar için yeni ve hızlı bir dinamik topluluk algılama al-
goritma çatısı sunulmuştur. Geçmişteki topluluk algılama algoritmalarının çoğu statik
ağlar için tasarlanmıştır. Waltman & Van Eck bu tarzda topluluk algılama algoritma-
larından oluşan statik modülerlik optimizasyonu (SMO) adlı algoritma çatısını litera-
türe katmıştır. Fakat büyük ölçekli sosyal ağlar dinamiktir ve zaman içinde çok çabuk
gelişirler. Bu tip dinamik ağlarda toplulukları hızlı bir şekilde algılamak için SMO
içerisinde yer alan modülerlik tabanlı topluluk algılama algoritmalarını dinamik ola-
rak çalışacak hale getirerek dinamik modülerlik optimizasyonu (DMO) adlı algoritma
çatısını tasarladık ve ileri sürdük. Tasarladığımız bu algoritma çatısını mobil iletişim
ağları üzerinde test ettik. Bu iletişim ağlarını Türkiye’deki bir GSM operatöründen
aldığımız bilgilerle oluşturduk. Testlerimizin sonuçlarına göre, büyük ölçekli dina-
mik ağlar düşünüldüğünde, tasarladığımız algoritma çatısı içindeki topluluk algılama
algoritmaları SMO içindeki algoritmalardan daha iyi performans göstermişlerdir.

Anahtar Kelimeler: dinamik, modülerlik optimizasyonu, topluluk algılama, büyük öl-
çekli ağlar
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CHAPTER 1

INTRODUCTION

In the last decade, the notion of social networking is emerged and produced very

large graphs that consist of the information of their users. These graphs generally

consist of the nodes that represent the users and edges that represent the relations

among users. The nodes in these graphs generally tend to get together and construct

communities of their own. Thus, it can be stated that social networks commonly have

a community structure. These networks can be divided into groups of nodes that

have denser connections inside the group; but fewer connections to the outside of the

group. For example, in a GSM network, a group of users who call each other more

densely than they call other users may construct their own community. In this case,

the nodes represent the users and the edges represent the calls that users made. The

detection of communities in these large networks is a problem in this area; therefore

a lot of community detection algorithms such as [13, 21, 14, 33, 27, 26, 5, 43, 48]

proposed in the literature. Almost all these community detection algorithms are static

and designed for static networks.

However, most of the social networks are not static because they evolve in many

ways. They may gain or lose users that are represented as nodes in the graphs over

time. The users of these social networks may lose contact from each other or there can

be new connections among users. In other words, some edges in the graphs may be

removed or new edges may be added to the graph over time. All these processes may

happen in a very small amount of time in a social network if it has a lot of active users.

This kind of a social network may be called as highly dynamic. For example, popular

social sites such as Facebook, Twitter, LinkedIn and so on have highly dynamic social
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networks. Moreover, most GSM networks have millions of users and hundreds of

calls made in seconds; therefore, they can also be labeled as highly dynamic networks.

Addition or deletion of an edge or a node from a network which has millions of

edges might seem insignificant; but when this additions or deletions of an edge or a

node happen very frequently, they begin to change the community structure of the

whole network and become very important. This change in the community structure

raises the need of re-identification of communities in the network. This need arises

frequently and creates a new problem in the community detection research area. This

new problem requires somehow fast detection of communities in dynamic networks.

Community detection in large dynamic social networks brings considerable advan-

tages in practice. For example, it can be used to optimize the performance of routing

algorithms in communication networks. Nodes and edges represent people and mo-

bile communications respectively in these networks. Routing the messages and calls

among the people in these networks is very challenging since people moves around

frequently and their calling behavior is not stable. In order to prevent forwarding

unnecessary messages through nodes in different communities, dynamic community

structure algorithm can be used to analyze the community structure of the communi-

cation network at the given timestamp and then messages can be forwarded directly

to nodes in the same or related communities. Thus, the performance of routing mes-

sages and calls can be improved via decreasing the number of duplicate messages and

overhead information in the routing process.

The first solution that comes into mind for community detection in large dynamic

networks problem is the execution of static community detection algorithms already

defined in the literature all over again to detect the new community structure whenever

the network is modified. Nevertheless, this solution takes too much time in every

modification of the large networks since it runs the community detection algorithm

from scratch each time. A much efficient and less time consuming solution is to

run the community detection algorithms not from scratch but from a point in the

history of the network by storing and using the historical results of executions of

the algorithms whenever network is evolved. In other words, updating previously

discovered community structure instead of trying to find communities from scratch

each time the network evolves consumes much less time and thus much efficient. This
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solution method for the problem of detecting communities in large dynamic networks

is the main focus of our study in this thesis work.

In this thesis, we modified the static modularity optimizer defined by Waltman &

Van Eck [48] so that it would detect the communities in rapidly growing large net-

works dynamically and efficiently. As a result, we propose the dynamic modular-

ity optimizer that dynamically detects communities in large networks by optimizing

modularity and using its own historical results. We tested our proposed approach on

the communication network that is constructed by preprocessing the CDR data taken

from a GSM operator in Turkey. We demonstrated the effects of our contribution to

the static modularity optimizer in two ways. One of them is the change in modularity

value which determines the quality of the community structure of the network. The

other one is the change in running time that determines the pace of the algorithm.

The latter is more significant than the former because the community structure of the

network must be quickly identified at the given timestamp before the next timestamp

is reached. We realized that DMO improved SMO by decreasing its running time

incredibly. In some experiments, the modularity value decreases, but it can be negli-

gible. Moreover, there are some experiments where modularity value increases while

running time decreases.

The rest of the thesis is organized as follows. Chapter 2 gives some basic information

about static community detection algorithms and modularity. Chapter 3 gives most of

the academic works previously done on the dynamic community detection concept.

The proposed solution for dynamic community detection in large networks called

as DMO is described in Chapter 4. In Chapter 5, the preprocess of the CDR data

of the GSM network and construction steps of the graphs that DMO is tested on is

explained. In Chapter 6, the results of the experiments of DMO and SMO are demon-

strated. Moreover, these results of experiments of SMO and DMO are compared in

comparison tables in Chapter 6. Finally, the thesis is concluded and the future works

that can be done on the problem are mentioned in Chapter 7.
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CHAPTER 2

BACKGROUND

2.1 Community Definitions

Defining the meaning of the community is one of the crucial factors that affect both

the quality and the measurement of community detection algorithms. However, there

is no definition of the community which is accepted universally. [16] It is partially

because of the fact that not all networks have the same community structure. This

fact leads to defining the meaning of the communities specific to the network which

is going to be analyzed. Although there is no universal definition of community, there

is a widespread informal definition of community concept. This definition states that

a community is formed by nodes which interact with each other more frequently than

with other nodes in the network. In other words, if a group of nodes have internal

edges that link each of them in the group more than external edges which link a node

in the group to a node outside of the group, this group can be labeled as a community.

[16, 36, 44] This definition can be seen as the reference guideline for the basis of

most community definitions. Finding all the structures that obey a community defi-

nition which is provided prior to running the algorithm would be very hard and time

consuming. Therefore, in most cases, communities are heuristically constructed as

the result of the algorithm without any precise priori definition provided. Apart from

the ratio of internal and external edges, the connectedness of the nodes in the com-

munity is a factor which is taken into consideration in most community definitions.

To be precise, connectedness means that for each pair of vertices of a community,

there must be at least a path which resides in the boundaries of the community and

connects the vertices. [16]
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2.1.1 Local Definitions

Communities are parts of the network with a few ties with the rest of the network.

From a perspective, they can be considered as separate entities with their own au-

tonomy. Therefore, it might make sense to evaluate them individually without the

information of the whole graph. While deciding whether a subgraph may be a com-

munity or not, local definitions take only that subgraph and its immediate neighbors

into consideration and ignores rest of the network.

One of these local definitions searches cliques in networks and assigns them as com-

munities. Clique is a set that there is an edge between each pair of its vertices, so it

is a fully connected set of vertices and edges. Vertices in the graph may belong to

more than one clique simultaneously, and this represents the overlapping communi-

ties. This is a property which is at the basis of the Clique Percolation Method that

is introduced by Palla et al. [37] Simplest cliques are the ones that have 3 vertices.

They are frequently encountered in real networks. But larger cliques are less fre-

quently seen in real networks. Furthermore, the condition to be fully connected in

order to be labeled as a community is really too strict. For instance, a subgraph with

all possible internal edges except only one edge would be an extremely cohesive sub-

graph; nevertheless, it would not be labeled as a community under this recipe. In

addition to being strict, finding cliques in a network is an NP-complete problem. [6]

The Bron-Kerbosch method is a method that tries to find maximal cliques in a run-

ning time which grows exponentially with the size of the given network. [9] In order

to overcome these restrictiveness and running time problems, the notion of clique is

relaxed and clique-like objects are defined in the literature. [16, 1, 37]

Being clique-like checks the internal cohesion of the given subgraph and ignores ex-

ternal cohesion. However, in real life, a subgraph should not be labeled as community

if there is a strong external cohesion between the subgraph and the rest of the graph.

Therefore, external cohesion should not be ignored and taken into consideration while

evaluating a subgraph. It can be included into the equation as it gets stronger the effect

of the internal cohesion gets smaller. In fact, most recent definitions of community

apply and use this methodology. For instance, Radicchi et al. introduced strong and

weak community definitions in the literature. In a strong community, internal degree
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of each vertex is greater than its external degree. However, in a weak community, it

is enough that the internal degree of the whole subgraph is greater than its external

degree. [38] These definitions of community do not look for clique or clique-like ob-

jects and take both internal and external cohesion into consideration. Therefore, they

are more relaxed than searching clique or clique-like objects.

Using a fitness measure is another method to identify communities. A fitness measure

can be any property such that it can be checked that a subgraph satisfies it by evalu-

ating its cohesion. Obviously, if the fitness value is large, the community is definite

in the same ratio as the fitness value. The simplest fitness measure would be internal

density of edges. There could be a threshold of internal density and if it is passed by a

subgraph, it could be labeled as community. If this threshold is 1, it means subgraph

must be fully connected (clique) in order to be labeled as community. This leads to

the conclusion that applying this fitness measure is an NP-complete task in the worst

case. [18] Variants of this fitness measure focus on not the density but the number

of internal edges of the subgraph. [4, 15, 23] Another measure is the relative density

which is formulated as the ratio between the internal and the total degree of the given

subgraph. Fitness measures can also be associated to the connectivity of the given

subgraph to the rest of the graph. Briefly, this methodology evaluates the subgraphs

of a graph by checking the given condition called as fitness measure and label those

subgraphs that pass this check.

2.1.2 Global Definitions

Communities can also be defined by taking not only the subgraph but whole graph

into consideration. There are many global criteria that can be used to identify commu-

nities in the literature. Nonetheless, in most cases, they are indirect definitions such

that some global property of the graph is used in a community detection algorithm that

labels communities at the end. However, there is a class of proper definitions which

are based on the idea that a graph has community structure if it is different from a ran-

domly constructed graph. This idea is based on the assumption that a random graph

is not expected to have community structure, because any two vertices have the same

probability to be adjacent. Therefore, a null model is defined as a graph that matches
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the original graph only in some of its structural features, but other than those features

just a random graph. The most popular null model is that proposed by Newman and

Girvan. It consists of a randomized copy of the original graph, where edges are cut

and rewired randomly, under the condition that the expected degree of each vertex

matches the degree of the vertex in the original graph. [16, 32] This null model is

the basic concept behind the definition of modularity, which is explained in the next

section in detail.

