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ABSTRACT  

 

RELIABILITY ANALYSIS OF A ROCK SLOPE IN SUMELA MONASTERY, 

TURKEY, BASED ON DISCRETE ELEMENT AND RESPONSE SURFACE 

METHODS 

 

Dadashzadeh, Neda 

M.S., Department of Mining Engineering 

Supervisor: Prof. Dr. H.Şebnem Düzgün 

 

February 2015, 121 pages 

 

 

It is widely recognized that a single factor of safety (FOS) calculated by traditional 

deterministic analysis methods may not represent slope safety due to involved 

uncertainties. The First Order Reliability Method (FORM) is one of the extensively used 

probabilistic methods in slope stability studies to quantify the uncertainties in the 

parameters. FORM can be easily applied when the slope is analyzed based on limit 

equilibrium methods. However, the recent numerical techniques are almost substituted 

by the conventional limit equilibrium approaches due to their high performance of 

representing the real phenomena. Monte Carlo Simulation (MCS) technique is a widely 

used probabilistic tool to consider the uncertainties. However, although advanced 

modeling techniques in slope stability analysis are successfully used in deterministic 

studies, they have so far found little use in probabilistic analyses due to their high 

computation cost. Alternatively, FORM can calculate the probability of failure (Pf) in 

more efficient way rather than MCS method. However, in order to be able to perform 
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reliability studies, the corresponding limit state failure function is essential. It is not 

possible to generate an explicit failure function in cases simulated by numerical 

methods. The Response Surface Method (RSM) is usually used to approximate the 

implicit limit state failure function using an equivalent explicit mathematical function of 

the random variables. Since the approximated limit state function is explicit, the FORM 

can be applied to estimate the Pf. In this thesis, a reliability assessment methodology is 

developed by using three dimensional distinct element code, 3DEC, based on RSM. 

Once the limit state surface is generated, FORM is performed to calculate the Pf. The 

methodology is used to calculate the Pf of a selected potential rock wedge in Sumela 

Monastery, Turkey. The potential wedge is located at height of approximately 200 

meters from the toe of the cliff with volume of about ten million m3. Rockfall evidences 

on the wedge indicate the slope instabilities. The Pf of the wedge is calculated to be 

16.3% by 84 simulations in 3DEC based on proposed methodology which is about 10% 

of the number of simulations required for a MCS. It is concluded that by converging to 

the limit state surface obtained from RSM, slope instabilities occur inside the model and 

cause increase in total displacements and vertical velocity. It is also revealed that after 

about 10 cm of total displacement, the slope represents a critical uncontrollable situation 

which requires development of risk mitigation strategies. 

Keywords: Rock slope stability, Distinct Element Method, Response Surface Method, 

Reliability analysis, Probability of Failure. 

 

 



vii 
 

ÖZ 

 

SÜMELA MANASTIRINDA BİR KAYA ŞEVİNİN AYRIK ELEMAN VE TEPKİ 

YUZEYİ METODLARINA DAYALI GUVENİRLİK ANALİZİ 

 

Dadashzadeh, Neda 

Yuksek Lisans, Maden Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. H. Şebnem Düzgün 

 

Şubat 2015, 121 sayfa 

 

 

 

Klasik deterministic analiz yöntemleri ile hesaplanan Emniyet Katsayısı (EK) kaya şev 

duraylığı analizlerindeki belirsizlikler nedeniyle şevin güvenliğini temsil etmeyebilir. 

Birinci Mertebe İkince Moment (BMİM) methodu şev duraylığı çalışmalarında  

parametrelerdeki belirsizliği ölçmek için yaygın olarak kullanılan olasılığa dayalı 

yöntemlerden biridir. BMİM limit denge yöntemleri kullanılarak kolayca uygulanabilir. 

Son yıllarda sayısal teknikler gerçek olguları modellemede yüksek performans 

gösterdiği için klasik limit denge methotlarının yerini almiştir. Yüksek hesaplama 

gerektiren Monte Carlo Simulasyonu (MCS) bir başka yaygın olarak kullanılan olasılığa 

dayalı methoddur. Sayısal metodlerle güvenirlik analizi yapılabilmesi için sayısal 

tekniklere dayalı bir yenilme fonksiyonunun tanımlanması gereklidir. Tepki Yüzeyi 

Methodu (TYM) limit denge fonksiyonunun,rassal değişkenlerle ifade edilen eşlenik bir 

fonksiyonla kestirimidir. Eşlenik fonksiyon analiz olarak rassal değişkenlerle ifade 

edilebildiğinden BMİM ile yenilme olasılığı (Pf) in tahmini yapılabilir. Bu tezde 

TSM’ne dayalı üç boyutlu Ayrık Elemanlar Codu (3AEC) kullanılarak güvenlik analizi 

metodolojisi geliştirilmiştir. Bin kere limit denge yüzeyi yaratılınca Pf hesaplamak için 
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BMİM uygulanmıştır. Metodoloji Türkiye’de Sümela Manastırında seçilen bir 

potansiyel kama türü kaya şevi için uygulanmıştır. Kayma potansiyeli olan kama 

şeklindeki şevin topuktan yüksekliği yaklaşık 200 m ve hacmi 10 milyon m3 tür. MCS 

methodunun %10’una denk gelen 3AEC’te 84 adet benzetişim ile kamanın kayma 

olasılığı %16.3 olarak bulunmuştur. TYM ile limit dengenin elde edilip şev 

duraysızlığının gösterilebildiği sonucuna varılmıştır. Ayrıca şevin 10 cm’lik hareketi 

sonrası kontrol edilemeyerek yenileceği, bu nedenle de zarar azaltma stratejilerinin 

geliştirilmesi gerektiği ortaya çıkmıştır. 

Anahtar Kelimeler: Kaya şev stabilitesi, Farklı elemanlar yöntemi, Tepki yuzeyi 

yöntemi, Güvenilirlik analizı, Başarısızlık olasılığı. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

A “rock slope failure” is the movement of a mass of rock downward in response to 

gravity, when it cannot anymore hold its original position after a disturbing phenomena 

or strength loss. The movement can vary from very slow, barely perceptible for many 

years, to rapid speed in a few minutes causing sudden hazards. According to the 

mechanism of the event, the rock slope failure may follow different scenarios like slides, 

falls and flows (Hungr et al. 2013). Most of the rock slope failures are mainly triggered 

by the changes in stress field of the slope or decrease in shear strength due to external 

disturbance like pore pressure increase, erosion, weathering or seismic activity (Turner 

and Schuster 1996).  Due to their large affected areas and high energy, slope failures are 

rated as the second destructive natural hazards after earthquakes, but are considered as 

the most frequent geohazard (USGS 2000). According to the database prepared by the 

Centre for Research on the Epidemiology of Disasters, landslides killed approximately 

61,000 people around the world over the period 1900 – 2009 (Gutiérrez et al. 2010). In 

1963, a catastrophic landslide known as Vaiont Landslide, occurred on the southern 

slope of the Vajont reservoir dam in Italy, and caused death of 2,500 people (Voight and 

Faust 1992). This is the most deadly landslide ever recorded in Europe. Hence, it is 

essential to have a better understanding of the slope failure mechanism in order to 

predict, design or implement protection measures for a safe environment. There are a 

considerable number of studies performed on different aspects of slope stability (Wu 

and Kraft 1970; Tang et al. 1976; Wong 1985; Matsui and San 1992; Duzgun et al. 
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1995; Park and West 2001; Stead et al. 2001; Jiang et al. 2003; Duzgun and Bhasin 

2008; Lee et al. 2012). However, it is still one of the most concerning geological hazards 

due to its nondeterministic nature. It is widely accepted that great variability and data 

deficiency exist in natural phenomena (Phoon 2008). Accordingly, reliability and 

probabilistic approaches which allow the systematic and quantitative treatment of these 

uncertainties have become a topic of increasing interest in rock slope engineering area in 

the past couple of decades ( Wong 1985; Duzgun et al. 2003; Jimenez-Rodriguez et al. 

2006; Duzgun and Bhasin 2008; Stanković et al. 2013; Tan et al. 2013; Dadashzadeh et 

al. n.p.) . The performance of a rock slope is represented in the form of probability of 

failure (Pf) rather than a single factor of safety (FOS) in reliability and probabilistic 

methods. On the other hand, with the development of modern computation techniques, 

the rock slope stability analysis methods have also faced imrovements through decades. 

Recent numerical techniques are widely implemented in slope stability studies because 

of their capabilitis and advantages rather than conventional limit equilibrium methods 

(Zou and Williams 1995; Matsui and San 1992; Duncan 1996; Swan and Seo 1999; 

Griffiths and Lane 1999; Dolezalova et al. 2001; Wang et al. 2013; Kainthola et al. 

2014). 

It is recognized that a single FOS calculated by traditional deterministic analysis 

methods can not represent slope safety due to many uncertainties involved in the 

analysis owing to inadequate information for site characterization and inherent 

variability and measurement errors in geological and corresponding parameters (Phoon 

2008). Consequently, reliability-based approaches that allow the systematic and 

quantitative treatment of these uncertainties have become a topic of increasing interest 

in rock slope engineering. On the other hand, since the slope stability analysis based on 

numerical methods do not require any assumptions on failure surfaces and modes like 

limit equilbrium methods, they are extensively applied to rock slope stability 

assessments. However, the numerical methods take a deterministic value of the input 

variables and can not directly consider the randomness of the parameters. Monte Carlo 

simulation (MCS) technique is one of the well known methods which overcomes this 
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drawback. However, the main disadvantage of this technique is the extensive 

computational time which increases substantially in the numerical analyses (Wong 1985). 

On the contrary, reliability methods can wisely search for the Pf with less time and 

effort. Defining a limit state failure function of the system is mandatory in reliablity 

analysis. The failure function of a slope can easily be obtained by limit equilibrium 

methods. However, it is not possible to generate an explicit failure function from 

numerical methods. Response Surface Method (RSM) can approximate the implicit limit 

state failure function using an equivalent explicit mathematical function of the random 

variables. 

In this study, a methodology is proposed to generate the failure function of  a slope 

simulated by Three Dimensional Distinct Element Code (3DEC) according to Response 

Surface Method. Once the explicit limit state function is generated,  the First Order 

Reliability Method (FORM) is applied to estimate the Pf.  

This thesis involves five chapters. An introduction of the problem to be considered is 

given in Chapter I. Chapter II provides a literature review of rock slope stability 

techniques as well as reliability and response surface methods. The proposed 

methodology is described in Chapter III. In Chapter IV, the methodology is 

implemented on a selected case study in Turkey in order to show the application of the 

proposed approach. The overall results are discussed in Chapter V.  

 

 

 

 

 



4 
 

 



5 
 

CHAPTER 2 

 

 

OVERVIEW ON ROCK SLOPE STABILITY ANALYSIS METHODS 

 

 

 

2.1 Limit Equilibrium Methods in Rock Slope Stability Analysis 

The limit equilibrium methods for slope stability are one of the most common methods 

of analysis among engineers because of their ease of application. The main 

developments are performed in 1950s and 1960s (Bishop 1955; Lowe and Karafiath 

1960; Morgenstern and Price 1965; Spencer 1967). Considerable number of studies has 

been performed on the application and performance of these methods through the 

decades (Hoek 1973; Hoek and Bray 1981; Nash 1987; Duncan 1996; Jiang et al. 2003; 

Huang and Li 2012; Chen et al. 2013; Wang and Ji 2013). The limit equilibrium 

methods are mainly based on the geometry assumptions and force interactions. 

Generally, at shallow depth where stress levels are low, the behavior of the rock mass is 

governed by discontinuities and bedding planes rather than intact rock. Accordingly, 

based on the geological structure of the rock mass, the failure modes of a rock slope may 

commonly appear in form of plane failure, wedge failure or toppling failure. Rock slope 

stability studies based on limit equilibrium methods are mainly performed for plane and 

wedge failure. According to limit equilibrium techniques, the mass of rock is assumed to 

fail along potential sliding surfaces. Once the failure surface of a simple shape is 

assumed, the material above the surface is considered to be a free body and the 

corresponding FOS is calculated based on force and/or moment equilibrium equations. 
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The plane failure mode in rock slopes involves shear failure along a single planer 

surface. According to Hoek and Bray (1981), two conditions must be satisfied in order 

to form a plane failure, 

1) 훹 > 훹 > 휑 

2) The strike of the sliding plane should be within ±20° of the slope face. 

Where,  

훹 =Inclination of the slope face 
훹 = Inclination of the failure plane 
휑Friction angle 

Figure 2.1 illustrates the basic mechanism of a plane failure stated by Hoek and Bray 

(1981).  

 
Figure 2.1 – Forces acting on a block for the plane failure when there is a tension crack 

in the upper slope surface (Hoek and Bray, 1981) 

 

 

According to Hoek and Bray (1981), the FOS of a plane failure (Figure 2.1) based on 

limit equilibrium method can be written as, 
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퐹푂푆 = . .
. .

                                                                             (2.1) 

푊 = 1/2훾퐻 · (1− (푍/퐻) ) · 퐶표푡훹 − 퐶표푡훹        (2.2) 

푈 = 0.5훾 	.푍 (퐻− 푍).퐶표푠푒푐훹          (2.3) 

푉 = 0.5훾 	.푍            (2.4) 

퐴 = (퐻 − 푍) · 퐶표푠푒푐훹           (2.5) 

 
Where, 

퐹푂푆 = Factor of Safety 

퐶 = Cohesion of the intact rock 

퐴 = Area of the failure surface 

푊 =	Weight of the sliding block  

푉 =	Force due to water pressure in the tension crack  

푈 = Uplift force due to pressure on the sliding surface 

푍 =Height of the tension crack from the upper surface of the slope  

푍 =	 Height of water in tension crack  

퐻 = Height of the slope 

훾 = Unit weight of rock 

훾 =	 Unit weight of water 

 

A wedge failure happens when the discontinuities strike across the slope crest and the 

sliding takes place along the line of intersection of two planes (Figure 2.2). 
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Figure 2.2 – Wedge failure geometry (Hoek and Bray, 1981). 

 

According to Hoek and Bray (1981) the general condition for a wedge failure to take 

place is, 

훹 > 훹 > 휑 

Where, 
훹 =Inclination of the slope face 
훹 = Dip of the line of intersection 
휑 =Friction angle 

For a wedge shown in Figure 2.3, in case the friction angle is the same for both planes, 

Hoek and Bray (1981) formulated the FOS as, 

 
Figure 2.3 – Forces acting on a wedge slope (Hoek and Bray, 1981) 
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퐹푂푆 = ( ).
.

                                                                                  (2.6) 

푅 + 푅 = . 	.
	

             (2.7) 

Where, 

푊 = Weight of the wedge block 

푅 = Normal reaction provided by plane A 

푅 = Normal reaction provided by plane B 

휉 = Angle of the intersection line 

 
As it is clear, the relative stability of a slope in deterministic limit equilibrium methods 

are represented in the form of FOS. The parameters of the resisting and driving forces 

take a single value, generally mean value, and generate a single FOS accordingly.  

