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Supervisor, Institute of Applied Mathematics, METU

Dr. Murat Uzunca
Co-supervisor, Mathematics Department, Atılım University

Examining Committee Members:

Prof. Dr. Gerhard Wilhelm Weber
Institute of Applied Mathematics, METU

Prof. Dr. Bülent Karasözen
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ABSTRACT

NUMERICAL SIMULATION OF ADVECTIVE LOTKA-VOLTERRA SYSTEMS
BY DISCONTINUOUS GALERKIN METHOD

Aktaş, Senem

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

Co-Supervisor : Dr. Murat Uzunca

February 2015, 35 pages

In this thesis, we study numerically advection-diffusion-reaction equations arising from
Lotka-Volterra models in river ecosystems characterized by unidirectional flow. We
consider two and three species models which include competition, coexistence and ex-
tinction depending on the parameters. The one dimensional models are discretized by
interior penalty discontinuous Galerkin model in space. For time discretization, fully
implicit backward Euler method and semi-implicit IMEX-BDF methods are used. Nu-
merical simulations for various set up parameters reveal more insight in the compli-
cated dynamics by advective Lotka-Volterra systems.

Keywords : Convection-diffusion-reaction equation, Lotka-Volterra equations, Discon-
tinuous Galerkin, Implicit Euler, IMEX method
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ÖZ

ADVEKSİYONLU LOTKA-VOLTERRA DENKLEMLERİNİN KESİNTİLİ
GALERKİN YÖNTEMLEİYLE NÜMERİK SİMÜLASYONU

Aktaş, Senem

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Ortak Tez Yöneticisi : Dr. Murat Uzunca

Şubat 2015, 35 sayfa

Bu tezde adveksiyon terimi içeren Lotka-Volterra denklemleri, tek yönlü akış ile nitelendirilmiş
nehir ekosistemlerinde ele alınmıştır. Değişkenlere bağlı olarak rekabet, bir arada
varolma ve yok olma durumlarını içeren iki ve üç türlü modellerin davranışları sayısal
olarak incelenmektedir. Bu denklemler uzayda kesintili Galerkin yöntemi kullanılarak
ayrıklaştırılmıştır. Zaman ayrıklaştırılması için kapalı Euler yöntemi ve yarı kapalı
IMEX-BDF yöntemi kullanılmıştır. Çeşitli değişkenler ile yapılan nümerik simülasyonlar
adveksiyonlu Lotka-Volterra sistemlerinin karmaşık dinamik yapısının daha iyi anlaşılmasını
sağlamıştır.

Anahtar Kelimeler : Konveksiyon-difüzyon-reaksion denklemi, Lotka-Volterra den-
klemleri, Süreksiz Galerkin yöntemi, Kapalı Euler yöntemi, IMEX yöntemi

ix



x



To My Family

xi



xii



ACKNOWLEDGMENTS

I thank my supervisor Prof. Dr. Bülent Karasözen for giving me the possibility to
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CHAPTER 1

INTRODUCTION

Advection is a movement mechanism of a substance in an environment like water or
air. Diffusion refers to the net movement of a substance from high concentration to low
concentration and reaction is the response to an action that results in the interconver-
sion of species. The advection-diffusion-reaction(ADR) model describes the density
changes of substances under the effects of these three parameters. ADR equations are
used as model in different applications. Examples of ADR equations are the transform
of water steam in the Earth’s atmosphere [20], the pollution of air and water and the
effects of unidirectional flow on the spatial models of community composition [12, 25]
and nuclear contamination [11]. Moreover, species replacement in river ecosystems is
another area where these equations are applied [15].

ADR equations coupled by Lotka-Volterra(LV) interaction terms are discussed in [15],
whereas dynamical behavior of advective Lotka-Volterra equations with three species
are analyzed in detail in [30].

In this thesis, we consider the following coupled system of ADR equations [13]:

∂ui
∂t

+v ·∇ui−di∆ui+Ri(u1, . . . , um) = fi(x, t), on Ω×J, i = 1, 2, . . . ,m, (1.1)

where J = (0, T ), Ω is a bounded domain in R1 or R2 with a smooth or piecewise
boundary, v is the velocity vector in Rd for d = 1, 2 and di’s are diffusion parameters.
Ri’s and fi(x, t)’s denote the nonlinear reaction terms and the source terms, respec-
tively. The unknowns ui’s denote the concentrations or densities of the corresponding
species, ∇ stays for the gradient operator and ∆ denotes the Laplace operator. In these
equations, advection and diffusion terms which are v and di respectively constitute the
linear part of our general system. On the other hand, reaction term are the nonlinear
part of our general system.

The numerical approximations to the solutions of the ADR models are studied inten-
sively using finite differences, finite volume and finite elements methods. A finite vol-
ume algorithm on the sphere was derived by Pudykiewicz [18]. Because the resulting
discretized systems are very large, efficient numerical integrator and nonlinear solvers
are needed. A pseudo-non-time splitting method was introduced by Sun [26] by prov-
ing the convergence, stability of the approximate solutions and giving priori error esti-
mates. Different operator splitting methods and parallelization techniques are applied
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to the ADR equations. A summary of applications in environmental engineering are
solved by the continuous finite elements, theoretical and numerical convergence rates
are presented in [13]. Discontinuous Galerkin(DG) methods have also been used in
these equations [5]. Finite difference methods can not be applied easily to complex ge-
ometries, finite volume methods do not have higher order accuracies and finite element
methods are not locally mass conservative for ADR equations. However, DG provides
all of these properties. Moroever, because of its compact formulation, it can be applied
near boundaries without any special treatment. Hence, it increases the robustness and
accuracy.

An important class of ADR equations are the advective Lotka-Volterra equations. In
1925, Lotka firstly proposed these equations on prey-predator models [14]. Volterra
also found the same equations as independent drom Lotka [31]. Uniqueness of a pos-
itive solution to LV models was proven by Hrinca [2]. Dynamical properties and con-
dition for the coexistence and extinction of the species of the advective Lokta-Volterra
equations in an uni-directional flow was investigated in detail in [15, 30]. In this the-
sis, we study the numerical approximation of one and two dimensional ADR equations,
discretizing them in space by interior penalty Galerkin method [3, 21]. For time dis-
retization we use the implicit backward Euler method and the two-step semi-implicit
backward differentiation formula IMEX-BDF [1].

Time discretization methods for ADR equations is another field of study since ADR
equations are time dependent problems. Many time splitting methods have been ap-
plied to these equations [28, 26]. Backward Euler method is a fully implicit method
which has been used for ADR equations [29].