2.2 Modularity

Modularity is a function that is used for measuring the quality of the results of com-

munity detection algorithms. If the modularity value of a partitioned network is high,

it means that the network is partitioned well. Apart from quality measurement, modu-

larity is used as the basis of some community detection algorithms. These algorithms

try to detect communities (partitions) in a network by trying to maximize the modu-

larity value of the network. Thus, modularity is a function that is used for both quality

measurement and community detection.

Modularity is based on the idea that a randomly created graph is not expected to have

community structure, so comparing the graph at hand with a randomly created graph

would reveal the possible community structures in the graph at hand. This comparison

is done through comparing the actual density of edges in a subgraph and the expected

edge density in the subgraph if the edges in the subgraph were created randomly. This

expected edge density depends on how random the edges created. This dependency

is tied to a rule that defines how to create the randomness and called as null model.

A null model is a copy of an original graph and it keeps some of this original graphs

structural properties but not reflects its community structure. There can be multiple

null models for a graph such that each of them keeps different structural properties of

the original graph. Using different null models for the calculation of the modularity

leads to different modularity calculation methods and values. The most common null

model that is used for modularity calculation is the one that preserves the degree of

each vertex of the original graph. With this null model, modularity is calculated as

the fraction of edges that fall in the given communities minus such fraction in the null

8



model. [34, 16] The formula of modularity can be written as in 2.1

Q =
1

2m

∑
ij

(Aij − Pij)δ(Ci, Cj) (2.1)

m represents the total number of edges of the graph. Sum iterates over all vertices

denoted as i and j. Aij is the number of edges between vertex i and vertex j in the

original graph. Pij is the expected number of edges between vertex i and vertex j

in the null model. The δ function results as 1 if the vertex i and vertex j are in the

same community (Ci = Cj), 0 otherwise. The null model can be created by cutting

the edges between vertices; thus, creating stubs (half edges) and rewiring them to

random vertices. Thus, it obeys the rule of keeping degrees of vertices unchanged.

Cutting edges into half, creates m ∗ 2 = 2m stubs. In the null model, a vertex could

be attached to any other vertex of the graph and the probability that vertices i and j,

with degrees ki and kj , are connected, can be calculated. The probability pi to pick

a ramdom stub connection for vertex i is ki
2m

, as there are ki stubs of i out of a total

of 2m stubs. The probability of vertex i and vertex j being connected is pipj , since

stubs are connected independently of each other. Since there are 2m stubs, there are

2mpipj expected number of edges between vertex i and vertex j. [16] This yields to

equation 2.2

Pij = 2mpipj = 2m
kikj
4m2

=
kikj
2m

(2.2)

By placing equation 2.2 into equation 2.1, modularity function is presented as in

equation 2.3.

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(Ci, Cj) (2.3)

The resulting values of this modularity function lie in the range [−1
2
, 1). It would be

positive if the number of edges within subgraphs is more than the number of expected

edges in the subgraphs of null model. Higher values of the modularity function mean

better community structures. [48]

9



This modularity function also applies to weighted networks. [48, 30] The modularity

function for the weighted graphs can be calculated as in equation 2.4.

Qw =
1

2W

∑
ij

(Wij −
sisj
2W

)δ(Ci, Cj) (2.4)

There are three differences. The first difference is that in the case of a weighted

network Wij , instead of Aij , may take not just 0 or 1 but any non-negative value that

represents the weight of the edge. The second one is that instead of m, which is

total number of edges, W , which is the sum of the weights of all edges is used in the

equation. The last one is that si and sj which represents the sum of the weights of

edges adjacent to vertex i and vertex j respectively is used in the equation instead of

ki and kj which means the degree of vertex i and vertex j respectively. [16]

Apart from weighted networks, the modularity function defined in 2.3 has been ex-

tended in order to be also applicable to directed networks. [3, 28] When the edges are

directed, stubs will also be directed and it changes the possibility of rewiring stubs

and connecting edges. The calculation of this possibility in the directed case depends

on the in- and out-degrees of the end vertices. For instance, there are two vertices A

and B. A has a high in-degree and low out-degree. B has a low in-degree and high

out-degree. Thus, in the null model of modularity, an edge will be much more likely

to point from B to A than from A to B. [16] Therefore, the expression of modularity

for directed graphs can be written as in equation 2.5

Qd =
1

m

∑
ij

(Aij −
kouti kinj
m

)δ(Ci, Cj) (2.5)

The sum of the in-degrees (out-degrees) equals m not 2m as in the case of undirected

graph. Therefore, the factor 2 in the denominator of the first and second summand

has been dropped. In order to get the modularity function to be applicable to directed

weighted networks, the equations 2.4 and 2.5 can be merged; thus, equation 2.6 can

be constructed as the most general expression of modularity. [16]

Qdw =
1

W

∑
ij

(Wij −
souti sinj
W

)δ(Ci, Cj) (2.6)

10



As an example of networks which have high and low modularity values, figure 2.1

can be seen. In this figure, network A is an example of good modularity, whereas

network B is an example of bad modularity.

Figure 2.1: Networks with high and low modularity values [50]

There have been a few proposals of modified version of the modularity functions de-

fined above as alternative modularity functions. These modified, extended versions

for instance offer a resolution parameter that makes it possible to customize the gran-

ularity level at which communities are detected and to mitigate the resolution limit

problem defined by Fortunato and Barthélemy [17]. [40] Moreover, there are mod-

ularity functions with a somewhat modified mathematical structure in the literature

such as Reichardt & Bornholdt, 2006; Traag, Van Dooren, & Nesterov, 2011; Walt-

man, Van Eck, & Noyons, 2010. [48, 17, 46, 49]

2.3 Community Detection Algorithms

There are numerous community detection algorithms in the literature. They are im-

plementing the notion of community structure differently. We selected a represen-

tative set of algorithms that we are going to explain in the following sections. We

categorized them according to the method they apply to identify communities and

explain them under these categories. [36]
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2.3.1 Modularity Based

The idea of modularity-based community detection is to try to assign each vertex

of the given network to a community such that it maximizes the modularity value

of the network. The resulting assignments construct a community structure that is

considered as the optimal community structure for the given network. Optimizing

modularity is an NP-hard problem. [7] Exact algorithms that maximize modularity

such as [2], [7], [53] can be used only for small networks.

There are many different heuristic algorithms proposed for modularity optimization

in the literature. [16] They can be categorized as based on agglomerative hierarchical

clustering ([13], [31]), simulated annealing ([21], [40]), extremal optimization ([14]),

spectral optimization ([34], [33]), mean field annealing ([27]), and conformational

space annealing ([26]). Nevertheless, most of these algorithms are suitable only for

small and medium-sized networks.

For large-scale modularity optimization, heuristic algorithms are proposed. We are

going to explain and discuss three of them currently in the literature. One of them is

referred as Louvain algorithm and proposed by Blondel et al. in 2008. [5] The other

one is an extension of the Louvain algorithm with a so-called multilevel refinement

procedure. It is introduced by Rotta and Noack in 2011. [43] The last one is called as

Smart Local Moving (SLM) algorithm that is proposed by Waltman and Jan van Eck

in 2013. [48] All of these three algorithms are explained in detail in chapter 4.

2.3.2 Compression Based

There are community detection algorithms based on data compression proposed in the

literature. They do not use the cohesion and separation concepts. They consider the

community structure as a set of regularities in the network topology. This topology

represents the whole network in a more compact way than the whole adjacency ma-

trix. According to these algorithms, the best community structure is supposed to be

the one that maximizes compactness and minimizes information loss. The algorithms

mainly differ in the way they represent the community structure. They also differ in

how they assess the quality of this representation. [36] InfoMod and InfoMap algo-
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rithms can be categorized as compression based community detection algorithms.

InfoMod uses a simplified representation of the network that focuses on the commu-

nity structure. It is formed by a community matrix and a membership vector. [41]

Community matrix is an adjacency matrix whose cells contain community labels.

Membership vector is a vector that associates each vertex to a community. Mutual in-

formation measure is used to decide how much information from the original network

is preserved in the simplified representation. The one that has the maximal mutual in-

formation among all possible assignments of vertices to communities is selected as

the best community structure detected. Simulated annealing is used for optimization.

Minimum description length principle is used in order to select the optimal number

of communities. [36]

InfoMap represents the community structure by a two level classification based on

Huffman coding. One level detects communities in the network and the other level

detects vertices in a community. [42] A random walk on the network using this clas-

sification requires some information. Minimizing the amount of this required infor-

mation leads to finding the best community structure. A good community structure

would have just a few inter community edges. With such a community structure,

the random walker will probably stay longer inside communities. Therefore, only the

second level will be needed to describe its path. Thus, amount of required information

for this random walk will be minimized and this leads to a good community structure

which has been known at the beginning. Simulated annealing is used for optimization

of the amount of this required information. [36]

2.3.3 Significance Based

In a randomly created network, no community structure is expected; however, clusters

of nodes that construct communities can be found due to random fluctuations. Sta-

tistical significance distinguishes such communities from actual communities. The

algorithms in this class try to maximize statistical significance measure in order to

detect communities. [36]

The order statistics local optimization method (OSLOM) is a local optimization method.
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This method measures the statistical significance of individual communities and as-

signs the resulting values to the communities as their statistical significance values.

Then, it tries to optimize these values in order to get a better community structure.

[25] This statistical significance concept is defined as the probability of finding a

similar community in a null model that has no community structure. Similarity is

measured by comparing the size, degree sequence and internal connections of com-

munities. The OSLOM, initially, tries to obtain a collection of significant communi-

ties by combining the vertices with their adjacent ones. Then, it tries to optimize the

significance values of these communities by moving around vertices from one com-

munity to another possible community. This optimization process is repeated until

it gets stable and the significance values are maximized. This community detection

method can detect mutually exclusive, overlapped and hierarchical communities. [36]

2.3.4 Diffusion Based

This kind of approaches uses the information diffusion amount among the nodes in

order to detect communities. It can be assumed that information is more efficiently

propagated among vertices of the same community than vertices of different com-

munities. The diffusion-based algorithms rely on this assumption and detect com-

munities by considering how information is propagated in the parts of the network.

[36]

A simple label propagation algorithm is proposed by Raghavan, Albert, and Kumara

in 2007. This algorithm does not require either prior information about the commu-

nities or a predefined objective function to optimize on. It uses the network structure

alone as its guide. It initializes every node with a unique label. At every iteration of

this algorithm, each node adopts the label that most of its neighbors currently have.

This iterative process resulted as labeling densely connected groups with unique dif-

ferent labels that represent communities. This label propagation algorithm runs in

almost linear time; thus, it is efficient than most of the community detection algo-

rithms in the literature with respect to their running time. [39]

As an extension to the label propagation algorithm, the community overlap propaga-

tion algorithm (COPRA) is proposed by Gregory in 2010. It is contribution to label
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propagation algorithm is the ability to detect overlapping communities. Like the label

propagation algorithm, nodes have labels that propagate between adjacent nodes so

that members of a community reach a consensus on their community membership.

