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ABSTRACT 

 

 
MODELLING PRECIPITATION DATA OF CERTAIN REGIONS FOR 

TURKEY VIA HIDDEN MARKOV MODELS 

 

 

 

Yaman, Nevin 

M.S, Department of Statistics 

Supervisor: Prof. Dr. İnci Batmaz 

Co-Supervisor: Assist.Prof.Dr. Ceylan Yozgatlıgil 

 

 

December 2014, 164 pages 

 

Estimation methods on climate changes have become increasingly popular in the 

world over the recent years. They are useful for making comments about the future 

by using the past data related to temperature and precipitation. Especially, 

precipitation models, which are usefull for forecasting and simulation purposes, 

play a crucial role in forecasting climate changes. Estimations of daily rainfall 

amounts and occurrences found by using precipitation models are commonly used 

to generate scenarios of runoff, drought, flood, and so on. 

 

The main purpose of this study is to estimate the daily occurrence of rainfall and 

the daily amount of rainfall. For this purpose, daily amount of rainfall data from 

nine stations located at East Black Sea Region, one of the wettest regions of 

Turkey; located at Central Anatolian Region, one of driest regions of Turkey and 
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Aegean Region, having a normal moisture climate in Turkey are modelled 

separately by using Hidden Markov Models (HMMs). HMMs are based on 

Markov Chains (MCs). The most suitable models are decided by comparing 

Akaike ınformation criterion (AIC), Bayesian ınformation criterion (BIC), mean 

square error (MSE) and misclassification (Error) rate (MR). It is observed that 

HMMs give good results for regions that has normal moisture climate compared 

with the wettest and driest region to estimate the daily precipitation occurrence. On 

the other hand, they give good results for the wettest region compared with the 

driest region or with normal moisture climate region to estimate the daily 

precipitation amount.  Also, they successfully predict the most probable states that 

represents the daily precipitation occurrence by using Viterbi algorithm, when a 

sequence of observations and the model parameters are known. 

 

In this context, by using HMMs which is thought to be more effective than other 

precipitation models, the precipitation occurrence and precipitation amount are 

estimated in this thesis study. This work is the first phase to make estimations 

related to precipitation, providing very fast and less costly computations, and it 

gives general weather forecast and information about the unknown state of 

precipitation occurrences. 

 

Keywords: Hidden Markov Model, Daily Rainfall Occurrence, Daily Rainfall 

Amount, Viterbi Algorithm 
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ÖZ 

 

 
SAKLI MARKOV MODELİ (SMM) İLE TÜRKİYE’NİN BELLİ 

BÖLGELERİNE İLİŞKİN YAĞIŞ VERİSİNİN MODELLENMESİ 

 

 

 

Yaman, Nevin 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Prof. Dr. İnci Batmaz 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Ceylan Yozgatlıgil 

 

 

 

Aralık 2014, 164 sayfa 

 

Son yıllarda dünyadaki iklim değişikleri üzerine yapılan geleceğe dönük tahmin 

yöntemleri oldukça yaygınlaşmıştır. Bu tahmin yöntemleri geçmiş sıcaklık ve 

yağış verilerini kullarak geleceğe yönelik yorum yapmak için oldukça 

kullanışlıdır.  Özellikle yağış modelleri iklim değişiklikleri konusunda geleceğe 

dönük tahminler yapabilmek için önemli bir yere sahiptir. Bu modellerin sağlamış 

olduğu günlük yağış miktarı ve yağış olup olmama durumu gibi tahminler; taşkın, 

kuraklık, sel, vb. senaryoları oluşturmak için yaygın olarak kullanılmaktadır.  

 

Bu çalışmanın amacı günlük yağış olup olmama durumu ve günlük yağış miktarını 

tahmin etmektir. Bu amaçla, Türkiye’ nin en çok yağış alan bölgelerinden biri olan 

Doğu Karadeniz Bölgesi, Türkiye’nin en az yağış alan bölgelerinden biri olan İç 
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Anadolu Bölgesi ve normal yağışlı bir iklime sahip olan Ege Bölgesinde 

kaydedilen 9 istasyonun günlük yağış miktarları verisi Markov zincirlerini temel 

alan Saklı Markov Modelleri (SMM) ile ayrı ayrı modellenmiştir. En uygun 

modellere Akaike bilgi kriteri, Bayes bilgi kriteri, ortalama karesel hata ve yanlış 

sınıflandırma oranı kullanılarak karar verilmiştir. Seçilen en uygun SMM’lerin 

normal iklime sahip bölgelerde günlük yağış olup olmama durumunu tahmin 

etmede, kurak ve yağışlı bölgelere kıyasla daha iyi sonuçlar verdiği görülmüştür. 

Yağış bölgelerde ise SMM’ler günlük yağış miktarını tahmin etmede, diğer iki 

bölgeye kıyasla daha iyi sonuçlar vermiştir. Ayrıca, model parametreleri ve 

gözlem dizisi bilindiğinde, Viterbi algoritması kullanılarak günlük yağış varlığını 

temsil eden en olası durumlar başarılı şekilde tahmin edilmiştir. 

 

Bu kapsamda, bu tez çalışmasında etkinliği diğer yağış modellerine göre daha 

fazla olacağı düşünülen, SMM’ler geliştirilerek yağış varlığı ve yağış miktarı 

tahminleri konusunda çalışılmıştır. Bu çalışma yağış konusunda hızlı ve kolay 

hesaplanan tahminler yapabilmek için bir aşama oluşturmuş ve bilinmeyen yağış 

durumu hakkında genel tahminler vermiştir. 

 

 

 

 

Anahtar Kelimeler: Saklı Markov Modelleri, Günlük Yağış Varlığı Tahmini, 

Günlük Yağış Miktarı Tahmini, Viterbi Algoritması 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

The importance of water is increasing rapidly every day with the rapid increase in 

population of the world. Like many other regions of the world, also in some 

regions of Turkey, irregular precipitation occurs because of reasons like increasing 

world population, increasing civilization, climate change due to global warming, 

desertification, destruction of forests and etc. While this irregularity sometimes 

results in excess precipitation which also causes natural disasters like flood and 

mudslide, sometimes it may result in long lasting drought periods. For this reason 

precipitation models has an important role about understanding the probabilistic 

structure of rainfall and give precipitation simulation. These simulations are used 

for modelling data sets related to climate, hydrological and environmental system 

to take some precaution for disasters such as runoff, droughts and floods.  

 

There are different precipitation models. However, not all of them use synoptic 

atmospheric information such as temperature, solar radiation, and other climatic 

factors (Bellone et al., 2000). Also, such precipitation models that do not include 

synoptic atmospheric information can only produce simulations under the current 

climate systems. They are not suitable for predictions of global climate to local 

precipitation patterns. On the other hand, weather-state models such as Global 

Climate Models (GCMs) use synoptic atmospheric information to categorize each 

day into a weather-state and then precipitation is modeled by using multivariate 

distributions (He and Kundu, 1991; Bardossy and Plate, 1992; Hughes et al., 1993; 
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Bardossy, 1994; Bartholy et al., 1995). These models help to understand regional 

and local effects of global climate change (Bellone et al., 2000). GCMs have been 

well understood and modeled; however, GCMs cannot get small-scale atmospheric 

patterns and specify the impact of changes in the atmosphere due to their grid 

scale. In other words, GCMs are not suitable for deriving small local and regional 

rainfall (Giorgi and Mearns, 1991; Hughes and Guttorp, 1994).  

 

In addition to GCMs, moving averaging models (MA), autoregressive models 

(AR), combined autoregressive moving average models (ARMA) and 

autoregressive–integrated-moving average models (ARIMA) could be used as 

precipitation models. However, precipitation time series data which have many 

zero values due to persistence of dry periods and storms with short durations in 

arid and semi-arid areas prevents from using traditional time series approaches that 

is MA, AR, ARMA and ARIMA. Also, they can only be used when time series are 

Gaussian. Time series data which are not Gaussian need to be transformed 

(Yevjevich, 1991).  

 

Other precipitation models are Markov Chain models. This theory is explored and 

enhanced by Gabriel and Neumann (1992). Markov Chain that has homogeneous 

transition matrix is used for modeling daily wet and dry occurrences at a one rain 

station which take place in Israel (Gabriel and Neumann, 1992). This model is 

extended to show the seasonal differences by managing time-varying parameters 

(Stern and Coe, 1984; Woolhiser, 1992). Markov model has been used to simulate 

the Kenyan longest dry and wet spells and largest rain-sums (Sharma, 1996). Also, 

monthly rainfall records in arid zones in Saudi Arabia have been modelled using 

by Markov Chain (Elfeki and Al-Amiri, 2011). 

 

Nonparametric models can also be used to model precipitation (Young, 1994; Lall 

et al., 1996; Moron et al., 2008). They do not require assumption for dependence 
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on parametric distributions and describe nonlinear relationships between variables. 

However, nonparametric models can only generate values which have already 

been found and this prevents incorporate effects of long term climate changes into 

the precipitation process. 

 

Another stochastic precipitation model is that HMMs which are firstly used by 

Zucchini and Guttorp (1991) in the estimation of rainfall occurrence. Basic HMMs 

which are stationary in time are developed by incorporating time-varying 

covariates such as seasonal forecasts, temperature, etc. (Hughes and Guttorp, 

1994a; Hughes and Guttorp, 1994b; Hughes et al., 1999; Bellone et al., 2000; 

Robertson et al., 2004; Robertson, 2005; Robertson et al., 2007). In other words, 

nonhomogenous HMMs (NHMMs) are derived since global climate change causes 

nonstationary patterns in precipitation. Today, many researchers tries to find the 

effect of the climate change in precipitation models with improving the future 

predictions. Therefore, HMMs are one of the best models for precipitation models 

since they have powerful and quick algorithms to solve problems about 

nonstationary patterns in precipitation. 

 

When the literature is investigated for Turkey, it can be seen that HMMs are not 

used for precipitation modelling. The ARIMA models which are mixture of AR 

and MA models are widely used. These models are used for estimating changes 

about temperature and precipitation in the Southeast Anatolia Project Area (GAP) 

(Bahadır, 2011). Also, they are used for producing synthetic series to estimate the 

rainfall potential in Gediz Basin (Topçuoğlu, 2005) and modelling precipitation 

data in Manisa (Topçuoğlu, 2010). In addition, non-stationary temporal climate 

series consisting of temperature, vaporization and precipitation series for Denizli 

which is located in Aegean Region of Turkey is analyzed with ARIMA models 

(Özdemir and Bahadır, 2010).  Drought analysis is done in Eastern Mediterranean 

Region (Fidan, 2011),  drought characteristic of Regions are determined in Central 
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Anatolian Region (Yeğnidemir, 2005) and the state of drought is studied in Trakya 

Region (Çaldağ et al., 2004) by using Standardized Precipitation Index (SPI). 

Drought occurrence probability is found through by using MCs (Fidan, 2011), total 

daily rainfall amount data from Göztepe station is analyzed by second order MC to 

define the distribution of daily rainfall amount (Koçak and Şen, 1997). In addition, 

MC is used to estimate the yearly precipitation probabilities (Özgürel and Kılıç, 

2003) and it is used to find drought occurrence probability in GAP Region 

(Tonkaz, 2008). Projected changes in future air temperature and precipitation 

climatology of Turkey are analyzed with RegCM4.3.5 Climate simulations for the 

period of 2070-2100 (Öztürk et al., 2002). Also, nonparametric tests (such as 

Mann-Kendall), linear regression and coefficient of variation techniques are used 

to describe rainfall trends for Kahramanmaraş which is located in the Southeast 

Anatolia Region of Turkey (Karabulut and Cosun, 2009). 

 

It is known that climate change studies concentrate on temperature and 

precipitation (Türkeş, 1996; Türkeş et al., 2002; Türkeş et al., 2008; Özdemir and 

Bahadır, 2010). Turkey is one of the countries that has occurrence risk of short-

time and long-time climate changes (Türkeş et al., 2002). In addition, precipitation 

is the most unstable parameter within the climate variables in terms of time and 

space.Various models are studied for Turkey’s precipitation data (Aykan et al., 

2012; Aksoy et al., 2013). When studies related to precipitation changes in Turkey 

is investigated, precipitation per year tends to decline and the number of dry 

periods tends to increase after 1970 (Türkeş, 1996). Therefore, the problems that 

the world and Turkey face due to the irregular precipitation makes it very critical 

to make precipitation prediction and taking necessary precautions. With this scope, 

by using the previously recorded precipitation data from some Regions of Turkey, 

in order to prevent the financial damage that can occur because of flood and 

mudslide by the excess precipitation or to prevent the adverse effects of long 

lasting drought, daily statistical precipitation prediction will be done by using 
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Hidden Markov Model (HMM). Since HMM has a more general and flexible 

structure and more useful algorithms than other precipitation models, the daily 

precipitation amounts of certain Regions of Turkey are modelled by HMMs. By 

the model, daily precipitation occurrence and daily precipitation amount are 

predicted and precipitation scenarios are constructed, whose results can help 

people that are in charge at the government and the farmers, so that they will have 

the chance to take the necessary precautions against the disasters. 

 

In this study, the main purpose is estimating the probability of rainfall occurrence 

with amount of rainfall for some specific Regions of Turkey and comparing their 

results. Firstly, the probability of rainfall occurrence is estimated for three stations 

from Eastern Black Sea Region which is one of the wettest Regions of Turkey and 

for three stations from Central Anatolian Region which is one of the driest Regions 

of Turkey and for three stations from Aegean Region which is a normal moisture 

climate Region of Turkey separately and results are compared. Secondly, the 

amount of rainfall is estimated for one station from each three Regions separately 

and results are compared.  

 

The thesis study is organized as follows. In chapter 2, the history of HMM and 

precipitation models which are developed by HMMs are explained. In chapter 3, 

firstly the brief information related MC is given. Secondly, the definition of 

HMMs is clarified. In addition, the description of the daily precipitation HMM and 

the parameter estimation method are explained. Thirdly, model selection criterion 

is described. Lastly, the estimation of hidden states is explained. In chapter 4, the 

results of the simulation cases defined in the previous chapter are presented and 

discussed. The graphs are prepared from the results obtained by the simulations 

according to the objectives of the cases. According to the models defined in the 

previous chapter, different types of graphs are presented in order to observe future 
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prediction related to rainfall. Finally, the main conclusions reached throughout the 

study are stated and the work for future investigations is summarized. 
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CHAPTER 2 

 

 

2. LITERATURE REVIEW 

 

 

 

2.1. Introduction 

HMMs have been mainly used for many areas for three decades especially for 

signal-processing implementation and speech recognition. Also, they have been 

extended to other fields such as all kinds of recognition problems (face, gesture, 

handwriting, and signature), bioinformatics (biological sequence analysis), 

environment (wind direction, rainfall, and earthquakes), finance (series of daily 

returns), and biophysics (ion channel modelling). 

 

HMMs are simple, versatile and their results are mathematically observable since 

likelihood function can be computed in an uncomplex manner. Generally HMMs 

could be used as general-purpose models for time series (Zucchini and 

MacDonald, 2009). Basic HMM is univariate and roots from a homogeneous MC 

which do not have trend and seasonal variation, observations can be discrete or 

continuous and without including attainable covariates information. HMMs have 

many possible extensions of the basic HMMs. They can be multivariate and can be 

used for analyzing time series data that has trend and seasonal variation, and they 

can use covariate information. 

 

 

 



 

 

 8   

2.2. History of Hidden Markov Models 

The theory of HMMs were introduced in 1966 (Baum and Petrie, 1966) and they 

are referred as probabilistic functions of MCs. They studied statistical properties of 

HMMs and developed ergodic theorem for almost-sure convergence (Baum and 

Petrie, 1966). In 1969, some assumptions related to HMMs were relaxed (Petrie, 

1969). Forward-backward algorithm developed for calculating the conditional 

probability of a state gives an observation sequence from an HMM and this 

algorithm was used for computing maximum likelihood (ML) estimation of HMM 

parameters efficiently (Baum et al., 1967; Baum et al., 1970; Baum, 1972). This 

parameter estimation procedure is defined as expectation-maximization (EM) 

algorithm and it was applied in HMMs (Dempster et al., 1977). Also, Baum-Welch 

algorithm which is referred as local convergence was studied (Baum et al., 1970; 

Baum, 1972) and forward-backward algorithms were developed. (Chang and 

Hancock, 1966). In addition to these studies, there are many studies which 

contribute to improve HMMs in recent years (Finesso, 1990; Merhav, 1991; 

Robert et al., 1993; Elliott et al., 1994; Ryden, 1995; Macdonald and Zucchini, 

1997; Lapidoth and Ziv, 1998; Charles et al., 1999b; Scott, 2002; Charles et al., 

2004; Ailliot, 2009).  

 

HMMs are defined as deterministic function of MC with augmented state space 

(Baum and Petrie, 1966; Petrie, 1969; Finesso, 1990). There is a relation between 

HMMs and the mixture processes since each observation generated by an HMM 

that has a mixture distribution and need not to be statistically independent (Everitt 

and Hand, 1981; Redner and Walker, 1984; Titterington et al., 1985 MacLachlan 

and Basfard, 1988; Leroux and Puterman, 1992). Also, HMMs are special cases of 

switching autoregressive processes whose dynamics at each time instant depend on 

the state of an MC at that time (Hamilton, 1994). HMMs are used commonly in 

random process such as engineering, statistics, and econometrics. Automatic 

character recognition and speech recognition were the earliest applications of 
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HMMs (Burke and Rosenblatt, 1958; Raviv, 1967; Baum et al., 1970). It has been 

developed a new recursion for conditional probability of a state which is defined 

by MC given the observations considering minimum character error rate sense. In 

the mid-1970s, a phonetic speech recognition system that relies on hidden Markov 

modeling of speech signals was developed by using Baum algorithm (Baker, 1975; 

Jelinek et al., 1975; Jelinek, 1976). In the early 1980s and 1990s, speech 

recognition applications were developed and this area become leading application 

of HMMs. (Poritz, 1988; Rabiner, 1989; Lee, 1989a; Lee, 1989b; Huang and Jack, 

1989; Huang et al., 1990; Lee, 1990; Charniak, 1993). Therefore, HMMs became 

popular and they began to be used in many applications. HMMs was used for 

solving problems related to economics, financial mathematics, banking and 

assurance (Ryden et al., 1998; Hamilton, 1989; Knab, 2000; Wichern, 2001; Knab 

et al., 2003; İnce et al., 2005). They also was used in biosciences, biology, 

bioinformatics and genetics (Thompson, 1983; Guttorp et al., 1990; Krogh et al., 

1994; Yada et al., 1994; Yada and Hirosawa, 1996; Yada 1998; Durbin et al.,1998; 

Schliep et al., 2003; Won et al., 2004). Gene expression time course data has been 

analysed to predict the behavior of gene data by using HMMs (Schliep et al., 

2003). Also, HMMs were used for explaining or predicting the decisions of 

persons in the area of social sciences (Schrodt, 1998) and it was used for 

simulating data about environment issues to predict the future (Zucchini and 

Guttorp, 1991; Hughes et al., 1999; Greene at al., 2008; Zucchini and MacDonald, 

2009). Brands choices and their reasons were also studied by using HMMs (Can 

and Öz, 2009). HMMs have been used to model time series of epileptic seizure 

counts (Albert, 1991; Le et al., 1992). In a similar way, HMMs have been used to 

determine pattern movement of a fetal lamb (Leroux and Puterman, 1992). 

2.3. Modelling Precipitation with HMMs 

Precipitation models help us to understand the probabilistic structure of rainfall 

and give precipitation simulations. These simulations are used for modelling data 
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sets related to climate, hydrological and environmental system to take some 

precaution for disasters such as runoff, droughts and floods.  

