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ABSTRACT

FREE STORAGE BASIS CONVERSION OVER EXTENSION FIELD

HAROLD, NDANGANG YAMPA
M.S., Department of Cryptography

Supervisor : Prof. Dr. ERSAN AKYILDIZ

December, 2014, 48 pages

The representation of elements over finite fields play a great impact on the performance
of finite field arithmetic. So if efficient representation of finite field elements exists and
conversion between these representations is known, then it becomes easy to perform
computation in a more efficient way. In this thesis, we shall provide a free storage
basis conversion in the extension field Fqp of Fq between Normal basis and Polynomial
basis and vice versa. The particularity of this thesis is that, our transition matrix is of
a special form and requires no memory to store its entries. Also the inverse of the
transition matrix is obtained just by permuting the row entries of the transition matrix.
Therefore the complexity of the algorithm for obtaining both the transition matrix and
its inverse is the same.

Keywords : Finite fields, normal basis, polynomial basis
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ÖZ

CİSİM GENİŞLEMESİ ÜZERİNDE SERBEST DEPOLAMA BAZ DÖNÜŞÜMÜ

HAROLD, NDANGANG YAMPA
Yüksek Lisans, Kriptografi Programı

Tez Yöneticisi : Prof. Dr. ERSAN AKYILDIZ

December, 2014, 48 sayfa

Sonlu cisim elamanların gösterimlermin sonlu cisim aritmetiğinin performansı üz-
erinde çok önemli bir etkisi vardır. Eğer sonlu cisim elamanlarının iyi bir gösterimi
varsa ve gösterimler arası dönüşümler biliniyorsa, cisim üzerindeki aritmetik hesapla-
malar daha hızlı ve verimli yapılabilir. Bu tezde,Fq uzerindeki Fqp cisim genişlemesi
üzerinde, Normal baz ve Polinom baz arasında iki taraflı serbest depolama baz dönüşümü
çalışılmıştır. Bu dönüşümün özelliği, geçiş matrisinin özel bir formda olması ve girdi-
lerinin depolanması için hafızaya ihtiyaç duyulmamasıdır. Ayrıca geçiş matrisinin tersi
tam olarak satırlarının permütasyonu alınarak elde edilir. Bu sebeple geçiş matrisini
elde etme de kullanılan algoritmanın karmaşıklığı ile bu matrisin tersini elde etmede
kullanılan algoritmanın karmaşıklığı aynıdır.

Anahtar Kelimeler : Sonlu Cisimler, Normal Baz, Polinom Bazı

ix



x



To My Family

xi



xii



ACKNOWLEDGMENTS
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Let Fqn be an extension of finite field Fq of degree n. Then for any ordered basis β =
{α1, α2, . . . , αn} of Fqn over Fq, one has a unique representation of each element α ∈
Fqn over Fq in the form α = (c1, . . . , cn) ∈ Fnq where α =

∑n
i=1 ciαi ∈ Fqn . Let ρ be

another element of Fqn with ρ =
∑n

i=1 diαi. Then ρ = (d1, . . . , dn) where di ∈ Fq for
i ∈ {1, 2, . . . , n}. This representation being an Fq− linear isomorphism gives us the
sum α+ρ ∈ Fqn in terms of the n components of α and ρ and the scalar multiplication
c ·α ∈ Fqn with c ∈ Fq in terms of components of α. So in the implementation point of
view, sum and scalar multiplication of elements in Fqn/Fq have the same complexity
for any choice of an ordered basis. But when it comes to multiplication αρ and the
inverse α−1 ∈ Fqn , one wonders how to choose the ordered basis β = {α1, α2, . . . , αn}
of Fqn/Fq so that multiplication αρ = (c1, . . . , cn)(d1, . . . , dn) and inverse α−1 =
(t1, . . . , tn) of α can be computed efficiently. For this purpose, there has been some
studies in the literature and these studies brought the concept of normal bases, optimal
normal bases. So far no body knows how to choose an ordered basis β in Fqn/Fq so that
multiplication αρ and the inverse α−1 is more efficient than any other choice. In any
case, there is an obvious natural ordered basis β = {α1, . . . , αn} = {1, x, . . . , xn−1} of
Fqn = Fq[x]/(p(x)) where p(x) = xn+an−1x

n−1+· · ·+a0 is the irreducible polynomial
representation (field polynomial) of Fqn over Fq, called the polynomial basis. In this
representation, the multiplication of αρ ∈ Fqn is performed in two steps: polynomial
multiplication over Fq and modular reduction by p(x). As the complexity of the field
multiplication depends on the number of non-zero terms in the reduction polynomial, it
is desirable to use reduction polynomial with fewer number of terms. And the inverse
α−1 of α = c0 + c1x+ · · ·+ cn−1x

n−1 can be obtained by using the extended euclidean
algorithm. The problem in the implementation of arithmetic operation of Fqn is to find
a good ordered basis β such that the algorithms for performing αρ and α−1 are efficient.
So far one still doesn’t know a generic choice for this problem. In literature, in order to
improve the efficiency of arithmetic operations over finite fields, one usually perform
the conversion between polynomial basis representation to another representation of
field element and vice versa. This is what we are going to do in this thesis for the field
Fqp where q = pn and p an odd prime.
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1.2 Motivation and Outline of the Thesis

Given two bases A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bm}, the traditional
method for converting from one basis to another is to form an m × m transition ma-
trix T such that A = T ∗ B and B = T−1 ∗ A. This method requires O(m2) field
operations and also required O(m2) storage requirement for coefficients. Burton and
Kaliski in [2] proposed an efficient finite field basis conversion in Fqm using an import
and export algorithm which requires O(m log q) field operations and require storage
for O(m) coefficients.

Our Motivation started in [16] in which the author provided a basis conversion over
Fpp . In this thesis, we constructed the finite field Fqp by using the irreducible polyno-
mial f(x) = xp − x + 1 ∈ Fp[x] over Fq where q = pn, gcd(p, n) = 1 and p is an
odd prime. Clearly Fqp ∼= Fq[x]/(f(x)) has the polynomial basis {1, α, . . . , αp−1}. We
realised that the construction of the extension field Fqp with the irreducible polynomial
f over Fq does not have a normal basis. In order to construct the normal basis of Fqp ,
we have seen that the reciprocal g(x) = xp − xp−1 + 1 ∈ Fp[x] of f which is also
irreducible over Fq is normal polynomial in Fqp . Therefore, we constructed the normal
basis {β, βq, . . . , βp−1} of Fq(β) ∼= Fq[x]/(g(x)). We wrote each of the βqi as a linear
combination of the αi for i ∈ {0, 1, . . . , p−1} and we form the transition matrix M of
polynomial basis to normal basis. This matrix is of special form and also the inverse
of this matrix is obtained just by permutation of the row entries of M. Therefore the
complexity of finding M and its inverse M−1 are equal. The time complexity of our
method is O(np3) and no extra memory requirement is needed apart from the memory
of the input. The rest of this thesis is organized as follows:

• The second chapter of this thesis deals with basic definition in finite fields, con-
struction of extension fields, nature of roots of irreducible polynomials over ex-
tensions and we provide an algorithm to factorise square free polynomial into
irreducible polynomials.

• In next chapter the aim is to develop condition under which extensions fields
have normal basis and then apply those conditions on irreducible polynomials to
check whether they are normal or not.

• In the fourth chapter, we analysed the roots of trinomial f(x) = xp − x + 1 ∈
Fp[x] and whether the roots of its reciprocal polynomial g(x) = xp−xp−1 + 1 ∈
Fp[x] form a normal basis or not, we use those roots to construct the transition
matrix from polynomial basis to normal basis and vice versa. Furthermore, we
construct Algorithm 1 and 2 with their complexities. Finally we shall provide
our future interest of research on this topic.
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CHAPTER 2

Preliminary

In this chapter, we give the fundamental definitions and structures related to our work.
For further explanations, applications and previous work, see [1, 9, 5, 3] and references
there in.
Finite fields is a branch of mathematics discovered by Evariste Galois [9] and it serves
as the building blocks for cryptography and coding theory. In this section we shall
give a brief summary about finite fields, irreducible polynomials and construction of
extension fields.

Definition 2.1. [9]. A ring R is a set with two binary operations denoted + and · called
addition and multiplication satisfying

1. R is an abelian group under +

2. · is associative. That is for any a, b, c ∈ R (a · b) · c = a · (b · c)

3. · is distributive with respect to + i.e for a, b, c ∈ R

a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

If R has an identity element with respect to multiplication, we denote it as 1R and the
identity element of R with respect to addition is denoted as 0R.

R is said to be commutative if the operation · of R is commutative, i.e for any x, y ∈ R
x · y = y · x

Example 2.1. The set of integers form a commutative ring.

Definition 2.2. [9] A field F is a commutative ring with 1R 6= 0 such that every non-
zero elements of R has multiplicative inverse.

A subset K of F is called a subfield of F, if K forms a field under the same operations
as in F.

Example 2.2. The set of rational numbers Q is a field.
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Let p be a prime, the residue class ring Z/pZ is a field having the representation set
{0, 1, . . . , p− 1} and this is denoted as Fp.
Remark 2.1. A field with finite number of elements is called a Galois field (GF). The
number of elements (order) of a finite field is always a prime or a power of a prime.

Notation: The Galois field GF (p) is denoted as Fp.

Example 2.3. The field GF(3) = {0, 1, 2} is a finite field in which addition and multi-
plication of two elements in GF(3) is taken modulo 3 and the elements in {1, 2} have
multiplicative inverses {1, 2} respectively.

Definition 2.3. [9] The characteristics of a field F is the smallest positive integer n ∈ N
such that nr = 0 for all r ∈ F.

Example 2.4. The characteristics of the field F3 is three .

Remark 2.2. The characteristics of any finite field is always a prime number.

Theorem 2.1. [9](Freshmann Dream) Let R be a commutative ring with prime char-
acteristic p. Then (a + b)p

n
= ap

n
+ bp

n
and (a − b)pn = ap

n − bpn for a, b ∈ R and
n ∈ N.

In the next section, we will briefly describe irreducible polynomials over finite fields.

2.1 Irreducible Polynomials over a Finite Field

Irreducible polynomials are important for constructions of Extension fields which are
usually used for implementation cryptographic algorithms. In this section we will give
basic properties concerning irreducible polynomials and after completing structure of
finite fields, we will be ready to give a formula for the number of irreducible polyno-
mials over finite fields and later at the end of this chapter, we will show that for any
prime p and any integer n, there always exists an irreducible polynomial of degree n
over the finite field Fp. Let Fp[x] = {anxn+an−1x

n−1 + · · ·+a0 | ai ∈ Fp, 0 ≤ i ≤ n}
be the ring of polynomials of degree less than or equal to n.

Definition 2.4. [9] A polynomial f ∈ Fp[x] is said to be irreducible in Fp[x] if

1. deg f ≥ 1

2. if f = hg for some h, g ∈ Fp[x] then either g or h are constant polynomials.

We note that the condition for a polynomial to be irreducible depends on the field.

Example 2.5. The polynomial x2 − 2 is reducible over R since
√

2 ∈ R but
√

2 6∈ Q.

Example 2.6. The polynomial x2 + x+ 1 is irreducible over F2 but reducible over F3

since 1 is the root of x2 + x+ 1 which belongs in F3.
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Let F[x] = {anxn+an−1x
n−1 + · · ·+a0 | ai ∈ F, 0 ≤ i ≤ n} be a ring of polynomials

over F. Let< f(x) > be an ideal generated by f ∈ F[x]. LetL = F[x]/(f) = {r+(f) |
r ∈ F[x], deg r < deg f}. The following theorem will help us to construct Extension
field, and the proof is given in [9].

Theorem 2.2. [9] Let F be a field and with 1 ≤ degf ≤ n then F[x]/(f) is a field if
and only if f is irreducible over F.

2.2 Field Extensions

Definition 2.5. [9] Let K be a subfield of F then F is called an extension of K and we
denote it as F/K.

Example 2.7. The field of complex number C is an extension field of real number R.

Remark 2.3. The Galois field Fp = GF (p) contains no proper subfield so it cannot be
an extension of any field.

Let K be a subfield of F and S be subset of F, the smallest field containing K and S
is called the extension of K by adjoining the elements of S. We denote it as K(S).
Let S = {α1, α2, . . . , αn} for αi ∈ F. Then we write K(S) = K(α1, α2, . . . , αn). If
S = {α}, we say that K(α) is the simple extension of K and α is called the defining
element of F/K.

Definition 2.6. [9] Let K be a subfield of F. An element α ∈ F is said to be algebraic
over K if αn + an−1α

n−1 + · · ·+ a1α + a0 = 0 for some an−1, . . . , a0 ∈ K.

Example 2.8. Q(
√

2)/Q is a field extension and
√

2 is algebraic over Q since
√

2 is
the root of the polynomial x2 − 2 ∈ Q[x].