The main contribution of the COPRA is to modify the label and propagation step to

include information about more than one community. With this algorithm each node

can have more than one label and this means that each node can belong to more than

one community. Just like label propagation algorithm, the COPRA is also very fast.

Therefore, it can process very large networks and detect communities including the

overlapping ones in a short time. [20]

MarkovCluster algorithm simulates a diffusion process in the network to detect com-

munities. [47] There is a transfer matrix defined in this algorithm. It describes the

transition probabilities for a random walker evolving in the given network. This trans-

fer matrix is modified by two transformation operations, expansion and inflation, it-

eratively until convergence. The result of the expansion operation would be a matrix

showing the probability that a random walker starts from node i and reaches node j in

p steps. In order to favor the higher probability values, the inflation operation raises

each element in the matrix to some specified power. The value of this power affects

the granularity of the final communities. After applying these expansion and inflation

operations, the algorithm normalizes the resulting matrix to get a new transfer ma-

trix, and repeats whole process until convergence. After convergence, the algorithm

outputs the final matrix. This matrix can be considered as the adjacency matrix of

a network with disconnected components, which correspond to communities in the

original network. [36]
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CHAPTER 3

RELATED WORK

3.1 Dynamic Community Detection Algorithms

Due to the dynamic features of many social networks [22], the need for detecting

communities dynamically in the large networks is emerged in the latest years. There

have been many community detection algorithms proposed in the literature to fulfill

this need. Xu et al. divides the current research on community evolution into the

following categories. Parameter estimation methods and probabilistic models have

been proposed in the literature. [55, 45] A methodology that tries to find an optimal

cluster sequence by detecting a cluster structure at each timestamp that optimizes the

incremental quality can be classified as evolutionary clustering. [11, 24] Furthermore,

tracking algorithms based on similarity comparison have also been studied in order

to be able to describe the change of communities on the time axis. [19, 8] Apart from

these algorithms that are focused on the evolution procedures of communities, com-

munity detection in dynamic social networks aims to detect the optimal community

structure at each timestamp. [10, 35, 12] [54] Our algorithm can be classified as the

last mentioned category which aims to detect optimal community structure at each

timestamp with minimum running time. We are going to mention the properties of

some of the proposed dynamic community detection algorithms in this section.

A unified framework that can be used for the analysis of communities and their evolu-

tion in dynamic networks is presented in 2009. It is called as FacetNet by its authors.

It stands for "a Framework for Analyzing Communities and EvoluTions in dynamic

NETworks". [29] This framework determines the community structure at a given
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timestamp t by using community distribution information of the historic community

structures before timestamp t and the observed network data at t. This framework can

detect overlapping communities by having the ability of assigning a node to multiple

communities. It has this ability because it applies a soft community membership con-

cept instead of partitioning the network with hard boundaries. The authors argue that

this soft community membership concept provides more details of the individuals’

community participation behaviors as in the real networks individuals may tend to

participate in more than one community. A stochastic block model is used for gen-

erating communities. In order to capture the community evolutions, a probabilistic

model based on the Dirichlet distribution is adopted. By applying these probabilis-

tic models, soft community memberships are assigned naturally to nodes; thus, it

overcomes the problems faced by the parameters which exist in many dynamic al-

gorithms. An iterative EM algorithm is used in order to guarantee the convergence

to optimal solutions. The authors state that correctness and convergence of the algo-

rithm is proven and it is shown that it has low time complexity when the network data

is sparse.

An algorithm that detects both static and temporal communities is proposed by Caza-

bet et al. in 2010. It is named as Intrinsic Longitudinal Community Detection (iLCD).

[10] It takes the dynamics of the networks and the overlapping communities into ac-

count. This algorithm updates the communities by adding them a new node if its

number of second neighbors and robust second neighbors are greater than expected

values. If the similarity between two communities is high, then the communities are

merged. The similarity between two communities is measured as the ratio of nodes

that are placed in both of these two communities. If the minimum patter is detected

by the edges, a new community is created. This algorithm is based on two parameters.

These parameters are the size of the minimal clique which effects the creation of new

communities and the threshold for community merging.

An algorithm which performs well in detecting both overlapping nodes and overlap-

ping communities with different degrees of diversity is proposed by Xie et al. in 2011.

It is called as Speaker-listener Label Propagation Algorithm (SLPA). [52] Moreover,

in this algorithm, labels are propagated among nodes according to dynamic interac-

tion rules. Label distributions are maintained in the memory of each node. Each node
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can be a speaker or a listener depending whether it serves as a information provider or

consumer in SLPA. A node has the ability to have as many labels as it likes. The num-

ber of labels a node can have depends on the propagation experience in the stochastic

processes which are driven by the underlying network structure. SLPA does not re-

quire any prior knowledge about the number of communities that must be detected.

It is suitable for weighted, unweighted, directed and undirected networks. However,

it produces different partitions in different runs due to random tie breaking strategy.

This behavior of SLPA is not desirable in applications like tracking the evolution of

communities in a dynamic network. Therefore, it is a disadvantage of SLPA for track-

ing community evolution in dynamic networks. The time complexity is O(tm), where

t is a predefined maximum number of iterations, it is linear in the number of edges m.

Some of the authors of SLPA proposed LabelRank algorithm which stabilizes La-

bel Propagation Algorithm (LPA) and extends Markov Cluster Algorithm (MCL) ap-

proach. [51] It stores, propagates and ranks labels in each node. In order to stabilize

the propagation dynamics, it relies on four operators namely propagation, inflation,

cutoff and conditional update. Eliminating the need of tie breaking, each node keeps

multiple labels received from its neighbors. Nodes with same highest probability get

together and form a community. The number of labels in each node monotonically

decreases and drops to a small constant within few steps thanks to cutoff and inflation

operators. Since there is no randomness in the simulation, the output is deterministic.

Initialization of nodes takes O(m), adding self-loop takes O(n), each of the four op-

erators takes O(m) on average. Thus, the running time of LabelRank is O(m), linear

with the number of edges m.

In 2013, LabelRank is extended to LabelRankT with one extra conditional update

rule by the authors of LabelRank. Only the nodes that are changed between two con-

secutive snapshots are updated in the algorithm. The previous snapshot is used for

determining the dynamics in the current time step. It maintains the previous com-

munity structure and dynamically updates nodes that are involved in changes. This

algorithm suits best to dynamic networks in which changes arrive as a stream thanks

to this new conditional update rule. When a new edge is added in the stream, La-

belRankT updates only the nodes that are attached to this edge. It performs as well

as other static algorithms like MCL and Infomap, yet with lower running time. It
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is faster than other dynamic detection algorithms like facetNet and iLCD. It can be

applied to wireless sensor networks and mobile ad hoc networks. The overall running

time of the algorithm for detecting evolving communities between two consecutive

snapshots is O(Tm), implying O(m) in general where T is the number of iterations.

LabelRankT can be integrated with SLPA in order to be able to detect overlapping

communities.
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CHAPTER 4

DYNAMIC MODULARITY OPTIMIZER FOR LARGE SCALE

NETWORKS

4.1 Static Modularity Optimization Approach

SLM is a community detection algorithm that is evolved from Louvain algorithm.

Therefore, Louvain algorithm must be explained first in order to explain SLM al-

gorithm. Louvain algorithm is a large scale modularity based community detection

algorithm that is proposed by Blondel et al in 2008. [5] The quality of detected com-

munities by Louvain algorithm is measured by the method called modularity. The

modularity of a network is a value that is between -1 and 1. This value presents the

density of links inside communities over the density of links between communities.

[34] When this value is close to 1, then the measured network can be called as modular

network. In the case of weighted networks, modularity function can take weights into

consideration and measure the quality of detected communities. Louvain algorithm

uses modularity function as not only a measurement function but also an objective

function to optimize.

Louvain algorithm is a recursive algorithm which has two steps running in each recur-

sive call. Before the recursion starts, the algorithm assigns a different community to

each node of the network whose communities are going to be detected. Therefore, in

the initial case each node has its own community. In each recursive call the following

steps are run:

1. It runs a local moving heuristic in order to obtain an improved community
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structure. This heuristic basically moves each node from its own community to

its neighbors’ community and run the modularity function. If the result of the

modularity function, which means quality, increased, the node would be kept in

the new community; else, the node would be moved back to its previous com-

munity. This process is applied to each node for its each neighbor in random

order and thereby heuristically the quality is tried to be increased.

2. The algorithm constructs a reduced network whose nodes are the communities

that are evolved in the first step. Moreover, the weights of the edges in this

reduced network are given by the sum of weights of the links between the nodes

which reside in the corresponding two communities. Links between nodes of

the same community in the old network are presented as self-links for the node

that represents that community in the new reduced network. When this reduced

network is fully constructed, then algorithm calls itself recursively and first step

is applied to this reduced network.

The algorithm keeps recursing until no further improvement in modularity is mea-

sured and thereby there are no changes in the community structure. [5] The pseudo

code of Louvain Algorithm provided by Ludo Waltman and Nees Jan van Eck can be

seen in Figure 4.1.

Rotta and Noack proposed an algorithm that is a multilevel refinement procedure

applied version of Louvain algorithm in 2011. [43] Louvain algorithm is moving hi-

erarchical and after each recursive call the network is reduced. Therefore, after first

recursive call, assigned communities become nodes and they are fed to local mov-

ing heuristic algorithm. Thus, for instance, in the third recursive call, the algorithm

searches for the increase in modularity by only moving the communities found in

the second recursive call. However, there is a possibility that the modularity is in-

creased by moving the nodes of initial network at the end of each recursive call. The

original Louvain algorithm does not take this possibility into consideration and run

local moving heuristic algorithm only on reduced network. Louvain with multilevel

refinement (LMR) algorithm takes this possibility into consideration and runs local

moving heuristic on the constructed network at the end of each recursive call in order

to search for increase in modularity by moving individual nodes apart from previously
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formed communities. Since, this way the algorithm runs local moving heuristic with

individual nodes level at the final recursive call, it is guaranteed that modularity can-

not be increased further by changing individual nodes communities. [48] The original

Louvain algorithm cannot guarantee this and this is the main difference between these

algorithms. The main steps of LMR algorithm is described in Figure 4.2.

Louvain algorithm detects community structures whose modularity values are locally

optimal with respect to community merging, but not necessarily locally optimal with

respect to individual node movements. On the other hand, solutions found by the

LMR algorithm are locally optimal with respect to individual node movements, but

not necessarily locally optimal with respect to community merging. However, when

these algorithms iteratively called by the way that each iteration assigns the previous

iterations community structure to the nodes instead of assigning singleton commu-

nities, it becomes possible to find solutions that are locally optimal with respect to

both community merging and individual node movements. [48] Since the Louvain

algorithm applies local moving heuristic in the beginning of its recursive block and

merges communities by reducing network in the end of its recursive block, calling it

iteratively ensures that the resulting community structure cannot be improved further

either by merging communities or by moving individual nodes from one community

to another. Like the iterative variant of these algorithms SLM algorithm constructs

community structures that are locally optimal with respect to both individual node

movements and community merging. Besides these capabilities, SLM also tries to

optimize modularity by splitting up communities and moving sets of nodes between

communities. This is done by changing the way that local moving heuristic and net-

work reduction runs.[48]

Both Louvain and LMR algorithms run local moving heuristic algorithm on the present

network as the first step, and then construct the reduced network as the second step.

