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ABSTRACT

A ROBUST QUALITY METRIC FOR IMAGE SUPER RESOLUTION

Kı̇pman, Yı̇ğı̇t
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozdağı Akar

February 2015, 70 pages

Superresolution have become an active topic in image processing in the last
decade. Various superresolution algorithms have been developed; however these
superresolution algorithms may introduce defects such as blurring, aliasing,
added noise and ringing. Evaluating the performance of these superresolution
algorithms is an important problem; because the original high resolution image
is not available while quantifying the quality of superresolution image. Subjec-
tive tests can be made to quantify the perceived image quality; but they are
time-consuming and expensive. Only a few objective quality assessment algo-
rithms are proposed that evaluate the quality of superresoluted image from its
low-resolution (LR) pair; but these do not correlate well with the subjective
tests. In this thesis, a quality assessment algorithm for image superresolution
that follows the philosophy of natural scene statistics (NSS) is analyzed and an
improvement is proposed. A statistical model of frequency energy falloff char-
acteristics of high resolution (HR) images is developed and a quality measure is
calculated from the departures from HR image statistics. A no-reference spatial
image quality assesment measure that also follows the philosophy of NSS is in-
corporated in the proposed algorithm to improve the robustness of the metric
against noise. It is shown that the proposed approach is robust against noise
and correlates well with the human visual system.
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ÖZ

RESİM SÜPERÇÖZÜNÜRLÜĞÜ İÇİN GÜRBÜZ BİR KALİTE METRİĞİ

Kı̇pman, Yı̇ğı̇t
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozdağı Akar

Şubat 2015 , 70 sayfa

Süperçözünürlük konusu görüntü işleme alanında son yıllarda çok aktif bir konu
haline gelmiştir. Birçok süperçözünürlük algoritması geliştirilmiştir; ancak bu
süperçözünürlük algoritmaları görüntüye bulanıklaşma, örtüşme, eklenmiş gü-
rültü ve salınım gibi çeşitli bozulmalar getirebilmektedir. Bu algoritmaların per-
formansının değerlendirilmesi önemli bir problemdir; çünkü süperçözünürlük ile
oluşturulan yüksek çözünürlüklü görüntüyü karşılaştıracak orjinal yüksek çözü-
nürlüklü görüntü elde yoktur. Algılanan görüntü kalitesinin ölçümü için öznel
testler yapılabilir; ancak bu testler zaman tüketici ve maliyetlidir. Süperçözünür-
lük kalitesini hesaplayan yalnızca birkaç nesnel kalite değerlendirme algoritması
önerilmiştir; ancak bu algoritmalar öznel testler ile arasında uygunluk sağlama-
maktadır. Bu tezde, görüntü süperçözünürlüğü için doğal görüntü istatistikleri
felsefesini izleyen bir kalite değerlendirme algoritması analiz edilmiştir ve algo-
ritmaya bir iyileştirme önerilmiştir. Yüksek çözünürlüklü görüntülerin frekans
enerji düşüş karakteristiklerine dayanan istatistiksel bir model inşa edilmiş, mo-
delden sapmalar üzerinden kalite hesaplanmıştır. Doğal görüntü istatistikleri
felsefesini izleyen referanssız, uzamsal bir görüntü kalite değerlendirme ölçütü
önerilen algoritmaya eklenerek algoritma gürültüye karşı gürbüz hale getirilmiş-
tir. Sonuç olarak önerilen algoritmanın gürültüye karşı gürbüz olduğu ve insan
görsel sistemi ile uygunluk sağladığı gösterilmiştir.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In image acquisition, a real image is projected on sensor arrays and the image is

discretely captured with limited number of pixels. Image super-resolution (SR)

algorithms increase the spatial resolution of the images beyond the imaging

device resolution and play an important role in many modern applications such

as medical imaging, media streaming and video surveillance applications. As the

number of SR algorithms dramatically increased in the last decade, evaluating

the performance of the SR algorithms have become an active research area.

There exists straightforward approaches to the problem such as subjective evalu-

ation, where subjects are asked to evaluate multiple resolution enhanced images

by different SR algorithms and score each image within a finite scale. The

mean opinion scores (MOS) of the subjects are evaluated which gives out the

performance metrics of the tested algorithms. Subjective tests provide a reli-

able ground truth when comparing the performances of different SR algorithms;

because human eyes are the last receivers and ultimate evaluators of images.

Although subjective tests provide reliable results to the problem, conducting

subjective experiments is not practical as it is extremely time consuming and

expensive. Evaluating the performance of SR algorithms objectively remains

an open problem and there is a strong need for an objective quality assessment

metric which correlates well with the human perception.

Objective image quality assessment (IQA) algorithms have been developed such

1



as peak-signal-to-noise-ratio (PSNR) and structural-similarity-index (SSIM) [2].

However, these algorithms are not applicable to the problem of IQA for image

SR; because they require the original image to be available as a reference to

compare the SR image with. There also exist some reduced reference algorithms

which require some feature information about the original HR image to be avail-

able. Again, since the original image is not available in the SR IQA problem,

the features can not be computed for original image and these algorithms are

not applicable. SR IQA can only be estimated by a no-reference (NR) IQA

algorithm. There are some NR IQA algorithms available that quantify specific

distortion types on images. These algorithms may quantify specific distortions

that are added to the HR image created by the SR methods but they fall short

on quantifying the high frequency detail reconstruction properties of the created

HR images.

1.2 Scope of the Thesis

In this thesis, a SR IQA algorithm [1] which is one of the initial attempts to

develop an objective image SR IQA metric is analyzed in detail. The algorithm

is tested for different image sets with different spatial details and degradation

types. The aim is to find out the shortcomings of the algorithm and come up

with a new method to improve the performance of the analyzed algorithm.

We have searched the literature for all possible IQA algorithms that are designed

to evaluate the performance of image SR. In addition, other no reference (NR)

IQA algorithms are investigated for possible applications in superresolution im-

age quality assessment problem.

We have implemented and tested the chosen SR IQA and NR IQA algorithms

for detailed evaluation. Based on detailed theoretical and experimental analysis

on these algorithms, we proposed a multi domain IQA algorithm for image SR.

The proposed algorithm is tested for different SR algorithms that are available

in the literature.

2



1.3 Outline of the Thesis

In Chapter 2, literature review about available IQA algorithms is given. Natural

scene statistics approach to the IQA problem is clarified.

In Chapter 3, a natural scene statistics (NSS) based SR IQA algorithm which

uses statistical models both in frequency and spatial domains is explained in

detail. In addition, a no reference spatial domain IQA method which may be

applicable to the superresolution IQA problem is explained in detail.

In Chapter 4, some basic and some advanced image SR algorithms are analyzed,

which are used in SR IQA performance evaluation tests.

In Chapter 5, possible weaknesses and shortcomings of analyzed SR IQA algo-

rithms are described. The proposed NSS based SR IQA algorithm is explained

and formulated in detail.

In Chapter 6, the proposed algorithm is compared against other available SR

IQA algorithms. Subjective evaluations are compared with the algorithm results

in order to create a ground truth for the comparison.

In Chapter 7, conclusions of this study are drawn and any future works are

discussed.
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CHAPTER 2

LITERATURE RESEARCH

2.1 Image Observation Model

Image observation model relates the observed low resolution image to the original

high resolution image. Image acquisition systems can not capture the images

perfectly due to the limitations of the discrete elements used inside. Non perfect

sensor elements introduce sensor blur, non-zero aperture time introduces motion

blur and finite aperture size introduces optical blur to the image acquisition

system. Sensor, motion and optical blur can be modelled by a function called

point spread function (PSF). In addition, the resolution of the acquired image

is limited by the sensor array. A diagram of image observation model is given

in Figure 2.1.

Figure 2.1: Image Observation Model

The image observation model can then be modelled by

L = DBH +N (2.1)

where H is the high resolution image, L is the low resolution image, D is the

downsampling operator, B is the point spread function that models the blurring
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effect and N is the additive noise. The equation can also be written in a single

matrix form, L = MH +N where M is the degradation matrix.

2.2 Superresolution Image Enhancement

Superresolution image enhancement refers to the task of recovering the original

high resolution image from one or several of its low resolution pairs. Most super-

resolution algorithms assume that the low resolution input image was obtained

by down-sampling the high-resolution image with a blur kernel which is usually

assumed to be the Point Spread Function (PSF) of the image acquisition device.

In many cases PSF is not known and the blur kernel is assumed to be some

standard low-pass filter (LPF) like a Gaussian or a bicubic kernel.

There are mainly four main approaches to the image superresolution problem.

These are spatial domain approaches, transform domain approaches, statistical

approaches and example based approaches.

Spatial domain approaches only rely on the available pixel information apparent

in a low resolution image. The high resolution pixels are interpolated only by

the available pixels of low resolution image.

Transform domain approaches are used to simplify the deconvolution and 2D

filtering operations used in superresolution as these operations become simple

multiplication operations in the transform domain.

Statistical approaches rely on stochastic models to optimally reconstruct the

high resolution image from its low resolution pair.