The following propositions will be helpful for the construction of finite fields of prime
power and its proofs can be found in [9].

Proposition 2.3. [9] Let F/K be a field extension and α be algebraic over K, then
there exist a unique irreducible monic polynomial g ∈ K[x] such that g(α) = 0. The
polynomial g is denoted as g = Irr(α,K). This polynomial is called the minimal
polynomial of α.

Proposition 2.4. [9] Let K be a field and let f ∈ K[x] be a monic irreducible polyno-
mial over K, then there exists a simple algebraic extension K(α) where α is the root of
f . In other words, K has a simple algebraic extension in which f has a root.

Proposition 2.5. [9] Let F/K be extension of K and α ∈ F be algebraic over K with
g = Irr(α,K) and n=deg g. Then

• K(α) ∼= K[x]/(g) and K(α) = K[α] = {f(α) | f ∈ K[x]}.

• [K(α) : K] = n and {1, α, α2, . . . , αn−1} is a basis of K(α) over K.
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• Every β ∈ K(α) is algebraic over K, namely K(α) is an algebraic extension of
K.

Example 2.9. F3[x] is a ring of polynomials whose coefficients belong in F3. Let α
be a root of an irreducible polynomial of degree 2. We determine the simple extension
field F3(α) as follows:
We chose the polynomial f(x) = x2 + 1 which is irreducible over F3. By Theorem
2.5, F3[x]/(f) is a field. By proposition 2.4, there exists a simple extension F3(α) such
that α is the root of the polynomial i.e f(α) = 0. By Proposition 2.5, L= F3[x]/(f) is
isomorphic to F3(α) and [F3(α) : F3] = 2 also {1, α} is a basis of L. So L ={a+ bα |
a, b ∈ F3} = {0, 1, 2, α, α + 1, α + 2, 2α, 2α + 1, 2α + 2}.

2.3 Structure of Finite Fields

In this section, we shall describe the construction of finite fields of order pn and also
show that for every prime p, there exists an irreducible polynomial f of degree n such
that f(x) ∈ Fp[x]. Let p be the characteristic of the field Fq where q is a power of
p. Consider the polynomial xq − x ∈ Fp[x], then the roots of this polynomial are all
distinct, the smallest field containing all the roots of the above polynomial is called
the splitting field of the polynomial xq − x over Fp[x]. In fact this splitting field is
isomorphic to any field of q elements. Now we state the following theorem and the
proof can be obtained in [9].

Theorem 2.6. [9] For any prime p and for any integer n, there is a finite field with pn

elements denoted Fpn . This field is isomorphic to the splitting field of the polynomial
xp

n − x ∈ Fp[x].

In order to construct a field of order pn, it suffices to choose an irreducible polynomial
f of degree n over Fp and construct the field L = Fp[x]/(f) = F(α) where α is the root
of f in Fp[x]/(f). We shall prove later that for any p and n, there exists an irreducible
polynomial of degree n over Fp.

Example 2.10. Let n=2 and p=2, we construct a finite field F22 as follow:
The polynomial f(x) = x2 + x + 1 is irreducible over F2. Let α be the root of the
polynomial in the extension. Then L = F2[x]/(f) =F2(α) and [F2(α) : F2] = 2 also
{1, α} is a basis of F2(α). So L={a+ bα | a, b ∈ F2} = {0, 1, α, α + 1}.

Proposition 2.7. [9] The splitting field of any two irreducible polynomials of the same
degree over the same prime field are isomorphic.

Next we present a theorem for the characterization of subfields of the finite field Fq,
where q = pn for any positive integer n and prime p.

Theorem 2.8. [9](Subfield Criterion) Let q = pn. Let Fq be a field of q elements. Then
any Subfield of Fq has order pr where r is positive divisor of n. Conversely for any
positive divisor r of n, there exists one subfield of Fq with pr elements.

6



Proof. By Theorem 2.6, we are sure for any prime number p and any positive integer
r there exists a finite field of order pr. Suppose K is a subfield of Fq and the order of
K is pr. We need to show that r|n. Since the order of K is pr, K is regarded as a vector
space over the prime field Fp. So the dimension of the vector space K denoted dimK =
[K : Fp] =r. Also Fq is regarded as a vector space over K and let t be the degree of the
extension of Fq. That is t =[Fq : K]. Then we have n = [Fq : Fp] = [Fq : K][K : Fp].
Then we have n = rt.
Conversely suppose r|n, we need to show that Fpr is subfield of Fpn . In other words
we need to show that xpr − x | xpn − x. To do this, we first note that pr − 1 | pn − 1.
This is due to the fact r|n.
Now we show that xpr−1 − 1 | xpn−1 − 1. The proof follow immediately from the
statement above. So any root of the polynomial xpr−x is also a root of the polynomial
xp

n − x. Hence Fq contains the splitting field of the polynomial xpr − x ∈ Fp[x]. Now
we show the uniqueness of the existence of the subfield K. Suppose Fq has another
subfield K̄ with pr elements and K 6= K̄. Then |K ∪ K̄| > pr. But each element in
K ∪ K̄ is a root of xpr − x. So we get a contradiction.

Example 2.11. Let Fp25 be an extension field of Fp5 . Then the subfields of Fp25 are in
bijection to the positive divisor of 25. So positive divisors of 25 are {1, 5, 25} and the
subfields of Fp25 are respectively Fp, Fp5 , Fp25 .

The aim in the following part is to show that for any prime p and any natural number n
there exist an irreducible polynomial in Fp of degree n.We first need some foundations.

Theorem 2.9. [5] Let F be a field and G be a finite subgroup of the multiplicative
group F∗. Then G is a cyclic group.

The proof of this theorem is given [5].

Corollary 2.10. [5] Let q = pn and Fq be a field. Then F∗q is cyclic.

The proof is immediate from the Theorem 2.9 above since F∗q is a multiplicative sub-
group of itself.

Definition 2.7. [9] Any generator g ∈ F∗q is called a primitive element of F∗q.

Therefore F∗q = < g > ={g, g2, . . . , gq−1 = 1}. The number of primitive elements of
F∗q is φ(q − 1) where φ(q − 1) =| {k ∈ N | k < q − 1 and gcd(k, q − 1) = 1} |
Example 2.12. In Example 2.10, the finite field with 4 elements was L={0, 1, α, α+1}
where α is the root of the irreducible polynomial f(x) = x2 + x + 1 ∈ F2[x]. The
number of primitive elements of L is φ(3)=2. Since 1 is not a primitive element, then
automatically the primitive elements of L are {α, α + 1}.

α1 = α

α2 = α + 1

α3 = α2 + α = 1

Hence α is a generator of L. We proceed the same with α + 1.

7



Corollary 2.11. [9] Let Fqt be an extension Fq. Then Fqt is a simple extension of Fq,
in fact for any primitive element u of Fqt we have Fqt = Fq(u).

Proof. Fqt =< u > ∪{0} = {u, u2, u3, . . . , uq
t−1 = 1} ∪ {0}. Since Fqt is an

extension of Fq, then clearly Fqt =< u > ∪{0} ⊇ Fq(u) = F∗qt ∪ {0}. Since u is a
primitive element of Fqt . Hence Fqt = Fq(u).

Now we are ready to prove the existence of irreducible polynomial for every prime p
and every positive integer n.

Corollary 2.12. [9] For every finite field Fq and every positive integer n ≥ 1, there
exists an irreducible polynomial of degree n over Fq.

Proof. Let q̄ = qn. Then Fq̄ is a simple extension of Fq. That is Fq̄ = Fq(u) for any
primitive element u. Therefore we have n =[Fq̄ : Fq] = [Fq(u) : Fq]. But n = [Fq(u) :
Fq] = deg(Irr(u,Fq)). Therefore we obtain an irreducible polynomial of degree n
over Fq.

Before given a formula to calculate the number of irreducible polynomial of degree n
over the prime field Fp[x], we shall give properties of the roots of irreducible polyno-
mial of degree n.

2.4 Roots of irreducible polynomials over Fq.

In this section we shall give the nature of roots of irreducible polynomial of degree n
in finite field Fq. Let Fq be a finite field and p be a characteristics of the finite field Fq.

Lemma 2.13. [9] Let f ∈ Fq[x] be an irreducible polynomial and α be a root of f in
some extension K of Fq. Then for a polynomial h ∈ Fq[x], we have h(α) =0 if and only
if f | h in Fq[x].

Proof. Let g(x) = Irr(α,Fq) and f(x) = c−1g(x) for c ∈ Fq.
Clearly h(α) = 0 ⇐⇒ g(x) | h(x). Hence we have c−1g(x) | h(x) ⇐⇒ f(x) |
h(x).

Given an irreducible polynomial f(x) ∈ Fq[x] of degree m. The following theorem
gives us the nature of the roots of f in the extension Fqm .

Theorem 2.14. [9] Let f ∈ Fq[x] be an irreducible polynomial of degree m. Then f
has a root α ∈ Fqm . Moreover all the roots of f are simple and they are α, αq, αq

2
, . . . , αq

m−1
.

Proof. Let α be the root of the polynomial f with degree m in some splitting field
Fq(α). Since f is irreducible and [Fq(α) : Fq] = m. Then Fq(α) = Fqm . So α ∈ Fqm .
Now we show that αq, αq2 , . . . , αqm−1 are also the roots f(x).

8



Let f(x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a0 with ai ∈ Fq. We know that f(α) = 0
since α is the root of f .
First we show that (f(α))q

i
= f(αq

i
) for 0 ≤ i ≤ m− 1

(f(α))q
i

= (am−1α
m−1 + am−2α

m−2 + · · ·+ a0)q
i

for 0 ≤ i ≤ m− 1

= (am−1α
m−1)q

i

+ (am−2α
m−2)q

i

+ · · ·+ (a0)q
i

= (am−1)q
i

(αq
i

)m−1 + (am−2)q
i

(αq
i

)m−2 + · · ·+ a0
qi

= am−1(αq
i

)m−1 + am−2(αq
i

)m−2 + · · ·+ a0

= f(αq
i

)

But since f(α)=0, we have f(αq
i
) = 0 for 0 ≤ i ≤ m− 1. Hence all the roots of f are

αq
i for 0 ≤ i ≤ m− 1. Note that αqm = α since α ∈ Fqm . Now we need to show that

all the roots of f are distinct. Suppose

αq
i

= αq
j

for 0 ≤ i < j ≤ m− 1

αq
m−j+i

= α

Hence α satisfies the polynomial h(x) = xq
m−j+i − x. And by Lemma 2.13, we have

f | h. But this is a contradiction since the degree of h is less than f.

Corollary 2.15. [9] If f ∈ Fq[x] be an irreducible polynomial of degm then the
splitting field of f over Fq is Fqm and Fqm=Fq(α) where α is any root of f in Fqm . All
the roots of f are α, αq, αq

2
, . . . , αq

m−1
.

Proof. For the proof just apply the above theorem.

Definition 2.8. [9] Let Fqm be an extension of Fq. Then the conjugates of α with
respect to Fq are α, αq, αq2 , . . . , αqm−1

.

Proposition 2.16. [9] The conjugates of α ∈ Fq with respect to any subfield K has the
same order in the multiplicative group F∗q.

Proof. Let c be a primitive element in Fq. Then F∗q = {c, c2, c3, . . . , cq−1 = 1}. Let
α = ck. Let the order of α be denoted as ord(α). Then

ord(α) = ord(ck)

=
ord(c)

gcd(k, ord(c))

So the conjugates of α with respect to the subfield K ⊆ Fq with K = Fps is given by :
α, αp

s
, αp

2s
, . . . , αp

s(t−1) that is ck, cpks, cpk2s, . . . , cps(t−1) with t = [Fq : Fps ].
For 0 ≤ j ≤ t we have

ord(αp
js

) = ord(ck
pjs

)

=
ord(c)

gcd(kpjs, ord(c))

=
q − 1

gcd(kpjs, q − 1)

9



q − 1 = pst − 1 is relatively prime with pjs. So the gcd(kpjs, q − 1) = gcd(k, q − 1)

So ord(αp
js

) = ord(α). So all the conjugates of α have the same order.

Corollary 2.17. [9] If α is a primitive element of Fq then all the conjugates of α are
primitive elements over any sub field K of Fq.

Proof. The proof is deduced from Proposition 2.16.

Example 2.13. Consider the irreducible polynomial g(x) = x2 + x + 2 ∈ F3[x]. By
Theorem 2.14, the polynomial g has a root α ∈ F32 .

We check whether α is a generator of F∗9.

α2 = 2α + 1

α4 = (2α + 1)(2α + 1) = 2

α8 = (2)(2) = 4 = 1

So α is a primitive element F∗9. Therefore

F∗9 = {α, α2, α3, α4, α5, α6, α7, α8}
= {α, 2α + 1, 2α + 2, 2, 2α, α + 2, 1}

By Corollary 2.15, the roots of f are α and α3 = 2α + 2. These roots have the
same order and are primitive elements of F∗9. In the following section we shall discuss
Fq-Automorphisms and further use it to define the Trace of a root of an irreducible
polynomial.