The paper organized as follows. In Chapter 2, we give the advective Lotka-Volterra
model as a system of diffusion-convection-reaction equations. In Chapter 3, the inte-
rior Galerkin discretizations of the ADR equations for 1 dimensional and 2 dimensinol
problems are presented in general form. Time discretization is summarized in Chap-
ter 4. In addition to a fully implicit backward Euler method, a semi-implicit IMEX-
BDF(backward differential) method is also given in this chapter. Numerical results for
a coupled system of four ADR equations with chemically interacting species, and two
and three species advective Lotka-Volterra equations are presented in Chapter 4.
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CHAPTER 2

ADVECTIVE LOTKA-VOLTERRA EQUATIONS

Proposed by Lotka and Volterra, the well known Lotka-Volterra models concerning
ecological population dynamics have been extensively studied in the literature as a
model for oscillating chemical reactions in 1910. In 1920, a plant species and a her-
bivorous animal species were used to range the model to organic system by Lotka and
in 1925, Lotka also used the equations in [14] to analyze predator-prey interactions on
biomathematics and the equations took the today’s form. As independent from Lotka,
Vito Volterra [31] made a statistical analysis of fish catches in the Adriatic, so he also
found the equations in 1926.

Since that time, Lotka-Volterra model has been used in many problems such as pop-
ulation biology [27], chemical kinetics, neural networks [17], in epidemiology and it
has become a classic model for nonlinear dynamical systems. This model was ex-
tended with offering the idea of functional response by C.S.Holling [7, 8]. Analyti-
cal methods are usually known for Lotka-Volterra equations. One of these method is
Adomian decomposition method [23] which was introduced by Adomian in 1980’s.
It provides approximate analytical solutions in the form of an infinite series for non-
linear equations by avoiding linerization, discretization and scientifically unrealistic
assumptions. Apart from analytic methods, numerical methods are also used in Lotka-
Volterra models. In [16], Mickens shows a non-standard finite difference scheme for
the Lotka-Volterra system. An asymptotic approach of Taylor truncated series is used
by Scarpello and Ritelli in [24].

The uniqueness of a positive solution to a Lotka-Volterra System with diffusion with
two species was proved by Hrinca and he also accomplished boundness analysis of the
solution [2]. Kishimoto [10] studied examples of the diffusive three species Lotka-
Volterra system by using stable spatially nonconstant equilibrium solutions. Two ADR
equations coupled by Lotka-Volterra interaction terms are discussed in [15], whereas
dynamical behavior of advective Lotka-Volterra equations with three species are ana-
lyzed in detail in [30].
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2.1 Model: Two Competing Species Advective LV Model

In [15], LV model is developed with the diffusive, advective flow and spatial varying
growth rates. Assume that of two competing species at time t ≥ 0. Two species
advective LV equations U1,2(t, x) denote respective densities take the form:

∂U1

∂t
= D1

∂2U1

∂x2
− V1

∂U1

∂x
+ U1(R1(x)− A11U1 − A12U2),

∂U2

∂t
= D2

∂2U2

∂x2
− V2

∂U2

∂x
+ U2(R2(x)− A21U1 − A22U2),

(2.1)

where Ri(x) are the respective grow rates, Aij are the interspecific and intraspecific
competition coefficients, Di are the diffusion coefficients, V1, V2 > 0 are spatially
constant flow speeds. When we consider Kj =

Rj

Aij
as the carrying capacities, the

reaction terms become
R1U1(1−

Ui + αU2

K1

),

where α = A12/A11.

We take the model on a bounded domain [0, L] where x = 0 is top of the river and
downstream boundary will be at x = L. These assumptions can be combined under
the Danckwerts [9] and Neumann boundary conditions:

Di
∂Ui

∂x
− ViUi = 0, x = 0 ;

∂Ui

∂x
= 0, x = L, i = 1, 2.

The boundary condition at x = 0 shows that individuals cannot cross the upstream
boundary and move beyond the top of the stream. Moreover, the downstream condition
shows that net out-flux from the domain because of the advection.

In [15], further simplifying assumption are introduced:

• Both species have the same diffusion and flow speeds, D1 = D2 = D, V1 =
V2 = V.

• Growth rates are linear and non-decreasing, and R2/R1 = ρ = constant, i.e,
R1(x) = RU + (RL − RU)x, RU ≤ RL, R2(x) = ρR1(x), where U ,L are the
upper and lower end of the river section respectively.

For numerical simulations, we take the non-dimensional quantities

t′ = tmax
x

R1(x) = tRL, x′ =
x

L
, di =

Di

L2RL

, vi =
Vi
LRL

, ui =
AiiUi

RL

.

Then the non-dimensional for is given as

∂u1
∂t

= d1
∂2u1
∂x2

− v1
∂u1
∂x

+ u1(r1 − u1 − a12u2),

∂u2
∂t

= d2
∂2u2
∂x2

− v2
∂u2
∂x

+ u2(r2 − a21u1 − u2),

(2.2)

where ri =
Ri(x)
RL

and aij =
Aij

Ajj
.
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2.2 Model:Three Competing Species Advective LV Model

Three competing species models show more diversity in population dynamics if it is
compared with two competing species model, because there is no monotonicity in
three dimensional systems in general [6]. Now, we consider the following advection-
diffusion-reaction model for three competing species [30]

∂u1
∂t

= d
∂2u1
∂x2

− q
∂u1
∂x

+ u1(r1 − a11u1 − a12u2 − a13u3),

∂u2
∂t

= d
∂2u2
∂x2

− q
∂u2
∂x

+ u2(r2 − a21u1 − a22u2 − a23u3),

∂u3
∂t

= d
∂2u3
∂x2

− q
∂u3
∂x

+ u3(r3 − a31u1 − a32u2 − a33u3),

(2.3)

where ui(t, x) is the density of the i-th species at time t at point x of the bounded
domain [0, L]. We suppose that the diffusion coefficient, d > 0, and the effective
advection speed, q ≥ 0, are the same for all three species. The intrinsic growth rates,
ri, and the inter- and intra-specific competition coefficients, aij are assumed to be
positive. We impose again the same the boundary conditions as for the two species
advective LV equations:

d
∂ui
∂x

(t, 0)− qui(t, 0) = 0,
∂ui
∂x

(t, L) = 0.

As a result of this constraint, there are two possible arrangements between three com-
petitors when the flow speed q = 0: i) cyclic case, ii) the transitive case.