However, the SLM algorithm changes the reduced network construction step by ap-

plying following processes:

1. It iterates over all communities that are formed by the first step. It copies each

community and constructs a subnetwork that contains only the specific com-

munity’s nodes.
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2. It then runs the local moving heuristic algorithm on each subnetwork after as-

signing each node in the subnetwork to its own singleton community.

3. After local moving heuristic constructs a community structure for each sub-

network, the SLM algorithm creates the reduced network whose nodes are the

communities detected in subnetworks. The SLM algorithm initially defines a

community for each subnetwork. Then, it assigns each node to the community

that is defined for the node’s subnetwork. Thus, there is a community defined

for each subnetwork and detected communities in subnetworks are placed un-

der these defined communities as nodes in the reduced network.

This is the way that the SLM algorithm constructs the reduced network. After these

processes, the SLM algorithm gives the reduced network to the recursive call as input

and all the processes starts again for the reduced network. The recursion continues

until a network is constructed that cannot be reduced further. To sum up, the SLM

algorithm has more freedom in trying to optimize the modularity by having the ability

to move sets of nodes between communities which cannot be done by either of other

two algorithms. [48] Figure 4.3 demonstrates the main steps of the SLM algorithm in

the shape of a pseudo code.

4.2 Dynamic Modularity Optimization Approach

We worked on the source code of a modularity optimizer that is provided by Waltman

and Van Eck in 2013. While we are trying to run this source code of the modularity

optimizer on our GSM network that we have produced earlier, we saw the possibility

and opportunity of making the algorithms in the source code dynamic. The CDR data

that we used to construct the mobile phone user network is very huge. Moreover,

it keeps getting larger and larger very quickly. Therefore, whenever a new record is

added to this CDR data, constructing the network from this CDR data and running the

modularity optimizer to find the new community structure is a very time consuming

task. At this very moment, we realized that making the modularity optimizer dynamic

might reduce the overall running time. Thus, it might make analyzing the CDR data

and detecting communities while it is growing possible. Therefore, we searched for
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a way to make this optimizer run dynamically while new nodes and edges are being

added to the network that is being analyzed. We propose the dynamic modularity

optimizer (DMO) for the purpose of analyzing quickly growing large networks dy-

namically and detecting communities in these networks quicker.

The modularity optimizer that is provided by Waltman and Van Eck takes following

items as parameters:

1. Input file

A line in the input file must contain 2 node numbers and optionally the weight

of the edge that links these two nodes. These 2 or 3 information must be delim-

ited by a tab character. The numbering of nodes in the input file has to start at

0. For each pair of nodes, the node with the lower number must be listed first,

followed by the node with the higher number. The lines in an input file must

be sorted based on the node numbers (first based on the numbers in the first

column, then based on the numbers in the second column).

2. Output file

The algorithm prints the community ids to the output file. The id in the first line

of the output file is the node number 0’s community id. In the second line there

is node number 1’s community id. Like these, all the community ids that are

assigned to the nodes are listed in the output folder at the corresponding lines.

3. Modularity function

There are 2 kinds of modularity functions offered by the algorithm. One of

them is the standard modularity function that is proposed by Newman and Gir-

van (2004) and Newman (2004). [31] [32] The other one is an alternative mod-

ularity function that is defined by Traag, Van Dooren, and Nesterov (2011).

[46] The user can choose which one to be used in the algorithm to optimize on.

4. Resolution parameter

It determines the granularity level at which communities are detected.

5. Optimization algorithm
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Louvain, Louvain with multilevel refinement and SLM algorithms are offered

for the user.

6. Number of random starts

The local moving heuristic method deals with the nodes in random order. So,

each time it runs, it can give different output. This parameter specifies how

many random starts are going to be tried.

7. Number of iterations per random start

This parameter determines how many iterations of the chosen optimization al-

gorithm are going to be run per random start.

8. Seed of the random number generator

All three optimization algorithms initially assign each node to a different community,

so each node has its own singleton community. In order to make running the mod-

ularity optimizer dynamically possible, we thought that we should change the way

of assigning initial communities to nodes. For this purpose, we defined a procedure

called "initialize communities" that does following operations:

1. Take a file as a parameter that contains community ids of nodes that has been

analyzed.

2. Read the file line by line and for each line do following tasks:

(a) Declare current community id as the number read in the current line.

(b) Find the node number to be assigned to the current community by count-

ing the line numbers in the file.

(c) Assign the found node to the current community.

3. Assign remaining nodes to singleton communities so that each of them has its

own community.

Let’s consider that we detected the communities in a network which has one million

edges. After that, a new edge is added to this network. Now we want to detect the

communities in this new network. If we run the optimization algorithms, they would
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assign the nodes to singleton communities at the beginning of the algorithms, so they

would start the optimization process from the beginning. However, we have the output

of the community detection of the old network, so we actually do not need to start the

optimization from scratch. We should feed the detected communities of old network

to the "initialize communities" procedure instead of assigning the nodes to singleton

communities at the beginning of the algorithm. Thus, we can begin the optimization

process almost at the end of it and minimize the running time of the optimization

algorithm. In addition, by calling our procedure, we do not generally need to iterate

as much as other algorithms iterate in order to reach their modularity level. In other

words, with our approach, less number of iterations is generally enough. In order to

make sure that the resulting modularity values of the algorithms with and without our

approach are equal, we made the iterations stop when the modularity value is reached

to a specified value. We modified the modularity optimizer and added 3 parameters

in order to give it the ability to be dynamic. These 3 parameters are described below:

1. Is dynamic

This parameter determines whether the modularity optimizer is going to be run

in the dynamic mode or not.

2. Initial community ids

This is meaningful if the dynamic mode is on. It is the file that is going to be

fed to "initialize communities" procedure.

3. Expected modularity value

The algorithm stops the iterations, whenever the modularity value is reached to

this parameter.

Briefly, we modified the modularity optimizer that is offered by Waltman and Van

Eck to run dynamically if the above parameters are set. Thus, large networks can be

analyzed by the modified modularity optimizer dynamically, since the running time

is decreased by the modification we described above.
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Figure 4.1: Pseudocode of Louvain Algorithm [48]
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Figure 4.2: Pseudocode of LMR Algorithm [48]
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Figure 4.3: Pseudocode of SLM Algorithm [48]
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CHAPTER 5

PREPROCESS

This report is conducted on the call detail record (CDR) data which includes the

records of GPRS, SMS and calls made in Ankara within a month. This data is given

to Middle Eastern Technical University for academic research purposes by a GSM

operator. Let us explain the format of the CDR data over an example as shown below.

Example record:

5971,d821f2fd2efb1ad369bcd41413cda3d5,42,23543,

26e5a5b2f1e8b5425b5b075b873737c5,06,20120929,191852,mmo„33

Every piece of data in the record is delimited by a comma as seen in the example.

5971 is the cell base station id of our GSM operator’s customer.

d821f2fd2efb1ad369bcd41413cda3d5 is the hashed version of the phone number

of our GSM operator’s customer.

42 is the plate code of the city number of our GSM operator’s customer.

23543 is the cell base station id of other GSM operator’s customer.

26e5a5b2f1e8b5425b5b075b873737c5 is the hashed version of the phone number

of other GSM operator’s customer.

06 is the plate code of the city number of other GSM operator’s customer.

20120929 is the call date which is translated as 29th September 2012.

191852 is the call time that is translated as 19:18:52.

31



mmo is the CDR type which means that d821f2fd2efb1ad369bcd41413cda3d5 calls

26e5a5b2f1e8b5425b5b075b873737c5.

mmt is also a CDR type. If it was mmt instead of mmo in this record, it would mean

that 26e5a5b2f1e8b5425b5b075b873737c5 calls d821f2fd2efb1ad369bcd41413cda3d5.

So, mmo and mmt determine the direction of the call.

33 is the duration of the call in seconds.

There are 297,009,183 such call records in the CDR data. We constructed a graph

from these records. In the constructed graph, the vertices represent the hashed num-

bers of the members; in a way they represent the members of the GSM network.

The edges in the graph represent the relations between the members. The weight of

an edge represents the number of calls made between the members which place at

the end points of the edge. For instance, if number x calls number y z times in the

analyzed data, then the number of calls graph of analyzed data includes an edge be-

tween x and y with weight z. The resulting graph has 12,521,352 nodes, 56,316,192

edges, and approximately 3.8 GB space on disk. In other words, we see that there

are 12,521,352 people talks to each other by phone and there are 56,316,192 phone

call relations in Ankara. At this point an example record in the constructed graph is

shown below:

00000003412c765ebe443f278e3efde1 61a3cd5af19cbd27562b2bcc82a7ee0d 3

00000003412c765ebe443f278e3efde1 calls 61a3cd5af19cbd27562b2bcc82a7ee0d 3

times. There are 56 million 316 thousand 191 more records like this in the network

file.

After having the graph constructed as described above, we decided to assign an inte-

ger to the hashed numbers in order to decrease the size of the file on disk. We assign

an integer value starting from 0 to every distinct hashed number and change the val-

ues on the graph. Moreover, we produced a new file in order to store the information

that which integer value is assigned to which hashed number. After this process, we

now have a directed and weighted graph file whose size is approximately 1 GB, and

an integer value hashed number match information file whose size is 514 MB.
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We do not actually need to know the direction of the call in order to detect the commu-

nities in the network. Therefore, we converted the network to an undirected network

in two steps described as follows:

1. We read all the records in the graph file and construct a map which contains

number pairs such as “number1 number2” as key and weights (number of times

number1 calls number2) as value.

2. For each entry in the map do following steps:

(a) We get the key such as “number1 number2” and reverse it to be “number2

number1”.

(b) Ask for if there is any entry whose key is this reversed version.

(c) If there is an entry, we get the value of that entry and sum it with the value

of the entry which we are currently on. Then, write the key of the entry

which we are currently on and produced sum to the undirected graph file.

(d) If there is not an entry with the reversed version, we just write the key and

value pair of the entry which we are currently on to the undirected graph

file.

(e) We remove the processed map entries.

For instance, if number1 calls number2 3 times and number2 calls number1 6 times,

the resulting undirected graph file contains a record like number1 number2 9 which

means that number1 and number2 is related with weight 9. The resulting undirected

graph has 12,521,352 nodes, 44,768,912 edges, and approximately 0.8 GB space on

disk.

The base community detection algorithms that we are going to work on this thesis

are implemented in the modularity optimizer that is proposed by Waltman and Van

Eck. The modularity optimizer asks you to provide the name of an input file which

contains the graph. The input file is a simple tab-delimited text file listing all pairs of

nodes in a network that are connected by an edge. The numbering of nodes starts at

0. For each pair of nodes, the node with the lower index is listed first, followed by

the node with the higher index. The lines in an input file are sorted based on the node
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indices (first based on the indices in the first column, then based on the indices in the

second column). [48] In the case of a weighted network, edge weights are provided

in a third column.

In order to convert our undirected and weighted graph file to an input file that can

be fed to the modularity optimizer, we sorted our graph file by first constructing a

map, then writing the entries of the constructed map to a file that is going to be fed

to the modularity optimizer. This was a rather challenging task than the previous

preprocessing steps because we needed to keep the weight information while sorting

the numbers in a way that the modularity optimizer wants as described above. We

found the solution in constructing a map which contains first number as key and an

inner map as value. Inner map contains second number as key and weight as value.