The limit equilibrium methods have been popular in rock engineering assessments for 

many decades. However, they have been generated through assumptions like elastic 

behavior, homogeneous, isotropic material, time independent behavior and quasi-static 

loading. It is obvious that rock mass is a massively Discontinuous, Inhomogeneous, 

Anisotropic and Non-Elastic (DIANE) material (Harrison and Hudson 2000). Hence, the 

assumptions followed by limit equilibrium methods may limit a better representation of 

rock mass behavior in complex problems. Recent developments in computational 

approaches and increase in application of sophisticated mathematical methods provide a 

better understanding of materials and more reliable analytical techniques, accordingly.  
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2.2 Numerical Methods in Rock Slope Stability Analysis 

Despite improvements in engineering designs and predictions, geotechnical problems 

still reveals important concerns due to inadequate knowledge of the material and 

complex failure mechanisms. Accordingly, the assumptions and simplifications of 

conventional limit equilibrium slope stability methods which cannot consider the 

development of strain, may not be sufficient to represent the behavior of complex slope 

problems (Stead et al. 2001). Benefiting the recent advancements in computational 

approaches, it is possible to model the slope stability problems in a more realistic 

manner. The numerical simulation methods are currently adopted in many geotechnical 

programs (Jiang 1990; Matsui and San 1992; Griffiths and Lane 1999). These methods 

divide the slope into a finite number of zones or elements and calculate the forces and 

strains of each element using appropriate constitutive laws. There is no necessity for 

pre-defined failure surface and mode or statical assumptions. Moreover, multiple failure 

surfaces can be taken into account (Jing 2003). According to Eberhardt (2003), the most 

common numerical methods of analysis applied for rock slope stability can be divided 

into three approaches: continuum, discontinuum and hybrid modeling. Considering the 

different fracture circumstances in rock mechanics problems, Figure 2.4 illustrates the 

alternative choices appropriate to simulate the system.  
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Figure 2.4 – Appropriate numerical methods for different rock mass systems: (a) 

continuum method; (b) either continuum with fracture elements or discrete method; (c) 

discrete method; and (d) continuum method with equivalent properties (Jing 2003). 

 

According to this classification (Figure 2.4), the choice of continuum or discontinuum 

methods mainly depends on the geometry of the fracture system. Generally, continuum 

approaches are used for mediums with no fractures or with intense fractures (Figure 2.4a 

and d). In cases where a few discontinuities exist and not very big displacements are 

expected through discontinuities, continuum methods may also be applicable (Figure 

2.4b). However, in situations where failure along the discontinuities rather than intact 

rock are expected to govern the problem, or the number of fractures are high to be 

simulated by continuum methods, discontinuum techniques are more suitable (Figure 

2.4c).  

In rock slope stability analyzes, the level of confining stress is very low in comparison 

to underground problems. Hence, the slope is mainly confronted with large movements 

of individual blocks rather than material deformation. Accordingly, discontinuum 

methods are more appropriate to be utilized in slope stability analyses (Anon 2013).  



12 
 

Since this study uses the discontinuum approach to model the slope behavior, a brief 

overview of continuum and hybrid models is presented while the discontinuum approach 

is discussed in detail. 

 

 

2.3 Continuum and Hybrid Modeling  

Continuum modeling assumes a continuous material throughout the body which is best 

suited for the analysis of slopes that are comprised of intact rock, soil-like or heavily 

fractured rock masses (Stead et al. 2001). The discontinuities are treated as special cases 

by introducing interfaces between continuum bodies. However, continuum modeling can 

typically simulate a few numbers of discontinuities with no fracture opening or complete 

block detachment which is not appropriate for blocky mediums. The common 

continuum methods used in recent commercial software are the Finite Difference 

Method (FDM), Finite Element Method (FEM) and Boundary Element Method (BEM). 

In these techniques, the problem domain is discretized into a set of sub-domains or 

elements. The solution procedure may then be based on numerical approximations of the 

governing equations, i.e. the differential equations of equilibrium, the strain-

displacement relations and the stress-strain equations (Eberhardt 2003).  

FLAC2D, FLAC3D (Itasca), Phase2 (Rocscience), ABAQUS and VISAGE (VIPS 

2001) are common continuum modeling commercial tools for rock slope cases.  There is 

considerable number of studies performed by continuum methods which proves the 

strong application of numerical modeling in slope stability analysis. As an example, 

Griffiths and Lane (1999) compared the results of several examples of finite element 

slope stability analysis against limit equilibrium methods. Wu (2008) studied a slope 

stability case in central Asia under severe seismic event using finite difference program 

FLAC3D and Finite Element program QUAKE/W. Yang (2011) evaluated the slope 
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stability of North Opencast coal mine of YiMei, and validated the results based on rigid 

body limit equilibrium method. Wang et al. (2012), have also utilized the finite 

difference method to determine the landslide static stability of Zhu Jiadeng slope in 

Chongqing, china. Kainthola et al. (2013) analyzed a road cut slope from Deccan traps 

of Mahabaleshwar, India, using FLAC SLOPE 5.0. Guo et al. (2013), studied the 

deformation and stability of soft rock slope using FLAC3D. Sdvizhkova et al. (2014) 

studied the stability of slopes in the regions of Crimea, Ukraine by using finite element 

method software Plaxis and Phase2. 

Each numerical method may include definite limitations and disadvantages. Moreover, 

complex models of analysis require high performance numerical codes and 

computational expenses. In such cases, it is often unnecessary to apply one method to 

the whole problem in order to provide adequate representation. Hybrid methods involve 

the coupling of continuum and discontinuum techniques to maximize their key 

advantages. The initial representation of the idea started with the studies of Lorig and 

Brady (1984) in which the far-field rock is modeled as a transversely isotropic 

continuum using the Boundary Element Method (BEM) and the near-field rock as a set 

of discrete element blocks defined by rock fractures (Figure 2.5). 

 
Figure 2.5 - Hybrid DEM-BEM model for a rock mass containing an excavation (Jing 

2003) 
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The disturbed rock mass near the excavation can be efficiently handled by the DEM or 

FEM, while the surrounded material is simulated by a BEM linear material behavior 

without fractures. The reason for the assumption of the far-field is that the variation of 

the physical parameters, such as stress, displacement or flow, decrease rapidly with 

distance from the excavation. By the combined way of modeling, a higher efficiency of 

numerical techniques can be achieved.  Recent advances include coupled particle flow 

and finite-difference analyses using FLAC-3D and PFC-3D (Itasca 2012). ELFEN 

(ELFEN 2001) is one of the other hybrid codes with adaptive remeshing routines, which 

has been successfully applied to the simulation of surface mine blasting, mineral 

grinding, retaining wall failure and underground rock caving ( Munjiza et al. 1995). The 

hybrid techniques also show significant potential in the investigation of piping slope 

failures, and the influence of high groundwater pressures on the failure of weak rock 

slopes (Stead et al. 2001). The FEM-FDM codes use a finite element mesh to represent 

the blocks of a slope bounded by fractures and combine a discrete element model to 

simulate the behavior of the discontinuities. If the stresses inside the rock slope exceed 

the failure criteria of the finite element model, a crack is initiated. The propagation of 

the new cracks through the finite element mesh can be possible by remeshing.  

 

 

2.4 Discontinuum Modeling 

The upper crust of the Earth is comprised of fractured rock mass which is a discrete 

system. Simulating the exact material behavior is not practically possible. Hence, by 

different material and geomechanical assumptions, numerical methods have been 

developed for continuous and discrete systems. According to the assumptions of a 

continuum method, no points of a system domain can be open or broken into pieces 

(Jing 2003). When geotechnical problems are dealing with moderately fractured rock 

masses, where the behavior of the system is mainly controlled by the discontinuities, the 
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continuum methods can not satisfy the requirements. Continuum methods are limited to 

model the blocky media in one or more of the following ways; 

1)    They are inefficient when many intersecting faces are used, 

2)    They cannot automatically generate new contacts during the analysis, 

3)    The formulation cannot simulate large scale displacements of blocks (Anon 2013). 

 

In 1971 Cundall generated a new methodology by introducing the Discrete Element 

Method (DEM) in a landmark paper about the progressive movements of rock masses 

considered as 2D rigid block assemblages and overcome the problem associated with the 

large displacements of discontinuum medium. The approach was then developed in 

1970’s (Cundall 1971; Cundall 1974; Chappel 1972; Chappel 1974; Byrne 1974). 

Fundamentally, the DEM treats the fractured medium as an assemblage of rigid or 

deformable blocks connected by discontinuities in the problem domain, and solve the 

dynamic equations of motion and treatment of contacts between the blocks which allows 

the deformation and movement of blocks relative to each other. Large displacements 

caused by rigid body motion of individual blocks, including rotation, sliding and 

opening of rock discontinuities or complete detachments is straightforward in the DEM, 

which are not possible in the FDM, FEM or BEM. The important difference between the 

continuum and discrete methods is the treatment of displacements. In the continuum 

methods, the displacement compatibility must be enforced between the neighboring 

internal elements. However, the displacement compatibility is not required between 

blocks in the DEM, and is replaced by the contact conditions between blocks with 

specially developed constitutive models for point contacts or fractures (Jing 2003). The 

rigid body mode and deformable mode of blocks in DEM are individually treated. The 

rigid body motion logic produces large scale block displacements but cannot generate 

strains in the elements. Hence, it is not generally included in continuum methods.  

Accordingly, a continuous model reflects mainly the “material deformation” of the 

system while the discrete model reflects mainly the “member movement” of the system 

(Anon 2013) . The key concept of DEM which is also one of the draw backs of 
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continuum methods is that the contact pattern between the blocks/particles/bodies needs 

to be continuously updated during the deformation and motion process.  

Cundall (1971) is originally the main developer of the Discrete Element Method. 

Cundall and Marti (1979) extended the study on discontinuum medium by using the 

DEM and Rigid Body Motion (RBM) code to approximate the deformation of blocks of 

2-D geometries. The code called CRACK was able to consider fracturing, cracking and 

splitting of intact blocks under loading, based on a tensile failure criterion. However, the 

code was not able to make compatibility between the complex block geometries. This 

difficulty was overcome later by using full internal discretization of blocks by finite 

volume meshes of triangle elements, leading to early versions of the code UDEC 

(Cundall 1980; Cundall and Hart 1985). Later studies were developed on three 

dimensional analyses by Cundall (1988) and Hart et al. (1988) leading to the 

introduction of the code 3DEC, 3 dimensional Discrete Element Code. 3DEC, as the 

result of a period of over 40 years progression, is a powerful code on performing 3D 

calculations of discontinuum medium on computers. It is well suited to the jointed rock 

slopes because in one hand it is capable to simulate large displacements due to slip or 

detachment along discontinuities and on the other hand, it can model the deformation 

and material yielding of the intact rock blocks bounded by fractures (Rathod et al. 

2012). This becomes highly relevant for slopes composed in weak rock, flexural-topples 

and other complex modes of rock slope failure (Eberhardt 2003). There are several 

published schemes that appear to resemble discrete element methods like the ones 

consider the stability of bodies using limit equilibrium methods (Hoek 1973; Warburton 

1981; Goodman and G.-H. 1985; Lin and Fairhurst 1988). However, they lack modeling 

the deformation of blocks or detection of new contacts. 

 3DEC V 5.0 (Itasca 2013) is a three-dimensional numerical program based on the 

discrete element method for discontinuum simulation. It simulates the response of the 

jointed rock mass subjected to either static or dynamic loading. The discontinuities are 

treated as boundary conditions between blocks rather than individual elements. Each 
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block behaves as either rigid or deformable material. Deformable blocks are subdivided 

into a mesh of finite difference elements, and each element responds according to a 

prescribed linear or nonlinear stress-strain law. The relative motion of the discontinuities 

is also governed by linear or nonlinear force-displacement relations for movement in 

both the normal and shear directions. The equation of dynamic equilibrium for each 

block is formulated and repeatedly solved until the boundary conditions and laws of 

contact and motion are satisfied. The new block position and contact displacement 

increments (or velocities) are provided by integrating the law of motion. Later, the sub-

contact force-displacement law is applied to obtain the new sub-contact forces to be 

used in the next time step. 3DEC is based on Lagrangian calculation scheme which is 

appropriate to model the large movements and deformations. It also detects the new 

contacts between the particles generated from block motions (3DEC 2013). 

The major advantage of 3DEC over the other published discrete element methods is the 

ability to represent the block material behavior bounded by the discontinuities in rigid or 

deformable form (3DEC 2013). The early distinct element codes were ignoring the 

deformability of the blocks by assuming rigid material for any problem condition. 

However, the importance of including block deformability in stability analyses is 

undeniable particularly when the problem is dealing with buried structures and confined 

rock mass with high values of stress distributions (Zeng et al. 2006).  

It is sufficient to assume material rigidity when the stresses and deformations in the 

blocks are low and major deformation in the system occurs by the movement on the 

discontinuities.  This condition happens in unconfined set of rock blocks at a low stress 

level, such as shallow slopes in jointed rock where the movements consist mainly of 

sliding and rotation of blocks, and of opening and interlocking of interfaces (Anon 

2013). For rigid block analysis, an explicit time-marching scheme is used to solve the 

dynamic equations of motion, based on a dynamic or static relaxation scheme, or an 

FDM approach in the time domain (Jing 2003). However, it is not reasonable to ignore 

the compressibility of the intact rock in underground problems. 
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When the deformation of the block material cannot be neglected, in order to introduce 

deformability to the bodies, the block is discretized into internal elements for increasing 

the number of degrees-of-freedom. The solution strategies follow two methods. One is 

explicit solution with finite volume discretization of the block interiors, without the need 

for solving large-scale matrix equations. The other is an implicit solution with finite 

element discretization of the block interiors, which leads to a matrix equation 

representing the deformability of the block systems (Jing 2003). 

3DEC provides four material models in order to define the intact rock properties; 

1) Elastic, isotropic, 

2) Elastic, anisotropic, 

3) Mohr-Coulomb plasticity, 

4) Bilinear strain-hardening/softening, ubiquitous joint. 

 

The elastic, isotropic model is appropriate for homogeneous, isotropic, continuous 

materials which show linear stress-strain behavior. The elastic, anisotropic model is 

valid for elastic materials that exhibit elastic anisotropy. The Mohr-Coulomb plasticity 

model is suited for materials that yield when subjected to shear loading. The bilinear 

strain-softening, ubiquitous joint model, is a modified form of the Mohr-Coulomb 

model. The Mohr-Coulomb model is more computationally efficient than the bilinear 

model in terms of calculation time and memory space. However, plastic strain cannot be 

studied in the Mohr-Coulomb model. Consequently, the bilinear model is generated in 

3DEC for the applications in which the post-failure response is important such as 

yielding pillars, caving or backfilling studies (3DEC manual 2013).  