 

It is known that GCMs, ARMA, ARIMA, MC and nonparametric models are used 

to model precipitation. Another precipitation model is HMM. It is firstly used by 

Zucchini and Guttorp (1991) in the estimation of rainfall occurrence. MC 

assumption holds in the climate process and unobserved states. This HMMs are 

then extended by Hughes and Guttorp (1994a) by describing a non-homogeneous 

HMM (NHMM) which links the synoptic atmospheric information. Also, Hughes 

and Guttorp (1994b) use autologistic model for the transition probability of rainfall 

data given the weather state to extend the NHMM.    

 

Chain-dependent models assuming that precipitation amounts are conditionally 

independent given the precipitation occurrences which follow a first-order MC are 

developed by Katz (1977) and Katz and Parlange (1996). 

 

A 15-year sequence south-western Australia winter data which includes 30 rain 

stations is used by Hughes et al. (1999). Their model produces accurate rainfall 

statistics and gives important prediction related to rainfall process in the South-

Western Australia. 

 

Charles et al. (1999a) introduces a new NHMM as extending NHMM to observe 

climate change in the South-Western Australia and describes that NHMM can be 

placed against the criteria of Wilby et al. (1998) for a useful downscaling model. 

This model simulates the survival curves related to dry (wet) spell lengths, wet day 

probabilities, daily rainfall amount, and correlation between daily rainfall amounts. 

Bellone et al. (2000) simulate precipitation data for 24 rain gauge stations in 

Washington as extending NHMMS for precipitation occurrences which include 

precipitation amount. 
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Robertson et al. (2004) explore if NHMM enables to understand frequency of daily 

occurrence in terms of large-scale atmospheric patterns at the station level, and to 

get scenarios related to daily rainfall sequence in Northeast Brazil. 

 

Neytchev et al. (2008) find that NHMM helps to give insights specific information 

related to inter-annual climate variability and detection of climate change for 

Bulgaria’s precipitation data. 

 

It is confirmed that the NHMMs are beneficial appliance to search the connections 

between large-scale climatic process and local climate variables by Neykov et al. 

(2008). NHMMs are successfully given statistics of daily precipitation results 

related to 32 stations of Bulgaria. 

 

Robertson et al. (2009) have been recently used NHMMs and their simulation 

results related to precipitation occurrences are very accurate. It is observed that 

such downscaling methods have become significant on climatic researchers. 

Hence, HMMs are successfully used in prediction of precipitation occurrence in 

this research. 

 

Neykov et al. (2014) has been compared stochastic daily precipitation models and 

realized that these models tend to underestimate the occurrence of storms. Hybrid 

gamma-generalized Pareto (GP) and hybrid Weibull-GP have been used to 

develope new precipitation models for daily rainfall data. They found that the 

underestimate problems of extreme weather conditions would be solved, if 

NHMMs had been developed by using such distributions. 
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CHAPTER 3 

 

 

3. METHODS 

 

 

 

3.1. Markov Chain (MC) 

In this chapter, firstly the brief information related to MC is given. Secondly, the 

definition of HMMs, the description of the daily precipitation HMMs and the 

parameter estimation method are explained. Thirdly, model selection criterion are 

described. 

 

An MC is defined as a discrete-time process for which the future behavior only 

depends on the present when it is given the past and the present values. On the 

other hand, a Markov process is defined as the continuous-time version of an MC 

(Zucchini and MacDonald, 2009). 

 

An MC analyzes discrete time points defined as “0, 1, 2…” A set of states denoted 

S and the transition probabilities denoted pij which are the probabilities that the MC 

is at the next time point in state j, given that it is at the present time point at state i  

(Şahin and Şen, 2001). 

 

{𝑆𝑡 ∶ 𝑡 𝜖 ℕ}, which is a sequence of discrete random variables, is defined as an 

MC, if it satisfies the following Markov property for all 𝑡 𝜖 ℕ: 
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 𝑃𝑟(𝑆𝑡+1|𝑆𝑡, … , 𝑆1) = Pr(𝑆𝑡+1|𝑆𝑡). (1) 

 

 

The process “St+1” depends only on the most recent value “St” (Cinemre, 2003). 

S
(t)

 is defined as 

 𝑆(𝑡) = (𝑆1, 𝑆2, … , 𝑆𝑡). (2) 

 

Then Markov property can be written as:  

 

 Pr(𝑆𝑡+1|𝑆(𝑡)) = Pr(𝑆𝑡+1|𝑆𝑡). (3) 

 

Figure 1 shows that past and future are dependent only through present.  

 

 

 

 

 

An MC includes the following conditional probabilities called transition 

probabilities (Tijms, 2003) 

 Pr(𝑆𝑠+𝑡 = 𝑗|𝑆𝑠 = 𝑖). (4) 

 

The MC is homogeneous when transition probabilities do not depend on “s.” It is 

assumed that MC is homogeneous, if there is no expression related to 

homogeneity. If MC is homogeneous, the transition probabilities are defined as  

 

 𝛾𝑖𝑗(𝑡) = Pr(𝑆𝑠+𝑡 = 𝑗|𝑆𝑠 = 𝑖), (5) 

 

s
t-2

 s
t-1

 s
t
 s

t+1
 ... ... 

Figure 1 Markov Chain 
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where “γij” is the probability that the MC is at next time point in state j, given that 

this chain is at the present time point at state i. The row sum of “γij”s are equal to 

1.   

 

The transition probabilities (γij(t)) constitute the transition matrix (Γ(t))  (Chung 

and Walsh, 2005). 

 
Γ = (

𝛾11 … 𝛾1𝑚

⋮ ⋱ ⋮
𝛾𝑚1 … 𝛾𝑚𝑚

). (6) 

 

All finite state space homogeneous MCs satisfy the following Chapman-

Kolmogorov equation (Zucchini and MacDonald, 2009): 

 

 Γ(𝑡 + 𝑢) = Γ(𝑡)Γ(𝑢). (7) 

 

This equation imply that, 

 Γ(𝑡) = Γ(1)𝑡, (8) 

 

for all t. In other words, it is said that the matrix of t-step transition probabilities 

equals to the t
th

 power of Γ(1) which is the matrix of one-step transition 

probabilities. 

 

Pr(St=j) is defined as unconditional probabilities of an MC in a given state at time 

t. These probabilities are denoted by the following row vector: 

 𝑢(𝑡) = (Pr( 𝑆𝑡 = 1), … , Pr (𝑆𝑡 = 𝑚)), (9) 

 

for 𝑡 𝜖 ℕ. Here, u(1) is defined as the initial distribution of MC, and 

 

 𝑢(𝑡 + 1) = 𝑢(𝑡)Γ. (10) 
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An MC is defined as “stationary” if 𝛿Γ = 𝛿 and 𝛿1′ = 1 hold. First expression 

refers “stationarity” and second expression refers that 𝛿 is indeed a probability 

distribution. Also, Γ represents transition probability matrix (Gabriel and Neuman, 

1992; Zucchini and Guttorp, 2009). 

3.2. Hidden Markov Models 

3.2.1. The Definition of Hidden Markov Models 

An HMM is an extension of Markov models to the case where the observation is a 

probabilistic function of the state. HMMs are mixture models and they include 

mixture component which generates observation described by the state of a hidden 

Markov process instead of a static mixing distribution. It is known that a mixture 

distribution is the marginal distribution of an HMM. Mixture components can be 

represented by the known probability distribution and first or higher-order Markov 

process (Zucchini and MacDonald, 2009). Hidden Markov Process, Latent Markov 

Models, Markov-Switching Models, Markov Dependent Mixture are other names 

of the HMM used in the literature (Leroux and Puterman, 1992; Eprahaim and 

Merhav, 2002). Hidden-Semi Markov Models, State-Space Models and Markov-

Switching Models are also related models of HMM in literature. 

 

It is known that independent mixture model is not useful when the serial 

dependence is observed in the observations. In this situation, MC assumption holds 

and HMMs could be constructed. HMMs consist of two stochastic processes. The 

first one is an MC that is characterized by the states and transition probabilities. 

The states of the chain are externally not visible, therefore it is defined as 

“Hidden.” The second stochastic process, on the other hand, produces observations 

at each moment, depending on a state-dependent probability distribution. Each 
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HMM is defined by states, state probabilities, transition probabilities, emission 

probabilities and initial probabilities. 

 

In order to define an HMM completely, the following five elements have to be 

defined (Rabiner, 1989): 

1. The states of model are shown as S and there are N states of the model. The 

individual states are denoted as follows: 

S =  {S1, … , SN}.                      

            The state at time t is denoted as 𝑞𝑡 for t=1,2,…,N. 

2. There are M distinct observations which are the physical output of the 

system and they represent discrete output for per state. It is denoted as a set 

of individual observation symbols as V= {v1, v2, …,vm). 

3. The state transition probability distribution is shown as 

A = {aij}, 

where aij is the probability that the state at time t + 1 is  Sj given that the 

state at time t is  Si . These transition probabilities constitute the transition 

probability matrix. The transition probabilities should satisfy the normal 

stochastic constraints: 

 

𝑎𝑖𝑗 ≥ 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ∑ 𝑎𝑖𝑗

𝑁

𝑗=1

= 1, 1 ≤ 𝑖 ≤ 𝑁. (11) 

 

4. The observation symbol probability distribution in each state is shown as 

𝐵 = {𝑏𝑗(𝑘)}, 

where 𝑏𝑗(𝑘) is the probability that symbol 𝑋𝑘 is emitted in state 𝑆𝑗 and 

 𝑏𝑗(𝑘) = 𝑝{𝑂𝑡 = 𝑋𝑘|𝑆𝑡 = 𝑗},   (12) 
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where 𝑋𝑘 denotes the 𝑘𝑡ℎ observation symbol in the alphabet, and 𝑂𝑡 is  

one of the symbols from V, for  1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀. 

 

5. The HMM has the initial state distribution which is shown as 𝜋 = {𝜋𝑖},  

where 𝜋𝑖 is the probability that the model is in state 𝑆𝑖 at the same time 

𝑡 = 0 with 

 𝜋𝑖 = 𝑝{𝑆1 = 𝑖},  

for  1 ≤ 𝑖 ≤ 𝑁. 

(13) 

 

The HMM can be used as a generator to find an observation sequence, such 

an 

 

𝑂 = 𝑂1 , 𝑂2 ,…, 𝑂𝐾, 

 

where 𝑂𝑡 is one of the symbols from V, and K denotes the number of 

observations in the sequence when it is given suitable values of N, M, A, 

B, and 𝜋 as follows, 

1) Choose an initial state  𝑞1 = 𝑆𝑖 by using 𝜋 which is initial state distribution. 

 

2) Define t=1. 

 

3) Choose 𝑂𝑡=𝑣𝑘 by using 𝑏𝑖(k) which is the symbol probability distribution 

in state 𝑆𝑖. 

 

4) Skip next state 𝑞𝑡+1=𝑆𝑗 by using the state transition probability distribution 

for 𝑆𝑖. 

 

5) Skip t=t+1 and return step 3 if t<T, otherwise end the procedure.  
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The representation of a basic HMM is shown in Figure 2. Orange circles show 

“Hidden States”. Hidden states are dependent only on the previous state. The past 

is independent of the future given the present (Markov assumption). Blue circles 

show “Observations.” Observations depend only on their corresponding hidden 

state. 

 

Figure 2 Representation of basic HMM 

 

S: {S1,…,SN } represents  the values for the hidden states and X : {X1,…,XM} 

represents the values for the observations. 

An HMM (𝑋𝑡: t ∈ N) is defined as a particular dependent mixture. 𝑋(𝑡) which 

denotes the observations and 𝑆(𝑡) which denotes the states represent the time 

histories between 1 and t. The simplest model can be summarized as two 

dependency structures: 

1
st
 order of Markov assumption of transition: 

 𝑃(𝑆𝑡|𝑆1,  𝑆2, … , 𝑆𝑡−1) = 𝑃(𝑆𝑡, 𝑆𝑡−1). (14) 

Conditional independency of observation parameters: 

 P(Xt|St, X1, … , Xt−1, S1, … , St−1) = P(Xt|St). (15) 

The model includes two processes. First process is unobserved “parameter 

process” {𝑆𝑡 : t=1,2,…} which satisfies “Markov assumption.” Second process is 

“state-dependent process” {𝑋𝑡 : t=1,2,….}. When St is known, the distribution of  
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Xt depends only on the current state St, it does not depend on the other states and 

observations (Zucchini and Macdonald, 2009). These structures represent in Figure 

3, {Xt} represents the m-state HMM if the MC St has m states. 

 

Figure 3 Basic representation of m-state HMM 

 

3.2.2. Description of the Daily Precipitation Model 

In this study, the development of daily precipitation models for three Regions 

which are the wet, dry and normal dry in Turkey has been considered. For this 

reason, HMMs are used to describe daily rainfall occurrence and daily amount of 

precipitation for these Regions. The precipitation process is defined as a two-state 

first order MC and ıt has been discovered as an adequate model in many different 

Regions of the world (Katz, 1977; Coe and Stern, 1982; Stern and Coe, 1984 and 

Zucchini et al., 2001a). 

 

Daily total precipitation data from 1964 to 2005 for East Black Sea Region, 1977 

to 2006 for Central Anatolian Region and 1972 to 2005 for Aegean Region which 

are obtained from Turkish State Meteorological Service are used. Because of 

missing values in the daily series, these time periods are selected. Data include 

amount of total precipitation for a day. Also, we observe that amount of 

precipitation is zero for many days in Central Anatolian Region and Aegean 

Region. Therefore, we define “dry day” and “wet day” before applying daily 

precipitation occurrence process which is used for estimating daily precipitation 

occurrence. If the total amount of precipitation is less than 0.1 mm, it is defined as 
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“dry day,” otherwise, it is defined as “wet day.” This criterion value is chosen 

according to the meteorological expert opinion (Türkeş, 1996). In intensity process 

which is used for estimating daily precipitation amount, the daily precipitation 

series is used directly. 

 

We use the following notations to describe our model. Let “𝑅𝑡 =  (𝑅𝑡
1, … , 𝑅𝑡

𝐾)" is 

a nonnegative multivariate vector of precipitation amounts at a network on K 

stations. Observed values on day t, where t=1,2,…, N at station i, where i 

=1,2,…,K is shown as 𝑟𝑡  
𝑖 . Also, 𝑆𝑡 is defined as hidden rainfall state for day t. In 

addition daily sequences of precipitation, total amounts are represented by 𝑅1:𝑇  

and hidden rainfall states are represented by 𝑆1:𝑇 (Hughes et al., 1999).  

 

There are two conditional independence assumptions to construct an HMM for 

rainfall (Hughes and Guttorp, 1994a; Zucchini and MacDonald, 2009). The first 

independence assumption is that 𝑅𝑡 (multivariate precipitation observations at time 

t) is independent of all other variables which take place in the model up to time t. 

That is, 

 𝑃(𝑅𝑡|𝑆1:𝑡 , 𝑅1:𝑡−1) = 𝑃(𝑅𝑡 | 𝑆𝑡). (16) 

 

The second independence assumption is that the hidden state are the first-order 

Markov process. That is, 

 

 𝑃(𝑆𝑡|𝑆1:𝑡−1 ) = 𝑃(𝑆𝑡 | 𝑆𝑡−1). (17) 

 

We try to find density of 𝑅𝑡 to construct an HMM for the rainfall data. In this 

contex, so-called occurrence and intensity processes are used to find the density of 

𝑅𝑡 in an explicit form (Katz, 1977; Stern and Coe, 1984; Neykov et al., 2003). 
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i. Occurrence Process 

In this study, 𝑅𝑡 =  (𝑅𝑡
1, … , 𝑅𝑡

𝐾) is a nonnegative multivariate vector of 

precipitation amounts for a network of K=3 stations. Observed values are denoted 

by "𝑟𝑡  
𝑖 " are either “0” or “1” for the occurrence process. Observed values are 

defined as follows: 

 

𝑟𝑡
𝑖=1, if the rainfall amount observed on day t at station i is greater than 0.1 

mm, 

𝑟𝑡
𝑖=0, if the rainfall amount observed on day t at station i is less than 0.1 mm. 

 

Therefore 𝑅𝑡 becomes a multivariate random vector of rainfall occurrences for a 

network of K stations and we assume that the distribution of 𝑅𝑡 is Bernoulli 

(Zucchini, 1991; Neykov et al., 2003; Neykov et al., 2007).  Also, 𝑅1:𝑇 denotes the 

daily sequence of precipitation occurences and 𝑆1:𝑇 denotes the sequence of hidden 

states. An HMM for the rainfall data includes two conditional independence 

assumptions which are already explained. 

The first assumption is that: 

 𝑃(𝑅𝑡|𝑆1:𝑡, 𝑅1:𝑡−1) = 𝑃(𝑅𝑡 | 𝑆𝑡). (18) 

 

And, the second assumption is that: 

 𝑃(𝑆𝑡|𝑆1:𝑡−1) = 𝑃(𝑆𝑡 | 𝑆𝑡−1). (19) 

 

In words, it is a first-order Markov process and the Markov process is 

homogeneous in time. In other words, transition probability matrix which is part of 

the Markov process does not change within time. If transition probability matrix 
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changes over the time, nonhomogeneous model is extended by using the 

homogenous model. 

In order to model these transition probabilities, we have needed to use “logit link 

function.” 

“Logit link function” is defined as follows: 

 π(𝑥𝑡) = 𝑙(𝑢(𝑥𝑡)) = exp(𝑢(𝑥𝑡)) /(1 + exp(𝑢(𝑥𝑡))). (20) 

 

The function “𝑢(𝑥𝑡)” provides connection and explains the different temporal and 

seasonal effects. Also, it should be periodic and parametric, and its shape is 

sinusoidal (Stern and Coe, 1984; Neykov et al., 2003). 

The following function is used as a logit link function to capture the seasonal 

behavior:  

 
𝑢(𝑥𝑡) = 𝛼0 + 𝛼1𝑠𝑖𝑛 (

2𝜋𝑡𝑘

365
) + 𝛼2 cos (

2𝜋𝑡𝑘

365
). (21) 

 

This function includes seasonal terms that repeat each year and remainder term 

that provides information related to deviation from the regular pattern. Also, 

instead of square root function, logarithm, cubic root or power transformation 

could also be used (Neykov et al., 2003). 

ii. Intensity (Precipitation Amount) Process 

𝑅𝑡 is a multivariate vector of precipitation amounts for a network of K stations for 

an intensity process, and observed values  are denoted by 𝑋𝑡. In this process, we 

define “𝑊𝑡” as follows: 
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𝑊𝑡 = {

𝑅𝑡 ,                𝑖𝑓 𝑅𝑡  ˃0 , 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,2, … , 𝑛
0,                           𝑜. 𝑤                                    

. (22) 

 

The distribution of rainfall amount on the wet days is assumed as positively 

skewed. Because, it is known that larger amounts occur less than smaller amounts.  

Therefore, the distribution could be exponential, lognormal, Weibull or gamma. 

(Stern and Coe, 1984; Grunwald and Jones, 2000; Zucchini et al., 2001a).  Also, it 

can be seen that seasonal variability exists in this distribution.  To model such 

precipitation data, a single family distribution whose parameters change smoothly 

over the year is chosen and they are represented as a Fourier series (Neykov et al., 

2003). 

In order to model our data, gamma distribution has been chosen. Gamma 

probability density function ɣ(z,µ,𝛽)  is given: 

 

 
𝑦(𝑧, 𝜇, 𝛽) = {

(β/µ)𝛽𝑧𝛽−1exp (−𝛽𝑧/𝜇) /ᴦ(𝛽)   𝑓𝑜𝑟    z > 0
0                                                            𝑓𝑜𝑟     𝑧 = 0,

 (23) 

 

where ᴦ(𝛽)  denotes the gamma function, µ>0 denotes the mean and 𝛽 > 0 denotes 

the shape parameter. 