In cyclic case λ = 0, λ is the leading eigenvalue of our model system. If growth rates
of the species are in an order such that r1 > r2 > r3 > 0, then two sub-cases of the
cyclic case will occur. Species i outcompetes species i− 1 (modulo 3) in one case, but
in the other case species i outcompetes species i + 1 (modulo 3). The parameters are
taken as [30]

a11 = r1, a12 = αr1, a13 = βr1,

a21 = βr2, a22 = r2, a23 = αr2,

a31 = αr3, a32 = βr3, a33 = r3.

Then, the system 2.3 can be written as

∂u1
∂t

= r1u1

(
(

(
1 +

λ

r1

)
− u1 − αu2 − βu3

)
,

∂u2
∂t

= r2u2

(
(

(
1 +

λ

r2

)
− βu1 − u2 − αu3

)
,

∂u3
∂t

= r3u3

((
1 +

λ

r3

)
− αu1 − βu2 − u3

)
,

where 0 < β < 1 < α (case 1) or 0 < α < 1 < β (case 2), and αβ < 1.
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Persistency and permanence of these cases are studied also in [30]. Species 1 or species
3 is extinct for even smaller λ, so the system decreases to a two species system. The
species with the highest growth rate will displace the other species.

In transitive case, species are ordered according to their competitive ability in which
species 1 is the best competitor and species 3 is the worst competitor. Growth rates
order is reverse of the cyclic case meaningly 0 < r1 < r2 < r3.
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CHAPTER 3

DISCONTINUOUS GALERKIN METHOD

Discontinuous Galerkin methods were first proposed and analyzed in the early 1970s as
a technique to numerically solve partial differential equations. In 1973, Reed and Hill
[19] introduced a discontinuous Galerkin(DG) method to solve the hyperbolic neutron
transport equation. Discontinuous Galerkin methods have been presented and studied
for elliptic problems in [3, 22]and for convection diffusion problems in [5].

There are several advantages of DG methods. One of them is their flexibility with re-
spect to mesh and local polynomial degree of the basis functions. As a result of this
property, DG methods can be applied to complex domains by the use of unstructured
grids or hanging nodes. Besides, different orders of approximations can be used with
discretization on each element. The other advantages of DG methods is mass conser-
vation on each mesh element and because of this property, DG methods can be a better
choice to solve in flow and transport problems. The final advantage of DG methods
is their compact formulation. Their compact formulation can be applied near bound-
aries without any special treatment. Hence, this increases the robustness and accuracy
of any boundary condition implementation. Although there are several advantages of
DG methods, the large number of degrees of freedom compared to standard finite ele-
ment methods and ill conditioning of the matrices with increasing degree of the basis
polynomials are disadvantages of DG methods.

In this chapter, we firstly give preliminaries, then one and two dimensional model
problems with the general solution are given next parts. Finally, numerical example is
given with the DG results.

3.1 Preliminaries

3.1.1 Function spaces

Let Ω denote a bounded polygonal domain in Ω ⊂ Rd. The vector space L2(Ω) is the
space of square-integrable functions:

L2(Ω) =

{
v measurable :

∫
Ω

v2 <∞
}
.

7



The space L2(Ω) is a Hilbert space with respect to the following inner product and
norm

(u, v)Ω =

∫
Ω

uv, ||v||L2(Ω) =

(∫
Ω

v2
)1/2

.

The space L∞(Ω) is the space of bounded functions

L∞(Ω) =
{
v : ||v||L∞(Ω) <∞

}
equipped with the norm

||v||L∞(Ω) = ess sup{|v(x)| : x ∈ Ω}.

Definition 3.1. Let D(Ω) denote the space of C∞ functions with compact support in
Ω. The dual space D′(Ω) is called the space of distributions. For any multi-index
α = (α1, ..., αd) ∈ Nd and |α| =

∑d
i=1 αi, the distributional derivative Dαv ∈ D′(Ω)

is defined by

∀ϕ ∈ D(Ω), Dαv(Ω) = (−1)|α|
∫
Ω

v(x)
∂|α|ϕ

∂xα1
1 ...∂x

αd
d

.

For an integer s, then the Sobolev space is given by

Hs(Ω) = {v ∈ L2(Ω) : ∀0 ≤ |α| ≤ s, Dαv ∈ L2(Ω)}

equipped with the Sobolev norm and Sobolev seminorm, respectively

||v||Hs(Ω) =

 ∑
0≤|α|≤s

||Dαv||2L2(Ω)

 1
2

,

|v|Hs(Ω) = ||∇sv||L2(Ω) =

∑
|α|=s

||Dαv||2L2(Ω)

 1
2

.

For our special interest, we consider the following spaces

H1(Ω) =

{
v ∈ L2(Ω) :

∂v

∂xi
∈ L2(Ω), i = 1, · · · , d

}
,

H1
0 (Ω) =

{
v ∈ H1(Ω) : v|∂Ω = 0

}
,

H1
D(Ω) =

{
v ∈ H1(Ω) : v|∂Ω = gD

}
,

where gD is a given Dirichlet boundary data.

Definition 3.2. Let V be a vector space. A symmetric bilinear form a : V × V → R
is an inner product if a(v, v) ≥ 0 for all v ∈ V and a(v, v) = 0 if and only if v = 0.
The space V is a normed space with the norm ||.||v = (a(., .))1/2. Moreover, the space
V is equipped with an inner product is a Hilbert space if it is complete.
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3.1.2 Trace theorems

Theorem 3.1. Let Ω be a bounded domain with polygonal boundary ∂Ω and outward
normal vector n. There exist trace operators γ0 : Hs(Ω) → Hs−(1/2)(∂Ω) for s > 1/2
and γ1 : Hs(Ω) → Hs−(3/2)(∂Ω) for s > 3/2 that are extensions of the boundary
values and boundary normal derivatives, respectively. The operators γj are surjective.
Furthermore, if v ∈ C1(Ω), then

γ0v = v|∂Ω, γ1v = ∇v · n|∂Ω.

Let Pk be the space of polynomials of degree less than or equal to k:

Pk(E) = span{xi11 xi22 ...x
id
d : i1 + i2 + ...+ id ≤ k, x ∈ E},

where E is bounded polygonal domain with diameter hE and hE = supx,y∈E||x − y||.
The trace inequalities now become

∀v ∈ Pk(E), ∀e ∈ ∂E, ||v||L2(e) ≤ C̃t|e|−1/2|E|−1/2||v||L2(E),

∀v ∈ Pk(E), ∀e ∈ ∂E, ||v||L2(e) ≤ Cth
−1/2
E ||v||L2(E).

