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ABSTRACT

IMAGE RECONSTRUCTION BASED ON ACTIVE SCAN TECHNIQUES
IN THE TERAHERTZ FREQUENCY RANGE

Özkan, Vedat Ali

M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Hakan Altan

Co-Supervisor : Assist. Prof. Dr. Özgür Özdemir

January 2014, 114 pages

THz continuous wave (CW) imaging systems have attracted interest in the past

decade since they have the ability to detect non-metal threats such as ceramic

knives. Moreover due to low energy levels of THz signals, these systems are not

harmful. Although various types of imaging systems have been developed, the

nature of THz waves has prevented the scienti�c community from producing a

fast, high resolution and cost e�ective imaging system. In this study we have

investigated both experimentally and theoretically the application THz waves

in various imaging system con�gurations. The main goal was to understand

the e�ects of the optical system design as well as noise and other parameters

that could impact the formation of images in an active THz imager based on

frequencies near 340GHz. The designed optical system was simulated and the

e�ects of scanning the target �eld were assessed in the simulated images of var-

ious targets. The results show that reliable target detection will be aided by

post-processing the images using various techniques. Furthermore, to experi-

mentally demonstrate an active imaging system, compressive sensing was used
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in a non-scanning re�ection based optical geometry. In these experiments a

mm-wave source near 120GHz was used to obtain the images. The obtained

images were analysed and compared to that of simulations. The results show

that compressive sensing methods can be implemented successfully to improve

image acquisition in typically low-resolution THz imaging systems. Finally, the

e�ect of imaging in the terahertz frequency range was also investigated for pas-

sive imaging methods. A commercial system working in the mm-wave range was

used to obtain raw images at stand-o� distances. The goal was to process the

images without using the routines supplied by the manufacturer. Using well-

established routines these raw images were processed successfully. Throughout

this study careful attention is paid on the limitations on speed and resolution

of these imaging systems and discussions on the applicability of the methods

developed within this thesis are discussed throughout.

Keywords: Terahertz, Imaging , Compressive Sensing, Image Processing, Point

Spread Function
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ÖZ

AKT�F TARAMA TEKN�KLER� KULLANARAK TERAHERTZ FREKANS
ARALI�INDA GÖRÜNTÜ OLU�TURMA

Özkan, Vedat Ali

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Hakan Altan

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Özgür Özdemir

Ocak 2014 , 114 sayfa

Terahertz (THz) sürekli dalga görüntüleme sistemleri geçen y�llar içinde ilgi gör-

meye ba³lad�. Bu sistemlerin metal olmayan tehditleri saptayabilme yetenekleri,

ilgi çekmelerinde etkili oldu. Ayr�ca dü³ük enerji seviyelerinde çal�³�yor olduklar�

için bu sistemler ayr�ca canl�lar için zararl� da de§il. Birçok farkl� görüntüleme

sistemi geli³tirilmi³ olmas�na ra§men THz dalgalar�n do§as� gere§i h�zl�, yüksek

çözünürlüklü ve ucuz bir sistemin geli³tirilmesi henüz mümkün olmad�. Bu çal�³-

mada THz dalgalar�n�n gerek teorik gerekse deneysel olarak birçok görüntüleme

biçiminde kullan�m� incelendi. Bu çal�³man�n esas amac�, 340 GHz civar� frekans-

larda çal�³an bir THz görüntüleyicinin performans�na, kullan�lan optik tasar�m,

gürültü seviyesi ve di§er parametrelerin etkilerini incelemekti. Optik tasar�m

bu amaçla bilgisayarda modellendi ve görüntüleme alan� modellemesi de farkl�

görüntüler kullanarak gerçekle³tirildi. Sonuçlar gösterdi ki çe³itli algoritmalar�n

kullan�lmas� güvenilir bir hedef saptamas� için yard�mc� olacak.
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Aktif bir görüntüleme sistemini deneysel olarak gerçekle³tirmek için s�k�³t�rmal�

alg�lama prensibine uygun bir görüntüleme sistemi ile görüntüleme yap�ld�. Bu

sistem taramaya dayanmayan, yans�maya dayal� bir prensiple çal�³t�. Bu deney-

lerde 120 GHz civar� frekanslarda çal�³an bir milimetre dalga kayna§� kullan�ld�.

Deneylerden elde edilen görüntülerle bilgisayar modellemeleri k�yasland�. Sonuç-

lar gösterdi ki, s�k�³t�rmal� alg�lama prensibine uygun görüntüleme sistemleri ile

normalde dü³ük çözünürlüklü görüntüleme sistemleri ba³ar�l� bir ³ekilde geli³ti-

rilebiliyor.

Son olarak, THz frekanslar� kullanan pasif görüntüleme metotlar� incelendi. Mi-

limetre dalgalar� kullanan bir ticari görüntüleme sistemi sayesinde, görüntüleme

uzakl�§�nda i³lenmemi³ görüntüler elde edildi. Amaç bu görüntüleri üreticinin

sa§lad�§� programlar� kullanmadan i³lemekti. Köklü programlar kullanarak bu

i³lenmemi³ görüntüler ba³ar�l� bir ³ekilde i³lendi.

Bu çal�³ma boyunca bahsedilen görüntüleme sistemlerinin görüntüleme h�zlar�

ve çözünürlükleri yak�ndan incelendi. Ayr�ca tez içinde geli³tirilen metotlar�n

uygulanabilirli§i tez boyunca tart�³�ld�.

Anahtar Kelimeler: Terahertz, Görüntüleme, S�k�³t�rmal� Alg�lama, Görüntü �³-

leme, Nokta Yay�lma Fonksiyonu
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CHAPTER 1

INTRODUCTION

One of the least investigated regions of the electromagnetic spectrum is the

Terahertz range [4]. Although Terahertz (THz) literally means 1012Hz, Terahertz

range is used to describe all electromagnetic waves which has frequency between

3.1011Hz and 3.1012Hz. This frequency range corresponds to a wavelength range

between 1 mm and 0.1 mm. The Terahertz region is bounded by millimeter

waves in the lower frequency (longer wavelength) and infrared (IR) in the higher

frequency (shorter wavelength). Millimeter waves (MMW) can be generated

electronically [5] and infrared waves can be generated optically [6], hence they

are well explored and are commonly used in daily life [7, 8].

Being one of the least investigated regions of the electromagnetic spectrum, THz

range is also named the �THz gap� [1]. The reason for this �gap� is the fact that

THz waves have a too high frequency to be generated electronically and too low

frequency to be generated optically. Figure 1.1 shows power performances of

various solid-state sources.

Although THz waves are not easy to generate, once generated they are very use-

ful for many applications. One of the applications is characterizing the chemical

properties of a target. This application uses the fact that some materials have

characteristic absorption lines in the THz range. In order to manipulate this

phenomena Terahertz time-domain spectroscopy (TDS) systems are used. TDS

uses pulsed signals to characterize the target [9].

Another application of THz waves is THz communication. Due to their higher

1



Figure 1.1: Power performance of solid state sources, adapted from [1]

frequencies compared to MMW THz waves are able to transfer data faster. For

THz communication systems data transfer rates up to 55 Gigabits per second

have been reported [10]. Transfer rates of this order are impossible to be reached

by conventional wireless systems since they use microwave frequency band.

The third application of THz waves to be mentioned in this work is the main

focus of it: THz imaging. Imaging is the formation of an image. Although

homo-sapiens have 5 senses, in long range detection the most e�cient of them

is seeing. This is because of the fact that sounds, smells, vibrations or tastes

of objects cannot travel long distances due to nature of their propagation. This

simple range advantage is the reason why one of the most complicated functions

of human brain is image processing [11].

1.1 TERAHERTZ IMAGING

THz radiation is not harmful for living organisms [12]. This is because the

energy of THz radiation is low compared to harmful radiations, for example

x-rays. Although threat detection systems can be implemented using various

frequencies, they cannot be used in the �eld if they are harmful. This is the

main advantage of THz imaging. Another advantage of THz imaging is its

ability to detect plastic explosives [13]. Conventional metal detectors are able

to detect metal threats but they are unable to detect plastic explosives [14].
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THz imaging can be separated into two groups as active THz imaging and passive

THz imaging. In passive imaging, the source of the received signal is the target

itself. Since the THz radiation has a low frequency, and hence a low energy per

photon, any object at room temperature emits THz radiation [15]. In active

imaging the target is illuminated by THz radiation. For best image quality the

receiver in active imaging should only record the incident radiation's re�ections,

not the radiation by the target. Hence the receivers for these two imaging

methods are not necessarily similar.

Imaging a scene in physical world digitally is called digital imaging. Digital

imaging has two main steps: encoding and decoding [16]. In the encoding step

the data about the scene is collected, that is why encoding is also called the

acquisition or image acquisition step. In the second part the encoded data is

decoded to create the image. In the decoding step the acquired data is used to

reconstruct the image, that is why it is also called the reconstruction or image

reconstruction step.

The reconstructed digital images cannot be perfect copies of the physical world.

The limitations come from the optical limitations of the imaging system, the

electronic limitations of the encoding step and the computational limitations of

the decoding step. That is the reason why image reconstruction is followed by, or

simultaneously done with, image processing. Image processing is a form of signal

processing. Digital signal processing is the processing of digitized discrete-time

sampled signals. Possible processes include �lters. Although optics of imaging

systems and the processes of encoding-decoding have been studied in detail for

many years for visible imaging, even visible cameras still use image processing for

reconstruction [17]. Image processing is such an integral part of digital imaging

the theories related to image processing predates digital imaging systems [18].

THz imaging systems also use acquisition, reconstruction and image processing

techniques to create an image.

3



1.2 IMAGE RECONSTRUCTION

Converting received signals to an image is conventionally the reversing of the pro-

cess of receiving signals from the scene. Therefore the reconstruction is closely

related to the acquisition. The acquisition is done through altering the opti-

cal system so to consider di�erent reconstruction techniques one must consider

di�erent imaging systems.

One of the most commonly used techniques for imaging is using multiple transceivers

[19]. The multiple transceivers are placed on a rectangular array and this array

is called an interferometric array since the reconstruction technique is called ra-

dio interferometry [20]. Since this method uses interferometry it requires both

the amplitude of the received signal and its phase. Radio interferometry com-

bines the received signals' amplitudes and phases to reconstruct the target. This

method can be used to reconstruct the target as a two dimensional (2D) image

or a three dimensional (3D) surface. This method requires multiple transceivers

which makes the cost of building such a system unfeasible. Therefore systems us-

ing radio interferometry principles generally have a motion (rotational or linear)

to decrease the number of transceivers required. Although it reduces the cost,

the motion of the transceivers implies image acquisition time will be greater.

Another image reconstruction technique uses only one transceiver. The imaging

is done by focusing the THz beam on the target and scanning the target using

scanner mirrors. Scanner mirrors [21] have been reported to acquire images at 2

frames per second. Scanner mirrors are light mirrors which are able to vibrate

at frequencies up to 200 Hz. Although 200 Hz is faster than the video rate,

these mirrors are unable to image at such high frequencies. The reason for that

is, scanner mirrors which operate at high frequencies can only vibrate in one

direction. So to acquire a 2D image one needs at least 2 scanner mirrors. If

a single scanner mirror is used then the image acquisition rate is reduced to

again levels beyond video rate [22]. To the writer's best knowledge, to date no

method using scanner mirrors have been reported to acquire images faster than

the video rate. To keep the light focused on the target at all scan angles, the

optical design should be optimized. Confocal Gregorian dual-re�ector system is
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reported to optimize image quality on such systems [23]. Image reconstruction

in such systems are done combining the mirror position with the signal received.

If the received signal's amplitude is the only parameter that is recorded then

the reconstructed image is 2D. If the system has a transmitter which emits

frequency modulated continuous wave (FMCW) than the imaging can be made

3D, provided that the receiver records both amplitude and phase values of signals

[20].

1.3 IMAGE PROCESSING

Digital image processing is used to process digital images. The processing is

done by computer algorithms. Digital processing tools used in this work can be

deconstructed into three main areas: averaging, edge detection and thresholding.

Averaging is an algorithm which is used to remove noise from an image using

convolution of a function with the image [24]. This algorithm is used because re-

constructed images may have noises caused by random e�ects, which cancels out

in the average. Therefore averaging each pixel with its neighbourhood removes

noise from the image. However this algorithm also blurs the image, making the

edges of objects harder to recognize. Therefore edge detection algorithms are

also used.

Edge detection algorithms calculates gradients of pixels to determine whether

they are on the edge or not [25]. If they are on the edge then the pixels may be

recorded if the reason of imaging is to localize a brightness di�erence in an image.

For example in security applications of THz passive imaging possible threats are

recognized using the emission di�erences in the image between possible threats

and skin of the person carrying the threat object [26].

Although edge detection algorithms are e�ective, they can �nd unrealistic edges

for an object if the image has still noises if signi�cant order after averaging. This

may be because of noises caused by the system itself, which are not random

and hence are not removed by averaging. In these cases an additional step,

thresholding, is required for accurately detecting edges. Even if thresholding

5



will be done after edge detection, still edge detection may be useful. The pixels

which are decided to be on an edge may get their gradient with their adjacent

pixels enhanced to increase sharpness of the image.

Thresholding is an algorithm used for segmentation of an image. This algorithm

is useful for background subtraction and hence edge detection [27]. Although

images obtained after these three algorithms are free of many sources of noise,

the resulting image may still be useless in real-life applications if the resolution

is too low. In such cases images of di�erent resolution are combined using image

fusion algorithms.

Image fusion of images with di�erent resolutions require wavelet transforms to be

combined with highest e�ciency. Wavelet transforms are transformations which

represent images in wavelet orthonormal bases, hence representing an image with

multiresolution [28]. This is of crucial importance since combining two images

of di�erent resolution is computationally infeasible in any other basis. Image

fusion is used in THz imaging to combine THz images of low resolution with

visible images of high resolution [29]. This is because THz images have a very

low resolution which causes problems in localizing the threat, that is imaged on

screen, in real world. To help the users of such imaging systems in localizing the

threat, imaging systems also include visible cameras. The images obtained from

the visible camera and the THz imaging system are fused and then are shown

to the user.

Although various imaging systems and image processing algorithms have been

developed to produce a cost e�cient and e�ective THz security system, to date

no system has been used globally. One of the main reasons of this is the fact

that THz imaging systems require long time intervals to form images [30].