The type of the maps we used is TreeMap which is an implementation of a map

structure that keeps its entries sorted on their keys. Thus, our constructed map would

be sorted firstly based on first number (outer TreeMap key sort), then based on second

number (inner TreeMap key sort) just as wanted by the modularity optimizer. We read

our graph file and construct the map we defined above. Afterwards, we traverse the

entries in this constructed map and write firstly the key, then inner maps key and value

as a record. Thus, we now have the sorted undirected and weighted graph file that can

be fed to the modularity optimizer. This file has 12,521,352 nodes and 44,768,912

edges(lines).

We created following files and run the related experiments on them:

network 9,000,000: contains first 9,000,000 edges(lines) of whole network.

network 9,900,000: contains first 9,900,000 edges(lines) of whole network.

network 9,990,000: contains first 9,990,000 edges(lines) of whole network.

network 9,999,000: contains first 9,999,000 edges(lines) of whole network.

network 10,000,000: contains first 10,000,000 edges(lines) of whole network.

network 10,001,000: contains first 10,001,000 edges(lines) of whole network.

network 10,010,000: contains first 10,010,000 edges(lines) of whole network.
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network 10,100,000: contains first 10,100,000 edges(lines) of whole network.

network 11,000,000: contains first 11,000,000 edges(lines) of whole network.

network 19,000,000: contains first 19,000,000 edges(lines) of whole network.

network 19,900,000: contains first 19,900,000 edges(lines) of whole network.

network 19,990,000: contains first 19,990,000 edges(lines) of whole network.

network 19,999,000: contains first 19,999,000 edges(lines) of whole network.

network 20,000,000: contains first 20,000,000 edges(lines) of whole network.

network 20,001,000: contains first 20,001,000 edges(lines) of whole network.

network 20,010,000: contains first 20,010,000 edges(lines) of whole network.

network 20,100,000: contains first 20,100,000 edges(lines) of whole network.

network 21,000,000: contains first 21,000,000 edges(lines) of whole network.
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CHAPTER 6

EXPERIMENTS & RESULTS

6.1 Experiments on Louvain Algorithm in SMO & DMO

6.1.1 The size of the base network: 10,000,000 Edges

We run the Louvain algorithm on network 10,000,000 with one random start and ten

iterations parameters. The algorithm converged in 4 iterations and produced a com-

munity structure which has 0.8887 modularity value in 40 seconds and 969 millisec-

onds. We called the output file that contains communities as communities 10,000,000

for the future use of it. We need this file in order to feed the dynamic Louvain algo-

rithm. In order to measure the effects of our contribution to the Louvain algorithm

implemented in the static modularity optimizer, we run both static and dynamic Lou-

vain algorithms on same networks and compare results.

6.1.1.1 Additions

We run the static Louvain algorithm on network 10,001,000, network 10,010,000,

network 10,100,000, network 11,000,000 with one random start and ten iterations

parameters. The results are shown in Table 6.1.

We run the dynamic Louvain algorithm on network 10,001,000, network 10,010,000,

network 10,100,000, network 11,000,000 with one random start and ten iterations

parameters by using communities 10,000,000 file as the starting point. The results

are shown in Table 6.2.
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Table 6.1: Louvain Algorithm in SMO (Base: 10,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 4 0.8889 49 secs 23 millisecs
10,000 4 0.8888 48 secs 638 millisecs
100,000 4 0.8881 41 secs 70 millisecs
1,000,000 4 0.8830 54 secs 727 millisecs

Table 6.2: Louvain Algorithm in DMO (Base: 10,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 3 0.8887 14 secs 510 millisecs
10,000 3 0.8886 16 secs 781 millisecs
100,000 3 0.8873 18 secs 476 millisecs
1,000,000 3 0.8758 23 secs 26 millisecs

The results indicate that there is almost no loss in the quality of the community detec-

tion with respect to modularity values; however, the dynamic implementation reduces

the running time by at least over than 56 % as shown in Table 6.3.

Table 6.3: DMO Effects to Louvain Algorithm (Base: 10,000,000 Edges, Addition)

# of Edges Added Change in Modularity Value Change in Running Time
1,000 0.02% decreased 71% decreased
10,000 0.02% decreased 66% decreased
100,000 0.09% decreased 56% decreased
1,000,000 0.81% decreased 57% decreased

6.1.1.2 Deletions

We run the static Louvain algorithm on network 9,999,000, network 9,990,000, net-

work 9,900,000, network 9,000,000 with one random start and ten iterations parame-

ters. The results are shown in Table 6.4.

We run the dynamic Louvain algorithm on network 9,999,000, network 9,990,000,

network 9,900,000, network 9,000,000 with one random start and ten iterations pa-

rameters by using communities 10,000,000 file as the starting point. The results are

shown in Table 6.5.
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Table 6.4: Louvain Algorithm in SMO (Base: 10,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 4 0.8888 52 secs 225 millisecs
10,000 4 0.8889 43 secs 624 millisecs
100,000 4 0.8895 50 secs 187 millisecs
1,000,000 4 0.8953 41 secs 300 millisecs

Table 6.5: Louvain Algorithm in DMO (Base: 10,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 2 0.8887 8 secs 77 millisecs
10,000 3 0.8888 15 secs 163 millisecs
100,000 3 0.8892 16 secs 968 millisecs
1,000,000 3 0.8931 16 secs 455 millisecs

The results indicate that there is almost no loss in the quality of the community detec-

tion with respect to modularity values; however, the dynamic implementation reduces

the running time by at least over than 61 % as shown in Table 6.6.

Table 6.6: DMO Effects to Louvain Algorithm (Base: 10,000,000 Edges, Deletion)

# of Edges Deleted Change in Modularity Value Change in Running Time
1,000 0.01% decreased 84% decreased
10,000 0.01% decreased 65% decreased
100,000 0.03% decreased 66% decreased
1,000,000 0.24% decreased 61% decreased

6.1.2 The size of the base network: 20,000,000 Edges

We run the Louvain algorithm on network 20,000,000 with one random start and

ten iterations parameters. The algorithm converged in 4 iterations and produced a

community structure which has 0.8465 modularity value in 1 minute 58 seconds and

127 milliseconds. We called the output file that contains communities as communities

20,000,000 for the future use of it.
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6.1.2.1 Additions

We run the static Louvain algorithm on network 20,001,000, network 20,010,000,

network 20,100,000, network 21,000,000 with one random start and ten iterations

parameters. The results are shown in Table 6.7.

Table 6.7: Louvain Algorithm in SMO (Base: 20,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 4 0.8467 2 mins 50 millisecs
10,000 4 0.8466 1 min 45 secs 244 millisecs
100,000 4 0.8463 2 mins 19 secs 552 millisecs
1,000,000 4 0.8439 2 mins 26 secs 651 millisecs

We run the dynamic Louvain algorithm on network 20,001,000, network 20,010,000,

network 20,100,000, network 21,000,000 with one random start and ten iterations

parameters by using communities 20,000,000 file as the starting point. The results

are shown in Table 6.8.

Table 6.8: Louvain Algorithm in DMO (Base: 20,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 3 0.8465 24 secs 248 millisecs
10,000 3 0.8465 28 secs 409 millisecs
100,000 3 0.8459 35 secs 630 millisecs
1,000,000 3 0.8405 41 secs 97 millisecs

The results indicate that there is almost no loss in the quality of the community detec-

tion with respect to modularity values; however, the dynamic implementation reduces

the running time by at least over than 71 % as shown in Table 6.9.

Table 6.9: DMO Effects to Louvain Algorithm (Base: 20,000,000 Edges, Addition)

# of Edges Added Change in Modularity Value Change in Running Time
1,000 0.02% decreased 80% decreased
10,000 0.01% decreased 73% decreased
100,000 0.04% decreased 75% decreased
1,000,000 0.40% decreased 71% decreased
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6.1.2.2 Deletions

We run the static Louvain algorithm on network 19,999,000, network 19,990,000,

network 19,900,000, network 19,000,000 with one random start and ten iterations

parameters. The results are shown in Table 6.10.

Table 6.10: Louvain Algorithm in SMO (Base: 20,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 4 0.8466 1 min 52 secs 461 millisecs
10,000 4 0.8466 2 min 5 secs 345 millisecs
100,000 4 0.8468 1 min 52 secs 619 millisecs
1,000,000 4 0.8498 1 min 47 secs 752 millisecs

We run the dynamic Louvain algorithm on network 19,999,000, network 19,990,000,

network 19,900,000, network 19,000,000 with one random start and ten iterations

parameters by using communities 20,000,000 file as the starting point. The results

are shown in Table 6.11.

Table 6.11: Louvain Algorithm in DMO (Base: 20,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 2 0.8465 15 secs 303 millisecs
10,000 2 0.8465 20 secs 161 millisecs
100,000 3 0.8467 31 secs 800 millisecs
1,000,000 3 0.8483 31 secs 420 millisecs

The results indicate that there is almost no loss in the quality of the community detec-

tion with respect to modularity values; however, the dynamic implementation reduces

the running time by at least over than 71 % as shown in Table 6.12.

Table 6.12: DMO Effects to Louvain Algorithm (Base: 20,000,000 Edges, Deletion)

# of Edges Deleted Change in Modularity Value Change in Running Time
1,000 0.01% decreased 86% decreased
10,000 0.01% decreased 84% decreased
100,000 0.01% decreased 71% decreased
1,000,000 0.17% decreased 71% decreased
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6.2 Experiments on LMR Algorithm in SMO & DMO

6.2.1 The size of the base network: 10,000,000 Edges

We run the LMR algorithm on network 10,000,000 with one random start and ten it-

erations parameters. The algorithm converged in 3 iterations and produced a commu-

nity structure which has 0.8887 modularity value in 42 seconds and 325 milliseconds.

We called the output file that contains communities as communities 10,000,000 for

the future use of it. We need this file in order to feed the dynamic LMR algorithm. In

order to measure the effects of our contribution to the LMR algorithm implemented

in the static modularity optimizer, we run both static and dynamic LMR algorithms

on same networks and compare results.

6.2.1.1 Additions

We run the static LMR algorithm on network 10,001,000, network 10,010,000, net-

work 10,100,000, network 11,000,000 with one random start and ten iterations pa-

rameters. The results are shown in Table 6.13.

Table 6.13: LMR Algorithm in SMO (Base: 10,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 3 0.8889 49 secs 331 millisecs
10,000 3 0.8888 51 secs 231 millisecs
100,000 3 0.8881 42 secs 499 millisecs
1,000,000 3 0.8830 56 secs 973 millisecs

We run the dynamic LMR algorithm on network 10,001,000, network 10,010,000,

network 10,100,000, network 11,000,000 with one random start and ten iterations

parameters by using communities 10,000,000 file as the starting point. The results

are shown in Table 6.14.

The results indicate that there is almost no loss in the quality of the community detec-

tion with respect to modularity values; however, the dynamic implementation reduces

the running time by at least over than 50 % as shown in Table 6.15.
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Table 6.14: LMR Algorithm in DMO (Base: 10,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 2 0.8887 13 secs 871 millisecs
10,000 2 0.8886 16 secs 146 millisecs
100,000 2 0.8873 17 secs 814 millisecs
1,000,000 3 0.8758 27 secs 397 millisecs

Table 6.15: DMO Effects to LMR Algorithm (Base: 10,000,000 Edges, Addition)

# of Edges Added Change in Modularity Value Change in Running Time
1,000 0.02% decreased 73% decreased
10,000 0.02% decreased 68% decreased
100,000 0.09% decreased 59% decreased
1,000,000 0.81% decreased 51% decreased

6.2.1.2 Deletions

We run the static LMR algorithm on network 9,999,000, network 9,990,000, network

9,900,000, network 9,000,000 with one random start and ten iterations parameters.