Example based approaches use dictionaries that are built either from one image

or a set of many images. Existing information in the dictionaries are extracted

and used for estimating the high resolution pixels.

6



2.3 Image Quality Assessment Approaches

Image quality assessment approaches can be categorized into two main groups,

namely subjective approaches and objective approaches.

Subjective methods are focused on psychological experiments in which human

observers take part. Different techniques are used in subjective experiments

such as single stimulus, double stimulus or pair wise comparison among others.

A standard for measuring subjective image quality is also described in ITU-

R BT.500-11 [3]. However, the involvement of real people within subjective

image quality assessment methods require all the factors that influence human

perception to be taken into account during the tests and strict protocols have

to be adopted. The results of the subjective methods appeared to correlate

well with the human visual system; however the process of conducting these

subjective tests are extremely time consuming and expensive. Therefore the

efficiency of the subjective methods are low compared to the objective methods.

In objective methods, different metrics are computed directly from the digitally

available image. Objective image quality assessment methods can be classified

according to the availability of the original high resolution image, namely Full

Reference (FR) Metrics, Reduced Reference (RR) Metrics and No Reference

(NR) Metrics. Within the scope of this thesis, only the objective image quality

assessment will be studied.

In the following sections, a summary of well known FR, RR and NR metrics is

given.

2.3.1 Full Reference Metrics

In full reference methods, direct comparison in between the original image and

the image under test is performed. There is a limitation to the applicability

of FR methods as the original image is required to perform the computation.

The simplest FR metrics that are widely used are Mean Square Error (MSE)

and Peak Signal to Noise Ratio (PSNR). These metrics are widely used in ap-

7



plications; however the results of these algorithms do not correlate well with the

subjective results and human visual system.

Figure 2.2: Full Reference Image Quality Assessment Model

A measurement of structural similarity, the Structural Similarity Measure (SSIM)

[2] is based on the assumption that the natural images are highly structured and

a measure of distortion or dissimilarity provides a good approximation to the

perceived image quality.

Visual Information Fidelity Index proposed by Sheikh and Bovik [4] is another

FR approach that uses the natural scene statistics and quantifies loss of infor-

mation due to distortions present in the image.

While there have been other well-established FR methods [5], [6], [7] which

correlate well with human perception of quality, there is still considerable room

for the improvement of objective no-reference image quality assessment (NR-

IQA) methods.

2.3.2 Reduced Reference Metrics

In reduced reference metrics, only partial information about the original image

is available while quantifying the quality of the image under test. Therefore RR

metrics lie in between the no reference and full reference metrics in terms of

available information about the original image. RR methods just extract some

features from both the original and the processed image and quantifies the qual-

8



ity of the image corresponding to these features, which are the representatives of

all the information in the images. Extracted features mostly describe the image

content or distortion based properties. Compared to FR and NR metrics, only

a few RR metrics [8], [9], [10] are available in the literature which correlate well

with human perception of quality.

Figure 2.3: Reduced Reference Image Quality Assessment Model

2.3.3 No Reference Metrics

No reference metrics are also known as blind metrics as there is no way of direct

comparison in between the original image and the image under test; because the

original image is not available. In image processing applications such as super-

resolution, the original image is not available for direct comparison. Therefore

no-reference metrics are highly applicable in the subject of superresolution im-

age quality assessment. Most of the NR IQA algorithms do not exploit natural

image modeling but they assume that distortion type affecting the image qual-

ity is known. Some of them estimate image blur [11], [12] or JPEG/JPEG2000

compression artifacts by investigating the features of the artifact in spatial and

frequency domain [13], [14], [15], [16], [17]. These NR metrics are designed to

distinguish specific image degradation types and quantify their presence from

specific properties of the characterized artifacts. Therefore most NR methods

can be classified as distortion-aware since they can handle only one or few specific

degradation types.

9



Figure 2.4: No Reference Image Quality Assessment Model

Another set of NR metrics are developed by exploiting the relationships of nat-

ural scene statistics (NSS) with the human perceived image quality [18], [19],

[20], [21], [22], [23], [24]. Natural scene statistical models seek ways to capture

the statistical characteristics of natural images which hold across different image

contents. These NSS based NR IQA methods which can be applied to the SR

IQA problem are explained in detail in the next chapter.

2.3.3.1 Natural Scene Statistics Approach

Everyone can easily distinguish images from the natural world from synthetic

or man-made images. Natural images are easily distinguishable as they contain

some typical types of structural properties.

The images that we consider natural comprise just a tiny subset of all possible

images. Even though images are expressed as elements of a large vector space,

namely the image space, the subset of natural images that we are interested in

are rather restricted. So we can create an image manifold which is an isolated

subset of images and learn a probability model such as a Gaussian like model

on it.

It has long been discovered that natural scenes possess scale invariance [25]. The

marginal distributions of natural image statistics remain unchanged even if the

images are scaled. There is a rich literature focusing on NSS models [25], [26],

10



[27] but only a small proportion of this work was exploited in RR and NR image

quality assessment algorithms.

NSS based approaches to NR IQA problem assume that natural scenes possess

certain statistical characteristics, and presence of any distortion affects these

characteristics. Various properties of statistical characteristics of natural im-

ages are studied, such as intensity, color, spatial correlation and higher order

statistics. Current NR IQA algorithms which exploit NSS based features are

[18], [19], [20], [21], [22], [23]. Some NSS based NR methods are computed in

the transform (frequency) domain to make use the common statistical charac-

teristics of the power spectra of natural images [24].

Basically, NSS based NR IQA algorithms exploit the relationships of natural

scene statistics with the human perceived image quality. These NSS features

which are related to human perceived image quality also differ for SR images

which are created by different SR algorithms as they have different reconstruc-

tion and distortion characteristics on images. Therefore the performance of var-

ious SR algorithms can be evaluated objectively by the departures of computed

NSS features from the constructed NSS model which relate well with human

perceived image quality.

In the next chapter, some NSS based NR IQA methods which can be applied to

the SR IQA problem are explained in detail. Based on the explained methods,

we will develop a statistical model to characterize the degradations in image SR

process and quantify the performance of different SR algorithms. Details of the

constructed NSS model for SR IQA problem will be described later in Chapter

5.
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CHAPTER 3

NO REFERENCE SUPERRESOLUTION QUALITY

ASSESSMENT ALGORITHMS

In this Chapter, two NSS based no reference IQA algorithms which are applicable

to the problem of superresolution IQA are explained in detail. We have focused

our study on these two algorithms; because the first algorithm exploits frequency

falloff characteristics of natural images which is a good representative of the

high frequency reconstruction properties of SR methods, whereas the second

algorithm computes spatial NSS features which are good representatives of the

artifacts which may be present in the SR image, no matter which specific type

of distortion it is affected by.

3.1 Quality Assessment Metric for Image Super Resolution by Nat-

ural Scene Statistics [1]

This algorithm uses the natural scene statistics (NSS) approach to characterize

the image degradations of a SR image by only using the available LR image.

The computation is made in both the frequency domain and spatial domain.

3.1.1 Frequency Energy Falloff Statistics

Amplitude spectrum of natural images falls with the spatial frequency propor-

tional to 1/fp, where f is the spatial frequency and p is is an exponent that

varies over a small range across natural images [1]. A statistical model in fre-
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quency domain is built from this fact. The model is built by computing the total

energy of LR and HR images in different dyadic scales computed by steerable

pyramid transform. Steerable pyramid transform is used because it provides a

tight frame and preserves the spatial domain energy in the frequency domain.

The calculated frequency energy falloff curves of both LR and HR images ap-

pear to be parallel in log-log scale which can be used to predict the frequency

falloff curves beyond the finest scale for the LR image. The error between the

prediction and the frequency energy falloff curve of SR image in the finest scale

is used to quantify the SR quality score in the frequency domain. Therefore the
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Figure 3.1: Frequency energy falloffs of original HR, SR and LR images

framework of this algorithm begins by computing the frequency energy falloff

curves of LR and SR images by steerable pyramid transform. The transform

coefficients are then squared and summed to compute the total energy in each

scale. The computation is made for 6 different scales for SR image and 5 differ-

ent scales for LR image. Then the slopes of frequency falloff curves of HR image
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is predicted as

ŝH1 = sL1

ŝH2 = sL2

ŝH3 = a0 + a1s
L
3

ŝH4 = b0 + b1s
L
4

ŝH5 = c0 + c1ŝ
H
3 + c2ŝ

H
4

(3.1)

where sLi is the falloff curve slope of LR image in i-th scale, ŝHi is the predicted

falloff curve slope of HR image in i-th scale and a0, a1, b0, b1, c0, c1 and c2 are

obtained by simple least square regression using the statistical model built by

real LR and HR images. The predicted coefficients from the regression are

a0 = 0.07, a1 = 1.00, b0 = 0.89, b1 = 1.06, c0 = −3.38, c1 = −0.10 and c2 = 0.89.