Nyquist�Shannon sampling theorem puts a lower limit for the number of mea-

surements required to form an image of given resolution. Recent developments in

information theory shows that under some reasonable assumptions even under-

sampled data can be used to reconstruct a unique image. This imaging principle

is called compressive sensing (CS) [16].
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1.4 COMPRESSIVE SENSING

Compressive sensing (or compressed sensing) assumes that if the image one

is trying to reconstruct is sparse in some basis, then less measurements than

stated by the Nyquist�Shannon sampling theorem su�ces. In other words to

reconstruct an image of N2 pixels, less than N2 measurements is su�cient [16].

The reason for that is the sparsity of the image. A sparse image means an

image where some pixels are zero. Since some pixels are not of concern no

measurements are required for those pixels [30].

The assumption on the sparsity of the image is a realistic one. Most of the

time, one tries to image an explosive or handgun, which corresponds to a small

fraction of the total image. Another assumption in some CS algorithms is related

to total variation of the image [31]. In these algorithms the image is assumed to

be sparse and its variation is assumed to be minimal. Minimization of variation

means the sum of gradients of all pixels is minimal.

Although CS assumes some pixels are zero, it does not assume where they are.

Therefore a regular pixel-by-pixel imaging is not applicable for CS. There are

two di�erent imaging systems used in CS. The �rst one requires receiver to be

placed at more than one position. For the second only one receiver position

su�ces.

Figure 1.2: CS setup for imaging with multiple receiver positions

In the �gure 1.2 an imaging system of �rst type at transmission mode is shown

[32]. Here the waves are generated by a source. Then a converging lens collimates

the waves. The object mask transmits at some points and re�ects or absorbs

at some other. Therefore after the object mask only some of the created waves
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can propagate, depending on the object. After the object mask a converging

lens focuses the collimated beam on Fourier plane. A receiver measures the

amplitude of the signal received at points on the Fourier plane. In order to do

that, the receiver is mounted on a translation stage.

In a regular imaging algorithm, the receiver takes measurements at a di�erent

position for every pixel that is to be shown in the reconstructed image. When

imaging is done using CS less measurements are su�cient to reach the same

resolution at the same number of pixels, because the reconstructed image of a

sparse object mask is also sparse. Therefore taking any subset of measurements

in a regular imaging system su�ces for CS [32].

Figure 1.3: CS setup for imaging with singe receiver position

In the �gure 1.3 an imaging system of second type at transmission mode is

shown [33]. Here the waves are generated by a source. Then a converging lens

collimates the waves. The object mask transmits at some points and re�ects

or absorbs at some other. Therefore after the object mask only some of the

created waves can propagate, depending on the object. The object mask is the

image to be reconstructed. After the object mask there is another mask, called

random pattern. This mask also blocks some of the waves. This random pattern

is known. Therefore the aim of the imaging system is to only reconstruct the

object mask, not the random pattern. After the random pattern a converging

lens focuses the collimated beam on the receiver. The receiver is �xed.

In a regular imaging algorithm to reconstruct the image (object mask) the num-

ber of random patterns to be placed should be at least the number of pixels in

the image. In the trivial case the random patterns should have only one opening
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where the waves can pass, this opening should have the size of a pixel on the

image and all matrices have the opening at di�erent positions. When imaging

is done using CS, measurements using less number of matrices su�ce, since if

the object mask is sparse, then the reconstructed image is also sparse [33].

The main goal of this thesis is to understand the e�ects of various parameters

that are used in the formation of images in an active THz imager based on

frequencies near 340GHz. Those parameters include but are not limited to opti-

cal system design, target geometry, receiver performance, image reconstruction

and image processing tools. The designed optical system was simulated and

the e�ects of scanning the target �eld were assessed in the simulated images of

various targets. The results show that reliable target detection will be aided by

post-processing the images using various techniques.

In the second chapter, background related to THz imaging is given. Similarly,

third chapter includes background related to simulations of active imaging sys-

tems. Chapter four describes all the imaging systems that are used in this thesis.

Chapter �ve includes all the results from the experiments and the simulations.

Finally, chapter six concludes this thesis with a summary.
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CHAPTER 2

THEORETICAL BACKGROUND OF THZ IMAGING

Active THz imaging systems have four main components: source, optical instru-

ments, target and receiver. For passive imaging systems there is no source since

the target acts as a source. In the �rst four sections of this this chapter those

components are explained in detail. The last three sections explain working

principles and sources of errors in THz imaging systems.

2.1 SOURCE

The source that will be used in 340 GHz imaging system includes a Phase Locked

Dielectric Resonator Oscillator (PRDO), an Ampli�er / Multiplier Chain (AMC)

and a WR2.8DH Horn. For imaging performance not all the electronic details

of these components are relevant. The most important factors for this work are

stability of the output frequency and power and optical properties of the horn.

Since 340 GHz is a very high frequency to be directly generated electronically,

the source uses multipliers to reach 340 GHz. The �rst component is a PDRO.

PDRO uses a crystal reference to minimize �uctuations in the output frequency.

The stability is given by the producer as � 1 parts per million per Kelvin

(ppm/C). That means when the temperature changes by 1 degree Kelvin, the

output frequency will change less than 1 in a million. The output frequency of

the PDRO used in system has an output frequency of 14.17 GHz. The AMC

multiplies and ampli�es the signal in a speci�c order. All multipliers are Schot-

tky diodes. First the signal is multiplied by 3, then it is ampli�ed, then it is
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multiplied by 2 for three times. This can be formulated as x3/Amp/x2/x2/x2.

After these operations the signal reaches 340 GHz. Since Schottky diodes de-

crease the output power, the output power after AMC is also of interest. The

producer claims the output power to be greater than 10 mW. The results of our

measurements with Golay cell found the output power to be near 7mW. Golay

cell is explained in detail in the receivers section.

2.2 OPTICAL INSTRUMENTS

The optical instruments used in the described system includes o�-axis parabolic

mirrors, plane Galvanometer mirrors (Galvo mirrors), o�-axis elliptic mirrors

and directional couplers.

O�-axis parabolic mirrors are one of the mirrors which are most commonly used

in daily life as satellite dishes.

Figure 2.1: O�-axis parabolic mirror is the part of the mirror lying between P1
and P3

O�-axis parabolic mirrors are obtained from parabolic mirrors by removing some

parts of the parabolic mirror, including the mirror's vertex. For example satellite

dishes have a receiver which would cast a shadow on the vertex of the mirror.

Therefore the vertex point of the mirror would not receive any signal from the
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satellite, hence this point would be a waste in production. To minimize the cost,

this point is removed from the dish. Similarly, in optical systems it is customary

to use o�-axis parabolic mirrors in order to minimize the cost of the setup.

O�-axis elliptical mirrors are obtained from elliptical mirrors by removing some

parts of the elliptical mirror, including the mirror's vertex. They are used for

very similar motivations.

Galvo mirrors are galvanometer based vibrating mirrors which are driven by mo-

tors. Their vibrating frequency can reach up to 1 kHz but of course the highest

possible frequency depends on the inertia of the mirror. In the system that is

being explained, the Galvo mirrors should be of at least 50 mm in diameter.

Therefore the highest possible frequency for the system is less than 1 kHz. The

Galvo mirrors are able to vibrate only in a single direction. Therefore to scan

a two dimensional (2D) image at least two Galvo mirrors are required. These

optical instruments can be used to image a a scene in conjunction as shown

below.

Figure 2.2: The Galvo mirrors in our system

Directional coupler is a waveguide coupler. In our system the waveguide coupler

is used to couple the wave-guides between transmitter, receiver and the horn.

The directional coupler is directional, so that, when the signal comes from the
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source, most of the signal is transmitted to the horn. When the signal is received

at the horn, most of it is transmitted to receiver. Naturally there is some leakage

in the directional coupler. The noise level from this leakage is eliminated using

pulsed signals from the transmitter and considering the receive times of the

receiver in image reconstruction.

2.2.1 Point Spread Function

Point Spread Function (PSF) measures the response of an imaging system to a

point source. It is the spatial domain version of the Optical Transfer Function

(OTF). In other words, 2D Fourier transform of PSF yields OTF. Modulation

Transfer Function (MTF) is the real component of (OTF). The complex parts

of PSF and OTF only a�ect the phase of the signal. As we will discuss in the

receiver section, we are not interested in the phase. Therefore from this point

on, PSF will denote only the real part of the point spread function.

MTF = F(PSF )

PSF is of great importance to understand performance of an optical system

because it determines the resolution of the imaging system. Even if an optical

system is ideal, still the PSF of it would not be a single point because of the

limitations from di�raction.

Convolution is a mathematical operation which applies on two functions to gen-

erate a third function. PSF can also be de�ned using convolution. If a 2D target

is de�ned by T (z, w) and a PSF is de�ned by PSF (u, v) then 2D convolution

of these two gives the image, I(x, y), that will be obtained from this imaging

system:

I(x, y) = (T (z, w) ∗ PSF (u, v)) =

∫ ∞
−∞

∫ ∞
−∞

T (α, β)PSF (α− x, β − y) dα dβ

Here, magni�cation is assumed to be 1. If magni�cation is not 1, but M, then
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the formula is modi�ed as:

I(x, y) = (T (z, w) ∗ PSF (u, v)) =

∫ ∞
−∞

∫ ∞
−∞

T (α, β)PSF (α−x/M, β−y/M) dα dβ

If one replaces PSF with delta functions than it is trivial to con�rm the magni�-

cation. Larger PSF causes blurry images. Therefore it is natural that resolution

and PSF are related.

It is appropriate here to discuss that the assumed target is noise free through-

out this work. All the noises are added after the PSF related operations are

completed. Therefore the T giben above is completely noise free.

2.2.2 Spatial Resolution

Spatial resolution of an image is the number of independent pixels the image

contains. The independence here can be de�ned using PSF. If two pixels of an

image corresponds to distances smaller than the PSF of the system, then those

pixels are not independent of each other. That is because they share some of

the information they display in common. Although this de�nition of spatial

resolution is well-de�ned in theory, practically it is meaningless. Most PSFs are

Gaussian functions, therefore they never become zero. Therefore generally a

cut-o� is placed to decide the pixel size.

It is discussed that pixel based images can be enlarged to achieve higher res-

olution [34]. Algorithms providing such processes are called super-resolution

algorithms. These algorithms use guesses for missing frequency components of

the enlarged images. Therefore they are post-processing applications. Another

post-processing application which also yields super-resolution images is based

on moving the imager [35].

As mentioned above, MTF is the Fourier transform of PSF. Combining PSFs

of many optical instruments requires more computation than combining MTFs.

Therefore in optical design one generally focuses on MTF. In the system that we

discuss in this work the sizes of the pixels are decided using the 50 percent MTF

as a limit. As shown by super-resolution algorithms, to de�ne a de�nite pixel
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size is meaningless. It is a must, however, since imaging algorithms require a

de�ned pixel size. Having too many pixels (small pixel size) in an image implies

slower operation but better resolution. Having too few pixels (large pixel size)

implies faster operation but worse resolution. Therefore a trade-o� should be

reached. It is a customary limit to choose percent 50 MTF as a limit in imaging

applications.

MTF values of an imaging system are bounded by di�raction limit. Therefore

longer wavelengths have worse spatial resolution in general.

2.3 TARGET

The intended target of the imaging system described is human body. As dis-

cussed in the introduction the advantage of THz imaging is that it is not harmful

[12]. However since the system will be used on dressed people it is of great impor-

tance to understand the transmission coe�cients of various clothing materials

at 340 GHz.

Figure 2.3 shows transmission of various clothing materials at 340 GHz [2].

In the �gure, 0 dB corresponds to no barrier. The thickness of the samples

used in measurement was not �xed. The thickness was chosen considering the

common clothing materials. For example the leather was 0.75 mm thick and

so on... Please see original work for further technical details. As can be seen

from 2.3 with increasing frequency transmission becomes smaller. Therefore

longer wavelengths are better for penetrating through clothing. As mentioned in

the previous section, shorter wavelengths yield better resolution. Therefore the

operating frequency of the system described in this thesis is determined with a

trade-o�: shorter wavelengths are better for resolution while longer wavelengths

are better for penetration.
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Figure 2.3: Transmission of various clothing materials at THz range, adapted
from [2]
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2.4 RECEIVER

The receiver used in the 340 GHz system consists of a Mixer Ampli�er Chain

(MixAMC) which has its own local oscillator (LO) and shares the WR2.8DH

Horn with the source. The reason of sharing the horn is for optimum signal

level. The optical design requires the source and the receiver to be coincident for

receiving maximum signal. The MixAMC mixes received signal and multiplied

LO signal to down convert the received signal. The LO signal in the receiver is

multiplied similar to the transmitter setup except for the fact that the mixing is

done at the subharmonic. First the signal from LO is multiplied by 2, then it is

again multiplied by2 then it is ampli�ed, then it is multiplied by 3. This can be

formulated as x2/x2/Amp/x3. The down converted signal is called Intermediate

Frequency (IF) signal. The reason for using IF signal and not the received signal

to form the image is because of the imaging frequency. 340 GHz is a very high

frequency for any electronic component to be able to manipulate, therefore the

received signal has to be down converted.

Another receiver is used multiple times throughout the thesis. This other re-

ceiver is called a Golay cell. Golay cell consists of a gas container with two

ends; the �rst end receives the signals and the other end is closed with an elastic

membrane. The received signals heats the gas and thus causes vibrations on the

membrane. The vibrations on the membrane are measured, thus enabling the

user to learn the power input on the Golay cell.

2.5 NOISE

There are several possible sources of noise for THz imaging. One of the most

important source of noise is multiple re�ections from the target. Although mul-

tiple re�ections e�ect the performance of active imaging systems severely, they

are unavoidable since the source of re�ection, target, is unknown in any imaging

application.

Another source of noise is the black-body radiation. Since THz waves are of very
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low energy, all objects in room temperature emit THz waves. Therefore in an

active imaging system some of the received signal is not the re�ected signal but

is the black-body radiation. The amount of radiation at a given temperature at

a given frequency can be found using Planck's law [36]. The Planck's law states

that

Bν =
2hν3

c2
1

e
hν
kBT − 1

where Bν is spectral radiance, T is absolute temperature, kB is the Boltzmann

constant, h is the Planck constant, c is the speed of light in vacuum and ν is the

frequency. To calculate the total energy radiated in a given frequency range one

needs to integrate Bν . Calculation shows that the total radiation between 339

GHz and 341 GHz is equal to 0.2596µW/m2. This number should be multiplied

with the surface area of the receiver's horn, therefore the noise is in the order of

nanowatts.

The noise level of receiver is determined by the lowest signal that the receiver

can distinguish from background. The imaging performance of an imaging is

closely related to its signal to noise ratio (SNR). The signal to noise ratio is the

ratio of received signal and the noise level. A low SNR means a low contrast

level in the obtained image.

