
UNIBUS: A UNIVERSAL HARDWARE ARCHITECTURE FOR SERIAL BUS
INTERFACES WITH REAL-TIME SUPPORT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHDI DUMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2015

Approval of the thesis:

UNIBUS: A UNIVERSAL HARDWARE ARCHITECTURE FOR SERIAL BUS
INTERFACES WITH REAL-TIME SUPPORT

submitted by MEHDI DUMAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Şenan Ece Güran Schmidt
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Şenan Ece Güran Schmidt
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering Dept., METU

Dr. Nizam Ayyıldız
ASELSAN,REHİS

Dr. Salih Zengin
TÜBİTAK SAGE

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MEHDI DUMAN

Signature :

iv

ABSTRACT

UNIBUS: A UNIVERSAL HARDWARE ARCHITECTURE FOR SERIAL BUS
INTERFACES WITH REAL-TIME SUPPORT

Duman, Mehdi
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Güran Schmidt

January 2015, 61 pages

Serial bus communication is widely used in different application areas such as Eth-
ernet in computer networking, CAN bus in in-vehicle communications, MIL-STD
1553B in military avionics and UART for peripheral device communication. This
thesis work presents UNIBUS (Universal Bus); an abstract, generic block level hard-
ware architecture for implementing serial bus interfaces. UNIBUS realizes the phys-
ical and data link layer functions supporting the strict timing requirements for bit
operations and synchronization.

The hardware blocks and signal interfaces among these blocks are designed to sepa-
rate the protocol specific and protocol independent components to increase reusabil-
ity. A specific serial bus protocol can be implemented using UNIBUS by defining the
protocol specific operations and interfaces.

The versatility of UNIBUS is demonstrated by realizing CAN, UART, ARINC-708,
ARINC-717 and MIL-STD-1553B on this architecture. These serial bus interfaces
are purposely selected to be from different application areas and levels of complexity.
All these interfaces are implemented using MODELSIM simulation tool and tested
by realizing a sender and receiver that exchange messages as specified. Furthermore
MIL-STD- 1553B is fully implemented on FPGA and its correctness is verified by
communication to a commercial chip. The analysis of the resource and power con-

v

sumption of the realizations shows that the generality of the architecture does not
decrease the efficiency of the implementations.

UNIBUS decreases the hardware development time for existing and possibly new
serial bus protocols by providing the readiliy designed blocks and signal interfaces.
Furthermore UNIBUS increases the reliability of the design as the reused protocol in-
dependent components that are common among different protocols need to be verified
only once and the blocks together with their interfaces are clearly defined. UNIBUS
can be both used for the development of full scale serial bus interface components
to be used in real systems as well as developing test benches for existing products.
In such deployment, a given bus interface’s desired functions can be implemented on
UNIBUS to achieve a communicating counterpart for the tested component.

Keywords: Real time, serial, embedded bus protocol, generic architecture, encoder,
decoder, field programmable gate array (FPGA), hardware, universal bus, serial bus

vi

ÖZ

UNIBUS: SERİ VERİYOLU ARAYÜZLERİ İÇİN GERÇEK ZAMAN DESTEKLİ
GENEL BİR DONANIM MİMARİSİ

Duman, Mehdi
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Şenan Ece Güran Schmidt

Ocak 2015 , 61 sayfa

Seri veriyolu haberleşmesi genel olarak, bilgisayar ağlarındaki Ethernet veriyolu, araç
içi haberleşmesindeki CAN veriyolu, havacılıkdaki MIL-STD-1553B veriyolu, çevre
birimi cihaz haberleşmesindeki UART veriyolu gibi uygulamalarda kullanılmaktadır.
Bu tez çalışması, seri veriyolu arayüzleri uygulamaları için UNIBUS (genel veri-
yolu); blok seviyesinde öz ve genel bir donanım mimarisi sunmaktadır. UNIBUS, bit
operasyonları ve bit senkronizasyonu için gerekli olan katı zamanlama ihtiyaçlarını
destekleyerek veri bağı ve fiziksel katman fonksiyonlarını gerçeklemektedir.

Donanım blokları ve bu bloklar arasındaki sinyal arayüzleri, yeniden kullanılabilir-
liği artırmak için protokole özel ve protokolden bağımsız bileşenleri ayıracak şekilde
tasarlanmaktadır. Belirli bir seri veriyolu protokolü, protokole özgü operasyonlar ve
arayüzler tanımlanarak UNIBUS ile gerçeklenebilir.

UNIBUS mimarisinin çok yönlülüğü, CAN, UART, ARINC-708, ARINC-717 and
MIL-STD-1553B protokolleri gerçeklenerek gösterilmektedir. Bu protokoller, farklı
uygulama alanlarından ve farklı karmaşıklık seviyelerinden olması maksadıyla seçil-
miştir. Bütün bu arayüzler MODELSIM simülasyon aracı kullanılarak gerçeklenmek-
tedir ve protokolde tanımlanan şekilde mesajları değiştiren gönderici ve alıcı gerçek-
lenerek test edilmektedir. Buna ek olarak, MIL-STD-1553B protokolü FPGA üze-
rinde tamamıyla gerçeklenmektedir ve bu uygulamanın doğruluğu ticari bir yonga ile

vii

haberleşilerek kanıtlanmaktadır. Gerçeklemelerin kaynak ve güç tüketim analizleri,
mimarinin genelliğinin ve uygulamaların etkinliğinin azaltılmadığını göstermektedir.

UNIBUS, hazır tasarlanmış bloklar ve sinyal arayüzleri sağlayarak, mevcut ve yeni
seri veriyolu protokolleri için donanım geliştirme süresini azaltmaktadır. Buna ek ola-
rak, UNIBUS, farklı protokoller arasında ortak olan protokolden bağımsız bileşenler
bir kereye mahsus olarak doğrulandığında ve bloklarla birlikte arayüzleri açık bir
şekilde tanımlandığında, tasarımın güvenilirliğini artırmaktadır. UNIBUS gerçek sis-
temlerde kullanılmak üzere tam boyutlu veriyolu arayüzü bileşenlerinin geliştirilme-
sinde ve varolan ürünlerin testlerinin geliştirilmesinde kullanılabilir. Bu tarz işlemde,
verilen veriyolu arayüzünün gerekli fonksiyonları, test edilen bileşen için iletişime
geçen karşı parçayı oluşturmak üzere UNIBUS üzerinde uygulanabilir.

Anahtar Kelimeler: Gerçek zamanlı, seri, gömülü veriyolu protokolü, genel mimari,
kodlayıcı, kod çözücü, alanda programlanabilir kapı dizileri, donanım, genel veriyolu,
seri veriyolu

viii

To My Family

ix

ACKNOWLEDGMENTS

I would like to express my special thanks to my supervisor Assoc. Prof. Dr. Şenan
Ece Schmidt. My special thanks go to TÜBİTAK SAGE. Finally, I would like to
thank my family and friends who supported me throughout the whole time.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 SERIAL BUS STANDARDS AND THEIR IMPLEMENTATION . . 5

2.1 Serial Bus Standards . 5

2.2 Implementation Challenges and Performance Metrics 6

2.3 Related Work on Implementation of Serial Buses 7

2.4 Hardware Implementation Platforms 9

2.5 Previous Implementations of the MIL-STD-1553B protocol
on FPGA . 10

3 UNIBUS HARDWARE ARCHITECTURE 13

xi

4 IMPLEMENTATION AND EVALUATION OF SELECTED BUS PRO-
TOCOLS WITH UNIBUS . 23

4.1 Design and Implementation 23

4.1.1 CAN Bus . 26

4.1.2 UART . 27

4.1.3 ARINC-708 and ARINC-717 28

4.1.4 MIL-STD-1553B 29

4.1.5 Summary and Overview of Signal Interfaces 30

4.1.6 MIL-STD-1553B Hardware Realization 30

4.2 Performance Evaluation . 45

5 CONCLUSIONS AND FUTURE WORK 55

REFERENCES . 57

xii

LIST OF TABLES

TABLES

Table 3.1 Signal interface between the Application Layer and BPC. 16

Table 3.2 BPC control signals sent to the transceiver. 16

Table 3.3 Signal interface between BPC and DBM. 17

Table 3.4 Signal interface between BPC and CG. 17

Table 3.5 Signal interface between BPC and the Encoder Controller. 19

Table 3.6 Signal interface between the Encoder Controller and the Line Encoder. 20

Table 3.7 Signal interface between Decoder Controller and the Line Decoder. . 21

Table 3.8 Signal interface between BPC and the Decoder Controller. 21

Table 3.9 Signal interface between the Encoder Controller and the Decoder
Controller. 22

Table 4.1 Comparison table of the implemented bus protocols. 24

Table 4.2 The detailed PS signal interface between the Application layer and
BPC block for the implemented serial protocols. 31

Table 4.3 The detailed PS signal interface between the BPC, DBM, CG, En-
coder Controller and Decoder Controller blocks for the implemented se-
rial protocols. 32

Table 4.4 The detailed PS signal interface between the Decoder Controller and
Encoder Controller blocks and the Decoder Controller and Line Decoder
blocks for the implemented serial protocols. 33

Table 4.5 Signal interface of the MIL-STD-1553 bus controller block. 38

Table 4.6 Signal interface of the 1553 TOP MODULE block. 41

Table 4.7 Signal interface of the dual port memory block. 42

xiii

Table 4.8 Signal interface of a single port memory block. 44

Table 4.9 The required hardware resources for the implementation of five dif-
ferent bus protocols. 47

Table 4.10 The power consumptions for the implementation of five different
bus protocols. 48

Table 4.11 The common blocks for the implementation of five different bus
protocols. 49

Table 4.12 The comparison between our proposed work and the commercial
products. 52

xiv

LIST OF FIGURES

FIGURES

Figure 3.1 The functional block diagram of UNIBUS architecture. 14

Figure 3.2 Hardware Block Diagram of UNIBUS architecture. 15

Figure 4.1 Block diagram for the simulation of the MIL-STD-1553B, UART,
ARINC-708, and ARINC-717 bus protocols. 25

Figure 4.2 Block diagram for the simulation of the CAN bus protocol. 25

Figure 4.3 Block diagram of the hardware platform for the implementation of
bus controller terminal of the MIL-STD-1553B protocol. 33

Figure 4.4 Screen shot of the scope screen. Outputs of the transceiver (HI-
1579PSM). 35

Figure 4.5 Block diagram for the bus controller block of the MIL-STD-1553
protocol. 37

Figure 4.6 Block diagram for 1553 TOP MODULE block. 40

Figure 4.7 Block diagram for the data buffer between the application layer
and the data link layer. 42

Figure 4.8 Cycle diagram for the data buffer between the application layer and
the data link layer. 43

Figure 4.9 Block diagram for the data buffer between the data link layer and
the physical layer. 43

Figure 4.10 Cycle diagram for the data buffer between the data link layer and
the physical layer. 44

Figure 4.11 Screen shot of the receive command word. 45

Figure 4.12 Screen shot of the received status and data words. 45

Figure 4.13 Screen shot of the transmit command word. 46

xv

Figure 4.14 Screen shot of the monitor screen. 46

Figure 4.15 Cycle diagram for the loopback test. 47

Figure 4.16 The comparison of the UART implementation. 50

xvi

LIST OF ABBREVIATIONS

ARINC Aeronautical Radio Incorporated

BPC Bus Protocol Controller

CAN Controller Area Network

CG Checksum Generator

CRC Cyclic Redundancy Check

DBM Data Buffer Memory

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

HDL Hardware Description Language

LIN Local Interconnect Network

MOST Media Oriented Systems Transport

PI Protocol Independent

PIC Peripheral Interface Controller

PS Protocol Specific

TTCAN Time Triggered Controller Area Network

TTP Time Triggered Protocol

UART Universal Asynchronous Receiver Transmitter

UNIBUS Universal Bus

VHDL Very High Speed Integrated Circuit Hardware Description Lan-
guage

xvii

xviii

CHAPTER 1

INTRODUCTION

Serial communication is widely used in computer networks and embedded systems

because of its simplicity and small number of connectors which result in better phys-

ical properties such as less crosstalk. Furthermore high data rates are possible with

fast clocking.

Examples for serial communication protocols include Ethernet in desktop computing,

Controller Area Network (CAN) in in-vehicle networking and manufacturing sys-

tems, MIL-STD 1553B in avionic systems, ARINC-708 in Airborne weather radar

systems, ARINC-717 in flight data acquisition and recording systems and Universal

Asynchronous Receiver/Transmitter (UART) in the communication with peripheral

devices.

Serial communication protocols realize the data link layer and the physical layer func-

tionality of the OSI (Open System Interconnection) model [1]. To this end, each

protocol defines the physical layer features including the mechanical and electrical

characteristics of connectors and communication channel, characteristics of electrical

signals and clock synchronization functions. Furthermore, data link layer features

are defined including framing, addressing, channel access arbitration, encoding and

decoding. Reliable data transmission is achieved by acknowledgement mechanisms,

error controlling and handling. One should note that functions related to bit timing

and clock synchronization should be carried out with stringent timing.

Despite the high-level similarity, these functions are defined differently for each pro-

tocol leading to specific realizations. Recognizing this high-level similarity, this thesis

1

proposes a modular, generic and abstract hardware architecture UNIBUS (Universal

Bus) for implementing serial bus protocols. The architecture supports the timing re-

quirements for bit transmissions and synchronization. The universal designation is

because of the high flexibility and configurability of the architecture that enables the

realization of different serial bus protocols.