In the precipitation amount model, a “log link function” has been used again. This 

function is: 

 
log(𝜇𝑡(𝑥𝑡)) = 𝜃0 +  𝜃1𝑠𝑖𝑛 (

2𝜋𝑡𝑘

365
) + 𝜃2 cos (

2𝜋𝑡𝑘

365
), (24) 

 

where (𝜃0 , 𝜃1, 𝜃2   )
𝑇 are the unknown parameters. 
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3.2.3. The Estimation of Parameters 

In general, HMMs have many parameters. The number of parameter equals to 

“𝑚(𝑚 − 1) +  𝑞” for a stationary m-state HMM and the number of parameter 

equals to “𝑚2 − 1 + 𝑞” for a homogeneous and stationary HMM where “m” 

denotes the number of states, “q” denotes the total number of parameters in the 

state dependent models. These parameters are estimated by using the distribution 

of 𝑋𝑡 and higher-order marginal distributions of (𝑋𝑡,𝑋𝑡+𝑘) (Zucchini and 

MacDonald, 2009). 

The cases of discrete and continuous observations are defined as follows, for 

i=1,2,…,m : 

 𝑝𝑖(𝑥) = Pr(𝑋𝑡 = 𝑥| 𝑆𝑡 = 𝑖 ), (25) 

 

where pi(x) is defined as the probability mass function for  𝑋𝑡, if the MC is in state 

“i” at time t for discrete case; pi(x) is defined as the probability density function of  

𝑋𝑡, if the MC is in state “i” at time t for continuous case. 

We assume that Xt  denotes the discrete-valued observations and  𝑢𝑖(𝑡) = Pr (𝑆𝑡 =

𝑖) denotes that the MC is in state “i” at time “t.” The univariate distribution of 𝑋𝑡 

is: 

 
Pr(𝑋𝑡 = 𝑥) = ∑ Pr(𝑆𝑡 = 𝑖) Pr(𝑋𝑡 = 𝑥|𝑆𝑡 = 𝑖)

𝑚

𝑖=1

= ∑ 𝑢𝑖(𝑡)𝑝𝑖(𝑡).

𝑚

𝑖=1

 (26) 

 

This expression can be written in matrix notation as follows: 

 

Pr(𝑋𝑡 = 𝑥) = (𝑢1(𝑡), … , 𝑢𝑚(𝑡)) (
𝑝1(𝑥) … 0

⋮ ⋱ ⋮
0 … 𝑝𝑚(𝑥)

) (
1
⋮
1

)

= 𝑢(𝑡)𝑃(𝑥)1′. 

(27) 
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where P(x) denotes the diagonal matrix and i th diagonal element is pi(x). 

 𝑢(𝑡) = 𝑢(1)Γt−1 (28) 

 

   Pr(𝑋𝑡 = 𝑥) = 𝑢(1)Γt−1P(x)1′. (29) 

 

 MC is merely homogeneous and it is not necessarily stationary, if equation (28) 

holds, otherwise not. If MC is homogeneous and stationary, i.e., MC includes 

stationary distribution δ,  δΓ(𝑡−1) =  𝛿  for t=1,2,…,T, the equation (29) become 

more simpler.  

 Pr(𝑋𝑡 = 𝑥) =  𝛿𝑃(𝑥)1′ . (30) 

 

The bivariate distribution of  𝑋𝑡 and 𝑋𝑡+𝑘  which are discrete-valued observations 

can be witten by using 𝑢𝑖(𝑡) = Pr (𝑆𝑡 = 𝑖) which denotes the MC is in state ‘i’ at 

time “t” for i=1,2,…,T as follows: 

 Pr(𝑋𝑡 = 𝑣, 𝑋𝑡+𝑘 = 𝑤)     

=  ∑ ∑ Pr (𝑋𝑡 = 𝑣, 𝑋𝑡+𝑘 = 𝑤, 𝑆𝑡 = 𝑖, 𝑆𝑡+𝑘  = 𝑗)

𝑚

𝑗=1

𝑚

𝑖=1

                         

= ∑ ∑ Pr(𝛿𝑡 = 1) 𝑝𝑖(𝑣)Pr (𝛿𝑡+𝑘 = 𝑗|𝛿𝑡 = 𝑖)𝑝𝑗(𝑤)

𝑚

𝑗=1

𝑚

𝑖=1

= ∑ ∑ v𝑖(𝑡)𝑝𝑖(𝑣)γ𝑖𝑗(𝑘)𝑝𝑗(𝑤)

𝑚

𝑗=1

𝑚

𝑖=1

, 

(31) 

 

where 𝛾𝑖𝑗(𝑘) denotes the i,j-th element of Γ(𝑘). This expression can be written in 

the matrix notation as: 
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 Pr(𝑋𝑡 = 𝑣, 𝑋𝑡+𝑘 = 𝑤) = 𝑢(𝑡)𝑃(𝑣)Γ𝑘𝑃(𝑤)1′. (32) 

 

If an MC is stationary, then: 

 Pr(𝑋𝑡 = 𝑣, 𝑋𝑡+𝑘 = 𝑤) = 𝛿𝑃(𝑣)Γ𝑘𝑃(𝑤)1′. (33) 

 

In a similar way, higher-order marginal distributions can be obtained. For our data 

set, we have three rain stations and three observations   𝑋𝑡, 𝑋𝑡+𝑘 and 𝑋𝑡+𝑘+𝑙 . The 

marginal distributions of 𝑋𝑡, 𝑋𝑡+𝑘 and 𝑋𝑡+𝑘+𝑙 is: 

 Pr(𝑋𝑡 = 𝑣, 𝑋𝑡+𝑘 = 𝑧, 𝑋𝑡+𝑘+𝑙 = 𝑤) = 𝛿𝑃(𝑣)Γ𝑘𝑃(𝑧)Γ𝑙𝑃(𝑤)1′. (34) 

 

To estimate the unknown parameters, the likelihood function has to be calculated. 

However, calculation of likelihood function requires many calculations which 

makes it diffucult to find. On the other hand, likelihood function can be computed 

for the consecutive observations x1, x2, ..., xT, which are generated by HMMs in a 

simple way (Baum, 1972; Lange and Boehnke, 1983; Zucchini and MacDonald, 

2009). Therefore, unknown parameters can be estimated by maximizing the 

likelihood function. Here, Xt={x1, x2, ... , xT} is an observation sequence generated 

by the HMM. The likelihood function for the observation sequence can be 

calculated as follows:  

 𝐿𝑇 = 𝛿𝑃(𝑥1)Γ𝑃(𝑥2)Γ𝑃(𝑥3) … Γ𝑃(𝑥𝑇)1′, (35) 

 

where "𝛿"  denotes the initial distribution of the MC, “Γ” denotes the transition 

probability matrix and “pi” denotes the state dependent probability function for the 

m-state HMM. 

If it is known that 𝛿 is the stationary distribution of MC, i.e., 𝛿Γ = 𝛿, then; 
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 𝐿𝑇 = 𝛿Γ𝑃(𝑥1)Γ𝑃(𝑥2)Γ𝑃(𝑥3) … Γ𝑃(𝑥𝑇)1′. (36) 

   

To simply eq. (36), a new matrix is defined which is called  𝐷𝑡. It is equal to 

“Γ𝑃(𝑥𝑡). " Then, the equation becomes: 

 𝐿𝑇 = 𝛿𝑃(𝑥1)𝐷2𝐷3 … 𝐷𝑇1′ =  𝛿𝐷1𝐷2𝐷3 … 𝐷𝑇1′.  (37) 

 

Hence, the likelihood function is shown as:  

 𝐿𝑇 = 𝐿(Γ, Λ; 𝑋(𝑇)) = 𝛿𝐷1𝐷2 … 𝐷𝑇1′, (38) 

 

where Γ is the transition probability matrix for MC (𝛿 = 𝛿Γ, for stationary chain), 

Λ  is the state dependent distributions, 𝑋(𝑇)  is an observation sequence generated 

by the HMM and Dt is equal to Γ𝑃(𝑥𝑡), in other words, it is a function of Γ and Λ. 

3.2.4. Application of Two-State Bernoulli HMM 

Precipitation models are based on MCs (Dunn, 2004). The simplest precipitation 

model has two states which are “rain” and “no rain” and first order MC, i.e, the 

precipitation probability depends only on the previous precipitation probability. 

This model can be extended by increasing number of states and order of MC. 

 

We constructed the simplest precipitation model for Turkey certain Region data 

and we decided 2-state and 3-state Bernoulli-HMM can be suitable for Turkish 

precipitation data set for analyzing the occurrence probability of rainfall. State-

dependent distribution parameters are “p1, p2 and p3” observations are “𝑋1, 𝑋2 and 

𝑋3.” The likelihood function can be calculated as follows: 

 𝐿𝑥 = 𝛿Γ𝑃(𝑥1)Γ𝑃(𝑥2)Γ𝑃(𝑥3)1′. (39) 

   

This expression can be rewritten in matrix notation as follows: 
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 For two state cases: 

 
Γ𝑃(𝑥) = (

𝛾11 𝛾12

𝛾21 𝛾22
) (

Pr(𝑥|𝑠𝑡𝑎𝑡𝑒1) 0
0 Pr(𝑥|𝑠𝑡𝑎𝑡𝑒2)

)

= (
𝛾11 𝛾12

𝛾21 𝛾22
) (

𝑝1
𝑥(1 − 𝑝1)1−𝑥 0

0 𝑝2
𝑥(1 − 𝑝2)1−𝑥). 

(40) 

 

 For three state cases: 

 Γ𝑃(𝑥)

= (

𝛾11 𝛾12 𝛾13

𝛾21 𝛾22 𝛾23

𝛾31 𝛾32 𝛾33

) (
Pr(𝑥|𝑠𝑡𝑎𝑡𝑒1) 0 0

0 Pr(𝑥|𝑠𝑡𝑎𝑡𝑒2) 0
0 0 Pr(𝑥|𝑠𝑡𝑎𝑡𝑒3)

)

= (

𝛾11 𝛾12 𝛾13

𝛾21 𝛾22 𝛾23

𝛾31 𝛾32 𝛾33

) (

𝑝1
𝑥(1 − 𝑝1)1−𝑥 0 0

0 𝑝2
𝑥(1 − 𝑝2)1−𝑥 0

0 0 𝑝3
𝑥(1 − 𝑝3)1−𝑥

), 

(41) 

 

where 𝒇(𝑥; 𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥 𝑓𝑜𝑟 𝑥 𝜖 {0,1} is a probability mass function for the 

Bernoulli distribution. However, there are parameter constraints which lead to 

problems to estimate the parameters for the Bernoulli-HMM. These constraints 

are: 

1) 0 ≤ 𝑝𝑖 ≤ 1 , 𝑖 = 1,2, … , 𝑚; 

The occurrence probability pi of the state dependent distribution is between 

0 and 1, inclusive. 

 

2) 0 ≤ 𝛾𝑖𝑗 ≤ 1 , 𝑖, 𝑗 = 1,2, … , 𝑚 ; 

The transition probabilities are between 0 and 1, inclusive. 

 

3) ∑ 𝛾𝑖𝑗 = 1𝑚
𝑗=1  , 𝑖 = 1,2, … , 𝑚. 

The rows of the transition probability matrix "Γ" summation must be equal 

to 1. 
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In order to overcome these problems, which stem from constraints, that 

transformations can be done (Zucchini and Macdonald, 2009). It is defined 

𝜂𝑖 = log 𝑝𝑖  , for 𝑖 = 1, … , 𝑚 (𝜂𝑖  𝜖 𝑅) for the transformation of the parameters"𝑝𝑖. " 

Firstly, maximized likelihood function by using unconstrained parameters (𝜂𝑖’s) 

has to be obtained; secondly it has been transformed back to the following 

constrained parameter estimates. Therefore, 𝑝�̂� which is an estimate of constrained 

parameter is defined by using 𝜂𝑖 which is an estimate of the unconstrained 

parameter expressed as follows: 

 𝑝�̂� = exp 𝜂𝑖. (42) 

 

In addition, we need to transform transition probability matrix Γ. However, 

transformation of it involves more work. It is known that “Γ” has m
2
 entries but 

only m (m-1) free parameters. There are m row sum constraints: 

 𝛾𝑖1 + 𝛾𝑖2 + ⋯ + 𝛾𝑖𝑚 = 1 , (43) 

 

where 𝑖 = 1,2, … , 𝑚. 

Assume that m=2 and define a matrix as: 

 
𝑇 = (

− 𝑇12

𝑇21 −
). (44) 

 

It has m(m-1)=2 entries and 𝑇𝑖𝑗 𝜖 ℝ. 

Define a 𝑘: ℝ →  𝑅+ be strictly increasing function, in other words: 

 
𝑘(𝑥) = 𝑒𝑥 𝑜𝑟 𝑘(𝑥) = {

𝑒𝑥 ,                    𝑥 ≤ 0
𝑥 + 1 ,               𝑥 ≥ 0.

 (45) 
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Define a gij function by using this increasing function: 

 
𝑔𝑖𝑗 = {

𝑘(Τ𝑖𝑗)  ,       𝑓𝑜𝑟 𝑖 ≠ 𝑗

1   ,               𝑓𝑜𝑟 𝑖 = 𝑗.
 (46) 

 

Define 𝛾𝑖𝑗 =
𝑔𝑖𝑗

∑ 𝑔𝑖𝑗
2
𝑘=1

, for 𝑖, 𝑗 = 1,2 and the set transition probability matrix 

Γ = (𝛾𝑖𝑗) which satisfies the constraints. “𝜂𝑖” and “Τ𝑖𝑗” are defined as working 

parameters; “pi” and “𝛾𝑖𝑗”  are defined as natural parameters. The transformation 

of 𝛤 and pi are useful for computing the likelihood-maximizing parameters in two 

following steps: 

Step 1: Likelihood function is maximized with respect to working parameters Τ =

{𝑇𝑖𝑗} 𝑎𝑛𝑑 𝜂 = (𝜂1, … , 𝜂𝑚). 

Step 2: The estimates of working parameters are transformed to the estimates of 

the natural parameters: 

Τ̂ → Γ̂ (Estimate of transition probability matrix). 

�̂� → p̂ (Estimate of state-dependent distribution). 

3.3.  Model Selection 

There are two problems when data are modelled with HMM. The first problem is 

selecting an appropriate number of states “m.” The second one is selecting the 

state–dependent distributions such as Bernoulli, Poisson, and Geometric.  For 

these reasons, we have to use some criteria to compare the performances of models 

developed (Zucchini and Macdonald, 2009). 

In our model, four model selection criteria, which are Akaike information criterion 

(AIC), Bayesian information criterion (BIC), mean square error (MSE), and 

misclassification error rate (MR) are calculated and some plots which includes 



 

 

 32   

observed and predicted values are drawn. The model which has the minimum AIC, 

BIC, MSE and misclassification error rate values can be selected as the best 

model. However, in some cases different model selection criteria may not give the 

same model as the best. Therefore, the best model is defined by using overall 

performance of them and the observed versus predicted graphs. 

3.3.1. Akaike Information Criterion (AIC)  

 AIC is calculated as follows (Akaike, 1973): 

 AIC= -2logL+2p, (47) 

where L denotes the log-likelihood value observed from the fitted model, and p 

denotes the number of parameters. The measure of the fit part is “-2logL” term and 

it decreases when the number of states increases; the penalty part is “2p” term and 

it increases when the number of parameters increases. 

3.3.2. Bayesian Information Criterion (BIC)  

BIC is calculated as follows (Schwarz, 1978; Acquah, 2010): 

 BIC=-2logL+plogT, (48) 

where L denotes the log-likelihood value which is observed from the fitted model 

and p denotes the number of parameters, T denotes the number of observations. 

The measure of the fit part is the same as in AIC; the penalty term is different 

however. BIC often chooses models which have fewer parameters compared to 

AIC criterion. 

3.3.3. Mean Square Error (MSE) 

MSE is calculated as follows: 

 
𝑀𝑆𝐸 =

∑ (𝑃𝑜𝑏𝑠− 𝑃𝑝𝑟𝑒 )
2

 365
1  

365
, (49) 

where 𝑃𝑜𝑏𝑠 denotes the observed values obtained from the data set, 𝑃𝑝𝑟𝑒 denotes 

the predicted values derived from two-state HMMs. MSE values are used to show 
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the difference between the observed values and the predicted values. Minimum 

value of it indicate that predicted values are close to the observed ones. 

3.3.4. Misclassification (Error) Rate (MR) 

MR for a two-class classification problem is calculated by using the “Confusion 

Matrix” given in Table 1. It shows the results for a two-class classification 

problem. 

Table 1 Confusion matrix 

 
 

Predicted Values 

 

0 1 

Observed Values 
0 a b 

1 c d 

 

Then, MR is calculated as follows: 

 𝑀𝑅 =
𝑏+𝑐

𝑎+𝑏+𝑐+𝑑
  

.
 (50) 

 

MR represents the proportion of an observation being assigned to incorrect class. 

3.4. Estimation of the Sequences of Hidden States 

There are three problems which can be solved by using HMMs’ algorithm in order 

to use HMMs in practical application (Rabiner, 1989). One of them is to find 

optimal state sequence or optimal path in the HMM that maximizes the 

observation probability of the given observation sequence. We want to find the 

state sequence that best describes the observation sequences among all possible 

state sequences (Yoon, 2009). 

The Viterbi algorithm is a dynamical programming algorithm which helps us to 

compute the most probable path. When a sequence of observations O= O1, O2 ,..., 
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OT, and the model parameters  𝜆 = (𝐴, 𝐵, 𝜋) are given, a sequence of optimal 

states 𝑆 = 𝑆1, 𝑆2, … , 𝑆𝑇 can be obtained by using the algorithm of Viterbi (Rabiner, 

1989; Can and Öz, 2009; Yoon, 2009). 

 

However, there is a difficulty to describe the definition of optimal state sequence, 

because there are many possible optimality criteria. One of them is to choose the 

states qt that are individually most likely (Rabiner, 1989). 

We define the variable "𝛾𝑡(𝑖)" as follows: 

 𝛾𝑡(𝑖) = 𝑃(𝑞𝑡 = 𝑆𝑖 | 0, 𝜆), (51) 

 

and it is the probability of being in state Si at time t, given an observation 

sequence, and the model parameters. The variable "𝛼𝑡(𝑖), " which is forward 

variable is defined as follows: 

 𝛼𝑡(𝑖) = 𝑃(𝑂1, 𝑂2, … , 𝑂𝑡, 𝑞𝑡 = 𝑆𝑖|𝜆), (52) 

 

and it is the probability of the partial observation sequence O= O1,...,Ot and the 

state Si at time t, given the model parameters. “𝛼𝑡(𝑖)” can be solved inductively as 

follows, according to Rabiner (1989): 

1) Initialization: 

 𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑂1), 1 ≤ 𝑖 ≤ 𝑁. (53) 

 

2) Induction: 

 

𝛼𝑡+1(𝑗) = [∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗

𝑁

𝑖=1

] 𝑏𝑗(𝑂𝑡+1), 1 ≤ 𝑡 ≤ 𝑇 − 1,1 ≤ 𝑗 ≤ 𝑁. (54) 

 

3) Termination: 

 𝑃(0|𝜆) = ∑ 𝛼𝑡(𝑖)𝑁
𝑖=1 . (55) 
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The forward variable "𝛽𝑡(𝑖)" is defined as follows: 

 

 𝛽𝑡(𝑖) = 𝑃(𝑂𝑡+1, 𝑂𝑡+2, … , 𝑂𝑇|𝑞𝑡 = 𝑆𝑖, 𝜆), (56) 

 

and it is the probability of the partial observation sequence from t+1 to the end, 

given the state Si at time t and the model parameters. “𝛽𝑡(𝑖)” can be solved 

inductively as follows: 

 

1) Initialization: 

 𝛽𝑇(𝑖) = 1, 1 ≤ 𝑖 ≤ 𝑁. (57) 

 

2) Induction: 

 

𝛽𝑡(𝑖) = ∑ 𝑎𝑖𝑗𝑏𝑗

𝑁

𝑗=1

(𝑂𝑡+1)𝐵𝑡+1(𝑗), (58) 

 

where 𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1;  1 ≤ 𝑖 ≤ 𝑁;  𝑖 ≤ 𝑗 ≤ 𝑁. 