There are two available models in 3DEC to represent the joint behavior; 

1) Coulomb slip criteria, 

2) Continuously yielding model. 
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The Coulomb slip model is valid for closely packed blocks with area contact. It provides 

a linear representation of joint stiffness and yield limit, which is based on elastic 

stiffness, frictional, cohesive and tensile strength properties, and dilation characteristics 

of the joint. The continuously yielding joint model simulates displacement-weakening of 

the joint by loss of cohesive and tensile strength at the onset of shear or tensile failure. 

According to Anon (2013) the model is appropriate for the rock discontinuities 

displaying progressive damage and hysteretic behavior and is applicable in dynamic 

analysis, cyclic loading and load reversal with predominant hysteretic loop (3DEC 

manual 2013). 

One of the most important concepts in geohazard evaluations, particularly in slope 

stability studies, is the evaluation of the FOS in the concerning problem. FOS is a value 

that is used to examine the stability state of slopes. Generally, a slope fails when its 

material shear strength on the sliding surface is insufficient to resist the applied in-situ 

shear stresses. According to Anon (2013), a “FOS” index can be defined for any 

relevant problem by taking the ratio of the calculated parameter value under given 

conditions to the critical value of the same parameter, at which the onset of an 

unacceptable outcome manifests itself. Once the definition is clarified, the effort must be 

performed on identifying the actual and critical parameters. In recent numerical 

techniques, this goal is achieved based on parameter reduction techniques (Shen 2012). 

According to this method, the actual parameter value is achieved by direct resolution of 

field and constitutive equations governing the problem, while the critical parameter is 

calculated by solving inverse boundary value problem. In numerical simulations this can 

be achieved using a trial-and-error technique for a range of parameter values until the 

critical value is found (Diederichs et al. 2007). 

The calculation of the FOS in 3DEC is performed based on strength reduction method. 

The strength reduction method is an increasingly popular numerical technique to 

evaluate FOS in geomechanics (Dawson and Roth 1999; Griffiths and Lane 1999). 
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According to this method, the FOS is calculated by progressively reducing the shear 

strength of the material to bring the slope to a state of limiting equilibrium. The method 

is commonly applied with the Mohr-Coulomb failure criterion. In this case, the FOS is 

defined according to the following equations, 

퐹푂푆 =                                                                                                                   (2.8) 

Where 휏 is the actual strength being obtained from the material properties and 

corresponding constitutive models, and 휏  is the critical strength of the problem. 

휏  is obtained from, 

휏 = 퐶 + 휎 푡푎푛휑                                                                                        (2.9) 

 

퐶 = 퐶                                                                                                             (2.10) 

 

∅ = arctan	( 푡푎푛∅)                                                                                        (2.11) 

Where SRF is strength reduction factor that is obtained by a series of simulations using 

trial values of the SRF to reduce the cohesion, 퐶, and friction angle, 휑, until slope 

failure occurs. 

There are several slope stability studies performed by 3DEC in the literature. Sainsbury 

et al. (2007) has developed the 3DEC codes for the south wall of Newcrest Mining Ltd’s 

Cadia Hill Open Pit. Brideau et al. (2008) used 3DEC to perform a preliminary slope 

stability analysis of the 2007 Mount Steele rock and ice avalanche. Firpo et al. (2011) 

made a rock slope stability analysis based on digital terrestrial photogrammetric 

techniques and 3DEC. Rathod et al. (2012) used 3DEC for predicting the behavior of the 

jointed rock slope of the abutments of the bridge at Chenab, India. Noroozi et al. (2012) 

proposed a new 3D key-block method for slope stability in which the key blocks are 
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searched and if no such blocks are found to be unstable, it is concluded that the whole of 

the rock mass is stable. The stability analysis of the block has been performed by 3DEC 

in this study. Wang et al. (2013) used 3DEC to simulate the excavation of a rock slope 

in Puli-Xuanwei Expressway in Yunnan Province. Gheibie et al. (2013) performed a  

Probabilistic-Numerical Modeling of a Rock Slope in Amasya-Turkey by using 3DEC. 

Weida et al. (2014) proposed a new method (kinetic vector method, KVM) for analyzing 

the dynamic stability of wedge in rock slope by using 3DEC for dynamic simulations.  

The modeling of geoengineering processes is different from the design of fabricated 

materials. The inherent variability and lack of site-specific data followed by rock and 

soil structures constrains a tough situation to the corresponding studies and designs. 

Accordingly, even any sophisticated and well developed computational tools and codes 

must be used by cautious to approach to the reality. The computer codes should never be 

considered as a “black box” which accept any input data and produce acceptable 

predictions of the site behavior. It is widely accepted that in order to gain a better 

understanding of the problem, any analysis technique (limit equilibrium or numerical 

techniques) must be followed by systematic and quantitative treatment of the 

uncertainties of the input variables. 

 

 

2.5 The First Order Reliability Method (FORM) and its application in rock slope 

stability analysis 

The engineering design processes are generally constrained by limited resources. 

Consequently, the information available for analysis is incomplete and decisions are 

made under uncertainty. Uncertainties in natural systems may be associated with 

inherent randomness of the material, which is called aleatory uncertainty, or with 

simulations and estimations of reality performed under inadequate site information 
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called uncertainty (Phoon 2008) . It is widely accepted that high amount of variability 

and data deficiency exist in natural phenomena. Hence, in order to achieve a realistic 

evaluation of the system’s safety under consideration, any analysis and engineering 

design must include the uncertainties of the basic variables affecting the system 

performance.  

Probability tools allow engineers to formulate a mathematical model in which 

uncertainty can be quantified. Reliability methods are rational ways of contributing 

quantified uncertainties in modeling and designs. According to Harr (1989), Reliability 

is theoretically defined as probability of a system performing its required function 

adequately for a specified period of time under stated conditions. In other words, 

problems of engineering reliability may be formulated as the determination of the supply 

capacity of an engineering system to meet certain demand requirements (Ang and Tang 

1984). The reliability technique has become a topic of interest in recent years due to its 

powerful ability of treating the uncertainties in a systematic way. Monte Carlo 

Simulation Method (MCS) is another well known probabilistic technique in engineering 

studies. However, In spite of its wide application, the method requires large number of 

realizations to provide an acceptable Pf of a system. This drawback particularly causes a 

considerable increase in computational expenses of engineering concepts. On the 

contrary, reliability techniques can wisely search for the Pf with less effort.  

The reliability techniques investigate the performance of a system by defining a limit 

state where the system fails if it performs under the limit state and survives if it exists 

above it. Due to the sophistication of the treatment of the problem as well as the 

approximation of a given limit state function, reliability approach is generally divided 

into two levels: Conventional Reliability and Level II. 

The conventional reliability is based on the full probabilistic descriptions of the load and 

resistance factors and gives the exact value of Pf. However, the difficulty in computing 

this probability and the problems of the evaluation of the exact distributions of random 
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variables on the other hand have led to the development of approximation methods 

categorized as level II techniques (Zhao and Ono 1999).  

In the level II techniques, the reliability of a system is evaluated by approximating a 

defined limit state function beyond which a system can no longer fulfill the desired 

condition.  The failure function is approximated either linearly or nonlinearly in higher 

orders. The First Order Reliability Method (FORM) is considered to be the most 

common technique in evaluating the Pf because of its efficiency (Bjerager 1991). 

However, its accuracy deteriorates when the nonlinearity of limit-state function 

increases. The Second Order Reliability Method (SORM) overcomes this drawback with 

a cost of low efficiency in terms of the number of function calls and computation 

expenses (Zhang and Du 2010).    

Rock slope stability analysis, as well as other geological fields, deals with high degrees 

of uncertainty. Accordingly, employing reliability and probabilistic tools has 

increasingly become a topic of interest in the last couple of decades ( Duzgun et al. 

1995; Duzgun et al. 2003; Duzgun and Bhasin 2008; Jimenez-Rodriguez et al. 2006; 

Stanković et al. 2013). Slope stability is one of the most widely reported applications of 

reliability among other geosciences (Lee et al. 2012). The behavior of the slope is 

evaluated in terms of failure probability rather than a single FOS originated from 

traditional deterministic methods. The conventional FOS, which only uses characteristic 

values of the uncertain parameters, cannot consider different possible scenarios 

associated with the same FOS since it cannot contribute the variability of the parameters 

(Nadim et al 2005). There is considerable number of studies on reliability based slope 

stability analyses. Most of these studies are based on FORM (Low 1997; Jimenez-

Rodriguez et al. 2006; Duzgun et al. 1995; J.C. et al. 2000; Li et al. 2009). According to 

Zhang et al. (2010) there is a slight difference between the Pf derived from FORM and 

SORM. However, this discrepancy is highlighted when the problem is dealing with very 

low values of failure probability (like in the field of structural engineering). 

Dadashzadeh et al. (n.p.) has studied the application of SORM in slope stability 
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problems. According to their observations, FORM can provide adequate accuracy of 

failure probability in slope stability studies except when the problem is dealing with 

very low rates of failure probability (e.g. Pf in the order of 10-3 or above). Consequently, 

FORM is going to be adopted in this thesis due to its higher efficiency. 

In the practice of level II reliability analysis, the reliability of a system is expressed in 

terms of reliability index (β) or probability of survival (alternatively failure). At this 

level of reliability, a limit state function beyond which a system or part of it can no 

longer fulfill the satisfied condition, must be defined. The limit state function 푔(푋 ) 

must be defined in such a way that the operating scenario is the availability of a 

resistance greater than the load: 

푔(푋 ) = 푅(푋 ) − 푆(푋 ) > 0	                                                                                      (2.12)

  

and the non-operating or failure scenario is: 

푔(푋 ) = 푅(푋 ) − 푆(푋 ) < 0	                                                                                      (2.13)

  

Where 푋  is the vector of basic variables, 푅(푋 ) represents the resistance function and 

푆(푋 )	represents the load function of the system. 

Cornell (1969) defined the reliability index, 훽 , as the ratio of the expected value of 

g(푋 ), 휇 ( ), over its standard deviation, 휎 ( ), which can be obtained according to the 

Taylor series approximation at the mean vector: 

훽 = ( )

( )
                                                                                                                   (2.14) 

The Pf in this case is defined as:   
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P = 1 − ∅(훽 )                                                                                                           (2.15) 

Where ∅(. ) is the cumulative Gaussian distribution. However, the β  lacks the failure 

function invariance, which may result in different reliability indexes for mechanically 

equivalent limit state functions of the same failure criterion. 

To compensate for the non-invariance of Cornell reliability index (β ), Hasofer and 

Lind (1974) performed a transformation of variables to a new space of statistically 

independent Gaussian variables, with zero mean and unit standard deviations. The 

transformation from physical space (푋 )	to standardized space or normalized space (푈 )	 

is immediate in the case of independent Gaussian variables: 

푈 =                                                                                                                 (2.16) 

When random variables are not Gaussian or independent, a transformation must be 

applied to convert the variables into uncorrelated standard normal parameters. There are 

several transformation methods (Rosenblauth 1952; Nataf 1962; Fiessler and Rackwitz 

1979) among which the Fiessler-Rackwitz has widely been used in reliability studies. 

Once the variables are transformed to the standard Gaussian U space, the reliability 

index of Hasofer-Lind, β , is defined as the distance between the origin O and the 

point U∗, closest to the origin in the limit-state surface. 푈∗ is the most probable failure 

point (MPP) named also as the design point (Figure 2.6) .  

 
Figure 2.6 – Graphical representation of the FORM approximation. 
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The direction cosine (훼)	of the corresponding design point (U∗) will iteratively be 

obtained by: 

훼 =
( . )

∑ ( . )
/ 						 , 푖 = 1,2, … , 푛                                                                     (2.17) 

Where 훽 is searched by: 

푔(훽.훼 	,훽. 훼 		, … ,훽.훼 	) = 0                                                                                   (2.18) 

In this method, the failure function is approximated by a linear function (hypersurface) 

tangent to the limit state surface in the design point. The Cornell Reliability Index is the 

same as the Hasofer-Lind Reliability Index when the failure function is a hypersurface 

or the Taylor expansion is implemented around the design point in the nonlinear failure 

functions.  

The reliability analysis of slope based on limit equilibrium techniques have been widely 

discussed in literature. Tang et al. (1976) presented one of the earliest comprehensive 

studies of reliability based slope stability analysis. Duzgun et al. (1995) applied the 

FORM to analyze the planar failure of a rock slope. Low (1997) prepared a reliability 

study of rock wedge failures. Duncan (2000) discussed the factors of safety and 

reliability in geotechnical engineering. Duzgun et al. (2003) introduced a methodology 

for reliability based design of rock slopes. Rodriguez et al. (2006) proposed a system 

reliability approach to rock slope stability. Duzgun and Bhasin (2008) applied reliability 

techniques to investigate the stability of a rock slope in Norway. Li et al. (2009) 

presented a system reliability approach for rock wedges. 
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The mandatory step to initiate the reliability studies is the definition of the limit state 

failure function. As it was mentioned, the initial studies of reliability based slope 

stability analysis were based on limit equilibrium methods. The limit equilibrium 

methods investigate the equilibrium of the driving forces of the slope mass with the 

resistance forces. Accordingly, this definition can be applied to generate the failure 

function of a slope due to limit equilibrium assumptions: 

푔(푋 ) = 푅(푋 ) − 푆(푋 )                                                                                           (2.19)  

Where 푅(푋 ) denotes the resistance forces of the slope mass and 푆(푋 ) denotes all the 

driving forces on the slope. According to the different failure criteria for the rock mass 

of the slope as well as different failure mechanisms, the performance function may vary 

from case to case. The limit state function for a plane failure following the Mohr-

Coulomb criteria will be defined as (Figure 2.7), 

 
Figure 2.7 – Forces of a rock block subjected to the plane failure. 

 

푔(푋 ) = 푐퐴 + 푊 푐표푠훹 − 훼푠푖푛훹 − 푈 − 푉푠푖푛훹 + 푇푐표푠휃 푡푎푛휑 − [푊 푠푖푛훹 +

훼푐표푠훹 ) + 푉푐표푠훹 − 푇푠푖푛휃]                                                                                    (2.20) 

Where, 
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퐶 = Cohesion of the discontinuity 

퐴 = Area of the failure surface 

푊 = Weight of the sliding block  

푉 =	Force due to water pressure in the tension crack  

푈 = Uplift force due to pressure on the sliding surface  

T= Resisting force of the anchor 

Ψ = Slope face angle  

Ψ = Discontinuity plane angle 

휑 = Friction angle 

퐻	 = Slope height  

푍	 = Height of the tension crack from the upper surface of the slope  

푍 =	 Height of water in tension crack  

The limit state function is easy to define explicitly in limit equilibrium techniques. 

However, if a reliability analysis is desired to be performed based on numerical 

simulation of the slope stability, it is not possible to explicitly define a limit state surface 

based on the effecting variables.  