2.5 Fq-automorphisms of Fqn

Definition 2.9. [9] A map σ : Fqn 7→ Fqn is called an Fq automorphism if:

• σ(α + β)= σ(α) + σ(β) for all α, β ∈ Fqn

• σ(αβ)= σ(α)σ(β)

• σ is bijective

• σ(c) = c for all c ∈ Fq
Proposition 2.18. [9] The map φ : Fqn 7→ Fqn such that α 7→ αq is an Fq automor-
phism.

Proof. Let the prime p be the characteristics of the field Fq and α, β ∈ Fqn .

φ(α + β) = (α + β)q

= αq + βq by Theorem 2.1

= φ(α) + φ(β)
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Now we prove the second statement

φ(αβ) = (αβ)q = αqαq = φ(α)qφ(α)q

We now prove the third statement and we first prove injectivity. Suppose α, β ∈ Fqn

φ(α) = φ(β)

αq = βq

(α− β)q = 0 by Theorem 2.1

α− β = 0

α = β

We now prove Surjectivity. Since φ : Fqn 7→ Fqn is injective and | Fqn |= qn is finite,
we conclude that φ is surjective.

Definition 2.10. [9] The Fq automorphism φ : Fqn 7→ Fqn such that α 7→ αq is called
a Frobenius Map.

Now we state a theorem about the group automorphism and the proofs can be found in
[5].

Theorem 2.19. [9] The distinct Fq- automorphisms of Fqn are the maps σ0, σ1, σ2, . . . , σn−1

σi :Fqn → Fqn

α 7−→ σi(α) = αq
i

where Moreover σi = φi = φ ◦ φ ◦ · · · ◦ φ for 0 ≤ i ≤ n − 1. This set of distinct
automorphisms form a group under composition of mapping. This group is cyclic
group of order n generated by the Frobenius map σ.

Notation : We denote the group of automorphism of Fqn over Fq as AutFq(Fqn).
Now we give the definition of the trace of an element in Fqn . And also state some
properties without giving any proof.

Definition 2.11. [9] The trace of an element α with respect to the extension F/K de-
noted TrF/K(α), is given by TrF/K(α) =

∑
σ∈AutF/K σ(α)= α + αq + · · ·+ αq

n−1 .
If K = Fp, then TrF/K(α) = TrF (α). And we called TrF (α) the absolute trace.

Remark 2.4. Notice the trace of α is just the sum of conjugates of α with respect F/K.

Properties of Trace: Let K = Fq, F = Fqn then TrF/K: F 7→ K satisfies

• TrF/K(α + β) = TrF/K(α) + TrF/K(β)

• TrF/K(cα) = cTrF/K(α) for c ∈ K and α ∈ Fqn

• TrF/K is surjective if the gcd(n, q) = 1

• TrF/K(c) = nc for c ∈ K, n = [F : K]

11



• TrF/K(αq
i
) = TrF/K(α) for all i such that 0 ≤ i ≤ n− 1

The proof of the above properties are obvious and can be obtained in [9].

Example 2.14. Let α ∈ F23 be a root of the polynomial f(x) = x3 + x2 + 1 ∈ F2[x].
Determine the trace of α.
The polynomial f(x) = x3 +x2 + 1 ∈ F2[x] is irreducible over F2. Then F2[x]/(f(x))
is a field. By Proposition 2.3, F23 is isomorphic to F2(α) and {1, α, α2, α3} is a basis
of F2(α). So

F23 = {a+ bα + cα2 | a, b, c ∈ F2} = {0, 1, α, α + 1, α2, α2 + 1, α + α2, 1 + α + α2}

By Theorem 2.14, the roots of f in F2(α) are α, α2, α4 = α2 + α + 1.

TrF (α) = α + α2 + α4 = α + α2 + α2 + α + 1 = 1

The conjugates of α have the same trace value.

2.6 Counting Irreducible Polynomials of degree n over finite field by the Inclu-
sion and exclusion Principle

Gauss gave a formula to count the number of irreducible polynomials over finite fields.
And he used the notion of Moebius inversion function in order to proof his formula.
In this thesis we shall use the Inclusion and Exclusion Principle to count the number
of irreducible polynomials over finite fields and then confirm our result with Gauss
Formula. This method is solely based on finite fields. Before we begin, we state
inclusion -exclusion principle without proving it.

Theorem 2.20. (Inclusion−ExclusionPrinciple) [18] Let | A | denote the cardinal
number of a set A then it follows that

| A ∪B |=| A | + | B | − | A ∩B | .
The more general formula can be generalized in the following way:
Let {Ai} for 0 ≤ i ≤ p be a collection of subsets of a set S then
| A1 ∪ A2 ∪ · · · ∪ Ap |
=
∑

1≤i≤p | Ai | −
∑

1≤i1<i2≤p | Ai1 ∩ Ai2 | +
∑

1≤i1<i2<i3≤p | Ai1 ∩ Ai2 ∩ Ai3 |
− · · ·+ (−1)p−1 | Ai1 ∩ Ai2 ∩ Ai3 ∩ · · · ∩ Aip | .

Example 2.15. Let S = {1, 2, . . . , 10}, A1 = {2, 3, 7, 9, 10}, A2 = {1, 2, 3, 9}, A3 =
{2, 4, 9, 10}. We have the following:
A1 ∩ A2 = {2, 3, 9}, A1 ∩ A3 = {2, 3, 10}, A2 ∩ A3 = {2, 9} A1 ∩ A2 ∩ A3 = {2, 9}
| A1 ∪ A2 ∪ A3 |= (5 + 4 + 4)− (3 + 3 + 2) + 2 = 7

Theorem 2.21. [5] The number Nq(n) of monic irreducible polynomials of degree n
in Fq[x] is given by:

Nq(n) = 1/n
∑
d/n

µ(n/d)qd = 1/n
∑
d/n

µ(d)q
n
d
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where

µ(n) =


1 if n =1
(−1)k if n is the product of k distinct primes
0 if n is divisible by the square of a prime

As mentioned above we shall prove this theorem using Inclusion and exclusion princi-
ple. Before the proof, we will give some remarks of finite fields which are going to be
useful to state the formula of the number of irreducible polynomial of degree n over
Fq.
Remark 2.5.

• For any prime p and any positive integer n, there exists a finite field of order
q = pn and this field is unique up to isomorphism. And we denote that field as
Fq.

• The splitting field of any irreducible polynomial of degree n over Fq[x] is Fqn .

• Any irreducible polynomial of degree n over Fq have n distinct roots in Fqn .

• Any two irreducible polynomials of degree n over Fq cannot have a common
root in Fqn .

• All the sub fields of Fqn are in bijection with the divisors of n.

Proof. We now prove Theorem 2.21. For n = 1, the number of monic irreducible
polynomial over Fq is q since all the polynomials of the form x − ai for ai ∈ Fq are
irreducible. This is also confirmed by the Gauss formula when we substitute n = 1 in
the formula Nq(n) = 1/n

∑
d/nµ(n/d)qd = 1/n

∑
d/nµ(d)qn/d.

Now we assume that n > 1.
Let Rn denote the collection of the roots of all irreducible polynomials of degree n
over Fq. And let Tn denote the collection of all irreducible polynomials of degree n
over Fq. Then by Remarks 2.5 above the collection of all the roots is given by:

Rn = nTn

So now we calculate Rn explicitly:

Rn =


{α ∈ Fqn | f(α) = 0}
{α ∈ Fqn | [Fq(α) : Fq] = n}
{α ∈ Fqn | α is not contained in any proper subfield of Fqn}
{α ∈ Fqn | α is not contained in any maximal subfield of Fqn}

Let n = uavbwc · · · ds be a prime factorization of n with r distinct prime factors. Then
the maximal subfields of Fq are of the form
Fu = Fq/u, Fv = Fq/v, Fw = Fq/w, . . . , Fd = Fq/d by Remark 2.5 above.
By the fourth interpretation given above

| Rn |= |(Fu ∪ Fv ∪ Fw · · · ∪ Fd)c|
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where the complement is taken over Fqn . By 5 of Remark 2.5, we have
Fu ∩ Fv = Fqn/uv , Fu ∩ Fw = Fqn/uw , Fu ∩ Fv ∩ Fw = Fqn/uvw · · ·Fu ∩ Fv · · · ∩ Fd =
Fqn/uv...d . We now calculate the cardinality of | Rn | by applying the inclusion and
exclusion principle:

| Rn | = qn − qn/u − qn/v − qn/w + · · · − qn/uv − qn/uw
−qn/wv − · · ·+ qn/uvw + qn/uvd + qn/udw + · · ·+ (−1)rqn/uvw···r

(2.1)

So we obtain Tn by dividing by Rn by n.

We proved the theorem by using finite fields instead of using Moebius inversion for-
mula used in number theory.

Example 2.16. Find the number of all irreducible polynomials of degree 12 over F7:
n = 22 · 3, F2 = F12/2 F3 = F12/3, F2 ∩ F3=F12/6

So
| R12 |= 712 − 76 − 74 + 72.

Hence the number of monic irreducible polynomials of degree 12 is given by:

P12 = 1/12(712 − 76 − 74 + 72)

In the previous section, we saw that given a prime p and a positive integer n, there
always exists an irreducible polynomial of deg n over the finite field Fp. So far, we have
not seen a deterministics algorithm to construct such irreducible polynomials but there
exists algorithms to factorise square free polynomials into irreducible polynomials.
One of this algorithm that we shall discuss is the Berlekamp Algorithm. So one can
choose a square free polynomial and then use Berlekamp Algorithm to get irreducible
polynomials. But this is first of all a Probabilistic Algorithm since in priority, one does
not know which degree he will get.

2.7 Berlekamp Algorithm

Given a square free monic polynomial b(x) of deg n, we will determine its complete
factorization. For what follows, let q = pn where p is a prime number and Fq= GF (q)
is a finite field consisting of q elements. V = Fq[x]/(b(x)) = {r(x) + (b(x)) |
deg r(x) < deg b(x)} be a ring of residue classes of polynomials. We shall iden-
tify an element r(x) + (b(x)) of V as r(x) mod b(x).
Let W = {v(x) ∈ V | (v(x))q = v(x) mod b(x)}.

Theorem 2.22. [3] The subset W of V is a subspace.

Proof. W is non-empty set since every element in Fq belongs in W. Let t(x), h(x) ∈
W.

• (h(x) + t(x))q = (h(x))q + (t(x))q = h(x) + t(x) mod b(x). Hence h(x) +
t(x) ∈ W.

14



• Let d ∈ Fq (dh(x))q = dq(h(x))q = dh(x) mod b(x). Hence dh(x) ∈ W

Thus W is a subspace of V .

Theorem 2.23. [3] If b(x) is irreducible then the dimension of subspace W is one.

Proof. b(x) is irreducible polynomial implies V = Fq[x]/(b(x)) is a field. The poly-
nomial p(t) = tq − t has at most q roots. By Fermat Little Theorem, rq = r for all
r ∈ Fq so each of the q elements of Fq satisfy rq − r = 0. Hence all the q roots of the
polynomial p(t) are constant in Fq. That is consists of constant polynomial and can be
identified with Fq which is generated by a single element {1}. So W is a subspace of
dimension one in V.

The following theorem tells us the number of irreducible factors of the polynomial
b(x).

Theorem 2.24. [3] Let b(x) be a square free polynomial. Then dimension of the sub-
space W is equal to the number of irreducible factors of b(x).

Proof. Let b(x) = b1(x)b2(x) · · · bk(x) be the unique monic irreducible factorization
of b(x). For each i from 1 to k, let Vi = Fq[x]/(bi(x)). By the Chinese Remainder
Theorem, Fq[x]/b(x) ∼= Fq[x]/b1(x) × Fq[x]/b2(x) × · · · × Fq[x]/bk(x) through the
ring isomorphism

φ :V → V1 × V2 × · · · × Vk
v(x) mod b(x) 7−→ (v(x) mod b1(x), v(x) mod b2(x), . . . , v(x) mod bk(x)).

The restrictions of φ on W induces a map

φW : W 7→ W1 ×W2 ×W3 × · · · ×Wk

where Wi = {s ∈ Vi | sq = s mod bi(x)} for i = 0, 1, . . . , k. In order to prove that
the dimension of W is k, it suffices to show that φW is an isomorphism.

First we show that φW is surjective. Let (c1, c2, c3, . . . , ck) ∈ (W1×W2×W3× · · · ×
Wk). Since φ is surjective, there exists an element h(x) ∈ V such that φ(h(x)) =
(c1, c2, c3, . . . , ck).
Then we have φ(v(x)q)) = (cq1, c

q
2, c

q
3, . . . , c

q
k) = (c1, c2, . . . , ck) = φ(h(x)). But since

φ is an isomorphism, it follows that v(x) ∈ W. Then injectivity of φW follows directly
from the fact that φ has the same property. So the dimension W equals the number of
irreducible polynomial of b(x). Assuming we know the number of elements of W. We
now show how to find the irreducible factors of b(x).