𝛾𝑡(𝑖) can be written in terms of 𝛼𝑡(𝑖) which explains the partial observation 

sequence O1, O2, ..., OT; state Si at t, and 𝛽𝑡(𝑖) which explains the remainder of the 

observation sequence Ot+1, Ot+2, ..., OT given state Si at t as:  

 

 𝛾𝑡(𝑖) =
𝜶𝒕(𝒊)𝜷𝒕(𝒊)

𝑷(𝑶|𝝀)
=

𝜶𝒕(𝒊)𝜷𝒕(𝒊)

∑ 𝜶𝒕(𝒊)𝜷𝒕(𝒊)𝑵
𝒊=𝟏

 
.
 (59) 

 

 

Here, 𝑃(0|𝜆) = ∑ 𝛼𝑡(𝑖)𝛽𝑡(𝑖)𝑁
𝑖=1  is a normalization factor that makes 𝛾𝑡(𝑖) a 

probability measure. Then:  

 ∑ 𝛾𝑡(𝑖)𝑁
𝑖=1 = 1. (60) 
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Hence, we can find the individually most likely state qt at time t by using 𝛾𝑡(𝑖), as 

follows:  

 𝑞𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥[𝛾𝑡(𝑖)], 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁. (61) 
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CHAPTER 4 

 

 

4. RESULTS 

 

 

 

4.1. Introduction 

 

In this chapter, the results of the precipitation models defined in the previous 

chapter are presented and discussed. The graphs are prepared from the results 

obtained by precipitation models according to the objectives of the cases. 

According to the models defined in the previous chapter, different types of graphs 

are presented in order to observe future prediction related to precipitation. For each 

model, the results are discussed in terms of some criteria listed in Section 3.3. 

 

In the following sections, firstly brief information about data is given. Secondly, 

the probability of precipitation occurrence in three stations which take place in the 

East Black Sea Region, the Central Anatolian Region and the Aegean Region are 

found and HMMs are compared to choose the best model by using the model 

selection criteria considered. Thirdly, analyses of the precipitation amount 

estimation for one station which takes place in three regions are done separately 

and results are compared. Lastly, Viterbi algorithm is applied and some unknown 

states tried to be estimated. 
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4.2. Description of Data 

Daily total precipitation series from 1964 to 2005 for the East Black Sea Region, 

from 1977 to 2006 for the Central Anatolian Region and from 1972 to 2005 for the 

Aegean Region are obtained from Turkish State Meteorological Service. Totally 

nine stations are chosen, three from each region. HMMs are applied to wet region, 

normal moisture Region and dry region for comparing the performance of them. 

These regions are selected according to yearly total precipitation amounts and 

drought map obtained from Meteorology Administration of Turkey. Figure 4 

shows the meteorological drought map obtained by using Percent of Normal Index 

(PNI) method. 

 

 

Figure 4 Meteorological drought map by using PNI 

 

PNI method shows that drought cannot be observed in the East Black Sea Region 

and the Southwest Aegean Region. When two regions are compared, the yearly 

total precipitation amounts for the East Black Sea Region is higher than the South 

Aegean Region according to the data obtained from website of Meteorology 

Administration Turkey. 
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The stations are chosen according to their locations, completeness of the data and 

total precipitation amounts. The 29
th

 of Februaries are omitted so that we have the 

same number of time points in data and then data are classified into two groups 

namely “wet day” and “dry day.”  If the daily precipitation amount is greater than 

the threshold value that is 0.1 mm, then it is labeled as “1,” if it is smaller than the 

threshold value, then it is labeled “0.” This threshold value is determined as 

measurable precipitation amount. (Neykov et al., 2014). 

4.2.1. Central Anatolian Region (Konya-Karaman) 

The map of stations from Central Anatolian Region is shown in Figure 5 and the 

information belongs to them are given in Table 2. 

 

Figure 5 The selected stations from Central Anatolian Region 

 

Table 2 Information related to the selected stations from Konya and Karaman 

Station Number Station Name Longitude Latitude 

17244 Konya_Centre 37˚.52ˈN 32˚.28ˈE 

17246 Karaman 37˚.12ˈN 33˚.13ˈE 

17900 Çumra 37˚.34ˈN 32˚.47ˈE 
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4.2.2 East Black Sea Region (Rize-Artvin) 

The map of stations from East Black Sea Region is given in Figure 6 and the 

information belongs to them is shown in Table 3.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Information related to the selected stations from Rize and Artvin 

Station Number Station Name Longitude Latitude 

17040 Rize_Centre 41˚.02ˈN 40˚.30ˈE 

17042 Hopa 41˚.24ˈN 41˚.25ˈE 

17628 Pazar 41˚.17ˈN 40˚.91ˈE 

 

4.2.3 Aegean Region (Aydın-Muğla) 

Figure 7 shows the map of stations from Aegean Region and Table 4 gives some 

information about them. 

 

Figure 6 The selected stations from East Black Sea Region 
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Figure 7 The selected stations from Aegean Region 

 

Table 4 Information related to the selected stations from Aydın and Muğla 

Station Number Station Name Longitude Latitude 

17860 Nazilli 37˚.54ˈN 28˚.20ˈE 

17234 Aydın_Center 37˚.50ˈN 27˚.50ˈE 

17924 Muğla 36˚.57ˈN 28˚.41ˈE 

4.3 Results of Daily Precipitation Occurrence Analyses 

In the following sections, the probability of daily precipitation occurrences in nine 

stations, which take place in the Aegean Region, Central Anatolian Region and 

East Black Sea Region, are estimated and evaluated separately.  

 

4.3.1 Analyses of Daily Precipitation Occurrence in Three Stations from 

Aegean Region 

To observe the daily occurrences of precipitation in the Aegean Region, a 

homogeneous, i.e, the transition probability matrix, which is part of Markov 

process, does not change with time, two-state HMM and three-state HMM have 

been developed. The observation probability distribution is chosen as Bernoulli 



 

 

 42   

distribution because this is the most suitable distribution for the occurrence 

analysis of precipitation. This distribution generates observations which are 

denoted by 𝑅𝑡.  

 

 = ( … ), where K denotes the number of stations, represents the 

multivariate random vector of precipitation occurrence for three stations.  

Observed values denoted by  are either “0” or “1.” 

 

Three stations are selected from the Aegean Region to compare the wettest and the 

driest Regions from Turkey. These stations are also chosen according to closeness 

and correlation between them to make the local analyses successfully.  

 

Data include the daily precipitation amounts between 1972 and 2005 years.  Figure 

8 shows the daily relative frequency of wet days for three stations from Aegean 

Region. 

 

Figure 8 The daily relative frequency of wet days for three stations from Aegean 

Region 
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The daily relative frequency of wet days is used to compare stations. When Figure 

8 is analyzed, it can be seen that there are three lines. The red line shows the 

corresponding relative frequency for Nazilli station, the green line shows the 

corresponding relative frequency for Köyceğiz station and the blue line shows the 

corresponding relative frequency for Aydın_Center station. When these 

frequencies are compared, it is observed that they are not the same for three 

stations. However there are similarities between them. Also, the summary statistics 

for three stations arecalculated in order to find whether the stations have the same 

characteristic or not.  

 

Table 5 Summary statistics for stations from Aegean Region 

Station Name Min Max Median Mean Variance 
Standard 

Deviation 

Nazilli 0 88.40 0 1.56 29.83 5.46 

Aydın_Center 0 92.0 0 1.69 33.13 5.76 

Köyceğiz 0 239.2 0 2.92 105.21 10.26 

 

Table 5 shows the summary statistics for stations from Aegean Region. It is 

observed that the minimum total amount of precipitation for three stations is the 

same and the maximum total amount of precipitation for three stations are 

different, especially the maximum total amount of precipitation in Köyceğiz 

station is much more than the others.  Also, mean and variance of total 

precipitation amount are similar in Nazilli and Aydin_Center stations. However, 

their values are less than Köyceğiz station. Therefore, it can be said that the 

summary statistics of Nazilli and Aydın_Center are similar and clearly differ from 

Köyceğiz station. However, they show similar characteristics in terms of the 

relative frequency of wet days. In addition, they have parallel weather conditions 

because all of them are under the influence by Mediterranean climate. Therefore, 
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these stations are used to develop two-state and three-state HMMs. Table 6 shows 

the models and model selection criteria which are AIC and BIC. 

 

Table 6 Comparison of AIC and BIC values for stations from Aegean Region 

 Model 
Likelihood 

Values 
AIC Values BIC Values 

1 Model 131 19330 38663 38678 

2 Model 132 19330 38663 38678 

3 Model 133 11062 22129 22143 

4 Model 332 11061 22127 22142 

5 Model 532 10959 21622 21637 

6 Model 533 10840 21683 21698 

7 Model 732 10931 21866 21881 

8 Model 733 10777 21557 21572 

9 Model 932 10925 21854 21869 

 

There are nine models and each model is represented with three numbers. The first 

number is the number of seasonality term. This seasonal term that is observed in 

time series as periodic oscilliatons is represented with sine and cosine terms in Eq. 

(21). Also, it should be periodic and parametric, and its shape is sinusoidal (Stern 

and Coe, 1984; Neykov et al., 2003). The second number represents the number of 

stations and third number represents the number of states. For example, Model 332 

has three seasonality terms, three stations and two-states. 

 

Models are compared by using AIC and BIC values shown in Table 6. Also, 

Figure 9 is drawn to observe the increase or decrease in the values of AIC and 

BIC. 
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Figure 9 Comparison of AIC and BIC values for stations from the Aegean Region 

 

It is clearly seen that there are nine dots which represent the models in order given 

in Figure 9. The model which has the minimum values of AIC and/or BIC is 

chosen as the best model. Therefore, it can be said that “Model 532” and Model 

“733” are the candidates to be the best model. Before deciding which model is 

better, other model selection criteria (MSE, MR and Observed versus Predicted 

Values Plots) should be calculated and analyzed. MSE values are calculated and 

displayed in Table 7. 
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Table 7 Comparison of MSE values for stations from the Aegean Region 

 Model 

Station 

Number 

17244 

Station 

Number 

17246 

Station Number 

17900 

1 Model 131 0.0195 0.0213 0.0257 

2 Model 132 0.0195 0.0213 0.0257 

3 Model 133 0.0182 0.0194 0.0241 

4 Model 332 0.0094 0.0091 0.0080 

5 Model 532 0.0082 0.0083 0.0079 

6 Model 533 0.0083 0.0078 0.0085 

7 Model 732 0.0072 0.0072 0.0067 

8 Model 733 0.0055 0.0052 0.0051 

9 Model 932 0.0007 0.0007 0.0007 

 

It is observed that values of MSE are close to each other. The best model is 

defined as the model with the minimum value of MSE. When Table 7 is 

investigated, it can be seen that the minimum values of MSE belong to “Model 

932” and “Model 733”. Therefore, one of them is chosen as the best model. Other 

model selection criterion which is misclassification error rate is calculated and 

shown in Table 8. 
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Table 8 Comparison of MR values for stations from the Aegean Region 

 Model 

Station 

Number 

17244 

Station 

Number 

17246 

Station Number 

17900 

1 Model 131 0.4767 0.4958 0.5205 

2 Model 132 0.4767 0.4958 0.5205 

3 Model 133 0.4685 0.4362 0.4673 

4 Model 332 0.1096 0.1068 0.0877 

5 Model 532 0.1288 0.1178 0.0986 

6 Model 533 0.1276 0.1190 0.1078 

7 Model 732 0.1342 0.1370 0.1315 

8 Model 733 0.1178 0.1205 0.1150 

9 Model 932 0.1342 0.1425 0.1315 

 

In order to calculate MR, the estimated probability of precipitation occurrence is 

categorized according to a threshold value. It is not chosen as 0.5 since data sets 

lead to a considerably higher prediction error rate (Kutner et al., 2005). Instead, 

threshold value has been calculated as follows: 

 

 
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 =

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑖𝑛𝑦 𝑑𝑎𝑦𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
. (61) 

 

Threshold value enables to classify the estimated probability values. These values 

are categorized as “1” if it is greater or equal to the threshold value; and they are 

categorized as “0” if it is smaller than the threshold value. Threshold values for 

each station are given in Table 9. 

 

 



 

 

 48   

Table 9 Threshold values for stations from Aegean Region 

Station Name Threshold 

Value 

Nazilli 0.2002 

Aydın_Center 0.1970 

Köyceğiz 0.2140 

 

When Table 8 is examined, it can be said that the MR values of “Model 131” and 

“Model 132” are very higher than the other models. On the other hand, minimum 

values of it belong to the “Model 332” and “Model 532.” This means that the 

probability of precipitation occurrence is more accurate in “Model 332” and 

“Model 532” when compared with the other models. Since MR values of them are 

between 0.0877 and 0.1178. 

 

After calculating model selection criteria, observed versus predicted probability of 

precipitation occurrence graphs are drawn for each station to observe the 

performance of the model. When all graphs are compared, it can be seen that the 

graph of “Model 532” is better than the others. The graphs of “Model 532” for 

each station are shown in Figure 10, Figure 11 and Figure 12. Other graphs are 

placed in the Appendix A. 

 

Figure 10 The observed versus predicted probability of precipitation occurrence 

for Nazilli station 
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Figure 11 The observed versus predicted probability of precipitation occurrence 

for Aydın_Center station 

 

Figure 12 The observed versus predicted probability of precipitation occurrence 

for Köyceğiz station 

 

The distribution of the observed versus predicted probability values around “x=y” 

line is similar in Figure 10, Figure 11 and Figure 12. This means that predicted 

probability values are close to observed probability values for stations. Especially, 

the deviation is significantly lower in Köyceğiz station. However, the maximum 

values show a small deviation around “x=y” line. This result shows that the model 

should be improved to predict extreme values. 
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When selecting the best model, several model selection criteria are considered, 

because a single model selection criterion may not be helpful to decide the best 

model.  However all model selection criteria do not give the same results. 

Therefore, the best model is defined by using overall performance of them and the 

observed versus predicted graphs. 

 

In conclusion, “Model 532” gives better results according to AIC, BIC, MR and 

the observed versus predicted graphs. Therefore, the result of this model is 

considered for estimation. The estimation graph is drawn and the results are shown 

in Figure 13.   

 

Figure 13 The estimated probability of precipitation occurrence for stations from 

Aegean Region 

 

The estimation graph shows the probability of precipitation occurrence for three 

stations in the Aegean Region. According to Figure 13, there are two states and the 

overall estimated probability of precipitation occurrence which is between two 

states. The first state represents the minimum estimated probability of precipitation 

occurrence, which means precipitation will not occur and the second state 
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represents the maximum estimated probability of precipitation occurrence, which 

means precipitation will occur. In addition, there are three lines which represent 

the probability of precipitation occurrence for stations in each state. Black line 

represents the probability of precipitation occurrence for Nazilli station, green line 

represents the probability of precipitation occurrence for Köyceğiz station and red 

line represents the probability of precipitation occurrence for Aydın_Center 

station.   

 

The probability of precipitation occurrence is evaluated for each station according 

to its closeness to states. For example, the probability of precipitation occurrence 

for Köyceğiz station in the first day of January is close to state 2; this means that 

precipitation will occur for Köyceğiz station in the first day of January and each 

day for each station is evaluated similarly. Also, the overall probability of 

precipitation occurrence lines for Nazilli station and Aydın_Center station are 

parallel to each other and are close to state 1, between January and April. This 

means that there are more dry days in Nazilli station, and Aydın_Center station 

compare to Köyceğiz station between January and April. In addition, it is observed 

that the overall probability of precipitation occurrence lines for all stations are very 

close to first state between June and August. This means that precipitation will not 

occur between these months.  

 

4.3.2 Analyses of Daily Precipitation Occurrence in Three Stations from 

Central Anatolian Region 

Two-state and three-state HMMs have been developed to estimate the daily 

probability of precipitation occurrences in the Central Anatolian Region. Bernoulli 

distribution is chosen as the observation probability distribution which generates 

observations for predicting the probability of precipitation occurrence in stations.  
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Three stations which are among the driest stations in Turkey are chosen from the 

Central Anatolian Region to compare with other regions. In order to make local 

analyses successfully, they are selected by considering closeness and correlation 

between them.  

 

Data include the daily amount of precipitation between 1964 and 2005 years. The 

daily relative frequency of wet days for three stations from the Central Anatolian 

Region is shown in Figure 14. 

 

 

Figure 14 The daily relative frequency of wet days for three stations from Central 

Anatolian Region 

It is observed that there are three lines in Figure 14. The red line shows the 

corresponding relative frequency for Konya_Center station, the yellow line shows 

the corresponding relative frequency for Karaman station and the blue line shows 

the corresponding relative frequency for Çumra station. These lines are not the 

same; however there are similarities between them. In addition, summary statistics 

are calculated to observe the addition similarities and are shown in Table 10. 
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Table 10 Summary statistics for stations from Central Anatolian Region 

Station Name Min Max Median Mean Variance Standard 

Deviation 

Konya_Centre 0 64.50 0 0.85 10.20       3.19 

Karaman 0 60.70 0 0.88 10.14       3.18 

Çumra 0 50.10 0 0.86 9.08       3.01 

 

When Table 10 is analyzed, the minimum value of precipitation amount for three 

stations is the same. However, the maximum values of precipitation amount for 

three stations are different. Specially, the maximum value of precipitation amount 

in Çumra station is less than others. In addition, mean and variance of precipitation 

amount are similar for three stations. Therefore, it can be said that these stations 

show similar characteristics according to the relative frequency of wet days and 

summary statistics and they are used to constitute two-state and three-state HMMs. 

AIC and BIC values calculated for nine different HMMs are shown in Table 11. 

 

Table 11 Comparison of AIC and BIC values for stations from Central Anatolian 

Region 

 Model 
Likelihood 

Values 
AIC Values BIC Values 

1 Model 131 17297 34597 34612 

2 Model 132 17297 34597 34612 

3 Model 133 11336 22676 22690 

4 Model 332 11393 22790 22805 

5 Model 532 11307 22617 22632 

6 Model 533 11200 22617 22632 

7 Model 732 11290 22258 22272 

8 Model 733 11127 22258 22272 

9 Model 932 11281 22567 22581 
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Table 11 shows the models and their associated AIC and BIC values. The meaning 

of the numbers at the name of the models is as explained in section 4.3.1. Figure 

15 is composed in order to see the changes in the values of AIC and BIC. 

 

Figure 15 Comparison of AIC and BIC values for stations from Central Anatolian 

Region 

 

There are nine dots that present the models in order given in Table 11. It can be 

said that there is no difference between the two-state and three-state models with 

respect to the AIC and BIC values for “Model 532” and “Model 732.” The 

minimum values of AIC and BIC are observed in “Model 732” and “Model 932.” 