2.6 ENCODING

The encoding and decoding processes are �nal processes of imaging therefore

they require all components to be ready to perform. Unfortunately this was not

the case for the system that is being described. Therefore encoding and decoding

are investigated not for the 340 GHz active imaging system but another imaging

system, called Compressive Sensing (CS) imaging system.

2.6.1 CS Imaging System

The source that was used in the CS imaging system was very similar to 340 GHz

source, the only di�erence was in frequency. The output frequency of the source
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used in CS imaging system was 120 GHz. The optical instruments were placed

as described in 1.3. The lenses were Te�on lenses. The receiver used was Golay

cell receiver. The Golay cell receiver was described in the receivers section of

this chapter. The target and the object masks were obtained using laser cutting

aluminium sheets.

2.6.2 CS Encoding

In CS encoding and decoding processes are not one to one. Therefore the re-

construction process relies on optimization algorithms [30]. An image is a two

dimensional array of numbers, where the numbers correspond to intensity of

signals at the pixels. Assume the image is square, that is number of pixels on

rows of the image are equal to those on columns. Then the image is a matrix of

size N x N . Any matrix of size N x N can be expressed as a vector of size N2

x 1. An example of doing this is placing the second column of x under the �rst

one and so on. Therefore any 2D image can be expressed as:

x =
M∑
i=1

θi.Ψi

Here x is a two dimensional square image which is expressed as a vector of size

N2 x 1, M is the number of measurements , θi are coe�cients of Ψi and Ψi are

column vectors of size N2 x 1. In other words Ψi are basis vectors and θi are

coe�cients, so the above formula is the representation of x in some basis Ψi. In

the case of the imaging setup shown on 1.3, Ψi are the random patterns which

are placed in the setup. So CS uses the random patterns as bases to represent

the image, x. In the encoding process the receiver records the amplitude of the

signal received. The measurements can be expressed as:

y = A.x

Here y lists measurements, A is the measurement matrix and x is the image.

y has dimension M x 1 since there are M measurements done. x was given to

be a matrix of size N2 x 1 therefore the measurement matrix has size M x N2.
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In the case of the imaging setup shown on 1.3, the measurement matrix is the

matrix obtained by placing transpose of the second random pattern under the

�rst one and so on. Combining the equations for y and x we get

y = A.

(
M∑
i=1

θi.Ψi

)

In the case of the imaging setup shown on 1.3, ith row of A is ΨT
i where T

denotes transpose. Therefore the matrix multiplication can be simpli�ed for yj,

the jth row of y as:

yj = Ajthrow.

(
M∑
i=1

θi.Ψi

)

yj = ΨT
j .

(
M∑
i=1

θi.Ψi

)
Since θi are only numbers we can express the same formula as:

yj =

(
M∑
i=1

θi.Ψ
T
j .Ψi

)

It is important to note that if the basis vectors are orthogonal to each other,

then the ΨT
j .Ψi term becomes Kronecker delta and reconstructing the image

would be trivial. However this is not the case for CS. In CS the bases are not

orthogonal to each other on purpose. After all the measurements are done, the

computer has the measurements, yi; measurement matrix, A; and hence base

vectors, Ψi. Using these information to �nd x is called reconstruction.

2.7 DECODING

Decoding the encoded data is called reconstruction in imaging applications. In

CS the decoding process is an optimization process, due to assumptions of CS.

In this work two di�erent reconstruction algorithms are used. The algorithms

are called l1 minimization and total variation (TV) minimization.

The encoding assumes sparsity in target. Therefore it is normal to expect that
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the reconstruction algorithm should also consider sparsity. This is not the case

in both of the algorithms, because sparsity implies value of components of the

image matrix being zero. Choosing which components should be zero is a very

time consuming problem for computer. Therefore for imaging systems with re-

alistic image reconstruction timing, sparsity is not a condition in reconstruction.

Instead they use l1 minimization.

l1 is a metric. For any real number x and y the distance between those two is

de�ned as the absolute value of their di�erence ( |x−y| ) in l1 metric. Minimizing

an image in l1 implies forcing it to have minimum value possible in l1 metric.

Without constraints the answer is trivially zero, therefore constraints are a must

for reconstruction. The constraints are obtained using the measurements, yi.

l1minimization method given as,

x = arg min ||x||1 s.t. y = Ax

Finds the solution, x(image matrix) that is a solution fory = Ax, where y is the

measurement and A is encoding matrix, subject to the condition that,

||x||1 = Σi|xi|

is minimum[37].

Here x is the image matrix in vector form, y is the measurement,A is the mea-

surement matrix and argmin means choose the x with minimum l1 metric of all

possible x's. There are more than one x satisfying the y = Ax constraint, since

A is not a square matrix. The l1 minimization problem can be solved in poly-

nomial time, therefore is a feasible way to reconstruct image. This algorithm

works in reconstructing the image, because of all the possible images, the one

with smallest sum of components is the closest one to a sparse image.

There are variations of l1 minimization algorithm. All those variations assume

new constraints on the image. The one we are interested is called TV minimiza-

tion. In TV minimization, another constraint is imposed on the reconstruction

algorithm. This new constraint is about sum of the gradients of the pixels in the
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image. If we not only assume that the image is sparse but also there are only a

few objects in the image, then the image should be minimal in gradient. That

is because the gradient is greatest on the boundaries of objects. Therefore the

less objects the less the boundaries and hence the less the sum of the gradients.

Mathematically this can be formulated as:

TV, given as,

x = min TV(x) s.t. y = Ax

�nds the solution, x subject to the constraint.

TV(x) = Σij

√
(Dh;ijx)2 + (Dv;ijx)2,

s is minimum[38], where

Dh;ijx =

xi+1,j − xij i < n

0 i = n
Dv;ijx =

xi,j+1 − xij j < n

0 j = n
.

Here x is the image matrix in vector form, y is the measurement,A is the measure-

ment matrix and minTV (x) means choose the x with minimum total variation

of all possible x's. There are more than one x satisfying the y = Ax constraint,

since A is not a square matrix. The TV minimization problem can also be solved

in polynomial time, therefore is a feasible way to reconstruct image. This works

in reconstructing the image, because of all the possible images, the one with

smallest sum of gradients is not only of minimal variation but also of minimal

pixel values. Hence it is natural to expect TV to outperform l1 minimization in

general. In fact this is the case, therefore most of the CS imaging systems in

literature only use TV minimization.
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CHAPTER 3

THEORETICAL BACKGROUND OF ACTIVE

IMAGING SYSTEM MODELING

In the previous chapter the theoretical background of THz imaging was inves-

tigated in reality. Modeling the explained reality in computer is not trivial,

since reality has the advantage of using continuous functions while computers

can only manipulate discrete data. Therefore all the components explained in

the previous chapter should be manipulated analytically for one to be able to

simulate them using a computer.

In this chapter, discretization of two main properties are investigated: PSF and

noise. The other parameters are trivial to discretize. For example output power

of the source is in reality a real number. However as soon as one measures

it, it becomes discretized; because of the error in measurement, one can safely

assume the output power to be a number with reasonable signi�cant �gures.

However this is not the case in PSF. There are too many optical components

and too many mirror positions to try to measure PSF experimentally. Moreover

to produce optimized optical components one must have an understanding of

their PSF.

The noise in an imaging system is also not trivial to model, because as discussed

in previous chapter there are numerous sources of noise. Moreover, due to nature

of noise, noise is not a predictable parameter. Therefore it is not trivial to model

it in a computer.
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3.1 PSF

As mentioned in previous chapter PSF of an optical system is of great importance

in an optical system's performance, especially in resolution. Therefore designing

the optical instruments with ideal PSF values is important for an optical system.

To design the instruments, ZEMAX, a commercial optical design tool was used.

ZEMAX has built in functions for calculating PSF. Without understanding how

those functions work it is impossible to understand the limitations and bene�ts

of them.

Before giving more detailed information related to computation of PSF it is

appropriate to explain how ZEMAX works in brief. ZEMAX de�nes optical

instruments sequentially: every optical element has an entrance and an exit

pupil. The entrance pupil of an optical element is the exit pupil of the previous

one.

3.1.1 Modeling PSF of a single optical element

ZEMAX can model PSF of an optical element using three di�erent ways. The

�rst way is using geometry of the incident and re�ected light. This is of little

interest in this work since the resolution of our system is limited by physical

optical phenomena.

The second way uses Fourier transform of rays to calculate PSF. This method

is called FFT PSF. In this method, a grid of rays are traced from the entrance

pupil to the exit pupil of the optical element. The number of rays in the grid

are chosen by the user. During the tracing of the rays, the optical path each

ray travels is calculated independently. After tracing, the grid at the exit pupil

is analysed for each ray and then a complex amplitude is calculated for each

of them. The amplitude is complex in order to include the phase of the rays.

After all computations for all the rays are completed, the Fourier transform of

the grid is calculated, scaled and squared to obtain PSF.

The Fourier transformation is taken using Fast Fourier Transformation (FFT)
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algorithms. Therefore the uniformity of the samples is crucial for a reliable

result. However this is not the case in general. For example even if the rays are

uniformly distributed on the entrance pupil, they may be localized on the exit

pupil, therefore making FFT algorithms unreliable. For example in an o�-axis

parabolic mirror, the entrance pupil and the exit pupil are tilted because of the

tilt of the mirror, making FFT PSF unreliable. Therefore the most reliable PSF

calculation for o�-axis mirrors is the third way.

The third way of calculating PSF using ZEMAX is using the Huygens PSF

option. This option uses the Huygens principle, as the name suggests. Again a

number of rays speci�ed by the user are traced from the entrance pupil to the

exit pupil. In contrast to the FFT PSF method, this method traces the rays

not as rays but as plane waves. The rays at the entrance pupil are converted

to plane waves according to Huygens principle, therefore all the rays correspond

to one plane wave with a de�nite amplitude, phase and direction. To calculate

the PSF all the plane waves are summed on the exit pupil. Therefore this is the

slowest method of all three. However it is the most reliable.

3.1.2 Modeling PSF of an optical system

In the previous subsection PSF calculation for a single optical instrument was

investigated. However imaging systems consist of multiple optical instruments

in general. Therefore modeling PSF of an optical system requires combining

PSFs of multiple optical instruments.

As seen in the previous chapter, combining multiple PSFs are trivial in ZEMAX

since one optical instrument's exit pupil is the entrance pupil of the next one.

However obtaining the �nal PSF is not of great signi�cance since the performance

of the imaging system is generally measured using MTF, not PSF. Therefore

after calculating the �nal PSF it is customary to take its Fourier transformation

to obtain MTF.

In ZEMAX the obtained MTF is called geometric MTF if the PSF was calculated

using geometric PSF. If PSF was calculated using FFTmethod then the resulting
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MTF is FFT MTF. The one that was used in this study is in the third method,

Huygens MTF which is calculated by propagating wavefronts from the source

to the image plane to obtain PSF and the applying Fourier transformation to

get Huygens MTF. The pixel size of our imaging system is determined by this

MTF.

The wavefront in reality is a continuous wavefront and therefore is impossible

to be modeled in a computer. Therefore ZEMAX discretizes the continuous

wavefront to small discrete wavefronts and propagates them separately, only to

sum in the end to obtain an approximation to reality. This calculated wavefront

determines the signal that is sent to the target. If the re�ection coe�cient of

the target is known then this means one also knows the signal to be received.

Therefore modeling PSF one is able to model an active imaging system.

In the optical system shown in �gure 2.2 every di�erent con�guration has a

di�erent PSF, therefore to model an imaging system with vibrating mirrors one

needs more than one PSF. In the imaging system described in this paper, one

needs at least 900 di�erent PSF values to model the image. However calculating

900 Huygens PSFs is a time consuming process. Therefore interpolation is used

to calculate some of the PSFs. Detailed information will be provided in chapter

5.

3.2 Noise

The major sources of noise in the explained imaging system can be listed as

noises from the environment and the noises from the receiver. Although both

has a random nature they may a�ect the image reconstruction in di�erent ways

because of the reconstruction algorithm used. Therefore they are investigated

separately.

Modeling noise is important to understand the robustness of reconstruction al-

gorithms. An imaging system that only performs well in laboratory conditions is

of little interest in practical problems therefore robustness of the imaging system

is also an important parameter for this work.
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In order to explain adding noise to a model, one needs to describe the model.

The model imaging system has a de�ned target and de�ned optics. Therefore the

signal pro�le on the target is de�ned. When target is also de�ned the received

signals can be calculated. However in reality there are inevitable sources of noise

which need to be modelled to simulate a realistic received signal. Without any

noise added, the calculated signals to be received are called ideal signal, since

they are noise free. In the following subsections the nature of the noise to be

added and how to add it to signal are discussed.

3.2.1 Modeling noises from environment

The noises from the environment were listed as black-body radiation and mul-

tiple re�ection in the previous chapter. Since multiple re�ections are dependent

on the geometry of the target and the target will be unknown in real-life oper-

ation of this system, one can model noise from multiple re�ections as a random

noise. Similarly, temperature �uctuations on the target can cause noise in the

image reconstruction. Again the �uctuations are not predictable beforehand,

therefore the noises caused by black-body radiation are also of a random nature.

Random noise from the environment is modeled in this work by adding random

levels of signals to the received signals during the simulations of image recon-

struction. Since temperature �uctuations can be in both positive and negative

direction, the added random signal was not forced to be positive. The e�ects of

this random noise is discussed in chapter 5.

3.2.2 Modeling noises from receiver

In the previous chapter it was stated that the noise level e�ects the quality of

the reconstructed image in a direct way. The SNR of the imaging system limits

the possible contrast that can be captured in images.

The noise level in the receiver de�nes the step size for contrast levels. For

example if one has a noise level of 0.01 mW and a peak signal of 1 mW then

the signal can consist of maximum 100 steps. Since any di�erence less than 0.01
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mW would not be detectable, due to noise.

On the computer screen most of the images have a contrast level of 256. This

means a computer screen can show maximum 256 shades of grey. However if

SNR is lower than 256, it is impossible to assign 256 levels of contrast to this

signal. This implies reducing the contrast level of the reconstructed image.

Another possible problem caused by the noise from receiver is �uctuation beyond

the expected level of noise. In this case the shown pixel will display a wrong

shade of grey. Since this noise is unpredictable and can both increase and

decrease the signal level, it is also a random noise. Therefore it can be modelled

as mentioned in the previous subsection.