The failure function of a slope presented in Equation 2.18 can also be written as: 

푔(푋 ) = 퐹푂푆(푋 ) − 1                                                                                               (2.21)

  

Where 퐹푂푆(푋 ) denotes the factor of safety of the slope with all random parameters 

affecting the performance of the slope (푋 ). The reliability analysis would be possible to 

implement on numerically simulated slopes, once a function is defined for 퐹푂푆(푋 ). 

Integrating the reliability analysis and numerical simulations can provide a better 

interpretation of the slope’s performance. 
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There are several studies in which it is tried to consider the uncertainties in numerical 

simulations. However, most of these studies are based on probabilistic methods like 

MCS implemented on soil slopes. Griffiths and Lane (1999) proposed a Random Finite 

Element Method (RFEM) for soil slopes in a MCS framework to calculate the Pf. 

Suchomel and Masin (2008) studied a particular landslide in the fine-grained soil, 

Lodalen slide, Norway, using finite element method combined with random field theory 

and MCS. Hammah et al. (2009) explored the application of the finite element method 

to compute the Pf for soil slopes based on Point Estimate Method (PEM) and limited 

numbers of MCS’s. Huang et al. (2010) applied RFEM to calculate the system reliability 

of soil slopes. Gheibi (2012) proposed a random methodology to find the Pf of a rock 

slope in Turkey, based on 3DEC. Shen and Abbas (2013) simulated a rock slope in 

China by UDEC and random set theory.  

 

 

2.6 Response Surface Method (RSM) 

Probabilistic tools are generally used in order to take the uncertainty into account. In 

principle, the Monte Carlo Simulation (MCS) method is considered as the most reliable 

probabilistic method for estimating the exact value of the failure probability of the 

complicated implicit systems (Tan et al. 2013). The main idea of the MCS method is to 

investigate the performance of the system using a random sampling technique in cases 

where the limit state cannot be easily expressed explicitly. In spite of the high accuracy 

of the MSC, it certainly requires large number of observations which results in 

considerable computational efforts. To reduce the total CPU time, FORM is a widely 

used alternative method (Wong 1985). Defining a limit state surface for the problem 

under consideration is mandatory in FORM. In cases where there is not a closed form 
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explicit equation of the failure surface, RSM is usually used for approximating the 

implicit limit state function (Youliang et al. 2008).  

Response Surface Methodology (RSM) was first introduced by Box and Wilson (1951) 

as a technique in empirical study of relationships between response of parameters to a 

group of variables. Although it is originally referred to the process of identifying and 

fitting an appropriate response surface model from experimental data, it can be applied 

to numerical modeling studies, where each run can be regarded as an experiment 

(Zangeneh et al. 2002). According to Propst et al. (1992), the RSM can be considered in 

three major scenarios, 

1) For the case of the well-discovered system performance, RSM can be used to obtain 

the best optimum value of the response. 

2) For the case of limited number of experiments, RSM can be used to gain better 

understanding of the overall response system. 

3) For the cases of requirement of complicated analysis with high effort and advanced 

computational resources, a simplified equivalent response surface may be obtained 

by a few numbers of runs to replace the complicated analysis. 

 

The basic idea of the RSM is to approximate the implicit limit state function using an 

equivalent explicit mathematical function of the random variables involved in the limit 

state function. Because the approximated function is explicit, the FORM can be applied 

to estimate the Pf (Tan et al. 2013). 

The RSM is based on a group of carefully designed mathematical and statistical 

experiments which is used to develop an adequate functional relationship between a 

response of interest (output variable) influenced by several independent variables (input 

variables). An experiment is a series of tests, called runs, in which changes are made in 

the input variables in order to identify the reasons for changes in the output response. In 

general, the structure of the relationship between the inputs and output (response) is 
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unknown but can be truly approximated  by the RSM in which the convergence to the 

real relation improves by a number of smooth functions (Khuri and Mukhopadhyay 

2010). 

The RSM is performed by two major steps, namely design and estimation (Wong 1985): 

1) The estimation step is the calculations of fitting an approximate response to the real 

surface based on a number of wisely selected sample points on the space. 

2) The design step deals with how to select the best sample points at which 

experiments will be run so that the fitting of the surface to the true one is satisfied. 

 

According to the estimation step, it is assumed that the true response, 푔(푋 ), of a system 

depends on 푖 number of input variables, 푋 ,푋 , … ,푋 , as: 

푔(푋 ) = 푓(푋 ,푋 , … ,푋 ) + 휀                                                                                     (2.21) 

Where the function 푓	is the true unknown and complicated response function, and 휀 is 

treated as a statistical error. There are several response surface functions proposed to 

approximate a limit state surface (Wong 1985; Bucher and Bourgund 1990; Rajashekhar 

and Ellingwood 1993; Kim and Na 1997; Zheng and Das 2000). The most common 

approach is the low-degree quadratic polynomial (C. Bucher and Bourgund 1990) due to 

their advantages of being simple and known properties. The main idea of the 

polynomial-based RSM is to adjust correctly the polynomials to the limit state function 

using sample points, particularly in the neighborhood of the design point (Tan et al. 

2013).  

If 푔(푋 ) represents the real limit state surface of a system, the approximated surface due 

to response surface function based on quadratic polynomial is: 

 푔(푋 ) = 푎 + ∑ 푏 푋 + ∑ 푐 푋                                                                        (2.22) 
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where g(푋 ) is the response surface function (i.e., the approximate limit state function); 

푋  is the ith random variable (푖 = 1, 2, … , 푛); 푛 is the number of basic variables; 푎, 푏 	, 푐  

are the polynomial coefficients which must be calculated. According to equation 2.18, it 

is obvious that 2푛 + 1 number of sample points is required to be able to obtain the 

constants.   

According to Box and Draper (1987), the most important part of the RSM is the design 

of experiments (DoE). The objective of DoE is the selection of the points where the 

response should be evaluated. The choice of the sampling points can have a large 

influence on the cost of convergence to the response surface. Among various sampling 

methods (Myers and Montgomery 1995; Montgomery 1997), a common approach is to 

evaluate 푔(푋) at 2푛 + 1 (푛 is the number of random variables) combinations of central 

point, 푋 , and along the line parallel to each coordinate axes at 푋 ± 푓휎 . Parameter 푋  

is set to be the mean value (휇) of the ith random variable at the first iteration. 푓 is 

usually set to be 1 for most of the approximations. However, there are several studies in 

which the importance of 푓 is discussed (Youliang et al. 2008) 	. 휎  denotes the standard 

deviation of the ith random variable (Youliang et al. 2008). Figure 2.8 illustrates the 

sampling for a system with two random variables.  

 
Figure 2.8– DoE around the mean in two random variable space (X1 , X2). 
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It should be noted that the main limitation of the RSM is that it is a local analysis 

method, which means the developed response surface is invalid for regions other than 

the studied ranges of random variables. 

The application of the RSM in engineering reliability analyses started at the end of 

1980s and well developed in 1990s (Faravelli 1989; C. G. Bucher and Bourgund 1990; 

Rajashekhar and Ellingwood 1993; Ying Wei Liu and Moses 1994; S. H. Kim and Na 

1997; Zheng and Das 2000; Adhikari 2004). However, most of these studies have been 

performed in structural engineering field. There are a few studies in reliability analysis 

of slope stability in which response surface method is applied. The first use of RSM in 

geotechnical application was performed by Wong (1985) in which a soil slope is 

modeled by finite element code and the reliability analysis is studied based on FORM. 

Wong (1985) repeated the slope model in MCS technique and received a reasonable 

match between the Pf obtained from MCS and RSM. Zangeneh et al. (2002) have 

employed the RSM to analyze the displacement of slopes in the earthquake studies. 

Moellmann et al. (2008) proposed a probabilistic finite element analysis approach for 

reliability study of embankment based on RSM and FORM. Li et al. (2011) proposed a 

stochastic response surface method for reliability analysis of rock slopes and showed 

that the accuracy of the proposed method is higher than that for the FORM and is much 

more efficient than Monte-Carlo simulation. Stanković et al. (2013) used FORM 

enforced with RSM to study the stability of an open pit coal mine in Monte Negro to 

obtain Pf with sufficient accuracy, but with various simplifications. Zhang et al. (2013) 

studied the system reliability of soil slopes with RSM. Tan et al. (2013) studied the 

application of RSM in slope stability analysis. It is to be noted that in spite of the fact 

that available discrete element codes like 3DEC requires high run time per model, no 

study has been performed on the application of the RSM is probabilistic analyses in 

discontinuum medium, up to now. 
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CHAPTER 3 

 

 

DEVELOPMENT OF THE RELIABILITY ANALYSIS BASED ON 

NUMERICAL AND RESPONSE SURFACE METHODS FOR ROCK SLOPES  

 

 

 

In this study, a methodology is developed for reliability analysis of rock slopes based on 

distinct element code, 3DEC. The limit state function for reliability analysis is defined 

by RSM and the FORM approach is adopted for calculating the Pf. 

According to Equation 2.21, the limit state failure function of a slope to be analyzed by 

FORM is: 

푔(푋 ) = 퐹푂푆(푋 ) − 1                                                                                                (3.1) 

The target is to generate a function to the 퐹푂푆(푋 ) by simulating the slope in 3DEC. 

This objective is not directly possible by 3DEC. Hence, an explicit equation can be 

defined to FOS(X ) using RSM. The response surface of FOS(X ) represents the 

performance of the FOS of the slope according to different random variables of load and 

resistance (X ) observed in 3DEC. Once an explicit function is generated for FOS(X ), 

the FORM can easily be performed for the slope. However, it is important to obtain 

satisfactory convergence to the real function of the FOS. Figure 3.1 illustrates the flow 

chart of the developed methodology. The proposed approach consists of 5 steps: 
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Figure 3.1 – The flowchart of the developed methodology. 

 

 Step 1: Any reliability analysis, in which the uncertainties in the parameters of the 

system are quantified, requires the statistical parameters of the random variables. 

According to the purpose of the study or sensitivity analysis of the system, the basic 

variables (푋 ) that may affect the performance of a slope is determined. Once the 

deterministic and random parameters are decided, the statistical parameters of each 

random variable can be obtained according to the data of laboratory tests and field 

observations, as well as literature studies. 

Step 2: In the next step the approximation of the FOS function is performed according 

to RSM. As it was mentioned before, the RSM tries to gradually converge to the real 

surface by iteratively fitting a number of equations for the selected sample points. 

,푿풊 

b 
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In the first iteration, the designing of the sample points is performed around the mean 

values of the random variables. For a quadratic response function, 2푛 + 1 number of 

sample points is necessary to be able to calculate the coefficients of the Equation 2.23 

(푎 , 푏 , 푐 ).  For instance, in a slope problem with two random variables, (푋 ,푋 ), five set 

of points are necessary (Table 3.1). Once the design of the points around mean is 

performed, each set is separately imported to the numerical simulation program (3DEC 

in this study) and the corresponding FOS is computed. 

Table 3.1 – Design of the experiments around mean values of two random variables. 

Set No. 1 2 3 4 5 

X1 휇  휇 + 휎  휇 + 휎  휇 − 휎  휇 − 휎  

X2 휇  휇 + 휎  휇 − 휎  휇 + 휎  휇 − 휎  

FOS FOS1 FOS2 FOS3 FOS4 FOS5 

 

 

Once the response of each set is obtained (퐹푂푆 ), the quadratic Equation (2.23) can 

easily be generated by calculating the coefficients. In this example (two variable case), 

the response function for the FOS in the region of mean points (first iteration) is:  

퐹푂푆(푋 ,푋 ) = 	 푎 + 푏 푋 + 푏 푋 + 푐 푋 + 푐 푋                                                    (3.2) 

Step 3: Since converging to a real surface by using the RSM is an iterative technique, it 

is important to figure out when the desired response is satisfied. In this study, in order to 

check whether the obtained 퐹푂푆(푋 ) truly represents the performance of the 

corresponding slope, FORM is used. 

Once the 퐹푂푆(푋 ) is generated in step 2 in the region of the mean values, the limit state 

function of the slope is, 
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푔(푋 ) = 퐹푂푆(푋 ) − 1                                                                                                (3.3) 

According to FORM, the most probable point (X*) of this limit state can be achieved. It 

is noted that due to the definition of FORM, the Most Probable Point (MPP) always 

locates on the limit state surface, 퐹푂푆(푋∗) = 1.0. Hence, in order to check the validity 

of the generated 퐹푂푆(푋 ), the X* is imported to 3DEC. If the obtained FOS in 3DEC is 

close to 1.0, the first condition of the methodology is fulfilled. Otherwise, the iteration is 

continued up to the level in which the obtained MPP (X*) develop a value of 

퐹푂푆(푋∗) 	≈1.0 in 3DEC. 

Step 4-a: In order to continue the iteration levels, another set of sample points are 

required to be designed to define the new region in which 퐹푂푆(푋 ) is fitted. The region 

in each new level is designed around the MPP of the previous level (푋∗ ). 

Step 4-b: Fulfilling the condition of 퐹푂푆 ≈1.0 is not sufficient to confirm the validity 

of the approximated limit state function. The reason is that any point on the real limit 

state surface takes the value of 퐹푂푆 = 1.0. However, there is just one MPP on the real 

failure limit state function. On the other hand, the RSM is valid only for the local in 

which it is studied. Accordingly, the complete convergence only happens when the MPP 

determined in a subsequent level approach to the MPP in the preceding level. Therefore, 

the two conditions of the proposed methodology to be fulfilled are given as: 

1) 퐹푂푆(X∗) ≈ 1.0  

2) 푋∗ = 푋∗  

 

Figure 3.2 shows a schematic illustration of the methodology in a two variable problem. 

The origin of the axes represents the mean point of the random variables.  The problem 

is converged in 6 levels to the target point, real MPP.  
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Figure 3.2 – Detection of real limit state surface due to RSM in a two random variable 

space. 

 

Step 5: Once both of the conditions are fulfilled, the function of 퐹푂푆(푋 )in the last level 

can be accepted as a true approximation. Subsequently, the Pf of the slope under 

consideration is calculated according to FORM. 

 

 

 

 

 

 



40 
 

 



41 
 

CHAPTER 4 

 

 

IMPLEMENTATION OF THE PROPOSED APPROACH FOR A ROCK SLOPE 

IN SUMELA MONASTERY, TURKEY 

 

 

 

4.1 Introduction 

In order to examine the successful implementation of the methodology, it is applied to a 

selected hazardous rock slope in Sumela Monastery, Turkey. The Sumela Monastery is 

one of the major historical places of Turkey which hosts considerable number of tourists 

every year. Accordingly, the safety analysis of the slope is a fundamental issue in this 

region.  