UNIBUS consists of a number of different hardware blocks. All of them differ from

each other by the kind of data processing they perform and operate independent of

each other. Each block has protocol independent (PI) signal interfaces and proto-

col specific (PS) signal interfaces where PS interfaces have to be customized for the

specific bus protocol. The design philosophy of UNIBUS is separating the PS and

PI functionality and interfaces to increase the re-usability of the PI components and

signals as much as possible when implementing different serial bus protocols.

The versatility of UNIBUS is demonstrated by implementing five different serial bus

protocols with it. These protocols are MIL-STD-1553B, ARINC-708, ARINC-717,

CAN and UART. These protocols are selected to include standards that are similar

in terms of functionality and interfaces such as ARINC-708 and ARINC-717 and

completely different such as CAN. Also they have different levels of complexity such

as the complex MIL-STD-1553B and simple UART.

All of these protocols are simulated by using MODELSIM platform, and then MIL-

STD-1553B bus controller is implemented on hardware by using FPGA platform.

An experimental set-up with MIL-STD-1553B implemented on UNIBUS and a com-

mercial chip is constructed and the correctness of the implementation is verified by

establishing communication between these two parties. We evaluate the hardware re-

source consumption as well as power consumption for all these implementations. Our

results show that despite the architecture is generic the resulting specific realizations

are highly efficient. We propose a solution for the decoder design of the hardware

framework architecture. Consequently, our proposed decoder design does not require

a specific clock signal. Hence, it is possible to design the hardware framework more

efficiently and more simply by means of our decoder design.

UNIBUS significantly reduces the workload and the design time of the implementa-

tion by reconfiguring the logical organization of the functions of the bus protocols.

2

The protocol independent components that are common among different protocols

need to be verified only once and the protocol specific components are clearly de-

fined. Hence, UNIBUS improves the reliability of the serial bus implementation.

The remainder of the paper is organized as follows. Chapter 2 describes the operation

principles of the hardware framework for the serial bus protocols in general and the

challenges and performance metrics that we focus on in this thesis during the hard-

ware implementation. The possible hardware implementation platforms and previous

works on the implementation of serial bus protocols are also discussed in Chapter 2.

We introduce the detailed description of UNIBUS architecture in Chapter 3. Chapter

4 describes in detail the implementation and performance evaluation of the five spe-

cific serial bus protocols. Chapter 5 discusses the conclusions and introduces the next

stage of our work.

3

4

CHAPTER 2

SERIAL BUS STANDARDS AND THEIR IMPLEMENTATION

A real-time system receives data, processes them, and returns the results in a specified

time. Real-time bus protocols are intended to serve the communication requirements

such real-time systems therefore, they must guarantee response within strict time con-

straints.

2.1 Serial Bus Standards

Serial bus protocols are the standards that are defined for the bitwise transport of

the data on the Serial Bus. Serial bus protocols are used for communication and

computer platforms, where the cost of cable and synchronization difficulties make

parallel communication impractical.

The functions of the data link layer and the physical layer as defined in OSI layered

model are the main functions of the serial bus protocols. Error detection and correc-

tion, arbitration, frame generation and frame processing, data stream synchronization

and addressing are the functions of the data link layer. Bit decoding, bit encoding,

clock synchronization of a bit are the functions of the physical layer. However, each

serial bus protocol has own set of algorithm for data processing, the bitwise transmis-

sion, and the reception methods.

5

2.2 Implementation Challenges and Performance Metrics

We identify the following metrics to evaluate UNIBUS both as a generic real time

serial bus architecture and for the specific realization of the components.

• Clock frequency requirements (Design of the decoder)

• Structure of the bus architecture (modularity and signal interfaces)

• Logic resource and power consumption

• Memory requirements

Hardware area utilization and hardware power consumption requirements give the

performance of our proposed hardware framework. These parameters are used when

the simulations of five different bus protocols explained in Chapter 4 are compared.

Memory requirements, and clock frequency requirements are used to compare our

implementation of the bus controller terminal of the MIL-STD-1553B bus protocol

with the commercial products.

The decoder block for such kind of embedded serial bus protocols continuously mon-

itors its data input lines for a valid character. However, capturing such a valid char-

acter is a challenging process. So that, the design of the decoder is important for

the complexity of the hardware design. The decoder’s method of measuring its two

inputs determines its sensitivity to bus line signal changes caused by amplitude vari-

ance. Therefore, the transceiver and decoder design must be considered together and

the characteristics of the transceiver must be the main guide for the algorithm of the

decoding process.

The decoder must estimate the actual zero crossing times while gaps occur between

receiver output transitions. The gaps become wider as receive signal amplitude de-

creases. Decoder must solve this issue in order to decode the received signal correctly.

[65], [66], [60], [58], [18],[21],[28] use specific clock frequency, which is equal to

the 12 times of the desired data rate, in their decoder design. They use this clock

in order to sample and decode the incoming data. However, in their decoder block

6

they assume that comparator thresholds are balanced, and zero crossing will be at the

midpoint of the input signal. However, this prediction can introduce an additional

zero crossing error into the received signal seen by the decoder. Such kind of decoder

poorly estimates actual zero crossing times, and it could reject a frame word because

of zero crossing errors.

In this thesis, the decoder design in UNIBUS architecture captures the zero crossing

points in the encoded data instead of using a specific clock signal. Hence, our de-

coder design is tolerant of actual zero-cross distortion in the received signal and zero

crossing errors are eliminated for our decoder design by means of this method.

Performance evaluation and the comparison results are explained in the Performance

Evaluation section of the Chapter 4.

2.3 Related Work on Implementation of Serial Buses

In this Section, we discuss the previous works related to the real-time embedded bus

implementation on hardware and specific FPGA implementations.

Works have been done in [41] and [40] to provide a different kind of physical layers

for MIL-STD-1553B bus protocol. In [41], new physical layer is analyzed to provide

high-speed communication for MIL-STD-1553B protocol whereas in [40] new phys-

ical layer is designed to evaluate the channel attenuation of the MIL-STD-1553B

protocol system. However, in our work, for implementing such kind of a physical

layer integrated circuits are used.

The implementation of UART protocol was presented in [62], [64], [42], and [50]. In

[62], three main hardware blocks such as transmitter, receiver, and baud rate generator

were designed. In addition, in [64], the analysis of CRC generation algorithm was

performed in order to improve the error capability of the design. In [42], a solution

for the problems of inefficient data transmission and data bus utilization ratio was

proposed whereas in [50], a bidirectional shift converter technique was realized to

control package bits of data for data transmission and reception processes. All of

these works were implemented on FPGA by using VERILOG hardware description

7

language.

CAN and UART protocols were studied together in [67]. They used these protocols

at the highest transmission rate to investigate the data communication between FPGA

and the observer. On the other hand, the design and implementation of UART-SPI

Interface were proposed in [38]. SPI slave devices can communicate with a UART

port by means of their design.

The implementation of CAN protocol was presented in [46], [39], [37], [56], [45],

[61], and [55]. Eight-to-Eleven Modulation technique was proposed for bit-stuffing

process to reduce the timing variation caused by bit-stuffing in [46]. A programmable

controller was realized in [39]. CAN protocol was used as data communication pro-

tocol between the host controller and its various extension modules for their proposed

design. In [37], different communication protocols such as LIN, CAN, ByteFlight,

TTCAN, FlexRay, MOST, TTP were compared and CAN and LIN protocols were

implemented on PIC. In [56], CAN protocol was also implemented on PIC for moni-

toring parameters such as temperature, battery voltage, and cobalt level in the exhaust.

On the other hand, a hardware based CAN sniffer was studied in [45]. The CAN mes-

sage frame architecture, bit coding techniques and CAN bit sampling techniques were

examined in their work. In [61], CAN bus based control system was studied by using

FPGA platform whereas in [55], CAN bus based real-time Data Visualization system

was studied.

An experimental system for the CAN bus was proposed in [47]. Their design was

based on both hardware and software by using micro controller called as STC89C52

and CAN protocol controller called as SJA1000. In addition, in [43], an intelligent

controller of charge and discharge machine was implemented. CAN bus communica-

tion network was used in their implementation to monitor and control the software of

host computer.

A bit-level interference test method was studied in [35], and [54]. Both studies were

performed on FPGA. Besides these works, a simulation model for CAN bus was stud-

ied in [36]. In [63], a kind of customized dual redundancy CAN bus controller was

proposed. Their design was based on FPGA in order to provide high real-time per-

formance and reliability. Physical layer of this design has two independent channels.

8

If one of them fails during message transmission process, the other one will be used

to transmit the message.

The ARINC-659 bus protocol, which is a standard for digital data transfer, was im-

plemented in [34]. Their design was modeled using VERILOG language and their

host was modeled by using soft processor core called as NIOS II. HDL modules are

interfaced with the soft processor core to achieve the real-time system requirements.

On the other hand, in [59], 6-way serial data communication was introduced. Their

data processing system was performed on the soft processor called as NIOS II.

2.4 Hardware Implementation Platforms

In this Section, we present the hardware platforms for real-time embedded serial bus

architectures concluding that FPGA is the most versatile technology for implementa-

tion.

ASIC (Application Specific Integrated Circuit) design yields the fastest implementa-

tions for real-time embedded serial bus implementations. However, ASIC design is

expensive, and it has a very long time to market and lacks such flexibility.

FPGA (Field Programmable Gate Array) technology is a compromise between the

speed of ASIC and the flexibility of the network processors. One of the main reasons

for using FPGAs within an embedded system is performance. A very high number

of logic gates and embedded blocks in today’s FPGAs enables the design of complex

hardware platforms with reduced engineering cost and rapid turnaround time. In

addition, FPGAs are highly suitable for time critical applications so that they are

increasingly employed in safety and mission critical applications within the aerospace

and defense sectors. On the other hand, if the final implementation platform is ASIC,

FPGA can be used for prototype production [44]. Consequently, it is possible to

convert a hardware design on FPGA to ASIC provided that power source design,

packaging and boundary scan testing constraints are taken into consideration [51].

Since FPGAs are highly flexible and programmable, the implementation of a real-

time embedded serial bus protocols can be done with great ease and flexibility. While

9

FPGAs are configurable devices, reconfigurable hardware architectures can be easily

implemented on FPGAs.

2.5 Previous Implementations of the MIL-STD-1553B protocol on FPGA

Historically, serial communication buses were implemented using commercial off the

shelf components. This approach was however not so efficient since the changing

application requirements often rendered the system obsolete. Recently, several serial

communication protocols are designed to be implemented on the FPGA because more

than one communication protocol can be integrated in a single chip and the system can

be programmed whenever required by means of the FPGA. However, using FPGAs

in such applications has its challenges since time, power, reliability and data integrity

are highly crucial factors. Because of that reason, careful designs should be prepared.

There is a large amount of literature on hardware implementation of the serial bus

protocols. In this section, we provide an overview of the already existing approaches

specifically with respect to MIL-STD-1553B protocol applications, and highlight the

non-reconfigurable hardware bus architectures in such kind of systems since we im-

plement MIL-STD-1553B protocol bus controller unit in our implementation. All

of the previous studies select FPGA as the target hardware platform, however, the

implementations are limited to the VHDL model synthesis without any actual mea-

surements collected on hardware.

A work has been done in developing a specific hardware bus architecture for a se-

rial communication system based on MIL-STD-1553B communication protocol [49]

and [52]. However, the authors only state that the MIL-STD-1553B protocol bus

controller unit is designed without any further details. Furthermore, no discussion is

provided related to the implementation of their designs. The experimental results are

provided only for target device utilization in [49] and the simulation result of sending

a command word in [52]. Another related work also proposes an implementation of

MIL-STD-1553B protocol in an FPGA [65]. In this work, instead of implementing a

separate clock, digital phase lock loop is used for data clock recovery,

The work in [66] is also for the implementation of MIL-STD-1553B bus controller

10

unit. It uses a specific hardware bus architecture for its implementation. It is im-

portant to note that their proposed design requires 12 MHz clock frequency for its

decoder design since it uses this clock for capturing the encoded data. On the other

hand, in [60] VHDL implementation of the Manchester encoder and decoder is pur-

posed. The decoder design for this work also requires a specific clock that has a

frequency of 12 times the desired data rate. However, using such kind of specific

clock frequency decreases the performance of the system and increases the complex-

ity of the hardware architecture. Therefore, their approach for their decoder design is

not preferable for such avionic applications. Another similar work is also proposed

in [48]. Encoder and decoder are modeled as a state machine and they are simulated

in MODELSIM platform.

A very recent study proposed in [57] suggests a low-cost design of MIL-STD-1553

bus terminal devices. They use DSP(Digital Signal Processor) having on-chip multi-

channel buffered serial port in order to perform all the necessary functions of MIL-

STD-1553B protocol. However, using a DSP for such kind of serial data bus proto-

cols will be slower and more complicated. Using an FPGA for serial bus protocols

increases simplicity and the reliability of the system design.

In [58] the authors propose a methodology for studying of MIL-STD-1553 archi-

tecture and studying of Core1553BRM IP core from Actel. They implement it on

FPGA. Although the title of the paper suggests a VHDL implementation of MIL-

STD-1553B protocol, only data transfer between the bus controller unit and remote

terminal is demonstrated in this work. For the realization of the MIL-STD-1553B

bus protocol, they use IP core so that they didn’t design any bus architecture for their

implementation.