The �nal possible problem from noise in the receiver that will be discussed in

this work is related to integration time of the receiver. If the signal is changing

faster than the receiver can respond, then there can be some systematic noise

in the received signal. For example if a system with a slow receiver is scanning

a point like source, the corresponding image will not be a point but it will be a

line. Since even after scanning the point like source, the receiver will be unable

to return back to reading zero. This is the only source of systematic noise that

is discussed in this work. This noise can be modelled easily by adding the signal

that would be received ideally itself after calculating a shift, hence simulating

an experiment with a slow receiver.

In conclusion most of the possible sources of noise for the system discussed is

of random nature and are modelled with adding the ideal signal a random noise

signal. The only systematic noise that is included in this work is the receiver

with long integration time, which is modelled with adding the ideal signal itself

after a delay.
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CHAPTER 4

IMAGING SYSTEMS

The 340 GHz active imaging system, which is the main focus of this work, is

described in the �rst section of this chapter. As mentioned before, encoding and

decoding are investigated using a setup based on compressive sensing principles.

This setup is described in the second section. Finally a passive imaging system

which was used in investigating post-processing algorithms is described in the

third chapter. In summary, this chapter covers all the imaging system details

required to interpret the results given in chapter 5.

4.1 340 GHz ACTIVE IMAGING SYSTEM

The main purpose of 340 GHz active imaging system is to complete security

checks on high-security points like airports. Therefore the system is required to

have a good resolution to be able to detect threats with high e�ciency and a

large enough �eld of view to scan torso of a person. The optical design most

suitable for this task utilizes a confocal Gregorian geometry. Figure 4.1 shows an

example of a confocal Gregorian re�ector system (CGRS) [3]. In this �gure there

is only one mirror which is able to rotate both in x and y directions. However

this is not the case in the 340 GHz system. As discussed before, since Galvo

mirrors are able to rotate in only one direction, two Galvo mirrors are used in

the system. Since visualization of a system using 2 Galvo mirrors is not easy,

CGRS is explained using �gure 4.1.

In the system shown in �gure 4.1, the signal is transmitted from transceiver. The
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Figure 4.1: A CGRS using a single vibrating mirror[3]

signal has a Gaussian distribution. The �rst optical element, the collimating o�-

axis parabolic mirror, collimates the light. The collimated light is steered using

a vibrating mirror. Then the focusing o�-axis parabolic mirror focuses steered

light on a point. The point varies with di�erent con�gurations of the vibrating

mirror. Finally the main re�ector, an o�-axis elliptic mirror, focuses the signal

on target. At every di�erent con�guration of the vibrating mirror, the signal is

focused on a di�erent point on target. The total �eld the signal covers on the

target is called the �eld of view.

The CGRS is an optimized system for scan based imaging. The focusing parabola

and the elliptical mirror system enables a robust imaging performance. However

it has some disadvantages. For example the elliptical mirror's surface has to be

precisely shaped for best performance[3]. Moreover if two scanning mirrors are

used then the time geometry of the system causes aberrations on the �eld of

view. This aberrations are the main point of interest of the simulation that are

described in the chapter 5.

In the 340 GHz active imaging system described in this work, the �eld of view
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is 50 cm x 50 cm. The system was designed and optimized using ZEMAX. The

optimization was achieved using the built-in optimization functions of ZEMAX.

System was optimized, using merit functions, for maximum resolution through-

out the �eld of view. The main principle of optimization lies in calculation of

PSF, which was explained in detail in the previous chapter. The details of the

optical system are not given as at the time of this thesis the project was ongoing.

Interested readers should contact the author for further information.

Figure 4.2: The 340 GHz active imaging system

Figure 4.2 shows the optical layout of the 340 GHz active imaging system. Here

the main re�ector, the focusing parabolic mirror and the transceiver are shown

clearly. However the collimating parabolic mirror and the Galvo mirrors are

not seen due to the orientation, therefore another view is also given. Figure

4.3 shows the same setup in another angle. In this �gure the placement of

collimating parabolic mirror is clear, however Galvo mirrors are still not clear.

Therefore a third �gure is given. In the third �gure, 4.4, Galvo mirrors are shown

clearly. The propagation of signal for di�erent angles of the Galvo mirrors are

also shown in the same �gure. As can be seen, the alignment of Galvo mirrors

and the focusing parabola makes it impossible to focus the signal perfectly, due to

spherical aberration. E�ects of this aberration on imaging system performance

is investigated in detail in chapter 5.
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Figure 4.3: The 340 GHz active imaging system from bottom

Figure 4.4: The 340 GHz active imaging system from side
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The PSFs obtained using Huygens principle from ZEMAX are shown in �gure

4.5. In the �gure the top left PSF is the PSF at the top left corner of the �eld

of view of the system. The central is the central and so on. . . The PSFs are all

shown for a square of 10 cm x 10 cm. So in total the �gure corresponds to 30

cm x 30 cm.

Figure 4.5: The 340 GHz active imaging system's PSFs

The PSF gives best resolution in centre of the �eld of view as expected. Near

the ends once can see the PSF has spherical aberration. This is because focusing

parabolic mirror could not be optimized for two vibrating Galvo mirrors. All

the results shown in chapter 5 are calculated only using these 9 PSFs and their

interpolations.
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Figure 4.6 shows the MTF curve calculated using the Huygens principle for the

centre of �eld of view. This MTF curve was used to determine the pixel number

that will be used in this optical system. The resolution is calculated using

the percent 50 MTF which yields 0.0337 cycles per milimeter. Multiplicative

inverse of this number is the minimum separation required to distinguish a line

pair. Therefore half of this number gives the resolution. Calculation yields the

resolution for this system to be 1mm
(2)(0.0337)

= 15mm. Since the �eld of view is 50

cm x 50 cm, this corresponds to approximately 30 pixels x 30 pixels.

Figure 4.6: The 340 GHz active imaging system's central MTF

4.2 COMPRESSIVE SENSING IMAGING SYSTEM

The CS imaging system used to study encoding and decoding used a single

receiver position. Therefore it is of similar con�guration to �gure 1.3. The

exact con�guration is shown in 4.7. The transmitter used in this setup is similar

to the 340 GHz transmitter discussed before. Only the multipliers are di�erent;

resulting in a 120 GHz frequency output instead of 340 GHz. The lenses used

were Te�on. The receiver is a Golay cell (Tydex TC-1T), which was explained in

previous chapters. The Golay cell, as discussed before, measures the change in
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intensity of the signal. Therefore the transmitter was amplitude modulated. The

modulation was controlled using the waveform generator. Finally the amplitude

of the received signal was measured using a lock-in ampli�er referenced to the

waveform generator.

Figure 4.7: The CS imaging system

As mentioned in the previous chapter to reconstruct the image the mm-wave

intensity has to be patterned randomly over the object. One of the random

patterns used in measurements is shown in �gure 4.9. The patterns used in the

imaging system were produced using pulsed laser source (Fiberlast NanoMark

20W). The laser spot size on the 200 micron thick aluminium sheet was 30µm.

The patterns were designed using a code developed in Matlab (See Appendix

A). All the random patterns had exact 50 square holes, out of possible 100. The

holes were of size 3.0mm x 3.0mm. The grids between holes were 200 µm wide.

To investigate clearly the development and e�ect of the reconstruction algo-

rithms on the object, we had to choose an object which was not only three di-

mensionally �at but also had a distinctive shape with both straight and curved

features in order to assess the resolution in the image reconstruction. The tar-

get (reverse letter R) was also produced with the same laser, again using an

aluminium sheet. The target as seen from the receiver's point of view is given
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Figure 4.8: One of the random patterns used

Figure 4.9: The same random pattern shown in 4.9 is shown here as it was
designed
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in �gure 4.10.

Figure 4.10: The target as seen from the receiver's point of view

The distance between the random pattern and the receiver was �xed at 50cm

to ensure that any higher order di�racted beams would not be in the �eld of

the Golay Cell detector and lens assembly. To date, and to the best of the

author's knowledge, no CS experiments have been performed in re�ection mode

for this frequency where the random pattern was kept at a distance from the �at

object. Typically, the random pattern is kept close to the target to minimize

the non-specular scattered �eld along the optical axis towards the detector.

This turned out to be a problem during the reconstruction. Another issue was

the fact that while the entire optical system was designed with a He Ne laser

beam to ensure that all optical components lie along the optical axis, the mm-

wave emission from the horn antenna had to be placed for best possible signal

transmission into the receiver. For this reason the focusing lens in front of

the receiver had to be shifted slightly from the optical axis to increase signal

39



reception. As the results will show this caused a slight shift of the object from

the centre of the reconstructed �eld which we compensated for in the analysis.

Detailed information on imaging performance and obtained images will be given

in chapter 5.

4.3 THz PASSIVE IMAGING SYSTEM

As discussed before the image processing algorithms were investigated using

a third imaging system: a THz passive imaging system. Due to our groups

collaboration with researchers from the Military University of Technology in

Warsaw, Poland we had access to use a commercially available passive THz

imaging system and aid in the development of image reconstruction algorithms

which was the goal of the research group there, led by Dr. Norbert Palka.

http://www.optolab.wat.edu.pl/index.php/kontakt/koordynatorzy

-zadan/6-norbert-palka

Basically, the purpose was to be able to modify and present the raw data col-

lected by the imaging system as a usable mm-wave image. A model of the optics

of the imaging system is shown in �gure 4.11

The vibrating mirror can vibrate in two orthogonal directions, therefore a single

vibrating mirror su�ces to obtain a 2D image. The target is generally too far

away from the system, therefore the signal can be assumed to be falling parallel

on the vibrating mirror. The o�-axis parabolic mirror focuses the received signal

on the receiver. The receiver is similar to the receiver used �n the 340 GHz

system; the only di�erence is in multipliers. The operating frequency of the

passive system is 250 GHz. To understand the image reconstruction process and

e�ects of resolution for dealing with such a large wavelength imaging system we

obtained raw data and optimized them using our own developed algorithms and

�nally compared our results to that which the system did by itself.

E�ects of image processing on raw data acquired using the passive imaging

system are discussed in detail in chapter 5.
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Figure 4.11: Optics of the passive imaging system
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CHAPTER 5

RESULTS

Before presenting the results it is appropriate to list what experiments have

been done and what simulations were completed. As mentioned in the previous

chapter this thesis covers three di�erent imaging systems.

The �rst system, which is the main focus of this work, is the 340 GHz system

which is yet to be completed. Therefore no experimental result is presented for

the 340 GHz system. However the optical design of the system was present,

therefore modelling of the system's imaging performance was investigated using

PSFs.

The second system is the CS system, which was used to investigate encoding and

decoding experimentally. In addition to experimental results, the CS algorithms

were also run with simulated data. This was done in order to better understand

the imaging performance.

Finally the third system, the THz passive imaging system, was used to inves-

tigate e�ects of image processing algorithms. The system was also available

and the experimental results will be shown. However since the system was not

produced but purchased a detailed modelling of the system was not possible.

Therefore only experimental results are listed.

In table 5.1 the availability of experimental and modelling/simulation results for

di�erent imaging systems are listed.

Since for CS both types of results are available, the �rst two sections focus on
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Table5.1: Available results

Imaging system Experimental results Simulation/modelling results
340 GHz active imaging system not available available
CS imaging system available available
Passive imaging system available not available

the CS imaging system. The third section focuses on the passive imaging system

and the �nal section covers the 340 GHz system.

5.1 CS IMAGING SYSTEM SIMULATIONS

In order to understand the image reconstruction algorithms' performances at

di�erent noise levels, the encoding procedure is simulated. The simulation was

done based on the photo of the target from the receiver's point of view, shown

on �gure 4.10. Using the target and the random patterns the ideal signals to be

received was calculated for every di�erent random pattern.

The decoding process was completed without any alterations. So the algorithms

were exactly as given previously in this work. The ideal data itself was found to

be insu�cient to characterize the performances of the algorithms. Therefore the

ideal data was added percentile random noise, to simulate noisy measurements.

The added percentiles were: 5 percent and 10 percent. In addition, a pure noise

was also used as measurement. The motivation for this was to understand how

the algorithms respond to random noise.

As mentioned before, the CS algorithm does not require 100 measurements to

produce a 100 pixel image. Therefore the e�ect of increasing the number of

measurements on imaging performance was also of interest. To this end the

imaging performance was analysed for any number of measurements between 20

and 98. The last two random pattern square matrices were not produced due to

issues with the �ber laser cutting system. However, the 98 generated patterns

were enough in understanding the limits of this technique. At every di�erent

measurement a di�erent random pattern was used.
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The ideal image that was used to simulate the encoding is shown in �gure 5.1.

The ideal image is discretized to 10 pixel x 10 pixel for convenience. Since

the random patterns were of 100 possible holes, arranged in 10 x 10, the best

possible resolution one could get from the imaging setup is 10 pixel x 10 pixel.

See Appendix B for the code used to discretize the target object. Due to the shift

of the 120GHz light �eld from the optical axis the simulated reverse letter R was

shifted 2 pixels to the left and one pixel to the top in order to ensure accurate

comparison with experimental results which are treated in the next section. The

goal of this work is to compare the simulated best possible reverse R that can be

obtained using a 10 x 10 square array with a 3mm pixel size to the actual image

recorded at 120GHz with the same array using CS techniques. Immediately

one can expect that the 120GHz will not be as good as this image due to the

large wavelength (near 2.1mm), however this analysis still demonstrates the

limitations and advantages of the CS technique.

Figure 5.1: Shifted ideal image

Before moving on to show the imaging performance, it is appropriate to de�ne

a metric to measure imaging performance. Various methods can be used to

evaluate imaging performance, In this work Structural Similarity (SSIM) is used.

SSIM is a metric used to compare similarity between two images [39]. Assume

x and y are two images of same resolution, then SSIM of them is given by:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
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Here µx is the average of x, µy is the average of y, σ2
x is the variance of x,

σ2
y is the variance of y and �nally σxy is the covariance of x and y. c1 and

c2 are used to stabilize divisions with weak denominator. They are calculated

using the possible contrast between two pixels(K): c1 = (K/100)2 and c2 =

(3K/100)2. These are conventional constants for SSIM. In our simulation this

contrast was chosen to be 255, therefore c1 = 6.5025 and c2 = 58.5225 was used

in calculations. The SSIM has a maximum level of 1, implying two images are

exactly same and a minimum level of -1, implying the two images are as dissimilar

as possible. For two random images the SSIM is expected to be around zero.

By de�nition SSIM compares two images. Obviously the �rst image to be com-

pared is the reference image given in �gure 5.1. The other image is the re-

constructed image. The reconstructed image is reconstructed using a variable

number of measurements, between 20 and 98 with either l1 minimization algo-

rithm or TV minimization algorithm. Those algorithms are de�ned in chapter

2 section 6.