The results are shown in Table 6.16.

Table 6.16: LMR Algorithm in SMO (Base: 10,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 3 0.8888 58 secs 325 millisecs
10,000 3 0.8889 48 secs 572 millisecs
100,000 3 0.8895 54 secs 552 millisecs
1,000,000 3 0.8953 44 secs 98 millisecs

We run the dynamic LMR algorithm on network 9,999,000, network 9,990,000, net-

work 9,900,000, network 9,000,000 with one random start and ten iterations parame-

ters by using communities 10,000,000 file as the starting point. The results are shown

in Table 6.17.

The results indicate that there is almost no loss in the quality of the community detec-

tion with respect to modularity values; however, the dynamic implementation reduces

the running time by at least over than 63 % as shown in Table 6.18.
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Table 6.17: LMR Algorithm in DMO (Base: 10,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 2 0.8887 8 secs 225 millisecs
10,000 2 0.8888 14 secs 522 millisecs
100,000 2 0.8892 16 secs 554 millisecs
1,000,000 2 0.8931 16 secs 7 millisecs

Table 6.18: DMO Effects to LMR Algorithm (Base: 10,000,000 Edges, Deletion)

# of Edges Deleted Change in Modularity Value Change in Running Time
1,000 0.01% decreased 86% decreased
10,000 0.01% decreased 70% decreased
100,000 0.03% decreased 70% decreased
1,000,000 0.24% decreased 63% decreased

6.2.2 The size of the base network: 20,000,000 Edges

We run the LMR algorithm on network 20,000,000 with one random start and ten

iterations parameters. The algorithm converged in 3 iterations and produced a com-

munity structure which has 0.8465 modularity value in 2 minute 453 milliseconds.

We called the output file that contains communities as communities 20,000,000 for

the future use of it.

6.2.2.1 Additions

We run the static LMR algorithm on network 20,001,000, network 20,010,000, net-

work 20,100,000, network 21,000,000 with one random start and ten iterations pa-

rameters. The results are shown in Table 6.19.

Table 6.19: LMR Algorithm in SMO (Base: 20,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 3 0.8467 2 mins 2 secs 301 millisecs
10,000 3 0.8466 1 min 46 secs 853 millisecs
100,000 3 0.8463 2 mins 21 secs 973 millisecs
1,000,000 3 0.8439 2 mins 30 secs 160 millisecs

We run the dynamic LMR algorithm on network 20,001,000, network 20,010,000,
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network 20,100,000, network 21,000,000 with one random start and ten iterations

parameters by using communities 20,000,000 file as the starting point. The results

are shown in Table 6.20.

Table 6.20: LMR Algorithm in DMO (Base: 20,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 2 0.8465 23 secs 427 millisecs
10,000 2 0.8465 27 secs 561 millisecs
100,000 2 0.8459 34 secs 937 millisecs
1,000,000 2 0.8405 40 secs 352 millisecs

The results indicate that there is almost no loss in the quality of the community detec-

tion with respect to modularity values; however, the dynamic implementation reduces

the running time by at least over than 72 % as shown in Table 6.21.

Table 6.21: DMO Effects to LMR Algorithm (Base: 20,000,000 Edges, Addition)

# of Edges Added Change in Modularity Value Change in Running Time
1,000 0.02% decreased 81% decreased
10,000 0.01% decreased 75% decreased
100,000 0.04% decreased 75% decreased
1,000,000 0.40% decreased 73% decreased

6.2.2.2 Deletions

We run the static LMR algorithm on network 19,999,000, network 19,990,000, net-

work 19,900,000, network 19,000,000 with one random start and ten iterations pa-

rameters. The results are shown in Table 6.22.

Table 6.22: LMR Algorithm in SMO (Base: 20,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 3 0.8466 1 min 47 secs 609 millisecs
10,000 3 0.8466 2 mins 4 secs 317 millisecs
100,000 3 0.8468 1 min 47 secs 733 millisecs
1,000,000 3 0.8498 1 min 40 secs 574 millisecs

We run the dynamic LMR algorithm on network 19,999,000, network 19,990,000,

network 19,900,000, network 19,000,000 with one random start and ten iterations
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parameters by using communities 20,000,000 file as the starting point. The results

are shown in Table 6.23.

Table 6.23: LMR Algorithm in DMO (Base: 20,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 2 0.8465 14 secs 721 millisecs
10,000 2 0.8465 20 secs
100,000 2 0.8467 30 secs 389 millisecs
1,000,000 2 0.8483 30 secs

The results indicate that there is almost no loss in the quality of the community detec-

tion with respect to modularity values; however, the dynamic implementation reduces

the running time by at least over than 70 % as shown in Table 6.24.

Table 6.24: DMO Effects to LMR Algorithm (Base: 20,000,000 Edges, Deletion)

# of Edges Deleted Change in Modularity Value Change in Running Time
1,000 0.01% decreased 87% decreased
10,000 0.01% decreased 84% decreased
100,000 0.01% decreased 72% decreased
1,000,000 0.17% decreased 70% decreased

6.3 Experiments on SLM Algorithm in SMO & DMO

6.3.1 The size of the base network: 10,000,000 Edges

We run the SLM algorithm on network 10,000,000 with one random start and ten

iterations parameters. The algorithm converged in 10 iterations and produced a com-

munity structure which has 0.8906 modularity value in 1 minute 56 seconds and 949

milliseconds. We called the output file that contains communities as communities

10,000,000 for the future use of it. We need this file in order to feed the dynamic

SLM algorithm. In order to measure the effects of our contribution to the SLM algo-

rithm implemented in the static modularity optimizer, we run both static and dynamic

SLM algorithms on same networks and compare results.
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6.3.1.1 Additions

We run the static SLM algorithm on network 10,001,000, network 10,010,000, net-

work 10,100,000, network 11,000,000 with one random start and ten iterations pa-

rameters. The results are shown in Table 6.25.

Table 6.25: SLM Algorithm in SMO (Base: 10,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 10 0.8906 2 mins 2 secs 444 millisecs
10,000 10 0.8906 2 mins 4 secs 576 millisecs
100,000 10 0.8900 2 mins 200 millisecs
1,000,000 10 0.8848 2 mins 15 secs 454 millisecs

We run the dynamic SLM algorithm on network 10,001,000, network 10,010,000,

network 10,100,000, network 11,000,000 with one random start and ten iterations

parameters by using communities 10,000,000 file as the starting point. The results

are shown in Table 6.26.

Table 6.26: SLM Algorithm in DMO (Base: 10,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 10 0.8906 1 min 29 secs 234 millisecs
10,000 10 0.8906 1 min 27 secs 678 millisecs
100,000 10 0.8900 1 min 36 secs 692 millisecs
1,000,000 10 0.8850 1 min 51 secs 228 millisecs

The results indicate that there is no loss, in one case a little gain, in the quality of

the community detection with respect to modularity values; however, the dynamic

implementation reduces the running time by at least over than 17 % as shown in

Table 6.27.

Table 6.27: DMO Effects to SLM Algorithm (Base: 10,000,000 Edges, Addition)

# of Edges Added Change in Modularity Value Change in Running Time
1,000 no change 27% decreased
10,000 no change 29% decreased
100,000 no change 20% decreased
1,000,000 0.02% increased 17% decreased

At these runs, we see that the dynamic algorithm may reach the modularity values
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that are resulted in static SLM algorithm runs in less than 10 iterations. Therefore,

we run the dynamic SLM algorithm on network 10,001,000, network 10,010,000,

network 10,100,000, network 11,000,000 with one random start and expected mod-

ularity value parameters dynamically by using communities 10,000,000 file as the

starting point. The results are shown in Table 6.28.

Table 6.28: SLM Algorithm in DMO with Expected Modularity Value Set (Base:
10,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 1 0.8906 10 secs 764 millisecs
10,000 5 0.8906 46 secs 455 millisecs
100,000 4 0.8900 42 secs 883 millisecs
1,000,000 2 0.8848 26 secs 988 millisecs

The results indicate that there is no loss in the quality of the community detection with

respect to modularity values; however, the dynamic implementation with the expected

modularity value set to the result of static SLM algorithm reduces the running time

by at least over than 63 % as shown in Table 6.29.

Table 6.29: Effects of DMO with Expected Modularity Value to the SLM Algorithm
(Base: 10,000,000 Edges, Addition)

# of Edges Added Change in Modularity Value Change in Running Time
1,000 no change 91% decreased
10,000 no change 63% decreased
100,000 no change 64% decreased
1,000,000 no change 80% decreased

6.3.1.2 Deletions

We run the static SLM algorithm on network 9,999,000, network 9,990,000, network

9,900,000, network 9,000,000 with one random start and ten iterations parameters.

The results are shown in Table 6.30.

We run the dynamic SLM algorithm on network 9,999,000, network 9,990,000, net-

work 9,900,000, network 9,000,000 with one random start and ten iterations parame-

ters by using communities 10,000,000 file as the starting point. The results are shown

in Table 6.31.
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Table 6.30: SLM Algorithm in SMO (Base: 10,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 10 0.8906 2 mins 19 secs 923 millisecs
10,000 10 0.8907 1 min 54 secs 157 millisecs
100,000 10 0.8912 1 min 57 secs 905 millisecs
1,000,000 10 0.8969 1 min 41 secs 557 millisecs

Table 6.31: SLM Algorithm in DMO (Base: 10,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 10 0.8906 1 min 25 secs 925 millisecs
10,000 10 0.8907 1 min 23 secs 40 millisecs
100,000 10 0.8913 1 min 29 secs 420 millisecs
1,000,000 10 0.8970 1 min 25 secs 130 millisecs

The results indicate that there is no loss, in two cases a little gain, in the quality

of the community detection with respect to modularity values; however, the dynamic

implementation reduces the running time by at least over than 16 % as shown in Table

6.32.

Table 6.32: DMO Effects to SLM Algorithm (Base: 10,000,000 Edges, Deletion)

# of Edges Deleted Change in Modularity Value Change in Running Time
1,000 no change 38% decreased
10,000 no change 27% decreased
100,000 0.01% increased 24% decreased
1,000,000 0.01% increased 16% decreased

At these runs, we see that the dynamic algorithm may reach the modularity values

that are resulted in static SLM algorithm runs in less than 10 iterations. Therefore, we

run the dynamic SLM algorithm on network 9,999,000, network 9,990,000, network

9,900,000, network 9,000,000 with one random start and expected modularity value

parameters dynamically by using communities 10,000,000 file as the starting point.

The results are shown in Table 6.33.

The results indicate that there is no loss in the quality of the community detection with

respect to modularity values; however, the dynamic implementation with the expected

modularity value set to the result of static SLM algorithm reduces the running time
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Table 6.33: SLM Algorithm in DMO with Expected Modularity Value Set (Base:
10,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 1 0.8906 11 secs 120 millisecs
10,000 5 0.8907 43 secs 968 millisecs
100,000 1 0.8912 10 secs 774 millisecs
1,000,000 2 0.8969 19 secs 996 millisecs

by at least over than 61 % as shown in Table 6.34.