Theorem 2.25. [3] Let b(x) be a monic square free polynomial in Fq[x] and let v(x)
be a non-constant polynomial in W. Then

b(x) =
∏
s∈Fq

gcd(v(x)− s, b(x)).
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Proof. We first show that b(x) |
∏

s∈Fq
gcd(b(x), v(x)− s) for x ∈ Fq[x],

xq − x =
∏
s∈Fq

(x− s). (2.2)

From above,

v(x)q − v(x) =
∏
s∈Fq

(v(x)− s)

v(x) ∈ W implies that b(x) | v(x)q − v(x) =
∏

s∈Fq
(v(x) − s). This implies, bi(x) |∏

s∈Fq
(v(x) − s) for all i = 1, . . . , k. Since gcd(bi(x), bj(x)) = 1 for i 6= j and

for any two distinct elements s, t ∈ Fq gcd(v(x) − s, v(x) − t) = 1, we get bi(x) |
v(x) − si for exactly one i. Therefore, bi(x) | gcd(b(x), v(x) − si) implies that b(x) |∏

s∈Fq
gcd(b(x), v(x)−s).Now we show that

∏
s∈Fq

gcd(b(x), v(x)−s) | b(x).Clearly,
gcd(b(x), v(x)− s) | b(x) for all s and since v(x)− s are relatively prime for distinct
s, we have

∏
s∈Fq

gcd(b(x), v(x)− s) | b(x). Hence we have

b(x) =
∏
s∈Fq

gcd(v(x)− s, b(x)).

Now we present a method how to determine the elements of W . Let {1, x, . . . , xn−1}
be a basis of V. Let v(x) ∈ Fq[x]. Then

(v(x))q = (xn−1 + an−2x
n−2 + · · ·+ a0)q

= x(n−1)q + (an−2)qx(n−2)q + · · ·+ aq0
= v(xq) since each ai ∈ Fq.

Therefore

W = {v(x) ∈ Fq[x] | (v(x))q = v(x) mod b(x)}.
= {v(x) ∈ Fq[x] | v(xq) = v(x) mod b(x)}.

Since {1, x, . . . , xn−1} is a basis of V and W is a subspace of V. Then for 0 ≤ j ≤
n− 1,

xqj = q0,j + q1,jx+ · · ·+ qn−1,jx
n−1 mod b(x).

Let coefficient matrix of this system of equation be an n×nmatrixM = (qi,j)(0≤i,j≤n−1).

Theorem 2.26. [3] Given W and M as defined previously, then

W = {v = (v0, v1, . . . , vn−1) ∈ Fqn | (M − I)v = 0}

Proof. v(xq) =
∑n−1

i=0 ai
∑n−1

j=0 qi,jx
j where (qi,j) is the n×n coefficient matrix of the

system of equations

xqj = q0,j + q1,jx+ · · ·+ qn−1,jx
n−1 mod b(x).
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For any v(x) ∈ W

0 = v(xq)− v(x) ⇐⇒
n−1∑
j=0

aj(
n−1∑
i=0

qj,ix
i)−

n−1∑
j=0

ajx
j

⇐⇒
n−1∑
i=0

(
n−1∑
i=0

ajqj,i − aj)xi mod b(x)

⇐⇒
n−1∑
j=0

ajqj,i − aj = 0 for all i = 0, 1, . . . , n− 1.

This is equivalent to M.(v0, . . . , vn−1) − (v0, . . . , vn−1) = (0, . . . , 0). Therefore, we
have (M − I).v = (0, . . . , 0) . So v(x) ∈ W ⇐⇒ (M − I).v = (0, . . . , 0). In order
to find the basis of W , it suffices to find a null space of the matrix M − I.

Now we describe a method how to computeM. ComputingM requires that we express
xqi as linear combination of {1, x, . . . , xn−1} for i = 0, . . . , n − 1. This can be done
using iterative procedure that generates xt+1 mod b(x) given that xt mod b(x) has
been determined. Assume that b(x) = a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 + xn.

xt = bt,0 + bt,1x+ bt,2x
2 + · · ·+ bt,n−2x

n−2 + bt,n−1x
n−1 mod b(x)

xt+1 = bt,0x+ bt,1x
2 + bt,2x

3 + · · ·+ bt,n−1x
n−1 + bt,n−1x

n mod b(x)

= bt,0x+ bt,1x
2 + bt,2x

3 + · · ·+ bt,n−2x
n−1+

bt,n−1(−a0 − a1x− a2x
2 − · · · − an−1x

n−1)

= bt,n−1a0 + x(bt,0 − a1bt,n−1) + x2(bt,1 − bt,n−1a2) + · · ·+
((bt,n−1 − bt,n−1an−1))xn−1

= dt+1,0 + dt+1,1x+ · · ·+ dt+1,n−1x
n−1

where dt+1,0 = −bt,n−1 and dt+1,i = bt,i−1− bt,n−1ai. So the entries of the matrix M is
obtained by storing a vector d of elements from Fq:

d← (d0, d1, . . . , dn−1)

d is initialised as
d← (1, . . . , 0)

and is updated by

d← (−bn−1.a0, b0 − bn−1.a1, . . . , bn−2 − bn−1.an−1)

After the (iq)th iteration, the entries of the vector are copied into the ith column of the
M -matrix. So computing the M matrix requires qn multiplications for each column
since there are n columns. So the number of operations to generate the entire matrix
is O(qn2) operations in Fq. After obtaining the matrix M , by the method described
above, we find the null space of the matrix M − I which corresponds to the basis of
W. Then we apply Theorem 2.25. This process is applied repeatedly until the number
of factors equal to the dimension of W.
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Theorem 2.27. [3] The cost of the Berlekamp algorithm for computing factors of a
monic square polynomial b(x) of deg n which has k distinct irreducible polynomials
over Fq is O(k · q · n2 + n3) operations in Fq.

Proof. Each k factors require q gcd calculations. Each cost approximately n2 opera-
tions. In order to find the null space of M − I , we perform the Gaussian elimination
method which cost O(n3) operations in Fq. Therefore the total cost of the algorithm is
O(k · q · n2 + n3) operations in Fq.

Example 2.17. Let f(x) = x4 + x2 + x+ 1 ∈ F2[x]. We use Berlekamp Algorithm to
factor the above polynomial.
The derivative of f is relative prime to f therefore, f has no repeated roots. Now we
compute the power x2i mod f(x) for 0 ≤ i ≤ 3. This yields

x0 = 1 mod f(x)

x2 = x2 mod f(x)

x4 = 1 + x+ x2 mod f(x)

x6 = 1 + x+ x3 mod f(x)

So the 4× 4 Matrix is given by :

M =

1 0 0 0
0 0 1 0
1 1 1 0
1 1 0 1


and the matrix M − I is :

M − I =

0 0 0 0
0 1 1 0
1 1 0 0
1 1 0 0


The basis for the null space of the matrix M − I are {1, 0, 0, 0} and {0, 0, 1, 1} and
the polynomial of each are t1(x) = 1 and t2(x) = x2 + x3 respectively. Since the
dimension of the null space is 2, we are sure that the number of irreducible factors of
f is 2. Applying Theorem 2.25, we calculate

gcd(f(x), t2(x)− 0) = x+ 1, gcd(f(x), t2(x)− 1) = x3 + x2 + 1

So our desired factorization is f(x) = (x+ 1)(x3 + x2 + 1).

In the following section, we will give a brief introduction about modules and Group
Algebras, this will help us to proof the Normal basis theorem and the condition for a
linearly independent set to form a normal basis in the next chapter.
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2.8 Brief Introduction to Modules

Definition 2.12. LetR be a commutative ring. A (left)R-Module is an additive abelian
group M equipped with a map R×M 7→M (r,m) 7→ rm satisfying

• (r1 + r2)m1 = r1m1 + r2m1

• r(m1 +m2) = rm1 + rm2

• r1(r2m) = (r1r2)m

• 1m = m

for all r1, r2 ∈ R and m1,m2 ∈M.

A left-ModuleM is said to be unitary if 1R ·u = u for every u ∈M. A rightR-module
has the similar definition as above but the difference is that the elements of R are on
the right side to that of the elements of M. If R is commutative then the left-module
and the right Module coincide.
Properties of Modules
Let M be an R-Module and x ∈M , r ∈ R, we distinguish between 0M and 0R.

• r0M = 0M

• 0Rx = 0M

• (−r)x = r(−x) = −(rx)

Example 2.18. Let R = F be a field. Then all the vector spaces over F are F-modules.

Example 2.19. LetR = F[x] where F a field. If V is an F vector space and T : V 7→ V
a linear map(vector space endomorphism) then V may be regarded as F [X]-module
via

f(X) · v = f(T )(v)

for v ∈ V . Different maps T yield different F [X]-module.

2.8.1 Module Homomorphism

Definition 2.13. A module homomorphism is a map f : M 7→ N between two mod-
ules over a ring R with the following properties:

• f(x+ y) = f(x) + f(y) for all x, y ∈M.

• f(rx) = rf(x) for all r ∈ R and x ∈M.
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2.8.2 Group Algebra

Let K be a field and G be a group. The group algebra K[G] with operation · is the set
of all linear combination of finitely many elements of G with coefficients in K. That is
all the elements of the form

a1g1 + a2g2 + · · ·+ angn

where ai ∈ K and gi ∈ G for all i = 1, . . . , n. The element in K[G] is of the form∑
g∈G agg where it is assumed that ag = 0 for all but finitely many elements of g.

K[G] is an algebra over K with respect to the addition and multiplication defined as
follows:

•
∑

g∈G agg +
∑

g∈G bgg =
∑

g∈G(ag + bg)g.

• product by a scalar is given by: a(
∑

g∈G agg) =
∑

g∈G(aag)g.

• Multiplication of two elements: (
∑

g∈G agg)(
∑

h∈G bhh) =
∑

x∈G(cx · x) where
x = gh and cx =

∑
g∈G agbg−1x. It follows that the identity element 1 of G is the

unit of K[G] and K[G] is commutative if and only if G is an abelian group.
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CHAPTER 3

Basics of Normal Basis

For many years, Normal basis has been used to represent elements of finite fields and
this is mostly advantageous in the hardware implementation of arithmetic operations
such as Squaring and Exponentiation which are done at most at no cost over field of
characteristics 2. Hensel (1888) in [12] deeply studied normal basis over finite fields
and proved that they always exists. Eisentein (1850) in [8] has already noted that
the normal basis already exist. Hensel and Ore (1934) derive a formula to count the
number of such basis. Perlis [15] proved that if degree n of irreducible polynomial is
a prime power, then the polynomial is normal if and only if its trace is non-zero. In
[6], if n = 2rpk is degree of irreducible polynomial and 2 is a primitive root mod pk,
then the irreducible polynomial over Fp is normal if and only if its trace is non-zero.
Let p be a prime, q = pr for some positive integer r and Fq denotes a field with q
elements. The characteristics of the field Fq is p. And Fqn is an n dimensional vector
space over Fq.
The trace function of Fqn over Fq for α ∈ Fqn is given by:

TrFqn/q
(α) =

n−1∑
i=0

αq
i

It is a linear functional and the trace of an element over its prime field is called the
absolute Trace. Let α ∈ Fqn . If the set N = {α, αq, αq2 , αq3 , . . . , αqn−1} is linearly
independent, then we call N a normal basis of Fqn and the element α is called a Nor-
mal element of Fqn over Fq. A polynomial f of degree n is a Normal polynomial if it
irreducible polynomial over Fq and the roots of f are all the elements of N . Hence a
normal polynomial is another way of describing normal basis.

In this chapter our main aim is to find the conditions for which an element α ∈ Fqn
is a normal element and later look for conditions such that an irreducible polynomial
over Fq is a normal polynomial. We will begin by reviewing some concepts of linear
algebra.

Let V be an n dimensional vector space over a field K and T : V 7→ V be a lin-
ear operator on V . The characteristics polynomial of T is

4T = det(xI − T )
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which is a monic polynomial and deg4T = n = dimKV . Let f be a polynomial such
that f(T ) = 0, then we say that f is annihilated by T .
Let K be a field. Consider the set

JT = {g ∈ K[x] | g(T ) = 0}

JT is non-empty, by Cayley Hamitonian Theorem, 4T (T ) = 0, so4T ∈ JT . Clearly
the set JT is an ideal of K[x] and the set JT is a principal ideal. So there is exists a
monic polynomial of smallest degree which generates JT and we write

JT =< γT >

γT is called the minimal polynomial of T that is monic polynomial of smallest degree
over K such that γT (T ) = 0. For any polynomial g(x) ∈ K[x], g(T ) is a linear
transformation on V. The null space of g(T ) consists of all vectors α ∈ V such that
g(T )α = 0. The monic polynomial g(x) ∈ K[x] of smallest degree such that g(T )α =
0 is called the T -order of α or the minimal polynomial of α and this polynomial is
denoted as ordα,T (x). Also ordα,T (x) | h(x) for any polynomial h(x) ∈ K[x] such
that h(T )α = 0.