In all the �gures in this subsection, a solid line is the ideal data without any

noise, the line marked with circles (o) is ideal data with 5 percent noise added,

the line marked with plus signs (+) is ideal data with 10 percent noise added

and �nally the line marked with asterisk (*) is the pure noise. In �gure 5.2

the evolution of SSIM with increasing number of measurements is shown for l1

reconstruction algorithm. In �gure 5.3 the evolution of SSIM with increasing

number of measurements is shown for TV reconstruction algorithm.

As can be seen in �gures 5.2, 5.3 both algorithms are very successful for ideal

data, and decrease in performance with increasing levels of noise. The image

reconstructed using pure noise has an average SSIM of almost 0 as expected.

It is important to note that even for the ideal data at least 38 measurements

must be used to construct the image properly. As can be seen from graphs,

with increasing noise levels the minimum number of measurements required is

increasing. No noteworthy di�erence in performances of two di�erent algorithms

was found. Finally it is important to note that the SSIM of the ideal data with

5 percent noise added is not stable. As can be seen it �uctuates by 0.2. This

46



Figure 5.2: Evolution of SSIM with increasing number of measurements, using
l1 reconstruction algorithm. (-) ideal data, (o) ideal data + 5 percent noise, (+)
ideal data + 10 percent noise, (*) pure noise
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Figure 5.3: Evolution of SSIM with increasing number of measurements, using
TV reconstruction algorithm. (-) ideal data, (o) ideal data + 5 percent noise,
(+) ideal data + 10 percent noise, (*) pure noise
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can be because the random noise added to the system has a positive impact on

image reconstruction at some times, and negative in some other.

The reconstructed images using 38 measurements and 98 measurements are

shown in �gure 5.4. As can be seen, if there is noise then the image is not

formed properly at measurement number 38, although when there is no noise it

does. Finally it is important to note that for pure noise, increasing number of

measurements complicate the image randomly.

5.2 CS IMAGING SYSTEM EXPERIMENTAL RESULTS

In this section the results for measurements taken in experiment are listed. The

measurements were taken one by one: The �rst random pattern was placed and

the received signal was measured, then the second and so on. . . In addition to

this measurement an additional measurement was done, in order to eliminate

the background signal. For this second measurement the target (reverse R)

was removed from the system and measurements were taken for every matrix

again. Therefore the background, independent of the target, was recorded. In

reconstruction the ratio of these two measurements were used as input. This

ratio of signals for all 98 patterns were combined to form the image, using the

CS reconstruction algorithms described in chapter 2, section 7. Details of the

code developed for this task can be found in Appendix C. The �nal images,

using all 98 measurements, are shown in �gure 5.5 and 5.6.

The SSIM is computed again with comparing reconstructed images with the

reference image shown in 5.1. For better analysis the SSIM graphs are plotted

not only for the experimental results. The ideal data and pure noise graphs from

the previous chapters are also included in plots.

In all the �gures in this subsection, a solid line is the ideal data without any

noise, the line marked with circles (o) is the data obtained with the experiment

and �nally the line marked with asterisk (*) is the pure noise. In �gure 5.7

the evolution of SSIM with increasing number of measurements is shown for l1

reconstruction algorithm. In �gure 5.8 the evolution of SSIM with increasing
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Figure 5.4: The reconstructed images using 38 measurements and 98 measure-
ments
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Figure 5.5: Final image obtained using experimental data using l1 algorithm

Figure 5.6: Final image obtained using experimental data using TV algorithm
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number of measurements is shown for TV reconstruction algorithm.

Figure 5.7: Evolution of SSIM with increasing number of measurements, using
l1 reconstruction algorithm. (-) ideal data, (o) experimental data, (*) pure noise

As can be seen the performances of the algorithms do not di�er for any of the

inputs. Considering the simulations with ideal data with noises, it is normal that

the experimental data forms an image much later than the ideal data. Except

from late formation of image, the imaging system successfully reconstructs the

image, the similarity is greater than 0.4 after 98 measurements are considered.

The similarity increases in last 20 measurements rapidly. This may be explained

by noise in the acquired data. In the simulations discussed in the previous

section noise was distributed evenly on every measurement, however this is not

necessarily valid for our system. Therefore image formation may have been

shifted.
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Figure 5.8: Evolution of SSIM with increasing number of measurements, using
TV reconstruction algorithm. (-) ideal data, (o) experimental data, (*) pure
noise
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5.3 PASSIVE IMAGING SYSTEM EXPERIMENTAL RESULTS

The passive imaging system was investigated in order to understand the e�ects of

image processing algorithms. The goal of this work was to show that algorithms

applied to the raw data by us could give similar results as to what is obtained

using the processing already developed in the commercial passive imaging system

tested here. This capability would allow the user to control and manipulate the

passive image as he or she deemed �t. For example, it was the goal of the

research group in Poland to fuse the passive image with a visible image giving

the operator a better understanding of threat objects.

To test the passive imaging system performance the team in Poland designed a

mannequin that was able to simulate the human body. By covering the "dummy"

with tubes they were able to pass water at the appropriate temperature to

simulate a human being under light clothing. During this task they discovered

that the commercial system does not give the raw data as is observed in the �nal

image. Instead the system mixes the data in a seemingly random pattern before

it processes it. This is thought to ensure that 3rd parties do not manipulate

the system or its control software without the developers' consent. In order

to work around this drawback we designed a scenario where a hot water �lled

tube that made an S shape was imaged. The seemingly random raw data was

analysed to understand the reconstruction. The result of the reconstruction is

shown in Figure 5.9, and the code written in Matlab used for this task is given

in Appendix D and E.

In the next step our goal was to see how one can manipulate the raw image to

show an image comparable to what the commercial system already does with

its own proprietary algorithms. This approach is outlined as follows: First

image obtained by commercial system and target (which is a knife placed on

the mannequin) will be analysed. Then, the reconstructed raw image will be

processed by �rst applying an averaging algorithm followed by an edge detection

algorithm and a thresholding algorithm, details of which were given in Chapter 1,

section 3. Finally the obtained image will be compared to that already obtained

with the system.
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Figure 5.9: Reconstructed image
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5.3.1 Target

The target used in this system is shown in �gure 5.10. It is a water-heat pumped

mannequin. The threat object placed on the mannequin is a knife. The knife is

shown in �gure 5.11

Figure 5.10: The target mannequin

The image obtained using the built-in algorithm in the passive THz imaging

system is shown in �gure 5.12. The raw data obtained from the system is shown

in �gure 5.13.

As can be seen the raw image is processed very successfully by the passive

imaging system's built-in algorithm. In the following subsections an alternative

processing will be investigated.
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Figure 5.11: The threat object

Figure 5.12: Image obtained from built-in algorithm of the passive imaging
system, resolution is 271 x 124 pixels
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Figure 5.13: Raw image obtained from the passive imaging system
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5.3.2 Averaging

The averaging algorithm used in this work is Gaussian averaging. Every pixel is

averaged using the Gaussian weighed sum of its neighbouring pixels. The code

for this is given in Appendix F. The image obtained after this averaging is shown

in �gure 5.14.

Figure 5.14: Averaged image

As can be seen in �gure 5.14 the averaging blurs the image in a positive way.

After averaging the image becomes smoother. The reason why raw data is not

smooth can be explained using the vibrations of the vibrating mirror of this

system. The vibrating mirror completes a whole vertical line before moving on

to the next horizontal line, resulting in a horizontal discontinuity in the obtained

image. The image obtained from the system's built-in algorithm can be used

as a reference for an SSIM comparison of both the raw image and the image

obtained after averaging. The SSIM for the raw image is found to be 0.2271
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while it became 0.3438 after the averaging.

5.3.3 Edge detection

Nonlocal means (NLM) algorithm is a nonlocal averaging algorithm which can

be used for edge detection [40]. The NLM does not average a pixel based on its

neighbourhood. Instead it �nds the most similar pixels to it in the whole image.

Then it uses this pixel to smooth out the pixel at hand. Therefore using nonlocal

information to smooth a pixel, the algorithm has the ability to reveal edges more

clearly. The image obtained after applying a nonlocal means algorithm is shown

in �gure 5.15.

Figure 5.15: Image after NLM algorithm

The SSIM after NLM algorithm is applied is found to be 0.3822. Clearly the

NLM algorithm is most useful near the edges. This is natural since the algorithm
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uses nonlocal pixels to correct the pixels at the edges.

5.3.4 Thresholding

Thresholding is the �nal part of the image processing algorithms that will be

discussed in this work. In general it is customary to �nalize the process with

an image fusion. Although the image fusion is being investigated the results are

not yet ready, therefore no work is shown in this work.

Thresholding is done using the average of the whole image in this work. Although

there are nonlocal thresholding algorithms for more precise edge detection, a

global thresholding was decided to su�ce for the work in Poland. The image

obtained after applying a thresholding algorithm is shown in �gure 5.16.

Figure 5.16: Image after thresholding

The SSIM obtained after the thresholding algorithm is applied is 0.4095. Clearly
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the image after thresholding is much more similar to image processed by system's

built in algorithm compared to the raw image obtained.

Therefore one can say that an imaging systems' performance can be increased

greatly (by almost a factor of 2 in case of SSIM) by post-processing. In the 340

GHz active imaging system which is currently being developed, a post-processing

algorithm is being developed for better recognition of threat objects.

5.4 THz ACTIVE IMAGING SYSTEM SIMULATION RESULTS

To model the imag�ng performance of the system the Huygens PSF, explained

in chapter 3 section 1, was used.

To simulate the imaging system the �eld of view has to be divided in to the

number of pixels that is dependent on the resolution of the active imaging sys-

tem. For the 50 x 50cm �eld of view, this turned out to be 30 x 30 pixels. This

means that ideally we would need 900 PSFs to accurately simulate the target

object with our active imaging system. However, due to the similarity of the

PSFs we only used the PSFs in the edges and the centre of the �eld of view and

interpolated the values in between using the following formula:

PSF (x, y) =
PSF1(a, b)√

(a− x)2 + (b− y)2
+

PSF2(c, d)√
(c− x)2 + (d− y)2

+
PSF3(e, f)√

(e− x)2 + (f − y)2

where PSF (x, y) is the PSF used in calculating the current pixel; PSF1, PSF2

and PSF3 are the three closest points of the 9 used in interpolation. The imaging

was simulated by de�ning a target and imaging it via convolutions of PSFs. The

interpolation algorithm and the algorithm for taking the mentioned convolution

can be found in Appendix G.

5.4.1 Noise-free simulations

In this subsection ideal images are distorted only with PSF of the optical system.

No e�ect from measurement errors is considered.
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In �gure 5.17, the �rst investigated target is shown. Since the �eld of view of

the imaging system is approximately 50 cm x 50 cm, one can assume that the

target is two metal rods of width 10 cm placed vertically. The resulting image is

shown in �gure 5.18. As seen, the PSF of the imaging system causes a blurring

in the lines.

Figure 5.17: First target

Figure 5.18: Image obtained from �rst target

In �gure 5.19, the second investigated target is shown. One can assume that

the target is two metal rods of width 10 cm placed horizontally. The resulting

image is shown in �gure 5.20. As seen, the PSF of the imaging system causes a

blurring in the lines. In order to emphasize the imaging performance a

third target was used. This time the target can be thought as squares of 5cm

width. The target is shown in �gure 5.21 and the image is shown in �gure 5.22.

Clearly imaging performance is best at the middle of the �eld of view and it gets

worse near the ends.
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Figure 5.19: Second target

Figure 5.20: Image obtained from second target

Figure 5.21: Third target
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Figure 5.22: Image obtained from third target

The targets discussed to this point were only to analyse the performance of the

imager. The �nal target is a porcelain knife carried in pocket. The signal levels

were investigated in Poland, using a re�ection based TDS system. The target is

shown in �gure 5.23 and the obtained image is shown in �gure 5.24.

Figure 5.23: Porcelain knife

5.4.2 Simulations with random noise

Since the source of random noise has an unpredictable nature, as discussed before

in chapter 2 section 5 and also in chapter 3 section 2, the random noise is added

to the images as percentile noise and is allowed to be both positive and negative.

All noise related work is done on the knife shown in �gure 5.23. Di�erent levels

of noise are added to the system and its e�ects are measured using SSIM. This
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Figure 5.24: Image obtained from porcelain knife

random noise can be thought as temperature �uctuations in the �eld of view of

the system.

Figure 5.25 shows the image obtained with 10 percent noise. Figure 5.26 shows

the image obtained with 20 percent noise. Figure 5.27 shows the image obtained

with 40 percent noise. As can be seen from �gures, even with

Figure 5.25: Image obtained from porcelain knife with 10 percent noise

5.4.3 E�ects of the receiver integration time

As discussed before, in chapter 2 section 5 and also in chapter 3 section 2, the

only systematic noise that is investigated in this work is the noise caused by

long integration time in receiver.

To calculate the ideal integration time required from the receiver in this system,
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Figure 5.26: Image obtained from porcelain knife with 20 percent noise

Figure 5.27: Image obtained from porcelain knife with 40 percent noise
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one needs to �nd how much time the system spends on each pixel. In the

developed imaging system, the refresh rate is found to be 2 frames per second.

Since every frame has 900 pixels, a pixel is measured in 1/1800 seconds which

corresponds to roughly 0.56 milliseconds. Assume the integration time of the

receiver is greater than that time. Then the image will be distorted accordingly.

This distortion is modelled by adding the signals from previous pixels to recon-

struct the next pixel. If one considers the distortion can be modelled exponen-

tially, then the resulting image for a decay constant of 30 pixels (16ms) is shown

in �gure 5.28. Another image for a decay constant of just 3 pixels (1.6ms) is

shown in �gure 5.29. Appendix H gives the algorithm used to calculate these

images.

Figure 5.28: Image obtained with integration time = 30 x ideal

Figure 5.29: Image obtained with integration time = 3 x ideal

In simulating this noise, the Galvo mirrors are assumed to complete a horizontal

line from left to right �rst. Then they are assumed to move on to the next line,
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again to start from left and move to the right. As can be seen form �gure 5.28

and 5.29, the response time of the receiver is crucial in image reconstruction. If

the receiver is unable to respond to changes in less than 0.56 milliseconds, we

expect distortions in the image obtained from the system.
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CHAPTER 6

CONCLUSION

In this work, 3 di�erent imaging systems were analysed; compressive sensing

imaging system, passive imaging system and active imaging system. The goal of

the CS imaging system was to image an object below the Nyquist rate using a 120

GHz active system non-scanning system. The used masks were of 3mm pixel size

and had a 10 x 10 array geometry. The goal of the passive imaging system was

to successfully reconstruct raw data obtained from a commercially available THz

passive imaging system, then using algorithms to process the image and compare

this processed image with the one obtained from the commercial system's built

in function. The goal of the active imaging system was to simulate response of

the receiver and optical system to a perfect target scanned by a source of 340

GHz.