Table 6.34: Effects of DMO with Expected Modularity Value to the SLM Algorithm
(Base: 10,000,000 Edges, Deletion)

# of Edges Deleted Change in Modularity Value Change in Running Time
1,000 no change 92% decreased
10,000 no change 61% decreased
100,000 no change 91% decreased
1,000,000 no change 80% decreased

6.3.2 The size of the base network: 20,000,000 Edges

We run the SLM algorithm on network 20,000,000 with one random start and ten

iterations parameters. The algorithm converged in 10 iterations and produced a com-

munity structure which has 0.8494 modularity value in 4 minutes 28 seconds and 183

milliseconds. We called the output file that contains communities as communities

20,000,000 for the future use of it.

6.3.2.1 Additions

We run the static SLM algorithm on network 20,001,000, network 20,010,000, net-

work 20,100,000, network 21,000,000 with one random start and ten iterations pa-

rameters. The results are shown in Table 6.35.

We run the dynamic SLM algorithm on network 20,001,000, network 20,010,000,

network 20,100,000, network 21,000,000 with one random start and ten iterations

parameters by using communities 20,000,000 file as the starting point. The results

are shown in Table 6.36.
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Table 6.35: SLM Algorithm in SMO (Base: 20,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 10 0.8494 5 mins 27 secs 435 millisecs
10,000 10 0.8494 4 mins 43 secs 312 millisecs
100,000 10 0.8492 5 mins 38 secs 982 millisecs
1,000,000 10 0.8467 5 mins 18 secs 539 millisecs

Table 6.36: SLM Algorithm in DMO (Base: 20,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 10 0.8495 3 mins 18 secs 319 millisecs
10,000 10 0.8495 3 mins 11 secs 539 millisecs
100,000 10 0.8493 3 mins 27 secs 473 millisecs
1,000,000 10 0.8469 3 mins 38 secs 299 millisecs

The results indicate that there is no loss and a little gain in all cases in the quality

of the community detection with respect to modularity values; however, the dynamic

implementation reduces the running time by at least over than 31 % as shown in Table

6.37.

Table 6.37: DMO Effects to SLM Algorithm (Base: 20,000,000 Edges, Addition)

# of Edges Added Change in Modularity Value Change in Running Time
1,000 0.01% increased 39% decreased
10,000 0.01% increased 32% decreased
100,000 0.01% increased 38% decreased
1,000,000 0.02% increased 31% decreased

At these runs, we see that the dynamic algorithm may reach the modularity values

that are resulted in static SLM algorithm runs in less than 10 iterations. Therefore,

we run the dynamic SLM algorithm on network 20,001,000, network 20,010,000,

network 20,100,000, network 21,000,000 with one random start and expected mod-

ularity value parameters dynamically by using communities 20,000,000 file as the

starting point. The results are shown in Table 6.38.

The results indicate that there is no loss, in one case a little gain, in the quality of

the community detection with respect to modularity values; however, the dynamic

implementation with the expected modularity value set to the result of static SLM
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Table 6.38: SLM Algorithm in DMO with Expected Modularity Value Set (Base:
20,000,000 Edges, Addition)

# of Edges
Added

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 1 0.8494 18 secs 676 millisecs
10,000 1 0.8494 22 secs 609 millisecs
100,000 1 0.8492 22 secs 365 millisecs
1,000,000 2 0.8468 50 secs 783 millisecs

algorithm reduces the running time by at least over than 84 % as shown in Table 6.39.

Table 6.39: Effects of DMO with Expected Modularity Value to the SLM Algorithm
(Base: 20,000,000 Edges, Addition)

# of Edges Added Change in Modularity Value Change in Running Time
1,000 no change 94% decreased
10,000 no change 92% decreased
100,000 no change 93% decreased
1,000,000 0.01% increased 84% decreased

6.3.2.2 Deletions

We run the static SLM algorithm on network 19,999,000, network 19,990,000, net-

work 19,900,000, network 19,000,000 with one random start and ten iterations pa-

rameters. The results are shown in Table 6.40.

Table 6.40: SLM Algorithm in SMO (Base: 20,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 10 0.8494 4 mins 26 secs 590 millisecs
10,000 10 0.8494 4 mins 35 secs 30 millisecs
100,000 10 0.8497 4 mins 38 secs 470 millisecs
1,000,000 10 0.8524 4 mins 29 secs 429 millisecs

We run the dynamic SLM algorithm on network 19,999,000, network 19,990,000,

network 19,900,000, network 19,000,000 with one random start and ten iterations

parameters by using communities 20,000,000 file as the starting point. The results

are shown in Table 6.41.

The results indicate that there is no loss and a little gain in all cases in the quality

of the community detection with respect to modularity values; however, the dynamic
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Table 6.41: SLM Algorithm in DMO (Base: 20,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 10 0.8496 3 mins 9 secs 434 millisecs
10,000 10 0.8496 3 mins 8 secs 998 millisecs
100,000 10 0.8498 3 mins 10 secs 988 millisecs
1,000,000 10 0.8527 3 mins 9 secs 989 millisecs

implementation reduces the running time by at least over than 29 % as shown in Table

6.42.

Table 6.42: DMO Effects to SLM Algorithm (Base: 20,000,000 Edges, Deletion)

# of Edges Deleted Change in Modularity Value Change in Running Time
1,000 0.02% increased 29% decreased
10,000 0.02% increased 36% decreased
100,000 0.01% increased 31% decreased
1,000,000 0.03% increased 29% decreased

At these runs, we see that the dynamic algorithm may reach the modularity values

that are resulted in static SLM algorithm runs in less than 10 iterations. Therefore,

we run the dynamic SLM algorithm on network 19,999,000, network 19,990,000,

network 19,900,000, network 19,000,000 with one random start and expected mod-

ularity value parameters dynamically by using communities 20,000,000 file as the

starting point. The results are shown in Table 6.43.

Table 6.43: SLM Algorithm in DMO with Expected Modularity Value Set (Base:
20,000,000 Edges, Deletion)

# of Edges
Deleted

# of Iterations to
Converge

Modularity
Value

Running Time

1,000 1 0.8495 18 secs 876 millisecs
10,000 1 0.8495 19 secs 625 millisecs
100,000 1 0.8497 20 secs 967 millisecs
1,000,000 1 0.8524 21 secs 138 millisecs

The results indicate that there is no loss, in two cases a little gain, in the quality of

the community detection with respect to modularity values; however, the dynamic

implementation with the expected modularity value set to the result of static SLM

algorithm reduces the running time by at least over than 92 % as shown in Table 6.44.

Our overall contribution to SMO is demonstrated in Table 6.45 and Table 6.46.
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Table 6.44: Effects of DMO with Expected Modularity Value to the SLM Algorithm
(Base: 20,000,000 Edges, Deletion)

# of Edges Deleted Change in Modularity Value Change in Running Time
1,000 0.01% increased 93% decreased
10,000 0.01% increased 93% decreased
100,000 no change 92% decreased
1,000,000 no change 92% decreased

6.4 Implementation Notes

We conducted our experiments on a machine whose processor is Intel(R) Core(TM)

i5-2400 running Windows 7 Professional 64-bit Operating System. The machine is

clocked at 3.10 GHz, has 4 cores, 8 GB of RAM and 256 GB of SSD. Our algorithms

and measures are implemented in Java 1.7.0 25.
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Table 6.45: Overall contribution of DMO with respect to additions

Algorithm Base (# of
Edges)

# of Edges
Added

Change in Modu-
larity Value

Change in Run-
ning Time

Louvain 10,000,000 1,000 0.02% decreased 71% decreased
Louvain 10,000,000 10,000 0.02% decreased 66% decreased
Louvain 10,000,000 100,000 0.09% decreased 56% decreased
Louvain 10,000,000 1,000,000 0.81% decreased 57% decreased
Louvain 20,000,000 1,000 0.02% decreased 80% decreased
Louvain 20,000,000 10,000 0.01% decreased 73% decreased
Louvain 20,000,000 100,000 0.04% decreased 75% decreased
Louvain 20,000,000 1,000,000 0.40% decreased 71% decreased
LMR 10,000,000 1,000 0.02% decreased 73% decreased
LMR 10,000,000 10,000 0.02% decreased 68% decreased
LMR 10,000,000 100,000 0.09% decreased 59% decreased
LMR 10,000,000 1,000,000 0.81% decreased 51% decreased
LMR 20,000,000 1,000 0.02% decreased 81% decreased
LMR 20,000,000 10,000 0.01% decreased 75% decreased
LMR 20,000,000 100,000 0.04% decreased 75% decreased
LMR 20,000,000 1,000,000 0.40% decreased 73% decreased
SLM 10,000,000 1,000 no change 27% decreased
SLM 10,000,000 10,000 no change 29% decreased
SLM 10,000,000 100,000 no change 20% decreased
SLM 10,000,000 1,000,000 0.02% increased 17% decreased
SLM 20,000,000 1,000 0.01% increased 39% decreased
SLM 20,000,000 10,000 0.01% increased 32% decreased
SLM 20,000,000 100,000 0.01% increased 38% decreased
SLM 20,000,000 1,000,000 0.02% increased 31% decreased
SLMEVS 10,000,000 1,000 no change 91% decreased
SLMEVS 10,000,000 10,000 no change 63% decreased
SLMEVS 10,000,000 100,000 no change 64% decreased
SLMEVS 10,000,000 1,000,000 no change 80% decreased
SLMEVS 20,000,000 1,000 no change 94% decreased
SLMEVS 20,000,000 10,000 no change 92% decreased
SLMEVS 20,000,000 100,000 no change 93% decreased
SLMEVS 20,000,000 1,000,000 0.01% increased 84% decreased
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Table 6.46: Overall contribution of DMO with respect to deletions

Algorithm Base (# of
Edges)

# of Edges
Deleted

Change in Modu-
larity Value

Change in Run-
ning Time

Louvain 10,000,000 1,000 0.01% decreased 84% decreased
Louvain 10,000,000 10,000 0.01% decreased 65% decreased
Louvain 10,000,000 100,000 0.03% decreased 66% decreased
Louvain 10,000,000 1,000,000 0.24% decreased 61% decreased
Louvain 20,000,000 1,000 0.01% decreased 86% decreased
Louvain 20,000,000 10,000 0.01% decreased 84% decreased
Louvain 20,000,000 100,000 0.01% decreased 71% decreased
Louvain 20,000,000 1,000,000 0.17% decreased 71% decreased
LMR 10,000,000 1,000 0.01% decreased 86% decreased
LMR 10,000,000 10,000 0.01% decreased 70% decreased
LMR 10,000,000 100,000 0.03% decreased 70% decreased
LMR 10,000,000 1,000,000 0.24% decreased 63% decreased
LMR 20,000,000 1,000 0.01% decreased 87% decreased
LMR 20,000,000 10,000 0.01% decreased 84% decreased
LMR 20,000,000 100,000 0.01% decreased 72% decreased
LMR 20,000,000 1,000,000 0.17% decreased 70% decreased
SLM 10,000,000 1,000 no change 38% decreased
SLM 10,000,000 10,000 no change 27% decreased
SLM 10,000,000 100,000 0.01% increased 24% decreased
SLM 10,000,000 1,000,000 0.01% increased 16% decreased
SLM 20,000,000 1,000 0.02% increased 29% decreased
SLM 20,000,000 10,000 0.02% increased 36% decreased
SLM 20,000,000 100,000 0.01% increased 31% decreased
SLM 20,000,000 1,000,000 0.03% increased 29% decreased
SLMEVS 10,000,000 1,000 no change 92% decreased
SLMEVS 10,000,000 10,000 no change 61% decreased
SLMEVS 10,000,000 100,000 no change 91% decreased
SLMEVS 10,000,000 1,000,000 no change 80% decreased
SLMEVS 20,000,000 1,000 0.01% increased 93% decreased
SLMEVS 20,000,000 10,000 0.01% increased 93% decreased
SLMEVS 20,000,000 100,000 no change 92% decreased
SLMEVS 20,000,000 1,000,000 no change 92% decreased
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CHAPTER 7

CONCLUSION

In this chapter, a summary of our approach is explained in the first section. Then,

the advantages and disadvantages of the results of our experiments are given in Dis-

cussion section. Finally, what can be done as future work is described in the last

section.