3.1.3 Green’s Theorem

Given E a bounded domain and nE the outward normal vector to ∂E, we have for all
v ∈ H2(E) and w ∈ H1(E)

−
∫
E

w△ v =

∫
E

∇v · ∇w −
∫
∂E

∇v · nEw.

A more generalized Green’s theorem is

−
∫
E

w∇ · F∇v =

∫
E

F∇v · ∇w −
∫
∂E

F∇v · nEw,

where F is a matrix-valued function.

3.2 Construction of Discontinuous Galerkin Space Discretization

In this section, we give the detailed construction of discontinuous interior penalty
Galerkin (IPG) methods, a type of discontinuous Galerkin (DG) methods, on 1D and
2D models. To do this, we just consider a simple Poisson problem. Using the Poisson
equation as a starting point is meaningful since the DG methods concerns only with
the diffusion parts of the PDEs.
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3.2.1 Construction for 1D problems

Let us consider the general Poisson problem:

− ϵp′′ = f(x), ∀x ∈ (0, 1), (3.1)

p(0) = g0, p(1) = g1, (3.2)

where f ∈ C0(0, 1) and p ∈ C2(0, 1) is the strong solution of the problem.

Consider the partition ξh:

0 = x0 < x1 < . . . < xN = 1,

In = (xn, xn+1) , h = xn+1 − xn.

We set the space of piecewise discontinuous polynomials of degree k

Vh = {v : v|In ∈ Pk(In) ∀j = 0, 1, 2, ..., N − 1},

where Pk is the space of polynomials of degree at most k on the interval In. We need
to define jump and average values of v since the functions in Vh are discontinuous at
the interior nodes. The jump and average values of v ∈ Dk(ξh) are given by

[v(xn)] = v(x−n )− v(x+n ), {v(xn)} =
1

2
(v(x−n ) + v(x+n )),

where v(x−n ) = limx→x−
n
= v(x) and v(x+n ) = limx→x+

n
= v(x).

After multiplying the continuous Poisson equation (3.1) by a test function v ∈ Vh, and
then applying integration by parts on each interval, we obtain for n = 0, ..., N − 1∫ xn+1

xn

ϵp′(x)v′(x)dx− ϵp′(xn+1)v(x
−
n+1) + ϵp′(xn)v(x

+
n ) =

∫ xn+1

xn

f(x)v(x)dx.

For 1 ≤ n ≤ N−1, there holds [ϵp′(xn)v(xn)] = {ϵp′(xn)}[v(xn)]+{v(xn)}[ϵp′(xn)].
Then, adding all N equations above and using the regularity assumption [ϵp′(xn)] = 0
(p, p′ are continuous), we get

N−1∑
n=0

∫ xn+1

xn

ϵp′(x)v′(x)dx−
N∑

n=0

{ϵp′(xn)}[v(xn)] =
∫ 1

0

f(x)v(x)dx.

Again using the regularity condition [p(xn)] = 0, 1 ≤ n ≤ N − 1, we obtain,

N−1∑
n=0

∫ xn+1

xn

ϵp′(x)v′(x)dx−
N∑

n=0

{ϵp′(xn)}[v(xn)] + κ

N−1∑
n=1

{ϵv′(xn)}[p(xn)]

+
N−1∑
n=1

σ0
hn−1,n

[p(xn)][v(xn)] =

∫ 1

0

f(x)v(x)dx,

10



where σ0 is a real non-negative number called the penalty parameter, and κ ∈ {−1, 0, 1}
is the parameter defining the IPG method. After adding boundary terms to the both
sides, keeping unknown on the left side and imposing boundary conditions (3.2) on
the right side, we obtain

N−1∑
n=0

∫ xn+1

xn

ϵp′(x)v′(x)dx−
N∑

n=0

{ϵp′(xn)}[v(xn)] + κ
N∑

n=0

{ϵv′(xn)}[p(xn)]

+
N∑

n=0

σ0
hn−1,n

[p(xn)][v(xn)] =

∫ 1

0

f(x)v(x)dx− g0

(
κϵv′(x0) +

σ0

h0,1
v(x0)

)
+ g1

(
κϵv′(xN) +

σ0

hN−1,N

v(xN)

)
.

Hence, for the diffusion part, we set the DG bilinear form aκ : Vh × Vh → R by

aκ(p, v) =
N−1∑
n=0

∫ xn+1

xn

ϵp′(x)v′(x)dx−
N∑

n=0

{ϵp′(xn)}[v(xn)] + κ
N∑

n=0

{ϵv′(xn)}[p(xn)]

+
N∑

n=0

σ0
hn−1,n

[p(xn)][v(xn)]. (3.3)

Then, solution of the Poisson equation (3.1) reads as: find PDG ∈ Vh such that

aκ(P
DG, v) = L(v) , ∀v ∈ Vh

where the linear rhs L : Vh → R is given by

L(v) =

∫ 1

0

f(x)v(x)dx−g0
(
κϵv′(x0) +

σ0

h0,1
v(x0)

)
+g1

(
κϵv′(xN) +

σ0

hN−1,N

v(xN)

)
.

(3.4)

Depending on the parameter κ, several variations of DG methods are obtained.

• κ = −1: Symmetric interior penalty Galerkin (SIPG) method,

• κ = +1: Non-symmetric interior penalty Galerkin (NIPG) method,

• κ = 0: Incomplete interior penalty Galerkin(IIPG) method.

3.2.2 Construction for 2D problems

Let Ω be a polygonal domain in R2. ΓD and ΓN are two disjoint sets of sides of the
boundary ∂Ω. Let us take n as the unit normal vector to the boundary exterior to Ω.
Consider the general Poisson equation

−ϵ∆p = f, in Ω,

p = gD, on Γ,
(3.5)
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where f ∈ L2(Ω) and gD ∈ H1/2(ΓD).

Let ξh be a partition of Ω including shape regular triangular elements E. Denote by Γh

the set of interior edges and Γ∂
h the set of boundary edges. If two elements E1, E2 ∈ Γh

are neighbors and share one common side e, there are two traces of v along e. Thus,
we set the jumps and averages on an interior edge by

[v] = (v|E1)− (v|E2), {v} =
1

2
(v|E1 + v|E2), ∀e = ∂E1 ∩ ∂E2.

If e ∈ Γ∂
h, we set

[v] = v|E1 , {v} = v|E1 , ∀e = ∂E1 ∩ Γ.