First the CS imaging system was analysed to investigate image encoding and de-

coding experimentally.For this system two di�erent reconstruction algorithms, l1

minimization and TV minimization, were implemented with success. Moreover

simulations were completed to investigate algorithms' and experiment's success.

The results show that image acquisition and reconstruction was completed with

partial success. Although image was formed, it required more patterns to form

compared to expectations. This may be because of the fact that the target and

the random pattern were not situated as closely as possible, therefore allowing

background's specular re�ection to be received and processed in image recon-

struction. Another possible explanation for low image quality is the metric that

is used. In evaluating the imaging performance the reference image was a shifted
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image. The shifting was used for integer pixel shifts. It may be that the actual

shifting was not in integer numbers, hence the reference image we compare our

reconstructed images may be wrong. Therefore resulting in lower SSIM values

than reality.

The second system analysed was the passive imaging system. This system was

used to test three image processing algorithms; averaging, edge detection and

thresholding experimentally. Experimental results show that all three algorithms

are helpful in identi�cation of threat objects. Although the algorithms were

found to be successful, one may argue that the reference image used in measuring

their performance using SSIM may be wrong. Since SSIM was calculated using

the image obtained from the imaging system as a reference, one may argue that

if the built-in algorithm was not optimal, then the comparison was not reliable.

Therefore to increase con�dence in the developed algorithms one may need to

test them using a better analysed optical system.

The third system analysed was the 340 GHz active imaging system which is

currently being developed in Middle East Technical University. In modelling

this system PSFs were interpolated and using convolution the imaging perfor-

mance was investigated. The imaging performance's robustness to noise was

investigated using two di�erent types of noise. Perfect targets were simulated at

the focus of this imaging system, which was 5m from the elliptical mirror. The

results show that there is signi�cant distortion at the edges of the �eld of view.

This con�rms that scanning both X and Y directions using vibrating mirrors

cause signi�cant aberrations at the edges.

Future work entails that the simulations will be compared with experimental

results. The operation of this active imaging system can be optimized using the

algorithms developed for passive imaging in this thesis.
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APPENDIX A

RANDOM PATTERN GENERATING CODE

The code given below creates random patterns and saves them as .png �les.

function [ ] = Matrix_Creator( )

SIZE=10; % Please enter the number of pixles on one side

%of matrix

TNM=100; % Please enter the total number of matrix you want

% to create

MULT=32; % Please enter the desired pixel size in milli-

%meters (DEPENDS ON HOW YOU PRODUCE THEM THOUGH)

for NOM=1:TNM

I=uint8(zeros(SIZE,SIZE));

j=0;

m=0;

M=rand(SIZE,SIZE);

MAT=zeros(SIZE*MULT);

N=M;

t1=sum(sum(M))/(SIZE*SIZE);

t2=t1;

t3=t1;

for i=1:SIZE*SIZE

N(i) = N(i)>t1;

end

K=N;

Sum=sum(sum(N));

Sum2=Sum;

Sum3=Sum;

Sum4=Sum;

if(Sum>SIZE*SIZE/2) %increase threshold

while(Sum2>SIZE*SIZE/2)

j=j+1;

t2=t1+j/(SIZE*1000);

for k=1:SIZE*SIZE
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K(k) = M(k)>t2;

end

Sum2=sum(sum(K));

end

elseif(Sum<SIZE*SIZE/2) %decrease threshold

while(Sum3<SIZE*SIZE/2)

m=m+1;

t3=t1-m/(SIZE*1000);

for n=1:SIZE*SIZE

K(n) = M(n)>t3;

end

Sum3=sum(sum(K));

end

else

Sum4=Sum;

end

SumF=sum(sum(K));

if(SumF==SIZE*SIZE/2)

for idx1=1:SIZE*MULT

for idx2=1:SIZE*MULT

idx3=round((idx1-1)/MULT+0.5);

idx4=round((idx2-1)/MULT+0.5);

MAT((idx1-1)*SIZE*MULT+idx2)=K((idx3-1)*SIZE+idx4);

end

end

for idx1=1:SIZE*MULT

for idx2=1:SIZE*MULT

flag1=rem(idx1,MULT);

flag2=rem(idx1-1,MULT);

flag3=rem(idx2,MULT);

flag4=rem(idx2-1,MULT);

if (flag1 & flag2 & flag3 & flag4)

else

MAT((idx1-1)*SIZE*MULT+idx2)=1;

end

end

end

for o=1:SIZE*MULT

for p=1:SIZE*MULT

I(o,p)=MAT(SIZE*MULT*(o-1)+p)*255;

end

end

Add_1=ceil(size(I,1)/2); % OR CHANGE ADD TO ANYTHING YOU

%WANT

Add_2=ceil(size(I,2)/2); % OR CHANGE ADD TO ANYTHING YOU

%WANT

Framed_I=ones(2*Add_1+size(I,1),2*Add_2+size(I,2));
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for i=1:size(I,1)

for j=1:size(I,2)

Framed_I(i+Add_1,j+Add_2)=I(i,j);

end

end

fname = strcat(num2str(NOM), '.png');

imwrite(Framed_I, fname, 'png')

end

end

end
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APPENDIX B

IMAGE DISCRETIZATION CODE

The code given below discretizes a given image to de�ned resolution.

function [ J ] = Discretizor( I )

Size1=10;

Size2=10;

I2=double(I);

J=imresize(I2, [Size1 Size2], 'nearest');

end
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APPENDIX C

CS IMAGE RECONSTRUCTION CODE

The code given below is the code used to reconstruct the ideal image. The main

iterations given in line 231-235 are adopted from

http://users.ece.gatech.edu/ justin/l1magic/

function [ ] = CALL_ALL( )

eps=1*10^(-3);

Data_Name_1='Ideal'; %Which data am I plotting?

Input1=[0.6074

0.6074

0.5477

0.4178

0.6348

0.4775

0.4845

0.3855

0.3616

0.5084

0.4178

0.5154

0.568

0.4522

0.4775

0.396

0.5751

0.5049

0.5716

0.66

0.4845

0.7232

0.6839

0.3363

0.6565
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0.5477

0.481

0.4487

0.488

0.4178

0.2422

0.4283

0.3686

0.3855

0.5751

0.5751

0.4775

0.4283

0.4248

0.389

0.4522

0.6039

0.4775

0.5442

0.5645

0.6839

0.3855

0.3258

0.6635

0.66

0.396

0.5751

0.4452

0.5645

0.3925

0.6312

0.4178

0.5084

0.5154

0.6277

0.6909

0.7162

0.4248

0.4845

0.3651

0.4178

0.5716

0.3581

0.5049

0.5084

0.6277

0.3363
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0.5968

0.5716

0.2767

0.2135

0.4845

0.5372

0.6671

0.5119

0.6909

0.4522

0.6565

0.5645

0.396

0.389

0.488

0.4775

0.6039

0.8033

0.5049

0.5716

0.6039

0.5477

0.4775

0.6039

0.6277

0.5084

];

Folder_Date=datestr(now,'yyyymmdd');

Folder_Name_1=strcat('C:\Works\Master\Compressive_Sensing\',

Folder_Date, '\results\', Data_Name_1, '\');

Method_Name1='l1eq\';

Method_Name2='l1qc\';

Method_Name3='l1dantzig\';

Method_Name4='tvqc\';

Method_Name5='tvdantzig\';

Method_Name11='l1eq_Filtered\';

Method_Name22='l1qc_Filtered\';

Method_Name33='l1dantzig_Filtered\';

Method_Name44='tvqc_Filtered\';

Method_Name55='tvdantzig_Filtered\';

mkdir(Folder_Name_1, Method_Name1)

mkdir(Folder_Name_1, Method_Name2)

mkdir(Folder_Name_1, Method_Name3)

mkdir(Folder_Name_1, Method_Name4)

mkdir(Folder_Name_1, Method_Name5)

mkdir(Folder_Name_1, Method_Name11)

mkdir(Folder_Name_1, Method_Name22)
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mkdir(Folder_Name_1, Method_Name33)

mkdir(Folder_Name_1, Method_Name44)

mkdir(Folder_Name_1, Method_Name55)

Matrices=uint8(zeros(320,320,100));

Size=max(size(Input1))+2;

Signal_Expectations=Input1;

for i=2:9

Gaa= imread([num2str(i)],'jpeg');

Matrices(:,:,i)=Gaa(:,:,1);

end

for i=11:Size

Gaa= imread([num2str(i)],'jpeg');

Matrices(:,:,i)=Gaa(:,:,1);

end

New_Matrix=false(10,10,Size);

for k=1:Size

for i=1:10

for j=1:10

New_Matrix(i,j,k)=1-Matrices((i-1)*32+16,(j-1)*32+16,k);

end

end

end

Size2=100;

for k=2:9

for i=1:10

for j=1:10

BP_Matrix(k-1, (i)+(j-1)*10)=New_Matrix(i,j,k);

end

end

end

ss1=zeros(1, max(size(Input1)));

ss2=zeros(1, max(size(Input1)));

ss3=zeros(1, max(size(Input1)));

ss4=zeros(1, max(size(Input1)));

ss5=zeros(1, max(size(Input1)));

ss11=zeros(1, max(size(Input1)));

ss22=zeros(1, max(size(Input1)));

ss33=zeros(1, max(size(Input1)));

ss44=zeros(1, max(size(Input1)));

ss55=zeros(1, max(size(Input1)));

mult1=zeros(1, max(size(Input1)));

mult2=zeros(1, max(size(Input1)));

mult3=zeros(1, max(size(Input1)));

mult4=zeros(1, max(size(Input1)));

mult5=zeros(1, max(size(Input1)));

mult11=zeros(1, max(size(Input1)));

mult22=zeros(1, max(size(Input1)));
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mult33=zeros(1, max(size(Input1)));

mult44=zeros(1, max(size(Input1)));

mult55=zeros(1, max(size(Input1)));

only_R_1=zeros(1,max(size(Input1)));

only_R_2=zeros(1,max(size(Input1)));

only_R_3=zeros(1,max(size(Input1)));

only_R_4=zeros(1,max(size(Input1)));

only_R_5=zeros(1,max(size(Input1)));

only_R_11=zeros(1,max(size(Input1)));

only_R_22=zeros(1,max(size(Input1)));

only_R_33=zeros(1,max(size(Input1)));

only_R_44=zeros(1,max(size(Input1)));

only_R_55=zeros(1,max(size(Input1)));

for control_par=9:98

Size2=control_par+2;

for k=11:Size2

for i=1:10

for j=1:10

BP_Matrix(k-2, (i)+(j-1)*10)=New_Matrix(i,j,k);

end

end

end

n=100;

p=Size2-2;

A=double(BP_Matrix);

y=double(Signal_Expectations(1:p));

xp=[1:100]';

x1=l1eq_pd(xp,A,A,y,eps);

x2=l1qc_logbarrier(xp,A,A,y,eps);

x3=l1dantzig_pd(xp,A,A,y,eps);

x4=tvqc_logbarrier(xp,A,A,y,eps);

x5=tvdantzig_logbarrier(xp,A,A,y,eps);

Answer1=zeros(10,10);

for i=1:10

for j=1:10

Answer1(i,j)=x1(i+(j-1)*10);

end

end

Answer2=zeros(10,10);

for i=1:10

for j=1:10

Answer2(i,j)=x2(i+(j-1)*10);

end

end

Answer3=zeros(10,10);

for i=1:10

for j=1:10
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Answer3(i,j)=x3(i+(j-1)*10);

end

end

Answer4=zeros(10,10);

for i=1:10

for j=1:10

Answer4(i,j)=x4(i+(j-1)*10);

end

end

Answer5=zeros(10,10);

for i=1:10

for j=1:10

Answer5(i,j)=x5(i+(j-1)*10);

end

end

MIN1=double(min(min(Answer1)));

MAX1=double(max(max(Answer1)));

MIN2=double(min(min(Answer2)));

MAX2=double(max(max(Answer2)));

MIN3=double(min(min(Answer3)));

MAX3=double(max(max(Answer3)));

MIN4=double(min(min(Answer4)));

MAX4=double(max(max(Answer4)));

MIN5=double(min(min(Answer5)));

MAX5=double(max(max(Answer5)));

Answer11=(double(Answer1)-MIN1)/(MAX1-MIN1);

Answer22=(double(Answer2)-MIN2)/(MAX2-MIN2);

Answer33=(double(Answer3)-MIN3)/(MAX3-MIN3);

Answer44=(double(Answer4)-MIN4)/(MAX4-MIN4);

Answer55=(double(Answer5)-MIN5)/(MAX5-MIN5);

MEAN11=sum(sum(Answer11))/size(Answer11, 1)/size(Answer11, 2);

MEAN22=sum(sum(Answer22))/size(Answer22, 1)/size(Answer22, 2);

MEAN33=sum(sum(Answer33))/size(Answer33, 1)/size(Answer33, 2);

MEAN44=sum(sum(Answer44))/size(Answer44, 1)/size(Answer44, 2);

MEAN55=sum(sum(Answer55))/size(Answer55, 1)/size(Answer55, 2);

Answer111=uint8(255*Answer11*0.5/MEAN11);

Answer222=uint8(255*Answer11*0.5/MEAN22);

Answer333=uint8(255*Answer11*0.5/MEAN33);

Answer444=uint8(255*Answer11*0.5/MEAN44);

Answer555=uint8(255*Answer11*0.5/MEAN55);

ZZZ1=imresize(Answer111,[320 320],'nearest');

ZZZ2=imresize(Answer222,[320 320],'nearest');

ZZZ3=imresize(Answer333,[320 320],'nearest');

ZZZ4=imresize(Answer444,[320 320],'nearest');

ZZZ5=imresize(Answer555,[320 320],'nearest');