Definition 3.1. [9] An element α is called a cyclic vector for the linear operator T on
V if the set {α, T (α), T 2(α), T 3(α), . . . , T k−1(α)} spans V for k = dimKV.

The following lemma will help us to characterize cyclic vectors over V, It’s proof is
given in [10].

Lemma 3.1. [10] Let T be a linear operator on a finite dimensional vector space V .
Then V has a cyclic vector if and only the characteristics and the minimal polynomial
of the linear map T defined on V are equal.

Lemma 3.2. [9] Let G be group and K be a field and let T1, T2, . . . , Tn : G 7→ K∗

be distinct homomorphism of groups of G and K∗ = K{0}. Then T1, T2, . . . , Tn are
linearly independent over K in the sense that if (a1, a2, . . . , am) 6= (0, 0, . . . , 0). Then
a1T1(g) + a2T2(g) + · · ·+ anTn(g) 6= 0 for some g ∈ G.

Let V = Fqn be a vector space over K = Fq and consider the Frobenius Map

σ : Fqn → Fqn
α 7−→ αq

Since for all α, β ∈ Fqn σ(α + β) = σ(α) + σ(β) and σ(cα) = cσ(α), then σ is
consider as a linear operator. The distinct automorphisms of Fqn over Fq are G =
{σ0, σ1, σ2, . . . , σn−1} which form a group under composition of mapping and the or-
der of σ is n.

Lemma 3.3. [13] Let V be an n- dimensional extension of the field and σ be the
Frobenius map. Then the minimal and characteristics equation of σ are equal both to
xn − 1.
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Proof. The distinct automorphisms σ0, σ1, σ2, . . . , σn−1 of V overK form a group and
the ord(σ) = n since σn = I. The characteristics polynomial 4σ = det(xI − σ) =
xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ K[x].
xn − 1 is annihilated by σ because σn − I = 0. Therefore, the minimal polynomial
γσ | 4σ. So deg γσ ≤ n. In fact, deg γσ = n. Suppose on the contrary that deg γσ < n
then σ satisfies the relation an−1σ

n−1 + an−2σ
n−2 + · · · + a1σ + a0 = 0 for some

a0, a1, . . . , an−1 ∈ K. But this will contradicts Lemma 3.1 because I, σ, . . . , σn−1

are n distinct homomorphism which are linearly independent in sense of Lemma 3.1.
Therefore, deg γσ = n. γσ | xn − 1 with deg γσ = n implies that γσ = xn − 1. On the
other hand, γσ | 4σ and 4σ is monic polynomial of degree n = dimKV. Therefore
xn − 1 | 4σ implies4σ = γσ = xn − 1.

Theorem 3.4. [7] Let E be a finite extension field over K with dimension n. And
assume that the Galois group G of E over K denoted as Gal(E/K) is cyclic of order
n. Then there exists an element α ∈ E which generate a normal basis over K.

Before given the proof, we remark that the additive group (E,+) of E can be viewed
as a module over the group algebra K[G], where the scalar multiplication is defined by∑

y∈G

ayy · α :=
∑
y∈G

ayy(α)

Proof. Let σ be a generator of G. Let G = {id, σ, . . . , σn−1} where n := |G| is
the degree of E over K. Then for every g ∈ K[G], there exists a unique polynomial
c =

∑n−1
i=0 cix

i ∈ K[x] of deg at most n− 1 with α ∈ E such that

g · α = c(σ)(α)

where

c(σ)(α) :=
n−1∑
i=0

ciσ
i(α)

Since σn(α) = id is the identity element on E for all α ∈ E. Therefore

(xn − 1)σ(α) = σn(α)− id(α) = α− α = 0

for all α ∈ E. Therefore xn − 1 is the σ−order of α since {σ0, σ, σ2, . . . , σn−1} is
linearly independent. Moreover since the dimension of E over K is equal to the de-
gree of xn − 1, then this polynomial is also the characteristics polynomial of α with
respect to σ. Now from Lemma 3.1 since the minimal polynomial and the character-
istics polynomial of α with respect σ equal xn − 1, therefore there exists an α ∈ E
such that the set M = {σi(α)} span E for i ∈ N. For k ∈ N, σk(α) = σn+k(α)
since ord(σ) = n. Therefore, M = {α, σ(α), . . . , σn−1(α)} span E. Therefore M =
{α, σ(α), . . . , σn−1(α)} is a basis of E since the dimension of E is n.

Remark 3.1. If E is an n-dimensional cyclic Galois extension over K and σ is a gen-
erator of G. Then α ∈ E is normal over K if and only if the minimal polynomial of α
with respect to σ (this is the monic polynomial of least degree such that f(σ)(α) = 0)
is equal to xn − 1, where n = |G|.
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Let E = Fqn and K = Fq and σ be the Frobenius map defined on E. If an element
α ∈ E is normal then {α, σ(α), σ2(α), . . . , σn−1(α)} is linearly independent and min-
imal polynomial of α with respect to σ is xn − 1. So there is no polynomial of smaller
degree less than n that annihilates σ. That is α is the cyclic vector of σ on E. So an
element α ∈ E is cyclic if and only if the minimal polynomial of α with respect to σ
over K is xn − 1. Let p be the characteristic of K and n = mpe with gcd(p,m) = 1.
Let pe = t. Suppose xn − 1 has the factorization in K

xn − 1 = (µ1(x)µ2(x) · · ·µr(x))t (3.1)

where µi are distinct irreducible factors of xn − 1. Suppose also that µi has degree di
for i = 1, 2, . . . r. Let

µ̄i(x) =
xn − 1

µi(x)
(3.2)

for i = 0, 1, . . . , r. Then we have a following characterization of Normal elements in
Fqn .

Theorem 3.5. [17] An element α ∈ Fqn is normal if and only if µ̄i(σ)α 6= 0 for i =
0, 1, . . . , r where σ is the Frobenius map and µ̄i is defined in equation 3.2.

Proof. Suppose α is a normal element in Fqn then {α, αq, αq2 , . . . , αqn−1} is a basis of
Fqn over Fq. This implies that the minimal polynomial of α with respect to σ is equal
to xn − 1. Therefore for i = 0, 1, . . . , rµ̄i(σ)α 6= 0. The converse of the proof is given
in [17].

3.1 Characterization of Normal Polynomials

In the previous section we saw that irreducible polynomial over Fq whose roots are
linearly independent is called a Normal Polynomial. In this section we will give con-
ditions such that irreducible polynomials over Fq are normal.
Let f be an irreducible polynomial over Fq and α ∈ Fqn be the root of f . Then
{1, α, α2, . . . , αn−1} is called the polynomial basis of Fqn over Fq. The direct way to
check whether αqi for i = 0, 1, . . . , n− 1 is a normal element is to write

αq
i

=
n−1∑
j=0

bi,jα
j

where bi,j ∈ Fq and αj for 0 ≤ j ≤ n − 1 is the polynomial basis. If the n × n

matrix (bij)0≤i,j≤n−1 is non-singular then the set {α, αq, αq2 , . . . , αqn−1} is linearly
independent therefore f is a normal polynomial. This method is not efficient since it
requires a lot of computation especially if n is too large. The natural question to ask,
is there a simple criteria to identify Normal polynomials. The answer is yes in certain
cases. We first give the following definition before reformulating Theorem 3.5.

Definition 3.2. [9] Let K = Fq. The polynomial Lf (x) =
∑n

i=0 cix
qi ∈ K[x] corre-

sponding with the polynomial f(x) =
∑n

i=0 cix
i is called the linearized q−associate
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of f(x). Conversely, f(x) =
∑n

i=0 cix
i is called convectional q−associate of the

q−polynomial
∑n

i=0 cix
qi in K[x].

Theorem 3.6. [19] Let f be an irreducible polynomial of degree n over Fq and let α
be a root of f . Let

xn − 1 = (µ1(x)µ2(x) · · ·µr(x))t

where µi are distinct irreducible factors of xn− 1 and t ∈ N. Suppose also that µi has
degree di for i = 1, 2, . . . , r. Then the polynomial f is normal if and only if

Lµ̄i(α) 6= 0

where µ̄i(x) = xn−1
µi(x)

for each i = 0, 1, . . . , r and Lµ̄i(x) is the linearised q− asso-
ciate of µ̄i(x).

The proof of the above theorem is just a reformulation the proof of Theorem 3.5 since
Lµ̄i(α) = µ̄i(σ)α where α is a root of f . The following concepts in [9] will be freely
used in our next examples.

Definition 3.3. [9] Let n ≥ 1 be an integer and K be a field with characteristics p.
Suppose gcd(p, n) = 1 and ξ be a primitive nth root of unity over K. The polynomial
Qn(x) =

∏n
k:gcd(k,n)=1(x− ξk) is called the n cyclotomic polynomial over K.

Theorem 3.7. [9] Let K be a field with characteristics p and n is an integer not
divisible by p. Then

• xn − 1 =
∏

d|nQd(x)

• If K = Fq with (n,q)=1 and d = Ord(q) mod n then Qn(x) factors into φ(n)
d

irreducible distinct polynomial of the same degree d over K where φ is the Euler
function.

The proof of the following Theorem is given in [9]

Example 3.1. Let f(x) = 1 + a1x + · · · + an−1x
n−1 + xn be a monic irreducible

polynomial of degree n = pe over Fq and α is a root of f. We wish to determine under
which conditions f is a normal polynomial.
xn − 1 = (x − 1)p

e
. Hence µ(x) = 1 + x + x2 + · · · + xn−1 and Lµ(α) = α + αq +

αq
2

+ · · ·+ αq
n−1 = TrFqn/Fq(α) = −an−1. Therefore our polynomial is Normal if and

only if TrFqn/Fq(α) 6= 0. This is a known result in [15].

Example 3.2. Let f(x) = 1 + x + · · · + an−1x
n−1 + xn be a monic irreducible poly-

nomial over Fp of degree n where n is a prime and p is a primitive element mod n.
We determine conditions under which f is normal.
µ1(x) = x− 1 and µ2 = 1 + x+ x2 + · · ·+ xn−1. Let α be a root of f . The necessary
and sufficient conditions for f to be normal is that

• Lµ1(α) = TrFpn/Fp(α) = α + αp + αp
2

+ · · ·+ αp
n−1 6= 0
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• Lµ2(α) = αp − α 6= 0

The second condition is obvious since the roots of f must be distinct.

In the following example, we determine conditions under which irreducible polynomi-
als over F2 of degree 23 are normal polynomial.

Example 3.3. Let p = 2. Find the conditions under which the irreducible polynomial
of degree 23 over F2 form a normal basis. Since 2 is a primitive element mod 23, we
have the following factorisation

x23− 1 = (x+ 1)(x11 +x9 +x7 +x6 +x5 +x+ 1)(x11 +x10 +x6 +x5 +x4 +x2 + 1)

µ̄1(x) = x22 + x21 + · · ·+ x+ 1

µ̄2(x) = x12 + x10 + x7 + x4 + x3 + x2 + x+ 1

µ̄3(x) = x12 + x11 + x10 + x9 + x8 + x5 + x2 + 1

So the linearized polynomial of each of the above polynomials is given by:

Lµ̄1(x) = x222 + x221 + · · ·+ x

Lµ̄2(x) = x212 + x210 + x27 + x24 + x23 + x22 + x2 + x

Lµ̄3(x) = x212 + x211 + x210 + x29 + x28 + x25 + x22 + x

Let α ∈ F223 of a irreducible polynomial of degree 23 over F2, the conjugates of α
form a normal basis if and only if

TrF223/F2(α) 6= 0 (3.3)

α212 + α210 + α27 + α24 + α23 + α22 + α2 + α 6= 0, (3.4)

α212 + α211 + α210 + α29 + α28 + α25 + α22 + α 6= 0 (3.5)

So we just need to express each α212 , α211 , α210 , α29 , α28 , α27 as a linear combination
of {1, α, α2, α3, . . . , α21}. Therefore an irreducible polynomial of degree 23 over F2 is
normal polynomial if a root α of f satisfy the above conditions in 3.3, 3.4and 3.5.

Example 3.4. Let f(x) = x2 + a1x + a2 be an irreducible polynomial over Fq. Then
f is normal if and only if a1 6= 0.