Following the same procedures and parameters in the construction of 1D DG scheme,
solution of (3.5) reads as: find P ∈ Vh = {v ∈ L2(Ω) : v|E ∈ Pk(Ω), ∀E ∈ ξh} such
that

aκ(P, v) = L(v), ∀v ∈ Vh,

with

aκ(P, v) =
∑
E∈ξh

∫
E

ϵ∇P · ∇v −
∑

e∈Γh∪ΓD

∫
e

{ϵ∇P · ne}[v] + κ
∑

e∈Γh∪ΓD

∫
e

{ϵ∇v · ne}[P ]

+
∑

e∈Γh∪ΓD

∫
e

σ0
e

|e|
[P ][v], (3.6)

L(v) =

∫
Ω

fv +
∑
e∈ΓD

∫
e

(
κϵ∇v · ne +

σ0
e

|e|
v

)
gD, (3.7)

where |e| denotes the length of the edge e.

3.3 Implementation

In this section, we give a short description of the implementation tools of the DG
schemes on 2D, which concerns with the evaluation of the volume and face integrals.
To compute the integrals over every physical element in the mesh is too costly. Instead,
the physical elements can be mapped to a reference elements.

Reference triangular element: It consists of a triangle Ê with vertices Â1(0, 0),
Â2(1, 0), Â3(0, 1). If E has vertices Ai(xi, yi) for i = 1, 2, 3, then the map FE is
defined by

FE

(
x̂
ŷ

)
=

(
x
y

)
, x =

3∑
i=1

xiψ̂i(x̂, ŷ), y =
3∑

i=1

yiψ̂i(x̂, ŷ)
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with
ψ̂1(x̂, ŷ) = 1− x̂− ŷ, ψ̂2(x̂, ŷ) = x̂, ψ̂3(x̂, ŷ) = ŷ.

Rewriting the mapping (
x
y

)
= FE

(
x̂
ŷ

)
= BE

(
x̂
ŷ

)
+ bE,

where

BE =

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)
, bE =

(
x1
y1

)
.

Basic functions: DG basis functions are set to be the functions spanning the DG space

Vh = span{φE
i : 1 ≤ i ≤ Nloc, E ∈ ξh}

with

φE
i (x) =

{
φ̂i ◦ FE(x), x ∈ E,

0, x ̸= E,

where the local basis functions (φ̂i)1≤i≤Nloc
are defined on the reference element only.

For 2D, for instance, we may choose the monomial basis functions

φ̂i(x̂, ŷ) = x̂I ŷJ , I + J = i, 0 ≤ i ≤ k

with the local dimension Nloc =
(k+1)(k+2)

2
. Then, the DG solution has the form

p(x) =

NEl∑
j=1

Nloc∑
i=1

U j
i φ

Ej

i (x) , U j
i ∈ R,

where U j
i ’s denote the unknown coefficients.

Reference to Global:

The mapping FE : Ê 7→ E corresponds to a change of variable. Denote v̂ = v ◦ FE .
Then we can write

∇̂v̂ = BT
E∇v ◦ FE.

Hence, ∫
E

v = 2|E|
∫
Ê

v̂,∫
E

∇v · u = 2|E|
∫
Ê

(BT
E)

−1∇̂v̂ · ŷ,∫
E

∇v · ∇u = 2|E|
∫
Ê

(BT
E)

−1∇̂v̂ · (BT
E)

−1∇̂ŷ.

Implementation (volume contribution): There are two types of local matrices de-
pending on the domain of integration. First, compute the matrix AE resulting from the
volume integral of the diffusion part over a fixed element E. ∀1 ≤ i, j ≤ Nloc,

(AE)i,j =

∫
E

∇φi,E · ∇φj,E = 2|E|
∫
Ê

(BT
E)

−1∇̂φ̂i · (BT
E)

−1∇̂φ̂j,
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and the local right-hand side bE

(bE)i =

∫
E

fφi,E = 2|E|
∫
Ê

f̂ φ̂i,E.

Implementation (face contribution): Secondly, compute the local matrices corre-
sponding to the integrals over a fixed face e. If e ∈ Γh, the terms involving integrals
on e are

T = −
∫
e

{∇p}[v] + κ

∫
e

{∇v}[p] + σ

|e|

∫
e

[p][v].

Expanding the averages and jumps, we obtain

T =M1,1
e +M2,2

e +M1,2
e +M2,1

e

with
(Mp,r

e )i,j = (−1)p
1

2

∫
e

∇φj,Er
e
φi,Ep

e
+ (−1)r+1κ

2

∫
e

∇φi,Ep
e
φj,Er

e

+(−1)p+r σ

|e|

∫
e

φj,Er
e
φi,Ep

e
1 ≤ i, j ≤ Nloc, 1 ≤ p, r ≤ 2.

If e ∈ Γ, we only compute

(M1,1
e )i,j = −

∫
e

∇φj,E1
e
φi,E1

e
+ κ

∫
e

∇φi,E1
e
φj,E1

e
+

σ

|e|

∫
e

φj,E1
e
φi,E1

e

and

(be)i =

∫
e

(
κ∇φi,E1

e
+

σ

|e|
φi,E1

e

)
g.
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CHAPTER 4

TIME DISCRETIZATION

In this chapter, we deal with the time integrators used in this thesis in order to discretize
the model equation (1.1) in time. We discuss mainly the following time integrators: the
first order backward Euler and the second order IMEX methods. For convenient, we
just consider the scalar form of the model equation (1.1) given by

∂u

∂t
+ v · ∇u− d∆u+R(u) = f(x, t), on Ω× J, (4.1)

where J = (0, T ) and Ω is a bounded domain in R1 or R2 with a smooth or piecewise
boundary, and with appropriate boundary conditions. The classical weak formulation
of (4.1) reads as: for a.e. t ∈ J , for any w ∈ H1

0 (Ω), find u ∈ L2(0, T ;H1
0 (Ω)) ∩

H1(0, T ;L2(Ω)) such that∫
Ω

∂u

∂t
wdx+ a(t;u,w) + b(t;u,w) = l(w), (4.2)

a(t;u,w) =

∫
Ω

(d∇u(t) · ∇w + v · ∇u(t)w)dx,

b(t;u,w) =

∫
Ω

R(u(t))wdx,

l(w) =

∫
Ω

fwdx.