Therefore, they can be best models according to AIC and BIC values. However, 

other model selection criteria should be calculated and examined, before deciding 

which model is the better. MSE values are shown in Table 12. 
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Table 12 Comparison of MSE values for stations from the Central Anatolian 

Region 

 Model 

Station 

Number 

17244 

Station 

Number 

17246 

Station 

Number 

17900 

1 Model 131 0.0164 0.0168 0.0169 

2 Model 132 0.0164 0.0168 0.0169 

3 Model 133 0.0158 0.0154 0.0163 

4 Model 332 0.0117 0.0082 0.0103 

5 Model 532 0.0080 0.0067 0.0078 

6 Model 533 0.0081 0.0065 0.0079 

7 Model 732 0.0077 0.0065 0.0078 

8 Model 733 0.0081 0.0066 0.0079 

9 Model 932 0.0076 0.0065 0.0076 

 

Table 12 shows the MSE values are very small. In other words, the observed 

probability values are close to estimated probability values. The minimum value of 

MSE is used to describe the best model, and “Model 732” and “Model 932” have 

minimum values of MSE. This means that “Model 732” and “Model 932” are the 

best models according to MSE values. Another model selection criterion which is 

MR is calculated and shown in Table 13. 
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Table 13 Comparison of MR values for stations from the Central Anatolian Region 

 Model 

Station 

Number 

17244 

Station 

Number 

17246 

Station 

Number 

17900 

1 Model 131 0.4520 0.4931 0.4931 

2 Model 132 0.5479 0.5068 0.5397 

3 Model 133 0.4489 0.5043 0.4912 

4 Model 332 0.2320 0.2109 0.2164 

5 Model 532 0.1424 0.1753 0.1369 

6 Model 533 0.1432 0.1618 0.1462 

7 Model 732 0.1424 0.1616 0.1452 

8 Model 733 0.1433 0.1620 0.1467 

9 Model 932 0.1369 0.1534 0.1452 

 

Table 13 displays MR values for each model. Estimated and observed probabilities 

are categorized as “0” and “1” by using threshold value as calculated in the 

Aegean Region. These values for each station are in Table 14. 

 

Table 14 Threshold values for stations from Central Anatolian Region 

Station 

Name 

Threshold 

Value 

17244 0.2284 

17246 0.2111 

17900 0.2199 

 

According to Table 14, the MR values are still high in “Model 131” and “Model 

132.” However, the value of misclassification error rates obtained from other 

models is less than them.  
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Also, it can be said that  the probability of precipitation occurrence is more 

accurate in “Model 532” , “Model 732” and “Model 932” when compared with 

other models because the minimum values of MR are belong to them. In addition, 

MR values from Central Anatolian Region are higher than MR values from the 

Aegean Region. This shows that the results of HMMs develop for the Aegean 

Region seems to be better than for Central Anatolian Region. 

 

In addition to model selection criteria, observed versus predicted probability of 

precipitation occurrence graphs are composed to observe the performance of the 

model. When graphs which are composed for each model are compared, the graph 

of “Model 932” is better than others.  Other graphs are placed in the Appendix A. 

 

Figure 16 The observed versus predicted probability of precipitation occurrence for 

Konya_Center station 
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Figure 17 The observed versus predicted probability of precipitation occurrence 

values for Karaman station 

 

Figure 18 The observed versus predicted probability of precipitation occurrence values for 

Çumra station 

 

It is said that the observed and predicted probability of precipitation occurrence 

values are similar for small probability values in Figure 16, Figure 17 and Figure 

18. However, there is a deviation around “x=y” line for high probability values. 

This shows that model which is develop to estimate the occurrence probability for 

the Central Anatolian Region lack of estimating maximum probabilities. 

 

Finally, “Model 732” is defined as best model by using model selection criteria 

and the observed versus predicted probability of precipitation occurrence graphs. 
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For this reason, the result of this model is used for estimation. The estimation 

graph is made up and the results are shown in Figure 19. 

 

 

Figure 19 The estimated probability of precipitation occurrence for stations from Central 

Anatolian Region 

 

Figure 19 shows two state and overall estimated probability of precipitation 

occurrence lines. The minimum estimated probability of precipitation occurrence 

is defined as first state and the maximum estimated probability of precipitation 

occurrence is defined as second state. Overall estimated probability of 

precipitation occurrence is between the first state and the second state. Also, it is 

observed that there are three lines in each state. They represent the probability of 

precipitation occurrence for stations. Black line represents the probability of 

precipitation occurrence for Konya_Center station, green line represents the 

probability of precipitation occurrence for Karaman station and red line represents 

the probability of precipitation occurrence for Çumra station.   
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Overall estimated probability of precipitation occurrence lines are used to predict 

the precipitation. The probability of precipitation occurrence is evaluated for each 

station according to their closeness to states. For example, the probability of 

precipitation occurrence for stations in the first day of January and the last day of 

December are close to state 2; this means that precipitation is likely to occur at 

Konya_Center station, Karaman station and Çumra station in the first day of 

January and last day of December. Similarly, the probability of precipitation 

occurrence for each day and each station can be evaluated. Also, it is observed that 

the overall estimated probability line for Konya_Center station is close to state 2 

and the overall estimated probability lines for Karaman station and Çumra station 

are close to state 1 between April and September. This means that there are more 

rainy days in Konya_Center station compare with Karaman station and Çumra 

station in April through September.  

4.3.3 Analyses of Daily Precipitation Occurrence in Three Stations from East 

Black Sea Region 

The daily probability of precipitation occurrence is analyzed with two-state and 

three-state HMMs in East Black Sea Region. Observations are generated by 

Bernoulli distribution which is described as the observation probability 

distribution. 

 

Three stations which are located near to each other and correlated are selected to 

make regional analyses accurately. Data have the daily precipitation amounts from 

1964 to 2005. Time series plot of relative frequency of wet days for three stations 

from East Black Sea Region is shown in Figure 20. 
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Figure 20 The relative frequency of wet days for stations from East Black Sea Region 

 

Figure 20 shows the corresponding relative frequency lines for each station. These 

line shows similarity with each other.  This result helps to make local analyses. In 

addition, it is calculated the summary statistics for three stations and it is given in 

Table 15. 

 

Table 15 Summary statistics for stations from East Black Sea Region 

Station 

Name 
Min Max Median Mean Variance 

Standard 

Deviation 

Rize_Centre 0 178.7 0 6.08 178.9 13.38 

Pazar 0 186.2 0 5.59 171.9 13.11 

Hopa 0 209.8 0 6.09 187.5 13.69 

 

Table 15 displays that the minimum value of precipitation for three stations is the 

same and maximum amount of precipitation for three stations are different; 

especially the amount of precipitation in Hopa station is greater than the others. 
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Mean of precipitation amount is similar in Rize_Centre station and Hopa station, 

and higher than Pazar station. On the other hand, variances of total precipitation 

amount are similar in Rize_Centre station and Pazar station, and less than Hopa 

station.  

 

It can be said that Rize_Centre, Pazar and Hopa stations show similar 

characteristics according to the relative frequency of wet days and summary 

statistics. Therefore nine HMMs are developed and calculated AIC and BIC values 

to compare the models. Models and values of AIC and BIC are given in Table 16. 

 

Table 16 Comparison of AIC and BIC values for station from East Black Sea 

Region 

 Model 
Likelihood 

Values 
AIC Values BIC Values 

1 Model 131 34133 68720 68285 

2 Model 132 34133 68270 68285 

3 Model 133 22689 45832 45997 

4 Model 332 22808 45621 45636 

5 Model 532 22779 45562 45578 

6 Model 533 22779 45562 45578 

7 Model 732 22766 45536 45552 

8 Model 733 22766 45536 45552 

9 Model 932 22754 45511 45527 

 

Table 16 gives the two-state and three-state HMMs with their AIC and BIC values. 

It is clearly seen that there are nine models and each model is represented with 

three numbers. These numbers represents the number of seasonality terms, stations 

and states. Detailed information about the models is given in section 4.3.1. The 

changes in the values of AIC and BIC can be observed in Figure 21. 
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Figure 21 Comparison of HMMs by AIC and BIC 

 

It is observed that AIC and BIC values are decreasing at the beginning, then there 

are little increase and decrease and then there is a continuous decrease. Also, there 

is no difference between the two-state and three-state models with respect to AIC 

and BIC values in Model 532 and Model 732. Model 932 can be chosen as the best 

model according to AIC and BIC values. Before deciding which model is the best, 

other criteria such as MSE, MR should be computed and the observed versus 

predicted values graphs should be examined. MSE values are shown in Table 17. 
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Table 17 Comparison of MSE values for stations from East Black Sea Region 

 
Model 

 

Station 

Number 

17040 

Station 

Number 

17042 

Station 

Number 

17628 

1 Model 131 0.00471 0.00584 0.00542 

2 Model 132 0.00471 0.00584 0.00543 

3 Model 133 0.00471 0.00573 0.00542 

4 Model 332 0.00470 0.00536 0.00544 

5 Model 532 0.00468 0.00539 0.00541 

6 Model 533 0.00468 0.00538 0.00538 

7 Model 732 0.00467 0.00539 0.00537 

8 Model 733 0.00477 0.00540 0.00536 

9 Model 932 0.00481 0.00537 0.00535 

 

When Table 17 is examined, it can be said that observed and predicted occurrence 

probabilities are close to each other, and hence, MSE values are very small. 

However, it is observed that the minimum values of MSE belong to the “Model 

732” and “Model 932.” Therefore, “Model 732” and “Model 932” are the best 

models according to MSE values. In addition, the MR values are calculated and 

given in Table 18. 
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Table 18 Comparison of MR values for stations from East Black Sea Region 

 Model 

Station 

Number 

17040 

Station 

Number 

17042 

Station 

Number 

17628 

1 Model 131 0.4547 0.4821 0.4438 

2 Model 132 0.5095 0.4054 0.5013 

3 Model 133 0.5082 0.4039 0.5011 

4 Model 332 0.4657 0.4027 0.4328 

5 Model 532 0.4767 0.3972 0.4383 

6 Model 533 0.4689 0.4056 0.4231 

7 Model 732 0.4739 0.4027 0.4109 

8 Model 733 0.4487 0.4068 0.4039 

9 Model 932 0.4465 0.4000 0.4027 

 

It is observe that the MR values of HMMs are not very small although the 

threshold value is not defined as “0.5”.  It is calculated as in the Aegean and the 

Central Anatolian Regions.  However, it can be observed that MR values are still 

high for stations from East Black Sea Region compared to results obtained from 

other regions. This might be due to the fact that East Black Sea Region is an 

extremely wet region and its distribution is highly skewed. Threshold values for 

each station are displayed in Table 19. 

 

Table 19 Threshold values for stations from East Black Sea Region 

Station 

Name 

Threshold 

Value 

Rize_Center 0.4923 

Hopa 0.4741 

Pazar 0.4913 

 



 

 

 66   

It is observe that the MR values of HMMs are not very small. When models are 

compared according to MR, “Model 932” seems to be better than the other models, 

since it has smaller misclassification values than others. 

 

In order to evaluate the performance of models, observed versus predicted 

probability of precipitation occurrence graphs are composed in addition to model 

selection criteria and it is concluded that the graph of “Model 932” is better than 

others. Other graphs are placed in the Appendix A. 

 

Figure 22 The observed versus predicted probability precipitation occurence for 

Rize_Center station 

 

Figure 23 The observed versus predicted probability of precipitation occurrence for Hopa 

station 
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Figure 24 The observed versus predicted proability of precipitation occurrence for Pazar 

station 

 

When Figures 22, 23 and 24 are analyzed, it can be said that the observed and 

predicted probability values do not look like each other. Especially, extreme values 

show great deviation around “x=y” line. This means that models for East Black 

Sea Region do not give good results when compare with other regions. 

 

In conclusion, “Model 932” can be selected for estimation because model selection 

criteria and the graph of observed and predicted values of this model are 

considerably good. The estimation plot is drawn by using results of this model and 

it is shown in Figure 25. 
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Figure 25 Estimation values for East Black Sea Region 

 

We can observe the probability of precipitation occurrence for three stations by 

using the estimation plots given in Figure 25. There are two states from which the 

two-state HMM is derived. The first state represents the minimum estimate of 

probability for precipitation occurrence, which means precipitation will not occur 

and the second state represents the maximum estimate of probability for 

precipitation occurrence, which means precipitation will occur. Also, there is 

overall estimate of probability for precipitation which is derived from our model. 

The probability of precipitation occurrence is evaluated for each station according 

to its closeness to states. 

 

Two states which are minimum and maximum estimated probability of 

precipitation occurrence and overall estimated probability of precipitation 

occurrence lines can be seen in Figure 24. There are three lines which represent the 
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probability of precipitation occurrence for stations in each station. Black line 

represents the probability of precipitation occurrence for Rize_Center station, 

green line represents the probability of precipitation occurrence for Hopa station 

and red line represents the probability of precipitation occurrence for Pazar station.  

Overall estimated probability of precipitation occurrence which is between the first 

state and second state is used for estimating daily precipitation occurrence for each 

station. If it is close to the first state, precipitation will not occur; if it is close to 

the second state, precipitation will occur. 

 

The probability of precipitation occurrence is evaluated for each station according 

to it closeness to states. When Figure 25 is analyzed, it is said that overall 

estimated probability of precipitation lines for Rize_Center station and Hopa 

station are parallel to each other and they are close to second state between August 

and October. This means that there are more rainy days at these stations compare 

with Pazar station at these months. Therefore, each day for each station is 

evaluated similarly. In addition, it is observed that the overall estimated probability 

values are higher than other regions. In other words, East Black Sea Region has 

more rainy days compare the Aegean and Central Anatolian Region according to 

this estimation plot. However, it is observed that the misclassification error rates 

which are calculated from the Aegean and Central Anatolian Region are smaller 

than misclassification rates which are derived from the East Black Sea Region. 

Also, when the graph of observed versus predicted probability values is examined, 

it can be said that there is great deviation around “x=y” lines.   This shows that 

HMMs which are develop for estimating occurrence probabilities to East Black 

Sea Region do not give good prediction for precipitation occurrence compare with 

the other regions. 

 

In other words, two-state homogenous HMMs are useful tool for predicting overall 

probability of precipitation in regions like the Aegean and Central Anatolian. 
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4.4 Results of Daily Total Precipitation Amount Analyses 

In the following sections, the daily total precipitation amount in one station which 

takes place in the East Black Sea Region, Central Anatolian Region and Aegean 

Region are estimated and evaluated separately. 

4.4.1 Analyses of the Precipitation Amount Estimation for One Station from 

East Black Sea Region 

The distribution of rainfall amount on the wet days is assumed as positively 

skewed. Because, it is known that larger amounts occur less than smaller amounts.  

In order to model daily precipitation amount data, gamma distribution is chosen. 

Daily precipitation amount data of Rize_Center station is used to estimate the total 

precipitation amount by using HMMs. This station is chosen among stations which 

are used to estimate precipitation occurrence.   

 

Data include the daily precipitation amount between 1964 and 2005 years. Some 

graphics are composed to show the difference of daily total precipitation amount 

between days. The mean of daily total precipitation amount is shown in Figure 26. 

 

Figure 26 Mean of daily total precipitation amount for Rize_Center station from 

East Black Sea Region 
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Figure 26 shows the mean of precipitation and two smoothing line for Rize_Center 

station. It is said that mean of precipitation decreases until 100
th

 day of the year 

and then it increases and reaches maximum value around the 300
th

 day of the year. 

In general, overall mean of daily total precipitation amount is above the 5mm. 

Also, the standard deviation of daily total precipitation amount is shown in Figure 

27. 

 

Figure 27 Standard deviation of daily precipitation amount for Rize_Center station 

from East Black Sea Region 

 

Figure 27 shows the standard deviation of daily precipitation amount for 

Rize_Center station. This value is the smallest around 100
th

 day of year which 

means that the precipitation amount of these days closes to mean and it reaches 

higher value around the 300
th

 day of the year which means that the total 

precipitation amount of these days are spread out over a large range of total 

precipitation amounts. In addition, the coefficient of variation of daily total 

precipitation amount is calculated and it is displayed in Figure 28. 
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Figure 28 Coefficient of variation values of daily total precipitation amount for 

Rize_Center station from East Black Sea Region 

 

Figure 28 shows that the coefficient of variation of daily precipitation amount is 

not the same for all days. This means that there is different ratio of standard 

deviation to the mean between the days. 

 

In order to analyze the daily precipitation amount data, two-state seasonal gamma 

HMMs are developed. Information about the models is given in Table 20.  

Table 20 Information about two-state seasonal gamma HMMs 

Models 

Seasonal 

Components 

for Mean 

Seasonal 

Components for 

Coefficient of 

Variation 

The Number 

of States 

Model 1 3 3 2 

Model 2 5 3 2 

Model 3 5 5 2 

Model 4 7 3 2 

Model 5 7 5 2 
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It can be seen that there are five HMMs developed to observe the daily total 

precipitation amount for Rize_Center station. Each model contains estimates. For 

example, “Model 1” has two-state and each state has three parameters in the 

seasonal component for the mean and three parameters for the coefficient of 

variation, i.e., a total of 12 parameters. Hence, other models contain more than 12 

parameters. In addition, the values of AIC and BIC are calculated to compare the 

models and they are given in Table 21. 

Table 21 Comparison of AIC and BIC for Rize_Center Station from East Black 

Sea Region 

Model Likelihood Values AIC Values BIC Values 

Model 1 26694 53416 53524 

Model 2 26675 53386 53525 

Model 3 26660 53365 53534 

Model 4 26673 53391 53560 

Model 5 26659 53370 53570 

 

As can be seen from the Table 21, “Model 3” has minimum AIC value and “Model 

1” has minimum BIC value. Therefore, they are candidates of the best model.  

Before deciding which model is better, MSE values are calculated and a graph 

which includes the observed versus predicted values is drawn. MSE values are 

shown in Table 22. 

 

Table 22 MSE values for Rize_Center station from East Black Sea Region 

Model MSE Values 

Model 1 43.8062 

Model 2 43.2053 

Model 3 43.6797 

Model 4 43.1057 

Model 5 42.9254 
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When Table 22 is analyzed, it can be seen that MSE values are close to each other. 

However, it is observed that the minimum values of MSE belong to the “Model 4” 

and “Model 5.” Hence one of these models could be the best model to observe the 

total precipitation amount for Rize_Center station according to MSE values. In 

addition to model selection criteria, graphs that contain the observed versus the 

predicted precipitation values are drawn for each model and it is observed that the 

result of “Model 4” is the best compare with other models. Other graphs are placed 

in the Appendix A. 

 

Figure 29 The observed versus predicted values of precipitation amount for 

Rize_Center station 

 

Figure 29 displays the observed and predicted precipitation amount values look 

like each other. However, there is a deviation around “x=y” line especially in 

maximum probability values. In conclusion, it seems to logical choose the best 

model as Model 4 according to BIC, MSE values and graph of the observed and 

predicted precipitation amount values. Finally, the results of this model are used 

for estimation. Estimation plots are shown in Figure 30. 

  

0 5 10 15 20 25 30

0
5

1
0

1
5

2
0

2
5

3
0

Observed vs Predicted Rainfall Amount for Rize

Observed Rainfall Amount

P
re

d
ic

te
d

 R
a

in
fa

ll
 A

m
o

u
n

t



 

 

 75   

 

Figure 30 Estimation of the mean, standard deviation and coefficient of variation 

of total precipitation amount for Rize_Center station 

The estimation plots of mean, standard deviation and coefficient of variation about 

precipitation amount for Rize_Center station are given in Figure 30. There are two 

states which are derived from two-state HMMs and overall value in each 

estimation plots. The first state (red line) represents the minimum estimated value 

of mean, standard deviation and coefficient of variation for precipitation amount. 