Corollary 3.8. [17] Let n = per where r is a prime different from p and q is a primitive
element mod r. Let f(x) = xn + a1x

n−1 + · · · + an be an irreducible polynomial
over Fq and α be a root of f . Let u =

∑pe−1
i=0 αq

ir
. Then f is normal if and only if

a1 6= 0 and u 6∈ Fq.
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Proof. xn − 1 = xrp
e − 1 = (xr − 1)p

e
= (x− 1)p

e
(xr−1 + xr−2 + · · ·+ 1)p

e since q
is a primitive element mod r, the polynomial(xr−1 +xr−2 + · · ·+ 1)p

e is irreducible
over Fq. Hence

µ1(x) =
xn − 1

x− 1
=

n−1∑
i=1

xi

and
µ2(x) =

xn − 1

xr−1 + xr−2 + · · ·+ 1
= (x− 1)

xn − 1

xr − 1

= (x− 1)

pe−1∑
i=0

xir =

pe−1∑
i=0

xir+1 −
pe−1∑
i=0

xir

It follows

Lµ(α) =

pe−1∑
i=0

αq
ir+1 −

pe−1∑
i=0

αq
ir

= (

pe−1∑
i=0

αq
ir

)q −
pe−1∑
i=0

αq
ir

So f is normal if and only if a1 6= 0 and (
∑pe−1

i=0 αq
ir

)q 6=
∑pe−1

i=0 αq
ir
i.e uq 6= u.

The following example will be the motivation for our next chapter .

Example 3.5. Consider the trinomial xp−a1x
p−1 +a ∈ Fp[x] where p is an odd prime.

This polynomial is irreducible over Fq where gcd(p, n) = 1 and q = pn. Determine
the conditions under which this polynomial is normal.
Let α be a root of f. Then xp − 1 = (x− 1)p. Hence µ̄(x) = 1 + x+ x2 + · · ·+ xn−1.
Lµ̄(α) = α+ αq + αq

2
+ · · ·+ αq

n−1 = TrFqp/Fp(α) = −a1. Therefore our polynomial
is Normal if and only if TrFqp/Fq(α) = −a1 6= 0

Therefore from the example above, we can conclude that the irreducible polynomial
f(x) = xp − x + a over Fq is not normal where gcd(p, n) = 1 but its reciprocal
f ∗(x) = xp − xp−1 + a is normal. In the next chapter we shall discuss how to provide
free storage basis conversion from the roots of the polynomial f ∗(x) = xp−xp−1+1 to
the polynomial basis {1, α, α2, . . . , αp−1} and vice versa. We summarized this Chapter
by giving the steps to determine if a polynomial is normal over an extension field.

3.2 Steps To Determine if an irreducible polynomial is normal over the subfield
K = Fq of F = Fqn .

Let α ∈ F be a root of an irreducible polynomial f of degree n over K.

1. TrFqn/Fq(α) 6= 0, otherwise f is not normal over K.
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2. If n=pk, f(x) must be a normal polynomial over K. [15].

3. if n= 2rpk and 2 is a primitive root modulo pk, f must be a normal polynomial
over K [6].

4. Factorize xn − 1 =
∏r

i=1(µi(x))t. Let µ1(x) = x− 1 and find µ̄i(x) = xn−1
µi(x)

for
i ∈ {2, . . . , r}.

5. Compute the q− associate Lµ̄i(x) for i ∈ {2, . . . , r}.

6. IfLµ̄i(x) is not divided by f(x) for i ∈ {2, . . . , r}, then f is a normal polynomial
otherwise f is not normal over K.
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CHAPTER 4

Free Storage Basis Conversion over Extension Fields

In [16], the author represented the field element of the extension field Fpp by using the
irreducible polynomial f(x) = xp − x − 1 ∈ Fp[x] over Fp. Furthermore, he found a
way of constructing efficiently Normal basis of the field Fpp. Together with the polyno-
mial basis of Fpp , he provided a free storage basis conversion over Fpp . In this chapter,
we shall provide a free storage basis conversion over Fqp where q = pn, gcd(p, n) = 1
and p is an odd prime using the irreducible polynomial f(x) = xp − x − 1 ∈ Fp[x]
over Fq.
Trinomials over finite fields K = Fq[x] are polynomials of the form xn + axk + b
where (n ≥ k ≥ 0) and ab 6= 0. Irreducible trinomial has a structure that makes it a
pleasant choice for representing extension field. The reduction operation can be faster
if an irreducible trinomial is used, therefore choosing an irreducible trinomial can lead
to a faster arithmetic operation implementation of the field [11]. In this chapter, we
shall use the irreducible trinomials f(x) = xp − x + 1 ∈ Fp[x] over Fq where q = pn

as field polynomial to construct the polynomial basis of Fqp and later form the normal
basis of field Fqp by using the reciprocal of the polynomial f. We shall provide a free
storage basis conversion between the two basis.

Definition 4.1. Let f(x) = xn+an−1x
n−1 + · · ·+1 be a monic irreducible polynomial

of deg n over Fp. The reciprocal of f denoted as f ∗ is defined by

f ∗(x) = xnf(1/x)

= xn + · · ·+ an−1x+ 1

We state without proofs the following two lemmas.

Lemma 4.1. [9] The reciprocal of a monic irreducible polynomial over finite field K
is also irreducible polynomial over K.

Theorem 4.2. [9] Let q = pn, the polynomial f(x) = xp−x+1 ∈ Fp[x] is irreducible
over Fpn with gcd(p, n) = 1.

Let f(x) = xp − x+ 1 ∈ Fp[x] then Fq[x]/<f(x)> is a field and is consider as a vector
space over Fq. Let α ∈ Fqp be a root of f . Therefore Fq[x]/<f(x)>

∼= Fq(α) and
{1, α, α2, α3, . . . , αp−1} is a basis of Fq(α). From [15], the irreducible polynomial

29



f(x) = xp − x + 1 over Fq is not normal. But the reciprocal polynomial f ∗(x) =
xp − xp−1 + 1 ∈ Fp[x] is normal in Fqp .
Let β ∈ Fqp be a root of f ∗, then all the distinct roots of f ∗ are β, βq, βq2 , . . . , βqp−1

and the set {β, βq, βq2 , . . . , βqp−1} form a normal basis of the vector space Fq(β). Our
aim is to provide a free storage conversion from the polynomial basis to the normal
basis of the vector space Fq(β). To do this, we shall express each βqi for 1 ≤ i ≤ p−1
as a linear combination of αi, 0 ≤ i ≤ p − 1 and therefore form the transition matrix
for the conversion of the polynomial basis to the normal basis.
The Frobenius map σ of Fqp over Fq is defined as:

σ : Fqp → Fqp
β 7−→ βq

α is a root of f implies that αp = α−1 . We have the following by using the Freshman
Dream:

αp
2

= (α− 1)p = αp − 1p = α− 2

αp
3

= (α− 2)p = αp − 2p = α− 3

So by induction, we have

αp
n

= (α− n+ 1)p = αp − np + 1p = α− n

Clearly β = α−1 = 1− αp−1.

βq = (1− αp−1)q = 1− αq(p−1) = 1− (α− n)(p−1)

βq
2

= 1− (α− n)(p−1)q = 1− (α− n)q(p−1)

= 1− (αq − nq)p−1 = 1− (α− 2n)p−1

βq
3

= 1− (α− 2n)(p−1)q = 1− (αq − (2n)q)p−1 = 1− (α− 3n)p−1

In same way up to k=p-1,we have

βq
p−1

= 1− ((α− (p− 2)n)q)p−1 = 1− (α− n(p− 1))p−1

Now we want to find (α− nk)p−1 for 0 ≤ k ≤ p− 1. By binomial expansion formula

(α− nk)p−1 =

p−1∑
j=0

(
p− 1

j

)
αp−1−j(−nk)j

=

p−1∑
j=0

(
p− 1

j

)
αp−1−j(k)j(−n)j

From Number theory,
(
p−1
j

)
is a an integer, so it must be an element of the prime field.

Lemma 4.3. Let p prime number and j be positive integer less than p. Then
(
p−1
j

)
=

(−1)j mod p.
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Proof.
(
p−1
j

)
= (p−1)!

j!(p−1−j)! . By Wilson’s Theorem, (p − 1)! ≡ −1 mod p. If we
show that j!(p− 1− j)! ≡ (−1)1−j mod p then we are done. Consider the following
statement:
Let Sj : j!(p− 1− j)! ≡ (−1)1−j mod p. We shall prove by induction that the
statement Sj is true. For j = 0, Left Hand Side (LHS) of Sj is given by (p − 1)!
and Right Hand Side (RHS) is given by (−1) mod p. So we conclude by Wilson’s
Theorem that LHS equals the RHS. Assume that the statement is true for j ∈ N, we
now prove that is true for j + 1:

(j + 1)!(p− 1− (j + 1))! = (j + 1)!(p− 1− j − 1)!

= (j + 1)
j!(p− 1− j)!
p− 1− j

≡ j + 1

p− 1− j
(−1)1−j mod p By the induction Hypothesis.

We have

(j + 1)!(p− 1− (j + 1))!(p− 1− j) ≡ (j + 1)(−1)1−j mod p

−(j + 1)!(p− 1− (j + 1))!(j + 1) ≡ (j + 1)(−1)1−j mod p

Therefore we obtain,

(j + 1)!(p− 1− (j + 1))! ≡ (−1)j mod p

by the induction principle, our statement Sk is true for any k ∈ N

(α− nk)p−1 =

p−1∑
j=0

(
p− 1

j

)
αp−1−j(−nk)j

=

p−1∑
j=0

(−1)jαp−j−1(−n)jkj

=

p−1∑
j=0

αp−j−1kjnj

Therefore,

βq
k

= 1−
p−1∑
j=0

αp−j−1kjnj for 0 ≤ k ≤ p− 1

For k=1, we have

βq = −αp−1 − nαp−2 − n2αp−3 − · · · − np−2α

For k=2, we have

βq
2

= −αp−1 − (2)(n)αp−2 − (22)(n2)αp−3 − · · · − (np−2)(2p−2)α
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In the same way up to for k = p− 1 we have

βq
p−1

= −αp−1 − n(p− 1)αp−2 − n2(p− 1)2αp−3 − · · · − np−2(p− 1)p−2α.

So in matrix representation we have,
β
βq

βq2

...
βqp−2

βqp−1

 =


−1 0 0 . . . 0 1
−(n)0 −(n)1 −(n)2 . . . −(n)p−2 0
−(2n)0 −(2n)1 −(2n)2 . . . −(2n)p−2 0

...
−(n(p− 2))0 −(n(p− 2))1 −(n(p− 2))2 . . . −(n(p− 2))p−2 0
−(n(p− 1))0 −(n(p− 1))1 −(n(p− 1))2 . . . −(n(p− 1))p−2 0




αp−1

αp−2

αp−3

...
α
1


Or equivalently β̄ = Mᾱ where the transition matrix M ∈ Fp×pp and we donot extra
memory to store M and the complexity to obtain the coefficients of M is O(p2 log3 p).

Theorem 4.4. The matrix

M =



−1 0 0 . . . 0 1
−1 −(n)1 −(n)2 . . . −(n)p−2 0
−1 −(2n)1 −(2n)2 . . . −(2n)p−2 0

...
−1 −(n(p− 2))1 −(n(p− 2))2 . . . −(n(p− 2))p−2 0
−1 −(n(p− 1))1 −(n(p− 1))2 . . . −(n(p− 1))p−2 0


is the transition matrix from the polynomial basis {1, α, α2, . . . , αp−1} to the normal
basis {β, βq, βq2 , . . . , βqp−1} of the vector space Fqp over Fq where α is the root f(x) =
xp − x+ 1 and β = α−1.

Lemma 4.5. Let k ∈ F∗p. Then

p−2∑
m=0

km mod p ≡

{
−1 mod p if k = 1

0 mod p otherwise

Proof. If k = 1, then
∑p−2

m=0 1m mod p = p− 1 mod p = −1.
Suppose k 6= 1

p−2∑
m=0

km mod p = 1 + k2 + k3 + k4 + · · ·+ kp−2

=
1(kp−1 − 1)

k − 1
mod p

= 0 since k ∈ Fp∗

This sum is a Geometric progression with common ratio k.
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Theorem 4.6. Let

M =



−1 0 0 . . . 0 1
−1 −(n)1 −(n)2 . . . −(n)p−2 0
−1 −(2n)1 −(2n)2 . . . −(2n)p−2 0

...
−1 −(n(p− 2))1 −(n(p− 2))2 . . . −(n(p− 2))p−2 0
−1 −(n(p− 1))1 −(n(p− 1))2 . . . −(n(p− 1))p−2 0


The inverse of M can be computed by simple transpose of the permuted rows of the
matrix M .