7.1 Summary of Conducted Approach

Waltman & Van Eck proposed and implemented a modularity optimizer in order to

detect communities in large networks in 2013. We extended their implementation to

define the community structure in a dynamic rather than static way. We made use

of the past calculation results of the static modularity optimizer in order to calculate

the current networks community structure. This usage is the main extension and

contribution to the static modularity optimizer. In the basics, it is what extends the

static modularity optimizer to be dynamic modularity optimizer.

Each node is initialized to be a singleton community in the static modularity opti-

mizer. We changed this initialization step so that each node is assigned to its com-

munity that is computed in the past results of the algorithm. If the node is new to

the particular network, its community is not computed yet; therefore, we initialize the

newly added nodes as they have their own singleton communities. This is how we

use the past results of community detection algorithms in order to extend them to be

incremental and dynamic.
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SMO runs the community detection algorithms iteratively until they converge. It

takes the number of iterations as a parameter before running the specified commu-

nity detection algorithm. Thus, it can stop running at the given iteration even if the

algorithm has not converged yet. In our experiments, we chose to compare the run-

ning time and resulting networks modularity values of SMO and DMO. Both SMO

and DMO take modularity function, resolution parameter, number of random starts,

number of iterations per random start and seed of the random number generator as

parameters. We decided to run both SMO and DMO with the same values assigned

to these parameters in order to have a fair comparison.

We chose the original modularity function that is defined by Newman and Girvan

in 2004 instead of alternative modularity function that is introduced by Traag, Van

Dooren, and Nesterov in 2011. We used 1.0 as the resolution parameter because the

value of 1.0 is for standard modularity-based community detection. The algorithm

results a larger number of communities, if resolution parameter value is set to be

above 1.0. Otherwise, it results a smaller number of communities. We set number of

random starts to be 1 and number of iterations per random start to be 10. We set seed

of the random number generator, which is used for determining the random order of

nodes to walk on, as 0.

In the experiments, Louvain and LMR algorithms converged before 10 iterations.

However, SLM algorithm did not converge and kept on increasing the modularity

value of the given network until 10 iterations. Then algorithm stopped running any-

more iterations. Some of the experiments of SLM algorithm resulted in modularity

increase. This leads us to think about how much running time would DMO need in

order to reach a modularity value same as SMO. In order to figure this out, we de-

cided to stop DMO whenever it reaches the modularity value of the network that is

partitioned by SMO. Therefore, we added a parameter that enables the algorithm to

stop when the given network has reached the expected modularity value, in addition

to number of iterations parameter. These two parameters enable the user to specify

an expected community structure in two different ways. The running time of DMO is

drastically decreased by setting the expected modularity value to the resulting modu-

larity value of SLM algorithm. Thus, the modularity value does not change; however,

the required time to analyze the network is decreased around 90 %. It can be inferred
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from these experiments of SLM that the expected value of modularity parameter can

be set if decrease in running time is more significant than the increase in modularity

value.

To sum up, we extended SMO to be incremental and dynamic by using the historical

results of community detection algorithms for the initial community assignments of

the nodes. Thus, the number of node movement actions tried to maximize the mod-

ularity value is decreased. This led to decrease in running time of the algorithms.

Moreover, it can lead to decrease in number of iterations to converge. Thus, if the

algorithms run with a constant number of iterations parameter, the modularity value

may result as increased.

7.2 Discussion

SMO and DMO both include 3 modularity based community detection algorithms

which are called as Louvain, LMR and SLM. We extended SLM to take expected

modularity values as parameter and called the new version as SLM with expected

modularity value set (SLMEVS). We made experiments on all these 4 algorithms.

Before conducting the experiments, we constructed the networks that are going to be

partitioned by the algorithms. These networks are extracted from the call data records

taken from a GSM company. These records contain the calls made by the users who

live in Ankara within a month. The experiments are firstly categorized by the size of

the base network that is going to be analyzed. We chose the sizes of the base networks

to analyze as 10,000,000 and 20,000,000. After this classification, as the second step,

we classify experiments on the network evolution method such as edge addition and

edge deletion. In each experiment, the number of the edges deleted or added can be

1,000 and 10,000 and 100,000 and 1,000,000. Thus, there are 4 ∗ 2 ∗ 2 ∗ 4 = 64

experiments conducted in total.

In SMO, in each iteration, nodes are moved among communities in order to construct

a partitioned network whose modularity value is optimum. The number of the node

movements in SMO can be quite high because it starts the first iteration assuming

each node has its own community which is very unlikely in the real network. How-
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ever, in DMO, reaching the optimum modularity value with the current version of

the network requires much less node movements in each iteration since the nodes

of previous version of the network are already assigned to communities such that

the community structure has the maximum modularity value and way more realistic.

Therefore, each iteration of Louvain and LMR algorithms requires much less number

of node movements and time in DMO than they are in SMO. Moreover, the experi-

ments that we made on Louvain and LMR algoirthms demonstrate that the algorithms

in DMO generally converges to the maximum modularity value in less iterations than

the algorithms in SMO. This can be explained by the fact that the algorithms in DMO

start the iterations with the advantage of historical data usage whereas the algorithms

in SMO start the iterations from scratch every time. Briefly, thanks to our contri-

bution, Louvain and LMR algorithms have 2 performance boosts. One of them is

that they require much less number of node movements in each iteration; thus the

time of each iteration is dramatically decreased. The second one is that they need

less number of iterations to converge the optimum modularity value as shown in the

experiments. Combining these 2 outcomes of our contribution to Louvain and LMR

algorithms, their overall running time, which is effected by the time of each iteration

and the total number of iterations, is dramatically decreased. This dramatic decrease

in running time of the algorithms can be seen all together in Table 6.45 and Table

6.46. In addition to the change in running times of the algorithms, these tables also

show the change in modularity values of the networks analyzed by the algorithms.

There are examples of the modularity values increased, not changed and decreased in

the experiments as seen in Table 6.45 and Table 6.46. The decreases in the modular-

ity values never cross the 1% boundary and usually much less than 1%. Considering

the amount of running time improvement, this very little amount of modularity value

decrease, only in some experiments, may easily be negligible.

It can be inferred from the experiments that the modularity values of the networks

that are analyzed by iterative Louvain and LMR algorithms are same under same

conditions. Furthermore, the overall running times of iterative Louvain and LMR al-

gorithms is very close to each other under same conditions. These inferences can be

understand by comparing for example Table 6.1 and Table 6.13 or Table 6.2 and Table

6.14. This situation is valid for both SMO and DMO and it can be seen as abnormal
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because it is known that LMR is the improved version of Louvain algorithm. An im-

portant factor to remind at this point is that SMO and DMO runs all its community

detection algorithms multiple times iteratively and each time is called as an iteration.

The number of iterations is given as parameter to both SMO and DMO. LMR algo-

rithm improves the Louvain algorithm by running extra local moving heuristic method

at the last stage of each recursion step. Thus, LMR algorithm partitions networks such

that they have greater modularity values compared to ones analyzed by Louvain algo-

rithm; nevertheless, its running time is also greater than Louvain algorithms running

time. In other words, LMR algorithm increases the quality of partitions whereas it

takes more time to run. When we run these algorithms iteratively by using SMO and

DMO, we realized that LMR algorithm converges in less iterations than Louvain al-

gorithm by comparing for example Table 6.1 and Table 6.13 or Table 6.2 and Table

6.14. It is because LMR gains more modularity value in each iteration than Louvain

and cannot survive from converging to the same modularity value. LMR converges in

less iteration; but, each iteration of LMR takes more time than each iteration of Lou-

vain. Therefore, these advantages and drawbacks of LMR algorithm against Louvan

algorithm compensate each other and make their results similar when they are run

iteratively.

SLM is not like Louvain and LMR algorithms with respect to the convergence. It

takes more number of iterations to converge for SLM algorithm, since SLM algorithm

seeks the modularity increase in more number of ways. Thus, each iteration of SLM

algorithm in the experiments resulted as modularity increase and did not converge

at least in 10 iterations in both SMO and DMO. However, both LMR and Louvain

algorithms do not have any run that lasts all 10 iterations. DMO cannot decrease

the number iterations of convergence of SLM, however, it decreases the number of

node movements needed in each iteration of SLM. This indicates that each iteration

of SLM runs faster in DMO than SMO. Therefore, overall running time of SLM de-

creases in DMO compared to SMO; nonetheless, this decrease is not as much as it was

in the experiments of Louvain and LMR algorithms. It is because of the fact that the

number of iterations to converge remains same in DMO and SMO for SLM whereas it

decrease for Louvain and LMR. In addition to little running time improvement, DMO

contributes to SLM algorithm in SMO by using historical data for community initial-
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ization and increasing the modularity values of the resulted networks. The overall

results can be seen in Table 6.45 and Table 6.46.

In order to be able to decrease the overall running time of SLM algorithm even more,

we added another parameter called expected modularity value that enables the algo-

rithm stop when it is reached. We named this kind of new algorithm as SLMEVS and

made same experiments on it with this new parameter set to the modularity value re-

sulted from SLM algorithm in SMO. By this new algorithm and parameter, we aimed

to decrease running time as much as possible while keeping the modularity value un-

changed or increased. We reached our aim and decreased running time drastically

and keep modularity value unchanged or increased as seen in Table 6.45 and Table

6.46.

7.3 Future Work

SMO and DMO are designed in such a way that they can be applied to all commu-

nity detection algorithms which can give better results when they are run iteratively.

However, we have only implemented three of these kinds of algorithms which are

Louvain, LMR and SLM algorithms. As one of the future works, new community

detection algorithms can be implemented in both SMO and DMO; thus, both static

and dynamic performances of these new algorithms when they are run iteratively can

be analyzed. Apart from extending the number of community detection algorithms

implemented, the data sets that the algorithms are experimented on can be extended

in order to get a better understanding on the performances of the implemented algo-

rithms. In this thesis work, we chose to experiment the algorithms on the graphs with

various sizes that are constructed by preprocessing a GSM networks CDR data. In

addition to GSM networks, the networks that are used in the paper [48] that intro-

duces SLM can be used in order to compare the results with them. They run Louvain,

LMR and SLM algorithms iteratively and statically on the networks such as Amazon,

DBLP, IMDB, LiveJournal and so on. DMO can also be experimented on all of these

networks in the future.
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