The second state (blue line) represents the maximum estimated value of mean, 

standard deviation and coefficient of variation for precipitation amount. However 

these states are unknown from definition of HMM and they can be defined 

according to goal of the study. Also, there is an overall estimate of precipitation 

amount (dark line) which is between the first state and the second state. When the 

precipitation amount is estimated, the overall estimate of precipitation amount help 
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to evaluate the precipitation amount according to closeness to states. For example, 

estimation plot for mean indicates that overall estimate of precipitation amount 

line close to the second state. This gives an idea about the mean of precipitation 

amount to us. For Rize_Center station, it will be about 10mm. In addition to mean 

of precipitation amount, standard deviation of precipitation amount and coefficient 

of variation of precipitation can be evaluated day by day with these estimation 

plots. Also, predictions of 365 days related to mean, standard deviation and 

coefficient of variation of precipitation amount give general information about 

daily precipitation amount for people. 

4.4.2 Analyses of the Precipitation Amount Estimation for One Station from 

Central Anatolian Region 

In order to estimate daily precipitation amount at the Central Anatolian Region, 

Konya_Center station is selected. This station is one of the stations which are used 

to estimate precipitation occurrence. Data include the daily amount of total 

precipitation between 1977 and 2006 years. Some graphics are drawn to get 

general opinion about the difference of daily precipitation amount between days. 

The mean of daily precipitation amount is shown in Figure 31. 

 

Figure 31 Mean of daily total precipitation amount for Konya_Center station 
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According to Figure 31, the mean of precipitation amount is low for Konya_Center 

station compare to Rize_Center station. There are few days for which mean of 

precipitation amount is more than 10mm. In general, overall mean of daily 

precipitation amount is below 5 mm. Also, the standard deviation of daily 

precipitation amount is displayed in Figure 32. 

 

Figure 32 Standard deviation values of daily total precipitation amount for 

Konya_Center station 

 

Figure 32 provides information about the standard deviation of total precipitation 

for Konya_Center station. This value is zero around 200
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that the precipitation amount of these days closes to mean. Also, it reaches high 

values around the 300
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 day of the year which means that the total precipitation 

amount of these days spread out over a large range of precipitation amounts. In 

general, overall standard deviation of daily total precipitation amount is between 0 

mm and 5 mm. In addition to the mean and standard deviation of precipitation 

amount, the coefficient of variation of daily precipitation amount is calculated and 

it is given in Figure 33. 
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Figure 33 The coefficient of variation of daily precipitation amount for  

Konya_Center station 

 

It is observed that the coefficient of variation is not the same for all days from 

Figure 33. This shows that there is a significant difference between the days in 

terms of mean and standard deviation. Also, there are some days that coefficient of 

variation values cannot be calculated. This happens because mean takes value of 

zero. 

 

Two-state seasonal HMMs have been developed to estimate the daily precipitation 

amount at the Central Anatolian Region. Gamma distribution is selected as the 

observation probability distribution which generates observations for predicting 

the probability of precipitation amount at stations. To compare models, model 

selection criteria such as AIC, BIC and MSE are calculated and graphs which 

include the observed and predicted precipitation amount are drawn. It has been 

shown that AIC and BIC values for five different HMMs in Table 23. 
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Table 23 Comparison of AIC and BIC values for Konya_Center station 

Model 
Likelihood 

Values 
AIC Values BIC Values 

Model 1 5433 10894 10996 

Model 2 5419 10874 11005 

Model 3 5418 10880 11041 

Model 4 5412 10868 11028 

Model 5 5410 10873 11063 

 

Models and the values of AIC and BIC are given in Table 23. The explanation of 

models is as given in section 4.4.1. This table indicates that the minimum value of 

AIC belongs to “Model 4” and the minimum value of BIC belongs to “Model 1.” 

However, MSE should be calculated and graphs which include the observed and 

predicted values should be analyzed to describe the best model. Table 24 displays 

the MSE values. 

 

Table 24 Comparison of MSE values for Konya _Center station 

Model MSE Values 

Model 1 10.9192 

Model 2 9.1819 

Model 3 9.1487 

Model 4 9.2455 

Model 5 9.2251 

 

 It is said that there is no big difference between the MSE values of models. 

However, it can be seen that the minimum MSE value is found with “Model 3.” 

Hence it could be the best model to estimate the total precipitation amount for 

Konya_Center station according to MSE values. In addition to MSE values, some 
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graphs are drawn to see the values of observed versus predicted precipitation 

amount together. 

 

Figure 34 The observed versus predicted values of precipitation amount for 

Konya_Center station 

 

It can be clearly seen that the values of observed and predicted precipitation 

amount do not seem to be similar. There is high deviation around “x=y” line. 

Because the predicted precipitation amount values are higher than observed 

precipitation amount. However, the graph which is drawn by using the result of 

“Model 3” is better than other models. Other graphs can be seen in Appendix A. 

At the end, “Model 3” is chosen as the best model according to the values of BIC, 

MSE and the graph of the observed versus predicted precipitation amount. 

Therefore, it is used for estimation. The plots of estimation are drawn by using the 

result of “Model 3.”  
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Figure 35 Estimation of precipitation amount for Konya_Center station 

 

Figure 35 includes the estimation plots of mean, standard deviation and coefficient 

of variation about precipitation amount for Konya_Center station. There are two 

states which are derived from two-state HMM in each graph. The minimum 

estimate of precipitation amount is presented by the first state (red line). The 

maximum estimate of precipitation amount is presented by the second state (blue 

line). Also, there is overall estimate of total precipitation amount (dark line). 

Precipitation amount is predicted according to the position of the overall line. For 

example, overall line is close to the second state in the graphs of mean and 

standard deviation of precipitation amount. It means that the value of mean and 

precipitation amount will be around 5mm. On the other hand, overall line is close 
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to the first state in the graph of coefficient of variation. It means that the value of 

coefficient variation will be around 1mm. Therefore; the value of mean, standard 

deviation and coefficient of variation for precipitation amount are estimated day by 

day in addition to overall evaluation for precipitation amount by using the plots of 

estimation.  

4.4.3 Analyses of Total Precipitation Amount Estimation for One Rain Station 

from Aegean Region 

In order to develop a model for Aegean Region, Aydın_Centre station is chosen. 

This station is chosen among stations which are used to estimate precipitation 

occurrence. Data include the daily amount of precipitation between 1972 and 2005 

years. The graphs of mean, standard deviation and coefficient of variation are 

drawn to observe the difference of daily precipitation amount between days. The 

mean of daily precipitation amount is shown in Figure 36. 

 

 

Figure 36 Mean of daily precipitation amount for Aydın_Center station 

 

As can be seen from Figure 36, the mean of precipitation is between 5mm and 

10mm. There are few days whose mean of precipitation amount is more than 

20mm. In general, overall mean of daily total precipitation amount is below 10 
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mm. However, mean of daily total precipitation amount in Aydın_Center station is 

higher than Konya_Centre station from Central Anatolian Region and less than 

Rize_Center station from East Black Sea Region. Also, the standard deviation of 

daily precipitation amount is calculated and displayed in Figure 37. 

 

Figure 37 Standard deviation  of daily precipitation amount for Aydın_Center 

station 

 

Figure 37 reveals the standard deviation of precipitation amount for Aydın_Center 

station and it is zero around 200
th

 day of year which means that the precipitation 

amount is equal to mean of it. In general, overall standard deviation of daily total 

precipitation amount is 0 mm and 10 mm. In addition, the coefficient of variation 

of daily precipitation amount is calculated to compare the ratio of mean and 

standard deviation for every day. 
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Figure 38 Coefficient of variation values of daily total precipitation amount for 

Aydın_Center station 

 

The coefficient of variation of daily precipitation amount is revealed in Figure 38.  

It is not the same for all days. However, there is similarity between the first 100 

and the last day of the year. Also, it cannot be calculated the values of coefficient 

of variations for many days since the mean of precipitation amount is zero. 

 

In the following sections, AIC, BIC and MSE are calculated by using the results of 

the two-state seasonal gamma HMMs. Table 25 indicates the models and the 

values of AIC and BIC. 

 

Table 25 Comparison of AIC and BIC values for Aydın_Center station 

Model Likelihood Values AIC Values BIC Values 

Model 1 7638 15304 15408 

Model 2 7634 15304 15438 

Model 3 7628 15301 15464 

Model 4 7629 15301 15465. 

Model 5 7625 15303 15496 
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The values of AIC and BIC in Table 25 indicates that the minimum value of AIC 

are found in both “Model 3” and “Model 4” and the minimum value of BIC is 

found in “Model 2.” These models can be described as the best model. However, 

MSE and the graphs of observed versus predicted values should be controlled to 

decide the best model. The MSE values are given in Table 26.  

 

Table 26 Comparison of MSE values for Aydın_Center station 

Model MSE Values 

Model 1 103.5531 

Model 2 103.2161 

Model 3 84.1768 

Model 4 101.9010 

Model 5 101.6165 

 

As it can be seen from Table 26, the values of MSE are similar except for the MSE 

value for “Model 3” which is the minimum value. Therefore, it could be the best 

model to estimate the precipitation amount for Aydın_Centre station according to 

MSE values. 

 

In order to see the closeness of observed versus predicted precipitation amount, 

some graphs are drawn by using the results of two-state seasonal gamma HMMs. 

It is found that all graphs are similar to each other. A graph which is drawn by 

using the result of “Model 3” is shown in below. 
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Figure 39 The observed versus predicted values of precipitation amount for 

Aydın_Center station 

 

It is figured out that the values of observed and predicted precipitation amount 

values do not show similarity. There is a high deviation around “x=y” line as in 

Konya_Centre station from Central Anatolian Region and an underestimation of 

the precipitation amount.  

 

Finally, “Model 3” seems to be better than the other models according to the 

values of BIC, MSE and the graph of the observed versus predicted values. 

Therefore, the result of this model is used for estimation. The plot of estimation is 

revealed in Figure 40. 
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Figure 40 Estimation of total precipitation amount for Aydın_Center station 

 

The graphs of estimation of mean, standard deviation and coefficient of variation 

for precipitation amount at the Aydın_Center station are displayed in Figure 40. It 

can be observed the first state (red line) which presents the minimum estimate of 

precipitation amount, the second state (blue line) which presents the maximum 

estimate of precipitation amount and also, overall estimate of  precipitation amount 

(dark line) which is between the first state and the second state.  

 

When the mean of precipitation amount is analyzed, it can be seen that overall line 

is close to the second state at the end of the year. This means that the precipitation 

amount will be around 10 mm. On the other hand, when coefficient of variation of 
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precipitation amount is analyzed, the overall line is not close to the second state at 

the end of the year. Especially, the overall line is close to the first state around the 

200th of the year. It can be said that the coefficient of variation of precipitation 

amount will be less than 2 mm in these days. Similarly, an evaluation can be done 

for standard deviation of precipitation amount. Also, daily predictions can be done 

by using the estimation plots of mean, standard deviation and coefficient of 

variation. 

 

4.5 Application of Viterbi Algorithm 

The Viterbi algorithm helps us to find the state sequence that best describes the 

observation sequences among all possible state sequences. In other words, when a 

sequence of observations and the model parameters (𝐴, 𝐵, 𝜋) are known, a 

sequence of optimal states can be obtained by using this algorithm (Rabiner, 

1989). It shows the the prediction power of HMMs. A plan is made for events 

which occur more likely at a future date. For example, a sequence of observation is 

considered for the next year, and the most probable sequences of states are 

estimated through the algorithm of Viterbi (Yoon, 2009). 

 

In order to apply the algorithm of Viterbi, the examples of observation sequence 

are taken from the results of precipitation occurrence which is derived from the 

Aegean Region. 

 

Observations are used to perform the algorithm of Viterbi to find the 

corresponding state. Dry day is defined as state “1”, wet day is defined as state 

“2”. Observation for dry day is defined as “D” and observation for wet day is 

defined as “W”. Also,  the model parameters are required to apply this algorithm. 

For this reason, initial probability values, transition matrix and emission matrix are 

taken from “Model 532” described as the best model for Aegean Region.  
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The transition matrix is: 

1                 2
1
2

[
0.7569003 0.3009495
0.2439997 0.6990505

] 

 

The emission matrix is: 

.
𝑆𝑡𝑎𝑡𝑒𝑠

1
2

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝐷   𝑊

[
0.7 0.3
0.3 0.7

]
 

 

In addition to model parameters, the sequences of observations are generated for 

“January and April” randomly. Each sequence of observations includes ten values 

and this number can be increased. The sequence of observations which are 

generated for the first ten days of “April” is "”D, "D", "D", "D", "W", "D", "D", 

"W", "W", "W" and  the prediction of sequence of states is "1", "1", "1", "1", “1",  

"1", "1", "2", "2", "2". The real sequences of states are estimated by using the 

observed data set. Finally, results are compared to compute the error due to the 

model.  

 

Figure 41 Comparison of sequences of real hidden and predicted states by the 

model 
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When drawing the graph, the sequence of observations is represented by the more 

likely for this sequence of states as shown in Figure 41. When analyzing the 

sequences of observations and states, it can be seen that there is only one 

observation which are estimated wrong. Therefore, error is calculated as 10 %. 

This means that this algorithm gives good prediction for future. 

 

In order to compare the performance of the algorithm of Viterbi, the second 

sequence of observation is generated for the first ten days of “January” and the 

most probable states are predicted. The observation sequence of observations is 

"W”,"W", "W", "D", "D", "W", "W", "W", "W", "D" and the prediction of sequence 

of states is "2", "2", "2", "1", “1", “1", "2", "2", "2", "2").  

 

Figure 42 Comparison of sequences of real hidden and predicted states by the 

model 

 

Figure 42 displays two different sequences of hidden states. One of them shows 

the predicted sequence which represents the sequence of observed values. The 

other one shows the predicted sequence which is estimated by the algorithm of 

Viterbi. It can be seen that there are two mispredicted observation. Hence, the 

error value can be found as 20 %. It can be said that the model estimates the reality 

80%. 
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At the end, it can be concluded that the performance of algorithm of Viterbi is 

better at “April” when compared with the result of “January.” Since the number of 

true prediction is higher. Therefore, it can be said that the most probable path 

corresponding to a given sequence of observations can be determined by this 

algorithm easily.  

 

 Viterbi algorithm is used to find some sequence of states which is derived in 

Aegean Region. It provides information for unknown states. In our example, our 

observations are defined by using past data related to daily total precipitation 

amount and we want to know the unknown states which lead to occur these 

observations. In our cases, we have just two states and estimating these states may 

not seem to be beneficial. However, in many HMM applications there are more 

states and estimating states are very beneficial. For example, when trying to 

predict unknown states at four-state HMM which is developed for estimating 

precipitation amounts, the estimated results of algorithm of Viterbi becomes 

important. 
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CHAPTER 5 

 

 

5. CONCLUSION AND FUTURE WORK 

 

 

 

The main purpose of this study is modelling the daily precipitation occurrence and 

the amount of total precipitation observed in certain regions of Turkey by using 

HMMs. HMMs have been successfully applied in precipitation modelling. The 

main advantage of HMMs for this study is that they provide general information 

about understanding the probabilistic structure of precipitation and estimate the 

daily total precipitation amount. 

 

The first chapter of the thesis starts with an introduction. The motivation of study 

is briefly explained and outline of thesis is given in this chapter. In the second 

chapter of the thesis, the history of HMMs and precipitation models are explained. 

In the third chapter, firstly the brief information related to MC is given. Secondly, 

the definition of HMMs, the description of the daily precipitation HMMs and the 

parameter estimation method are explained. Thirdly, model selection criteria are 

described. In the fourth part of the study, the results of the simulation cases 

defined in previous chapter are presented and discussed. The graphs are prepared 

from the results obtained from the simulations according to the objectives of the 

cases. According to the models defined in previous chapter, different types of 

graphs are presented in order to observe the future prediction related to 

precipitation. 

 



 

 

 94   

In this study, homogeneous HMM is applied to daily total precipitation data from 

three stations in the East Black Sea Region, three stations in the Central Anatolian 

Region and three stations in the Aegean Region of Turkey. In the first part of the 

study, two-state and three-state Bernoulli HMM are developed to observe the 

probability of rainfall occurrence. The performance of HMMs is evaluated by 

comparing AIC, BIC, MSE, MR and plots which depict observed probability 

values versus predicted probability values. HMMs which are developed for the 

East Black Sea Region do not give better results compare to results of the other 

Regions. Because the MR values are very high and the plots which include 

observed and predicted probability values do not deviate from “x=y.” On the other 

hand, it is observed that the MR values are small and observed and predicted 

probability values are similar in the results of HMMs developed for the Aegean 

Region. This shows that the two-state homogeneous HMM is the most successful 

for regions that has normal moisture climate like Aegean Region compare to 

wettest region like East Black Sea and driest region like Central Anatolian. 

 

In the second part of the study, two-state seasonal gamma HMM is developed for 

one station from the East Black Sea Region, one station from the Central 

Anatolian Region and one station from the Aegean Region to observe the amount 

of total precipitation. The performance of HMMs is evaluated by comparing AIC, 

BIC, MSE and plots of observed versus predicted probability values. HMMs 

developed for the East Black Sea Region give better results compare to the results 

of other regions. Because plots of observed versus predicted precipitation amounts 

scatter around “x=y.” On the other hand, HMMs developed for the Central 

Anatolian Region and Aegean Region do not give good results. It is observed that 

the predicted amount of total precipitation is higher than the observed amount of 

total precipitation. This is mainly because data includes many zeros, and this leads 

to false predictions. In the third part of study, we apply Viterbi algorithm to find 

some sequence of states which are derived for the Aegean Region. It is observed 



 

 

 95   

that this algorithm can be used to estimate an unknown situation. In our cases, we 

have just two states and estimating states may not seem to be beneficial. However, 

in many HMM applications there are more states and estimating states are very 

beneficial to observe unknown states. 

 

In conclusion, we see that two-state homogeneous HMM may not be a useful tool 

to find the probabilities of rainfall occurrence for wettest regions like East Black 

Sea Region. However it can be useful tool to find the amount of total precipitation 

these regions for preparing strategies and planning for the unpredicted disaster 

such as flood. 

 

As the future study, we consider developing nonhomogeneous HMMs by using 

synoptic atmospheric information such as temperature, solar radiation, and other 

climatic factors. Because it is known that there are more factors that affect the 

weather conditions in addition to past data related to total rainfall. When the 

number of variables which affect the future weather conditions increase to estimate 

weather condition, the success of prediction of weather condition will increase. 

Therefore, better results can be observed for the occurrence probability of rainfall 

predictions and amount of rainfall predictions. Also, the number of states can be 

increased to observe different weather conditions. Since, we see that homogeneous 

HMMs are not successful to estimate extreme values. When the number of states 

for HMMs increases, it can estimate extreme values. 