The normalized error in frequency energy falloff slopes in the finest scale in

between the predicted HR image (from LR) and the SR image is computed as

ef =
ŝH5 − sH5
ŝH5

(3.2)

Here ef is close to zero when the SR image is similar to the original HR image.

Then ef is inserted to the generalized Gaussian density function which is fitted

by testing with 1400 natural HR images

pef (ef ) =
1

Zf
exp

[
−
(
|ef − µf |

αf

)βf]
(3.3)

where Zf =
βf

2αfΓ (1/βf )
is a normalization factor. The maximum likelihood

based fitting result used in the algorithm is µf = 0.029, αf = 0.0608 and βf =

0.6124.

3.1.2 Spatial Continuity Based Statistics

The spatial domain statistics are calculated with a continuity based statistic

model developed to measure the naturalness of the SR image.

In the algorithm, a straightforward method is developed to compute the signal

continuity. Let f(i) for i = 0, ..., N − 1 be one row or column of pixels from the
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SR image.

g(i) = |f(i+ 1)− f(i)| (3.4)

for 0 <= i <= N − 2 where N is the number of pixels in a row.

In the case of superresolution by a factor of 2, even and odd samples in f(i) will

have different levels of continuities. Such discontinuities should not be observed

in g(i) computed from natural HR images. Therefore the spatial continuity

measure is quantified as

es =
1

M

M−1∑
i=0

[g(2i)− g(2i+ 1)] (3.5)

where M = N/2. Spatial continuity measure es is computed for every row

and column in the SR image and averaged over all rows and columns. As in

the frequency falloff statistics model, computed es is inserted to the generalized

Gaussian density function which is fitted by computing the spatial continuities

with 1400 natural HR images

pes(es) =
1

Zs
exp

[
−
(
|es − µs|

αs

)βs]
(3.6)

where Zs =
βs

2αsΓ (1/βs)
is a normalization factor. The maximum likelihood

based fitting result used in the algorithm is µs = 0.007, αs = 0.0751 and βs =

0.8679.

3.1.3 Multidomain Quality Assessment Metric

In the algorithm, useful measures of image naturalness is constructed by prob-

ability model pef in the frequency domain and pes in the spatial domain. A

normalized joint probability model for image naturalness measure is defined as

pn =
1

K
pefpes (3.7)

where K =
Zf
Zs

is the normalization factor so that pn is upper-bounded by 1. To

convert this probability based metrics to a distortion metric

Dn =

(
|ef − µf |

αf

)βf
+

(
|es − µs|

αs

)βs
(3.8)
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Finally we arrive atDn, which quantifies the departures of statistics of SR images

from natural HR image statistics computed by frequency energy falloffs in the

frequency domain and spatial continuities in the spatial domain.

3.2 Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)

The Blind/Referenceless Image Spatial QUality Evaluator algorithm [23] which

is also known as BRISQUE utilizes a natural scene statistics model framework

from locally normalized luminance coefficients and quantifies the naturalness

of the images by the departures from this model. The model developed in

BRISQUE is in spatial domain and it computes the quality based on the statistics

of pairwise products of locally normalized neighbouring pixel luminance values.

3.2.1 Spatial Domain MSCN Statistics

Ruderman observed that applying a local non-linear operation to log contrast

luminances to remove local mean displacements from zero log-contrast and to

normalize the local variance of the log contrast has a decorrelating effect. Ru-

derman also observed that these normalized luminance values strongly tend to-

wards a unit normal Gaussian characteristic for natural images. [26] Therefore

the algorithm begins with an operation to compute mean subtracted contrast

normalized (MSCN) coefficients

ˆI(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + 1
(3.9)

where i = 1, ...,M j = 1, ..., N are indices of image, M,N are image row and

column size and

µ(i, j) =
K∑

k=−K

L∑
l=−L

wk,lIk,l(i, j)

σ(i, j) =

√
K∑

k=−K

L∑
l=−L

wk,l (Ik,l(i, j)− µ(i, j))2

where w = wk,l|k = −K, ...,K, l = −L, ..., L is a 2D circularly symmetric Gaus-

sian weighting function. The algorithm uses K = L = 3 as the window size.
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Figure 3.2: Gaussianity of (a-b) natural images and (c-d) synthetic images.

In Figure 3.2, histogram of MSCN coefficients for a natural image and a man-

made (artificial) image is given. The histogram clearly shows that MSCN co-

efficients have characteristic statistical properties that vary for natural images.

As the histogram of natural image MSCN coefficients tend to follow a Gaussian

like characteristic, histogram of artificial image MSCN coefficients divert from

the Gaussian shape.

MSCN coefficients computed in the algorithm have characteristic statistical

properties that are also changed by the presence of distortions. By quantify-

ing these changes, the algorithm can predict the perceptual quality scores of the

images. Figure 3.3 visualizes the computed MSCN coefficient distributions in

a histogram for a natural HR image and distorted versions of it. It is easily

noticed that the natural scene image exhibits a Gaussian like appearance where

the GGD with zero mean is given as

f(x;α, σ2) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
(3.10)
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where β = σ

√
Γ(a/α)

Γ(3/α)
and Γ(.) is the gamma function.

Therefore by estimating the Gaussian shape parameters (α, σ2) of natural images

and SR images, we quantify the departures of SR image parameters from the

natural image parameters which quantify the perceptual quality of image.
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Figure 3.3: Histogram of MSCN coefficients for a natural undistorted image and
its various distorted versions.

3.2.2 Neighbouring Pixel Statistics

In the algorithm, statistical relationships in between neighbouring pixels are

computed for 4 orientations namely horizontal (H), vertical (V ), main-diagonal

(D1) and secondary diagonal (D2).

The following general asymmetric generalized Gaussian distribution (AGGD)

model has been adopted for the histograms of paired products along each of

four orientations

f(x; v, σ2
l , σ

2
r) =

v

(βl + βr)Γ(1/v)
exp

(
−
(
|x|
βl

)v)
(3.11)

where
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βl = σl

√
Γ(1/v)

Γ(3/v)
, βr = σr

√
Γ(1/v)

Γ(3/v)
and ζ = (βr − βl)

Γ(2/v)

Γ(1/v)
.

Therefore by estimating the asymmetric Gaussian shape parameters (ζ, v, σ2
l , σ

2
r)

of natural images and SR images, we quantify the deviation of SR parameters

from the natural image parameters which quantifies the perceptual quality of

image.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Paired product coefficients (H)

# 
of

 c
oe

ffi
ci

en
ts

 (
N

or
m

al
iz

ed
)

 

 

Original Image
Gaussian Blur
White Noise

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Paired product coefficients (V)

# 
of

 c
oe

ffi
ci

en
ts

 (
N

or
m

al
iz

ed
)

 

 

Original Image
Gaussian Blur
White Noise

(b)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Paired product coefficients (D1)

# 
of

 c
oe

ffi
ci

en
ts

 (
N

or
m

al
iz

ed
)

 

 

Original Image
Gaussian Blur
White Noise

(c)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Paired product coefficients (D2)

# 
of

 c
oe

ffi
ci

en
ts

 (
N

or
m

al
iz

ed
)

 

 

Original Image
Gaussian Blur
White Noise

(d)

Figure 3.4: Histograms of paired products of MSCN coefficients of a natural
undistorted image and various distorted versions of it. (a) Horizontal. (b)
Vertical. (c) Main Diagonal. (d) Secondary Diagonal.

Extracting 2 features, (α, σ2) fromMSCN coefficients and 16 features, (ζ, v, σ2
l , σ

2
r)

from neighbouring pair products for each four orientations, 18 features are ex-

tracted. The feature extraction is made in 2 scales to better identify the distor-

tions in multiple scales. From 36 features, a mapping to quality scores is learned

by using a support vector machine (SVM) framework.
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CHAPTER 4

EVALUATED SUPERRESOLUTION ALGORITHMS

In this Chapter, SR algorithms which are chosen to test the proposed SR IQA

algorithm is explained in detail. The algorithms are explained from the sim-

plest one to the most advanced and best performing one. We first consider

nearest neighbour interpolation, bilinear interpolation and bicubic interpolation

methods; because they are simple techniques for image SR and will provide a

reference frame for SR performance comparison. We also consider EDAT [28]

and example based SR by Kim [29] as they perform well in reconstructing high

frequency details in the structure component of the image.

4.1 Nearest Neighbour Interpolation

Nearest neighbour (NN) interpolation is one of the simplest known techniques to

interpolate an image. In this technique, the unknown pixel is replaced by a pixel

which is in the closest neighbourhood. The output image from nearest neigh-

bour interpolation preserves the sharp edges in the image; however it involves

undesired jaggedness and increases aliasing in the image, where the diagonal

lines and curves appear pixelated.

4.2 Bilinear Interpolation

Bilinear interpolation is a simple interpolation technique which can be applied

in the image SR problem. Interpolation considers nearest 2x2 neighbour pixel
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values surrounding the unknown pixel. After computing the weighting factors

for these 4 coefficients, a weighted average is computed and a final interpolated

pixel value is acquired. This method blurs the sharp edges, therefore there is

loss of high frequency details after SR by bilinear interpolation.