 

4.2 Study Area 

The Sumela Monastery located in the Altindere National Park at Macka region of 

Trabzon city in Turkey, is a Greek Orthodox monastery dedicated to the Virgin Mary 

(Figure 4.1a). It was founded in AD 386 during the reign of the Emperor Theodosius I 

(375 - 395) by two priests from Athens, Barnabas and Sophronios (Miller 1968). The 

monastery had reached its final appearance by periodic enlargements and verifications 

during the sixth and thirteenth centuries (Wikipedia 2014). The structure of the 

monastery is constructed inside a steep rock cliff at a height of about 200 meters from 
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the toe of the cliff which is surrounded by the roads and settlements of the local citizens 

(Figure 4.1b and c). The Sumela Monastery is one of the major historical and touristic 

places of Turkey hosting around 180,000 local and foreign visitors every year (Gelisli et 

al. 2011). 

 
Figure 4.1 – (a) Location map of the Sumela Monastery, (b) Sumela Monastery located 

on a steep rock cliff, (c) structure of the Monastery caved inside the cliff. 

 

(a) 

(b) (c) 
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The study area is located in the Northern Zone of the Eastern Pontide volcanic province 

on the Black Sea coast which is dominated by Late Cretaceous and Middle Eocene 

volcanics and volcaniclastic rocks (Gelisli et al. 2011). The formation of the Northern 

Zone consists of basaltic and andesitic lithic tuff, volcanogenic sandstone, shale, basaltic 

and andesitic lavas, and conglomerate deposited in a rift basin setting. The region 

evolved into a carbonate platform after the deposition of the Hamurkesen Formation as a 

result of a decrease in tectonic activity and filling of the rift basins, giving rise to the 

Berdiga Formation during the Late Jurassic-Early Cretaceous. Alluvial deposits formed 

of clay, silt, sand and gravel are widely displayed adjacent to the rivers in this region 

(Gelisli et al. 2011). Figure 4.2 illustrates the geological map of the study area. 

 
Figure 4.2 – Simplified geological map of the study area (Gelisli et al. 2011) 
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4.3 Field and Laboratory Studies 

In order to investigate the stability problems in the region, the slope of the Sumela cliff 

is surveyed. Due to the geological structure of the cliff, the region is subjected to a high 

risk of slope instabilities. Considerable numbers of rockfall and slope failure evidences 

are observed around the cliff surface which proves the significance of stability analysis 

in the region. Figure 4.3a shows the damages of the plants and released rock blocks 

through a slope failure. Figure 4.3b illustrates a circular failure occurred on the highly 

weathered surface of the cliff.  Figure 4.3c shows a large scale rock block detachments 

in the region. Figure 4.3d presents the damages of the pavements on the path to the 

monastery, due to rockfall hazards. 

 
Figure 4.3 – Evidences of slope instabilities in the vicinity of Sumela Monastery. 

  

(a) (b) 

(c) (d) 



45 
 

In 2001, a hazardous rockfall event was reported causing damages to the monastery 

buildings and facilities. According to Gelisli et al. (2011), as it is show in Figure 4.4, the 

fallen blocks were detached from the crest of the cliff on top of the Monastery structure 

following a path toward the settlements.  

 
Figure 4.4 – (a) Location of detached rock block in 2001, (b) Rockfall event in 2001 

(Gelisli et al. 2011) 

 

According to the past evidences as well as field observations, a wedge failure is detected 

in the vicinity of the monastery which may threaten the structure as well as the downhill 

settlements. The potential wedge is marked in Figure 4.5. The rockfall event happened 

in 2001 had also been detached from the detected wedge. The wedge is highly fractured 

causing small block instabilities, potential to fall. More proofs of block detachments are 

obvious on the wedge even if they have not been reported. Therefore, in this study, it is 

tried to establish the probability of the wedge failure in the area based on the proposed 

methodology.  

Detached Rock 
Block 

(a) (b) 
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Figure 4.5 –Potential wedge failure and detached blocks from it.  

 

In order to study the mechanical properties of the rock material, samples are collected to 

perform laboratory tests. Four uniaxial compressive tests and six Brazilan tests have 

been performed to define the Uniaxial Compressive Strength (UCS) and tensile strength 

of the rock respectively (Figure 4.6). The laboratory test results are listed in Table 4.1 

and 4.2. 

  
Figure 4.6 – (a) Uniaxial compressive test, (b) Brazilian test. 

(a) (b) 
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Table 4.1 - Results of uniaxial compressive test. 

Sample 
No. 

Diameter 
(mm) 

Effective 
Area (mm2) 

Failure 
load (N) 

UCS 
(MPa) 

1 51.45 2077.975 511020 245.92 
2 52.11 2131.63 472000 221.43 
3 52.04 2125.907 482690 227.05 
4 52.08 2129.176 461550 216.77 

 

Table 4.2 – Results of Brazilian test. 

Sample 
No. 

Diameter 
(mm) 

Height 
(mm) 

Failure 
load (N) 

Tensile strength 
(MPa) 

1 51.97 30.48 35600 14.31 
2 52.01 28.7 45450 19.39 
3 51.86 29.31 36290 15.21 
4 51.71 29.75 33400 13.83 
5 52.17 30.58 38050 15.19 
6 52.06 30.72 33110 13.19 

 
The discontinuities of the study area are studied and the parameters are recorded. 

Generally, the discontinuities have rather wide aperture without infilling. This indicates 

that the study area is dealing with nearly large block sizes. Figure 4.7 shows typical rock 

blocks and discontinuities in the region. 

 
Figure 4.7 – (a) Potential rock blocks, (b) Wide aperture of the discontinuities. 

(a) (b) 
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According to the surveyed geological parameters, the quality of the rock is classified 

based on Rock Mass Rating (RMR) system (After Bieniawski 1989). The results of the 

classification are given in Table 4.3, which indicates that the rock mass in the Monastery 

slope would be classified as fair rock. The table of the RMR is given in Appendix A. 

Table 4.3 – Classification of rock mass based on RMR system. 

Parameter Value Rating 
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5 Ground water damp 10 

 

Figure 4.8 illustrates the rock discontinuity distribution as well as the kinematic analysis 

of the region. According to this plot, two major discontinuity sets are detected and 

formation of wedge failure is clearly validated. Table 4.4 shows the statistical 

parameters of the discontinuity sets. The complete list of recorded discontinuity 

properties during field investigations are given in Table 4.5. 
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Figure 4.8 – Discontinuity distribution and kinematic analysis in the study region. 

 

Table 4.4 – The discontinuity set properties in the study region. 

Discontinuity 
set label Mean Dip/Dip direction Variability (99%) Spacing (m) 

1m 82.4  ̊/185.88  ̊ 13.12  ̊ 3.0 

2m 43.8  ̊ /38.5˚ 11.8˚ 5.0 
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Table 4.5 – Properties of the recorded discontinuities during field observations. 
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1 80 185 Basalt 51 3 26 75 235 Basalt 28 - 
2 45 40 Basalt 58 2 

 
27 80 185 Basalt 31 - 

3 78 200 Basalt 53 5 
 

28 40 290 Basalt 44 - 
4 21 130 Basalt 48 5 

 
29 80 120 Basalt 53 - 

5 35 165 Basalt 38 5 
 

30 85 180 Basalt 38 50 
6 83 180 Basalt 56 10 31 85 187 Basalt 46 - 
7 70 200 Basalt 49 15 32 75 190 Basalt 57 - 
8 48 40 Basalt 48 15 33 65 155 Basalt 53 - 
9 44 38 Basalt 52 10 34 90 300 Basalt 24 - 
10 40 335 Basalt 36 20 35 65 235 Basalt 29 30 
11 86 190 Basalt 50 5 36 83 191 Basalt 33 30 
12 85 185 Basalt 42 5 37 47 225 Basalt 45 25 
13 80 214 Basalt 54 1 38 70 205 Basalt 49 30 
14 78 208 Basalt 47 1 39 47 45 Basalt 29 10 
15 68 210 Basalt 39 - 40 48 175 Basalt 30 25 
16 75 210 Basalt 46 10 41 60 160 Basalt 38 - 
17 75 200 Basalt 26 15 42 70 230 Basalt 44 - 
18 35 32 Basalt 37 10 43 45 49 Basalt 42 12 
19 31 41 Basalt 30 10 

 
44 42 37 Basalt 37 10 

20 40 32 Basalt 44 - 
 

45 55 195 Basalt 40 10 
21 38 26 Basalt 50 - 

 
46 50 190 Basalt 52 15 

22 43 41 Basalt 38 50 
 

47 26 52 Basalt 45 5 
23 47 36 Basalt 24 60 

 
48 45 39 Basalt 38 5 

24 75 205 Basalt 32 50 49 34 33 Basalt 47 5 
25 75 205 Basalt 36 50 50 26 40 Basalt 49 5 

 

A simple schematic geometry of the wedge is sketched in Figure 4.9. The volume of the 

wedge is computed to be 10 million m3 with a mass of 2.7 million tons.  
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Figure 4.9 – schematic geometry of the wedge. 

 

4.4 Implementation  

Any simulation by 3DEC is performed in three fundamental steps, 

1)   Generating a model that represents the geometry of the problem, 

2)   Defining the material behavior and boundary conditions, 

3)   Results and interpretations. 

The geometry of the slope is constructed considering the topographical conditions and 

field observations. Once the material behavior and boundary condition of the problem is 

assigned, and the model is brought to the initial equilibrium state, it is ready to be 

studied according to the proposed methodology. A sensitivity analysis is first performed 

to identify the random and deterministic parameters of the problem. Later, the 푃  is 

calculated. This step is performed in two stages. First the response surface is generated 

according to the calculation of FOS and the corresponding 푃  is obtained based on 

FORM. Then, in order to verify that the generated limit state function truly represents 



52 
 

the failure surface, the slope behavior is monitored and the results are discussed. The 

general procedure of the analysis is illustrated in Figure 4.10. 

 
Figure 4.10 – Procedure of the calculation of 푃  in the study area. 

 

4.4.1 Geometry Generation 

It is obvious that the accuracy of any simulation study depends on the equivalency of the 

generated model with real conditions of the problem under consideration. The geometry 

of the problem is one of the important factors of any simulation particularly in slope 

stability analysis. Recent improvements in model building tools of 3DEC provide a 

more realistic understanding of the problem. The geometry of a problem in 3DEC is 

created by cutting an original block in a way that the outcome represents boundaries of 

physical features in the problem. Previously, the original block was manually cut up to 

an approximate geometry to be obtained. However, it is now possible to generate any 
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desired geometry by modern techniques in 3DEC. Figure 4.11 illustrates the topography 

of the Sumela Monastery generated by conventional and modern building methods in 

3DEC. 

 

Figure 4.11 – Topography of Sumela monastery generated in 3DEC, (a) by manually 

cutting the original block, (b) by densifying the original block. 

 

According to the new model building capabilities of 3DEC, any desired 3D geometry 

must first be created in a drawing program like AutoCAD, in the form of polygons. The 

geometry is then imported to 3DEC to cut the original block accordingly. The block is 

wisely divided into smaller pieces in a way that all the blocks that are touching the 

polygon surface have a higher resolution than the blocks away from the 3D surface. 

Once the block is divided, the upper pieces are deleted in order to achive a complete 

topography surface.  

The geometry of the Sumela Monastery is created using SketchUp (2015) and 

Rhinoceros 5.0 tools. The topography is first obtained from SketchUp tool (Figure 

4.12a). Later, it is imported to Rhinoceros 5.0 to create a 3D polygon surface (Figure 

4.12b). 

Sumela 
Monastery 
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Figure 4.12 – (a) Topography of Sumela monastery created by SketchUp, (b) 3D 

polygon surface of the topography created by Rhinoceros 5.0. 

 

The polygon geometry is then imported to 3DEC and the corresponding codes are 

established to merge and cut the original block with the imported geometry. Figure 4.13 

shows how the final block model reasonably fits the topography surface.  

  

Figure 4.13 – (a) Topography of the Sumela Monastery merged by original block in 

3DEC, (b) 3DEC block after cutting according to the topography.  

Sumela 
Monastery 

1000 (m) 

1000 (m) 

500 
(m) 

1000 (m) 1000 
(m) 

600 
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(a) (b) 

(a) (b) 
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In the next step, the surveyed discontinuity sets during the field studies are added to the 

model according to Table 4.4. Figure 4.14 indicates the final geometry of the concerning 

wedge in the Sumela Monastery. 

 

Figure 4.14 – (a) Final geometry of the study area developed in 3DEC, (b) Discontinuity 

sets and potential wedge in the study area. 

 

(b) 

(a) 



56 
 

 4.4.2 Material Properties and Boundary Conditions 

According to Anon (2013), when the problem is dealing with unconfined set of hard 

rock blocks at low stress level, such as shallow slopes in jointed rock where the 

movements consist mainly of sliding and rotation of blocks, it is reasonable to assume 

the infinite material rigidity in order to let the discontinuities dominate the problem. 

Accordingly, since the study area is comprised of unconfined hard basaltic rock blocks 

(Gelisli et al. 2011),  the behavior of the intact material is assumed to be rigid rather than 

deformable. This let the model be mainly governed by the joints and discontinuities, 

which reflects the observed behavior in the field. 

In order to dictate the type of response, the model displays under the applied in-situ 

conditions or upon any disturbance, the constitutive behavior and associated material 

and discontinuity properties must be introduced to the model. As it was discussed 

before, 3DEC provides four intact material models and two discontinuity models. 

According to Anon (2013), apart from special cases and purposes, the Mohr-Coulomb 

plasticity model is well suited for intact materials that yield when subjected to shear 

loading like rock and soil. Anon (2013) also states that among two predefined 

discontinuity constitutive models of 3DEC, the Coulomb slip model is most applicable 

for general engineering studies; while the continuously yielding joint model is 

applicable in dynamic analysis and cyclic loading. Consequently, the intact rock and 

discontinuity constitutive behavior of the wedge block under consideration is simulated 

with Mohr-Coulomb model and Coulomb slip model, respectively.  

Since it was not possible to have reasonable number of experiments during this 

investigation, the final properties of the intact rock and discontinuities are prescribed by 

considering the values of the laboratory tests, RMR classifications, RocLab software and 

the literature review. The values of cohesion and friction angle obtained from different 

sources are listed in Table 4.6.  
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Table 4.6 – Cohesion and friction angle obtained from different approaches. 

  Cohesion (MPa) Friction angle 

RMR 0.2 - 0.3 25-35 

RocLab 2.9 47 

Tilt test - 38 

literature 4.5 30 

 
 

Based on the field observations, the discontinuities have wide aperture on the surface. 

However, considering the high value of the mass of 2.7 million tones, it is expected that 

the cohesion of the discontinuities will increase by depth as moving inside the slope and 

causes a high variability along the discontinuities of the wedge. Hence, the low values of 

cohesion obtained from RMR and Roclab may not be able to represent the reality. The 

RMR classification system provides the parameters of the rock mass. While in this 

study, the wedge is assumed to be intact created by intersection of two discontinuities. 

On the other hand, based on four triaxial tests, the results of the cohesion and friction 

angle of the intact rock are obtained close to the literature values. Consequently, the 

literature values of the intact rock and discontinuity properties are considered in this 

study (Kainthola et al. 2014; Schultz 1993). Table 4.7 indicates the properties 

considered as input parameters during the simulations. The results of triaxial tests are 

shown in Appendix B. 
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Table 4.7 – Intact rock and discontinuity properties considered during the simulations.  