It is well-known that under certain conditions, the system (4.2) has a unique solu-
tion. On the other hand, using the notations and definitions given in Chapter 3, the
semi-discrete DG formulation of the model (4.1) reads as: for a.e. t ∈ J , find
uh ∈ C0,1(0, T ;Vh) such that∫

Ω

∂uh
∂t

whdx+ ãh(t;uh, wh) + bh(t;uh, wh) = l(wh) (4.3)

with

ãh(t;uh, wh) = ah(t;uh, wh) +
∑
E∈ξh

∫
E

v · ∇uhwhdx,

bh(t;uh, wh) =
∑
E∈ξh

∫
E

R(uh)whdx.
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In (4.3), the component ah(t;uh, wh) of the bilinear form ãh(t;uh, wh) and the linear
rhs l(wh) are defined by (3.3) and (3.4), respectively, for 1D model or by (3.6) and
(3.7), respectively, for 2D model, at a given time instance t ∈ J and for a choice of the
DG parameter κ ∈ {−1, 0, 1}. The semi-discrete system (4.3) leads to the system of
non-linear equations in matrix-vector form by

MUt + SU = L− b(U), (4.4)

where U is the vector of unknown coefficients, the matrix S is the stiffness matrix
related to the bilinear form ãh(t;uh, vh), and the vector function b(U) and the vector L
corresponds to the non-linear form bh(t;uh, vh) and the linear form lh(vh), respectively,
the explicit forms of which will be given later. The matrix M is the usual mass matrix
which by DG construction has a symmetric block diagonal structure, and therefore it is
a symmetric positive definite matrix. As a consequent, in the algebraic point of view,
what we have in the ODE system (4.4) is that M is an invertible matrix, S is a positive
definite matrix and the right hand side is Lipschitz with respect to U, which means
by the theory of ordinary differential equations that the system (4.4), as a result, the
semi-discrete problem (4.3) has a unique solution.

4.1 Fully Discrete Formulations

In this section, we derive the fully discrete formulations of the system (4.3) by using
the time integrators used in this thesis. We divide J = [0, T ] into n pieces such that
∆t = T/n shows the length of interval and tn+1 = tn+∆t for all n ≥ 0. Let ξnh be the
mesh related to the nth time step. We take finite element space as V n

h = Vh(ξ
n
h) related

to each time step.

4.1.1 Backward Euler Discretization

First, we discuss the the fully discrete formulation of the system (4.3) by first order
backward Euler method. We consider an arbitrary kth time-step, which is solved for
all k = 1, 2, . . . , n. In order to not be confused about the notations, let us consider
the backward Euler fully discrete formulation of the system (4.3) on an arbitrary kth
time-step without the superscript for the time-step of the form

∫
Ω

uh − wh

∆t
vhdx+ ãh(uh, vh) + bh(uh, vh) = l(vh) , ∀vh ∈ Vh (4.5)

where we have set uh := ukh, wh := uk−1
h , vh := vkh, ∆t := ∆tk, ãh(uh, vh) :=

ãh(t
k;ukh, v

k
h), bh(uh, vh) := bh(t

k;ukh, v
k
h) and Vh := V k

h . The approximate solution uh
and the known solution (from the previous time-step) wh of (4.5) have the form

uh =
Nel∑
i=1

Nloc∑
l=1

uilϕ
i
l , wh =

Nel∑
i=1

Nloc∑
l=1

wi
lϕ

i
l, (4.6)
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where ϕi
l’s are the basis polynomials spanning the space Vh, U = {uil} is the vector of

unknown coefficients to be found and W = {wi
l} is the vector of known coefficients.

Then, the discrete residual of the system (4.5) in matrix-vector form is given by

Res(U) =MU−MW +∆t(SU+ b(U)− L) = 0, (4.7)

whereM is the mass matrix, S is the stiffness matrix corresponding to the bilinear form
ãh(uh, vh), b(U) is the vector function of U related to the non-linear form bh(uh, vh)
and L is the vector to the linear form lh(vh).

Next, we solve the system (4.7) by Newton method. In the sequel, we start with an
initial guess U(0) (most possibly U(0) = W, i.e. the known solution from the previous
time-step) and for i = 0, 1, 2, . . ., we solve the system

J iδU(i) = −Res(U(i)) (4.8)
U(i+1) = U(i) + δU(i)

until a prescribed tolerance is satisfied. In (4.8), the sparse matrix J i =M+∆t(S+J i
b)

denotes the value of the Jacobian matrix of the residual function Res(U) at the current
iterate U(i), and J i

b stands for the Jacobian matrix to the vector function b(U) at the
current iterate U(i).

For the explicit definitions of the matrices and vectors, firstly we give block matrices
which have Nloc dimension:

Mij =


∫
Ω
ϕi
1ϕ

j
1dx

∫
Ω
ϕi
2ϕ

j
1dx · · ·

∫
Ω
ϕi
Nlocϕ

j
1dx∫

Ω
ϕi
1ϕ

j
2dx

∫
Ω
ϕi
2ϕ

j
2dx · · · ...

... . . . . . . ...∫
Ω
ϕi
1ϕ

j
Nlocdx · · · · · ·

∫
Ω
ϕi
Nlocϕ

j
Nlocdx



Sij =


ãh(ϕ

i
1ϕ

j
1) ãh(ϕ

i
2ϕ

j
1) · · · ãh(ϕ

i
Nlocϕ

j
1)

ãh(ϕ
i
1ϕ

j
2) ãh(ϕ

i
2ϕ

j
2) · · · ...

... . . . . . . ...
ãh(ϕ

i
1ϕ

j
Nloc) · · · · · · ãh(ϕ

i
Nlocϕ

j
Nloc)



bi(U) =


bh(uh, ϕ

i
1)

bh(uh, ϕ
i
2)

...
bh(uh, ϕ

i
Nloc)

 , Li =


l(ϕi

1)
l(ϕi

2)
...

l(ϕi
Nloc)

 .
Now, the explicit definitions are

S =


S11 S12 · · · S1,Nel

S21 S22 · · · ...
... . . . . . . ...

SNel,1 · · · · · · SNel,Nel

 , M =


M11 M12 · · · M1,Nel

M21 M22 · · · ...
... . . . . . . ...

MNel,1 · · · · · · MNel,Nel


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b(U) =


b1(U)
b2(U)

...
bNel(U)

 , L =


L1

L2
...

LNel

 .