Specific bus architectures are used for all mentioned previous works. However, in

[53] a generic hardware and software architecture for the implementation of serial

bus protocols was proposed. The data link layer functions were implemented in soft-

ware while physical level functions were implemented in hardware. In order that to

estimate the efficiency of offered method, a system with 1-Wire interface controller

based on UART was implemented. Software and hardware modules were imple-

mented directly in FPGA. Spartan-3E FPGA family [25] was used as a hardware de-

11

vice whereas soft microcontroller core PicoBlaze [20] provided by Xilinx company

for free was used as a soft-core processor.

The efficiency estimation of their UART implementation was made by two criteria: (i)

the hardware expenses of system implementation; (ii) time interval required for exe-

cuting of data exchange. They used a histogram to show their results. Each column in

their histogram presents the hardware expenses, the size of application software, the

size of interface support software and the amount of used general purpose registers.

Same method is used in order to compare our UART implementation results with this

work. Comparison results are explained in the Performance Evaluation section of the

Chapter 4.

Furthermore, in most of the proposed works the implementation is limited to the HDL

model synthesis without any real-world implementation and test or experiments car-

ried out on hardware. Therefore, based on existing works in the field of avionics, we

aim to propose a new generic reconfigurable hardware framework for serial bus com-

munication systems. To the best of our knowledge there is no hardware implementa-

tion based on FPGA which uses a generic and reconfigurable hardware architecture

like our design.

12

CHAPTER 3

UNIBUS HARDWARE ARCHITECTURE

In this section, we propose a generic block-level hardware design for the implemen-

tation of Real-time Embedded Bus Architectures for serial bus interfaces as depicted

in Fig. 3.2 .

We define seven different hardware blocks in UNIBUS architecture according to our

functional decomposition of the serial bus interfaces presented in Chapter 1 and Chap-

ter 2 as shown in Fig. 3.2. These hardware blocks are bus protocol controller (BPC),

Data Buffer Memory (DBM), Checksum Generator, Encode Controller, Line En-

coder, Decode Controller and Line Decoder. These blocks operate independent of

each other and have both protocol independent (PI) signal interfaces and protocol

specific (PS) signal interfaces.

The design philosophy of UNIBUS is separating the PS and PI functionality and

interfaces to increase the re-usability of the PI components and signals as much as

possible when implementing different serial bus protocols.

The high-level functional block diagram and the corresponding hardware block and

signal diagram of the UNIBUS architecture are shown in Fig. 3.1 and Fig. 3.2 re-

spectively. The signals with PS functions in Fig. 3.2 are indicated with red color. The

width of all multi-bit signals are protocol specific.

Frame transmission and frame reception are two sets of separate processes, interacting

with each other. Frame reception consists of the detection of a frame start condition,

determining the bit time interval, data stream synchronization, detection of the logical

value of the received bit, marking the beginning of a new frame, constructing a frame

13

out of received bits, address checking, detection and possible correction of frame

errors and extraction of the data array (payload) out of a frame, which is read from

the data bus.

Frame transmission consists of indication of a frame start condition, determining of

the bit time interval, bitwise transmission of the frame, clock synchronization of bits,

data stream synchronization, bit stuffing, reception of data array from the application

layer and frame generation.

B
U
S

PHYSICAL
MEDIUM

(TRANSCEIVER
AND

TRANSFORMER)

RX

TX

CHECKSUM
GENERATION

 PROTOCOL
CONTROL

DATA
BUFFERING

BIT
HANDLING

DECODING

ENCODING
BIT

GENERATION

APPLICATION
LAYER

PYHSICAL LAYER

DATA LINK LAYER

FRAME TRANSMISSION

FRAME RECEPTION

Figure 3.1: The functional block diagram of UNIBUS architecture.

Bus Protocol Controller (BPC) Block is the main block of UNIBUS initiating and

controlling the data transfers between UNIBUS and the Application and Physical

Layers as well as the data flow among UNIBUS blocks. Frame generation and frame

processing, detection and correction of errors in received frames, data stream control,

addressing and arbitration are the functions that are implemented in this block. These

functions vary according to the type of the bus protocol. Therefore, the logic design

of this block should be customized for the implemented protocol.

BPC has input and output signal interfaces with DBM, Checksum Generator, Decoder

Controller and Encoder Controller. It communicates with the Checksum Generator

14

TXA
TXA_not

RXA

RXA_not

PHYSICAL
LAYER

TR_TX_INH

RX_EN

APPLICATION
LAYER

CHECKSUM
GENERATOR

BUS
PROTOCOL

CONTROLLER

DATA
BUFFER

MEMORY

checksum_
input

checksum_
calc

encoder_input

decoder_output

a
d

d
r

d
in d

o
u

t

w
e

n
e

n

encode_start

data_no

decode_ok

checksum_error

clk

frame_type_
receive

frame_type_
transmit

data_get

data_change
encode_finish

frame_complete
DECODER

CONTROLLER

LINE
DECODER

output_
data

message_
error

data_ok

clk

message_error

clk
input

input_
not

ENCODER
CONTROLLER

clk

LINE
ENCODER

clk

clk_bit_rate

enable

input_data

output

output_
not

clk

douta

wenb

addrb
dinb

addra

doutb

ce

protocol_frame
message_error

frame_type_receive

ack_
control

tr_tx_inh
rx_en

wena
dina

frame_type_transmit

Figure 3.2: Hardware Block Diagram of UNIBUS architecture.

to detect checksum errors, and it communicates with DBM to store the transmitted

and received frames. Furthermore BPC realizes frame transmission to the bus and

the frame reception from the bus by communicating with the Encoder Controller and

Decoder Controller.

BPC has external signal interfaces to application and physical layers. The signal

interface between the application layer and BPC is shown in Table 3.1. BPC commu-

nicates via a dual port memory with the application layer which enables the users to

initiate and monitor the data flow.

BPC sends control signals to the transceiver chip via physical layer signal interface

as shown in Table 3.2.

DBM is the data buffer between UNIBUS and physical layer. Its width and depth

should be customized for the amount of data that are going to be stored during the

frame transmission. BPC communicates with DBM to control the frame transmission

15

Table 3.1: Signal interface between the Application Layer and BPC.

Signal Width Description Type
ce 1 ’1’:Enables frame transmission, ’0’:Disables frame

transmission
PI

checksum_error 1 ’1’: Checksum error, ’0’:No Checksum error PI
frame_complete 1 ’1’:Frame transmission or frame reception is finished,

’0’:Frame transmission or frame reception continues
PI

douta PS Data Output for PORTA of DBM, VALID: Before
frame transmission

PI

addra PS Address for PORTA of DBM, VALID: Before frame
transmission

PI

dina PS Data Input for PORTA of DBM, VALID: Before frame
transmission

PI

wena 1 ’1’:Enables writing on PORTA of DBM, ’0’:Disables
writing on PORTA of DBM

PI

doutb PS Data Output for PORTB of DBM, VALID: After frame
reception

PI

addrb PS Address for PORTB of DBM, VALID: After frame re-
ception

PI

dinb PS Data Input for PORTB of DBM, VALID: After frame
reception

PI

wenb 1 ’1’:Enables writing on PORTB of DBM, ’0’:Disables
writing on PORTB of DBM

PI

protocol_frame PS The frame content, VALID: Before frame transmission
and reception

PS

message_error PS Protocol related error signals, VALID: After frame
transmission and reception

PS

frame_type_transmit PS Frame type to be encoded, VALID: Before frame trans-
mission

PS

frame_type_receive PS Decoded frame type, VALID: After frame reception PS

Table 3.2: BPC control signals sent to the transceiver.

Port Width Description Type
rx_en 1 ’1’:Receiver port of the transceiver is enabled,

’0’:Receiver port of the transceiver is disabled
PS

tr_tx_inh 1 ’1’:Transmitter port of the transceiver is disabled,
’0’:Transmitter port of the transceiver is enabled

PS

and reception via the signal interface shown in Table 3.3.

BPC specifies the address to read with "addr" and reads the data array from DBM on

"dout" before frame transmission. In a reverse procedure, after the frame reception,

BPC writes the data array extracted from the received frame to DBM by enabling

16

write with "we". The data are transmitted on "din" interface and stored in the address

specified by "addr" signal.

Table 3.3: Signal interface between BPC and DBM.

Port Width Description Type
dout PS Data output of DBM, VALID: During frame gener-

ation.
PS

addr PS Address for DBM, VALID: During frame genera-
tion and after frame decoding.

PS

din PS Data input of DBM, VALID: After frame decoding. PS
we 1 ’1’:Enables writing DBM, ’0’:Disables writing

DBM
PI

en 1 ’1’:Enables DBM, ’0’:Disables DBM PI

Checksum Generator (CG) block generates the checksum value for the frames to be

transmitted and as well as the frames that are received. The logic of CG is customized

for the implemented protocol to implement different algorithms such as parity error

checking or CRC(Cyclic Redundancy Check).

BPC controls and detects the protocol errors. Hence, CG communicates with BPC

via the signal interface is shown in Table 3.4. The width of the input for CG depends

on the frame length of the implemented protocol.

Table 3.4: Signal interface between BPC and CG.

Port Width Description Type
checksum_calc PS Calculated Checksum value, VALID: During frame

generation and after frame decoding
PS

checksum_input PS Input for Checksum Generator block, VALID: Dur-
ing frame generation and after frame decoding

PS

We partition the encoding of the data to be transmitted into two blocks that are En-

coder Controller and Line Encoder to separate the functions and signals which are PI

and PS to increase signal reusability.

The Encoder Controller receives the Application data to be encoded in parallel from

BPC. It serializes the data, forwards it to the Line Encoder and enables the Line

Encoder. The Line Encoder executes the bit transmission functions. It encodes the

serial bit stream received from the Encoder Controller in the specific line coding

17

format such as non-return to zero (NRZ), Manchester bi-phase or Harvard bi-phase.

It provides clock synchronization by placing synchronization bits at the beginning of

the frame, and it executes bit stuffing if specified.

The design of Decoder Controller and Line Decoder is similar as they reverse the

processing of Encoder Controller and Line Encoder. The Decoder Controller con-

verts the serial data received from the Line Decoder to parallel and sends it to BPC.

It further establishes the data stream synchronization to enable the decoder to resyn-

chronize at the beginning of each frame received. The Line Decoder executes the bit

reception functions. It decodes the serial bit stream received from the data bus in the

specific line coding format. The logic design of the blocks is customized for a specific

protocol that is implemented.

We next describe UNIBUS operations for the data reception from the Application

Layer and frame transmission on the Physical Layer.

The Application layer starts sending data to UNIBUS by setting "ce" signal. "ce"

is reset when the transmission is finished. The data from the Application Layer are

read on PORTA of the dual port memory by BPC. First, BPC indicates the address of

memory to read the data from on "addra" then reads the data on "douta". After

reading, BPC writes the data to DBM in order to use them for frame generation.

During frame generation, BPC sends the data to Checksum Generator for the cal-

culation of the checksum value on "checksum_input" and reads the calculated

checksum value on "checksum_calc". After this calculation, BPC generates the

frame by concatenating data, which are read from the application layer, the checksum

value and the necessary frame bits related to the bus protocol.

When frame generation is finished, BPC sets "encode_start" to activate the En-

coder Controller. BPC sends the data to the Encoder Controller in blocks. The

Encoder Controller reads the number of data blocks to encode on "data_no" to-

gether with the first block on "encoder_input". Then, it converts the parallel

"encoder_input" signal into a serial stream by shifting it from LSB(least signifi-

cant bit) to MSB(most significant bit) or vice-versa and sends it to the Line Encoder.

When there are more than one blocks of data transfer, "data_change" and "data_get"

18

indicate the time of the getting the next data block from BPC. After encoding one

block of data, the Encoder Controller sets "data_change" signal to inform BPC

for the preparation of the new data block. After that, BPC sets "data_get" signal

to inform Encoder Controller for the getting of the new data block. Data blocks are

transmitted continuously with no gaps via this handshaking procedure. Therefore,

it is a performance requirement that the Encoder Controller ensures no gaps in the

encoded data array to support real-time data transmission.

"frame_type_transmit" signal shows the type of the frame that will be en-

coded. BPC uses this signal for defining the frame type to be generated, and Encoder

Controller uses it for defining the synchronization pattern at the beginning of the

frame.

The signal interface between BPC and Encoder Controller is shown in Table 3.5.

Table 3.5: Signal interface between BPC and the Encoder Controller.

Port Width Description Type
data_change 1 ’1’:New data can be sent by BPC, ’0’: New data

can’t be sent by BPC
PI

encode_finish 1 ’1’:Encoding is finished, ’0’: Encoding is continued PI
frame_type_transmit PS Frame type to be encoded, VALID: During frame

encoding
PS

data_get 1 ’1’:New data can be read by the Encoder Controller,
’0’:New data can’t be read by the Encoder Con-
troller

PI

encode_start 1 ’1’:Encoding is enabled,’0’: Encoding is disabled PI
encoder_input PS Input signal for Encoder Controller, VALID: Dur-

ing frame encoding
PS

data_no PS Number of the data array, VALID: During frame en-
coding

PS

When "encode_start" is set by BPC, the Encoder controller in turn sets "enable"

to activate Line Encoder. Signal interface between Encoder Controller and Line En-

coder is shown in Table 3.6. The Encoder Controller sends the data serially to the

Line Encoder on "input_data". The Line Encoder carries out the bit encoding

and sends the encoded bits to the physical layer on "output" and "output_not"

signals.