 M
at

er
ia

l 

Cohesion 
(MPa) 

Friction 
angle 

Tensile 
strength 
(MPa) 

Young's 
Modulus 

(GPa) 

Poisson'
s ratio 

Normal 
Stiffness 
(GPa/m) 

Shear 
Stiffness 
(GPa/m) 

In
ta

ct
 

ro
ck

  

71 31 15 73 0.25 _ _ 

D
is

c.
 

se
t 4.5 30 _ _ _ 30 12 

 

The boundary and initial condition in numerical simulations is the prescription of a 

constraint or controlled condition along a model boundary due to specified 

displacement, velocity or force to define the in-situ state of the problem.  In this study, 

the gravitational acceleration is assigned in the negative z-direction and no outer loads 

are considered. The boundary condition is assigned in a way that the boundary blocks of 

the potential wedge are prevented from moving in order to better understand the 

behavior of the wedge. 

 
 
 
 
4.4.3 Initial Equilibrium State 

The 3DEC model must be at an initial force-equilibrium state before any simulation. 

The model is in equilibrium when the net nodal force vector at each centroid of rigid 

blocks, or gridpoint of deformable blocks, is zero (Anon 2013). The maximum nodal 

force vector is called the “unbalanced” or “out-of-balance” force. For a numerical 

analysis, the out-of-balance force never reaches exactly zero. However, it is sufficient to 

say that the model is in equilibrium when the maximum out of balance force is small 

compared to the total applied forces in the problem. During execution, inspection of 

maximum unbalanced force along with velocity and displacements can assess when the 

equilibrium has been reached. 
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In this study, before assigning the real material properties, a high value of cohesion and 

tensile strength is assigned to the model to prevent any slip or separation from occurring 

when the model in brought to an initial force-equilibrium state. In order to ensure that 

the model has reached to equilibrium, the history of maximum unbalanced force, 

vertical velocity (z-velocity) and total displacement is recorded and continuously 

monitored. The codes of 3DEC for the initial equilibrium state are listed in Appendix C. 

Figure 4.15 to 4.17 illustrate the plots of maximum unbalanced force, Z-velocity and 

total displacement respectively. 

 

 
Figure 4.15 – History of maximum unbalanced force during equilibrium state. 

 

(N
) 
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Figure 4.16 - History of vertical velocity during equilibrium state. 

 

 
Figure 4.17 - History of maximum unbalanced force during equilibrium state. 

(m
/s)

 
(m
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According to Figure 4.15, it can be seen that the maximum unbalanced force has 

approached zero. Figure 4.16 illustrates the blocks in resting condition after 2000 steps. 

Moreover, history of total displacement in Figure 4.17 indicates that the block has 

slightly moved until reaching to equilibrium and kept a constant magnitude and stayed 

stable. This approves that no movements or slip occurrs within the model. 

 

4.4.4 Sensitivity Analysis 

According to Shen and Abbas (2013), it is important to note that both numerical and 

statistical studies demand a high calculation time and expenses. Hence, reducing the 

number of random variables, which may have negligible effect on model response, can 

considerably increase the efficiency. Prior to start the main simulations to estimate the Pf 

of the wedge, in order to define the deterministic and random input variables, a 

sensitivity analysis is performed to investigate how the uncertainty in each parameter 

may affect the FOS.  

All the mechanical parameters of intact rock and joint sets are assumed to be random at 

initial step. In order to have a better understanding of uncertainty influence imposed by 

each variable, a constant coefficient of variation (C.O.V.) of 0.5 is implemented to all 

random variables. 25 models are run in 3DEC. In each set of models, the concerning 

random parameter is repeatedly verified while other parameters are kept constant in 

mean values and the corresponding FOS is recorded. Table 4.8 indicates the results of 

simulations. It is important to note that these simulations are only performed in order to 

decrease the number of random variables if they show a deterministic behavior and do 

not represent any understanding of the slope behavior. 
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Table 4.8 – Results of FOS with different values of material and joint properties. 

C.O.V = 0.5  µ - 2σ µ - σ µ µ + σ µ + 2σ 

Joint Cohesion 
(MPa) 

Parameter 0 2.25 4.5 6.75 9 

FOS 0.16 1.48 2.93 4.38 5.21 

Joint Friction Angle 
Parameter 0˚ 15˚ 30˚ 45˚ 60˚ 

FOS 2.86 2.92 2.93 2.95 2.99 

Joint Normal 
Stiffness (GPa/m) 

Parameter 0 15 30 45 60 

FOS 0.78 2.26 2.93 3.33 3.49 

Joint Shear 
Stiffness (GPa/m) 

Parameter 0 6 12 18 24 

FOS 4.18 3.49 2.93 2.53 2.26 

Block Cohesion 
(MPa) 

Parameter 0 35.5 71 106.5 142 

FOS 2.93 2.93 2.93 2.94 0.94 

Block Friction 
Angle 

Parameter 0˚ 14˚ 28˚ 42˚ 56˚ 

FOS 2.93 2.93 2.93 2.93 2.93 

62 
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Since the model is generated in rigid form, the discontinuities are mainly governing the 

problem rather than the intact rock blocks. It is revealed that the variability in 

discontinuity cohesion, normal stiffness (Kn) and shear stiffness (Ks) have the highest 

influence on FOS respectively (Figure 4.18). According to this investigation, it is 

reasonable to consider deterministic behavior for the rest of the parameters. Once the 

deterministic and random variables of the problem are defined, the model is ready to 

estimate the Pf according to the proposed methodology. The statistical parameters of the 

random variables are given in Table 4.9. 

 

 
Figure 4.18 – Sensitivity analysis of FOS to the uncertainty in material properties. 
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Table 4.9 – Statistical parameters of the random variables. 

Parameter Discontinuity cohesion, 
JC (MPa) 

Discontinuity normal 
stiffness, Kn (GPa/m) 

Discontinuity shear 
stiffness, Ks (GPa/m) 

Mean 4.5 30 12 

Standard 
Deviation 1.8 9 2.4 

Distribution normal normal normal 

 

 

4.4.5 Reliability Analysis 

Once the model has been generated and brought to equilibrium, the proposed 

methodology can be implemented on the model in order to estimate the Pf. The main 

function of the methodology is to systematically define set of random material 

properties to 3DEC and obtain the corresponding FOS to generate the response surface 

accordingly. In order to converge to the true response surface of FOS, a number of 

iterations may be required. 

The response surface of FOS must be adjusted around the mean values of the random 

variables at the initial iteration. For this purpose, the set of input points around the mean 

must be designed (DoE). Since this study consists of three random variables (푛 = 3), 

seven sets of points are necessary for each iteration (2푛 + 1). Once the set of input 

parameters are defined, each set is simulated in 3DEC and the corresponding FOS is 

obtained. Table 4.10 indicates the results of simulations around the mean values of 

random variables. 

 

 



65 
 

Table 4.10 – Design of points around mean and corresponding FOS. 

Parameter point 
1 

point 
2 

point 
3 

point 
4 

point 
5 

point 
6 

point 
7 

X1 (JC), (MPa) 4.5 6.3 2.7 2.7 2.7 2.7 6.3 

X2 (Kn), (GPa/m) 30 39 21 39 39 21 21 

X3 (Ks), (GPa/m) 12 14.4 14.4 14.4 9.6 9.6 14.4 

FOS 2.93 4.22 1.45 1.82 2.04 1.7 3.35 

 

The design of points around the mean value is also plotted in Figure 4.19. It is clear that 

the points are systematically selected according to the DoE rules following a cubic 

pattern. However, six points around the mean is sufficient for this study to generate the 

response function of FOS.  

 
Figure 4.19 – 3D plot of sample points around the mean value in iteration 1. 
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According to equation 2.18, for three random variables, seven coefficients must be 

calculated to generate the response surface function of FOS. The coefficients can easily 

be obtained by solving seven equations with seven unknowns based on seven 3DEC 

simulations listed in table 4.9. Consequently, the response function of FOS for the first 

iteration is, 

퐹푂푆(	푋 	,푋 	,푋 ) = 	 (0.649) 	+ 	(1.953 ∗X1) 	+ 	(−0.445 ∗X2) 	+ 		(0.509 ∗X3) 	+

	(−0.143 ∗X1
2) 	+ 	(0.008 ∗X2

2) 	+ 	(−0.023 ∗X3
2)                                                  (4.1) 

Therefore, the failure limit state surface for the first iteration can be written as, 

푔(	푋 	,푋 	,푋 ) = 	퐹푂푆(	푋 	,푋 	,푋 )− 1 =

(0.649) + (1.953 ∗X1) + 	(−0.445 ∗X2) 	+ 		(0.509 ∗X3) 	+ 	 (−0.143 ∗X1
2) 	+

	(0.008 ∗X2
2) 	+ 	 (−0.023 ∗X3

2)− 1                                                                       (4.2) 

Once the limit state failure function is generated, the FORM can be performed to find 

the most probable point (푋∗). According to the methodology, the response function of 

FOS and corresponding failure limit state 푔(	푋 )	is accepted when obtained design point 

illustrates a FOS close to 1.0 in 3DEC. Table 4.11 lists the results of design point in the 

first iteration and corresponding FOS in 3DEC. It is obvious that the iteration must be 

continued until the first condition of the methodology is satisfied in 3DEC (퐹푂푆(푋∗) ≅

1.0). 

Table 4.11 – The most probable point and corresponding FOS in the first iteration.  

X* 
FOS (X*) 

X1
* X2

* X3
* 

3.85 28.3 12.6 2.72 
 

Similarly, the iterations are continued by designing the input sets around the most 

probable point (design point) of the previous iteration (푋∗ ). After pursuing 10 

iterations, FOS converged to the desired condition (≅ 1.0). However, as it has been 



67 
 

discussed before, any point on the failure function takes a value of 퐹푂푆 ≅ 1.0. Since the 

RSM is locally valid, the true region must also be verified. This is obtained by satisfying 

the second condition of the methodology (푋∗ = 푋∗ ) . The second condition has been 

achieved by continuing two more iterations. All the results of the simulations are given 

in Appendix D.  

The final failure function is obtained as, 

푔(푋 ) =

	(5.124) + (−0.073 ∗X1) + 	 (0.682 ∗X2) + (−1.758 ∗X3) + 		(0.147 ∗X1
2) 	+

	(−0.016 ∗X2
2) 	+ 	(0.066 ∗X3

2)− 1                                                                          (4.3) 

Subsequently, by performing the FORM on equation 4.3, Pf of the wedge is computed as 

0.163. The wedge is also modeled in Swedge 6.0 and probabilistic analysis is 

performed. The Pf is obtained to be 0.0984. It is observed that the Swedge software 

underestimates the Pf in comparison with 3DEC. Figure 4.20 shows the probability 

distribution of FOS obtained from Swedge modeling. The results of the simulations in 

Swegde are listed in Table 4.12. The challenging issue in reliability analysis of rock 

slopes is the lack of acceptable values of Pf (Duzgun and Bhasin 2008). A FOS of 1.3 to 

1.5 is widely considered as an acceptable range in engineering practice. However, there 

is not a certain acceptable range for reliability studies in literature. Hence, in order to 

evaluate the safety of the studied slope, the Pf is compared with similar reliability studies 

of rock slopes in the literature. Generally, the studies are dealing with very low Pf of 10-3 

orders. Accordingly, the Pf of 0.163 indicates a high hazard potential in this region. 

Table 4.12 – Results of probabilistic simulation by Swedge. 

No. of 
simulations 

Mode of 
failure 

FOS 
Pf Mean Standard 

deviation Minimum Maximum 

10000 
 Sliding 
on Joints 

1&2 
1.504  0.453  0.464   4.558 0.0984  
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Figure 4.20 – Probability distribution of FOS obtained from Swedge. 

 

4.4.6 Validation 

In order to confirm the validation of the converged function of FOS, the response of the 

model is monitored in the center point of each iteration by plotting the z-velocity, 

displacements, and unbalanced force histories. It is revealed that the slope shows a 

steady state when the iterations are in the safe region, while by converging to the failure 

surface according to the RSM, the slope starts to fail in 3DEC as well.  

Figure 4.21 illustrates the vertical velocity plots of iteration one and twelve. It is shown 

that, at the centerpoint of iteration one, where the FOS is calculated to be 2.93, the 

velocity of the slope follows almost constant rate of increasing due to the execution of 

the model; while by approaching to the failure surface, at the centerpoint of iteration 

twelve, a sudden increase in the z-velocity occurs after 14000 steps. Due to Anon 

(2013), any sudden increase in displacement or velocity of a model indicates a joint slip 

or block failure or plastic flow within the model.  
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Figure 4.21 - History of vertical velocity in the centerpoint of (a) iteration one, (b) 

iteration twelve (m/s). 

 

Moreover, according to the maximum unbalanced force plots illustrated in Figure 4.22, 

no instability conditions are observed in iteration one. The unbalanced force follows a 

constant value which indicates a constant movement within the model. However, 

iteration twelve shows a large force imbalance in the model after 16000 steps. 

(a) 

(b) 
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Figure 4.22 - History of maximum unbalanced force in the centerpoint of (a) iteration 

one, (b) iteration twelve (N). 

 

Figure 4.23 illustrates the total displacement plots of iteration one and iteration twelve. 

It is obvious that the maximum total displacement is increased by approaching to the 

failure surface. 

(a) 

(b) 
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Figure 4.23 - History of total displacement in the centerpoint of (a) iteration one, (b) 

iteration twelve (m.). 

 

The displacement vectors of the potential wedge in iteration one and twelve are shown 

in Figure 4.24. It is clear that the maximum total displacement occurs at the toe of the 

wedge which has good compatibility with site observations where evidances of fallen 

blocks exist. All the results of the history records are listed in Appendix E. 

(a) 

(b) 
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Figure 4.24 – Displacement vectors of the potential wedge failure in the centerpoint of 

(a) iteration one, (b) iteration twelve (m). 

Figure 4.25 illustrates the maximum vertical velocity in centerpoint of each iteration and 

corresponding FOS. It is clear that, by converging to the failure region, vertical velocity 

increases. Slope instability is quite obvious by the sudden increase in the vicinity of the 

limit state failure region where FOS is almost 1.0. 

(a) 

(b) 
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Figure 4.25 – Maximum vertical velocity in centerpoints vs. iteration number and FOS. 

 

Similarly, Maximum total displacement graph is shown in Figure 4.26. The total 

displacements of the wedge block increases by converging to the failure surface. It can 

be stated that, in cases where such a large wedge with volume of 10 million m3 is under 

concern, even low displacements of centimeters means a high hazard which can cause 

uncontrollable failure. According to Figure 4.26, the wedge shows unstable condition 

after 10 centimeters. By installing displacement monitoring systems in the study region, 

this graph can be very useful to understand in what rates of displacements the wedge is 

in critical conditions. 