On a unit square, consider the four data points where f is known are (0,0),

(0,1), (1,0) and (1,1). Therefore in matrix operations, the bilinear interpolation

is formulated as

f(x, y) ≈
[

1− x x
] f(0, 0) f(0, 1)

f(1, 0) f(1, 1)

 1− y
y

 (4.1)

4.3 Bicubic Interpolation

Being a simple interpolation technique as bilinear interpolation, bicubic inter-

polation goes one step further by considering nearest 4x4 neighbour pixel values

surrounding the unknown pixel. Weighting is done by the distances of known

pixels from the unknown pixel. Closer pixels are given higher weighting and as a

result, the interpolated surface is a smoother surface than the one from bilinear

interpolation. The interpolated surface can be formulated by

p(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj (4.2)

where the 16 weighting values, aij, are determined by function values, directional

derivatives and cross derivatives of known pixels.

This method produces sharper images than bilinear interpolation, and has a

good combination of processing time and SR image quality. Therefore, bicubic

interpolation is also chosen to be used while testing the SR IQA algorithm

proposed in this study.
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4.4 EDAT

Edge Adaptive Interpolation Using Total Variation Decomposition (EDAT) [28]

is a framework that uses total variation decomposition to separate the struc-

tured component of the image from textured parts. After decomposition, the

textured component is interpolated with simple bicubic interpolation whereas

the structure component is substituted to edge adaptive linear interpolation and

filtered with a special filter that enhances the outline of the image, “the shock

filter”. EDAT is analyzed in detail as it outperforms most of the other available

superresolution algorithms in subjective tests. There are no studies available

that quantify the quality of EDAT algorithm in an objective manner; therefore

the proposed algorithm in Chapter 5 will be tested with EDAT.

EDAT framework, which is created by fusing Total Variation Decomposition [30]

and Edge Adaptive Interpolation [31] is given in Figure 4.1.

Figure 4.1: EDAT Framework

4.4.1 Total Variation Decomposition

Total Variation (TV) decomposition [30] decomposes the input image into two

components, namely high frequency (texture) and low frequency (structure)

bands. TV decomposition is carried out as given in Eq 4.3

p
(n+1)
i,j =

p
(n)
i,j + τ {∇(divpn − Y/λ)}i,j
1 + τ |∇(divpn − Y/λ)i,j |

(4.3)
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where p denotes a dual vector which is used within the iterations, Y denotes

the input image, div is the divergence operation and τ is a coefficient. After p

converges, the texture component v and the structure component u is found as

in Eq. 4.4 and Eq. 4.5.

v = λdivp (4.4)

u = Y − v (4.5)

4.4.2 Edge Adaptive Interpolation Using Bilateral Filter

Edge adaptive interpolation used in EDAT preserves the edge orientations.

The method estimates the edge directions with bilateral filter coefficients. The

method used in EDAT is similar to the method used by Siu et al in [31]. Range

distance values for bilateral filter is computed by Maximum a Posteriori estima-

tion.

4.4.3 Shock Filter

Shock filter is a non-linear filter that enhances the edges of an image. A drawback

of shock filter is that it degrades the SNR of images. Therefore in EDAT,

edge enhancement operation by shock filter is only applied to the low frequency

(structure) component of the image to minimize its degradations on the total

image.

Shock filter is described in [32] by the following formulas:

Y (n+1) = Y (n) − sign
(
4Y (n)

)
||∇Y (n)||dt (4.6)

4Y = ∂+x ∂
−
x Y. (∂xY )2 + ∂+y ∂

−
y Y. (∂yY )2 +

(
∂−x ∂

−
y Y + ∂+x ∂

+
y Y
)
.∂xY.∂yY (4.7)

||∇Y || =
√

(∂xY )2 + (∂yY )2 (4.8)

∂xY = m
(
d+x Y, d

−
x Y
)

(4.9)

∂±x Y = ± (Y (x± 1, y)− Y (x, y)) (4.10)
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where Y is the input image, dt is the step size and m(x, y) is defined as below

m(x, y) =

sign(x).min(|x|, |y|) if xy > 0

0 if xy ≤ 0
(4.11)

4.4.4 Results of EDAT

To better understand the characteristics of Edge Adaptive Interpolation Using

Total Variation Decomposition (EDAT), its results are compared with bilinear

interpolation and bicubic interpolation methods that are widely used in super-

resolution applications. Full reference results such as peak signal to noise ratio

(PSNR) can not be computed since the original high resolution images are not

available for comparison with superresolution image.

Evaluation of the results are made for the superresolution images created from

low resolution images and low resolution images with different degradations that

is likely to be introduced with regard to the image observation model, explained

in Chapter 2.1.

The SR methods are carried out on standard test images which are available for

public use.

Figure 4.2: Comparison of results for Bicubic Interpolation (left), Bilinear In-
terpolation (middle) and EDAT (right).

The subjective comparisons from the interpolated images in Figure 4.2 shows
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Figure 4.3: Comparison of results for Bicubic Interpolation (left), Bilinear In-
terpolation (middle) and EDAT (right) with Gaussian Noise.

that EDAT has evident improvement on the image than bilinear interpolation

and bicubic interpolation methods. The edges appeared to be sharper in EDAT;

because the structure component of the image is interpolated in an edge adaptive

manner which is based on bilateral filter and a shock filter is applied after inter-

polation which further sharpened the edges apparent in the structure component

of the image.

Subjective performance evaluations have also been conducted for the superres-

olution results performed on low resolution images with additive white noise, in

order to see the noise amplification effects of SR methods. The superresolution

results in Figure 4.3 shows that Bilinear Interpolation method suppresses noise

which is evident in the LR image because of its blurring behaviour. However

blurring also appeared at the sharp edge locations in the image and degraded the

structure component of the image. EDAT and Bicubic Interpolation failed to

suppress additive noise on the LR image; however the sharp edges were preserved

in the superresolution image.
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4.5 Example Based Learning for Superresolution

Example based learning for SR which is proposed in [29] uses a kernel ridge re-

gression technique to estimate the high frequency details of the SR image. After

regression, the regression results are post processed using a model of the generic

image class to further resolve the artifacts introduced by SR. Experimental re-

sults, together with subjective results show that the method outperforms the

existing example based image SR algorithms. The details of this algorithm is

not in the scope of this thesis; however the algorithm is implemented to test its

performance with the proposed SR IQA.
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CHAPTER 5

PROPOSED ALGORITHM

Detailed descriptions and formulations of various no-reference image quality as-

sessment algorithms are given in Chapter 3. In this Chapter, test results and

potential weaknesses of these proposed algorithms will be given. An algorithm

will be proposed to overcome the potential weaknesses of these algorithms.

5.1 Evaluation of No Reference Superresolution Quality Assessment

Algorithms

A no reference image quality assessment algorithm for image superresolution

using a natural scene statistics approach [1] is described in Chapter 3. The

described method uses frequency falloff statistics that are computed from the

total energy of the image in each scale computed by steering pyramid transform,

which provides a tight frame by preserving the total energy of the image in the

frequency domain.

The steerable pyramid transform [33] is defined in Fourier domain and the pyra-

mid can be designed to be computed in any number of orientation subbands.

Each of the subbands is computed by a directional derivative function. There-

fore depending on the directions of the subbands in which the total energy is

computed, the frequency falloff characteristic curve of the tested image might

depart from the predicted frequency falloff slope coefficients in the algorithm.

Therefore the algorithm might be vulnerable to the orientation of the high fre-

quency details in the image depending on the subbands selected for the total
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energy computation. The computed image quality score by the algorithm might

not correlate well with the subjective scores if the total energy of the image

is computed by oriented derivatives that does not align well with the high fre-

quency details of the image. The diagram showing the spectral decomposition

in angular and radial domains is given in Figure 5.1.

Figure 5.1: Spectral decomposition illustration of the steerable pyramid trans-
form with 4 subbands. Shaded region corresponds to the vertically oriented
subband.

The angular decomposition subbands computed in steering pyramid transform

is useful in applications such as orientation decomposition, texture blending,

depth from stereo and optical flow [33]. However, in its application in image

quality assessment problem, the transform causes sensitivity to the chosen ori-

entation subbands that the image energy is computed. In addition, angular

decomposition of subbands is found to bring computational inefficiency to the

algorithm.

A straightforward spatial continuity based statistics model has also been used in

the algorithm. The spatial continuity metric computes the differences of neigh-

bouring pixels and compares it with the statistics model computed from natural

scenes. This method quantifies the continuity defects incorporated in the im-

ages after superresolution. However, the low resolution image which is processed

by superresolution algorithms might contain degradations such as blurring and
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aliasing as stated in Chapter 2.1. With the degradations in low resolution image,

the straightforward spatial continuity computation proposed in this algorithm

excessively fails.

The algorithm is tested with noise-free images and with images degraded by

additive White Noise with σ2 = 0.0005. The results are given in Figure 5.2 and

5.3.