When the last block of data is sent to the Line Encoder on "encoder_input" the

19

Encoder Controller sets "encode_finish" to indicate the end of the encoding of

the frame and resets "enable". "clk_bit_rate" signal is the encoding clock to

implement the bit encoding with the proper frequency.

Table 3.6: Signal interface between the Encoder Controller and the Line Encoder.

Port Width Description Type
clk_bit_rate 1 ’1’:Encoding clock signal is high,’0’: Encoding

clock signal is low
PS

enable 1 ’1’:Enables Line Encoder,’0’: Disables Line En-
coder

PI

input_data 1 Input bit to be encoded, VALID: During frame en-
coding

PI

Finally, we describe UNIBUS operations for the frame reception from the Physical

Layer and data transmission to the Application Layer.

Signal interface between Decoder controller and Line Decoder is presented in Table

3.7.

The "input" is the input bit which is read from the data bus and "input_not"

is the complement of it. The Line Decoder continuously monitors "input" and

"input_not" starts decoding when it detects a valid character. When the decoding

of each data bit is completed, the Line Decoder puts the data bit on "output_data"

and sets "data_ok". If the Line Decoder detects a decoding error caused by the

input lines, it sets "message_error".

The Decoder Controller reads the decoded data from the "output_data" when

the "data_ok" is set. Then, it shifts this decoded bit serially into a shift register.

When the last bit is in the shift register, the Decoder Controller sets "decode_ok"

to indicate the end of the decoding and puts the decoded data in the shift register on

"decoder_output" in order to transmit it to BPC in parallel.

The signal interface between BPC and the Decoder Controller is in Table 3.8. The

type of the decoded frame is indicated by "frame_type_receive" signal. It is

valid when "decode_ok" signal is set.

BPC writes the data array extracted from "decoder_output" to DBM. After that,

20

it reads this data array from DBM and writes it on the PORTB of the dual port memory

of the application layer.

Firstly, BPC puts the Application Layer Memory address to write the data on "addrb"

and sets "wenb" signal to enable writing. Then, it puts the data on "dinb" in order

to write them.

Table 3.7: Signal interface between Decoder Controller and the Line Decoder.

Port Width Description Type
data_ok 1 ’1’: Bit decoding is valid ,’0’: Bit decoding is in-

valid
PI

message_error PS Message error signal, VALID: During frame decod-
ing

PS

output_data 1 Decoded output signal, VALID: During frame de-
coding

PI

Table 3.8: Signal interface between BPC and the Decoder Controller.

Port Width Description Type
decoder_output PS Output signal for Decoder Controller, VALID: Af-

ter frame decoding
PI

message_error PS Error signal for Decoder Controller, VALID: After
frame decoding

PS

frame_type_receive PS Decoded frame type, VALID: After frame decoding PS
decode_ok 1 ’1’: Decoding is finished, ’0’: Decoding is contin-

ued
PI

During frame transmission, the transmitter unit can also read the bus to compare

whether the sent bit and the read bit are the same or not. Furthermore, during the

frame reception, any receiver unit that correctly receives a message can send an ac-

knowledgment bit. In that case, the transmitter unit checks for the presence of this bit

at the end of the frame transmission.

Therefore, there is a signal interface between Encoder Controller and Decoder Con-

troller in UNIBUS architecture as shown in Table 3.9. These bit error and acknowl-

edgment bit checking are PS functions.

21

Table 3.9: Signal interface between the Encoder Controller and the Decoder Con-
troller.

Port Width Description Type
ack_control PS Acknowledgment and bit error control signal,

VALID: During frame encoding and decoding
PS

22

CHAPTER 4

IMPLEMENTATION AND EVALUATION OF SELECTED BUS

PROTOCOLS WITH UNIBUS

4.1 Design and Implementation

In this Section we implement a number of different serial bus protocols for different

applications to demonstrate the use of UNIBUS framework. We choose to implement

MIL-STD-1553B bus protocol [3], [12], [19], [6], ARINC-708 bus protocol, ARINC-

717 bus protocol [13], [2], CAN bus protocol [26], [5], [10], [27] and UART protocol

[33], [14], [15]. Table 4.1 presents a comparative overview of these protocols.

It can be seen in the comparison table that usage areas for these protocols are differ-

ent. MIL-STD-1553B protocol is used in military applications and ARINC-708 bus

protocol is used in radar systems whereas ARINC-717 bus protocol is used in data ac-

quisition and recording systems, CAN bus is used in vehicle applications and UART

protocol is the serial communications subsystem of a computer. Consequently, their

basic protocol parameters such as bit rate, frame length, data bits per word, message

length, message formats, coding type, checksum, synchronization type, operation and

terminal are different than each other.

In this section, we provide detailed implementations, which fully demonstrate the

features of our proposed generic hardware framework, of these five protocols.

All of the protocols are compiled on FPGA by ISE 14.5 [23] software, and simulated

by MODELSIM simulation tool [31]. Furthermore, bus controller terminal of the

MIL-STD-1553B bus protocol is fully implemented on a hardware platform.

23

Table 4.1: Comparison table of the implemented bus protocols.

MIL-STD-1553B ARINC-708 ARINC-717 CAN UART
Application Military specifica-

tion. Digital Time
Division Com-
mand/Response
Multiplexed Data
Bus

Airborne
weather
radar sys-
tems

Flight data
acquisi-
tion and
recording
systems

In-vehicle
commu-
nication,
control and
automation
systems

Serial-
parallel
conversion
with config-
urable data
format and
transmission
speeds.

Terminal Types Bus Controller, Re-
mote Terminal, Bus
Monitor

Transceiver Transceiver Transceiver Transceiver

Operation Asynchronous Asynchronous Asynchronous Synchronous Asynchronous
Baud Rate 1 MHz 1 MHz 768

Hz(nominal
rate)

20KHz to
1MHz

Depends on
UART model

Frame length 20 bits 1606 bits 768 bits Max. 108
bits

Max. 12 bits

Data bits per
word

16 bits 1600 bits 12 bits Max. 64 bits 5 to 8 bits

Application
Message
Length

Max. of 32 data-
words + command-
word + synchro-
nization bits

1 frame 1 frame (128,
256, and 512
12-bit words
per second)

1 frame
(data, re-
mote, error,
overload)

1 frame

Message Types - Bus Controller to
RT, - RT to bus con-
troller, - RT to RT,
- Broadcast, - Sys-
tem Control

- Transmit, -
Receive

- Transmit, -
Receive

- Transmit, -
Receive

- Transmit, -
Receive

Coding type Manchester II bi-
phase

Manchester
II bi-phase

Harvard
bi-phase

Non Return
to Zero with
bit stuffing

Non Return
to Zero

Checksum Parity Parity None CRC Parity
Synchronization
type

3 synchronization
bits

6 synchro-
nization
bits

4 synchro-
nization
words

Start of
frame

Start of
frame

UNIBUS is used for both transmitter and receiver models for all protocols. Both

data transmission and data reception are simulated for all protocols using separate

transmitter and receiver implementations. A bus controller terminal for MIL-STD-

1553B is implemented and verified by communicating with a commercial MIL-STD-

1553B chip that is used as a remote terminal.

The block diagram for the simulation of MIL-STD-1553B, UART, ARINC-708, and

24

ARINC-717 bus protocols is shown in Fig. 4.1.

UNIBUSUNIBUS

TRANSCEIVER-A TRANSCEIVER-B

Figure 4.1: Block diagram for the simulation of the MIL-STD-1553B, UART,
ARINC-708, and ARINC-717 bus protocols.

The nondestructive bitwise arbitration is used in the CAN protocol. Accordingly, if

just one node drives logic low(dominant bit) to the bus, the whole bus is at logic low

regardless of the transmitted logic high signals(recessive bit). This process is also

realized for our simulation process by using an AND gate between the outputs of the

node A and node B. By means of this AND gate logical 0 becomes a dominant bit

and logical 1 becomes a recessive bit. The block diagram of the simulation model of

the CAN bus protocol is shown in Fig. 4.2.

UNIBUSUNIBUS

TRANSCEIVER-A TRANSCEIVER-B

PYHSICAL LAYER

TXA

TXB
RX

RX

TXA

RX

TXB

Figure 4.2: Block diagram for the simulation of the CAN bus protocol.

25

4.1.1 CAN Bus

The CAN bus [26],[5],[10],[27] is a broadcast type of bus and it works as a multi-

master system. This means that all nodes can hear all transmissions. CAN protocol

defines four different message types which are data frame, remote frame, error frame,

and overload frame. Data frame is used to send data information from a source to

multiple receivers. Remote frame is used to request the transmission of data infor-

mation from a remote node. Error frame is used to indicate the detected errors and

overload frame is used to request an additional time delay.

We implement two CAN nodes Node A and Node B. These nodes send and receive

data frame and remote frames in our simulation. Firstly, node A block sends a remote

frame to the node B. After reception process, node B sends corresponding data frame

to node A. Nodes listen to the bus as they transmit. Bit error is detected when the

bit value that is sent is different from the bit value that is monitored. In addition,

acknowledgment error is also detected by a transmitter if a recessive bit (logical 1) is

found on the acknowledgment slot of the message frame. CRC error is detected if the

CRC computed by the receiver differs from the one stored in the received frame.

According to the CAN protocol, each bit time consists of segments for synchroniza-

tion. These segments are called Synchronization, Propagation, Phase 1 and Phase 2.

Synchronization Segment is used for synchronization of the clocks, and it has one

quantum. Propagation Segment compensates the delay in the data bus. Phase 1 seg-

ment can be shortened, and Phase 2 segment can be extended to keep the clocks in

synchronization. The sample point facilitates continuous synchronization, and it is

between Phase 1 segment and Phase 2 segment.

In our simulation model, bit time is divided into ten equal time quanta: one quantum is

for synchronization segment, three quanta are for propagation segment, three quanta

are for Phase 1 segment and three quanta are for Phase 2 segment. Therefore, receiver

samples incoming data bit on the 70% of the bit time.

In this implementation, only two types of frames called as remote frame and data

frame were realized during the data transmission and data reception processes. The

other defined frames for CAN protocol called as error frame and overload frame will

26

be implemented as a future work. On the other hand, three types of errors such

as CRC error, acknowledgment error, and bit error were checked during the error

management process. The other defined errors called as form error and stuff error

will be checked as a future work.

4.1.2 UART

UART [33], [14], [15] is used for serial communications with configurable data for-

mat and baud rates. It is widely used for communicating to peripheral devices.

Each UART frame begins with a logic low start bit. After the start bit, the data bits

(5 to 8 bits, Least Significant Bit (LSB) first) are sent followed by an optional parity

bit to be used by the receiver for parity error checking. Lastly, stop bits are sent to

indicate the end of transmission.

Because of the asynchronous transmission process of the UART protocol, the trans-

mitter and receiver must agree on protocol parameters (Baud Rate, character length,

parity, and stop bits).

According to the UART protocol, a clock signal, which runs at much faster rate than

the baud rate, should be used to control the operation of the UART hardware. The

receiver looks for the beginning of the start bit by testing the state of the incoming

signal. A valid start bit is detected with a high to low voltage transition on the bus

line. After waiting for a bit time, the receiver samples the bus line and clocks the

result into the shift register.

In [62], [64], [38],and [50] a frequency equal to 16 times of the baud rate is used

as a reference clock for their UART designs. However, in our simulation model,

we choose the baud rate as 1 Mbps and the UART module has an internal clock (100

MHz) that runs 100 times faster than the baud rate. By means of this clock, the UART

receiver samples the incoming data with the sampling rate of 100. This causes greater

immunity against baud rate error.

UART protocol works as a transceiver. Therefore, We implement two UART nodes

Node A and Node B as transceivers and test transmit and receive messages in the

27

simulation.

Firstly, message is sent by Node A and then it is received by Node B terminal. After

that, received message is sent by Node B and then it is received by Node A.

In this implementation, UART protocol was completely simulated by implementing

both data transmission and data reception processes. In addition, parity error checking

process was also realized for both processes. A hardware implementation of this

protocol will be realized as a future work.

4.1.3 ARINC-708 and ARINC-717

Only data frame is defined for both ARINC-708 and ARINC-717 [13],[2] protocols.

Data frame is 1600 bits long and baud rate is 1 MHz for ARINC-708. Each frame

starts with a 3 us sync pattern (1.5 us high, 1.5 us low) and ends with another 3 us

sync pattern (1.5 us low, 1.5 us high). Therefore, a complete frame takes 1606 us.

On the other hand, data frame is 768 bits long and bit rate is 768 Bps for ARINC-

717. This consists of 64 words(12 bits length). Complete frame has four subframes

(one subframe per second) because of that reason it takes 4 s. The first word in each

subframe provides a synchronization pattern for this protocol.

These bus protocols also work as a transceiver. It means that, terminals can either

transmit or receive messages. Because of that reason, during the simulation process

both transmit and receive messages are tested. Firstly, message is sent by transceiver

A terminal and then it is received by the transceiver B terminal. After that, received

message is sent by transceiver B terminal and then it is received by the transceiver A

terminal.

In this implementation, ARINC-708 and ARINC-717 protocols were completely sim-

ulated by implementing both data transmission and data reception processes. In addi-

tion, parity error checking process was also realized for both protocols. A hardware

implementation of these protocol will be realized as a future work.