YYY=imread('IDEAL_Image.png','PNG');

ss1(control_par)=SSIM(YYY,ZZZ1, [0.01 0.03] , fspecial(
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'gaussian', 250, 25));

ss2(control_par)=SSIM(YYY,ZZZ2, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

ss3(control_par)=SSIM(YYY,ZZZ3, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

ss4(control_par)=SSIM(YYY,ZZZ4, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

ss5(control_par)=SSIM(YYY,ZZZ5, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

mult1(control_par)=sum(sum((double(YYY)-double(ZZZ1)).^2))/

320/320/255/255;

mult2(control_par)=sum(sum((double(YYY)-double(ZZZ2)).^2))/

320/320/255/255;

mult3(control_par)=sum(sum((double(YYY)-double(ZZZ3)).^2))/

320/320/255/255;

mult4(control_par)=sum(sum((double(YYY)-double(ZZZ4)).^2))/

320/320/255/255;

mult5(control_par)=sum(sum((double(YYY)-double(ZZZ5)).^2))/

320/320/255/255;

only_R_1(control_par)=sum(sum(double(boolean(YYY)).*

(double(YYY)-double(ZZZ1)).^2))/255/255/

sum(sum(boolean(YYY)));

only_R_2(control_par)=sum(sum(double(boolean(YYY)).*

(double(YYY)-double(ZZZ2)).^2))/255/255/

sum(sum(boolean(YYY)));

only_R_3(control_par)=sum(sum(double(boolean(YYY)).*

(double(YYY)-double(ZZZ3)).^2))/255/255/

sum(sum(boolean(YYY)));

only_R_4(control_par)=sum(sum(double(boolean(YYY)).*

(double(YYY)-double(ZZZ4)).^2))/255/255/

sum(sum(boolean(YYY)));

only_R_5(control_par)=sum(sum(double(boolean(YYY)).*

(double(YYY)-double(ZZZ5)).^2))/255/255/

sum(sum(boolean(YYY)));

ZZZ11=ZZZ1;

ZZZ22=ZZZ2;

ZZZ33=ZZZ3;

ZZZ44=ZZZ4;

ZZZ55=ZZZ5;

for i=1:320*320

if ZZZ1(i)<128

ZZZ11(i)=0;

end

end

for i=1:320*320

if ZZZ2(i)<128

ZZZ22(i)=0;
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end

end

for i=1:320*320

if ZZZ3(i)<128

ZZZ33(i)=0;

end

end

for i=1:320*320

if ZZZ4(i)<128

ZZZ44(i)=0;

end

end

for i=1:320*320

if ZZZ5(i)<128

ZZZ55(i)=0;

end

end

ss11(control_par)=SSIM(YYY,ZZZ11, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

ss22(control_par)=SSIM(YYY,ZZZ22, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

ss33(control_par)=SSIM(YYY,ZZZ33, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

ss44(control_par)=SSIM(YYY,ZZZ44, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

ss55(control_par)=SSIM(YYY,ZZZ55, [0.01 0.03] , fspecial(

'gaussian', 250, 25));

mult11(control_par)=sum(sum((double(YYY)-double(ZZZ11)).^2))/

320/320/255/255;

mult22(control_par)=sum(sum((double(YYY)-double(ZZZ22)).^2))/

320/320/255/255;

mult33(control_par)=sum(sum((double(YYY)-double(ZZZ33)).^2))/

320/320/255/255;

mult44(control_par)=sum(sum((double(YYY)-double(ZZZ44)).^2))/

320/320/255/255;

mult55(control_par)=sum(sum((double(YYY)-double(ZZZ55)).^2))/

320/320/255/255;

only_R_11(control_par)=sum(sum(double(boolean(YYY))

.*(double(YYY)-double(ZZZ11)).^2))/255/255/sum(

sum(boolean(YYY)));

only_R_22(control_par)=sum(sum(double(boolean(YYY))

.*(double(YYY)-double(ZZZ22)).^2))/255/255/sum(

sum(boolean(YYY)));

only_R_33(control_par)=sum(sum(double(boolean(YYY))

.*(double(YYY)-double(ZZZ33)).^2))/255/255/sum(

sum(boolean(YYY)));

only_R_44(control_par)=sum(sum(double(boolean(YYY))
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.*(double(YYY)-double(ZZZ44)).^2))/255/255/sum(

sum(boolean(YYY)));

only_R_55(control_par)=sum(sum(double(boolean(YYY))

.*(double(YYY)-double(ZZZ55)).^2))/255/255/sum(

sum(boolean(YYY)));

fname1_1=strcat(Folder_Name_1, Method_Name1, Data_Name_1,

'_1_reconstructed_using_l1eq_pd_',

num2str(control_par), '.png');

fname1_2=strcat(Folder_Name_1, Method_Name2, Data_Name_1,

'_2_reconstructed_using_l1qc_logbarrier_',

num2str(control_par), '.png');

fname1_3=strcat(Folder_Name_1, Method_Name3, Data_Name_1,

'_3_reconstructed_using_l1dantzig_pd_',

num2str(control_par), '.png');

fname1_4=strcat(Folder_Name_1, Method_Name4, Data_Name_1,

'_4_reconstructed_using_tvqc_logbarrier_',

num2str(control_par), '.png');

fname1_5=strcat(Folder_Name_1, Method_Name5, Data_Name_1,

'_5_reconstructed_using_tvdantzig_logbarrier_',

num2str(control_par), '.png');

fname1_11=strcat(Folder_Name_1, Method_Name11, Data_Name_1,

'_11_filtered_reconstructed_using_l1eq_pd_',

num2str(control_par), '.png');

fname1_22=strcat(Folder_Name_1, Method_Name22, Data_Name_1,

'_22_filtered_reconstructed_using_l1qc_logbarrier_',

num2str(control_par), '.png');

fname1_33=strcat(Folder_Name_1, Method_Name33, Data_Name_1,

'_33_filtered_reconstructed_using_l1dantzig_pd_',

num2str(control_par), '.png');

fname1_44=strcat(Folder_Name_1, Method_Name44, Data_Name_1,

'_44_filtered_reconstructed_using_tvqc_logbarrier_',

num2str(control_par), '.png');

fname1_55=strcat(Folder_Name_1, Method_Name55, Data_Name_1,

'_55_filtered_reconstructed_using_tvdantzig_logbarrier_',

num2str(control_par), '.png');

imwrite(ZZZ1, fname1_1, 'png')

imwrite(ZZZ2, fname1_2, 'png')

imwrite(ZZZ3, fname1_3, 'png')

imwrite(ZZZ4, fname1_4, 'png')

imwrite(ZZZ5, fname1_5, 'png')

imwrite(ZZZ11, fname1_11, 'png')

imwrite(ZZZ22, fname1_22, 'png')

imwrite(ZZZ33, fname1_33, 'png')

imwrite(ZZZ44, fname1_44, 'png')

imwrite(ZZZ55, fname1_55, 'png')

end

pname1_1=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,
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'_1_reconstructed_using_l1eq_pd_', '.png');

pname1_2=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_2_reconstructed_using_l1qc_logbarrier', '.png');

pname1_3=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_3_reconstructed_using_l1dantzig_pd', '.png');

pname1_4=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_4_reconstructed_using_tvqc_logbarrier', '.png');

pname1_5=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_5_reconstructed_using_tvdantzig_logbarrier', '.png');

pname1_11=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_11_filtered_reconstructed_using_l1eq_pd_', '.png');

pname1_22=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_22_filtered_reconstructed_using_l1qc_logbarrier', '.png');

pname1_33=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_33_filtered_reconstructed_using_l1dantzig_pd', '.png');

pname1_44=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_44_filtered_reconstructed_using_tvqc_logbarrier', '.png');

pname1_55=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_55_filtered_reconstructed_using_tvdantzig_logbarrier', '.png');

rname1_1=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_1_reconstructed_using_l1eq_pd_', '.png');

rname1_2=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_2_reconstructed_using_l1qc_logbarrier', '.png');

rname1_3=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_3_reconstructed_using_l1dantzig_pd', '.png');

rname1_4=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_4_reconstructed_using_tvqc_logbarrier', '.png');

rname1_5=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_5_reconstructed_using_tvdantzig_logbarrier', '.png');

rname1_11=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_11_filtered_reconstructed_using_l1eq_pd_', '.png');

rname1_22=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_22_filtered__reconstructed_using_l1qc_logbarrier', '.png');

rname1_33=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_33_filtered__reconstructed_using_l1dantzig_pd', '.png');

rname1_44=strcat(Folder_Name_1,

'only_R_progress_of_' , Data_Name_1,

'_44_filtered__reconstructed_using_tvqc_logbarrier', '.png');

rname1_55=strcat(Folder_Name_1,
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'only_R_progress_of_' , Data_Name_1,

'_55_filtered__reconstructed_using_tvdantzig_logbarrier',

'.png');

sname1_1=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_1_reconstructed_using_l1eq_pd_', '.png');

sname1_2=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_2_reconstructed_using_l1qc_logbarrier', '.png');

sname1_3=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_3_reconstructed_using_l1dantzig_pd', '.png');

sname1_4=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_4_reconstructed_using_tvqc_logbarrier', '.png');

sname1_5=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_5_reconstructed_using_tvdantzig_logbarrier', '.png');

sname1_11=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_11_filtered_reconstructed_using_l1eq_pd_', '.png');

sname1_22=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_22_filtered_reconstructed_using_l1qc_logbarrier', '.png');

sname1_33=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_33_filtered_reconstructed_using_l1dantzig_pd', '.png');

sname1_44=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_44_filtered_reconstructed_using_tvqc_logbarrier', '.png');

sname1_55=strcat(Folder_Name_1, 'ss_progress_of_' , Data_Name_1,

'_55_filtered_reconstructed_using_tvdantzig_logbarrier', '.png');

mult_mat=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_all_progresses_of_mult', '.mat');

only_R_mat=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_all_progresses_of_only_R', '.mat');

ss_mat=strcat(Folder_Name_1, 'progress_of_' , Data_Name_1,

'_all_progresses_of_ss', '.mat');

save(mult_mat, 'mult1', 'mult2', 'mult3', 'mult4',

'mult5', 'mult11', 'mult22', 'mult33', 'mult44', 'mult55')

save(only_R_mat,'only_R_1', 'only_R_2', 'only_R_3', 'only_R_4',

'only_R_5', 'only_R_11', 'only_R_22', 'only_R_33', 'only_R_44',

'only_R_55')

save(ss_mat, 'ss1', 'ss2', 'ss3', 'ss4', 'ss5',

'ss11', 'ss22', 'ss33', 'ss44', 'ss55')

plot(mult1)

print('-dpng', pname1_1)

plot(mult2)

print('-dpng', pname1_2)

plot(mult3)

print('-dpng', pname1_3)

plot(mult4)

print('-dpng', pname1_4)

plot(mult5)

print('-dpng', pname1_5)

plot(mult11)
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print('-dpng', pname1_11)

plot(mult22)

print('-dpng', pname1_22)

plot(mult33)

print('-dpng', pname1_33)

plot(mult44)

print('-dpng', pname1_44)

plot(mult55)

print('-dpng', pname1_55)

plot(only_R_1)

print('-dpng', rname1_1)

plot(only_R_2)

print('-dpng', rname1_2)

plot(only_R_3)

print('-dpng', rname1_3)

plot(only_R_4)

print('-dpng', rname1_4)

plot(only_R_5)

print('-dpng', rname1_5)

plot(only_R_11)

print('-dpng', rname1_11)

plot(only_R_22)

print('-dpng', rname1_22)

plot(only_R_33)

print('-dpng', rname1_33)

plot(only_R_44)

print('-dpng', rname1_44)

plot(only_R_55)

print('-dpng', rname1_55)

plot(ss1)

print('-dpng', sname1_1)

plot(ss2)

print('-dpng', sname1_2)

plot(ss3)

print('-dpng', sname1_3)

plot(ss4)

print('-dpng', sname1_4)

plot(ss5)

print('-dpng', sname1_5)

plot(ss11)

print('-dpng', sname1_11)

plot(ss22)

print('-dpng', sname1_22)

plot(ss33)

print('-dpng', sname1_33)

plot(ss44)

print('-dpng', sname1_44)
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plot(ss55)

print('-dpng', sname1_55)

end
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APPENDIX D

LINE SHIFTING CODE

The code given below is the code used to note the shifts in the line. These shifts

are used in reconstruction in the code given in Appendix E.

function [ ] = Line_Shifts( )

Raw_Data = dir('*EMITFILE.CSV');

for i=1:length(Raw_Data)

eval(['load ' Raw_Data(i).name ' -ascii']);

end

BG_IA_Try=zeros(80,180);

for i=3:12

BG_IA_Try=BG_IA_Try+(eval(sprintf('X%dEMITFILE',i-1)))/10;

end

Tri_90_3_1_Raw=zeros(80,180);

for i=30:length(Raw_Data)

Tri_90_3_1_Raw=Tri_90_3_1_Raw+(eval(sprintf('X%dEMITFILE',i-1)))/

(length(Raw_Data)-30);

end

Diff1_IA=(Tri_90_3_1_Raw-BG_IA_Try);

MIN=min(min(Diff1_IA));

MAX=max(max(Diff1_IA));

Diff_IA=256*256-uint16((Tri_90_3_1_Raw-BG_IA_Try-MIN)*256*256/

(MAX-MIN));

imwrite(Diff_IA,'Raw_Data.png','PNG')

Rec=uint16(zeros(180,80));

for i=1:80

for j=1:180

Rec(j,i)=Diff_IA(i,j);

end

end

Tri_90_3_1_Proc=Rec;

AIM_SIZE1=180;

AIM_SIZE2=80;

Data_resized=imresize(Tri_90_3_1_Proc, [AIM_SIZE1 AIM_SIZE2]);
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DATA_RAW=Data_resized;

for i=1:AIM_SIZE1

for j=1:AIM_SIZE2

if (Data_resized(i,j) < 0.3*256*256)

DATA_RAW(i,j)=0;

end

end

end

imwrite(DATA_RAW, 'DATA_RAW.png', 'PNG')

INPUT_IM=uint16(imread('Bez_tytulu.png'));

OUTPUT_IM=uint16(zeros(AIM_SIZE1,AIM_SIZE2));

PROC_IM=INPUT_IM(62:1097,237:710);

OUTPUT_IM=imresize(PROC_IM, [AIM_SIZE1 AIM_SIZE2]);

Aim_on_screen=uint16(OUTPUT_IM);

imwrite(Aim_on_screen,'Aim_on_screen.png','PNG')

AIM_RAW=Aim_on_screen*256;

imwrite(AIM_RAW, 'AIM_RAW.png', 'PNG')

Diff_Init=0;

for m=1:AIM_SIZE1

for n=1:AIM_SIZE2

Diff_Init=Diff_Init+double(abs(DATA_RAW(m,n)-AIM_RAW(m,n)));

end

end

DATA_RAW_SHIFTED=uint16(zeros(AIM_SIZE1,AIM_SIZE2));

Shifted_Data=uint16(zeros(AIM_SIZE1,AIM_SIZE2));

Shifted_Data=DATA_RAW;

Temp=uint16(zeros(AIM_SIZE1,AIM_SIZE2));

Diff_SD=double(zeros(AIM_SIZE2,AIM_SIZE2));

for i=1:AIM_SIZE2

for j=1:AIM_SIZE2

Shifted_Data=DATA_RAW;

Shifted_Data(:,i)=Shifted_Data(:,j);

Diff_SD(i,j)=double(sum(sum(abs(Shifted_Data-AIM_RAW))));

end

end

Delete_this=zeros(AIM_SIZE2,1);

Replace_this=zeros(AIM_SIZE2,1);

for j=1:AIM_SIZE2

[r,c]=find(Diff_SD==min(min(Diff_SD)));

change_var1=r(1); %DESTROY THIS

change_var2=c(1); %PLACE THIS IN ITS PLACE

if(Diff_SD(r(1),c(1))<Diff_Init)

DATA_RAW_SHIFTED(:,change_var1)=DATA_RAW(:,change_var2);

Delete_this(j,1)=r(1);

Replace_this(j,1)=c(1);

end

Diff_SD(change_var1,:)=271*124*256*256*3;
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Diff_SD(:,change_var2)=271*124*256*256*3;

end

xlswrite('Delete_this',Delete_this)

xlswrite('Replace_this',Replace_this)

imwrite(DATA_RAW_SHIFTED, 'DATA_RAW_SHIFTED.png', 'PNG');

end
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APPENDIX E

PASSIVE IMAGING SYSTEM IMAGE

RECONSTRUCTION CODE

The code given below is the code used to reconstruct the image from the raw

data given from the passive imaging system. Unfortunately the raw data cannot

be given here, interested readers should contact author for further information.

function [ I_double ] = EMITFILE2RAW_IMAGE(h_for_NO_White_Lines)

% INPUT SOME AVERAGING FUNCTION like

%h=fspecial('gaussian', [1 5], 1);

% This code is developed to convert more than 40 and less than 99

% CSV files taken from the

% Passive imaging System's "TVF_" option.