Proof. The p× p matrix M contains a (p− 1)× (p− 1) a sub matrix

Q =


−1 −(n)1 −(n)2 . . . −(n)p−2

−1 −(2n)1 −(2n)2 . . . −(2n)p−2

...
−1 −(n(p− 2))1 −(n(p− 2))2 . . . −(n(p− 2))p−2

−1 −(n(p− 1))1 −(n(p− 1))2 . . . −(n(p− 1))p−2


The matrix Q is called a Vandermonde matrix and is well known to be invertible. The
corresponding Row entries Ri mod p of the matrix Q is just the power from i to p − 2
of the field element ni for 0 ≤ i, j ≤ p− 2. The scalar multiplication of two rows can
be obtained as follows:
−Ri mod p = (ni)0, (ni)1, (ni)2, . . . , (ni)p−2

−Rj mod p = (nj)0, (nj)1, (nj)2, . . . , (nj)p−2

Ri mod p ∗Rj mod p = (ni ∗ nj)0 + (ni ∗ nj)1 + · · ·+ (ni ∗ nj)p−2

=

{
−1 mod p if ni ∗ nj = 1 mod p

0 mod p otherwise due to Lemma 4.5

=

{
−1 mod p if i ∗ j = n−2 mod p

0 mod p otherwise due to Lemma 4.5

The above property allows to find the Inverse matrix Q−1 just by performing permuta-
tion on the rows onQ such that column(i) ofQ−1 = -(Row(j) ofQ)T where i∗j = n−2

mod p. Therefore we can write

Ci mod p = −(Rj mod p)
T

where j = i−1 ∗ n−2 where Ci stands for the for the ith column of the matrix Q−1.

Now we present the steps for inversion of the Matrix M .
The inverse of the transition matrix M can be computed in 3 steps.

• Column 1 of M−1 is the pth column of M upside down.
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• Last Row of the Matrix M−1 is all 1

• The inverse of (p− 1)× (p− 1) matrix is equal to Q−1 as describe above.

Also transition matrixM−1 ∈ Fp×pp and we donot extra memory to store its coefficients
and the time complexity to obtain its coefficients is O(p2log3p) since M−1 is obtained
just permutation of the row entries of M.

The following example illustrate how to find the inverse of the transition matrix M.

Example 4.1. Let q= 52. The transition matrix from the polynomial basis {1, α, α2, α3, α4}
to the normal Basis {β, βq, βq2 , βq3 , βq4} of the vector space Fq5 over Fq where α is
the root of the polynomial x5 − x+ 1 ∈ Fp[x] and β = α−1 is given by:

M =


−1 0 0 0 1
−1 −2 −4 −3 0
−1 −4 −1 −4 0
−1 −1 −1 −1 0
−1 −3 −4 −2 0


Our p− 1× p− 1 matrix Q is given as follows:

Q =

−1 −2 −4 −3
−1 −4 −1 −4
−1 −1 −1 −1
−1 −3 −4 −2



Let Ci be the column of Q−1and Rj be the Row of Q. Then using the relation i ∗ j =
2−2 = 4 mod 5

C4 = −RT
1 when j=1, i =4

C2 = −RT
2

C3 = −RT
3

C1 = −RT
4

we obtain the matrix Q−1 as follows:

Q−1 =

1 1 1 1
3 4 1 2
4 1 1 4
2 4 1 3
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The matrix M−1 is given by 
0 1 1 1 1
0 3 4 1 2
0 4 1 1 4
0 2 4 1 3
1 1 1 1 1


and

M ∗M−1 mod 5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



4.1 Avoiding the inverse in calculation of M−1

Given the transition matrix M from polynomial to normal basis, in order to construct
the M−1 we first found the inverse of the p − 1 × p − 1 matrix Q using the relation
Ci mod p = −(Rj mod p)

T where j = i−1 ∗ n−2 mod p and Ci represents ith entry of
the column of M−1 and Rj represents the jth row of M . The complexity of finding
the inverse of each ith entry is O(log3 p) which is expensive. Due to the construction
of M , we observe that the inversion of M is avoided by performing permutation as
described below.
Each entry of the row matrix of M is nothing of the powers of the prime field element
and jth row entry of the submatrix Q is given by:

Rj = ((jn)0, (jn)1, (jn)2, . . . , (jn)p−2)

Using the relation Ci = Rj mod p where j = i−1 ∗ n−2 mod p, Ci column of Q−1 is
computed as follow:

Ci = ((n ∗ i−1 ∗ n−2)0, (n ∗ i−1 ∗ n−2)1, (n ∗ i−1 ∗ n−2)2, . . . , (n ∗ i−1 ∗ n−2)p−2)

= ((n−1 ∗ i−1)0, (n−1 ∗ i−1)1, (n−1 ∗ i−1)2, . . . , (n−1 ∗ i−1)p−2)

Since all the computations are done mod p, we have the following:
1 = (n−1i−1)p−1 = (n−1i−1)p−2 ∗ (n−1i−1)1 implies (in) = (n−1i−1)p−2. In the same
way, we have

(in)2 = (n−1i−1)p−3

(in)3 = (n−1i−1)p−4

(ni)4 = (n−1i−1)p−5

...

(in)p−3 = (n−1i−1)2

(in)p−2 = (n−1i−1)1

(in)p−1 = (n−1i−1)0
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Therefore
Ci = ((in)p−1, (in)p−2, . . . , (in)2, (in)1) (4.1)

Example 4.2. Consider Example 4.1, for j = 1, first row in Q is R1 = −(1, 2, 4, 3),
the corresponding column for R1 by using the relation i = j−1n−2 is C4. So applying
Equation 4.1, we have C4 = (1, 2, 4, 3) which is in conformity with Example 4.1.

We easily observe that the entries of the Ci are just equal to that of Rj . This concludes
that the construction of the matrixM is the same as the construction of the matrixM−1

and both have equal complexity.

4.2 Basis Conversion

4.2.1 Polynomial to Normal Basis Conversion

Normal basis can be computed from polynomial basis using the transition matrix de-
scribed in 4.4. The matrix for converting from the polynomial basis to Normal basis is
given as follow :

β
βq

βq2

...
βqp−2

βqp−1

 =


−1 0 0 . . . 0 1
−(n)0 −(n)1 −(2)2 . . . −(n)p−2 0
−(2n)0 −(2n)1 −(2n)2 . . . −(2n)p−2 0

...
−(n(p− 2))0 −(n(p− 2))1 −(n(p− 2))2 . . . −(n(p− 2))p−2 0
−(n(p− 1))0 −(n(p− 1))1 −(n(p− 1))2 . . . −(n(p− 1))p−2 0




αp−1

αp−2

αp−3

...
α
1


Let q = pn. We provide an algorithm for converting polynomial to normal basis.
We shall provide two examples to show how the Algorithm 1 works.

Example 4.3. Let q = 53 with n = 3 and {1, α, α2, α3, α4} be the polynomial basis
of the finite field Fq(α) where α is the root of the irreducible polynomial x5− x+ 1 ∈
Fp[x]. We shall perform Algorithm 1 steps by steps in order to obtain the Normal basis
{β, βq, βq2 , βq3 , βq4} where β = α−1

q = 53, n = 3, z = 2
β[1] = (α[5]− α[1]) mod 5
i=1
x = 1, y1 = 0, y2 = 0, x1 = 0, x2 = 0, x = 1, m = 1
For j = 1 and j = 2,

y1 y2 x x1 x2 m

-α[1] -α[3] 3 -α[1] -α[3] -3
-α[1]-α[2] -α[3]-3α[4] 9 = 4 mod 5 -α[1]+3α[2] -α[3]+3α[4] 9 = 4 mod 5

β[2] = −α[1]− 3α[2] + 4(−α[3]− 3α[4]) = −α[1]− 3α[2]− 4α[3]− 2α[4] mod 5
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Algorithm 1 Polynomial Basis to Normal Basis Conversion

Input: (ᾱ = {αp−1, αp−2, . . . , α, 1}, n)

Output: β̄ = {β, βq, βq2 , . . . , βqp−1}
1: z = p−1

2
2: β[1] = α[p]− α[1] mod p
3: for i =1 to z do
4: x = 1;m = 1;
5: y1 = 0; y2 = 0;x1 = 0, x2 = 0;
6: for j=1 to z do
7: y1 = (y1 − x ∗ α[j]) mod p;
8: y2 = (y2 − x ∗ α[z + j]) mod p;
9: x = x ∗ (ni) mod p

10: x1 = (x1 −m ∗ α[j] mod p)
11: x2 = (x2 −m ∗ α[z + j] mod p)
12: m = m ∗ (−ni)
13: end for
14: β[i+ 1] = (y1 + x ∗ y2) mod p;
15: β[p− i+ 1] = (x1 +m ∗ x2) mod p;
16: end for
17: Output = β̄

β[5] = −α[1]− 3α[2] + 4(−α[3] + 3α[4]) = −α[1] + 3α[2]− 4α[3] + 2α[4] mod 5

i=2
x = 1, y1 = 0, y2 = 0, x1 = 0, x2 = 0, x = 1, m = 1
For j = 1 and j = 2,

y1 y2 x x1 x2 m

-α[1] -α[3] 6 = 1 mod 5 -α[1] -α[3] −6 = −1 mod 5
-α[1]-α[2] -α[3]-α[4] 1 -α[1]+α[2] -α[3] +α[4] 1

β[3] = −α[1]− α[2]− α[3]− α[4]

β[5] = −α[1] + α[2]− α[3] + α[4] (4.2)

There fore we obtain :
β[1]
β[2]
β[3]
β[4]
β[5]

 =


−1 0 0 0 1
−1 −3 −4 −2 0
−1 −1 −1 −1 0
−1 −4 −1 −4 0
−1 −2 −4 −3 0



α[1]
α[2]
α[3]
α[4]
α[5]


This transition matrix of our example corresponds to that of Theorem 4.6 when n = 3
and p = 5

37



We provide another example with p = 7 and n = 2 in order to verify the algorithm.

Example 4.4. Let q = 72 with n = 2 and {1, α, α2, α3, α4, α5, α6} be the polyno-
mial basis of the finite field Fq(α) where α is the root of the irreducible polynomial
x7− x+ 1 ∈ Fp[x]. We shall perform Algorithm 1 steps by steps in order to obtain the
Normal basis {β, βq, βq2 , βq3 , βq4 , βq5 , βq6} where β = α−1

q = 72, n = 2, z = 3
b[1] = (α[7]− α[1]) mod 5
i=1
x = 1, y1 = 0, y2 = 0, x1 = 0, x2 = 0, x = 1, m = 1
For j = 1, j = 2 and j = 3

y1 y2 x x1 x2 m
-α[1] -α[4] 2 -α[1] -α[4] -2

-α[1]-2α[2] -α[4]-2α[5] 4 -α[1]+2α[2] -α[4]+2α[5] 4
-α[1]-2α[2]-4α[3] -α[4]-2α[5]-4α[6] 1 -α[1]+2α[2]-4α[3] -α[4]+2α[5]-4α[6] −1

β[2] = −α[1]− 2α[2]− 4α[3]− α[4]− 2α[5]− 4α[6]

β[7] = −α[1] + 2α[2]− 4α[3] + α[4]− 2α[5] + 4α[6]

i=2
x = 1, y1 = 0, y2 = 0, x1 = 0, x2 = 0, x = 1, m = 1
For j = 1, j = 2 and j = 3

y1 y2 x x1 x2 m

-α[1] -α[4] 4 -α[1] - α[4] -4
-α[1]-4α[2] -α[4]-4α[5] 2 -α[1]+4α[2] -α[4]+4α[5] 2

-α[1]-4α[2]-2α[3] -α[4]-4α[5]-2α[6] 1 -α[1]+4α[2]-2α[3] -α[4]+4α[5]-2α[6] -8

β[3] = −α[1]− 4α[2]− 2α[3]− α[4]− 4α[5]− 2α[6]

β[6] = −α[1] + 4α[2]− 2α[3] + α[4]− 4α[5] + 2α[6]

i=3
x = 1, y1 = 0, y2 = 0, x1 = 0, x2 = 0, x = 1, m = 1
For j = 1, j = 2 and j = 3

y1 y2 x x1 x2 m

-α[1] -α[4] 6 -α[1] -α[4] -6
-α[1]-6α[2] -α[4]-6α[5] 1 -α[1] +6α[2] -α[4]+6α[5] 1

-α[1]-6α[2]-α[3] -α[4]-6α[5]-α[6] 6 -α[1] +6α[2]-α[3] -α[4]+6α[5]-α[6] -6

β[4] = −α[1]− 6α[2]− α[3]− 6α[4]− 36α[5]− 6α[6] mod 7
= −α[1]− 6α[2]− α[3]− 6α[4]− α[5]− 6α[6]
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β[5] = −α[1] + 6α[2]− α[3] + 6α[4]− 36α[5] + 6α[6] mod 7
= −α[1] + 6α[2]− α[3] + 6α[4]− α[5] + 6α[6]

There fore we obtain :

β[1]
β[2]
β[3]
β[4]
β[5]
β[6]
β[7]


=



−1 0 0 0 0 0 1
−1 −2 −4 −1 −2 −4 0
−1 −4 −2 −1 −4 −2 0
−1 −6 −1 −6 −1 −6 0
−1 −1 −1 −1 −1 −1 0
−1 −3 −2 −6 −4 −5 0
−1 −4 −4 −6 −2 −3 0





α[1]
α[2]
α[3]
α[4]
α[5]
α[6]
α[7]


This Transition Matrix corresponds to that of Theorem 4.6 when n = 2 and p = 7.