28

4.1.4 MIL-STD-1553B

In the scope of this thesis, we fully implement MIL-STD-1553B protocol using UNIBUS

architecture. To this end the hardware design is carried out according to the UNIBUS

block definitions and signal interfaces. Then the design is implemented on Xilinx

SPARTAN3-XC3S4000-4FG900 [25] FPGA device.

We select MIL-STD-1553B for full implementation as it is both a widely used and

complicated protocol with many different message types.

MIL-STD-1553B is one of the oldest and the most common serial data bus used in

avionic systems. It is used in various military, avionics and aerospace systems for

last four decades because of its robust performance, high level of reliability and fault

tolerance in harsh environments.

There are two node types for MIL-STD-1553B which are called bus controller and

remote terminal (RT) [3], [12],[19],[6]. The bus controller works as a master and

issues commands, which are for the transfer of data or the control and management

of the bus, onto the data bus. The remote terminal works as a slave. We implement

the bus controller using UNIBUS.

There are two types of message transfer formats which are Information transfer for-

mat and broadcast information transfer format. Six message types which are bus con-

troller to RT transfer, RT to bus controller transfer, RT to RT transfer, mode command

without data word, mode command with data word (transmit) and mode command

with data word (receive) are defined for information transfer format. Four message

types such as bus controller to RT(s) broadcast, RT to RT(s) broadcast, mode com-

mand without data word and mode command with data word (receive) are defined for

the broadcast information transfer format.

For all message types, firstly the bus controller sends a command word to the bus to

indicate the data flow and then corresponding remote terminal responds this command

word by sending status or data words. If the command word sent by bus controller

corresponds to the transmit command, bus controller block sends data words to the

remote terminal. After that, remote terminal sends status word to the bus controller.

29

If the command word sent by bus controller corresponds to the receive command, re-

mote terminal sends data and status words. Because of that reason, both bus controller

and remote terminal blocks are designed as transceiver blocks in our simulation.

In this implementation, MIL-STD-1553B bus protocol was completely simulated. All

of the defined message types and error checking processes were realized during the

data transmission and data reception processes. Detailed error management process

for the validation test of this protocol will be implemented as a future work.

4.1.5 Summary and Overview of Signal Interfaces

Serial bus protocols have similar functionality such as bit encoding, bit decoding,

error detection, addressing, arbitration, data stream control and frame generation.

However, the content of these functions differ from one protocol to another. There-

fore, PS signal interface is used between the sub-blocks of the UNIBUS architecture

to provide generic signal interface for all serial bus protocols.

In this Section, we demonstrate the versatility of UNIBUS in Table 4.2, Table 4.3

and Table 4.4 by listing the signal interfaces of the different serial protocols that we

implement. We indicate the PS signal widths as well as their functions.

4.1.6 MIL-STD-1553B Hardware Realization

The simulated model for the MIL-STD-1553B bus controller is further implemented

on FPGA. We present the hardware block diagram of the implementation and the test

bench in Fig. 4.3.

The implementation platform contains an FPGA, a Digital Signal Processor (DSP), a

PROM to keep the FPGA code, a flash memory to store non-volatile data for DSP, a

remote terminal chip for MIL-STD-1553B bus protocol, an ethernet interface to pro-

vide a monitor interface, physical layers for MIL-STD-1553B bus and ethernet port

and power converters to produce the different voltage levels required by the FPGA

and the DSP.

30

Table 4.2: The detailed PS signal interface between the Application layer and BPC
block for the implemented serial protocols.

UNIBUS CAN UART ARINC-
708

ARINC-
717

MIL-STD-1553B

- Width /
Content

Width /
Content

Width /
Content

Width /
Content

Width / Content

douta 16 / Data
to be
transmit-
ted

8 / Data
to be
transmitted

16 / Data
to be trans-
mitted

12 / Data
to be trans-
mitted

16 / Data to be transmit-
ted

dina 16 / not
used

8 / not used 16 / not
used

12 / not
used

16 / not used

doutb 16 / not
used

8 / not used 16 / not
used

12 / not
used

16 / not used

dinb 16 / Data
read
from the
bus

8 / Data
read from
the bus

16 / Data
read from
the bus

12 / Data
read from
the bus

16 / Data read from the
bus

protocol_frame 15 / Ar-
bitration
field,
data
length
code

3 / 1 parity
bit; 2 stop
bits

60 / bits for
header field

48 / sync
frames

16 / terminal address,
transmit receive bit,
subaddress mode,
wordcount modecode

message_error 3 / ACK,
CRC, de-
coder er-
ror

2 / parity
error, fram-
ing error

3 / header
parity error,
data par-
ity error,
decoder
error

2 / par-
ity error,
decoder
error

15 / errors for sta-
tus word, status par-
ity error, data parity er-
ror, parity error, non-
responsetimeout error,
decoder error

frame_type_transmit 2 / data,
remote,
error,
overload
frame

1 / not used 1 / not used 1 / not used 2 / bus controller to rt,
rt to bus controller, rt to
rt, mode commands

frame_type_receive 2 / data,
remote,
error,
overload
frame

1 / not used 1 / not used 1 / not used 2 / bus controller to rt,
rt to bus controller, rt to
rt, mode commands

In hardware implementation, transmit and receive message types are realized in gen-

eral hence there have to be a bus controller and a remote terminal. Our proposed

hardware framework is used as a bus controller terminal while a commercial product

called as HI-6121 [30] is used as a remote terminal. Users can monitor the message

flows happened on the data bus, by using graphical user interface. This graphical user

31

Table 4.3: The detailed PS signal interface between the BPC, DBM, CG, Encoder
Controller and Decoder Controller blocks for the implemented serial protocols.

UNIBUS CAN UART ARINC-
708

ARINC-
717

MIL-STD-1553B

- Width / Con-
tent

Width /
Content

Width /
Content

Width /
Content

Width / Content

dout 16 / Data to be
transmitted

8 / Data
to be
transmitted

16 / Data
to be trans-
mitted

12 / Data
to be trans-
mitted

16 / Data to be
transmitted

din 16 / Data read
from the bus

8 / Data
read from
the bus

16 / Data
read from
the bus

12 / Data
read from
the bus

16 / Data read from
the bus

checksum_calc 16 / Checksum
Value

1 / Check-
sum Value

1 / Check-
sum Value

1 / Check-
sum Value

1 / Checksum Value

checksum_input 19 / the stream
of bits from
the START OF
FRAME bit
to the DATA
FIELD

8 / the
stream
of bits of
the DATA
FIELD

16 / the
stream
of bits of
the DATA
FIELD

12 / the
stream
of bits of
the DATA
FIELD

16 / the stream of
bits of the DATA,
COMMAND, and
STATUS WORDS

frame_type_transmit 2 / data, remote,
error, overload
frame

1 / not used 1 / not used 1 / not used 2 / bus controller
to rt, rt to bus
controller, rt to rt,
mode commands

encoder_input 44 to 108 / All
frame

11 / All
frame

16 / the
stream of
16 bits of
the DATA
FIELD

12 / the
stream of
12 bits of
the DATA
FIELD

17 / All frame with-
out sync bits

data_no 3 / the number
of the data

1 / the num-
ber of the
data

7 / the num-
ber of the
data

7 / the num-
ber of the
data

5 / the number of
the data

message_error 2 / ACK error,
decoder error

1 / framing
error

1 / decoder
error

1 / decoder
error

1 / decoder error

decoder_output 44 to 108 / All
frame

11 / All
frame

16 / the
stream of
16 bits of
the DATA
FIELD

12 / the
stream of
12 bits of
the DATA
FIELD

17 / All frame with-
out sync bits

frame_type_receive 2 / data, remote,
error, overload
frame

1 / not used 1 / not used 1 / not used 2 / bus controller
to rt, rt to bus
controller, rt to rt,
mode commands

interface communicates with the hardware by using ethernet protocol. For this pur-

pose, in our hardware platform DP83848I ethernet physical layer [9] and HX1188NL

transformer [8] are used as a physical layer for the ethernet terminal.

32

Table 4.4: The detailed PS signal interface between the Decoder Controller and En-
coder Controller blocks and the Decoder Controller and Line Decoder blocks for the
implemented serial protocols.

UNIBUS CAN UART ARINC-
708

ARINC-
717

MIL-STD-
1553B

- Width / Content Width /
Content

Width /
Content

Width /
Content

Width / Con-
tent

message_error 1 / decoder error 1 / framing
error

1 / decoder
error

1 / decoder
error

1 / decoder er-
ror

ack_control 45 to 109 / Con-
tains All frame and
ACK_send = ’1’
:receiver can send
dominant ACK bit;
= ’0’ :receiver can
not send dominant
ACK bit;

- / not used - / not used - / not used - / not used

FPGA
HARDWARE

BLOCK
SOFTWARE

1553
TRANCEIVER
HI-1579PSM

TRANSFORMER
TLP1005

IC
(INTEGRATED

CIRCUIT)

1
5

5
3

-B
U

S TRANSFOR
MER
PM-

DB2745S

1553_RT_MOD
ULE

HI-6121

TMS6747
1553_RT
DRIVER
HI-6121

PC
USER

INTERFACE
(MONITOR)

ETHERNET
DRIVER

RT

ETHERNET
PHYSICAL

LAYER
DP83848I

TRANSFOR
MER

HX1188NL

RT-
INTERFACE

BLOCK

XILINX-SPARTAN3-
XC3S2000-4FG676

ETHERNET
RESET
BLOCK

DSP-BUS
INTERFACE

DSP-
CLOCK
DSP-

RESET
DSP-

BOOT

ETHERNET
RESET

CLK
CLOCK

MANAGER

BUS

FPGA-BUS
INTERFACE

DSP-
BOOT

1553_TOP
BLOCK

XILINX-SPARTAN3-XC3S4000-4FG900

BUS CONTROLLER

CLOCK
MANAGER

Figure 4.3: Block diagram of the hardware platform for the implementation of bus
controller terminal of the MIL-STD-1553B protocol.

33

Any hardware devices that satisfy the requirements for our proposed design can be

used in this implementation. We choose Xilinx SPARTAN3-XC3S4000-4FG900 [25]

FPGA device to realize our proposed hardware architecture. XCF32PVO48C PROM

chip [16] is used to keep the FPGA code. On the other hand, Xilinx SPARTAN3-

XC3S2000-4FG676[25] FPGA device and Digital Signal Processor chip called as

TMS320C6747 [32] are used in the remote terminal block of the implementation

platform. XCF08PVOG48C PROM chip [16] is used to keep the FPGA code. FPGA

device provides necessary clock and control signals for the other devices used in the

remote terminal block. In addition, it is also used to boot the DSP device. DSP

chip is used to monitor the data bus by using ethernet protocol driver. In addition,

HI-6121 chip is driven by this processor in order to communicate with this chip as

a remote terminal of the MIL-STD-1553B bus protocol. A flash memory called as

AT25DF161-SH-B [22] is used to store non-volatile DSP data. Since both FPGA

and DSP chips are used in the remote terminal platform, they have to communicate

to each other. Because of that reason, communication drivers are also realized on

hardware and software for both devices.

HI-1579PSM MIL-STD-1553B transceiver chip [29] and TLP-1005 transformer chip

[4] are used as a physical layer for the bus controller terminal, and PM-DB2745S

transformer chip [24] is used as a physical layer for the remote terminal. Transceiver

chip for the remote terminal is embedded to HI-6121 chip.

Transceiver is used to remove high-frequency distortion and to add as little error as

possible to the input waveform. The bus receiver of the HI-1579PSM chip contains

two voltage comparators that provide a pair of digital outputs to the decoder [7].

One comparator has a negative threshold and thus detects negative excursions of the

input signal from the bus. The other one has a positive threshold and detects positive

excursions.

Transitions in outputs of the comparators occur at the different times from the actual

zero crossing points which should be at the mid-point of the bit time. One comparator

switches a little earlier than the zero crossing point and the other switches a little

later. Ideally, the zero crossing point must happen halfway between the transitions of

the two comparators according to the Manchester coding technique which is a main

34

coding style of the MIL-STD-1553B bus protocol. However, unbalanced comparator

thresholds modify this zero crossing point.

Screen shot of the scope screen that was taken from the output signals of the transceiver

called as HI-1579PSM is shown in the Fig. 4.4. In this figure, yellow graph corre-

sponds to the positive output, the green graph corresponds to the negative output and

purple graph corresponds to the difference between them.

Figure 4.4: Screen shot of the scope screen. Outputs of the transceiver (HI-
1579PSM).

For applications, where a transceiver interfaces digital devices, the logic designers

must realize that decoder’s method of measuring its two inputs to estimate actual

zero crossing times determines its sensitivity to bus line signal changes caused by

amplitude variance. Thus, the transceiver and decoder designs must be considered

as a whole. Therefore, characteristics of the transceiver used in the overall design of

the MIL-STD-1553B system must be the main guide for the algorithm of the decod-

ing process. In our implementation, HI-1579PSM transceiver chip is used. Hence,

the timing characteristics of this transceiver specifies the algorithm of our designed

decoder block.

35

According to the input waveform compatibility section of the MIL-STD-1553B bus

protocol, the terminal shall receive and operate with the incoming signals varied from

the square wave to the sine wave. In addition, its tolerance for zero crossing deviations

must be ±150 ns. It means that, decoder must decode incoming signals that have up

to ±150 ns of error in any time interval between zero crossings.