(a) Ds = 4.1632 (b) Ds = 2.7845

Figure 5.2: Spatial continuity scores computed for noise-free LR image. (a)
Bilinear interpolation vs. (b) EDAT.

(a) Ds = 8.6522 (b) Ds = 2.6812

Figure 5.3: Spatial continuity scores computed for LR image degraded with
additive White Noise. (a) Bilinear interpolation vs. (b) EDAT.
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The spatial continuity measure Ds is tested for different superresolution algo-

rithms, namely bilinear interpolation and EDAT. With noise-free images, spatial

continuity score of EDAT image outperformed the bilinear interpolated image

which also complies with the subjective interpretations. However, when the

same superresolution algorithms are performed on LR image with additive White

Noise, spatial continuity score of EDAT decreases from 2.78 to 2.68 which states

that the noisy image has better spatial continuity than the noise-free image. In

addition, even though bilinear interpolation have suppressed the additive noise

in the image because of its blurring behaviour, the spatial continuity score of the

interpolated image is the highest with a score of 8.65. Results clearly conflict

with subjective interpretations for noisy images. This shows the spatial conti-

nuity measure proposed in [1] fails for superresolution image quality assessment

for noisy LR images. As the image observation model introduces various degra-

dations to the LR image to be processed, image quality assessment algorithm in

[1] is likely to perform poor in real applications.

The BRISQUE algorithm proposed in [23] evaluates the quality of images in a

distortion-generic manner. Rather than other distortion-specific measures that

quantify degradations such as ringing, blur or blocking, BRISQUE uses natural

scene statistics of locally normalized luminance coefficients to quantify any kind

of artifacts that create possible losses of image naturalness.

The algorithm is shown to perform well on different degradation types such

as JP2K and JPEG compression, additive White Noise, Gaussian Blur and

Rayleigh fast-fading channel simulation in [23]. BRISQUE is tested with bi-

linear interpolation and EDAT algorithm outputs for degraded and noise-free

LR images.

The algorithm is tested with noise-free images and with images degraded with

additive White Noise. The results are given in Figure 5.4 and 5.5.

The mean subtracted and contrast normalized features of the images are com-

puted and the quality scores are quantified for different superresolution images,

namely bilinear interpolation and EDAT. In noise-free image, EDAT appeared

to perform slightly better than bilinear interpolation based on the computed
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(a) Dbr = 38.7707 (b) Dbr = 38.3199

Figure 5.4: BRISQUE scores computed for noise-free LR image. (a) Bilinear
interpolation vs. (b) EDAT.

(a) Dbr = 32.9063 (b) Dbr = 41.2582

Figure 5.5: BRISQUE scores computed for LR image degraded with Gaussian
noise. (a) Bilinear interpolation vs. (b) EDAT.

BRISQUE score. This result correlates well with the subjective interpretations.

EDAT was also predicted to perform better than bilinear interpolation since

bilinear interpolation introduces blurring to the SR image whereas EDAT has

better high frequency reconstruction properties.

Testing the algorithm with noisy images (additive White Noise), bilinear inter-

polation is predicted to perform better since the blurring behaviour acts as a
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noise suppressor. BRISQUE scores complied with the predicted results since bi-

linear interpolation clearly outperformed EDAT with a score of 32.9 for bilinear

interpolation and 41.25 for EDAT.

5.2 Robust Image Quality Evaluator for Image Superresolution Us-

ing Natural Scene Statistics

We have proposed a robust image quality assessment metric for image super-

resolution by combining the frequency falloff statistics model in [1] and mean

subtracted and contrast normalized feature statistics in [23] which are both

natural scene statistics (NSS) approaches to the no reference image quality as-

sessment problem. By fusing these two approaches, we have reached the SR

IQA framework shown in Figure 5.6.

Figure 5.6: The proposed framework for proposed SR IQA method.

The proposed framework computes a quality score which is the sum of the nor-

malized scores computed by spatial and frequency domain features. Scores

computed by spatial domain statistics are computed from MSCN coefficient

statistics which is described in detail in Chapter 3. In the frequency domain,

frequency falloff characteristics which give information about the high frequency

reconstruction properties of the SR algorithms is made use of. We constructed

a statistical model for frequency energy falloff characteristics by decomposing

both the LR and SR images into dyadic scales using the Laplacian Pyramid

Transform.

Laplacian pyramid transform is a better choice for computing the total energy
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of the images for the constructed statistical model; because the transform is

independent of the orientation of high frequency contents in the image whereas

the steering pyramid transform is sensitive to the orientation of the high fre-

quency details in the image depending on the subbands selected for the total

energy computation. In Laplacian Pyramid Transform, the image fi is blurred

by using a Gaussian kernel forming a low pass image, Li. Then the low pass

image is subtracted from the input image and a high pass image, hi, is acquired.

hi can also be represented as the convolution of Laplacian of Gaussian function

with the original image, which gives the transform its name. The same process

is applied in each scale of the pyramid.

Figure 5.7: The Laplacian Pyramid Transform.

In addition, Laplacian pyramid transform is better in terms of computational

efficiency compared to the steering pyramid transform which is overcomplete by

4k/3 where k is the number of orientation bands. A comparison of the properties

of steering pyramid transform and Laplacian pyramid transform is given in Table

5.1.

The natural scene statistics model for frequency falloff characteristics is con-

structed by 2800 natural images which are available in the MIT CVCL Image

Database. Firstly, Laplacian Transform is applied to each LR and SR images
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Table5.1: Comparison of Laplacian Pyramid and Steering Pyramid representa-
tions.

Steering Pyramid Laplacian Pyramid
self-inverting yes no

overcompleteness 4k/3 4/3
rotated orientation subbands yes no

and the energy in each scale is computed by sum of squared transform coeffi-

cients. Energy computation is made for 6 scales for HR image and 5 scales for

LR image. The frequency falloff curves are plotted from coarse to fine scales.

The plot of frequency falloff curves for 24 Kodak Images is given in Figure 5.9.

Figure 5.8: Constructed Pyramid for Multiple Levels

Observing the curves, the frequency falloff curves appeared to be straight lines

in the log-log scale. This result complies with the 1/fp relationship which states

that the amplitude spectrum of the natural images falls with the spatial fre-

quency, f . In addition, the frequency falloff curves computed from LR and HR

images are found to be parallel lines in between the same scales. Therefore the

frequency falloff lines for HR images are found to be highly predictable from

frequency falloff lines of the corresponding LR images. These results show that

a statistical model which comprises the idea in [1] can also be constructed by

using the Laplacian Pyramid Transform.
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Figure 5.9: Frequency falloff curves computed using Laplacian Pyramid Trans-
form for 24 Kodak Images.

The slopes of frequency falloff of HR image is predicted as

ŝH1 = sL1

ŝH2 = sL2

ŝH3 = a0 + a1s
L
3

ŝH4 = b0 + b1s
L
4

ŝH5 = c0 + c1ŝ
H
3 + c2ŝ

H
4

(5.1)

where sLi is the falloff curve slope of LR image in i-th scale, ŝHi is the predicted

falloff curve slope of HR image in i-th scale and a0, a1, b0, b1, c0, c1 and c2 are

obtained by simple least square regression using the statistical model built by

real LR and HR images. The predicted coefficients from the regression are given

in Table 5.2.

Then, normalized frequency energy falloff error between the predicted slope and

true slope of HR image in the finest scale is computed by Equation 5.2.

ef =
ŝH5 − sH5
ŝH5

(5.2)
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Figure 5.10: Frequency energy falloffs of original HR, SR and LR images.

Table5.2: Least Square Regression Results for Frequency Falloff Curve Slopes

Parameter Regression Result
a0 0.0155
a1 1.0036
b0 -0.0589
b1 0.9897
c0 -1.1841
c1 -0.9671
c2 1.3798

Normalized error values, which are computed from 2800 images in the MIT

CVCL Image Dataset is shown on an histogram in Figure 5.11. In ideal case

when the SR image is close to the HR image, ef approaches to zero.

From the natural scene statistics computed from HR images in the dataset,

it is clear that the histogram has a Gaussian (even peakier than Gaussian)

characteristic and GGD function in Equation 5.3 can be fitted.

pef (ef ) =
1

Zf
exp

[
−
(
|ef − µf |

αf

)βf]
(5.3)
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Figure 5.11: Histogram of normalized frequency energy falloff error, ef , for HR
Images.

where Zf =
βf

2αfΓ (1/βf )
is a normalization factor. Our results from Figure 5.11

complies with the results of Yeganeh et. al. in [1], therefore the same maximum

likelihood based fitting technique is used for estimating the frequency energy

falloff error distribution function computed by the Laplacian Pyramid Transform

coefficients. The fitted parameters for our GGD model is µf = 0.029, αf =

0.0608 and βf = 0.6124.