4.1.2 IMEX Method

In this section, we give a semi-implicit time discretization method which belongs to
the class of implicit-explicit IMEX methods [4]. Linear multi-step IMEX schemes
have been used frequently for the integration of nonlinear ordinary differential equa-
tions arising from discretization of PDEs. In case of semi-linear ADR equation, the
linear diffusion and advection terms are integrated implicitly and the nonlinear term
explicitly. The resulting scheme require only the solution of a linear system of equa-
tions at each time step in contrast to the fully implicit methods like the backward Euler
method, which requires solution of nonlinear system of equation at each time step.
Due to the semi-implicit nature, the IMEX methods have step-size restrictions due the
stability of the numerical scheme. For the integration of the (in matrix-vector form)
semi-discrete ADR equation 4.4, we have chosen the two step IMEX-BDF (backward
differentiation) method in [1] leading for k = 0, 1, . . . , n− 2 to the system

M

(
3

2
Uk+2 − 2Uk+1 +

1

2
Uk

)
+∆tSUk+2 = ∆t

(
b(Uk)− Lk

)
−2∆t

(
b(Uk+1)− Lk+1

)
,

where the superscript k denotes the related value at the k−th time instance. The above
IMEX-BDF method is started after the computation of the value U1 by the backward
Euler method.
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CHAPTER 5

NUMERICAL SIMULATIONS

In this section, we analyzed three examples of advection-reaction-diffusion(ADR) mod-
els from two different application areas. One of them is evolution of the two-stage
competitive-consecutive, reaction-response problem which belongs to chemical species
in a fluid. The other ones are evolution densities of two and three competing species in
river ecosystems. We present convergence rates of the three different interior penalty
Galerkin (κ ∈ {−1, 0, 1}) discretization for a four species ADR equation in [13]
with the implicit Euler method and the semi-implicit IMEX-BDF method. Numeri-
cal solutions of two and three species advective Lotka-Volterra equations in Chapter 2
are given by symmetric interior penalty discontinuous Galerkin discretization (SIPG,
κ = −1). In all numerical examples we have taken the penalization parameter as
σ = 10.

5.1 Solution of a Nonlinear System by DG Method

We consider the ADR equation (1.1) in a unit disk Ω = {(x, y)|x2 + y2 = 1} [13]
with 4 components (m=4). This is a reaction-response model of chemical species in a
fluid. The nonlinear reaction terms are the linear combinations of the products of the
components given by

R1(u1, . . . , u4) = k1u1u2,

R2(u1, . . . , u4) = k1u1u2 + k2u2u3,

R3(u1, . . . , u4) = −k1u1u2 + k2u2u3,

R4(u1, . . . , u4) = −k2u2u3

where the parameters k1 = 100 and k2 = 1. The force functions fi’s, i = 1, . . . , 4, and
the Dirichlet boundary conditions are chosen with the exact solutions

u1 = (r20 − x2 − y2)(1 + x2)(1 + t),

u2 = (r20 − x2 − y2)(x2 + y2)(1 + cos(t)),

u3 = (r20 − x2 − y2)(1 + cos(y))(1− sin(t)),

u4 = (r20 − x2 − y2)(2 + x2 + y2)t,
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The constants k1 and k2 are the reaction rates, u1 and u2 are the reactants, u3 is the
desired product and u4 the waste, which is initially zero. The diffusion constant d is
taken as 1, and the two dimensional flow rates are taken as v = (v1, v2) = (1, 1).

In the Figures 5.1-5.4, convergence rates for three different DG methods for backward
Euler and IMEX-BDF time discretizations are given. ∆x = 0.2102 and ∆t = 0.005 at
the final time t = 1 are taken to solve this model. Three figures at the top are obtained
by backward Euler and three figures at he bottom are obtained by IMEX-BDF method.
Moreover, left side figures are solved by IIPG method, right side figures are solved by
NIPG method and finally figures in the middle are solved by SIPG method in space.
With an increasing degree in the DG approximation, the errors decrease. For degree 1
and 2, the convergence rates are about 2. The slope of lines give insight about these
convergence rates. For degree 3, Figures 5.1-5.4 do not indicate any improvement after
certain degree of freedom. The results of both time discretization methods are same.
The problem is solved without using very small time steps.

The numerical solutions and error plots for the SIPG discretization with ∆x = 0.2102
and ∆t = 0.005 at the final time t = 1 are given in Figures 5.5-5.8. Top two fig-
ures belong to backward Euler method and bottom two figures belong to IMEX-BDF
method. Figures show that results of both methods are the same and numerical solu-
tions approach to exact solutions. This result can be understood from the error plots.
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Figure 5.1: Numerical errors for u1 with backward Euler (top) and IMEX-BDF scheme
(bottom)
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Figure 5.2: Numerical errors for u2 with backward Euler (top) and IMEX-BDF scheme
(bottom)
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Figure 5.3: Numerical errors for u3 with backward Euler (top) and IMEX-BDF scheme
(bottom)
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Figure 5.4: Numerical errors for u4 with backward Euler (top) and IMEX-BDF scheme
(bottom)

Figure 5.5: Numerical solution (left) and error plot (right) for u1 at the final time using
backward Euler (top) and IMEX-BDF scheme (bottom)
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Figure 5.6: Numerical solution (left) and error plot (right) for u2 at the final time using
backward Euler (top) and IMEX-BDF scheme (bottom)

Figure 5.7: Numerical solution (left) and error plot (right) for u3 at the final time using
backward Euler (top) and IMEX-BDF scheme (bottom)
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Figure 5.8: Numerical solution (left) and error plot (right) for u4 at the final time using
backward Euler (top) and IMEX-BDF scheme (bottom)

5.2 Solution of a Lotka-Volterra System with Two Competing Species

The advective Lotka-Volterra system (2.1) with two computing species in river ecosys-
tem is solved by SIPG. Here U1andU2 are the densities. Densities are the concentra-
tions of species on a particular area of the river. The parameters are taken as in [15]:

L = 100, D = 1, RU = RL = 1, ρ = 1.4, V = 1.2,

A11 = A22 = 1, A12 = 0.5, A21 = 1.5.