The rise and fall time requirements in the signal transmission of the MIL-STD-1553B

bus protocol cause gaps between outputs of the comparators. The decoder must esti-

mate the actual zero crossing times while gaps occur between receiver output transi-

tions. The gaps become wider as receive signal amplitude decreases. Decoder must

solve this issue in order to decode the received signal correctly. Our decoder design

uses the zero crossing points to decode the incoming data. Hence, gaps between

signal transitions are not important for our decoder block.

Previous works mentioned in [18],[21],[28] use specific clock frequency, which is

equal to the 12 times of the desired data rate, in their decoder design. They use this

clock in order to sample and decode the incoming data. However, in their decoder

block they assume that comparator thresholds are balanced and zero crossing will be

at the midpoint of the input signal but this prediction can introduce an additional zero

crossing error into the received signal seen by the decoder. Such kind of decoder

poorly estimates actual zero crossing times, and it could reject an MIL-STD-1553B

word because of zero crossing errors. Therefore, we capture the zero crossing points

in the encoded data instead of using a specific clock signal. Hence, our decoder design

is tolerant of actual zero-cross distortions in the received signal and zero crossing

errors are eliminated for our decoder design by means of this method.

As it is seen in Fig. 4.3 that there are two main hardware blocks called as CLOCK

MANAGER and 1553_TOP in the bus controller block. Detailed block diagram of

it is seen in Fig. 4.5. DCM CLOCK GEN, CLOCK BUFFER, and CS COUNTER

blocks are the sub-blocks for the clock manager block while 1553 TOP MODULE is

the sub-block for the 1553_TOP block. Detailed signal interfaces of these blocks are

explained in the table 4.5.

"clk_25MHz" signal is the input oscillator clock signal. This signal is used by DCM

CLOCK GEN block to produce "clk_100MHz" signal. On the other hand, DCM

36

clk_25MHz

rxa

rxanot

1553 TOP
MODULE

DCM
CLOCK
GEN

CLOCK
BUFFER

clk_25MHz
clk_100MHz

clk_0

clk_fb

clk_100MHz

rst_dcm

cs

message_reg_transmit

message_reg_receive

message_type

rxa
rxanot

1553 BUS CONTROLLER

CS
COUNTER

clk_25MHz cs

tr_tx_inha
tr_tx_inhb

rx_ena
rx_enb

txa
txanot

sw_parity_error

dw_parity_error

parity_error

message_send

nonresponse_timeout_error

terminal_address_error

message_error

instrumentation_error

reserved_bits_error

broadcast_command_error

busy_bit_error

subsystem_flag_error

dynamic_bus_acceptance_
bit_error

terminal_flag_error

sync_pattern_error

data_word

status_word

Figure 4.5: Block diagram for the bus controller block of the MIL-STD-1553 proto-
col.

CLOCK GEN block needs a feedback and a reset signal in order to produce a clock

signal. "rst_dcm" is the reset signal and "clk_fb" is the feedback signal of the this

block. CLOCK BUFFER block is used to provide this feedback. For this purpose, it

uses "clk_0" signal. "cs" is chip select signal for 1553 TOP MODULE block, and

CS COUNTER block produces it. "rxa" and "rxanot" are the input signals that are

received from the bus. "message_type" signal indicates the type of the message

whereas "message_reg_transmit" and "message_reg_receive" signals

indicate the command words that are going to be served by the bus controller.

"txa" and "txanot" signals are the encoded signals sent to the bus. "tr_tx_inhb",

"tr_tx_inhb", "rx_ena" and "rx_enb" are the control signals for the transceiver

chip. "message_send" signal indicates the end of the message transmission.

"data_word" signal is the received data word while "status_word" signal is

37

Table 4.5: Signal interface of the MIL-STD-1553 bus controller block.

Port Width Description
clk_25MHz 1 25 MHz clock signal
rxa 1 Input data signal
rxanot 1 Complement of the input data signal
rst_dcm 1 Reset signal for digital clock manager
clk_0 1 Input signal for clock buffer
clk_fb 1 Feedback signal for the DCM block
clk_100MHz 1 100 MHz clock signal
cs 1 Chip select signal
message_reg_transmit 16 Transmit command word message
message_reg_receive 16 Receive command word message
message_type 4 Message type control signal
tr_tx_inha 1 Transmit inhibit for BUSA
tr_tx_inhb 1 Transmit inhibit for BUSB
rx_ena 1 Receive enable for BUSA
rx_enb 1 Receive enable for BUSB
txa 1 Encoded output signal
txanot 1 Complement of the encoded output signal
sw_parity_error 1 Status word parity error
dw_parity_error 1 Data word parity error
parity_error 1 Parity error
nonresponse_timeout_error 1 Nonresponse timeout error
terminal_address_error 1 Terminal address error
message_error 1 Message error
instrumentation_error 1 Instrumentation error
reserved_bits_error 1 Reserved bits error
broadcast_command_error 1 Broadcast bit error
busy_bit_error 1 Busy bit error
subsystem_flag_error 1 Subsystem flag error
dynamic_bus_acceptance_bit_error1 Dynamic bus acceptance error
terminal_flag_error 1 Terminal flag error
sync_pattern_error 1 Synchronization pattern error
data_word 16 Data word signal
status_word 16 Status word signal
message_send 1 Message send indication signal

the received status word from the bus. "parity_error" signal is the parity error

bit happened on data flow on the bus. "dw_parity_error" signal is the parity

error bit for the data word whereas "sw_parity_error" is the parity error bit

for the status word. "sync_pattern_error" signal points to synchronization

pattern error. According to the MIL-STD-1553B bus protocol, the sync pattern is a

waveform with six 0.5 us divisions. Each division is represented as a 1 or 0 to indicate

the polarity of the divisions on the data bus. A proper status sync is symbolized as

38

111000, and a proper data sync is symbolized as 000111. If decoder block captures

different sync patterns, it sets the "sync_pattern_error" signal.

According to the MIL-STD-1553B bus protocol, remote terminal shall respond with

a valid status or the number of valid data words requested, at time equal to 14.0 us

after the valid command word. If the remote terminal does not respond the command

word within 14.0 us, "nonresponse_timeout_error" signal is produced.

The other error signals that are generated by 1553 TOP MODULE block are pro-

duced by using the status word send by the remote terminal. If the remote terminal

detects any error related to the data flow happened on the bus, it sets the correspond-

ing error bit on the status word and send it to the bus controller. The subsystem flag

bit in the status word is used by the RT to alert the BC that a subsystem fault exists

while the terminal flag bit in the status word indicates a fault in the RT itself. In ad-

dition, the message error bit is used by the RT to indicate an error in the command

or data words. "subsystem_flag_error", "terminal_flag_error" and

"message_error" are the error signals that are send by the remote terminal.

On the other hand, bus controller verifies RT address bits, instrumentation bit and

reserved bits of the status word. If the RT address bits do not match the RT ad-

dress send by bus controller, "terminal_address_error" signal is produced.

In addition, if the instrumentation bit and reserved bits do not match their expected

values, "instrumentation_error" and "reserved_bits_error" signals

are produced.

The bus controller can use the broadcast command received bit in the status word to

determine whether a broadcast command was received error-free or not. If there is a

error for this bit, "broadcast_command_error" signal is set.

"busy_bit_error" and "dynamic_bus_acceptance_bit_error" are pro-

duced if their corresponding bits in the status word indicate an error condition.

According to the MIL-STD-1553B bus protocol, there are ten types of messages as

it is mentioned before. 1553 TOP MODULE block supports all message types. A

detailed block diagram of this block is seen in Fig. 4.6 and its signal interface is

explained in table 4.6. It can be seen on the figure that, each message type has their

39

hardware blocks. These blocks and their "input" and "output" signals correspond

to our proposed hardware architecture. Multiplexer is used to enable one of these

blocks and demultiplexer is used to choose corresponding output signals according to

the message type that is served by the bus controller.

BC_TO_RT
TOP

RT_TO_BC
TOP

RT_TO_RT
TOP

BC_TO_RT
BROADCAST

TOP

RT_TO_RT
BROADCAST

TOP

MODE_WITH
DATA

TRANSMIT
TOP

MODE_WITH
DATA

RECEIVE
TOP

MODE_WITH
DATA

BROADCAST
TOP

MODE
WITHOUT

DATA
TOP

MODE
WITHOUT

DATA
BROADCAST

TOP

DEMUX
Chip Select

m
es

sa
ge

_t
yp

e

ce_msg1

ce_msg2

ce_msg3

ce_msg4

ce_msg5

ce_msg6

ce_msg7

ce_msg8

ce_msg9

ce_msg10

ce MUX
Chip Select

m
es

sa
ge

_t
yp

e
output

(all data)
output_top
(top data)

output
(all data)

output
(all data)

output
(all data)

output
(all data)

output
(all data)

output
(all data)

output
(all data)

output
(all data)

input
(all data)

input
(all data)

input
(all data)

input
(all data)

input
(all data)

input
(all data)

input
(all data)

input
(all data)

input
(all data)

input
(all data)

output
(all data)

output
(all data)

DUALPORT
RAM
DATA

BUFFER

PORTA
TRANSMIT DATA

 data

DUALPORT
RAM
DATA

BUFFER

PORTB
RECEIVE DATA

 data

Figure 4.6: Block diagram for 1553 TOP MODULE block.

On the other hand, dual port memory block is used as a data buffer between the appli-

cation layer and the data link layer. A detailed block diagram of this memory block is

40

Table 4.6: Signal interface of the 1553 TOP MODULE block.

Port Width Description
message_type 4 Message type control signal
ce 1 Chip enable signal
ce_msg1 1 Chip enable signal for message type1
ce_msg2 1 Chip enable signal for message type2
ce_msg3 1 Chip enable signal for message type3
ce_msg4 1 Chip enable signal for message type4
ce_msg5 1 Chip enable signal for message type5
ce_msg6 1 Chip enable signal for message type6
ce_msg7 1 Chip enable signal for message type7
ce_msg8 1 Chip enable signal for message type8
ce_msg9 1 Chip enable signal for message type9
ce_msg10 1 Chip enable signal for message type10
data 16 Data word signal of the data buffer

memory
input - All input signals that are described for

UNIBUS architecture
output - All output signals that are described for

UNIBUS architecture
output_top - Output signals of the top block

attached in Fig. 4.7 and its signal interface is explained in table 4.7. Firstly, transmit-

ted data are written to the Port A of this memory by the application layer. If the bus

controller serves a transmit message type, desired data are read from this port of the

data buffer. On the other side, if the bus controller serves a receive message type, re-

ceived data are written to the Port B of this memory during the message transmission

process by the data link layer. Then, these are read from this port by the application

layer in order to monitor them. Cycle diagram of these data buffer is shown in Fig.

4.8.

Apart from this dual port memory, a single port memory is used in our proposed

hardware architecture as it is seen in Fig. 3.2. This memory is used as a data buffer

between the data link layer and the physical layer. A detailed block diagram of this

memory block is attached in Fig. 4.9 and its signal interface is explained in table 4.8.

If the bus controller serves a transmit message type, desired data are read from this

buffer. In addition, if the bus controller serves a receive message type, received data

are stored to this buffer. Cycle diagram of this data buffer is shown in Fig. 4.10.

A loopback test is realized for testing the functionality of our design. Result of such

41

DUAL-PORT
RAM

clka
ena

wena

addra(ram_depth bit)

dina(ram_width bit)

douta
(ram_width

bit)

clkb
enb

wenb

addrb(ram_depth bit)

dinb(ram_width bit)

doutb
(ram_width

bit)

PORT B

PORT A

datawords(0 to 31)

ram_address
generator

1553
 TRANSMIT
MESSAGE

TYPE

address

1553
 RECEIVE
MESSAGE

TYPE

Figure 4.7: Block diagram for the data buffer between the application layer and the
data link layer.

Table 4.7: Signal interface of the dual port memory block.

Port Width Description
clka 1 Clock signal of portA of the memory
ena 1 Enable signal of portA of the memory
wena 1 Write enable signal of portA of the

memory
addra ram depth bits Address signal of portA of the memory
dina ram width bits Input data of portA of the memory
clkb 1 Clock signal of portB of the memory
enb 1 Enable signal of portB of the memory
wenb 1 Write enable signal of portB of the

memory
addrb ram depth bits Address signal of portB of the memory
dinb ram width bits Input data of portB of the memory
douta ram width bits Output data of portA of the memory
doutb ram width bits Output data of portB of the memory
address ram depth bits RAM address signal of the transmit

message block

kind of loopback test determines whether the both data transmission and data recep-

tion processes works well or not. Two different message types called as bus controller

42

WRITES DATA
TO PORT A

TRANSMIT MESSAGE

READS DATA
FROM PORT A

APPLICATION
LAYER

READS DATA
FROM PORT B

WRITES DATA
TO PORT B

DATA LINK
 LAYER

RECEIVE MESSAGE

Figure 4.8: Cycle diagram for the data buffer between the application layer and the
data link layer.

SINGLE-
PORT
RAM

clka
ena

wena

addra(ram_depth bit)

dina(ram_width bit)

douta
(ram_width

bit)
1553

 TRANSMIT
MESSAGE

TYPE

1553
 RECEIVE
MESSAGE

TYPE

SINGLE-
PORT
RAM

clka
ena

wena
addra(ram_depth bit)

dina(ram_width bit)

douta
(ram_width

bit)

Figure 4.9: Block diagram for the data buffer between the data link layer and the
physical layer.

to RT transfer (transmit) and RT to bus controller transfer (receive) are used for this

purpose. Firstly, bus controller terminal sends a receive command word (RT to BC)

to request three data words from a remote terminal (HI-6121). A screen shot of this

command word is shown in Fig. 4.11. After a valid command, remote terminal (HI-

43

Table 4.8: Signal interface of a single port memory block.