FO
S 
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Figure 4.26- Maximum total displacement in centerpoints vs. iteration number and 

corresponding FOS. 

FO
S 
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CHAPTER 5 

 

 

DISCUSSIONS AND CONCLUSIONS 

 

 

 

In this Thesis, a method to analyze reliability of rock slopes using the response surface 

method is developed. The rock slope is modeled and analyzed by a three dimensional 

distinct element code, 3DEC. The numerical simulation which is usually expensive is 

repeated a limited number of times to give point estimates of the response of FOS 

corresponding to uncertainties in the model parameters. A graduating function is then fit 

to these point estimates so that the response given by the 3DEC code can be reasonably 

approximated by the graduating function within the region of interest. The 

approximating function, called the response surface, is used to replace the code in 

subsequent repetitive computations required in a reliability analysis. The procedure is 

applied to a large potential wedge in rock slope in Sumela monastery, Turkey, involving 

uncertain discontinuity properties.  

The potential wedge is located at height of about 200 meters from the toe of the cliff 

with volume of about 106 m3. Rockfall evidences on the wedge prove the instability 

hazard in the vicinity. The Pf of the wedge is calculated to be 16.3% by 84 simulations in 

3DEC based on proposed methodology. Comparing this Pf by similar probabilistic rock 

slope stability studies in literature, this amount indicates a high hazard of failure in the 

region. The model is also created in Swedge program and probabilistic analysis is 

performed. The Pf is found to be lower (9.8%) by Swedge. On the other hand, the 

behavior of the slope is monitored in each simulation. It is concluded that by converging 
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to the limit state surface, slope instabilities occur inside the model and cause increase in 

total displacements and vertical velocity. It is also revealed that after about 10 cm of 

displacement, the slope represents a critical uncontrollable situation. Considering the Pf 

obtained by the proposed methodology and MCS by using Swedge, the slope shows 

quite a low level of safety which indicates the requirement of mitigation measures. 

The MCS method is one of the widely probabilistic methods used for calculation of Pf. 

However, this method is applicable only when acceptable number of observations is 

provided. Generally, the number of experiments in MCS method is in orders of 103. This 

value becomes quite challenging as the state-of-the-art simulation codes get more 

sophisticated. Alternatively, the Pf of the concerning wedge is calculated by 84 number 

of experiments using RSM. It is shown that, by using the RSM, the behavior of the FOS 

can wisely be defined. Once the function of the FOS is obtained, the FORM can easily 

be performed to estimate the Pf. it is shown that the estimation of the Pf of the potential 

wedge according to the proposed methodology is performed within 10% of the number 

of simulations based on a direct MCS (e.g. assuming 1000 experiments for MCS).  

Another advantage of the proposed methodology is that, a function can be defined to the 

FOS based on any desired effective parameter. Other probabilistic tools like MCS 

cannot provide a characteristic equation to the system. A function which can describe 

the stability quality of a slope based on effective parameters is quite applicable in 

designing practices. Generally, in the design and engineering practices of rock slopes, it 

is required to define certain values of slope properties for a desired FOS. This purpose 

can easily be achieved by sensitivity analysis in limit equilibrium methods. However, it 

is quite challenging by numerical simulations. By using RSM and defining a function to 

the FOS, this goal can efficiently be achieved in numerical methods along with 

considering the uncertainties of the parameters.  

It is important to note that since the potential wedge has quite large size, depth of the 

discontinuities effect the cohesion of the discontinuity surface in different areas. Hence, 
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for the future studies, it is expected that assuming various cohesion values by depth will 

highly affect the estimated probability of failure.  
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APPENDIX A 

 

 

ROCK MASS RATING SYSTEM TABLE 

 

 

 

The table of the Rock Mass Rating System (After Bieniawski 1989) is given in Figure 

A.1. 
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Figure A.1 – Rock Mass Rating System (After Bieniawski 1989). 
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APPENDIX B 

 

 

RESULTS OF TRIAXIAL COMPRESSIVE TESTS 

 

 

 

Table C.1 – Results of triaxial compressive test. 

Sample 
No. 

Diameter 
(mm) 

Effective 
area (mm2) 

Lateral 
stress 
(MPa) 

Axial 
stress 
(MPa) 

Cohesion 
(Mpa) 

Friction 
angle 

1 51.33 2068.29 0.1 235.27 

71 28˚ 
2 52.04 2125.91 0.3 247.81 

3 51.83 2108.78 0.5 258.33 

4 51.93 2116.93 0.7 274.86 
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APPENDIX C 

 

 

DEVELOPED CODES IN 3DEC 

 

 

 

new 

poly brick -500,500 -500,500 -500,100 

group block 'rock' 

densify nseg 4 4 3 

join 

geometry import 'topography.dxf' 

densify gradlimit maxlength 10 repeat range geometry 'topography' distance 0 extent 

join 

group block 'rock-mass' range geometry 'topography' count odd 

delet range group 'rock' 

jset dip 90 dd 90  ori 244.89,-151.008,-283.333 

jset dip 0 dd 90  ori 227.344,-437.5,-256.815 

hide dip 0 dd 90  ori 227.344,-437.5,-256.815 below 

hide dip 90 dd 90  ori 244.89,-151.008,-283.333 above 

jset dip 82 dd 185 spacing 4 num 7 ori 135,27,-143 
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jset dip 82 dd 185 ori 26.6191,6.855,-134.015 

jset dip 44 dd 38 spacing 6 num 4 origin 29.2388,-79.1577,-50.8439 

group block 'rock' 

seek 

hide range group 'rock' 

group block 'boundry' 

seek 

fix range group 'boundry' 

gravity 0  0 -10 

change cons 2 mat 1 

prop mat=1 k 48.67e9 g 29.2e9 den 2650 bcoh=71e20 bfric=80 bten 15e20 

prop jmat 1 jkn 30e9 jks 12e9 jcoh 4.5e20 jfric 89 

hist zvel 126.255,-25.4155,-126.282 

hist disp 126.255,-25.4155,-126.282 

hist unbal 

step 2000 

change cons 2 mat 1 

prop mat=1 k 48.67e9 g 29.2e9 den 2650 bcoh=0 bfric=31 

prop jmat 1 jcoh 4.5e6  jfric 30 jkn 30e9 jks 12e9   

step 18000   

solve FOS associated 

ret 
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APPENDIX D 

 

 

GENERATION OF THE RESPONSE SURFACE OF FOS 

 

 

 

The response surface of FOS is approximated by 84 simulations in 3DEC. All results of 

analysis are listed in Tables D.1 to D.12. 
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Table D.1 – Generation of the response function of FOS in iteration one. 

NO. 
Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(0

.6
49

) +
 (1

.9
53

*X
1)

 +
 (-

0.
44

5*
X

2)
 +

  (
0.

50
9*

X
3)

 +
   

   
   

  
(-0

.1
43

*X
12 ) +

 (0
.0

08
*X

22 ) +
 (-

0.
02

3*
X

32 ) 

FO
S 

( X
*  ) 

= 
 2

.7
2 

IT
E

R
A

TI
O

N
 1

 

POINT 
1 

X1 (MPa) 4.5 

a0 0.64928 
X2 (GPa/m) 30 
X3 (GPa/m) 12 

FOS 2.93 

POINT 
2 

X1 (MPa) 6.3 

b1 1.95261 
X2 (GPa/m) 39 
X3 (GPa/m) 14.4 

FOS 4.22 

POINT 
3 

X1 (MPa) 2.7 

b2 -0.44480 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
 =

 ( 
3.

85
 , 

28
.3

 , 
12

.6
 ) 

X2 (GPa/m) 21 
X3 (GPa/m) 14.4 

FOS 1.45 

POINT 
4 

X1 (MPa) 2.7 

b3 0.50850 
X2 (GPa/m) 39 
X3 (GPa/m) 14.4 

FOS 1.82 

POINT 
5 

X1 (MPa) 2.7 

c1 -0.14288 
X2 (GPa/m) 39 
X3 (GPa/m) 9.6 

FOS 2.04 

POINT 
6 

X1 (MPa) 2.7 

c2 0.00773 
X2 (GPa/m) 21 
X3 (GPa/m) 9.6 

FOS 1.7 

POINT 
7 

X1 (MPa) 6.3 

c3 -0.02310 
X2 (GPa/m) 21 
X3 (GPa/m) 14.4 

FOS 3.35 
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Table D.2 - Generation of the response function of FOS in iteration two. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
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ns

e 
Su

rf
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nc
tio

n 
:  

   
 F

O
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= 
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POINT 
1 

X1 (MPa) 3.85 

a0 0.67063 
X2 (GPa/m) 28.3 
X3 (GPa/m) 12.6 

FOS 2.72 

POINT 
2 

X1 (MPa) 5.65 

b1 1.90343 
X2 (GPa/m) 37.3 
X3 (GPa/m) 15 

FOS 3.97 

POINT 
3 

X1 (MPa) 2.05 

b2 -0.46662 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
 =

 ( 
3.

11
 , 

26
.4

 , 
12

. 9
 ) 

X2 (GPa/m) 19.3 
X3 (GPa/m) 15 

FOS 1.29 

POINT 
4 

X1 (MPa) 2.05 

b3 0.59573 
X2 (GPa/m) 37.3 
X3 (GPa/m) 15 

FOS 1.65 

POINT 
5 

X1 (MPa) 2.05 

c1 -0.16350 
X2 (GPa/m) 37.3 
X3 (GPa/m) 10.2 

FOS 1.87 

POINT 
6 

X1 (MPa) 2.05 

c2 0.00860 
X2 (GPa/m) 19.3 
X3 (GPa/m) 10.2 

FOS 1.51 

POINT 
7 

X1 (MPa) 5.65 

c3 -0.02546 
X2 (GPa/m) 19.3 
X3 (GPa/m) 15 

FOS 3.1 
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Table D.3 - Generation of the response function of FOS in iteration three. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(1

.3
61

) +
 (-

0.
13

2*
X

1)
 +

 (0
.6

52
*X

2)
 +

 (-
1.

35
4*

X
3)

 +
   

   
   

   
   

   
   

   
(0

.1
23

*X
12 ) +

 (-
0.

01
1*

X
22 ) +

 (0
.0

51
*X

32 ) 

FO
S 

( X
*  ) 

 =
  2

.2
 

IT
ER

A
TI

O
N

 3
 

POINT 
1 

X1 (MPa) 3.11 

a0 1.35990 
X2 (GPa/m) 26.4 
X3 (GPa/m) 12.9 

FOS 2.42 

POINT 
2 

X1 (MPa) 4.91 

b1 -0.13187 
X2 (GPa/m) 35.4 
X3 (GPa/m) 15.3 

FOS 3.67 

POINT 
3 

X1 (MPa) 1.31 

b2 0.65235 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

  (
2.

88
, 2

5 
, 1

2.
6 

) 

X2 (GPa/m) 17.4 
X3 (GPa/m) 15.3 

FOS 1.07 

POINT 
4 

X1 (MPa) 1.31 

b3 -1.35441 
X2 (GPa/m) 35.4 
X3 (GPa/m) 15.3 

FOS 1.4 

POINT 
5 

X1 (MPa) 1.31 

c1 0.12258 
X2 (GPa/m) 35.4 
X3 (GPa/m) 10.5 

FOS 1.57 

POINT 
6 

X1 (MPa) 1.31 

c2 -0.01144 
X2 (GPa/m) 17.4 
X3 (GPa/m) 10.5 

FOS 1.22 

POINT 
7 

X1 (MPa) 4.91 

c3 0.05112 
X2 (GPa/m) 17.4 
X3 (GPa/m) 15.3 

FOS 2.8 
 

  



99 
 

Table D.4 - Generation of the response function of FOS in iteration four. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(1

.3
68

) +
 (-

0.
15

8*
X

1)
 +

 (0
.6

42
*X

2)
 +

 (-
1.

32
1*

X
3)

 +
   

   
   

   
   

   
   

   
   

   
 

(0
.1

33
*X

12 ) +
 (-

0.
01

2*
X

22 ) +
 (0

.0
52

*X
32 ) 

FO
S 

( X
*  ) 

 =
  1

.9
2 

IT
ER

A
TI

O
N

 4
 

POINT 
1 

X1 (MPa) 2.88 

a0 1.36788 
X2 (GPa/m) 25 
X3 (GPa/m) 12.6 

FOS 2.2 

POINT 
2 

X1 (MPa) 4.68 

b1 -0.15826 
X2 (GPa/m) 34 
X3 (GPa/m) 15 

FOS 3.44 

POINT 
3 

X1 (MPa) 1.08 

b2 0.64156 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

  (
2.

75
 , 

24
.1

 , 
13

.2
 ) 

X2 (GPa/m) 16 
X3 (GPa/m) 15 

FOS 0.89 

POINT 
4 

X1 (MPa) 1.08 

b3 -1.31964 
X2 (GPa/m) 34 
X3 (GPa/m) 15 

FOS 1.19 

POINT 
5 

X1 (MPa) 1.08 

c1 0.13277 
X2 (GPa/m) 34 
X3 (GPa/m) 10.2 

FOS 1.34 

POINT 
6 

X1 (MPa) 1.08 

c2 -0.01189 
X2 (GPa/m) 16 
X3 (GPa/m) 10.2 

FOS 1.02 

POINT 
7 

X1 (MPa) 4.68 

c3 0.05168 
X2 (GPa/m) 16 
X3 (GPa/m) 15 

FOS 2.59 
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Table D.5 - Generation of the response function of FOS in iteration five. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(2

.5
99

) +
 (-

3.
62

2*
X

1)
 +

 (1
.8

62
*X

2)
 +

 (-
2.

91
4*

X
3)

 +
   

   
   

   
   

   
   

   
(-0

.7
42

*X
12 ) +

 (-
0.

03
8*

X
22 ) +

 (0
.1

12
*X

32 ) 

FO
S 

( X
*  ) 

 =
  1

.6
4 

IT
ER

A
TI

O
N

 5
 

POINT 
1 

X1 (MPa) 2.75 

a0 2.58893 
X2 (GPa/m) 24.1 
X3 (GPa/m) 13.2 

FOS 1.92 

POINT 
2 

X1 (MPa) 4.55 

b1 -3.62227 
X2 (GPa/m) 33.1 
X3 (GPa/m) 15.6 

FOS 2.93 

POINT 
3 

X1 (MPa) 0.95 

b2 1.86185 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

  (
 2

.6
2,

 2
1.