The diffusion constants and flow rates are D = (D1, D2) = (1, 1), V = (V1, V2) =
(1.2, 1.2). Since R1(x) = RU + (RL − RU)x and R2(x) = ρR1(x), it follows that
R1 = 1 and R2 = 1.4, respectively. Here RU shows the growth rate at the top and
RL is the growth rate at the downstream of the river. We used Danckwerts boundary
conditions, so top of the river is x = 0 and downstream of the river is X = L. For
space and time discretization we have taken ∆x = 0.5 and ∆t = 0.01.
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Figure 5.9: Evolution of densities of two competing species solved by implicit Euler
(top) and IMEX-BDF scheme (bottom)

25



0 20 40 60 80 100
0

0.5

1

1.5

downstream distance

de
ns

ity

t=10

 

 
Species 1
Species 2

0 20 40 60 80 100
0

0.5

1

1.5

downstream distance

de
ns

ity

t=10

 

 
Species 1
Species 2

0 20 40 60 80 100
0

0.5

1

1.5

downstream distance

de
ns

ity

t=20

 

 
Species 1
Species 2

0 20 40 60 80 100
0

0.5

1

1.5

downstream distance

de
ns

ity

t=20

 

 
Species 1
Species 2

0 20 40 60 80 100
0

0.5

1

1.5

downstream distance

de
ns

ity

t=50

 

 
Species 1
Species 2

0 20 40 60 80 100
0

0.5

1

1.5

downstream distance

de
ns

ity

t=50

 

 
Species 1
Species 2

Figure 5.10: Densities of two competing species solved by implicit Euler (left) and
IMEX-BDF scheme (right)

Lutscher [15] solved this problem by using numerical methods which are backward
Euler method in time, finite difference method in space for the diffusion term and
upwind for the advection term, however we solved this problem by using SIPG in space
and by using fully implicit Euler method and semi-implicit IMEX-BDF method in
time. Figure 5.9-5.10 show the evolution of densities at different time levels. Left side
figures are obtained by using backward Euler method and the figures on the right side
are obtained by IMEX-BDF method. Numerical results for both time discretizations
are similar. A semi-implicit method which is more efficient than fully implicit methods
gave the same result without using smaller time steps. As in [15] after a short time,
densities of both species decrease upstream. The species 2 shows much more decrease
than the species 1 at t=10. When time passes, species 1 catches its initial density in the
upstream and species 2 is out of compete. We observe that a coexistence place between
species occurs.
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5.3 Solution of a Lotka-Volterra System with Three Competing Species

In this section, we have solved the system (2.3) which consists of three competing
species in river ecosystem by using SIPG method in space. In this example, we have
taken the parameters as:

L = 100, D = 1, ρ = 1.4, V = 0.8,

r1 = 1.6, r2 = 1.3, r3 = 1,

A11 = 1.6, A22 = 1.3, A33 = 1,

A12 = 1.6, A21 = 0.65, A13 = 0.5,

A31 = 1.6, A23 = 2.08, A32 = 0.5.

Figure 5.11: Evolution of densities of three competing species solved by implicit
Euler (top) and IMEX-BDF scheme (bottom)

In Figure 5.11-5.12, we show the evolution of the three species’ densities and the
three species’ densities at certain times, respectively, for fully implicit Euler and semi-
implicit IMEX-BDF schemes for ∆x = 0.5 and ∆t = 0.01.
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Figure 5.12: Densities of three competing species solved by implicit Euler (left) and
IMEX-BDF scheme (right)
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Left side figures are obtained by using fully implicit backward Euler and right side
figures are obtained by using semi-implicit IMEX-BDF method in time. Numerical re-
sults are same as in the two competing species advective LV model example. Decreases
in the densities are seen for all species towards to the upstream after a short time. The
reason, especially for species 2 and species 3, is the invasion to the downstream. The
invasion speed of species 2 is faster than species 3 at the beginning. The density of
species 2 decreases at the downstream when the density of species 3 increases at this
part of the domain. Then, species 1 starts to move towards downstream slowly. There
are time levels which coexistence between species occurs. After a while, each species
catch their own balance densities.
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CHAPTER 6

CONCLUSIONS

In this thesis we have integrated ADR equations from chemical kinetics and advective
Lota-Volterra equations in river systems. We have analyzed three examples which are
competitive-consecutive, reaction-response of four chemical species in a fluid, two
competing species advective LV model and three competing species advective LV
model to compare a fully implicit method backward Euler and semi-implicit method
IMEX-BDF. In space, DG construction is applied to these problems. We have dis-
cretized space and obtained a global system from the local construction. Then time
discretizations have been applied to these global systems.

We have applied three types of interior penalty DG methods which are SIPG, NIPG
and IIPG methods for the first example which is given in (1.1). For time discretiza-
tion, we have used a fully implicit backward Euler method and a semi-implicit IMEX-
BDF scheme. We have obtained numerical errors for u1, u2, u3 and u4. ui’s are the
concentrations of four chemical species. These figures show that error decreases
when the degree of DG approximation which is the degree of polynomials used in
DG approximation increases. The slopes of error lines in the numerical errors fig-
ures give insight about convergence rates. For degree 1 and degree 2, convergence
rates are about two. Degree 3 do not show improvement after a certain degree of
freedom. Degree of freedom is the product of the number of elements and the local
dimension(DoF = Nel ∗ Nloc). Numerical results of both time discretization meth-
ods are the same. We did not need to take very small time steps to obtain the same
result. ∆t = 0.005 was taken on t = [0, 1] interval. Moreover, we have also obtained
numerical solution plots with their error plots for both species. Numerical solutions
approach to exact solutions which can be understood from error figures.

To analyze fully implicit and semi-implicit time discretization methods for ADR equa-
tions, then we have chosen river ecosystems with a unidirectional flow as another appli-
cation area. We have solved two competing species advective LV model as an example
to these systems. Lutscher [15] solved this problem by using numerical methods which
are backward Euler method in time, finite difference method in space for the diffusion
term and upwind for the advection term, however we solved this problem by using
SIPG in space and by using fully implicit Euler method and semi-implicit IMEX-BDF
method in time as in the previous chemical kinetics example.A semi-implicit method
which is more efficient than fully implicit methods gave the same result without using
smaller time steps. As in [15] after a short time, densities of both species decrease
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upstream. The species 2 shows much more decrease than the species 1 at t=10. When
time passes, species 1 catches its initial density in the upstream and species 2 is out of
compete. We observe that a coexistence place between species occurs.

Finally, we have solved a problem from (2.3) which includes three competing species.
Numerical results obtained by two time discretization methods are same. Decreases in
the densities are seen for all species towards to the upstream after a short time. The
reason, especially for species 2 and species 3, is the invasion to the downstream. The
invasion speed of species 2 is faster than species 3 at the beginning. The density of
species 2 decreases at the downstream when the density of species 3 increases at this
part of the domain. Then, species 1 starts to move towards downstream slowly. There
are time levels which coexistence between species occurs. After a while, each species
catch their own balance densities.

In conclusion, We have obtained convergence rates of three DG methods and found
that numerical solutions of the fully implicit BE method and semi-implicit IMEX-BDF
method show the same dynamical behaviour for the competing species of advective
LV models. A semi-implicit discretization is significantly larger according to explicit
discretization, thus the computer time required to solve these equations is shorter. They
have computational saving because the resulted scheme needs only the solution of
linear part of our system in contrast to fully implicit methods. As a result, semi-implicit
methods are advantageous for solving advective LV models.
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