Port Width Description
clka 1 Clock signal of the memory
ena 1 Enable signal of the memory
wena 1 Write enable signal of the memory
addra ram depth bits Address signal of the memory
dina ram width bits Input data of the memory
douta ram width bits Output data of the memory

READS DATA
FROM MEMORY

TRANSMIT MESSAGE

WRITES DATA
TO MEMORY

PHYSICAL
 LAYER

RECEIVE MESSAGE

DATA LINK
 LAYER

Figure 4.10: Cycle diagram for the data buffer between the data link layer and the
physical layer.

6121) sends status word and desired number of data words to the bus controller and

monitor these data on the user interface which is shown in Fig. 4.14. The screen

shot of these status and data words are shown in Fig. 4.12. After reception of valid

status and data words, bus controller terminal sends these received data words to a

remote terminal by using a transmit command word (BC to RT). A screen shot of

this command word is shown in Fig. 4.13. Finally, after reception of valid command

and data words, remote terminal monitors these data on the monitor interface. Screen

shot of the monitor interface is shown in Fig. 4.14. As can be seen in this figure,

the transmitted and the received data for the remote terminal are same. It means that,

loopback test works without any problem. Cycle diagram of this test is shown in Fig.

4.15.

In this implementation, Bus Controller to Remote Terminal message type was realized

44

as a data transmission process and Remote Terminal to Bus Controller message type

was realized as a data reception process. The other defined message types and detailed

error management process for the validation test of this protocol will be implemented

as a future work.

Figure 4.11: Screen shot of the receive command word.

Figure 4.12: Screen shot of the received status and data words.

4.2 Performance Evaluation

The main objective of this work is to design a generic hardware framework for real-

time embedded serial bus protocols. The performance of the proposed design was ob-

served through testing five different bus protocols such as MIL-STD-1553B, ARINC-

708, ARINC-717, CAN and UART by simulating in MODELSIM platform, compar-

45

Figure 4.13: Screen shot of the transmit command word.

Figure 4.14: Screen shot of the monitor screen.

ing the performance of the UART implementation with the work proposed in [53]

and implementing the bus controller of the MIL-STD-1553B bus protocol as it is

mentioned in Design and Implementation section of this chapter.

The efficiency of implemented bus protocols is estimated by the set of criteria: (i)

hardware resources required to implement our system; (ii) power consumptions; (iii)

quantity of the common blocks in the UNIBUS architecture.

The UNIBUS architecture for the simulation of five different bus protocols was im-

plemented on ISE 14.5 [23] software, and the total on-chip power consumption was

estimated by Xilinx’s Power Estimator tool [11]. This total power includes both the

device dependent static power which is dissipated when there is no signal activity and

46

RECEIVE
COMMAND

SEND

STATUS AND
DATA WORDS

SEND

BUS
CONTROLLER

REMOTE
TERMINAL

STATUS AND
DATA WORDS

READ

TRANSMIT
COMMAND

SEND

DATA WORDS
READ AND

STATUS SEND

Figure 4.15: Cycle diagram for the loopback test.

the additional dynamic power that is dissipated during the operation.

The hardware resource and power consumption results of these simulations are pre-

sented in Table 4.9 and Table 4.10.

Table 4.9: The required hardware resources for the implementation of five different
bus protocols.

Bus Protocol Number of
Slice Flip
Flops

Number of
occupied
Slices

Total num-
ber of 4 in-
put LUTs

Number of
bounded
IOBs

Average
Fanout of
Non-clock
Nets

MIL-STD-1553B 6118 7323 11934 145 3.45
CAN 826 976 1676 35 3.47
ARINC-717 456 623 1015 10 3.44
ARINC-708 10859 9463 10685 76 3.87
UART 357 357 537 18 3.09

When we compare the hardware resources, we see that the implementation of MIL-

STD-1553B bus protocol has the highest logic resources (4 input LUTs). This is due

to the complexity of this protocol since ten types of frame transmission are realized

for it. Beside this protocol, ARINC-708 bus protocol requires the highest number of

47

Table 4.10: The power consumptions for the implementation of five different bus
protocols.

Bus Protocol Static Power
(mW)

Dynamic
Power (mW)

Total Power
(mW)

MIL-STD-1553B 264 72 336
CAN 263 32 295
ARINC-717 263 28 291
ARINC-708 264 83 347
UART 263 27 290

slice flip flops. This is mostly due to the large embedded registers used to store the

required signals since the frame length of this protocol is the highest one which can

be seen in in Table 4.1. On the other hand, UART bus protocol consumes the least

logic resources (4 input LUTs) while it has the lowest frame length. Therefore, the

results show that, the number of the required logic resources is directly proportional

to the complexity of the bus protocol.

It can be seen in Table 4.10 that the power consumption of proposed UNIBUS archi-

tecture is independent of the type of the implemented bus protocol since the power

consumptions of all bus protocols are similar. Therefore, power consumption of

the UNIBUS architecture was demonstrated during our implementations. Maximum

static power is about 0,265 W, maximum dynamic power is about 0,085 W and max-

imum total power is about 0,350 W.

Apart from these results, quantity of the common blocks between the implemented

five bus protocols attached in Table 4.11 shows the re-usability of the proposed UNIBUS

architecture. UNIBUS is designed as generic architecture. Therefore, similarity of the

bus protocols is not the important criteria for it. Table 4.11 predicts this conception.

It shows that some implemented protocols are similar whereas some other ones are

different which is also seen in Table 4.1. However, this condition does not affect the

design of the UNIBUS while it has generic architecture. It only affects the logic de-

sign of the sub-blocks of the UNIBUS. The logic design of the common blocks seen

in Table 4.11 should be same whereas the other sub-blocks should be customized

according to the implemented bus protocol.

Table 4.11 shows that the Data Buffer Memory block is only common block for

48

UNIBUS architecture since it is used as a data buffer between data link layer and

physical layer. Commonality of the other blocks in UNIBUS depends on the type of

the implemented bus protocol. MIL-STD-1553B and ARINC-708 are the most simi-

lar ones since same coding and checksum styles are used as it is mentioned in Fig. ??.

Thus, they have four common blocks. On the other hand, MIL-STD-1553B and CAN

are the most different ones since there is only one common block between them.

Table 4.11: The common blocks for the implementation of five different bus proto-
cols.

Common Block MIL-STD-
1553B

CAN ARINC-
717

ARINC-
708

UART

MIL-STD-1553B - Data Buffer
Memory

Data Buffer
Memory,
Checksum
Generator

Data Buffer
Memory,
Checksum
Generator,
Line De-
coder, Line
Encoder

Data Buffer
Memory,
Checksum
Generator

CAN Data Buffer
Memory

- Data Buffer
Memory

Data Buffer
Memory

Data Buffer
Memory,
Line De-
coder, Line
Encoder

ARINC-717 Data Buffer
Memory,
Checksum
Generator

Data Buffer
Memory

- Data Buffer
Memory,
Checksum
Generator

Data Buffer
Memory,
Checksum
Generator

ARINC-708 Data Buffer
Memory,
Checksum
Generator, Line
Decoder, Line
Encoder

Data Buffer
Memory

Data Buffer
Memory,
Checksum
Generator

- Data Buffer
Memory,
Checksum
Generator

UART Data Buffer
Memory,
Checksum
Generator

Data Buffer
Memory,
Line De-
coder, Line
Encoder

Data Buffer
Memory,
Checksum
Generator

Data Buffer
Memory,
Checksum
Generator

-

The performance of UNIBUS architecture was also tested by comparing our UART

implementation with the UART implementation in [53]. In this work, a software-

hardware method of serial interface controller implementation was proposed. The

data link layer functions were implemented in software while physical level functions

were implemented in hardware. In order that to estimate the efficiency of offered

49

method, a system with 1-Wire interface controller based on UART was implemented.

Software and hardware modules were implemented directly in FPGA. Spartan-3E

FPGA family [25] was used as a hardware device whereas soft microcontroller core

PicoBlaze [20] provided by Xilinx company for free was used as a software module.

Two criteria made the efficiency estimation of their UART implementation: (i) the

hardware expenses of system implementation; (ii) time interval required for executing

of data exchange. They used a histogram to show their results. Each column in their

histogram presents the hardware expenses, the size of application software, the size

of interface support software and the amount of used general purpose registers.

Same method is used in order to compare our UART implementation results with this

work. Comparison results are shown in Fig. 4.16. The x axis of this graph reflects

time spent to complete the data exchange process.

140

317

71

7

269

0 0 0

Hardware Logic
Resources

Application
software - byte

Interface software
- byte

General Purpose
Register - byte

T (µS)44,50,2

Hardware -
Software

Implementation
on UART

Hardware
Implementation

on UART

Figure 4.16: The comparison of the UART implementation.

Fig. 4.16 shows that the time of data exchange process for our implementation is

about 200 ns whereas the time of data exchange process for the other work is about

44.5 us. Our implementation consists of only hardware architecture, there is no need

to application software, interface support software, and general purpose registers.

50

Because of that reason, our work provides decreasing of the time of data exchange

process in order of hundreds. On the other hand, the required hardware logic re-

sources for our implementation is 270 whereas the required hardware logic resources

for the other work is about is 140. It means that, our work provides increasing of

the required hardware logic resources in 2 times. Xilinx SPARTAN3-XC3S4000-

4FG900 [25] FPGA device is used for our implementation. Total amount of logic

resources of it is 55296. Thus, the device utilization for our UART implementation

is below 1%. Therefore, the amount of hardware expenses of our implementation are

not considerable while FPGA supports tens of thousands logic resources.

Finally, we tested the performance of our UNIBUS architecture by implementing it on

hardware platform. The bus controller terminal of the MIL-STD-1553B bus protocol

was implemented. It was implemented on Xilinx SPARTAN3-XC3S4000-4FG900

[25] FPGA device by using ISE 14.5 [23] software. A loopback test was realized in

order to test our design.

We compare our implementation results with the commercial products which are also

for MIL-STD-1553B bus protocol. Comparison table is attached in Table 4.12. Five

different commercial products such as BRM1553FE, BRM1553D, BRM1553PCI

[17],[18], Core1553BBC [21] and Core1553BRM [28] are used for the comparison.

Four different criteria such as available modes, area utilization, required memory and

required clock frequency are used for this comparison.

First column of this table shows the available modes for the implementation. Our

implementation and Core1553BBC product consist of only bus controller terminal

of the MIL-STD-1553B whereas BRM1553 and Core1553BRM products support all

three terminals of the MIL-STD-1553B. Supporting of all terminals is considered as

future work for our design.

Second column of the comparison table shows the area requirements. Our proposed

design needs about 3000 logic resources which depend on the FPGA type used in the

implementation. This amount is similar to the area requirements of other products.

Optimization of the logic design and decreasing the amount of logic resources are

considered as future work.

51

Table 4.12: The comparison between our proposed work and the commercial prod-
ucts.

Products Available
Modes

Area Utilization Required Memory Required
Clock Fre-
quency

BRM1553FE Bus Con-
troller,
Remote
Termi-
nal, Bus
Monitor

764 to 1059 4-LUT,
Depending on FPGA
type

32 x 16 bits Any even
frequency of
12Mhz or more

BRM1553D Bus Con-
troller,
Remote
Termi-
nal, Bus
Monitor

RT only:2800 to 3400
4-LUT Depending on
FPGA type; BC + RT
+ MT:3950 to 4320
4-LUT Depending on
FPGA type

2, 4, 8, 16, 32 or
64K x 16 bits

Any even
frequency of
12Mhz or more

BRM1553PCI Bus Con-
troller,
Remote
Termi-
nal, Bus
Monitor

RT only:3100 to 3700
4-LUT Depending on
FPGA type; BC + RT
+ MT:4250 to 4620
4-LUT Depending on
FPGA type

2, 4, 8, 16, 32 or
64K x 16 bits; Dual
Port RAM

33 or 66MHz

Core1553BBC Bus Con-
troller

1656 to 2810 cells or
tiles Depending on
FPGA type; works only
with Actel FPGAs

Supports up to
128kbytes of
Memory

12, 16, 20, or
24 MHz

Core1553BRM Bus Con-
troller,
Remote
Termi-
nal, Bus
Monitor

1900 to 8000 cells or
tiles Depending on
FPGA type; works only
with Actel FPGAs

Between 1 kbyte
and 128 kbytes (16
bits wide) of inter-
nal FPGA memory
or external memory
used for data stor-
age

12, 16, 20, or
24 MHz

Our

Proposed

Work

Bus Con-
troller

2000 to 3000 4-LUT,
Depending on FPGA
type

Limited by FPGA
resources (32 x 16
bits

Any frequency
larger than
2 MHz (100
MHz)

Third column of the comparison table shows the memory requirements. 32x16 bits

memory is used for our implementation. However, our proposed UNIBUS architec-

ture supports larger memory sizes since generic Data Buffer Memory is used in this

architecture. The FPGA resources limits the size of this memory. This means larger

the FPGA resources, larger the memory size.