From the natural image probability model pef , SR image which is more natural

and similar to the HR image tend to achieve maximum values with high proba-

bilities. The probability-based measure is then converted to a quality assessment

measure by Equations 5.4 and 5.5 where K = 1/Zf is the normalization factor

such that the naturalness measure pf is upper-bounded by 1.

pf =
1

K
pef (5.4)

Df = −logpf (5.5)

The spatial domain feature extraction and prediction from the probabilistic

model is done with BRISQUE algorithm which is described in detail in Chapter
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3.2. The BRISQUE score, Dbr is then added with the frequency energy falloff

naturalness measureDf and the final image quality assessment model is achieved

as in Equation 5.6.

Dfs = Df +Dbr (5.6)

Both the BRISQUE score (Dbr) and frequency falloff score (Df ) are normal-

ized in the proposed metric. For better correlation with subjective evaluations,

the spatial domain and frequency domain components of the achieved model is

weighted as in Equation 5.7. The final weighting factor, w, is found to be 0.7.

By choosing w = 0.7, frequency energy falloff component of the metric which

characterizes the high frequency reconstruction properties in the SR image is

given more weight, which in result was found to correlate better with human

perception.

Dfs = wDf + (1− w)Dbr (5.7)
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CHAPTER 6

EXPERIMENTAL RESULTS

In this Chapter, the algorithm proposed in Chapter 5 is tested with SR images

computed from noise-free LR images and SR images from LR images degraded

with additive white noise and Gaussian Blur. The results of the proposed SR

IQA algorithm will be compared with the SR IQA algorithm proposed in [1].

Five different SR algorithm performances are going to be measured in the exper-

iments. These algorithms are namely; nearest neighbour interpolation, bicubic

interpolation, bilinear interpolation, EDAT and Kim’s example based SR algo-

rithm which is discussed in Chapter 4.

6.1 Experimental Results

The algorithm is tested with 11 images with different contents. Images used

in the experiments does not contain images from MIT CVCL Image Database;

because it was used to estimate the NSS model of the frequency energy falloff

characteristics which is used within the proposed image quality assessment met-

ric.

Before starting the experiments, the tested SR images are evaluated subjectively.

All the images appeared to have better edge reconstruction and better high fre-

quency component estimation for Kim’s SR method. EDAT appeared to have

sharper edge reconstruction properties compared to bilinear and bicubic interpo-

lation methods. Bilinear interpolation performs worst in high frequency detail

estimation. Details of the images showing the high frequency reconstruction
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success of the SR algorithms are given in Figure 6.1.

Figure 6.1: Edge Details of SR Images (left to right: bilinear, bicubic, EDAT)

In the first experiment, the quality scores are measured for SR images computed

from noise-free LR images. Computed scores from the SR IQA algorithm in [1]

and the proposed algorithm is given in Table 6.1.

SR images computed from noise-free LR pairs are given in Figure 6.2 for sub-

jective evaluation. For all of the test images except Chip image, according to

the scores from SR IQA algorithm in [1], EDAT appeared to have the best re-

construction. In EDAT, the structure component of the image is interpolated

in an edge adaptive manner and it recovers the sharp edges in the image well.

However, example based SR method by Kim appeared to have best high fre-

quency detail reconstruction according to the subjective evaluation. Therefore,

subjective evaluation does not comply with the SR IQA results by [1]. How-

ever, subjective evaluation clearly comply with the scores computed from the

proposed SR IQA metric where example based SR method by Kim clearly out-

performs other SR algorithms. It is seen that the proposed SR IQA metric is

successful in characterizing the high frequency reconstruction properties of SR

algorithms

Subjective evaluation also shows that bicubic interpolation outperforms bilinear

interpolation. There is excessive loss of high frequency details and added blur
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Table6.1: Comparison of SR Image Quality Assessment Algorithms (Noise-Free
LR images).

SR IQA in [1]
Nearest Bicub. Bilin. EDAT Kim

Boat 60.4562 12.8840 10.5184 6.7547 16.1115
Building 69.3070 15.5868 13.1546 5.5918 15.3108
Cartoon 53.0112 9.3280 8.1596 3.7965 9.3540
Child 58.6642 8.9588 7.5221 6.4576 11.2646
Chip 37.8639 7.0748 6.5620 5.7466 4.2999

Flowers 70.9156 11.3057 9.4977 5.4594 11.9863
Girl 46.8716 8.4534 7.0977 5.7877 8.3280

Obama 50.6122 8.1627 6.6908 5.7409 8.6066
Roman 62.1855 12.0108 9.9200 5.8171 16.4117
Text 68.4226 10.5081 7.5490 3.9147 29.9323
Train 81.4756 17.4008 14.1500 5.9375 25.2450

Proposed SR IQA
Nearest Bicub. Bilin. EDAT Kim

Boat 21.8536 22.6788 25.0026 24.9481 17.8570
Building 17.3102 17.6890 19.1113 20.1846 15.8313
Cartoon 20.9799 20.1835 22.0950 20.1875 17.8600
Child 13.8322 17.2968 18.9466 17.5206 12.9688
Chip 23.7895 25.8179 27.9332 23.7799 23.2761

Flowers 17.5378 16.5787 19.1224 17.5454 10.6110
Girl 16.9676 17.2533 19.8195 17.6366 11.6887

Obama 19.9406 19.8244 21.9978 19.5786 16.9733
Roman 16.8417 17.2547 19.9248 19.0946 13.0411
Text 30.5320 22.4072 24.5243 20.3790 19.0959
Train 23.4504 25.5440 26.5980 27.3110 23.2471

on bilinear interpolated images. However, SR IQA algorithm in [1] evaluates

the performance of bilinear interpolation better than the bicubic interpolation

method for all of the test images. This evaluation shows that SR IQA algorithm

in [1] fails to characterize blurring in SR images. This failure is evident because

the spatial continuity measure in [1] characterizes blurry images as in perfect

spatial continuity. However, according to the scores from the proposed SR IQA

metric, bicubic interpolation has better performance than bilinear interpolation

on all images tested. This shows that the proposed SR IQA algorithm evaluates

blurring well which may be involved after SR process. The proposed SR IQA

algorithm performs better as the computed features are distortion-unaware and

characterize any kind of degradations.

Scores computed by proposed SR IQA method for noise-free images in Table 6.1

shows that nearest neighbour interpolation method performs almost as good as

SR method by Kim for some of the test images. However, subjective evaluations
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show that nearest neighbour method has evident artefacts in the spatial domain,

mainly at the edge locations. To further analyze this observation in detail, Df

and Dbr scores computed by the proposed SR IQA method is decomposed and

compared in Table 6.2. Results show that nearest neighbour method has better

frequency energy falloff scores, Df , than SR by Kim method for some of the test

images. This result is not surprising as the frequency energy falloff curves of SR

images created by nearest neighbour method appears to approach the frequency

falloff curves of natural HR image, as shown in Figure 5.10. In nearest neighbour

method, high frequency components are reconstructed but these high frequency

components are erroneous. However, the spatial domain score Dbr characterizes

the degradations involved from nearest neighbour method and after weighting in

betweenDf andDbr, the final quality score shows that nearest neighbour method

does not outperform SR by Kim method. The results from the proposed metric

correlate well with the subjective evaluations, which is given in Chapter 6.2.

Table6.2: Frequency and Spatial Domain Score Comparison for Nearest Neigh-
bour and SR by Kim methods.

Proposed SR IQA
Nearest Kim

Df Dbr Df Dbr

Boat 7.0907 56.3005 7.6831 41.5961
Building 13.5683 26.04132 12.8930 22.6872
Cartoon 7.9345 51.4192 7.2821 42.5418
Child 7.8518 27.78626 7.9127 24.7662
Chip 7.5594 61.6597 6.5115 62.3935

Flowers 5.5188 45.5822 6.3731 20.4995
Girl 7.6184 38.7826 7.4944 21.4754

Obama 5.5208 53.5867 5.1485 44.5647
Roman 6.4835 41.0106 6.2333 28.9259
Text 5.6327 88.6304 5.9090 49.8654
Train 16.2311 40.2955 16.0610 40.0148

Then, SR IQA algorithms are tested for SR images created from their LR pairs

degraded with additive white (Gaussian) noise. The tests are performed for 2

different levels of additive white noise, σ2 = 0.0005 and σ2 = 0.005. Computed

scores from the SR IQA algorithms are given in Table 6.3 and Table 6.4.
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Table6.3: Comparison of SR Image Quality Assessment Algorithms (degraded
LR image with Additive White Gaussian Noise, σ2 = 0.0005).