 

Finally, we believe that HMM is a very useful tool to simulate precipitation. The 

results obtained from the application of HMM encourage us to find possibility of 

realizing good local predictions of precipitation. This work would be first phase to 

make estimations related to precipitation, providing very fast and less costly 

computations and it gives general weather forecast and information about the state 

of regions. When a nonhomogeneous HMM is developed, extreme precipitation 
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events could be estimated and an alert system could be constructed. Also, we think 

that HMMs can help us to understand the probabilistic structure of different 

application areas. 
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APPENDIX A  

 

 ESTIMATION PLOTS 

 

 

A.1. Estimation Plots of Probability of Precipitation Occurence 

Estimation Plots For East Black Sea Region 

 

Figure 43 The estimated probability of precipitation occurrence for stations from 

East Black Sea Region (Model 332) 

 

 

Figure 44 The estimated probability of precipitation occurrence for stations from 

East Black Sea Region (Model 532) 
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Figure 45 The estimated probability of precipitation occurrence for stations from 

East Black Sea Region (Model 932) 

 

Observed Probability vs Predicted Probability Plots for East Black Sea 

Region 

 

Figure 46 The observed versus predicted probability of precipitation occurrence 

for Rize_Center station (Model 332) 

 

 

Figure 47 The observed versus predicted probability of precipitation occurrence 

for Hopa station (Model 332) 
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Figure 48 The observed versus predicted probability of precipitation occurrence 

for Pazar station (Model 332) 

 

 

Figure 49 The observed versus predicted probability of precipitation occurrence 

for Rize_Center station (Model 532) 

 

 

Figure 50 The observed versus predicted probability of precipitation occurrence 

for Hopa station (Model 532) 
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Figure 51 The observed versus predicted probability of precipitation occurrence 

for Pazar station (Model 532) 

 

 

Figure 52 The observed versus predicted probability of precipitation occurrence 

for Rize_Center station (Model 932) 

 

 

Figure 53 The observed versus predicted probability of precipitation occurrence 

for Hopa station (Model 932) 
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Figure 54 The observed versus predicted probability of precipitation occurrence 

for Pazar station (Model 932) 

 

Estimation Plots for Central Anatolian Region 

 

 

Figure 55 The estimated probability of precipitation occurrence for stations from 

Central Anatolian Region (Model 332) 
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Figure 56 The estimated probability of precipitation occurrence for stations from 

Central Anatolian Region (Model 532) 

 

Figure 57 The estimated probability of precipitation occurrence for stations from 

Central Anatolian Region (Model 932) 

Observed Probability vs Predicted Probability Plots for Central Anatolian 

Region 

 

Figure 58 The observed versus predicted probability of precipitation occurrence 

for Konya_Center station (Model 332) 
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Figure 59 The observed versus predicted probability of precipitation occurrence 

for Karaman station (Model 332) 

 

 

Figure 60 The observed versus predicted probability of precipitation occurrence 

for Çumra station (Model 332 

 

 

Figure 61 The observed versus predicted probability of precipitation occurrence 

for Konya_Center station (Model 532) 
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Figure 62 The observed versus predicted probability of precipitation occurrence 

for Karaman station (Model 532) 

 

 

Figure 63 The observed versus predicted probability of precipitation occurrence 

for Çumra station (Model 532) 

Estimation Plots for Aegean Region 

 

Figure 64 The estimated probability of precipitation occurrence for stations from 

Aegean Region (Model 332) 
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Figure 65 The estimated probability of precipitation occurrence for stations from 

Aegean Region (Model 533) 

 

 

Figure 66 The estimated probability of precipitation occurrence for stations from 

Aegean Region (Model 732) 

 

 

Figure 67 The estimated probability of precipitation occurrence for stations from 

Aegean Region (Model 733) 
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Figure 68 The estimated probability of precipitation occurrence for stations from 

Aegean Region (Model 932) 

Observed Probability Values vs Predicted Probability Values Plots for 

Aegean Region 

 

Figure 69 The observed versus predicted probability of precipitation occurrence 

for Nazilli station (Model 332) 

 

 

Figure 70 The observed versus predicted probability of precipitation occurrence 

for Aydın_Center station (Model 332) 
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Figure 71 The observed versus predicted probability of precipitation occurrence 

for Köyceğiz station (Model 332) 

 

 

Figure 72 The observed versus predicted probability of precipitation occurrence 

for Nazilli station (Model 532) 

 

 

Figure 73 The observed versus predicted probability of precipitation occurrence 

for Aydın_Center station (Model 532) 
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Figure 74 The observed versus predicted probability of precipitation occurrence 

for Köyceğiz station (Model 532) 

 

 

Figure 75 The observed versus predicted probability of precipitation occurrence 

for Nazilli station (Model 732) 

 

 

Figure 76 The observed versus predicted probability of precipitation occurrence 

for Aydın_Center station (Model 732) 
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Figure 77 The observed versus predicted probability of precipitation occurrence 

for Köyceğiz station (Model 732) 

 

A.2. Estimation Plots of Precipitation Amount 

Estimation Plots of Precipitation Amount for East Black Sea Region 

 

Figure 78 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Rize_Center station (Model 1) 
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Figure 79 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Rize_Center station (Model 2) 

 

Figure 80 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Rize_Center station (Model 3) 
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Figure 81 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Rize_Center station (Model 4) 

 

 

Figure 82 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Rize_Center station (Model 5) 
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Figure 83 The observed versus predicted values of precipitation amount for Rize_Center 

station (Model 1) 

 

 

Figure 84 The observed versus predicted values of precipitation amount for Rize_Center 

station (Model 2) 

 

 

Figure 85 The observed versus predicted values of precipitation amount for Rize_Center 

station (Model 3) 
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Figure 86 The observed versus predicted values of precipitation amount for Rize_Center 

station (Model 4) 

 

 

Figure 87 The observed versus predicted values of precipitation amount for Rize_Center 

station (Model 5) 
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Estimation Plots of Precipitation Amount for Central Anatolian Region 

 

Figure 88 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Konya_Center station (Model 1) 

 

 

 

Figure 89 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Konya_Center station (Model 2) 
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Figure 90 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Konya_Center station (Model 3) 

 

 

 

Figure 91 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Konya_Center station (Model 4) 
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Figure 92 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Konya_Center station (Model 5) 

 

Observed Probability vs Predicted Amount of Precipitation Plots for Central 

Anatolian Region 

 

Figure 93 The observed versus predicted values of precipitation amount for Konya_Center 

station (Model 1) 
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Figure 94 The observed versus predicted values of precipitation amount for Konya_Center 

station (Model 2) 

 

 

Figure 95 The observed versus predicted values of precipitation amount for Konya_Center 

station (Model 3) 

 

 

Figure 96 The observed versus predicted values of precipitation amount for Konya_Center 

station (Model 4) 
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Figure 97 The observed versus predicted values of precipitation amount for Konya_Center 

station (Model 5) 

 

Estimation Plots of Precipitation Amount for Aegean Region 

 

Figure 98 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for aydın_Center station (Model 1) 
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Figure 99 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Aydın_Center station  (Model 2) 

 

 

 

Figure 100 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Aydın_Center station (Model 3) 
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Figure 101 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Aydın_Center station  (Model 4) 

 

 

Figure 102 Estimation of mean, standard deviation and coefficient of variation of total 

precipitation amount for Aydın_Center station  (Model 5) 
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Observed Probability vs Predicted Amount of Precipitation Plots for Aegean 

Region 

 

Figure 103 The observed versus predicted values of precipitation amount for 

Aydın_Center station (Model 1) 

 

Figure 104 The observed versus predicted values of precipitation amount for 

Aydın_Center station(Model 2) 

 

Figure 105 The observed versus predicted values of precipitation amount for 

Aydın_Center station (Model 3) 
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Figure 106 The observed versus predicted values of precipitation amount for 

Aydın_Center station (Model 4) 

 

 

Figure 107 The observed versus predicted values of precipitation amount for 

Aydın_Center station (Model 5) 
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APPENDIX B  

 

R CODES 

 

 

B.1. R  Codes for HMMs to Find Probability of Precipitation Occurrence 

The following R codes are used to find probability of precipitation and estimation 

plots for each region seperately. 

# =======Read and arrange data 

chirpan<- read.csv("C:\\Users\\Lab_User\\Desktop\\17040.csv") 

plovdiv<- read.csv("C:\\Users\\Lab_User\\Desktop\\17628.csv") 

klovpan<-read.csv("C:\\Users\\Lab_User\\Desktop\\17042.csv") 

 

dc<-unlist(t(chirpan)) 

dp<-unlist(t(plovdiv)) 

pc<-unlist(t(klovpan)) 

 

oc<-as.integer(dc>0) 

op<-as.integer(dp>0) 

ok<-as.integer(pc>0) 

 

ocm<-t(matrix(oc,nrow=365)) 

opm<-t(matrix(op,nrow=365)) 
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okm<-t(matrix(ok,nrow=365)) 

 

mean.c<-apply(ocm,2,mean) 

mean.p<-apply(opm,2,mean) 

mean.k<-apply(okm,2,mean) 

 

plot(mean.c,type="l",col="blue",ylim=c(0,1),xlab="day",ylab="rel. freq.", main="Relative 

frequency of wet days") 

lines(mean.p,col="red") 

lines(mean.k,col="green2") 

 

rain<-cbind(oc,op,ok) 

rm(dc,dp,pc,oc,op,ok,ocm,opm,okm) 

dev.off() 

#=====Descriptive statistics 

summary(chirpan) 

var(chirpan) 

sqrt(var(chirpan)) 

summary(plovdiv) 

var(plovdiv) 

sqrt(var(plovdiv)) 

summary(klovpan) 

var(klovpan) 

sqrt(var(klovpan)) 
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# ===================================Set up seasonal factors 

x0  <- rep(1,365) 

x1s <- sin(1*2*pi*(1:365)/365);x1c <- cos(1*2*pi*(1:365)/365) 

x2s <- sin(2*2*pi*(1:365)/365);x2c <- cos(2*2*pi*(1:365)/365) 

x3s <- sin(3*2*pi*(1:365)/365);x3c <- cos(3*2*pi*(1:365)/365) 

x4s <- sin(4*2*pi*(1:365)/365);x4c <- cos(4*2*pi*(1:365)/365) 

 

X<-cbind(x0, x1s, x1c, x2s, x2c, x3s,x3c, x4s, x4c) 

rm(x0,x1s,x1c, x2s,x2c, x3s,x3c, x4s, x4c) 

 

# ================== Transform natural parameters to working parameters 

multivariate.seasonal.bernoulli.HMM.pn2pw <- function(nfact,nsite,m,pipars,gamma) 

{                                             

 tpipars  <- as.vector(pipars)                       

 tgamma  <- NULL                               

 if(m>1)                                         

   {                                             

   foo   <- log(gamma/diag(gamma))            

   tgamma<- as.vector(foo[!diag(m)])              

   }                                              

 parvect <- c(tpipars,tgamma)                     

 return(parvect)                                         

}   
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# ================== Transform  working parameters to natural parameters 

multivariate.seasonal.bernoulli.HMM.pw2pn <- function(nfact,nsite,m,parvect) 

{ 

 npiterms<-nfact*nsite*m 

 pipars  <- array(parvect[1:npiterms],dim=c(nfact,nsite,m))   

 gamma<- diag(m) 

 if(m>1)                                                

   {                                                   

   gamma[!gamma] <- exp(parvect[(npiterms+1):length(parvect)])                  

   gamma         <- gamma/apply(gamma,1,sum)           

   }                                                    

 delta  <- solve(t(diag(m)-gamma+1),rep(1,m))           

 list(pipars=pipars,gamma=gamma,delta=delta)            

}                        

# ===================== Function to compute the likelihood  

multivariate.seasonal.bernoulli.HMM.mllk<-

function(parvect,rain,nfact,nsite,m,X,details=TRUE,...) 

{ 

 n      <-length(rain[,1]) 

 pir    <-array(NA,dim=c(365,nsite,m)) 

 pn     <-multivariate.seasonal.bernoulli.HMM.pw2pn(nfact,nsite,m,parvect) 

for (im in 1:m){ 

 for (isite in 1:nsite){ 

  pir[,isite,im]<-X[,1:nfact]%*%as.matrix(pn$pipars[,isite,im]) 
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 } 

} 

pir<-exp(pir)/(1+exp(pir)) 

lscale <-0 

foo<-pn$delta 

j<-0 

for (i in 1:n) 

{ 

 j<-j+1; if(j==366) j<-1 

 prob=rep(1,m) 

 for (isite in 1:nsite){   

  if (!is.na(rain[i,isite])) prob=prob*pir[j,isite,]^rain[i,isite]*(1-pir[j,isite,])^(1-rain[i,isite]) 

 } 

foo<-foo%*%pn$gamma*prob 

sumfoo<-sum(foo) 

lscale<-lscale+log(sumfoo) 

foo<-foo/sumfoo  

} 

mllk<- -lscale 

if(details) cat(paste("-log(likelihood) =",mllk,"\n")) 

return(mllk) 

} 
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# ===============Function to maximize the likelihood  

multivariate.seasonal.bernoulli.HMM.mle<-

function(rain,nfact,nsite,m,pipars0,gamma0,X=X,details=TRUE...) 

{ 

n        <-length(rain[,1]) 

parvect0 <-multivariate.seasonal.bernoulli.HMM.pn2pw(nfact,nsite,m,pipars0,gamma0) 

mod      <-

nlm(multivariate.seasonal.bernoulli.HMM.mllk,parvect0,rain=rain,nfact=nfact,nsite=nsite

,m=m,X=X,details=details,iterlim = 1000) 

mllk     <-mod$minimum 

pn       <-multivariate.seasonal.bernoulli.HMM.pw2pn(nfact,nsite,m,mod$estimate) 

pir      <-array(NA,dim=c(365,nsite,m)) 

for (im in 1:m){for (isite in 1:nsite)  pir[,isite,im]<-

X[,1:nfact]%*%as.matrix(pn$pipars[,isite,im])} 

pir<-exp(pir)/(1+exp(pir)) 

np       <-length(parvect0[13:14]) 

AIC      <-2*(mllk+np) 

BIC      <-2*mllk+np*log(n) 

return(list(nfact=nfact,nsite=nsite,m=m,pir=pir,gamma=pn$gamma,delta=pn$delta,pipar

s=pn$pipars,code=mod$code,mllk=mllk,AIC=AIC,BIC=BIC)) 

} 

# ================== Function to plot & summarize model 

multivariate.seasonal.bernoulli.HMM.plot<-function(mod,pdf=FALSE){ 

modname    <-paste("Model ",mod$nfact,mod$nsite,mod$m,sep="") 

mpir       <-matrix(0,ncol=mod$nsite,nrow=365) 

nmon       <-c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec") 
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 dmon      <-cumsum(c(0,31,28,31,30,31,30,31,31,30,31,30,31)) 

 mmon      <-(dmon[-1]+dmon[-13])/2 

if(pdf) {pdf(paste(modname,".pdf",sep=""),width=8,height=7)} else 

{windows(width=8,height=7)} 

  par(las=1,cex.axis=0.7) 

  plot(mod$pir[,1,1],type="n",xlim=c(0,365),ylim=c(0,1),xlab="day",ylab="probability", 

  main=modname) 

#lines((mod$pir[,1,1]+(mod$pir[,1,2])/2,col="yellow") 

  lines(mean.c,col="gray") 

  lines(mean.p,col="pink") 

  abline(v=dmon,col="gray",lwd=1) 

  text(mmon,rep(-0.03,12),nmon,cex=0.7,xpd=TRUE) 

  for (isite in 1:mod$nsite) {for (im in 1:mod$m){ 

  mpir[,isite]<-mpir[,isite]+mod$delta[im]*mod$pir[,isite,im] 

print(mpir[,isite]) 

  lines(mod$pir[,isite,im],lwd=2,col=isite,lty=im+1) 

} 

lines(mpir[,isite],lwd=2,col=isite,lty=1) 

} 

if(pdf) dev.off() 

return(list(nfact=mod$nfact,nsite=mod$nsite,m=mod$m,gamma=mod$gamma,delta=m

od$delta,code=mod$code,mllk=mod$mllk,AIC=mod$AIC,BIC=mod$BIC)) 

} 
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# ====================mod131 

nfact=1;nsite<-3;m=1 

pipars0<-array( 

c( 

-1,-1 

 ),dim=c(nfact,nsite,m)) 

gamma0<-matrix(c(1),m,m,byrow=TRUE) 

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X, 

details=TRUE) 

mod131<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod131 

# ========================mod132 

nfact=1;nsite<-3;m=2 

pipars0<-array( 

c( 

-0.85,-0.94, 

-1.00 -1.00 

  ),dim=c(nfact,nsite,m)) 

gamma0<-matrix(c( 

 9,1, 

 1,9 

 )/10,m,m,byrow=TRUE) 

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X, 

details=TRUE) 
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mod132<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod132 

# ============================================= mod133 

nfact=1;nsite<-3;m<-3 

pipars0<-array( 

c( 

 1.9, 1.5, 

 0.0, 0.5, 

-2.0, -2.5 

  ),dim=c(nfact,nsite,m)) 

 gamma0<-matrix(c( 

7,2,1,  

3,6,1, 

1,3,6 

 )/10,m,m,byrow=TRUE) 

 

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X, 

details=TRUE) 

mod133<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod133 
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# ==========================================mod331 

nfact=3;nsite<-3;m<-1 

pipars0<-array( 

c( 

 1.4, 1.0, 0.0,  

 0.5,-0.1, 0.0 

  ),dim=c(nfact,nsite,m)) 

gamma0<-matrix(c( 

10  

  )/10,m,m,byrow=TRUE) 

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X, 

details=TRUE) 

mod331<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod331 

# ============================================= mod332 

nfact=3;nsite<-3;m<-2 

pipars0<-array( 

c( 

 1.1,0.5,0.1, 

 1.2,0.4,0.1, 

-1.2,0.5,0.1, 

-1.1,0.4,0.1 

  ),dim=c(nfact,nsite,m)) 
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gamma0<-matrix(c( 

7,3,  

4,6 

)/10,m,m,byrow=TRUE) 

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X, 

details=TRUE) 

mod332<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod332 

#==============================mod333 

nfact=3;nsite<-3;m<-3 

pipars0<-array( 

c( 

 1.1,0.5,0.1, 

 1.2,0.4,0.1, 

-1.2,0.5,0.1, 

-1.1,0.4,0.1 

  ),dim=c(nfact,nsite,m)) 

gamma0<-matrix(c( 

7,3,  

4,6 

)/10,m,m,byrow=TRUE) 

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X, 

details=TRUE) 

mod333<-mod 
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rm(nfact,nsite,m,pipars0,gamma0) 

mod333 

# ============================================= mod532 

nfact=5;nsite<-3;m<-2 

pipars0<-array( 

c( 

 1.1,0.5,0.1,0.1,0.0, 

 1.2,0.4,0.1,0.1,0.0, 

-1.2,0.5,0.1,0.1,0.0, 

-1.1,0.4,0.1,0.1,0.0 

  ),dim=c(nfact,nsite,m)) 

gamma0<-matrix(c( 

7,3,  

4,6 

)/10,m,m,byrow=TRUE) 

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X, 

details=TRUE) 

mod532<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod532 

# ============================================= mod533 

nfact=5;nsite<-3;m<-3 

pipars0<-array(0,dim=c(nfact,nsite,m)) 

pipars0[,,1]<-mod522$pipars[,,1] 
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pipars0[,,3]<-mod522$pipars[,,2] 

pipars0[,,2]<-(pipars0[,,1]+pipars0[,,3])/2 

gamma0<-mod123$gamma 

mod<multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0,gamma0,X=X, 

details=TRUE) 

mod533<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod533 

# ============================================= mod732 

nfact=7;nsite<-3;m<-2 

pipars0<-array( 

c( 

 1.9,0.4,0.2,-0.2,0.1,0.0,0.0, 

 1.7,0.3,0.3,-0.5,0.0,0.0,0.0, 

-3.4,0.9,0.1,-0.8,0.6,0.0,0.0, 

-4.0,1.5,-0.5,-0.4,0.7,0.0,0.0 

 ),dim=c(nfact,nsite,m)) 

gamma0<-matrix(c( 

6,4,  

2,8 

)/10,m,m,byrow=TRUE) 

mod<-multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0, 

gamma0,X=X,details=TRUE) 

mod732<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 
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mod732 