Last column of the comparison table shows the clock frequency requirements. We

52

used different kind of decoding method for our design. By means of this decoding

method, our design is tolerant of actual zero-cross distortions and zero crossing errors

in the received signal. We capture the zero crossing points in the encoded data instead

of using a specific clock signal. However, other products use specific clock frequency,

which is equal to the 12 times of the desired data rate, in order to sample and decode

the incoming data. Therefore, our proposed design does not need any specific clock

frequency while the other products need. Any frequency larger than 2 MHz is enough

for our design, since the baud rate of the MIL-STD-1553B protocol is 1 MHz. We

used 100 MHz clock signal as the main clock in our implementation.

53

54

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis presents UNIBUS which is a generic hardware architecture to implement

the physical and data link layer functions of serial bus protocols. The hardware blocks

and the signal interfaces of UNIBUS are designed carefully to separate the protocol

specific and protocol independent components to increase the reusability. Such sep-

aration also increases the reliability of the design as the protocol independent com-

ponents which are common among different protocols do not need verification for

each implementation. The clear specifications of the protocol specific interfaces also

contribute to the reliability. The implementation with UNIBUS is streamlined which

decreases the hardware design time.

The versatility of UNIBUS is demonstrated by implementing CAN, UART, ARINC-

708, ARINC-717 and MIL-STD-1553B on FPGA using MODELSIM. Furthermore

MIL-STD-1553B is fully implemented and tested with a commercial chip. This im-

plementation consists of only bus controller terminal of the MIL-STD-1553B, and

it needs about 3000 logic resources which depend on the FPGA type used in the

implementation. The resource consumption results show that the generic design of

UNIBUS does not decrease the efficiency of the implementations. The results show

that, the number of the required logic resources is directly proportional to the com-

plexity of the bus protocol whereas the power consumption of proposed UNIBUS

architecture is independent from the type of the implemented bus protocol. Apart

from these results, quantity of the common blocks between the implemented five bus

protocols were examined. The results show that the dissimilarity of the bus protocols

is not an important criterion for our proposed hardware framework. This dissimilarity

55

condition does not affect the design of the UNIBUS while it has generic architecture.

It only affects the logic design of the sub-blocks of the UNIBUS.

The performance of UNIBUS architecture is also tested by comparing UNIBUS UART

implementation with the UART implementation in [53]. The results show that, the

time of data exchange process is about 200 times smaller in UNIBUS UART by in-

creasing the required hardware logic resources 2 times.

The decoding of UNIBUS is tolerant of actual zero-cross distortions and zero crossing

errors in the received signal. The zero crossing points in the encoded data are captured

instead of using a specific clock signal. However, other products use specific clock

frequency in order to sample and decode the incoming data. Therefore, our proposed

design does not need any kind of specific clock frequency different than the other

products.

As future work, the design of the remote terminal and bus monitor terminal of the

MIL-STD-1553B bus protocol will be added to the proposed design to complete the

realization to the commercial product level. In addition, optimization of the logic

design and decreasing the amount of logic resources are also considered as a future

work. UNIBUS can also be used for the development of new serial bus protocols.

56

REFERENCES

[1] Osi model, 1999-2001.

[2] Arinc protocol tutorial, June 2000.

[3] Condor mil-std-1553b protocol tutorial, June 2000.

[4] Tlp-1000 series mil-std-1553 transformers, May 2001.

[5] Can bus texas instruments, August 2002.

[6] Ddc mil-std-1553b designer’s guide, August 2003.

[7] Hardware design considerations for mil-std-1553 terminals, August 2008.

[8] Hx1188nl pulse transformer, May 2008.

[9] Ti - phyter industrial temperature single port 10/100 mb/s ethernet physical layer
transceiver, May 2008.

[10] Understanding and using the controller area network, October 2008.

[11] Xilinx power estimator tool, April 2009.

[12] Aim mil-std-1553b protocol tutorial, November 2010.

[13] Arinc protocol summary, April 2010.

[14] Uart cytron tutorial, December 2010.

[15] Uart exar tutorial, April 2010.

[16] Xilinx platform flash in-system programmable configuration proms, May 2010.

[17] 1553 core types selection, November 2011.

[18] Datasheet of all brm1553 ip cores, November 2011.

[19] Sae mil-std-1553b protocol bus controller validation test, November 2011.

[20] User guide of picoblaze 8-bit embedded microcontroller, June 2011.

[21] Datasheet of core1553bbc, May 2012.

[22] Adesto technologies at25df161-sh-b flash memory, May 2013.

[23] Ise design suite, April 2013.

57

[24] Pm-db2745s mil-std-1553 transformers, July 2013.

[25] Xilinx - spartan3 series fpga family, June 2013.

[26] Can bus wikipedia, November 2014.

[27] Can protocol tutorial, January 2014.

[28] The handbook of core1553brm, January 2014.

[29] Holt ic - hi-1579 mil-std-1553b bus protocol tranceiver chip, May 2014.

[30] Holt ic - hi-6121 mil-std-1553b bus protocol remote terminal chip, July 2014.

[31] Modelsim - advanced simulation and debugging platform, July 2014.

[32] Ti - tms320c6747 fixed/floating-point digital signal processor, June 2014.

[33] Uart wikipedia, November 2014.

[34] W. Ahmad, Z. Shengbing, H. Amjad, G. Gillani, and A. Jianfeng. Fpga based
real time implementation scheme for arinc 659 backplane data bus. In Computer
Research and Development (ICCRD), 2011 3rd International Conference on,
volume 4, pages 478–482, March 2011.

[35] G. W. An Yu Cheng, Ju Lin Zhang. Design of vehicle can-network bit-level
interference testing system based on fpga. In Advanced Materials Research,
2013, volume 765 - 767, pages 129–133, September 2013.

[36] G. W. An Yu Cheng, Ju Lin Zhang. Performance analysis of controller area
network. In Applied Mechanics and Materials , 2014, volume 543-547, pages
3499–3502, Marc 2014.

[37] J. Artal, J. Caraballo, and R. Dufo. Can/lin-bus protocol. implementation of
a low-cost serial communication network. In Tecnologias Aplicadas a la Ense-
nanza de la Electronica (Technologies Applied to Electronics Teaching) (TAEE),
2014 XI, pages 1–8, June 2014.

[38] T. Blessington, B. Murthy, G. Ganesh, and T. Prasad. Optimal implementation
of uart-spi interface in soc. In Devices, Circuits and Systems (ICDCS), 2012
International Conference on, pages 673–677, March 2012.

[39] Q. Cai, Y. Guo, W. Chen, and M. Wang. A programmable controller based on
can field bus embedded microprocessor and fpga. volume 7129, pages 712919–
712919–6, 2008.

[40] L. Chen, J. Lei, Q. Wang, N. Lin, X. Long, and C. Hou. A novel method for
evaluating the attenuation of 1553b bus system. In Computer Science Education
(ICCSE), 2012 7th International Conference on, pages 281–284, July 2012.

58

[41] C. Hou, S. Wang, Q. Wang, and H. Zhang. Performance analysis of high-speed
mil-std-1553 bus system using dmt technology. In Computer Science Education
(ICCSE), 2013 8th International Conference on, pages 533–536, April 2013.

[42] Z. HU, J. ZHANG, and X. ling LUO. A novel design of efficient multi-
channel {UART} controller based on {FPGA}. Chinese Journal of Aeronautics,
20(1):66 – 74, 2007.

[43] J. H. Hua Zang, Hai Wei Mu. Design and implementation of intelligent con-
troller based on can bus of charge and discharge machine for lead-acid battery.
In Advanced Materials Research, 2014, volume 926-930, pages 1257–1260,
May 2014.

[44] J. Jaeger. FPGA-based prototyping grows up. Electronic Engineering Times,
(518), 2008.

[45] M. Jayananda and N. Jayarathne. Development of a field programmable gate
array based controller area network sniffer. In Industrial and Information Sys-
tems (ICIIS), 2013 8th IEEE International Conference on, pages 610–615, Dec
2013.

[46] T. Jena, A. Swain, and K. Mahapatra. A novel bit stuffing technique for con-
troller area network (can) protocol. In Advances in Energy Conversion Tech-
nologies (ICAECT), 2014 International Conference on, pages 113–117, Jan
2014.

[47] Y. Jiang, B. Liang, and X. Ren. Design and implementation of can-bus experi-
mental system. In Strategic Technology (IFOST), 2011 6th International Forum
on, volume 2, pages 655–659, Aug 2011.

[48] J. Jose. Design of manchester ii bi-phase encoder for mil-std-1553 protocol.
In Automation, Computing, Communication, Control and Compressed Sens-
ing (iMac4s), 2013 International Multi-Conference on, pages 240–245, March
2013.

[49] J. Jose and S. Varghese. Design of 1553 protocol controller for reliable data
transfer in aircrafts. In Intelligent Systems Design and Applications (ISDA),
2012 12th International Conference on, pages 686–691, Nov 2012.

[50] N. Jusoh, A. Ibrahim, M. Haron, and F. Sulaiman. An fpga implementation of
shift converter block technique on fifo for uart. In RF and Microwave Confer-
ence (RFM), 2011 IEEE International, pages 320–324, Dec 2011.

[51] B. Kirk. FPGA-prototyping and ASIC-conversion considerations. EDN,
52(21):67 –70, 2007.

[52] D. Li-feng, D. Ming, and L. Jian-ming. Application of ip core technology to
the 1553b bus data traffic. In Microelectronics and Electronics (PrimeAsia),

59

2010 Asia Pacific Conference on Postgraduate Research in, pages 338–342,
Sept 2010.

[53] I. Maykiv. The method of software-hardware implementation of serial inter-
faces. In Modern Problems of Radio Engineering, Telecommunications and
Computer Science, 2008 Proceedings of International Conference on, pages
439–441, Feb 2008.

[54] M. Mostafa, M. Shalan, and S. Hammad. Fpga-based low-level can protocol
testing. In System-on-Chip for Real-Time Applications, The 6th International
Workshop on, pages 185–188, Dec 2006.

[55] C. Pantiruc and M. Negru. Fpga based can data visualization. In Intelligent
Computer Communication and Processing (ICCP), 2011 IEEE International
Conference on, pages 245–252, Aug 2011.

[56] T. Presi. Design and development of pic microcontroller based vehicle monitor-
ing system using controller area network (can) protocol. In Information Com-
munication and Embedded Systems (ICICES), 2013 International Conference
on, pages 1070–1076, Feb 2013.

[57] R. Randhawa and M. Imran. A low cost design of mil-std-1553 devices. In
Satellite Telecommunications (ESTEL), 2012 IEEE First AESS European Con-
ference on, pages 1–4, Oct 2012.

[58] A. . L. N. Roopesh N.M. Vhdl implementation of 1553 protocol using actel ip
core. In International Journal of Advanced Computer Engineering and Com-
munication Technology (IJACECT), pages 2278–5140, Feb 2013.

[59] C. C. Shan Shan Zhang. Design and implementation of intelligent multi-serial
ports data transmission system based on nios ii using in smart home. In Applied
Mechanics and Materials, 2014, volume 556 - 562, pages 1605–1609, May
2014.

[60] S. SURESH. Vhdl implementation of manchester encoder and decoder. In In-
ternational Journal of Electrical, Electronics and Data Communication, pages
2084–2320, Apr 2013.

[61] K. Szurman, J. Kastil, M. Straka, and Z. Kotasek. Fault tolerant can bus control
system implemented into fpga. In Design and Diagnostics of Electronic Circuits
Systems (DDECS), 2013 IEEE 16th International Symposium on, pages 289–
292, April 2013.

[62] G. Wakhle, I. Aggarwal, and S. Gaba. Synthesis and implementation of uart us-
ing vhdl codes. In Computer, Consumer and Control (IS3C), 2012 International
Symposium on, pages 1–3, June 2012.

60

[63] H. Xiang-Dong, Y. Hui-mei, and Z. Xiao-Xu. Design of dual redundancy
can-bus controller based on fpga. In Industrial Electronics and Applications
(ICIEA), 2013 8th IEEE Conference on, pages 843–847, June 2013.

[64] Z. B. S. Xiao Rong Tong. Design of uart with crc check based on fpga. In Ad-
vanced Materials Research, 2012, volume 490 - 495, pages 1241–1245, March
2012.

[65] J. Yousaf, M. Irshad, and I. Mehmood. Implementation of 1553b bus protocol
on fpga board using digital phase lock loop. In Emerging Technologies (ICET),
2012 International Conference on, pages 1–6, Oct 2012.

[66] L. Zhijian. Notice of retraction research and design of 1553b protocol bus con-
trol unit. In Educational and Network Technology (ICENT), 2010 International
Conference on, pages 330–333, June 2010.

[67] Y. Zhu, Y. Wang, and U. Schaefer. Study on the communication between fpga
and observer using controller area network and uart. In Information Networking
and Automation (ICINA), 2010 International Conference on, volume 1, pages
V1–240–V1–244, Oct 2010.

61

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Serial Bus Standards and Their Implementation
	Serial Bus Standards
	Implementation Challenges and Performance Metrics
	Related Work on Implementation of Serial Buses
	Hardware Implementation Platforms
	Previous Implementations of the MIL-STD-1553B protocol on FPGA

	UNIBUS Hardware Architecture
	Implementation and Evaluation of Selected Bus Protocols with UNIBUS
	Design and Implementation
	CAN Bus
	UART
	ARINC-708 and ARINC-717
	MIL-STD-1553B
	Summary and Overview of Signal Interfaces
	MIL-STD-1553B Hardware Realization

	Performance Evaluation

	Conclusions and Future Work
	REFERENCES