SR IQA in [1]
Nearest Bicub. Bilin. EDAT Kim

Boat 80.3760 18.3776 14.2634 6.4244 32.3479
Building 89.2175 20.6667 16.5154 5.2402 32.2779
Cartoon 73.4363 15.5291 12.2154 3.3611 29.2838
Child 77.6167 14.9729 11.6164 6.1269 27.0623
Chip 65.8116 14.6043 11.4822 4.7066 26.9986

Flowers 86.1586 16.2217 12.6931 4.9212 27.7601
Girl 65.6570 14.2321 10.9826 4.9150 27.5597

Obama 75.2340 14.7734 11.2445 5.2818 28.8353
Roman 82.0229 17.1898 13.4318 5.3411 31.4847
Text 97.1539 17.8885 13.0504 3.8078 46.2584
Train 99.0357 22.0110 17.2666 5.8138 38.5359

Proposed SR IQA
Nearest Bicub. Bilin. EDAT Kim

Boat 26.9124 19.9360 21.1985 21.9228 19.1378
Building 37.3496 29.6145 30.0069 32.6892 30.7537
Cartoon 28.8982 20.5053 21.5482 22.7403 21.5365
Child 24.4231 19.4661 19.7624 20.3931 19.3231
Chip 27.8136 19.2287 19.6108 21.3017 24.5666

Flowers 22.4774 16.6629 18.5954 18.7788 15.7755
Girl 29.0578 22.0513 22.9084 22.8418 22.5673

Obama 25.9003 17.6906 17.9040 18.4770 21.6383
Roman 25.0196 18.5627 19.8326 20.3778 19.5088
Text 26.1761 20.1335 19.3930 22.9294 24.1648
Train 39.3712 34.9735 36.0649 35.1984 33.4717

SR images computed from noisy LR pairs are given in Figure 6.3 for subjective

evaluation. SR image qualities are not easy to distinguish in between SR meth-

ods computed from noisy LR pairs. When SR algorithms are applied to LR

images with added noise, noise masks the high frequency reconstructed parts in

the SR image and reconstruction properties of SR algorithms are not evident.

However different SR methods amplify noise in different degrees. While bilinear

interpolation blurs sharp edges within the image, it also filters out the added

noise. On the other hand, bicubic interpolation, EDAT and example based SR

by Kim are found to amplify added noise in different degrees in subjective eval-

uations When SR images are computed from LR images with added noise, SR

IQA algorithm in [1] fails drastically. Results from SR IQA method in [1] show

that performance of EDAT clearly beats other SR algorithms; however subjec-

tive evaluation shows that the performance of SR images are very close and

hard to distinguish. The results clearly fail that even the scores of SR images
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Table6.4: Comparison of SR Image Quality Assessment Algorithms (degraded
LR image with Additive White Gaussian Noise, σ2 = 0.005).

SR IQA in [1]
Nearest Bicub. Bilin. EDAT Kim

Boat 143.4593 34.2873 25.3170 5.3099 81.5292
Building 151.0179 36.1716 27.1318 4.4066 81.7179
Cartoon 140.0075 32.7449 24.2523 2.7534 82.3142
Child 139.7092 31.7943 23.4545 4.5627 82.3701
Chip 138.0636 31.9951 23.5294 3.2330 81.7848

Flowers 147.7582 32.9568 24.1357 3.6917 82.5354
Girl 128.7154 30.8234 22.7782 4.1663 77.7122

Obama 139.9133 30.6441 22.3130 3.7180 80.0266
Roman 145.5876 33.5448 24.7360 4.2603 84.1922
Text 160.3236 33.9919 24.4010 3.5310 86.8044
Train 152.9488 36.2685 27.0171 4.9522 81.3277

Proposed SR IQA
Nearest Bicub. Bilin. EDAT Kim

Boat 38.3629 22.6529 22.2959 22.1269 30.2431
Building 37.2306 22.7804 22.3338 22.4976 30.5004
Cartoon 36.8763 21.1502 20.3495 21.1238 29.6421
Child 35.2674 23.0808 21.5293 22.7449 30.6955
Chip 38.6244 24.4201 23.7469 24.4777 32.3164

Flowers 38.5890 27.4534 27.3187 27.8643 31.8079
Girl 37.0760 21.4547 20.5405 21.5783 28.8873

Obama 68.5168 69.1726 72.4384 67.2633 47.8590
Roman 37.8971 26.7880 26.4310 27.0325 32.0890
Text 35.2503 23.5911 22.0912 25.6701 30.9457
Train 36.5902 22.8058 22.4244 22.6671 29.8390

computed from noisy LR pairs beats the scores of SR images computed from

noise-free LR pairs in Table 6.1, which is not possible in practice. Proposed

SR IQA algorithm computes the scores of all SR algorithms relatively close to

each other such that the results correlate well with subjective evaluation. As the

level of added noise increases up to σ2 = 0.005, bilinear interpolation starts to

beat all other SR methods. The reason is, although blurring the high frequency

details in the image, bilinear interpolation suppresses additive noise whereas all

other SR methods under test amplifies added noise while interpolating the LR

image. When the amount of additive noise increases, the suppressive effect of

bilinear interpolation increase, which increased the performance score of this

method among others.

Lastly, SR IQA algorithms are tested for SR images created from their LR pairs

degraded with Gaussian blur, with a window size of 3x3 and σ2 = 1. Computed

scores from the SR IQA algorithms are given in Table 6.5.
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Table6.5: Comparison of SR Image Quality Assessment Algorithms (degraded
LR image with Gaussian Blur).

SR IQA in [1]
Nearest Bicub. Bilin. EDAT Kim

Boat 38.1345 4.5507 3.7931 6.6165 4.0783
Building 42.5897 7.8667 7.3183 6.4851 6.5457
Cartoon 36.1613 4.4802 4.1104 4.7060 3.5365
Child 40.6226 2.8749 2.3225 5.9721 2.6829
Chip 30.7277 4.0910 3.5838 5.1303 3.9733

Flowers 49.9634 5.2862 4.7419 5.4918 4.2707
Girl 32.5312 3.0461 2.5311 5.3608 2.5134

Obama 37.5812 2.9662 2.4028 5.6357 2.7350
Roman 41.3476 5.1717 4.5542 6.1950 4.5087
Text 56.6468 7.4130 6.9176 5.5158 7.1757
Train 44.3067 5.9838 5.2923 6.3586 4.7334

Proposed SR IQA
Nearest Bicub. Bilin. EDAT Kim

Boat 23.9967 23.9706 25.5336 22.7168 22.4267
Building 14.0052 16.2427 18.1891 16.1197 13.7944
Cartoon 20.6341 22.9490 24.8005 21.4629 20.0530
Child 19.5120 22.2849 23.6487 21.3466 20.2453
Chip 26.3155 30.2764 31.1038 26.6983 29.0993

Flowers 25.8086 22.1569 23.6566 20.0762 20.9374
Girl 22.3707 23.9516 25.6027 23.3191 22.3509

Obama 21.8161 25.8264 27.0788 24.7189 24.4091
Roman 22.4182 23.0800 24.5765 21.9345 21.0493
Text 27.7228 25.6356 26.7654 23.2936 22.7318
Train 18.7328 20.5763 22.0845 19.7198 17.5228

SR images computed from Gaussian blurred LR pairs are given in Figure 6.4

for subjective evaluation. Bilinear interpolation method appears to blur the SR

image even more than its blurred LR pair. Nearest Neighbour, Bicubic, EDAT

and example based SR by Kim appeared to enhance the image in similar per-

formances as the high frequency details in the LR image was already removed.

Scores from both SR IQA methods claimed that all the SR algorithms performed

in close performances which also complies with the subjective evaluation. The

proposed SR IQA method also shows that bilinear interpolation performs worst

which complies with predicted results, as bilinear interpolation degrades (blurs)

the SR image even more than its blurred LR pair. However, there appears an

evident failure in quality assessment by [1] as the scores of SR images computed

by bilinear interpolation method beats other SR methods, even though the SR

image appears to have excessive blur. This failure is evident because the spa-

tial continuity measure in [1] characterizes blurry images as in perfect spatial
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continuity.

The empirical results show that the proposed SR IQA method clearly performs

better while evaluating the degradations added either by the superresolution or

by image observation model while acquiring the LR image. SR IQA method in

[1] performs as good as the proposed SR IQA method while measuring the high

frequency reconstruction properties of SR algorithms; however the main differ-

ence in between the SR IQA performances becomes evident in spatial domain

statistics measures. Ds component of SR IQA in [1] plainly fails to character-

ize distortions amplified by SR algorithms as it is a straightforward approach

to characterize spatial continuity. However in Dbr component of proposed SR

IQA, 36 features in multiple scales are computed which detects and quantifies

any kind of degradation (distortion-unaware) in multiple scales, which may be

evident after SR process.

6.2 Validation by Subjective Tests

We have conducted a subjective experiment to better validate the proposed

objective SR IQA algorithm. In the subjective test, 10 subjects were asked to

score 5 SR images that is created from different 11 LR images. In total, 55 SR

images were evaluated by subjects. The SR images are created by different SR

methods which are namely nearest neighbour, bicubic, bilinear interpolation,

EDAT and SR by Kim methods.

Subjects are shown the SR images created from each LR image simultaneously,

and asked to score each image within a scale of 1-5 after pairwise comparison in

between SR images. Before computing the average mean opinion scores (MOS)

for the test images, outliers are separated from the collected data. The results

are compared with the scores computed by proposed SR IQA method in Table

6.6.

Subjective test results showed that SR by Kim method clearly outperforms the

other 4 SR methods. This result correlate well with the proposed SR IQA

scores. Subjective results also showed that in some images, it is hard for subjects
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Table6.6: Comparison of Proposed SR IQA Method with Mean Opinion Scores
(Noise-Free LR images).