% This code takes some of the first

%CSV files as a background and some of

% the last CSV files as the data.

%It substracts background from data to

% show the image number 3.

%BUT as you can see this image is meaningless

% since it is not a normalized image,

%ie. the max is not 1 and the min is

% not 0. Therefore the code normalizes the image to

%this range (to 0-65536

% actually, step 4)

% Then it takes a 135 degrees mirror image because

% this is the true image

% (step5).

% Then it RE-shuffles the lines because the raw data is

%shuffles in

% some random order we could not understand (step 6)

% Then finally it averages some extremely bright lines,

% again, we could not

% understand why they are so bright (step 7)
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% UPDATE now it also saves the double version of image,

% and returns that

%

% ----------------0-------------

%

% NOTES:

% 1) You must run this code where there are MORE THAN 40 CSV FILES!

% This is a must since the first data are just background so

%no image can

% be formed with these....

% 2) you must run this code where there are

%LESS THAN 99 CSV FILES!

% This is a must since if you take data for too long

%it overwrites the

% first datas so you lose background. If there is no

%background then code

% cannot substract the background to form image.

%THEREFORE IT IS VERY

% IMPORTANT TO TAKE DATA FOR ONLY A FEW SECONDS.

%IT IS HIGHLY RECOMMENDED

% THAT YOU CHECK THE "C:\TVNetwork" DIRECTORY WHEN YOU ARE

% TAKING DATA TO

% MAKE SURE YOU STOP TAKING DATA BEFORE YOU REACH 99EMITFILE.CSV

test1=dir('*EMITFILE.CSV');

test2=size(test1);

if (test2(1)<40)

fprintf ( 1, '\n');

fprintf ( 1, 'You need to call this function in a directory

where there are MORE than 40 *EMITFILEs\n');

return;

endtest3=dir('*EMITFILE.CSV');

test4=size(test3);

if (test4(1)>98)

fprintf ( 1, '\n');

fprintf ( 1, 'You need to call this function in a directory

where there are LESS than 99 *EMITFILEs\n');

return;

end

replacer=[9

1

10

2

11

3

4

12

17
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13

5

73

18

14

6

74

15

7

19

75

20

16

8

21

25

76

65

26

22

77

66

23

27

78

67

79

28

24

68

80

29

33

69

57

30

34

70

58

31

35

71

59

32

36

72

60
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41

49

37

61

42

38

50

43

62

39

44

63

51

40

52

64

45

53

46

54

47

55

48

56];

Raw_Data = dir('*EMITFILE.CSV');

for i=1:length(Raw_Data)

eval(['load ' Raw_Data(i).name ' -ascii']);

end

Data_BG_av=double(zeros(80,180));

for i=8:16

Data_BG_av=Data_BG_av+double((eval(sprintf

('X%dEMITFILE',i-1))))/9;

end

imwrite(Data_BG_av/256/256, '_1Data_BackGround_avaraged', 'PNG')

Data_Raw_av=double(zeros(80,180));

for i=40:length(Raw_Data)

Data_Raw_av=Data_Raw_av+double((eval(sprintf('X%dEMITFILE',i-1)))/

(length(Raw_Data)-40));

end

imwrite(Data_Raw_av/256/256, '_2Data_image_avaraged', 'PNG')

IMAGE_RAW=double(zeros(80,180));

IMAGE_RAW=double((Data_Raw_av-Data_BG_av));

imwrite((IMAGE_RAW+256*256)/256/256/2,

'_3image-BackGround', 'PNG')

MIN=double(min(min(IMAGE_RAW)));

MAX=double(max(max(IMAGE_RAW)));

IMAGE_RAW_normalized=uint16(zeros(80,180));
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IMAGE_RAW_normalized=uint16(256*256-(Data_Raw_av-Data_BG_av-

MIN)*256*256/(MAX-MIN));

imwrite(IMAGE_RAW_normalized,

'_4image-BackGround_(Normalized)', 'PNG')

IMAGE=uint16(zeros(180,80));

for i=1:80

for j=1:180

IMAGE(j,i)=IMAGE_RAW_normalized(i,j);

end

end

imwrite(IMAGE, '_5IMAGE_shuffled', 'PNG')

DATA_RAW_SHIFTED=uint16(zeros(180, 80));

for j=1:80

change_var1=j; %DESTROY THIS

change_var2=replacer(j); %PLACE THIS IN ITS PLACE

if(change_var1)

if(change_var2)

DATA_RAW_SHIFTED(:,change_var1)=IMAGE(:,change_var2);

end

end

end

imwrite(DATA_RAW_SHIFTED, '_6IMAGE', 'PNG');

BG_Normalized=double(DATA_RAW_SHIFTED);

Sizes=size(BG_Normalized);

Size1=Sizes(1);

Size2=Sizes(2);

Brightness=double(zeros(Size1,Size2));

for i=1:Size1

for j=1:Size2

Brigtness(i,j)=(DATA_RAW_SHIFTED(Size1,j)

+DATA_RAW_SHIFTED(1,j))/2;

end

end

for i=1:Size2

BG_Normalized(:,i)=double(DATA_RAW_SHIFTED(:,i))-

double(Brigtness(:,i));

end

MIN=double(min(min(BG_Normalized)));

MAX=double(max(max(BG_Normalized)));

BG_Normalized_normalized=uint16(zeros(80,180));

BG_Normalized_normalized=uint16(

(double(BG_Normalized)-MIN)*256*256/

(MAX-MIN));

imwrite(BG_Normalized_normalized, '_7IMAGE_background_normalized',

'PNG');

h_wo_White_Lines=h_for_NO_White_Lines;

NO_White_Lines2=conv2(double(BG_Normalized_normalized),
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h_wo_White_Lines, 'same');

DATA_wo_White_Lines2=BG_Normalized_normalized;

DATA_wo_White_Lines2(:,6)=NO_White_Lines2(:,6);

DATA_wo_White_Lines2(:,19)=NO_White_Lines2(:,19);

DATA_wo_White_Lines2(:,33)=NO_White_Lines2(:,33);

DATA_wo_White_Lines2(:,35)=NO_White_Lines2(:,35);

DATA_wo_White_Lines2(:,50)=NO_White_Lines2(:,50);

DATA_wo_White_Lines2(:,66)=NO_White_Lines2(:,66);

DATA_wo_White_Lines2(:,69)=NO_White_Lines2(:,69);

MIN=double(min(min(DATA_wo_White_Lines2)));

MAX=double(max(max(DATA_wo_White_Lines2)));

DATA_wo_White_Lines_normalized2=uint16(zeros(80,180));

DATA_wo_White_Lines_normalized2=uint16(

(double(DATA_wo_White_Lines2)-MIN)*256*256/(MAX-MIN));

imwrite(DATA_wo_White_Lines_normalized2,

'_8IMAGE_wo_White_Lines', 'PNG');

I_double=zeros(180,80);

I_double=double(DATA_wo_White_Lines_normalized2)/256/256;

imwrite(I_double, '_9IMAGE_wo_White_Lines_double', 'PNG');

end
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APPENDIX F

IMAGE AVERAGING CODE

The code given below is the code used to average the raw image. The averaging
window is an input of the code. In this work the input was chosen to be h1 =
fspecial(′gaussian′, [15], 2).

function [Averaged_Combined_normalized] =

Averaging(I, h_Averaging)

h=h_Averaging;

Averaged_Image=conv2(I,h,'same');

MIN=double(min(min(Averaged_Image)));

MAX=double(max(max(Averaged_Image)));

Averaged_Combined_normalized=double(zeros(size(I,1),size(I,2)));

Averaged_Combined_normalized=double((double(Averaged_Image)-MIN)/

(MAX-MIN));

imwrite(Averaged_Combined_normalized,

'_13Averaged_Image_normalized.png', 'PNG');

end
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APPENDIX G

ACTIVE IMAGING SIMULATION ACCORDING TO

PSF

The code given below simulates the active imaging system according to the PSFs
provided at 9 points. Unfortunately the PSFs cannot be given here, interested
readers should contact author for further information.

function [ J ] = PSF( )

PSF(:,:,1) = xlsread('m8m9.xlsx');

PSF(:,:,2) = xlsread('0m9.xlsx');

PSF(:,:,3) = xlsread('8m9.xlsx');

PSF(:,:,4) = xlsread('m80.xlsx');

PSF(:,:,5) = xlsread('00.xlsx');

PSF(:,:,6) = xlsread('80.xlsx');

PSF(:,:,7) = xlsread('m89.xlsx');

PSF(:,:,8) = xlsread('09.xlsx');

PSF(:,:,9) = xlsread('89.xlsx');

%I=double(imread('Figure_Act5.png'));

%for i=1:12

% for j=1:12

% I(i,j)=(-1)^(i+j);

% end

%end

f1=50;

f2=50;

p1=30;

p2=30;

Im_resized=imresize(I(:,:,1), [floor(200*p1/6+5*200/6)

floor(200*p2/6+5*200/6)], 'nearest');

%imshow(Im_resized)

Target=Im_resized(100:1066,100:1066);

Im_resized2=(Target-ones(size(Target,1),size(Target,

2))*min(min(Target)))/(max(max(Target))-min(min(Target)));

imwrite(Im_resized2, 'Target.png', 'png')

t1=f1/p1;
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t2=f2/p2;

k=1;

for i=1:t1:f1

l=1;

for j=1:t2:f2

var=[i j];

Im_cur=Im_resized((floor((k-1)*200/6)+1):

(floor((k-1)*200/6)+200),(floor((l-1)*200/6)+1):

(floor((l-1)*200/6)+200));

x1=(var(1)-1)^2;

x2=(var(1)-1)^2;

x3=(var(1)-1)^2;

x4=(var(1)-25.5)^2;

x5=(var(1)-25.5)^2;

x6=(var(1)-25.5)^2;

x7=(var(1)-50)^2;

x8=(var(1)-50)^2;

x9=(var(1)-50)^2;

y1=(var(2)-1)^2;

y2=(var(2)-25.5)^2;

y3=(var(2)-50)^2;

y4=(var(2)-1)^2;

y5=(var(2)-25.5)^2;

y6=(var(2)-50)^2;

y7=(var(2)-1)^2;

y8=(var(2)-25.5)^2;

y9=(var(2)-50)^2;

L1=x1+y1;

L2=x2+y2;

L3=x3+y3;

L4=x4+y4;

L5=x5+y5;

L6=x6+y6;

L7=x7+y7;

L8=x8+y8;

L9=x9+y9;

Ls=transpose([L1 L2 L3 L4 L5 L6 L7 L8 L9]);

[B, IX] = sort(Ls);

PSF1=PSF(:,:,IX(1));

PSF2=PSF(:,:,IX(2));

PSF3=PSF(:,:,IX(3));

PSF_cur=(PSF1*(B(2)+0.01)*(B(3)+0.01)+PSF2*(B(1)+0.01)*(B(3)+0.01)

+PSF3*(B(2)+0.01)*(B(1)+0.01))/

((B(1)+0.01)*(B(2)+0.01)*(B(3)+0.01));

Av=sum(sum(PSF_cur));

J(k,l)=sum(sum(PSF_cur.*Im_cur))/Av;

l=l+1;
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end

k=k+1;

end

J2=(J-min(min(J)))/(max(max(J))-min(min(J)));

imshow(J2)

imwrite(J2, 'Image_obt.png', 'png')

end
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APPENDIX H

ACTIVE IMAGING SYSTEM SIMULATION WITH

WRONG RECEIVER INTEGRATION TIME

The code given below simulates an imaging system with the receiver's integration

time corresponding to 3 pixels.

function [ J2 ] = Systematic( Input )

%SYSTEMATIC Summary of this function goes here

% Detailed explanation goes here

N=30;

J3=ones(30,30);

I3=ones(30,30);

for i=1:30

for j=1:30

for k=1:30

for l=1:30

if (j>l)

J3(j,i)=J3(j,i)+I3(l,k)*

exp(-((i-k+1)*(j-l+1)/30+(j-l+1))/3)/N;

elseif (j==l && i>k)

J3(j,i)=J3(j,i)+I3(l,k)*

exp(-((i-k+1)*(j-l+1)/30+(j-l+1))/3)/N;

end

end

end

end

end

I=double(Input);

J=I;

flag=0;

for i=1:30

for j=1:30

for k=1:30
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for l=1:30

if (j>l)

J(j,i)=J(j,i)+I(l,k)*

exp(-((i-k+1)*(j-l+1)/30+(j-l+1))/3)/N;

elseif (j==l && i>k)

J(j,i)=J(j,i)+I(l,k)*

exp(-((i-k+1)*(j-l+1)/30+(j-l+1))/3)/N;

end

end

end

end

end

%flag

J4=J./J3;

J2=(J4-min(min(J4)))/(max(max(J4))-min(min(J4)));

imwrite(J2, 'noisy_sys.png', 'png')

end
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