Now we provide the algorithm to compute the polynomial basis from the Normal Basis.

Algorithm 2 Normal Basis to Polynomial Basis

Input: (β̄ = {β, βq, βq2 , . . . , βqp−1} , n)
Output: ᾱ = {αp−1, αp−2, . . . , α, 1}

1: z = p−1
2

2: α[p] = β[p]
3: for i =1 to z do
4: α[p] = (α[p] + β[i] + β[p− i]) mod p
5: x = 1,m = 1, y = 0
6: for j=1 to p-1 do
7: x = x ∗ (n ∗ i) mod p
8: m = m ∗ n ∗ (−i) mod p
9: y = α[p− j]

10: α[p− j] = (y +m ∗ β[p− i+ 1] + x ∗ β[i+ 1]) mod p
11: end for
12: end for
13: Output = ᾱ

Now we provide an example to show how the Algorithm from Normal Basis to Poly-
nomial Basis works.

Example 4.5. Let q = 53. The set {β, βq, βq2 , βq3 , βq4} is the Normal basis of the
finite field Fq[x]/ < x5 − x4 + 1 >, where β is the root of x5 − x4 + 1 ∈ Fp[x]. We
perform the above Algorithm 2 step by steps in order to obtain {α4, α3, α2, α, 1}where
β = α−1

For i = 1 to 2 do : α[5] = (α[5] + β[1] + β[4]) mod p
x = 1, m = 1, y = 0
i = 1
For j=1 to 4
i=2
α[5]=α[5] + β[2]+β[3]
x = 1, m = 1, y = 0.
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j x m y a[p− j]
j =1 3 mod 5 −3 mod 5 α[4] α[4]=α[4]-3β[5]+3β[2]
j=2 4 = 9 mod 5 4 = 9 mod 5 α[3] α[3]=α[3]+4β[5]+4β[2]
j=3 2 = 12 mod 5 −2 = 12 mod 5 α[2] α[2]=α[2]-2β[5]+2β[2]
j=4 1 = 6 mod 5 1 = 6 mod 5 α[1] α[1]=α[1]+β[5]+β[2]

j x m y α[p-j]
j=1 -1 -1 α[4] α[4]=α[4]-β[4]+β[3]
j=2 1 1 α[3] α[3]=α[3]+β[4]+β[3]
j=3 1 -1 α[2] α[2]= α[2]-β[4]+β[3]
j=4 1 1 α[1] α[1]=α[1] + β[4]+β[3]

Therefore we have the following :

α[1] = α[1] + β[4] + β[3]

= α[1] + β[2] + β[3] + β[4] + β[5]

α[2] = α[2]− β[4] + β[3]

= α[2] + 2β[2] + β[3]− β[4]− 2β[5]

α[3] = α[3] + β[4] + β[3]

= α[3] + 4β[2] + β[3] + β[4] + 4β[5]

α[4] = α[4]− β[4] + β[3]

= α[4] + 3β[2] + β[3]− β[4]− 3β[5]

α[5] = α[5] + β[1] + β[2] + β[3] + β[4]

= β[1] + β[2] + β[3] + β[4] + β[5]

Setting α[i] = 0 for 1 ≤ i ≤ p− 1, We obtain
α[1]
α[2]
α[3]
α[4]
α[5]

 =


0 1 1 1 1
0 2 1 −1 −2
0 4 1 1 4
0 3 1 −1 −3
1 1 1 1 1



β[1]
β[2]
β[3]
β[4]
β[5]



The transition Matrix from polynomial to normal basis when n = 3 and p = 5 is

M =


−1 0 0 0 1
−1 −3 −4 −2 0
−1 −1 −1 −1 0
−1 −4 −1 −4 0
−1 −2 −4 −3 0


We now verify whether transition matrix from normal basis to polynomial basis is the
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coefficient matrix produced from our algorithm.


0 1 1 1 1
0 2 1 −1 −2
0 4 1 1 4
0 3 1 −1 −3
1 1 1 1 1



−1 0 0 0 1
−1 −3 −4 −2 0
−1 −1 −1 −1 0
−1 −4 −1 −4 0
−1 −2 −4 −3 0

 =


−4 0 0 0 0
0 1 0 0 0
0 0 −34 0 0
0 0 0 6 0
0 0 0 0 1



We conclude that our algorithm works.

Example 4.6. Let q = 72. The set {β, βq, βq2 , βq3 , βq4 , βq5 , βq6} is the Normal basis of
the finite field Fq[x]/ < x7−x6+1 >, where β is the root of x7−x6+1 ∈ Fp[x]. We per-
form the above Algorithm 2 step by steps in order to obtain {α6, α5, α4, α3, α2, α, 1}
where β = α−1

For i = 1 to 3 do : α[7] = (α[7] + β[1] + β[6]) mod 7
x = 1, m = 1, y = 0
i = 1
For j=1 to 6

j x m y α[p-j]
j = 1 2 -2 y = α[6] α[6]=α[6]-2β[7]+2β[2]
j = 2 4 4 y = α[5] α[5] = α[5] + 4β[7] + 4β[2]
j = 3 1 -1 y = α[4] α[4] = α[4]− β[7] + β[2]
j = 4 2 2 y = α[3] α[3] = α[3] + 2β[7] + 2β[2]
j = 5 4 -4 y = α[2] α[2] = α[2]− 4β[7] + 4β[2]
j = 6 1 1 y = α[1] α[1] = α[1] + β[7] + β[2]

i=2
α[7] = α[7] + β[2] + β[5]
x = 1,m = 1, y = 0

j x m y α[p− j]
j = 1 4 -4 α[6] α[6] = α[6]− 4β[6] + 4β[3]
j = 2 16 = 2 mod 7 2 α[5] α[5] = α[5] + 2β[6] + 2β[3]
j = 3 1 -1 α[4] α[4] = α[4]− β[6] + β[3]
j = 4 4 4 α[3] α[3] = α[3] + 4β[6] + 4β[3]
j = 5 2 -2 α[2] α[2] =α[2]− 2β[6] + 2β[3]
j = 6 1 1 α[1] α[1] =α[1] + β[6] + β[3]

i=3
α[7] = α[7] + β[3] + β[4]
x = 1,m = 1, y = 0
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j x m y α[p− j]
j = 1 6 -6 α[6] α[6] = α[6]− 6β[5] + 6β[4]
j = 2 1 1 α[5] α[5] = α[5] + β[5] + β[4]
j = 3 6 -6 α[4] α[4] = α[4]− 6β[5] + 6β[4]
j = 4 1 1 α[3] α[3] = α[3] + β[5] + β[4]
j = 5 6 -6 α[2] α[2] = α[2]− 6β[5] + 6β[4]
j = 6 1 1 α[1] α[1] = α[1] + β[5] + β[4]

Therefore we have the following :

α[1] = α[1] + β[5] + β[4]

= α[1] + β[6] + β[3] + β[4] + β[5]

= α[1] + β[2] + β[3] + β[4] + β[5] + β[6] + β[7]

α[2] = α[2]− 6β[5] + 6β[4]

= α[2]− 2β[6] + 2β[3]− 6β[5] + 6β[4]

= α[2]− 2β[6] + 2β[3]− 6β[5] + 6β[4]− 4β[7] + 4β[2]

α[3] = α[3] + β[5] + β[4]

= α[3] + 4β[6] + 4β[3] + β[4] + β[5]

= α[3] + 2β[2] + 4β[3] + β[4] + β[5] + 4β[6] + 2β[7]

α[4] = α[4]− 6β[5] + 6β[4]

= α[4]− β[6] + β[3]− 6β[5] + 6β[4]− β[7] + β[2]

= α[4] + β[2] + β[3] + 6β[4]− 6β[5]− β[6]− β[7]

α[5] = α[5] + β[3] + β[4]

= α[5] + β[3] + β[4] + 2β[6] + 2β[3]

= α[5] + 4β[2] + 2β[3] + β[4] + α[5] + 2β[6] + 4β[7]

α[6] = α[7]− 6β[5] + 6β[4]

= α[7]− 4β[6] + 4β[3]− 6β[5] + 6β[4]

= α[7] + 2β[2] + 4β[3] + 6β[4]− 6β[5]− 4β[6]− 2β[7]

α[7] = α[7] + β[3] + β[4]

= α[7]β[2] + β[3] + β[4] + β[5]

= β[1] + β[3] + β[4] + β[5] + β[6] + β[7]

Setting α[i] = 0 for 1 ≤ i ≤ p− 1, we obtain

α[1]
α[2]
α[3]
α[4]
α[5]
α[6]
α[7]


=



0 1 1 1 1 1 1
0 4 2 6 −6 −2 −4
0 2 4 1 1 4 2
0 1 1 6 −6 −1 −1
0 4 2 1 1 2 4
0 2 4 6 −6 −4 −2
1 1 1 1 1 1 1





β[1]
β[2]
β[3]
β[4]
β[5]
β[6]
β[7]
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The transition matrix from polynomial to normal basis when n = 2 and p = 7 is

M =



−1 0 0 0 0 0 1
−1 −2 −4 −1 −2 −4 0
−1 −4 −2 −1 −4 −2 0
−1 −6 −1 −6 −1 −6 0
−1 −1 −1 −1 −1 −1 0
−1 −3 −2 −6 −4 −5 0
−1 −5 −4 −6 −2 −3 0


We now verify whether transition matrix from normal basis to polynomial basis is the
coefficient matrix produced from our algorithm.

−1 0 0 0 0 0 1
−1 −2 −4 −1 −2 −4 0
−1 −4 −2 −1 −4 −2 0
−1 −6 −1 −6 −1 −6 0
−1 −1 −1 −1 −1 −1 0
−1 −3 −2 −6 −4 −5 0
−1 −5 −4 −6 −2 −3 0





0 1 1 1 1 1 1
0 4 2 6 −6 −2 −4
0 2 4 1 1 4 2
0 1 1 6 −6 −1 −1
0 4 2 1 1 2 4
0 2 4 6 −6 −4 −2
1 1 1 1 1 1 1


=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


We conclude that our algorithm works.
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4.3 Complexity of the Algorithm

Let M denote Multiplication in Prime field Fp and let A denote addition in prime
field Fp also let α ∈ Fqp where q = pn and {α1, α2, . . . , αp} be a basis of Fqp . Then
α = a1α1 + a2α2 + · · · + apαp for ai ∈ Fq for i ∈ {1, 2, . . . , p}. Let {β1, β2, . . . , βn}
be a basis of Fq. Then for each i, ai = b0,iβ1 + b1,iβ2 + · · ·+ bn−1,iβn where bj,i ∈ Fp
for j ∈ {0, . . . , n − 1} and i ∈ {1, . . . , p}. Therefore, the number of prime field mul-
tiplication for each ai is n and the number of prime field multiplication is npM.
Similarly the number of addition for each ai is n and the number of additions to repre-
sent α ∈ Fqp is np. Therefore the number of operation for one round is (4np + 4)M
and 4npA. Since we have (p−1

2
)(p−1

2
) rounds in our algorithm, the estimated cost of

the algorithm is:

4pnA(
p− 1

2
)2 + (4pn+ 4)M(

p− 1

2
)2 = O(p3nA+ p3nM).

Our two algorithms have the same complexity.

4.3.1 Comparaison of the Previous Results with ours

Since there are some algorithms in the literature for conversion between polynomial
basis to normal basis and vice versa over some field extensions, we compare our result
to these suggestions in the table below.

Table 4.1: Cost for Conversion in Extension field

Algorithm Burton[2] Riaz[16] Our Method
Storage Complexity O(m) O(1) O(1)

Field Operations O(mr log p) O(p2) O(p3n)
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CHAPTER 5

Conclusion

In this thesis we provided conditions for irreducible polynomials to be normal polyno-
mial in Fqp . Furthermore, we used the irreducible polynomial xp − x+ 1 ∈ Fp[x] over
Fq where q = pn and p is an odd prime with gcd(p, n) = 1 to construct the polynomial
basis of Fqp . We realised that the polynomial xp − x + 1 ∈ Fp[x] is not normal in
Fqp . So in order to construct normal basis of Fqp , we used the reciprocal polynomial
xp − xp−1 + 1 ∈ Fp[x] which is also irreducible over Fq and is a normal polynomial in
Fqp . We then constructed two algorithms to convert from polynomial basis to normal
basis and vice versa. These two algorithms have the same time complexity and require
no extra memory.

5.1 Future Work

• We shall extend this technique to convert Polynomial basis or Normal basis to
optimal Normal basis for particular extension fields and later compare the com-
plexity with the existing methods.

• Instead of using normal element in Fqp , we will try to use a completely normal
element and then try to perform the conversion from normal basis to polynomial
basis.
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