Average Mean Opinion Scores (MOS)
Nearest Bicub. Bilin. EDAT Kim

Boat 3.0 2.9 2.4 2.4 5.0
Building 2.4 3.6 2.1 3.3 4.9
Cartoon 2.4 3.1 4.0 3.7 3.4
Child 2.1 3.3 2.1 3.6 5.0
Chip 2.9 3.4 2.4 3.9 4.9

Flowers 3.0 3.1 2.6 3.3 4.9
Girl 2.3 3.4 2.7 4.0 5.0

Obama 2.1 3.1 3.3 3.8 3.9
Roman 2.1 3.6 2.1 3.7 5.0
Text 2.6 3.6 2.7 4.0 4.1
Train 2.4 3.3 2.3 3.7 4.9

Proposed SR IQA
Nearest Bicub. Bilin. EDAT Kim

Boat 21.8536 22.6788 25.0026 24.9481 17.8570
Building 17.3102 17.6890 19.1113 20.1846 15.8313
Cartoon 20.9799 20.1835 22.0950 20.1875 17.8600
Child 13.8322 17.2968 18.9466 17.5206 12.9688
Chip 23.7895 25.8179 27.9332 23.7799 23.2761

Flowers 17.5378 16.5787 19.1224 17.5454 10.6110
Girl 16.9676 17.2533 19.8195 17.6366 11.6887

Obama 19.9406 19.8244 21.9978 19.5786 16.9733
Roman 16.8417 17.2547 19.9248 19.0946 13.0411
Text 30.5320 22.4072 24.5243 20.3790 19.0959
Train 23.4504 25.5440 26.5980 27.3110 23.2471

to distinguish the performance of bicubic and EDAT algorithms. This result

also validated the proposed algorithm; because bicubic interpolation and EDAT

have close objective scores for all of the test images. For bilinear and nearest

neighbour interpolation methods, subjective tests gave the lowest scores. In the

proposed SR IQA, bilinear interpolation also gave the lowest scores. However

proposed SR IQA metric showed that nearest neighbour method beats bilinear

and bicubic interpolation methods for some test images. The reason is because

of the method’s erroneous high frequency reconstruction properties, which could

not be distinguished by frequency energy falloff statistics. Even though there is

pixelation and aliasing artefacts in NN method, total energy in the frequency

domain for finest scale is higher than other methods, therefore giving better score

Df . Subjective results clearly validated that the proposed SR IQA method is an

objective SR IQA method which correlates well with human perception whereas

on the other hand being robust against any kind of degradation in the LR image.
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(a) Boat

(b) Building

Figure 6.2: SR Results for Noise-Free LR Pairs (left to right: NN, bicubic,
bilinear, EDAT, Example Based SR by Kim)
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(c) Cartoon

(d) Child

(e) Chip

Figure 6.2: SR Results for Noise-Free LR Pairs (left to right: NN, bicubic,
bilinear, EDAT, Example Based SR by Kim)
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(f) Flowers

(g) Girl

(h) Obama

Figure 6.2: SR Results for Noise-Free LR Pairs (left to right: NN, bicubic,
bilinear, EDAT, Example Based SR by Kim)
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(i) Roman

(j) Text

(k) Train

Figure 6.2: SR Results for Noise-Free LR Pairs (left to right: NN, bicubic,
bilinear, EDAT, Example Based SR by Kim)
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(a) Boat

(b) Building

Figure 6.3: SR Results for LR Pairs Degraded with White Noise, σ2 = 0.0005
(left to right: NN, bicubic, bilinear, EDAT, Example Based SR by Kim)
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(c) Cartoon

(d) Child

(e) Chip

Figure 6.3: SR Results for LR Pairs Degraded with White Noise, σ2 = 0.0005
(left to right: NN, bicubic, bilinear, EDAT, Example Based SR by Kim)
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(f) Flowers

(g) Girl

(h) Obama

Figure 6.3: SR Results for LR Pairs Degraded with White Noise, σ2 = 0.0005
(left to right: NN, bicubic, bilinear, EDAT, Example Based SR by Kim)

56



(i) Roman

(j) Text

(k) Train

Figure 6.3: SR Results for LR Pairs Degraded with White Noise, σ2 = 0.0005
(left to right: NN, bicubic, bilinear, EDAT, Example Based SR by Kim)
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(a) Boat

(b) Building

Figure 6.4: SR Results for LR Pairs Degraded with Gaussian Blur, 3x3 window
size, σ2 = 1 (left to right: NN, bicubic, bilinear, EDAT, Example Based SR by
Kim)

58



(c) Cartoon

(d) Child

(e) Chip

Figure 6.4: SR Results for LR Pairs Degraded with Gaussian Blur, 3x3 window
size, σ2 = 1 (left to right: NN, bicubic, bilinear, EDAT, Example Based SR by
Kim)
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(f) Flowers

(g) Girl

(h) Obama

Figure 6.4: SR Results for LR Pairs Degraded with Gaussian Blur, 3x3 window
size, σ2 = 1 (left to right: NN, bicubic, bilinear, EDAT, Example Based SR by
Kim)
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(i) Roman

(j) Text

(k) Train

Figure 6.4: SR Results for LR Pairs Degraded with Gaussian Blur, 3x3 window
size, σ2 = 1 (left to right: NN, bicubic, bilinear, EDAT, Example Based SR by
Kim)
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

In this thesis, we have proposed a no-reference image quality assessment metric

for image superresolution which correlates well with human perception as well

as being robust against any type of degradation.

The proposed SR IQA algorithm is a natural scene statistics approach to the

objective SR IQA problem. In the algorithm, multiple natural scene statistics

models are computed for natural HR images. Different features both in fre-

quency domain and spatial domain are computed for SR images under test and

compared with the developed NSS model of HR images.

In the frequency domain, frequency energy falloff statistics are computed by

using Laplacian Pyramid Transform which computes the total energy of the

image in multiple scales very efficiently in time compared to other available

pyramid transforms. The frequency falloff curve is predicted for the finest scale

and compared with the NSS model which quantifies the high frequency detail

reconstruction capability of the SR process. The departures from the NSS model

constructed from natural HR images are quantified as the overall image quality

score in the frequency domain, Df .

In the spatial domain, Blind/Referenceless Image Spatial Quality Evaluator

(BRISQUE) algorithm is implemented. This method is a NSS based no-reference

method. The method is chosen to be used in the proposed algorithm as it
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is a distortion-generic (distortion-unaware) NR quality assessment algorithm

which correlates well with the subjective tests for any kind of degradations. The

method computes image quality from MSCN coefficients and statistics of pair-

wise products of locally normalized neighbouring pixel luminance values. The

features are computed for 2 scales as distortion in an image affects structure

across the scales. Each of these features extracted in the algorithm correlate

well with the human perception. Again, the departures from the NSS model

constructed from natural HR images is quantified as the overall image quality

score in the spatial domain, Dbr. From the subjective evaluation, empirically,

weighting factors are found for image quality scores in spatial and frequency

domain and a final SR image quality assessment metric, Dfs, is found.

The proposed SR IQA algorithm is tested for 5 different SR algorithms, near-

est neighbour interpolation, bilinear interpolation, bicubic interpolation, EDAT

and example based SR by Kim, which has better high frequency reconstruction

properties compared to other methods. In addition, robustness of the algorithm

is tested with LR images distorted with different degradations, namely Gaus-

sian Blur and additive White Noise. The results of the proposed algorithm is

compared with the results of SR IQA algorithm in [1] which is a first attempt to

design an NSS-based objective method to assess the quality of HR images cre-

ated using SR methods. Subjective test results show that the proposed SR IQA

metric correlates well with the human perception. The results also show that the

proposed SR IQA metric is robust against any kind of distortion, which is likely

to be introduced to the LR image as a result of the image observation model or

during SR process. In addition, the proposed algorithm is efficient in time with

low computational complexity; therefore applicable to real applications. No ref-

erence metrics are important not only for superresolution applications, but also

for applications involving image formation.

7.2 Future Work

In our work, we have validated our proposed SR IQA algorithm by conducting

subjective experiments with 10 subjects, with noise-free images. As a future
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work, a large scale subjective experiment can be conducted with a larger image

set which contain HR images created using other different SR methods. Subjec-

tive evaluations might also be conducted for SR images created from LR images

degraded with different types distortions.

The NSS model in the frequency domain in Chapter 5.2 is constructed from

2800 natural HR images in MIT CVCL image database. The contents of the

images in MIT CVCL database are very similar. Model might be constructed

by using a wider set of HR images with various contents which will be a better

representation of natural scene statistics. This approach might improve the

performance of the frequency domain computation in the proposed SR IQA

method.

The proposed algorithm is tested for robustness by testing it with LR images

degraded with 2 different distortion types, additive White Noise and Gaussian

Blur. Tests can be conducted with a wider image set that contains images with

various other distortions and the proposed SR IQA measure can be tested for

robustness against these distortion types.
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