#============================================= mod733 

nfact=7;nsite<-3;m<-3 

pipars0<-array(0,dim=c(nfact,nsite,m)) 

pipars0[,,1]<-mod722$pipars[,,1] 

pipars0[,,3]<-mod722$pipars[,,2] 

pipars0[,,2]<-(pipars0[,,1]+pipars0[,,3])/2 

gamma0<-mod523$gamma 

mod<-multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0, 

gamma0,X=X,details=TRUE) 

mod733<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod733 

# ============================================= mod932 

nfact=9;nsite<-3;m<-2 

pipars0<-array( 

c( 

 1.9,0.4, 0.2,-0.2,0.2,0.3,0.1,0.0,0.0, 

 1.6,0.3, 0.3,-0.4,0.0,0.2,0.0,0.0,0.0, 

-3.4,0.8, 0.1,-0.7,0.6,0.1,0.0,0.0,0.0, 

-4.2,1.7,-0.5,-0.4,0.9,0.1,0.1,0.0,0.0 

 ),dim=c(nfact,nsite,m)) 

gamma0<-matrix(c( 

6,4,  
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2,8 

)/10,m,m,byrow=TRUE) 

mod<-multivariate.seasonal.bernoulli.HMM.mle(rain,nfact,nsite,m,pipars0, 

gamma0,X=X,details=TRUE) 

mod932<-mod 

rm(nfact,nsite,m,pipars0,gamma0) 

mod932 

# ================================================ plots 

multivariate.seasonal.bernoulli.HMM.plot(mod131,pdf=FALSE) 

multivariate.seasonal.bernoulli.HMM.plot(mod132,pdf=FALSE) 

multivariate.seasonal.bernoulli.HMM.plot(mod133,pdf=FALSE) 

multivariate.seasonal.bernoulli.HMM.plot(mod332,pdf=FALSE) 

multivariate.seasonal.bernoulli.HMM.plot(mod532,pdf=FALSE) 

multivariate.seasonal.bernoulli.HMM.plot(mod533,pdf=FALSE) 

multivariate.seasonal.bernoulli.HMM.plot(mod732,pdf=FALSE) 

multivariate.seasonal.bernoulli.HMM.plot(mod733,pdf=FALSE) 

multivariate.seasonal.bernoulli.HMM.plot(mod932,pdf=FALSE) 

# Summarize 

round(c(mod131$mllk,mod132$mllk,mod133$mllk,mod332$mllk,mod532$mll,mod533$

mllk,mod732$mllk,mod733$mllk,mod932$mllk)) 

round(c(mod131$AIC,mod132$AIC,mod133$AIC,mod332$AIC,mod532$AIC,mod533$AIC

,mod732$AIC,mod733$AIC,mod932$AIC)) 

round(c(mod131$BIC,mod132$BIC,mod133$BIC,mod332$BIC,mod532$BIC,mod533$BIC,

mod732$BIC,mod733$BIC,mod932$BIC)) 
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#======== Compare the AIC BIC values of models 

BICs<c(mod131$AIC,mod132$AIC,mod133$AIC,mod332$AIC,mod532$AIC,mod533$AIC,

mod732$AIC,mod733$AIC,mod932$AIC) 

AICs<c(mod131$BIC,mod132$BIC,mod133$BIC,mod332$BIC,mod532$BIC,mod533$BIC,

mod732$BIC,mod733$BIC,mod932$BIC) 

 

plot(AICs,type="b",col="blue",ylab="AICs", xlab="Models") 

plot(BICs,type="b",col="red",ylab="BICs", xlab="Models") 

 

plot(AICs,type="b",col="blue",ylab="AIC & BIC", xlab="Models") 

lines(BICs,type="b",col="red") 

 

B.2. R Codes for  HMMs to Find Amount of Precipitation 

The following R codes are used to find the amount of precipitation and estimation 

plots for each region seperately. 

# ===========================Import the dailydata 

dailydata<- read.csv("C:\\Users\\Lab_User\\Desktop\\17234.csv") 

# extract rainfall amounts 

r<-dailydata[,1] 

summary(r) 

n<-length(r) 

 

# remove the last January (for now) 

n<-floor(n/365)*365 

r<-r[1:n] 
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ny<-n/365 

#================= The following exploratory bits work only for the complete years 

# Extract wet days 

r0<- r==0 

r1<- r>0 

r1g0<- as.numeric(c(TRUE,r0[-n] & r1[-1])) 

r1g1<- as.numeric(c(TRUE,r1[-n] & r1[-1])) 

rw<-r;rw[r0]<-NA 

 

rm   <-matrix(r,nrow=365) 

r0m  <-matrix(r0,nrow=365) 

r1m  <-matrix(r1,nrow=365) 

r1g0m<-matrix(r1g0,nrow=365) 

r1g1m<-matrix(r1g1,nrow=365) 

rwm  <-matrix(rw,nrow=365) 

 

rmean   <-apply(rm,1,mean) 

r0mean  <-apply(r0m,1,mean) 

r1mean  <-apply(r1m,1,mean) 

rwmean  <-apply(rwm,1,mean,na.rm=TRUE) 

rwsd    <-apply(rwm,1,sd,na.rm=TRUE) 

rwcv    <-rwsd/rwmean 

 

r0sum   <-apply(r0m,1,sum) 
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r1sum   <-apply(r1m,1,sum) 

r1g0sum <-apply(r1g0m,1,sum);r1g0sum[1]<-r1g0sum[1]-1 

r1g1sum <-apply(r1g1m,1,sum);r1g1sum[1]<-r1g1sum[1]-1 

 

n1      <-cbind(r1sum,ny-r1sum) 

n1g0    <-cbind(r1g0sum,c(r0sum[365],r0sum[1:364])-r1g0sum)  

n1g1    <-cbind(r1g1sum,c(r1sum[365],r1sum[1:364])-r1g1sum) 

 

r1g0mean <-n1g0[,1]/(n1g0[,1]+n1g0[,2]) 

r1g1mean <-n1g1[,1]/(n1g1[,1]+n1g1[,2]) 

 

#================================Plots for depths 

par(mfrow=c(2,2),las=1) 

plot(rmean,type="h",lwd=0.5,col="gray",xlab="day",ylab="mm", 

 main="Daily rainfall: mean") 

lines(lowess(rmean,f=2/3),col=2,lwd=2) 

lines(lowess(rmean,f=0.2),col=4,lwd=2) 

legend("topright",c("lowess: f=2/3","lowess: f=0.2"),lwd=c(1,1),col=c(2,4),cex=0.8) 

 

plot(rwmean,type="h",lwd=0.5,col="gray",xlab="day",ylab="mm", 

 main="Daily depth: mean") 

lines(lowess(rwmean,f=2/3),col=2,lwd=2) 

lines(lowess(rwmean,f=0.1),col=4,lwd=2) 

legend("topright",c("lowess: f=2/3","lowess: f=0.2"),lwd=c(1,1),col=c(2,4),cex=0.8) 



 

 

 155   

 

plot(rwsd,type="h",lwd=0.5,col="gray",xlab="day",ylab="mm", 

 main="Daily depth: standard deviation") 

lines(lowess(rwsd,f=2/3),col=2,lwd=2) 

lines(lowess(rwsd,f=0.1),col=4,lwd=2) 

legend("topright",c("lowess: f=2/3","lowess: f=0.2"),lwd=c(1,1),col=c(2,4),cex=0.8) 

 

plot(rwcv,type="h",lwd=0.5,col="gray",xlab="day",ylab="", 

 main="Daily depth: coef. of variation") 

lines(lowess(rwcv,f=2/3),col=2,lwd=2) 

lines(lowess(rwcv,f=0.1),col=4,lwd=2) 

legend("topright",c("lowess: f=2/3","lowess: f=0.2"),lwd=c(1,1),col=c(2,4),cex=0.8) 

dev.off() 

 

#===================================================== 

# Model for depths 

# Functions needed to fit a seasonal gamma-HMM model 

# ====================================== 

# Function to transform seasonal_gamma-HMM  

# Natural parameters to working parameters 

seasonal_gamma.HMM.pn2pw<-function(parsm1,parsm2,parsc1,parsc2,gamma) 

{ 

 tspars  <- c(parsm1,parsm2,parsc1,parsc2) 

 tgamma   <- NULL 
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 foo      <- log(gamma/diag(gamma)) 

 tgamma   <- as.vector(foo[!diag(2)]) 

 parvect  <- c(tspars,tgamma) 

 parvect 

} 

# ====================================== 

# Function to transform seasonal_gamma-HMM  

# working parameters to natural parameters 

seasonal_gamma.HMM.pw2pn<-function(parsn,parvect) 

{ 

n1<-1;n2=n1+parsn[1]-1 

parsm1<-parvect[n1:n2] 

n1<-n2+1;n2=n2+parsn[2] 

parsm2<-parvect[n1:n2] 

n1<-n2+1;n2=n2+parsn[3] 

parsc1<-parvect[n1:n2] 

n1<-n2+1;n2=n2+parsn[4] 

parsc2<-parvect[n1:n2] 

n1<-n2+1;n2=n2+2 

gamma        <- diag(2) 

gamma[!gamma]<- exp(parvect[n1:n2]) 

gamma        <- gamma/apply(gamma,1,sum) 

delta        <- solve(t(diag(2)-gamma+1),rep(1,2)) 
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list(parsn=parsn, parsm1=parsm1, parsm2=parsm2, parsc1=parsc1, parsc2=parsc2, 

gamma=gamma,delta=delta) 

} 

# ====================================== 

# Function to compute the likelihood of a gamma-HMM 

seasonal_gamma.HMM.mllk<-function(parvect,rain,parsn,X,details=TRUE,...) 

{ 

n      <-length(rain) 

p      <-seasonal_gamma.HMM.pw2pn(parsn,parvect) 

m1     <-exp(as.matrix(X[,1:parsn[1]])%*%p$parsm1) 

m2     <-exp(as.matrix(X[,1:parsn[2]])%*%p$parsm2) 

c1     <-exp(as.matrix(X[,1:parsn[3]])%*%p$parsc1) 

c2     <-exp(as.matrix( X[,1:parsn[4]])%*%p$parsc2) 

shape  <-cbind(c1,c2)^2 

rate   <-cbind((c1^2)/m1,(c2^2)/m2) 

lscale <-0 

foo<-p$delta 

j<-0 

for (i in 1:n) 

{ 

j<-j+1; if(j==366) j<-1 

B<-p$gamma 

if (!is.na(rain[i])) B<-B*dgamma(rain[i],shape=shape[j,],rate=rate[j,]) 

foo<-foo%*%B 
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sumfoo<-sum(foo) 

lscale<-lscale+log(sumfoo) 

foo<-foo/sumfoo 

} 

mllk<- -lscale 

if(details) cat(paste("-log(likelihood) =",mllk,"\n")) 

return(mllk) 

} 

# test it 

rain<-rw 

parsn=c(3,3,3,3) 

parsm1  =c(1.38,-0.01,0.01) 

parsm2  =c(1.38,0,0.01) 

parsc1  = c(0,0.01,0.01)  

parsc2  = c(0,-0.01,0.01) 

gamma   = matrix(c(0.9,0.2,0.1,0.8),2,2) 

parvect<-seasonal_gamma.HMM.pn2pw(parsm1, parsm2, parsc1,parsc2,gamma) 

seasonal_gamma.HMM.pw2pn(parsn,parvect) 

seasonal_gamma.HMM.mllk(parvect,rain=rain,parsn,X=X, details=TRUE) 

# ===================================== 

# Function to minimize mllk=-log(likelihood) of a seasonal gamma-HMM 

seasonal_gamma.HMM.mle<-function(rain,parsn,parsm10, 

parsm20,parsc10,parsc20,gamma0,X=X,details=TRUE...) 

{ 
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n        <-length(rain) 

parvect0 <-seasonal_gamma.HMM.pn2pw(parsm10, parsm20, 

parsc10,parsc20,gamma0) 

mod      <-nlm(seasonal_gamma.HMM.mllk,parvect0,rain=rain,parsn=parsn,X=X, 

 details=details,iterlim = 1000) 

mllk     <-mod$minimum 

p        <-seasonal_gamma.HMM.pw2pn(parsn,mod$estimate) 

np       <-length(parvect0) 

AIC      <-2*(mllk+np) 

BIC      <-2*mllk+np*log(n) 

return(list(parsn=p$parsn,parsm1=p$parsm1,parsm2=p$parsm2,parsc1=p$parsc1, 

 parsc2 

=p$parsc2,gamma=p$gamma,delta=p$delta,code=mod$code,mllk=mllk,AIC=AIC,BIC=BIC

)) 

} 

# ======================================== mod3333 

parsn=parsn0=c(3,3,3,3) 

parsm1=parsm10  =c(1.84,-0.06,0.33) 

parsm2=parsm20  =c(-0.34,0.14,0.42) 

parsc1=parsc10  =c(0.003,0.008,-0.008)  

parsc2=parsc20  =c(0.25,-0.02,-0.10) 

gamma=gamma0    =matrix(c(0.8,0.6,0.2,0.4),2,2) 

parvect=parvect0=seasonal_gamma.HMM.pn2pw(parsm1, parsm2, 

parsc1,parsc2,gamma) 

seasonal_gamma.HMM.pw2pn(parsn,parvect) 
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seasonal_gamma.HMM.mllk(parvect0,rain=rain,parsn=parsn0,X=X, details=TRUE) 

 

mod3333<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20, 

parsc10,parsc20,gamma0,X=X,details=TRUE) 

mod3333 

# ======================================== mod5533 

parsn=parsn0=c(5,5,3,3) 

parsm1=parsm10  =c(mod3333$parsm1,0,0) 

parsm2=parsm20  =c(mod3333$parsm2,0,0) 

parsc1=parsc10  =mod3333$parsc1 

parsc2=parsc20  =mod3333$parsc2 

gamma=gamma0    =mod3333$gamma 

parvect=parvect0=seasonal_gamma.HMM.pn2pw(parsm1, parsm2, 

parsc1,parsc2,gamma) 

seasonal_gamma.HMM.pw2pn(parsn,parvect) 

seasonal_gamma.HMM.mllk(parvect0,rain=rain,parsn=parsn0,X=X, details=TRUE) 

 

mod5533<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20, 

parsc10,parsc20,gamma0,X=X,details=TRUE) 

mod5533 

# ======================================== mod5555 

parsn=parsn0=c(5,5,5,5) 

parsm1=parsm10  =mod5533$parsm1 

parsm2=parsm20  =mod5533$parsm2 

parsc1=parsc10  =c(mod5533$parsc1,0,0) 
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parsc2=parsc20  =c(mod5533$parsc2,0,0) 

gamma=gamma0    =mod5533$gamma 

parvect=parvect0=seasonal_gamma.HMM.pn2pw(parsm1, parsm2, 

parsc1,parsc2,gamma) 

seasonal_gamma.HMM.pw2pn(parsn,parvect) 

seasonal_gamma.HMM.mllk(parvect0,rain=rain,parsn=parsn0,X=X, details=TRUE) 

 

mod5555<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20, 

parsc10,parsc20,gamma0,X=X,details=TRUE) 

mod5555 

# ======================================== mod7733 

parsn=parsn0=c(7,7,3,3) 

parsm1=parsm10  =c(mod5533$parsm1,0,0) 

parsm2=parsm20  =c(mod5533$parsm2,0,0) 

parsc1=parsc10  =mod5533$parsc1 

parsc2=parsc20  =mod5533$parsc2 

gamma=gamma0    =mod5533$gamma 

parvect=parvect0=seasonal_gamma.HMM.pn2pw(parsm1, parsm2, 

parsc1,parsc2,gamma) 

seasonal_gamma.HMM.pw2pn(parsn,parvect) 

seasonal_gamma.HMM.mllk(parvect0,rain=rain,parsn=parsn0,X=X, details=TRUE) 

mod7733<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20, 

parsc10,parsc20,gamma0,X=X,details=TRUE) 

mod7733 
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# ======================================== mod7755 

parsn=parsn0=c(7,7,5,5) 

parsm1=parsm10  =mod7733$parsm1 

parsm2=parsm20  =mod7733$parsm2 

parsc1=parsc10  =mod5555$parsc1 

parsc2=parsc20  =mod5555$parsc2 

gamma=gamma0    =mod7733$gamma 

parvect=parvect0=seasonal_gamma.HMM.pn2pw(parsm1, parsm2, 

parsc1,parsc2,gamma) 

seasonal_gamma.HMM.pw2pn(parsn,parvect) 

seasonal_gamma.HMM.mllk(parvect0,rain=rain,parsn=parsn0,X=X, details=TRUE) 

 

mod7755<-seasonal_gamma.HMM.mle(rain,parsn0,parsm10, parsm20, 

parsc10,parsc20,gamma0,X=X,details=TRUE) 

mod7755 

# Select 

mod3333$mllk;mod5533$mllk;mod7733$mllk;mod5555$mllk;mod7755$mllk 

mod3333$AIC;mod5533$AIC;mod7733$AIC;mod5555$AIC;mod7755$AIC 

mod3333$BIC;mod5533$BIC;mod7733$BIC;mod5555$BIC;mod7755$BIC 

 

#----For each model repeat all following steps removing by "#"---- 

mod<-mod3333; modcaption<-"Model(3,3,3,3)" 

#mod<-mod5533; modcaption<-"Model(5,5,3,3)" 

#mod<-mod5555; modcaption<-"Model(5,5,5,5)" 

#mod<-mod7733; modcaption<-"Model(7,7,3,3)" 
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#mod<-mod7755; modcaption<-"Model(7,7,5,5)" 

 

# Repeat the plot for each model 

filename=paste("Depth-",modcaption,".pdf",sep="") 

m1fit<-exp(X[,1:mod$parsn[1]]%*%mod$parsm1) 

m2fit<-exp(X[,1:mod$parsn[2]]%*%mod$parsm2) 

mfit<-mod$delta[1]*m1fit+mod$delta[2]*m2fit 

c1fit<-exp(X[,1:mod$parsn[3]]%*%mod$parsc1) 

c2fit<-exp(X[,1:mod$parsn[4]]%*%mod$parsc2) 

cfit<-mod$delta[1]*c1fit+mod$delta[2]*c2fit 

 

# Plots for depth model 

par(mfrow=c(2,2),las=1) 

 

plot(rmean,type="h",ylim=c(0,5),col="gray",lwd=1,xlab="day",ylab="mm", 

 main="Daily rainfall: mean") 

text(365/2,5*0.95,paste(modcaption,": AIC = ",round(mod$AIC,1),sep=""),col=1,cex=1) 

text(365/2,5*0.85,paste("P(State 1) =",round(mod$delta[1],2)),col=4) 

text(365/2,5*0.75,paste("P(State 2) =",round(mod$delta[2],2)),col=2) 

 

plot(rwmean,type="h",ylim=c(0,15),col="gray",lwd=1,,xlab="day",ylab="mm", 

 main="Daily depth: mean") 

lines(m1fit,col=4,lwd=2) 

lines(m2fit,col=2,lwd=2) 
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lines(mfit,col=1,lwd=1) 

 

plot(rwsd,type="h",ylim=c(0,20),col="gray",lwd=1,,xlab="day",ylab="mm", 

 main="Daily depth: standard deviation") 

lines(c1fit*m1fit,col=4,lwd=2) 

lines(c2fit*m2fit,col=2,lwd=2) 

lines(cfit*mfit,col=1,lwd=1) 

 

plot(rwcv,type="h",,ylim=c(0,2.5),col="gray",lwd=1,,xlab="day",ylab="", 

 main="Daily depth: coef. of variation") 

lines(c1fit,col=4,lwd=2) 

lines(c2fit,col=2,lwd=2) 

lines(cfit,col=1,lwd=1) 

dev.off() 

 

B.3. Viterbi Algorithm for Hidden Markov Model 

“HiddenMarkov” package from R is used to find the most likely state sequences. It 

contains for the analysis of “Discrete Time Hidden Markov Models” and functions 

for simulation, parameter estimation and the Viterbi algorithm. 

 