9 
, 1

3 
) 

X2 (GPa/m) 15.1 
X3 (GPa/m) 15 

FOS 0.71 

POINT 
4 

X1 (MPa) 0.95 

b3 -2.91369 
X2 (GPa/m) 33.1 
X3 (GPa/m) 15.6 

FOS 0.94 

POINT 
5 

X1 (MPa) 0.95 

c1 0.74193 
X2 (GPa/m) 33.1 
X3 (GPa/m) 10.8 

FOS 1.06 

POINT 
6 

X1 (MPa) 0.95 

c2 -0.03833 
X2 (GPa/m) 15.1 
X3 (GPa/m) 10.8 

FOS 0.8 

POINT 
7 

X1 (MPa) 4.55 

c3 0.11210 
X2 (GPa/m) 15.1 
X3 (GPa/m) 15 

FOS 2.36 
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Table D.6 - Generation of the response function of FOS in iteration six. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(4

.9
23

) +
 (0

.8
12

*X
1)

 +
 (-

0.
02

3*
X

2)
 +

 (-
0.

82
1*

X
3)

 +
   

   
   

   
   

   
   

   
 

(-0
.0

65
*X

12 ) +
 (0

.0
01

*X
22 ) +

 (0
.0

34
*X

32 ) 

FO
S 

( X
*  ) 

 =
  1

.4
7 

IT
ER

A
TI

O
N

 6
 

POINT 
1 

X1 (MPa) 2.62 

a0 4.92290 
X2 (GPa/m) 21.9 
X3 (GPa/m) 13 

FOS 1.64 

POINT 
2 

X1 (MPa) 4.42 

b1 0.81243 
X2 (GPa/m) 30.9 
X3 (GPa/m) 15.4 

FOS 2.82 

POINT 
3 

X1 (MPa) 0.82 

b2 -0.02289 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

  (
 2

.5
3,

 2
1.

2 
, 1

3 
 ) 

X2 (GPa/m) 14 
X3 (GPa/m) 13 

FOS 0.54 

POINT 
4 

X1 (MPa) 0.82 

b3 -0.81950 
X2 (GPa/m) 30.9 
X3 (GPa/m) 15.4 

FOS 0.68 

POINT 
5 

X1 (MPa) 0.82 

c1 -0.06545 
X2 (GPa/m) 30.9 
X3 (GPa/m) 10.6 

FOS 0.77 

POINT 
6 

X1 (MPa) 0.82 

c2 0.00079 
X2 (GPa/m) 12.9 
X3 (GPa/m) 10.6 

FOS 0.56 

POINT 
7 

X1 (MPa) 4.42 

c3 0.03440 
X2 (GPa/m) 14 
X3 (GPa/m) 13 

FOS 2.23 
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Table D.7 - Generation of the response function of FOS in iteration seven. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(4

.9
26

) +
 (0

.8
1*

X
1)

 +
 (-

0.
01

5*
X

2)
 +

 (-
0.

79
9*

X
3)

 +
   

   
   

   
   

   
   

   
   

(-0
.0

51
*X

12 ) +
 (0

.0
01

*X
22 ) +

 (0
.0

31
*X

32 ) 

FO
S 

( X
*  ) 

 =
  1

.2
5 

IT
E

R
A

T
IO

N
 7

 

POINT 1 

X1 (MPa) 2.53 

a0 4.92639 
X2 (GPa/m) 21.2 
X3 (GPa/m) 13 

FOS 1.47 

POINT 2 

X1 (MPa) 4.33 

b1 0.81037 
X2 (GPa/m) 30.2 
X3 (GPa/m) 15.4 

FOS 2.65 

POINT 3 

X1 (MPa) 0.73 

b2 -0.01535 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

  (
 2

.4
6 

, 2
0.

8 
, 1

3.
3 

) 

X2 (GPa/m) 15.4 
X3 (GPa/m) 15.1 

FOS 0.43 

POINT 4 

X1 (MPa) 0.73 

b3 -0.79935 
X2 (GPa/m) 30.2 
X3 (GPa/m) 15.4 

FOS 0.51 

POINT 5 

X1 (MPa) 0.73 

c1 -0.04997 
X2 (GPa/m) 30.2 
X3 (GPa/m) 10.6 

FOS 0.59 

POINT 6 

X1 (MPa) 0.73 

c2 0.00058 
X2 (GPa/m) 12.2 
X3 (GPa/m) 10.6 

FOS 0.42 

POINT 7 

X1 (MPa) 4.33 

c3 0.03117 
X2 (GPa/m) 15.4 
X3 (GPa/m) 15.1 

FOS 2.11 
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Table D.8 - Generation of the response function of FOS in iteration eight. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(4

.9
28

) +
 (0

.7
99

*X
1)

 +
 (-

0.
04

3*
X

2)
 +

 (-
0.

80
4*

X
3)

 +
   

   
   

   
   

   
   

   
(-0

.0
66

*X
12 ) +

 (0
.0

01
*X

22 ) +
 (0

.0
33

*X
32 ) 

FO
S 

( X
*  ) 

 =
  1

.2
 

IT
ER

A
TI

O
N

 8
 

POINT 
1 

X1 (MPa) 2.46 

a0 4.92822 
X2 (GPa/m) 20.8 
X3 (GPa/m) 13.3 

FOS 1.25 

POINT 
2 

X1 (MPa) 4.26 

b1 0.79898 
X2 (GPa/m) 29.8 
X3 (GPa/m) 15.7 

FOS 2.4 

POINT 
3 

X1 (MPa) 0.66 

b2 -0.04277 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

 ( 
2.

39
, 2

0.
5 

, 1
3.

2)
 

X2 (GPa/m) 13.1 
X3 (GPa/m) 12.9 

FOS 0.23 

POINT 
4 

X1 (MPa) 0.66 

b3 -0.80426 
X2 (GPa/m) 29.8 
X3 (GPa/m) 15.7 

FOS 0.3 

POINT 
5 

X1 (MPa) 0.66 

c1 -0.06613 
X2 (GPa/m) 29.8 
X3 (GPa/m) 10.9 

FOS 0.34 

POINT 
6 

X1 (MPa) 0.66 

c2 0.00116 
X2 (GPa/m) 11.8 
X3 (GPa/m) 10.9 

FOS 0.24 

POINT 
7 

X1 (MPa) 4.26 

c3 0.03302 
X2 (GPa/m) 13.1 
X3 (GPa/m) 12.9 

FOS 1.89 
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Table D.9 - Generation of the response function of FOS in iteration nine. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(4

.9
06

) +
 (1

.1
83

*X
1)

 +
 (-

0.
17

1*
X

2)
 +

 (-
0.

61
8*

X
3)

 +
   

   
   

   
   

   
   

   
  

(-0
.1

26
*X

12 ) +
 (0

.0
04

*X
22 ) +

 (0
.0

23
*X

32 ) 

FO
S 

( X
*  ) 

 =
  1

.1
3 

IT
ER

A
TI

O
N

 9
 

POINT 
1 

X1 (MPa) 2.39 

a0 4.90638 
X2 (GPa/m) 20.5 
X3 (GPa/m) 13.2 

FOS 1.2 

POINT 
2 

X1 (MPa) 4.19 

b1 1.18259 
X2 (GPa/m) 29.5 
X3 (GPa/m) 15.6 

FOS 2.34 

POINT 
3 

X1 (MPa) 0.59 

b2 -0.16995 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

 ( 
2.

27
 , 

19
.9

 , 
13

.4
   

) 

X2 (GPa/m) 14.9 
X3 (GPa/m) 12.7 

FOS 0.21 

POINT 
4 

X1 (MPa) 0.59 

b3 -0.61795 
X2 (GPa/m) 29.5 
X3 (GPa/m) 15.6 

FOS 0.24 

POINT 
5 

X1 (MPa) 0.59 

c1 -0.12566 
X2 (GPa/m) 29.5 
X3 (GPa/m) 10.8 

FOS 0.27 

POINT 
6 

X1 (MPa) 0.59 

c2 0.00424 
X2 (GPa/m) 11.5 
X3 (GPa/m) 10.8 

FOS 0.2 

POINT 
7 

X1 (MPa) 4.19 

c3 0.02321 
X2 (GPa/m) 14.9 
X3 (GPa/m) 12.7 

FOS 1.96 
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Table D.10 -  Generation of the response function of FOS in iteration ten. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(4

.9
1)

 +
 (1

.0
99

*X
1)

 +
 (-

0.
15

6*
X

2)
 +

 (-
0.

61
6*

X
3)

 +
   

   
   

   
   

   
   

   
  

(-0
.1

16
*X

12 ) +
 (0

.0
04

*X
22 ) +

 (0
.0

23
*X

32 ) 

FO
S 

( X
*  ) 

 =
  1

.0
5 

IT
ER

A
T

IO
N

 1
0 

POINT 
1 

X1 (MPa) 2.27 

a0 4.91029 
X2 (GPa/m) 19.9 
X3 (GPa/m) 13.4 

FOS 1.13 

POINT 
2 

X1 (MPa) 4.07 

b1 1.09980 
X2 (GPa/m) 28.9 
X3 (GPa/m) 15.8 

FOS 2.26 

POINT 
3 

X1 (MPa) 0.47 

b2 -0.15591 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

 ( 
2.

17
 , 

19
.7

 , 
13

.4
 ) 

X2 (GPa/m) 14.6 
X3 (GPa/m) 12.5 

FOS 0.16 

POINT 
4 

X1 (MPa) 0.47 

b3 -0.61637 
X2 (GPa/m) 28.9 
X3 (GPa/m) 15.8 

FOS 0.19 

POINT 
5 

X1 (MPa) 0.47 

c1 -0.11559 
X2 (GPa/m) 28.9 
X3 (GPa/m) 11 

FOS 0.21 

POINT 
6 

X1 (MPa) 0.47 

c2 0.00399 
X2 (GPa/m) 10.9 
X3 (GPa/m) 11 

FOS 0.16 

POINT 
7 

X1 (MPa) 4.07 

c3 0.02284 
X2 (GPa/m) 14.6 
X3 (GPa/m) 12.5 

FOS 1.91 
 

  



106 
 

Table D.11 - Generation of the response function of FOS in iteration eleven. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(5

.1
38

) +
 (-

0.
19

1*
X

1)
 +

 (0
.7

04
*X

2)
 +

 (-
1.

78
7*

X
3)

 +
   

   
   

   
   

   
   

   
 

(0
.1

72
*X

12 ) +
 (-

0.
01

6*
X

22 ) +
 (0

.0
67

*X
32 ) 

FO
S 

( X
*  ) 

 =
  1

.0
9 

IT
ER

A
T

IO
N

 1
1 

POINT 
1 

X1 (MPa) 2.17 

a0 5.13848 
X2 (GPa/m) 19.7 
X3 (GPa/m) 13.4 

FOS 1.05 

POINT 
2 

X1 (MPa) 3.97 

b1 -0.19127 
X2 (GPa/m) 28.7 
X3 (GPa/m) 15.8 

FOS 2.17 

POINT 
3 

X1 (MPa) 0.37 

b2 0.70358 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

 ( 
2.

18
, 1

9.
1 

, 1
3.

3 
) 

X2 (GPa/m) 14.1 
X3 (GPa/m) 12.8 

FOS 0.17 

POINT 
4 

X1 (MPa) 0.37 

b3 -1.78667 
X2 (GPa/m) 28.7 
X3 (GPa/m) 15.8 

FOS 0.17 

POINT 
5 

X1 (MPa) 0.37 

c1 0.17208 
X2 (GPa/m) 28.7 
X3 (GPa/m) 11 

FOS 0.17 

POINT 
6 

X1 (MPa) 0.37 

c2 -0.01642 
X2 (GPa/m) 14.1 
X3 (GPa/m) 11 

FOS 0.16 

POINT 
7 

X1 (MPa) 3.97 

c3 0.06667 
X2 (GPa/m) 14.1 
X3 (GPa/m) 12.8 

FOS 1.8 
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Table D.12 -  Generation of the response function of FOS in iteration twelve. 

NO. Point 
Sets Parameter Values Coefficients of RSM 

R
es

po
ns

e 
Su

rf
ac

e 
Fu

nc
tio

n 
:  

   
 F

O
S 

= 
(5

.1
24

) +
 (-

0.
07

3*
X

1)
 +

 (0
.6

82
*X

2)
 +

 (-
1.

75
8*

X
3)

 +
   

   
   

   
   

   
   

   
 

(0
.1

47
*X

12 ) +
 (-

0.
01

6*
X

22 ) +
 (0

.0
66

*X
32 ) 

FO
S 

( X
*  ) 

 =
  1

.0
8 

IT
ER

A
T

IO
N

 1
2 

POINT 
1 

X1 (MPa) 2.18 

a0 5.12445 
X2 (GPa/m) 19.1 
X3 (GPa/m) 13.3 

FOS 1.09 

POINT 
2 

X1 (MPa) 3.98 

b1 -0.07330 
X2 (GPa/m) 28.1 
X3 (GPa/m) 15.7 

FOS 2.22 

POINT 
3 

X1 (MPa) 0.38 

b2 0.68235 

X
* i  ( X

* 1 ,
 X

* 2 ,
 X

* 3 )
  =

  (
 2

.0
6,

 1
8.

9 
, 1

3.
5 

) 

X2 (GPa/m) 13.9 
X3 (GPa/m) 12.9 

FOS 0.17 

POINT 
4 

X1 (MPa) 0.38 

b3 -1.75750 
X2 (GPa/m) 28.1 
X3 (GPa/m) 15.7 

FOS 0.17 

POINT 
5 

X1 (MPa) 0.38 

c1 0.14742 
X2 (GPa/m) 28.1 
X3 (GPa/m) 10.9 

FOS 0.17 

POINT 
6 

X1 (MPa) 0.38 

c2 -0.01623 
X2 (GPa/m) 13.9 
X3 (GPa/m) 10.9 

FOS 0.16 

POINT 
7 

X1 (MPa) 3.98 

c3 0.06607 
X2 (GPa/m) 13.9 
X3 (GPa/m) 12.9 

FOS 1.84 
 

 

 



108 
 

 



109 
 

APPENDIX E 

 

 

HISTORY RECORDS OF THE CENTERPOINTS IN EACH ITERATION 

 

 

 

The history plots of the centerpoint of iterations one to twelve are illustrated in figures 

E.1 to E.12. 
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Figure E.1 - History plots of the centerpoint of iteration one (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.2 - History plots of the centerpoint of iteration two (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.3 - History plots of the centerpoint of iteration three (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.4 - History plots of the centerpoint of iteration four (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.5 - History plots of the centerpoint of iteration five (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.6- History plots of the centerpoint of iteration six (a) vertical velocity (m/s), (b) 

unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.7 - History plots of the centerpoint of iteration seven (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.8 - History plots of the centerpoint of iteration eight (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.9 - History plots of the centerpoint of iteration nine (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.10 - History plots of the centerpoint of iteration ten (a) vertical velocity (m/s), 

(b) unbalanced force (N), (c) total displacement (m), (d) total displacement vectors (m). 
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Figure E.11 - History plots of the centerpoint of iteration eleven (a) vertical velocity 

(m/s), (b) unbalanced force (N), (c) total displacement (m), (d) total displacement 

vectors (m). 
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Figure E.12 - History plots of the centerpoint of iteration twelve (a) vertical velocity 

(m/s), (b) unbalanced force (N), (c) total displacement (m), (d) total displacement 

vectors (m). 


